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Abstract

This paper presents an exposition of the topological foundations of the
theory of n-valued maps. By means of proofs that exploit particular fea-
tures of n-valued functions, as distinct from more general classes of multi-
valued functions, we establish, among other properties, the equivalence of
several definitions of continuity. The exposition includes an exploration of
the role of configuration spaces in the study of n-valued maps. As a con-
sequence of this point of view, we extend the classical Splitting Lemma,
that is central to the fixed point theory of n-valued maps, to a charac-
terization theorem that leads to a new type of construction of non-split
n-valued maps.

Keywords and Phrases: n-valued map, Splitting Lemma, continuity,
graph of a function, configuration space, braid group

Subject Classification: 54C60, 55M20, 57M10, 20F36

1 Introduction

An n-valued map φ : X ( Y is a continuous multivalued function
that associates to each x ∈ X an unordered subset of exactly n
points of Y . The fixed point theory of n-valued maps φ : X ( X
has been a topic of considerable interest in recent years and there is
much research activity at the present time [3] - [12], [15], [16]. The
purpose of this paper is to present the topological foundations of
this subject.
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In Section 2 we assume as few hypotheses on the topological
spaces X and Y as necessary in order to obtain the results. For
a general multivalued function, continuity is defined as the satis-
faction of two independent conditions called upper and lower semi-
continuity. The section begins by proving that, in the case of n-
valued functions, lower semi-continuity implies upper semi-continuity
(but not the converse) and thus this single condition is sufficient for
the definition of an n-valued map. We use this result to prove that,
in the setting of n-valued functions, the general definition of conti-
nuity for multivalued functions is equivalent to a classical definition
based on convergence of sequences.

The graph Γ(φ) of a multivalued function φ : X ( Y is the set

Γ(φ) = {(x, y) ∈ X × Y : y ∈ φ(x)},

topologized as a subspace of X × Y . The graph plays a significant
role in the general theory of multivalued functions, see for instance
[17]. If φ is an n-valued map, then its graph has a very useful
property: the projection p

X
: Γ(φ) → X defined by p

X
(x, y) = x is

a finite covering space. This covering space has played a key role in
the construction of n-valued maps.

In Section 3 we characterize the splitting of an n-valued map that
extends the classical Splitting Lemma. An n-valued map φ : X ( Y
is split if there are single-valued maps f1, . . . , fn : X → Y such that
φ(x) = {f1(x), . . . , fn(x)} for all x ∈ X. The Splitting Lemma states
that if X is simply connected and locally path connected, then ev-
ery n-valued map φ : X ( Y is split. The Splitting Lemma was
first proved by Banach and Mazur in [1] to obtain conditions that
imply that a local homeomorphism is a global homeomorphism.1

The Nielsen fixed point theory of an n-valued map φ : X ( X pre-
sented by Schirmer in [23] - [25] depends on a version of the Splitting
Lemma which she obtained from a more general result concerning
multivalued functions on simply connected compact metric spaces
due to O’Neill [21]. Another consequence of the Splitting Lemma,
in [6], is that an n-valued map φ : X ( Y of finite simplicial com-
plexes induces a chain map of their simplicial chain complexes. It
follows that the integer Lefschetz number of an n-valued self-map of
a finite simplicial complex is well-defined and the Lefschetz Fixed
Point Theorem can be generalized to such maps.

The configuration space Dn(Y ) of a space Y is the set of all
unordered sets of n points of Y . The set of n-valued functions from
a space X to a space Y is in one-to-one correspondence with the

1The proof in [1] is for n-valued maps of metric spaces. However, the authors state that
the same result can be generalized to topological spaces.

2



set of single-valued functions from X to Dn(X) where, to a given n-
valued function φ : X ( Y we associate the single-valued function
Φ: X → Dn(Y ) defined by Φ(x) = {φ(x)}. We prove in Section 3
that, under suitable hypotheses, φ is an n-valued map if and only if
Φ is continuous with respect to a natural topology on Dn(Y ).2

Thus for φ : X ( Y an n-valued map, the map Φ induces a
homomorphism Φ# : π1(X) → π1(Dn(Y )). We prove that this ho-
momorphism characterizes the splitting of n-valued maps. If X is
simply connected, we obtain the Splitting Lemma as a consequence
of this result. Moreover, we demonstrate that hypotheses on X more
general than simple connectedness can be sufficient to imply that all
n-valued maps φ : X ( Y are split.

The group π1(Dn(Y )) may be identified with the braid group of
n strands on Y [13]. This identification facilitates the construction
in Section 3 of non-split n-valued self-maps φ : X ( X that are of
interest in the fixed point theory of such maps, complementing the
constructions in [12] and [8].

Finally, in Section 4 we add the hypothesis that the range Y
of an n-valued function φ : X ( Y is a metric space. Therefore,
for x, x′ ∈ X, the Hausdorff distance between φ(x) and φ(x′) as
subsets of Y is well-defined. We can use the Hausdorff distance to
define a form of continuity for φ and we prove that, in this setting,
it is equivalent to the other definitions of continuity that we have
presented. As a tool for this proof, we use the concept of the gap
of an n-valued map that was introduced by Schirmer in [23] and we
establish its properties.

Most of the results in this paper are not new and are actually
special cases of established facts. The n-valued maps belong to
a class of multivalued functions called weighted maps, and these
have been extensively studied [22]. Our goal is to furnish a person
interested in the topic of n-valued maps with arguments for their
basic topological properties that are as simple and elementary as
possible, without any dependence on a more general theory.

However, although the primary purpose of this paper is the ex-
position of known facts about the topology of n-valued maps, in
the course of its preparation some interesting features of such maps
appeared that, it seems, have not been noted previously. We call
the reader’s attention to the property of n-valued maps presented
as Proposition 2.1, that lower semi-continuity implies upper semi-

2The configuration space viewpoint was introduced into the fixed point theory of n-valued
maps in [15] and [16]. However, configuration spaces have been a well-established tool in
the fixed point and coincidence theory of single-valued maps, see for instance [14] where the
configuration space of ordered pairs is presented as the complement of the diagonal of the
Cartesian square of a space.
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continuity. This property not only simplifies the proofs of some of
the subsequent results, it is quite special to n-valued maps, as an
example in Section 2 demonstrates. Moreover, while the Splitting
Lemma of Corollary 3.1 has been a basic tool since the initiation of
the fixed point theory of n-valued maps by Schirmer, the Charac-
terization Theorem 3.1 is a considerable extension of this classical
result and, as demonstrated in Section 3, it has several significant
consequences.

The authors thank Ofelia Alas for clarifying for them the rela-
tionship of the continuity of an n-valued function and the continuity
of a mapping to the corresponding configuration space.

2 Functions of Hausdorff spaces

Throughout this section, we assume only that the spaces are Haus-
dorff.

A multivalued function φ : X ( Y is lower semi-continuous if V
an open subset of Y implies that the set {x ∈ X : φ(x) ∩ V 6= ∅} is
open in X and upper semi-continuous if V open in Y implies that the
set {x ∈ X : φ(x) ⊆ V } is open in X. Since we will need terminology
that distinguishes several definitions of continuity, we will call φ
multicontinous if it is both lower and upper semi-continuous.3

Let φ : X ( Y be a lower semi-continuous function and x(0) ∈
X with φ(x(0)) = {y(0)

1 , . . . , y
(0)
n }. Let V1, . . . , Vn be disjoint open

subsets of Y such that y
(0)
j ∈ Vj. Since φ is lower semi-continuous,

for each j there is an open subset Uj of X containing x(0) such that
if x ∈ Uj, then φ(x)∩Vj 6= ∅ and we define U(x(0), {Vj}) =

⋂n
j=1 Uj.

If x ∈ U(x(0), {Vj}), then φ(x) ⊆
⋃n
j=1 Vj and we can number the

points of φ(x) = {y1, . . . , yn} so that yj ∈ Vj.

Proposition 2.1. Let φ : X ( Y be an n-valued function. If φ is
lower semi-continuous it is also upper semi-continuous and therefore
multicontinuous, that is, an n-valued map.

Proof. Let x(0) ∈ X and let V be an open subset of Y containing

φ(x(0)) = {y(0)
1 , . . . , y

(0)
n }. Let V1, . . . , Vn be disjoint open subsets

of V such that y
(0)
j ∈ Vj for each j. If x ∈ U(x(0), {Vj}), then

φ(x) ⊆
⋃n
j=1 Vj ⊆ V so {x ∈ X : φ(x) ⊆ V } is open in X and we

have proved that φ is upper semi-continuous.

3In Wikipedia, these concepts are called upper and lower hemi-continuous and the words
upper and lower semi-continuous are reserved for certain generalizations of continuity for
single-valued functions which, together, imply continuity in the usual sense. However, in both
[2] and [17] the word semi-continuous is used as it is here.
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To demonstrate that an upper semi-continuous n-valued function
need not be continuous, define a 2-valued function φ : R ( R by
φ(x) = {x, x/2} if x 6= 0 and φ(0) = {0, 1}. If V ⊆ R is an open
set containing φ(0), then there exists ε > 0 such that (−ε, ε) ⊆ V
and if |x| < ε, then φ(x) ⊂ (−ε, ε) ⊆ V . Since φ is continuous at
x 6= 0 and thus upper semi-continuous, we conclude that φ is an
upper semi-continuous function. However,

{x ∈ R : φ(x) ∩ (1/2, 3/2) 6= ∅} = (1/2, 3) ∪ {0}

which is not open. Therefore φ is not lower semi-continuous and
thus not continuous.

The property of n-valued maps presented in Proposition 2.1 fails
immediately beyond the class of n-valued functions. For instance,
define an “almost 2-valued function” φ : [0, 1] ( [0, 1] by φ(x) =
{0, 1} if x 6= 0 and φ(0) = {0}. Then φ is lower semi-continuous
because if U0 and U1 are neighborhoods of 0 and 1 respectively, then
{x : φ(x) ∩ U0 6= ∅} = [0, 1] and {x : φ(x) ∩ U1 6= ∅} = (0, 1]. But
{x : φ(x) ⊆ U0} = {0} so φ is not upper semi-continuous.

The function φ : X ( Y is locally split if, given x(0) ∈ X there
is a neighborhood U of x(0) and maps g1, . . . , gn : U → Y such that
φ(x) = {g1(x) . . . , gn(x)} for all x ∈ U .

Proposition 2.2. An n-valued map φ : X ( Y is locally split.

Proof. Let x(0) ∈ X with φ(x(0)) = {y(0)
1 , . . . , y

(0)
n } and V1, . . . , Vn

disjoint open subsets of Y with y
(0)
j ∈ Vj. For x ∈ U = U(x(0), {Vj})

with φ(x) = {y1, . . . , yn}, we number the yj such that yj ∈ Vj.
For j = 1, . . . , n, define gj : U → Y by gj(x) = yj, then φ(x) =
{g1(x) . . . , gn(x)}. To prove that the gj are continuous, let x∗ ∈ U
and letW be an open subset of Y that contains gj(x∗). Let Z = {x ∈
X : φ(x)∩ (W ∩Vj) 6= ∅} which contains x∗ and is open because φ is
lower semi-continuous. Then U∩Z is an open subset of X containing
x∗ such that if x ∈ U ∩ Z, then gj(x) = φ(x) ∩ (W ∩ Vj) ⊆ W .

It follows easily from Proposition 2.2 that

Proposition 2.3. If φ : X ( Y is an n-valued map, then the map
p
X

: Γ(φ)→ X defined by p
X

(x, y) = x is a covering space.

Thus an n-valued map determines a finite covering space. Con-
versely, a finite covering space determines an n-valued map, as fol-
lows.

Proposition 2.4. If p : X̃ → X is a covering space of degree n,

then p−1 : X ( X̃ in an n-valued map.
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Proof. Let U be an open subset of X̃ and let x0 ∈ X such that

p−1(x0) ∩ U 6= ∅. Because p : X̃ → X is a covering space, then p is
an open map so p(U) is an open subset of X containing x0. Since
φ(x)∩U 6= ∅ for all x ∈ p(U), we conclude that p−1 is a lower semi-
continuous function and therefore, by Proposition 2.1, an n-valued
map.

The n-valued map p−1 is used in [8] to construct n-valued self-

maps of X̃ and in [12] to construct n-valued self-maps of X.
In [1], Banach and Mazur called an n-valued function φ : X ( Y

with φ(x) = {y1, . . . , yn} continuous if, given a sequence x(k) in X

such that limk→∞ x(k) = x(0) with φ(x(0)) = {y(0)
1 , . . . , y

(0)
n }, the sets

φ(x(k)) can be ordered as y
(k)
1 , . . . , y

(k)
n so that limk→∞ y

(k)
i = y

(0)
i for

all i = 1, . . . , n. We will call an n-valued function that satisfies this
definition sequentially continuous.

As another application of Proposition 2.1 we have

Proposition 2.5. If an n-valued function φ : X ( Y is sequentially
continuous and X is a first-countable space, then φ is multicontin-
uous.

Proof. It follows from Proposition 2.1 that φ is multicontinuous if
and only if it is lower semi-continuous. Suppose φ is not lower semi-
continuous, then there exists x(0) ∈ X and an open subset V of Y
such that φ(x(0))∩V 6= ∅ but, for any open subset U of X containing
x(0), there a point x ∈ U such that φ(x) ∩ V = ∅. Since X is first
countable, there is a basis U = {Uk}∞k=1 for the topology of X at x(0).
For each k, there is a point x(k) ∈ Uk such that φ(x(k))∩V = ∅. Let

y
(0)
j ∈ φ(x(0)) such that y

(0)
j ∈ V . Since U is a basis for the topology

of X at x(0), then limk→∞ x(k) = x(0), but φ(x(k)) = {yk)
1 , . . . , y

(k)
n }

cannot be ordered so that limk→∞ y
(k)
j = y

(0)
j , and therefore φ is not

sequentially continuous.

The converse of the previous result holds for all Hausdorff spaces:

Proposition 2.6. If an n-valued function φ : X ( Y is multicon-
tinuous, then it is sequentially continuous.

Proof. Let x(0) ∈ X such that φ(x(0)) = {y(0)
1 , . . . , y

(0)
n }. Let (x(k))

be a sequence in X such that limk→∞ x(k) = x(0). Suppose Vj ⊆
Y are open sets such that y

(0)
j ∈ Vj. We may assume, without

loss of generality, that the subsets Vj are disjoint. Since φ is lower
semi-continuous, we observed at the beginning of this section that
therefore there is an open set U(x(0), {Vj}) in X containing x(0) such
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that if x ∈ U(x(0), {Vj}), then φ(x) = {y1, . . . , yj} can be ordered
so that yj ∈ Vj. Since limk→∞ x(k) = x(0), there exists N such
that if k > N , then x(k) ∈ U(x(0), {Vj}). Therefore, if k > N

then y
(k)
j ∈ Vj, so limk→∞ y

(k)
j = y

(0)
j and we conclude that φ is

sequentially continuous.

3 Configuration spaces and the characterization
of splitting

As in the previous section, we assume only that all spaces are Haus-
dorff unless other conditions are stated.

Given a space Y and a positive integer n, we define Fn(Y ), the
ordered configuration space of Y , by

Fn(Y ) = {(y1, . . . , yn) ∈ Y n = Y × · · · × Y : yi 6= yj for i 6= j}.

The symmetric group Sn acts freely on Fn(Y ) and the quotient
space Dn(Y ) = Fn(Y )/Sn is the unordered configuration space of
Y . Topologize Fn(Y ) as a subset of the product space Y n and then
give Dn(Y ) the quotient topology so that, for the quotient map
q : Fn(Y ) → Dn(Y ), a subset W of Dn(Y ) is open if and only if
q−1(W ) is open in Fn(Y ).

It is observed in [15] that the set of n-valued functions from a
space X to a space Y is in one-to-one correspondence with the set of
single-valued functions from X to Dn(Y ). Specifically, if φ : X ( Y
is an n-valued function, then the corresponding function Φ: X →
Dn(Y ) is defined by Φ(x) = {φ(x)}.

Proposition 3.1. If φ : X ( Y is an n-valued map, then the cor-
responding function Φ: X → Dn(Y ) is continuous.

Proof. Let x(0) ∈ X then, by Proposition 2.2, there is a neighbor-
hood U of x(0) and single-valued maps g1, . . . , gn : U → Y such that
φ(x) = {g1(x), . . . , gn(x)} for all x ∈ U . Therefore, the restric-
tion of Φ: X → Dn(Y ) to U is the composition of the function

φ̂ : U → Fn(x) defined by φ̂(x) = (g1(x), . . . , gn(x)) and the projec-
tion q : Fn(Y ) → Dn(Y ), both of which are continuous. Therefore,
the function Φ is continuous.

Proposition 3.1 allows us to replace an n-valued map of spaces
by a single-valued map, the range of which is an unordered config-
uration space.

We will illustrate the configuration space concept by describing
the ordered and unordered configuration spaces of the circle S1. In
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addition to the relative simplicity of this setting, it is natural to focus
on it because the n-valued self-maps of the circle may be viewed as
the motivating example for this branch of fixed point theory. The
reciprocal of the square-root function on the complex numbers of
norm one was introduced in [24]: it is a non-split 2-valued self-map
of the circle such that every 2-valued map of the circle homotopic
to it has at least three fixed points.4

Our presentation is based on a paper of Westerland [27] and com-
ments of Dylan Thurston [26]. We begin with the ordered configu-
ration space Fn(S1). This space is the disjoint union of (n− 1)! sets
determined by the n!/n = (n−1)! orderings of n points z1, . . . , zn of
S1. For a given ordering, choose the value of z1 as the S1 coordinate,
then the successive differences of the polar coordinates between the
adjacent points in the cyclic ordering of the points determines n− 1
positive real numbers whose sum is less than one and so they define
an open n − 1-simplex. Thus each component of Fn(S1) is homeo-
morphic to the product of the circle and an open n− 1-simplex and
consequently it is the homotopy type of the circle.

The quotient map q : Fn(S1) → Dn(S1) is a covering space of
order n! and the restriction of q to each component of Fn(S1) is of
order n. Thus Dn(S1) is a K(π, 1) because Fn(S1) is. To determine
the fundamental group π of Dn(S1), we first note that that group
must be torsion free since Dn(S1) is a finite-dimensional manifold
and it admits the cyclic group Z as a subgroup of finite index. Since
π is a virtually cyclic group that is torsion free, the classification of
virtually cyclic groups implies that π = Z. The homomorphism of
cyclic groups q# : π1(Fn(S1)) → π1(Dn(S1)) induced by q is multi-
plication by n.

The converse of Proposition 3.1 also holds, as follows.

Proposition 3.2. Let φ : X ( Y be an n-valued function. If X is
locally path-connected and semilocally simply connected and Φ: X →
Dn(Y ) is continuous, then φ is multicontinuous, that is, an n-valued
map.5

Proof. Let x(0) ∈ X be an arbitrary point then, since X is locally
path-connected and semilocally simply connected, there is a path-
connected neighborhood U of x(0) such that i# : π1(U) → π1(X),
the homomorphism induced by the inclusion, is trivial. Therefore
the homomorphism (Φ|U)# : π1(U) → π1(Dn(Y )) induced by the

4The fixed point theory of n-valued maps of the circle was subsequently developed in [5].
5By means of a more elaborate proof, based on Corollary 9.3 of [20], it can be demonstrated

that this proposition does not require the hypotheses that the domain is locally path-connected
and semilocally simply connected. However, such a proof is beyond the scope of the present
paper.
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restriction of Φ to U is trivial because it factors through i#. By [18],
Proposition 1.33, the map Φ|U admits a lifting to Fn(Y ) and we can
view it as consisting of maps g1, . . . , gn : U → Y such that gi(x) 6=
gj(x) for i 6= j. Therefore the restriction to U of the corresponding
n-valued function φ : X ( Y is split by the maps gj. Let x(0) ∈ U
and let V be an open subset of Y that contains some gj(x

(0)). Since
gj is continuous, there exists an open neighborhood W of x(0) in U
such that gj(W ) ⊆ V . Therefore φ(x)∩V 6= ∅ for all x ∈ W and we
have proved that φ is lower semi-continuous which, by Proposition
2.1, implies that φ is an n-valued map.

By Propositions 3.1 and 3.2, if the domain satisfies appropriate
hypotheses, we obtain another characterization of continuity for n-
valued functions, as follows:

Corollary 3.1. If X is locally path-connected and semilocally simply
connected, an n-valued function φ : X ( Y is multicontinous if and
only if the corresponding function Φ: X → Dn(Y ) is continuous.

By [13] the fundamental group of the configuration space Dn(Y )
is Bn(Y ), the braid group of n strands on Y , and the fundamen-
tal group of Fn(Y ) is Pn(Y ), the subgroup of Bn(Y ) of pure braids.
Since if φ : X ( Y is an n-valued map, then the corresponding func-
tion Φ: X → Dn(Y ) is continuous, so it induces a homomorphism
Φ# : π1(X) → Bn(Y ) (compare [15]). We use that homomorphism
to obtain the following generalization of the Splitting Lemma.

Theorem 3.1. (Splitting Characterization Theorem) Let φ : X (
Y be an n-valued map, where X is connected and locally path-connected.
Then φ is split if and only if the image of Φ# : π1(X) → Bn(Y ) is
contained in the image of the homomorphism q# : Pn(Y ) → Bn(Y )
induced by the projection q : Fn(Y )→ Dn(Y ). In particular, if X is
simply connected, then all n-valued maps φ : X ( Y are split.6

Proof. Suppose that φ is split. This implies that there exist maps
g1, . . . , gn : X → Y such that φ(x) = {g1(x), . . . , gn(x)} and we may

define a map φ̂ : X → Fn(Y ) by φ̂(x) = (g1(x), . . . , gn(x)). Then

the corresponding map Φ: X → Fn(Y ) is the composition of φ̂ with
the projection q : Fn(Y ) → Dn(Y ) and it follows that the image of
the induced homomorphism Φ# : π1(X) → Bn(Y ) is contained in
the image of q# : Pn(Y )→ Bn(Y ).

6This form of the Splitting Lemma corresponds to that of Banach and Mazur [1] for Haus-
dorff spaces. The proof of Schirmer [23], based on a result of O’Neill [21], does not require
that the domain be locally path-connected, but it only applies when both domain and range
are compact spaces.
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Suppose that the image of the homomorphism Φ# : π1(X) →
Bn(Y ) is contained in the image of q# : Pn(Y ) → Bn(Y ), the ho-
momorphism induced by the projection q : Fn(Y ) → Dn(Y ). By

[18], Proposition 1.33 there is a lifting φ̂ : X → Fn(Y ) of Φ. The

coordinate maps of φ̂ split φ and the result follows.

Not only must n-valued maps with domain a simply connected
space be split but, more generally, if X and Y are spaces such that
there are no nontrivial homomorphism from π1(X) to Bn(Y ), then
Theorem 3.1 implies that every n-valued map from X to Y must be
split. For example, let G be a finite group, let X

G
be a 2-complex

such that π1(X
G

) = G and let Y be a surface that is not the pro-
jective plane then, since Bn(Y ) is a torsion free group, all n-valued
maps φ : X

G
( Y must be split.

Viewing a braid β in Bn(Y ) as an n-valued map of the unit inter-
val to Y where β(1) is a permutation of β(0), define ρ : Bn(Y )→ Sn
by sending β to the corresponding permutation. Since the braid
group sequence

1→ Pn(Y )
q#−→ Bn(Y )

ρ−→ Sn → 1

is exact ([19], page 16), then the Splitting Characterization Theorem
implies that if φ : X ( Y induces Φ# : π1(X) → Bn(Y ) such that
the composition ρΦ# : π1(X) → Sn is nontrivial, then φ does not
split.

From the point of view of fixed point theory, the study of split
n-valued self-maps of a finite polyhedron can be reduced to the
single-valued setting because Schirmer proved in [24] that if φ =
{f1, . . . , fn} : X ( X, then the Nielsen number of φ is calculated
from that of the fi by the formula N(φ) =

∑n
i=1 N(fi). On the other

hand, examples from [8] demonstrate that N(φ) can exhibit a variety
of behaviors in the non-split case. This motivates the use of our
Splitting Characterization Theorem to construct non-split n-valued
self-maps φ : X ( X which we will do by defining φ so that the
image of Φ# does not lie in the subgroup q#(Pn(Y )) ⊆ Bn(Y ) of pure
braids on Y . In order to make the construction, the only requirement
is that the first Betti number of X be non-zero. Thus the integer
cohomology group H1(X) is of rank at least one. Identifying H1(X)
with the Buschinsky group of homotopy classes of maps [X,S1],
that group is nontrivial so we may choose a map a : X → S1 which
induces an epimorphism a# : π1(X) → π1(S1). Let β ∈ Bn(X) be
a braid on X such that ρ(β) ∈ Sn is not the identity permutation.
Since Bn(Y ) = π1(Dn(Y )), the homotopy class [b] corresponding to
the braid β is represented by a map b : S1 → Dn(X) which may be
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viewed as an n-valued map b : S1 ( X. Then φ = b ◦ a : X ( X is
a non-split n-valued map.

4 Maps to a metric range

Let φ : X ( Y be an n-valued function and write φ(x) = {y1, . . . , yn}
for x ∈ X. For Y a metric space with metric d

Y
, define γφ : X → R

by
γφ(x) = min

1≤i 6=j≤n
d

Y
(yi, yj).

In [23], the gap γ(φ) of φ is defined as

γ(φ) = inf{γφ(x) : x ∈ X}.

The following useful fact is stated in [23] without a proof. We
take this opportunity to present its brief proof.

Proposition 4.1. Let Y be a metric space with metric d
Y

and let
φ : X ( Y be a multicontinuous n-valued function, then the function
γφ : X → R is continuous. Therefore, if X is compact, then the gap
γ(φ) > 0 for all φ.

Proof. Let x0 ∈ X, then by Proposition 2.2 there is an neigh-
borhood U of x0 and maps g1, . . . gn : U → Y such that φ(x) =
{g1(x), . . . , gn(x)} for all x ∈ U . Then for x ∈ U , the gap is defined
by

γφ(x) = min
1≤i 6=j≤n

{dY (gi(x), gj(x))}.

Since the gi are continuous, γφ is continuous on U and therefore it
is a continuous function.

The gap, and in particular the fact that it is positive on compact
spaces, is used in [23] to obtain a simplicial approximation theorem
for n-valued maps and, subsequently, in [6] to define a simplicial
chain map induced by the n-valued map. It appears also in the
proof of the uniqueness of splitting in [9] and in the reduction of
the computation of the Nielsen number of an n-valued map to a
coincidence number for single-valued maps in [10].

Let φ : X ( Y be an n-valued function where Y is a metric space
with metric d

Y
. For x, x′ ∈ X, the Hausdorff distance, when special-

ized to that between φ(x) = {y1, . . . , yn} and φ(x′) = {y′1, . . . , y′n},
denoted d

H
(φ(x), φ(x′)), is the greater of

max
1≤j≤n

min
1≤i≤n

dY (yj, y
′
i)

11



and
max
1≤i≤n

min
1≤j≤n

dY (yj, y
′
i).

We define φ : X ( Y to be Hausdorff continuous at x0 ∈ X if, given
ε > 0, there exists an open subset U of X containing x0 such that if
x ∈ U , then d

H
(φ(x0), φ(x)) < ε. It is Hausdorff continuous on X

if it is Hausdorff continuous at every point of X.

Proposition 4.2. An n-valued function φ : X ( Y , where Y is a
metric space, is multicontinuous if and and only if it is Hausdorff
continuous on X.

Proof. We first prove that if φ : X ( Y is Hausdorff continuous,
then it is multicontinuous. By Proposition 2.1, we need only prove
that φ is lower semi-continuous. Let x(0) ∈ X such that φ(x(0)) =

{y(0)
1 , . . . , y

(0)
n } and let V ⊆ Y be an open set such that φ(x(0))∩V 6=

∅; we assume y
(0)
1 ∈ V . Choose ε > 0 so that B(y

(0)
1 , ε) ⊆ V then,

since φ is Hausdorff continuous, there is an open subset U of X
containing x(0) such that x ∈ U implies that dH(φ(x), φ(x(0))) < ε.
Therefore, for φ(x) = {y1, . . . , yj} we know that

max
1≤i≤n

min
1≤j≤n

d
Y

(yj, y
(0)
i ) < ε.

and, in particular, that

min
1≤j≤n

d
Y

(yj, y
(0)
1 ) < ε

so some yj ∈ B(y
(0)
1 , ε). Therefore, x ∈ U implies that φ(x)∩ V 6= ∅

and we have demonstrated that the set of x ∈ X with this property
is open.

Now suppose that φ : X ( Y is multicontinuous, that x(0) ∈ X,
and we are given ε > 0. We may assume that ε < γφ(x(0))/2.

Let φ(x(0)) = {y(0)
1 , . . . , y

(0)
n } and define disjoint open sets Vj =

B(y
(0)
j , ε). We will show that if x is in the open subset U(x(0), {Vj})

of X defined in Section 2, then d
H

(φ(x), φ(x(0))) < ε so φ is Haus-
dorff continuous at x0. Let φ(x) = {y1, . . . , yn}. If i 6= j, then

γφ(x(0)) ≤ d
Y

(y
(0)
i , y

(0)
j )

≤ d
Y

(y
(0)
i , yj) + d

Y
(yj, y

(0)
j )

< d
Y

(y
(0)
i , yj) + γφ(x(0))/2

so
d

Y
(y

(0)
i , yj) > γφ(x(0))/2.

12



Therefore, since d
Y

(y
(0)
i , yi) < γφ(x(0))/2 for all i, we conclude that

d
H

(φ(x), φ(x(0))) = max
1≤i≤n

d
Y

(y
(0)
i , yi) < ε.

References
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