## MATH 3C (Spring 2007, Lecture 1) Instructor: Roberto Schonmann Final Exam

Last Name:

First and Middle Names:

Signature:

UCLA id number (if you are an extension student, say so):

Circle the discussion section in which you are enrolled:

1A (T 9, Matthew Keegan)

1B (R 9, Matthew Keegan)

1C (T 9, Yan Wang)

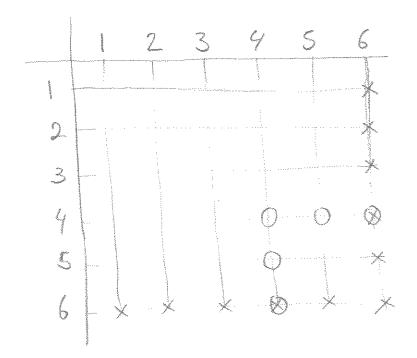
1D (R 9, Yan Wang)

1E (T 9, Christopher McKinlay)

1F (R 9, Christopher McKinlay)

When the instructions to a question ask you to explain your answer, you should show your work and explain what you are doing carefully; this is then more important than just finding the right answer. Please, write clearly and make clear what your solution and answer to each problem is. When you continue on another page indicate this clearly. To cancel anything from your solution, erase it or cross it out. You are not allowed to sit close to students with whom you have studied for this exam, or to your friends.

## Enjoy the exam, and Good Luck!


| Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|----------|---|---|---|---|---|---|---|---|
|          |   |   |   |   |   |   |   |   |
| Score    |   |   |   |   |   |   |   |   |

|                  | uestion | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Total |
|------------------|---------|---|----|----|----|----|----|----|-------|
|                  | ooro    |   |    |    |    |    |    |    |       |
| $\mathbb{L}_{2}$ | COLE    |   |    |    |    |    |    |    |       |

1) (10 points) In a group of students, 8 are freshmen and 8 are sophomores. In how many ways can the students in this group form a waiting line, if freshmen and sophomores should alternate in the line? (No need to compute factorials, powers, permutations and combinations.) (No explanation needed, just the answer is enough.)

Answer: 2×81×81

2) (10 points) Roll a die 2 times. What is the conditional probability that the maximum of the faces shown is 6, given that the minimum of the faces shown is 4? (Give answer as a fraction or in decimal form.) (Show and explain your work.)



$$P(B|A) = P(BA) = \frac{2/36}{5/36} = \frac{2}{5} = .4$$

3) (10 points) You are dealt 8 cards from a standard deck of 52 cards. Compute the probability that among those cards you have: 2 cards of one denomination, 2 cards of another denomination, 3 cards of a third denomination, and one single card of a fourth denomination. (No need to compute factorials, powers, permutations and combinations.) (No explanation needed, just the answer is enough.)

Jenomination of pains

Jenomination of 2 pains

Mits of 2 pains

Jenomination of 3 cards of same denomination

(13) × (4) 2 × (11) × (4) × (10) × (4)

(2) × (2) × (11) × (3) × (10) × (4)

(32) × (2) × (11) × (3) × (10) × (4)

(32) × (33) × (10) × (4)

(33) × (10) × (4)

(44) × (10) × (4)

(52) × (11) × (31) × (10) × (4)

(52) × (11) × (10) × (10) × (10)

(13) × (10) × (10) × (10) × (10)

(13) × (10) × (10) × (10) × (10)

(14) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (10) × (10)

(15) × (10) × (10) × (1

4) (10 points) Roll a fair die. Consider the events  $A=\{1,3\},\ B=\{3,4\}.$  Are A and B independent? (Explain your answer carefully.)

$$P(A) = \frac{2}{6}$$
  $P(B) = \frac{2}{6}$ 

ANB = 
$$\{3\}$$
  $\Rightarrow$   $P(ANB) = \frac{1}{6}$ 

$$P(A) \times P(B) = \frac{2}{6} \times \frac{2}{6} = \frac{1}{9} \neq \frac{1}{6} = P(A \cap B)$$

So A and B are not independent.

5) (10 points) A group of people has 10 adults and 20 children. One of the adults is called Ann and another one Bob. We want to select 2 adults and 8 children to go on a trip. They will go in a vehicle with room for 10, and one of the selected adults has to be the driver. (All the adults are assumed to be potential drivers.) Suppose that every possible choice of driver and passengers is equally likely. What is the probability that Ann will be the driver or Bob will be a passenger (not the driver)? (Provide a numerical answer as a fraction or in decimal form.) (Show and explain your work.)

$$P(A) = \frac{1}{10}$$
 ,  $P(B) = \frac{1}{10}$ 

since out of 10 adults one is diver and one is passenger

P(A(B) = 
$$\frac{1 \times 1}{10 \times 9} = \frac{1}{90}$$

divers passangers choice

Chore

S. 
$$P(AUB) = \frac{1}{10} + \frac{1}{10} - \frac{1}{90} = \frac{9+9-1}{90} = \frac{17}{90}$$

6) (10 points) A screening test for a disease shows a false positive with probability 1% and a false negative with probability 2%. In the population 40% of people have that disease. Given that someone tested positive for the disease, what is the probability that he/she has the disease? (Provide a numerical answer in decimal form, or as a percentage.) (Show and explain your work.)

$$P(D|T) = \frac{P(DT)}{P(T)} = \frac{0.4 \times 0.98}{0.4 \times 0.98 + 0.6 \times 0.01}$$
$$= \frac{0.392}{0.392 + 0.006} = 0.985 = 98.5\%$$

7) (10 points) A box contains 2 fair coins and 1 coin with two tails. One coin is selected at random from this box and flipped 5 times. Let X be the random variable that gives the number of heads in the 5 flips of the coin. Compute  $P(X \ge 4)$ . (Provide a numerical answer as a fraction or in decimal form.) (No explanation needed, just the answer is enough.)

$$\frac{2}{3} \times \left( \frac{5}{1} \right) \left( \frac{1}{2} \right)^4 \left( \frac{1}{2} \right)^4 + \left( \frac{5}{0} \right) \left( \frac{1}{2} \right)^5 \left( \frac{1}{2} \right)^9 = \frac{2}{3} \times \left( 5 \times \frac{7}{25} + \frac{7}{25} \right)$$

$$\frac{1}{3} \times \left( \frac{5}{1} \right) \left( \frac{1}{2} \right)^4 \left( \frac{1}{2} \right)^4 + \left( \frac{5}{0} \right) \left( \frac{1}{2} \right)^5 \left( \frac{1}{2} \right)^9 = \frac{2}{3} \times \left( 5 \times \frac{7}{25} + \frac{7}{25} \right)$$

$$\frac{1}{4} \times \frac{5}{25} \times \frac{6}{3} \times \frac{6}{25} \times \frac{6}{25} \times \frac{1}{25} \times \frac{1}{25} \times \frac{6}{25} \times \frac{1}{25} \times \frac{1}{25} \times \frac{6}{25} \times \frac{1}{25} \times \frac$$

8) (10 points) Suppose that the independent events A and B have probabilities P(A) = .8 and P(B) = .5. Compute  $P(A \cup B)$ . (Provide a numerical answer in decimal form.) (Show and explain your work.)

$$P(AUB) = P(A) + P(B) - P(ADB)$$

$$= P(A) + P(B) - P(A) \times P(B) \quad (by independence)$$

$$= .8 + .5 - .8 \times .5$$

$$= .8 + .5 - .4$$

9) (10 points) A friend of yours wanted to write a computer code to compute the variance of a discrete random variable X. She knew the correct formula:  $\operatorname{Var}(X) = \sum_{n} (n - \mu_X)^2 p_X(n)$ . But, by mistake she left the square out of the formula, making the computer compute instead  $\sum_{n} (n - \mu_X) p_X(n)$ . What numerical answer did the computer give her? (Explain your answer carefully.)

$$\sum_{n} (n - \mu_{\chi}) P_{\chi}(n) \stackrel{Q}{=} \sum_{n} n P_{\chi}(n) - \mu_{\chi} \sum_{n} P_{\chi}(n)$$

$$0 = \mu_{\mathsf{X}} - \mu_{\mathsf{X}} \cdot 1 = \mu_{\mathsf{X}} - \mu_{\mathsf{X}} = 0$$

1 properties of summation

10) (10 points) A fair coin is flipped 3 times. Let X be the random variable that gives the number of heads shown in the first two flips of the coin, and let Y be the random variable that gives the number of heads shown in the last two flips of the coin. (For instance, for the outcome hht we have X=2, Y=1, and for the outcome tth we have X=0, Y=1.) Provide a table that gives the joint distribution of X and Y, i.e., a table that gives the numbers P(X=k,Y=l), k=0,1,2, l=0,1,2. (The numbers in the table should be given as fractions, or in decimal form.) (Show and explain your work.)

Answall:

|            | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q.,     | o ngale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 1/8 | 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %<br>/8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lamanillon | 1/8 | 2/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2          | 0/8 | 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/8     | er e e de seu en el mario de sedam la constitució de despetado de seda |
|            |     | and the second s |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table of P(X=k,Y=L)

Program used to obtain mount

| arver have | ** A service of the s | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NW.        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|            | Land Control of the C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|            | the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon |  |  |
|            | 11. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Ith        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|            | , p. 100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second distance of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

2 8

11) (10 points) A continuous random variable X has probability density function given below, where C is an appropriate number.

$$f_X(s) = \begin{cases} 0 & \text{if } s < 0, \\ Cs & \text{if } 0 \le s < 1, \\ Cs^{-3} & \text{if } s \ge 1. \end{cases}$$

Find the value of C and compute the mean  $\mu_X$  of X. (Provide numerical answers in decimal form.) (Show and explain your work.)

C=7: 
$$\int_{-\infty}^{\infty} f_{\lambda}(x) dx = 1$$
  
 $\int_{-\infty}^{+\infty} f_{\lambda}(x) dx = \int_{-\infty}^{+\infty} cx^{2} dx + \int_{-\infty}^{+\infty} cx^{2} dx = \left[c\frac{2}{2}\right]_{0}^{+} \left[c\frac{x^{2}}{2}\right]_{0}^{+\infty}$   
 $= c\left[\frac{1}{2}-0\right] + c\left[0-\left(-\frac{1}{2}\right)\right] = c$ 

12) (10 points) A continuous random variable Y has probability density function given below.

$$f_Y(s) = \begin{cases} 0 & \text{if} \quad s < -1 \text{ or } s > 1, \\ 1+s & \text{if} \quad -1 \le s < 0, \\ 1-s & \text{if} \quad 0 \le s \le 1. \end{cases}$$

Compute Var(Y). (Provide a numerical answer in decimal form.) (Show and explain your work.)

By symmetry (or integration): 
$$\mu_{Y} = 0$$

$$\int_{A^{2}}^{2} f_{Y}(A) dx = \int_{A^{2}}^{2} (1+\delta) dx + \int_{A^{2}}^{2} (1-\delta) dx$$

$$= \int_{-1}^{2} (x^{2} + \lambda^{3}) dx + \int_{0}^{4} (x^{2} - \lambda^{3}) dx = \left[\frac{\lambda^{3}}{3} + \frac{\lambda^{4}}{4}\right]_{-1}^{0} + \left[\frac{\lambda^{3}}{3} - \frac{\lambda^{4}}{4}\right]_{-1}^{0}$$

$$= \left[0 - \left(-\frac{1}{3} + \frac{1}{4}\right)\right] + \left[\left(\frac{1}{3} - \frac{1}{4}\right) - 0\right] = 2x \frac{4 - 3}{12} = \frac{1}{6}$$
Therefore  $\psi_{Y}(Y) = \int_{0}^{2} a^{2} f_{Y}(A) dx - \left(\mu_{Y}\right)^{2} = \frac{1}{6} - 0 = \frac{1}{6} = 0.167$ 

13) (10 points) Suppose that W is a random variable with normal distribution with mean -1 and standard deviation 2. Compute

$$P(-3 < W < 0)$$
.

(Provide a numerical answer in decimal form.) (Show and explain your work.)

Standardage: 
$$Z = \frac{W - (-1)}{2} = \frac{W + 1}{2} \sim N(0,1)$$

$$P(-3 < W < 0) = P(\frac{-3 + 1}{2} < 2 < \frac{0 + 1}{2})$$

$$= P(-1 < Z < 0.5) = \phi(0.5) - \phi(-1)$$

$$= \phi(0.5) - (1 - \phi(+1)) = \phi(0.5) + \phi(1) - 1$$

$$= .6915 + .8913 - 1 = .5328$$
(Table)

14) (10 points) You have an appointment with a friend at 4:00 pm. You know from experience that your friend will arrive at a time that differs from 4:00pm by a random amount T with normal distribution with mean 0 and standard deviation 5 minutes. (A negative value of T means that your friend arrives early, a positive value of T means that your friend arrives late.) Given that your friend has not arrived yet at 4:05, what is the conditional probability that he will not yet have arrived at 4:10? (Provide a numerical answer in decimal form.) (Show and explain your work.)

$$T \sim N(0, 5^{2})$$

$$P(T>10 \mid T>5) = \frac{P(T>10 \mid T>5)}{P(T>5)}$$

$$= \frac{P(T>10)}{P(T>5)} = \frac{P(Z>2)}{P(Z>1)} = \frac{1-\phi(z)}{1-\phi(1)}$$

$$= \frac{1-.9772}{1-.8413}$$

$$= \frac{.0228}{.1587}$$

$$= 0.1437$$

15) (10 points) Toss a fair coin 100 times. Use the central limit theorem to find an approximation for the probability that the number of heads is at least 60. (Provide a numerical answer in decimal form.) (Show and explain your work.)

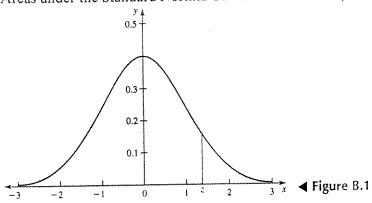
$$S_{n} = X_{1} + ... + X_{n} = \# \text{ of heads} \qquad n = 100$$

$$X_{i} = \begin{cases} 1 & \text{i-th toss is heads} \qquad \mu = EX_{i} = \frac{1}{12} \\ 0 & \text{i-th toss is heads} \qquad \sigma^{2} = \text{Var}X_{i} = \frac{1}{12} (1 + \frac{1}{12}) = \frac{1}{4} \end{cases}$$

$$CLT: X_{n} = \frac{S_{n}}{N} \qquad \text{export} \qquad N(\mu_{1}, \sigma^{2}_{N}) = N(\frac{1}{2}, \frac{1}{900}) = N(\frac{0.5}{0.05}, \frac{0.05}{0.05})$$

$$Note \qquad \mu_{n} = \mu = 0.5 \qquad , \qquad G_{n} = \frac{\sigma}{N} = \frac{1}{240} = \frac{1}{20} = 0.05$$

$$Nant \qquad P(S_{n} \ge 60) = P(\overline{X}_{n} \ge \frac{60}{100}) = P(\overline{X}_{n} \ge 0.6)$$


$$Using \qquad CLT: \qquad P(\overline{X}_{n} \ge 0.6) \cong P(2 \ge \frac{0.6 - 0.5}{0.05})$$

$$(2 = \overline{X_{n}} = \frac{1}{0.05} \times N(9,1)) = P(\overline{X}_{n} \ge 0.6) \cong P(2) = 1 - .9772$$

$$(7646) = 0.0228$$

## TABLE OF THE STANDARD NORMAL DISTRIBUTION

Areas under the Standard Normal Curve from  $-\infty$  to z (see Figure B.1).



|     |                                       |       | Speksen. | , syng yakan ya |       |       |       | 1980 1980      | ************************************** |       |
|-----|---------------------------------------|-------|----------|-----------------|-------|-------|-------|----------------|----------------------------------------|-------|
| Ę   | 0                                     | 1     | 2        | 3               | 4     | 5     | 6     | 7              | 8                                      | 9     |
| 0.0 | .5000                                 | .5040 | .5080    | .5120           | .5160 | .5199 | .5239 | .5279          | .5319                                  | .5359 |
| 0.1 | .5398                                 | .5438 | .5478    | .5517           | .5557 | .5596 | .5636 | .5675          | .5714                                  | .5754 |
| 0.2 | .5793                                 | .5832 | .5871    | .5910           | .5948 | .5987 | .6026 | .6064          | .6103                                  | .6141 |
| 0.3 | .6179                                 | .6217 | .6255    | .6293           | .6331 | .6368 | .6406 | .6443          | .6480                                  | .6517 |
| 0.4 | .6554                                 | .6591 | .6628    | .6664           | .6700 | .6736 | .6772 | .6808          | .6844                                  | .6879 |
| 0.5 | .6915                                 | .6950 | .6985    | .7019           | .7054 | .7088 | .7123 | .7157          | .7190                                  | .7224 |
| 0.6 | .7258                                 | .7291 | .7324    | .7357           | .7389 | .7422 | .7454 | .7486          | .7518                                  | .7549 |
| 0.7 | .7580                                 | .7612 | .7642    | .7673           | .7704 | .7734 | .7764 | .7 <b>7</b> 94 | .7823                                  | .7852 |
| 0.8 | .7881                                 | .7910 | .7939    | .7967           | .7996 | .8023 | .8051 | .8078          | .8106                                  | .8133 |
| 0.9 | .8159                                 | .8186 | .8212    | .8238           | .8264 | .8289 | .8315 | ,8340          | .8365                                  | .8389 |
| 1.0 | .8413                                 | .8438 | .8461    | ,8485           | .8508 | .8531 | .8554 | .8 <b>5</b> 77 | .8599                                  | .8621 |
| 1.1 | .8643                                 | .8665 | .8686    | .8708           | .8729 | .8749 | .8770 | .8 <b>7</b> 90 | .8810                                  | .8830 |
| 1.2 | .8849                                 | .8869 | .8888    | .8907           | .8925 | .8944 | .8962 | .8 <b>9</b> 80 | .8997                                  | .9015 |
| 1.3 | .9032                                 | .9049 | .9066    | .9082           | .9099 | .9115 | .9131 | .9147          | .9162                                  | .9177 |
| 1.4 | .9192                                 | .9207 | .9222    | .9236           | .9251 | .9265 | .9279 | .9292          | .9306                                  | .9319 |
| 1.5 | .9332                                 | .9345 | .9357    | .9370           | .9382 | .9394 | .9406 | .9418          | .9429                                  | .9441 |
| 1.6 | .9452                                 | .9463 | .9474    | .9484           | .9495 | .9505 | .9515 | .9525          | .9535                                  | .9545 |
| 1.7 | .9554                                 | .9564 | .9573    | .9582           | .9591 | .9599 | .9608 | .9616          | .9625                                  | .9633 |
| 1.8 | .9641                                 | .9649 | .9656    | .9664           | .9671 | .9678 | .9686 | .9693          | .9699                                  | .9706 |
| 1.9 | .9713                                 | .9719 | .9726    | .9732           | ,9738 | .9744 | .9750 | .9756          | .9761                                  | .9767 |
| 2.0 | .9772                                 | .9778 | .9783    | .9788           | .9793 | .9798 | .9803 | .9808          | .9812                                  | .9817 |
| 2.1 | .9821                                 | .9826 | .9830    | .9834           | .9838 | .9842 | .9846 | .9850          | .9854                                  | .9857 |
| 2.2 | .9861                                 | .9864 | .9868    | .9871           | .9875 | .9878 | .9881 | .9884          | .9887                                  | .9890 |
| 2.3 | .9893                                 | .9896 | .9898    | .9901           | .9904 | .9906 | .9909 | .9911          | .9913                                  | .9916 |
| 2.4 | .9918                                 | .9920 | .9922    | .9925           | .9927 | .9929 | .9931 | .9932          | .9934                                  | .9936 |
| 2.5 | .9938                                 | .9940 | .9941    | .9943           | .9945 | .9946 | .9948 | .9949          | .9951                                  | .9952 |
| 2.6 | .9953                                 | .9955 | .9956    | .9957           | .9959 | .9960 | .9961 | .9962          | .9963                                  | .9964 |
| 2.7 | .9965                                 | .9966 | .9967    | .9968           | .9969 | .9970 | .9971 | .9972          | .9973                                  | .9974 |
| 2.8 | .9974                                 | ,9975 | .9976    | .9977           | .9977 | .9978 | .9979 | .9979          | .9980                                  | .9981 |
| 2.9 | .9981                                 | .9982 | .9982    | .9983           | .9984 | .9984 | .9985 | .9985          | .9986                                  | .9986 |
|     | · · · · · · · · · · · · · · · · · · · |       |          |                 |       |       |       |                |                                        |       |