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Abstract

Let φ : X ( Y be an n-valued map of connected finite polyhedra and
let a ∈ Y . Then x ∈ X is a root of φ at a if a ∈ φ(x). The Nielsen root
number N(φ : a) is a lower bound for the number of roots at a of any
n-valued map homotopic to φ. We prove that if X and Y are manifolds
without boundary, of the same dimension, then there is an n-valued map
ψ homotopic to φ such that ψ has finitely many roots at a. We conjecture
that if X and Y are q-manifolds without boundary, q 6= 2, then there is an
n-valued map homotopic to φ that has N(φ : a) roots at a. We verify the
conjecture when X = Y is a Lie group by employing a fixed point result
of Schirmer. As an application, we calculate the Nielsen root numbers of
linear n-valued maps of tori.

Keywords and Phrases: n-valued map, Nielsen number, coinci-
dence, root
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1 Introduction

Throughout the paper all spaces are connected finite polyhedra. Let
f : X → Y be a map and a ∈ Y , then a root of f at a is a point x ∈ X
such that f(x) = a. An n-valued map is a lower semi-continuous,
hence also upper semi-continuous [5], set-valued function φ : X ( Y
such that φ(x) is n points of Y for each x ∈ X. A root of φ at a ∈ Y
is a point x ∈ X such that a ∈ φ(x).

Nielsen root theory for single-valued maps was first formalized
in [2], but important results concerning roots had been established
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much earlier by Hopf in [9]. The Nielsen root theory of n-valued
maps was introduced in [6] as a tool for studying the Nielsen coin-
cidence theory of such maps. In the present paper, the focus is on
the Nielsen root theory of n-valued maps for its own sake.

Section 2 presents Nielsen root theory for n-valued maps in the
context of Nielsen coincidence theory and explains the relationship
between the two theories. In Section 3, we prove a root theory
analogue of a finiteness theorem for fixed points due to Schirmer in
[11]. Section 4 presents a conjecture about the Nielsen root theory
of n-valued maps and we partly verify the conjecture in Section 5. In
Section 6 we use the techniques of Section 5 to compute the Nielsen
root numbers of “linear” n-valued maps of tori that were introduced
in [7].

2 Coincidences and Roots

Let φ, ψ : X ( Y be n-valued and m-valued maps, respectively,
which we will call an (n,m)-valued pair of maps. A point x ∈ X is a
coincidence of φ and ψ if φ(x)∩ψ(x) 6= ∅. If, for a ∈ Y , the map ψ(x)
is the constant map at a, then x a coincidence of φ and ψ means that
a ∈ φ(x) and thus x is a root of φ at a. An important property of n-
valued maps is that they split if the domain X is simply-connected,
that is, there is the splitting as φ(x) = {f1(x), . . . , fn(x)} for all
x ∈ X, where each fj : X → Y is a single-valued map. We use this
property to define an equivalence relation on the set of coincidences
of an (n,m)-valued pair φ, ψ : X ( Y as follows. Coincidences x0
and x1 are equivalent if there exists a path c : I = [0, 1] → X such
that c(0) = x0, c(1) = x1 and c has the following property: for
the splittings φc = {f1, . . . , fn} and ψc = {g1, . . . , gm} there exist
j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} such that fj(0) = gk(0), fj(1) =
gk(1) and the paths fj, gk : I → Y are homotopic relative to the
endpoints. The equivalence classes are called the coincidence classes
of the (n,m)-valued pair φ, ψ and they are finite in number because
X is compact. If ψ is the constant map at a ∈ Y , roots x0 and x1 are
equivalent according to this definition if there is a path c : I → X
such that c(0) = x0, c(1) = x1 and for the splitting φc = {f1, . . . , fn}
there is a contractible loop fj at a for some j ∈ {1, . . . , n}. The
equivalence classes are called the root classes of φ at a.

Let Φ: X × I ( Y be an n-valued map, called an n-valued
homotopy, and let Ψ: X × I ( Y be an m-valued homotopy. The
restrictions of Φ and Ψ to X × {t} for 0 ≤ t ≤ 1 are denoted by φt
and ψt respectively. By Lemma 2.1 of [6], a coincidence class of the
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(n,m)-valued pair φt, ψt is contained in a unique coincidence class
of the (n,m)-valued pair (Φ,Ψ).

A coincidence class C0 of an (n,m)-valued pair φ, ψ : X ( Y
is inessential if there exists an (n,m)-valued pair of homotopies
Φ,Ψ: X×I ( Y such that φ0 = φ, ψ0 = ψ and the coincidence class
C of the (n,m)-valued pair (Φ,Ψ) containing C0 has the property
C∩ (X ×{1}) = ∅. Otherwise the coincidence class C0 is essential.
The Nielsen coincidence number N(φ : ψ) of the (n,m)-valued pair
φ, ψ : X ( Y is the number of essential coincidence classes. If ψ is
the constant map at a ∈ Y , then the Nielsen number is denoted by
N(φ : a) and called the Nielsen root number of φ at a.

The Nielsen coincidence number for (n,m)-valued pairs of maps
is homotopy invariant by Theorem 2.1 of [6]. That is, let Φ,Ψ: X×
I ( Y be an (n,m)-valued pair of homotopies, then N(φ0 : ψ0) =
N(φ1 : ψ1). We will make use of the following consequence in which
Ψ(x, t) = a for all (x, t) ∈ X × I:

Proposition 2.1. If Φ: X × I ( Y is an n-valued homotopy, then
N(φ0 : a) = N(φ1 : a).

Although the concepts of Nielsen root theory have been defined
in terms of concepts in Nielsen coincidence theory, root theory is not
the special case of the coincidence theory of an (m,n)-valued pair
φ, ψ : X ( Y in which ψ(x) = a for all x ∈ X. The difference lies in
the type of homotopies that are valid for the two theories. In coinci-
dence theory they are (n,m)-valued pairs of maps Φ,Ψ: X×I ( Y
whereas in root theory a homotopy is a single map Φ: X × I ( Y
because the target a ∈ Y is constant throughout the homotopy, in
other words it requires that Ψ(x, t) = a for all (x, t) ∈ X × I.

3 Root-finite Approximation

If φ : X ( X is an n-valued map, then x ∈ X is a fixed point of φ
if x ∈ φ(x). In [11] Schirmer proved the following result:

Theorem 3.1. (Schirmer’s Fix-finite Approximation Theorem) Let
φ : X → X be an n-valued map. Given ε > 0 there exists an n-
valued map ψ : X → X, homotopic to φ, with finitely many fixed
points, such that the Hausdorff distance d(φ, ψ) < ε.

An n-valued map φ : X ( Y is defined in [11] to be simplicial if,
for each closed simplex σ̄ of X, the restriction of φ to σ̄ splits into
maps f1, f2, . . . , fn such that each fj maps σ̄ affinely onto a closed
simplex of Y . Schirmer’s proof of her fix-finite result depended on

3



the following simplicial approximation theorem for n-valued maps,
which is Theorem 4 of [11].

Theorem 3.2. (Schirmer’s Simplicial Approximation Theorem) Let
φ : X ( Y be an n-valued map of finite polyhedra. Given ε > 0,
there exists an n-valued map ψ : X ( Y , homotopic to φ, that is
simplicial with respect to some barycentric subdivisions of X and Y ,
and d(φ, ψ) < ε.

Let dY be the metric of Y . For x ∈ X, let φ(x) = {y1, y2, . . . , yn}
and define γ(x) = min{dY (yi, yj)|i 6= j}. As in [11], the gap of
φ, denoted γ(φ), is defined by γ(φ) = inf{γ(x)|x ∈ X}. Then
γ(φ) > 0; see Proposition 4.1 of [5]. On page 79 of [11], Schirmer
proved that if the mesh of X is less than 1

4
γ(φ), then the image of

a simplicial n-valued map φ on a simplex σ̄ of X is the union of n
disjoint simplices of Y . Therefore, a can be in the image of at most
one of the maps fj of the splitting of the restriction of φ to σ̄.

Theorem 3.3. (Root-finite Approximation Theorem) Let φ : X (
Y be an n-valued map where X and Y are q-manifolds without
boundary, and let a ∈ Y . Given ε > 0, there exists an n-valued
map ψ : X ( Y , homotopic to φ, such that d(φ, ψ) < ε and ψ has
finitely many roots at a.

Proof. Define a point a ∈ Y in the closure σ̄ of an open q-simplex
σ to be fully interior if a ∈ σ and a is in an open q-simplex of
every barycentric subdivision of σ. The fully interior points of an
open simplex σ are dense in σ by the Baire Category Theorem.
First suppose that a ∈ σ ⊂ Y is fully interior. We may assume
that the given ε is less than 1

4
γ(φ). Taking the necessary number

of barycentric subdivisions of X and Y for Theorem 3.2, let ψ be
a simplicial approximation to φ with d(φ, ψ) < ε. Then ψ has no
roots at a on the (q − 1)-skeleton of X since a simplicial map takes
a simplex to one that is of the same or lower dimension. The map
ψ has no more than one root on each q-simplex of X because the
corresponding map fj is affine on the closure of the simplex and
thus two roots would determine a linear set of roots that intersects
its boundary.

If a ∈ σ̄ is not a fully interior point of σ, there is a homeo-
morphism h : Y → Y such that dY (y, h(y)) < ε

2
for all y ∈ Y

and b = h(a) is fully interior. To define h, since the fully inte-
rior points are dense in σ, there is a fully interior point b ∈ σ such
that dY (a, b) < ε

4
. Thus an ε

2
Euclidean neighborhood U of a con-

tains b. Let h : Y → Y be a homeomorphism that is the identity on
Y \ U and is a Euclidean translation on U such that h(a) = b.
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Let ζ : X ( Y be a simplicial approximation to the n-valued
map hφ : X ( Y such that d(ζ, hφ) < ε

2
. By the first part of

the proof, there are a finite number of points x ∈ X such that
b ∈ ζ(x). Let ψ = h−1ζ : X ( Y . Then b ∈ ζ(x) if and only if
a = h−1(b) ∈ h−1ζ(x) = ψ(x). Therefore ψ has finitely many roots
at a and d(φ, ψ) < ε.

4 A Root-Minimization Conjecture

In 1930, Heinz Hopf proved [9] that if f : X → Y is a map where
X and Y are compact q-manifolds with or without boundary, and
q 6= 2, then there is a map g homotopic to f with N(f : a) roots and
thus the minimum is achieved within the homotopy class, that is,
N(f ; a) is a sharp lower bound. We will refer to this result as “Hopf’s
root-minimization theorem”. Maps of surfaces do not possess the
root-minimization property, see [10]. A detailed proof of Hopf’s
theorem in the case of manifolds without boundary is presented by
Brooks in [1].

In [14], Wecken proved that if X is a compact q-manifold without
boundary, q 6= 2, and f : X → X is a map, then there is a map g
homotopic to f such that g has N(f) fixed points, where N(f)
denotes the Nielsen fixed point number of f .

In [12], Schirmer defined fixed points x0, x1 of an n-valued map
φ : X ( X to be equivalent if there is a path c : I → X such that
for the splitting φc = {f1, . . . , fn} : I ( X there is some fj such
that fj(0) = x0, fj(1) = x1 and c and fj are homotopic relative to
the endpoints. The equivalence classes are the fixed point classes
of φ. let X be a manifold without boundary. Approximating φ by
an n-valued map with finitely many fixed points by Theorem 3.1,
each fixed point is an isolated fixed point of a single-valued map
from a splitting and therefore its fixed point index is defined, see
[3]. As in single-valued Nielsen fixed point theory, the index of a
fixed point class is the sum of the indices of its points. A fixed point
class is inessential if its index is zero and essential otherwise and
the Nielsen fixed point number N(φ) of φ is the number of essential
fixed point classes. Schirmer proved that this Nielsen number is
independent of the fix-finite approximation. She then proved in [13]
that Wecken’s theorem can be extended to fixed points of n-valued
maps, as follows.

Theorem 4.1. (Schirmer’s Fixed Point Minimization Theorem)
Given an n-valued map φ : X ( X of a compact q-manifold without
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boundary, q 6= 2, there is an n-valued map ψ homotopic to φ such
that ψ has N(φ) fixed points.

The following conjecture extends Hopf’s result in the same way
that Schirmer’s minimization theorem extends Wecken’s.

Conjecture 4.2. Given an n-valued map φ : X ( Y , where X
and Y are compact q-manifolds without boundary, q 6= 2, and given
a ∈ Y , there is an n-valued map ψ homotopic to φ such that ψ has
N(φ : a) roots at a.

There is only one compact 1-manifold without boundary: the cir-
cle S1. Although, for (n,m)-valued pairs of self-maps of the circle
S1, Corollary 5.1 of [6] proves that the Nielsen coincidence num-
ber is a sharp lower bound for the number of coincidences of all
maps (n,m)-homotopic to them, that does not imply that Conjec-
ture 4.2 is true for the Nielsen root number of an n-valued self-
map of the circle. As we pointed out above, homotopies in the
setting of (n,m)-valued coincidence theory are (n,m)-valued pairs
of maps, so when ψ is the constant map at a the pair of homotopies
Φ,Ψ: S1 × I ( S1 that minimize the number of coincidences of an
(n,m)-pair φ, ψ : S1 ( S1 would not necessarily have the property
that Ψ(x, t) = a for all (x, t) ∈ X × I.

However, the conjecture is in fact true for n-valued maps of S1,
as we will next prove.

Let p : R→ S1 be the universal covering space and represent the
points of S1 by p(t) for 0 ≤ t < 1. Let φ : S1 ( S1 be an n-valued
map and let φp = {f0, f1, . . . , fn−1} : I ( Y where fj(0) = p(tj) for

0 ≤ t0 < t1 < · · · < tn−1 < 1. Let f̃j : I → R be the lift of fj such

that f̃j(0) = tj then, following [4], f̃0(1) = v+ tJ for some integers v
and J , where 0 ≤ J ≤ n−1 and the degree Deg(φ) of φ is defined by
Deg(φ) = nv + J . Theorem 2.3 of [4] states that if φ, ψ : S1 ( S1

are homotopic n-valued maps, then Deg(φ) = Deg(ψ).
For integers d and n ≥ 1, the n-valued power map φn,d : S1 ( S1

is defined by

φn,d(p(t)) = {p(d
n
t), p(

d

n
t+

1

n
), . . . , p(

d

n
t+

n− 1

n
)}.

Theorem 4.3. Let φ : S1 ( S1 be an n-valued map of degree
Deg(φ) = d. Then there is an n-valued map ψ : S1 ( S1 homo-
topic to φ such that ψ has N(φ : 1) = |d| roots.

Proof. By Theorem 3.1 of [4], since φ is n-valued and of degree d,
then it is homotopic to φn,d. By Proposition 5.1 of [6], N(φn,d : 1) =
|d| and therefore N(φ : 1) = |d| by Proposition 2.1 above. Since φn,d
has |d| roots at 1, then ψ = φn,d is the required n-valued map.
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5 Root Minimization on Lie Groups

Let X be a compact Lie group with identity element e and let
φ : X ( X be an n-valued map. For {p1, . . . , pn} an unordered set
of points of X and x ∈ X, let x{p1, . . . , pn} = {xp1, . . . , xpn}. We
define an n-valued map θ : X ( X as follows: if φ(x) = {p1, . . . , pn},
let θ(x) = x{p1, . . . , pn}. The fixed points of θ are the roots of φ at
e. It will be convenient to abbreviate the definition of θ by letting
1 be the identity map of X and writing θ = 1φ. We note that, with
this notation, φ = 1−1θ.

Lemma 5.1. Let φ : X ( X be an n-valued map of a compact
Lie group. Roots x0, x1 of φ at e are equivalent if and only if they
are equivalent as fixed points of θ = 1φ. Therefore, the fixed point
classes of θ are the root classes of φ.

Proof. Since x0, x1 are equivalent roots of φ at e, there is a path
c : I → X such that c(0) = x0, c(1) = x1 and, for the splitting φc =
{f1, . . . , fn} : I ( X, there exists fj : I → X that is a contractible
loop at e. Therefore, there is a map H : I × I → X such that
H(s, 0) = H(s, 1) = H(0, t) = e for all s, t ∈ I and H(1, t) = fj(t)
for all t ∈ I. From the splitting φ(c(t)) = {f1(t), . . . , fn(t)} we have

θ(c(t)) = c(t)φ(c(t)) = c(t){f1(t), . . . , fn(t)}
= {c(t)f1(t), . . . , c(t)fn(t)}.

Thus θc = {g1, . . . , gn} where gj(t) = c(t)fj(t) so gj(0) = x0, gj(1) =
x1 and the path gj : I → X is homotopic relative to the endpoints
to the path c by means of the homotopy K : I × I → X defined by
K(s, t) = c(t)H(s, t). Conversely, suppose x0 and x1 are equivalent
as fixed points of θ by means of a path c that is homotopic relative to
the endpoints to a path gj defined by gj(t) = c(t)fj(t) in the splitting
of θc, by means of a homotopy K : I × I → X. The homotopy H
defined by H(s, t) = c(t)−1K(s, t) is a contraction of the loop fj at
e, so x0 and x1 are equivalent as roots of φ at e.

Theorem 5.2. Let φ : X ( X be an n-valued map of a compact
Lie group and let θ = 1φ, then N(φ : e) = N(θ).

Proof. By Lemma 5.1, a root class R0 of φ is a fixed point class of
θ. If R0 is an inessential root class, there is an n-valued homotopy
Φ: X × I ( X with φ0 = φ such that the root class R of Φ
containing R0 has the property R ∩ (X × {1}) = ∅. Therefore, by
the homotopy and additivity properties of the fixed point index, the
value of the index on R0 is zero and thus R0 is an inessential fixed
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point class of θ. Conversely, if R0 is an inessential fixed point class of
θ, then Theorem 4.1 implies that there is a homotopy Θ: X×I ( X
such that θ0 = θ and the fixed point class R of Θ containing R0 has
the property R ∩ (X × {1}) = ∅ and therefore R0 is an inessential
root class. Since the correspondence between the root classes of φ
and the fixed point classes of θ therefore preserves essentiality, it
follows that N(φ : e) = N(θ).

The following result verifies the root-minimization conjecture for
n-valued self-maps of compact Lie groups.

Theorem 5.3. Let φ : X ( X be an n-valued map of a compact
Lie group. There exists an n-valued map ψ : X ( X homotopic to
φ such that ψ has N(φ : e) roots at e.

Proof. Let θ = 1φ. By Theorem 4.1 there is an n-valued map
ζ : X ( X homotopic to θ that has N(θ) fixed points. Let ψ =
1−1ζ. The n-valued map ψ has N(θ) = N(φ : e) roots by Theorem
5.2.

6 Linear n-Valued Maps of Tori

Let T q denote the q-torus with identity element e and let pq : Rq →
T q be its universal covering space. Let A be a q × q integer matrix.
Define an n-valued map φ̃n,A : Iq ( T q by

φ̃n,A(t) = {φ̃(0)
n,A(t), . . . , φ̃

(n−1)
n,A (t)}

where

φ̃
(k)
n,A(t) = pq

(
1

n
(At+ k)

)
for k = 0, . . . , n− 1.

Define integer vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1)
to be congruent mod n, written x = y mod n, if xj and yj are
congruent mod n for all j = 0, . . . , n−1. By Theorem 3.1 of [7], the

n-valued map φ̃n,A induces an n-valued map φn,A : T q ( T q if and
only if all the rows of A are congruent to each other mod n. The
map φn,A is called a linear n-valued map of the q-torus.1

1For the linear n-valued maps of tori introduced in [7], there is an additional parameter
that somewhat extends the variety of such maps. However, since the Nielsen number of linear
n-valued maps of tori is independent of the value of that parameter, we limit ourselves to one
value of the parameter for the purpose of this exposition.
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Theorem 6.1. The Nielsen root number of a linear n-valued map
φn,A : T q ( T q is

N(φn,A : e) = n

∣∣∣∣det( 1

n
A)

∣∣∣∣ .
Proof. Define an n-valued map θ̃n,A : Iq ( T q by

θ̃n,A(t) = {θ̃(0)n,A(t), . . . , θ̃
(n−1)
n,A (t)}

where, for k = 0, . . . , n− 1,

θ̃
(k)
n,A(t) = pq(t)pq

(
1

n
(At+ k)

)
= pq

(
t+

1

n
(At+ k)

)
= pq

(
1

n
(nt+

1

n
(At+ k))

)
= pq

(
1

n
((nE + A)t+ k)

)
= pq

(
1

n
(Bt+ k)

)
and B = nE +A for E the q × q identity matrix. Since the rows of
nE are congruent mod n to the zero vector, θ̃n,A induces an n-value
map θn,A : T q ( T q if and only if the rows of A are all congruent
mod n. In that case, θn,A is a linear n-valued map: θn,A = φn,B. By
[8], the Nielsen fixed point number of φn,B is

N(φn,B) = n

∣∣∣∣det(E − 1

n
B)

∣∣∣∣ .
Since θn,A = 1φn,A, Theorem 5.2 implies that the Nielsen root num-
ber of φn,A at e is

N(φn,A : e) = N(φn,B) = n

∣∣∣∣det(E − 1

n
B)

∣∣∣∣
= n

∣∣∣∣det(E − 1

n
(nE + A))

∣∣∣∣
= n

∣∣∣∣det(
1

n
A)

∣∣∣∣
which completes the proof.
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Example 6.2. Let φ2,A : T 3 ( T 3 where

A =

 1 2 -1
-1 0 3
-5 -1 -3


then

N(φ2,A : (1, 1, 1)) = 2| det(
1

2
A)| = 2| − 4| = 8

so if ψ : T 3 ( T 3 is a 2-valued map homotopic to φ2,A, then there
are at least 8 solutions to the equation ψ(z1, z2, z3) = (1, 1, 1) for
zi ∈ S1, i = 1, 2, 3.

.
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