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Abstract

A root of an n-valued map ¢: X — D,(Y) at a € Y is a point z € X
such that a € p(z). We lift the map ¢ to a split n-valued map of fi-
nite covering spaces and its single-valued factors are defined to be the lift
factors of . We describe the relationship between the root classes at a
of the lift factors and those of ¢. We define the Reidemeister root num-
ber RR(yp) in terms of the Reidemeister root numbers of the lift factors.
We prove that the Reidemeister root number is a homotopy invariant up-
per bound for the Nielsen root number NR(y), the number of essential
root classes, and we characterize essentiality by means of an equivalence
relation called the ®-relation. A theorem of Brooks states that a single-
valued map to a closed connected manifold is root-uniform, that is, its
root classes are either all essential or all inessential. It follows that Y if
is a closed connected manifold, then the lift factors are root-uniform and
we relate this property to the root-uniformity of . If X and Y are closed
connected oriented manifolds of the same dimension then, by means of
the lift factors, we define an integer-valued index of a root class of ¢ that
is invariant under ®-relation and this implies that if its index is non-zero,
then the root class is essential.
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1 Introduction

Let X and Y be connected, locally path connected, semi-locally
simply connected Hausdorff spaces and let f: X — Y be a map.
Choosing a € Y, a point x € X is a root of f at a if f(z) = a. The
Nielsen root number NR(f) of f is a lower bound for the number of
roots of g: X — Y for every map g homotopic to f. An extensive
survey of the Nielsen root theory of single-valued maps is presented
in [2].

Let D, (Y) be the n'* unordered configuration space of Y, that
is, the space of unordered subsets of n points of Y, then an n-valued
map is a continuous function ¢: X — D,(Y). A point z € X is a
root of ¢ at a if a € p(x). The Nielsen root number for n-valued
maps, which we will denote by NR(p) and will be define precisely
later, was introduced in [8] and the Nielsen root theory of n-valued
maps was developed further in [5]. The purpose of the present paper
is to extend our understanding of this topic.

An n-valued map ¢: X — D,(Y) is split if there are maps
fi: X = Y fori = 1,...,n such that p(x) = {fi(x),..., fu(2)}
for all x € X. For such n-valued maps, its Nielsen theory can usu-
ally be reduced to the single-valued case. For instance, Theorem 3.2
below states that NR(y) is the sum of the NR(f;). However, n-
valued maps are not usually split. For instance, the n-valued maps
of the circle are classified up to n-valued homotopy by an integer
d, their degree, and by Corollary 5.1 of [3], such a map is split if
and only if d is a multiple of n. Nevertheless, it is possible to obtain
information in the non-split case by lifting ¢ to a split n-valued map
of finite covering spaces of X and D,,(Y"). The single-valued factors
of the split map are called the lift factors of p. This technique,
applied to the fixed point theory of such maps, was introduced by
Gert-Jan Dugardein, see Section 3 of [6], and it was exploited in
that paper.

In Section 2 we define the lift factors for the root theory of an
n-valued map . The set of roots of a map are partitioned by means
of an equivalence relation into subsets called the root classes of the
map. The Nielsen root number of the map is the number of such
classes that are essential, which can be described informally as the
classes that cannot be removed by a homotopy. Thus the root classes
are central to Nielsen root theory and, in Section 2, we describe how
the root classes of an n-valued map and those of its lift factors relate
to each other.

The precise definition of the Nielsen root number N R(¢p) of an n-
valued map appears in Section 3 along with that of the correspond-



ing Reidemeister number, which is defined in terms of the Reide-
meister numbers of its lift factors. As in single-valued root theory,
the Reidemeister number is a homotopy invariant upper bound for
the Nielsen number.

In Section 4, for an n-valued homotopy ® = {¢:}: X x I —
D, (Y), we discuss an equivalence relation on the root classes of
homotopic n-valued maps called the ®-relation. We prove that Def-
inition 3.7 of [2] can be generalized to n-valued maps in order to
characterize essential root classes in terms of the ®-relation.

A theorem of Brooks from [1] is the motivation for Sections 5
and 6. He proved that if f: X — Y is a map where Y is a closed
connected manifold, then either all its root classes are essential or
all are inessential. We call such a map root-uniform and, in Section
5, we study the relationship between an n-valued map and its lift
factors with respect to root-uniformity. Then, in Section 6, we apply
Brooks’ theorem in the setting of a map ¢: X — D, (Y") where Y is
a closed connected manifold, and thus it applies to the lift factors
of . In particular, we find conditions under which the Nielsen root
number and the Reidemeister root number of ¢ are equal. This
section also contains an example to demonstrate that, in general,
n-valued maps to closed connected manifolds are not root-uniform
when n > 1.

Section 7 concerns maps ¢: X — D,(Y) for which X and Y
are closed connected oriented manifolds of the same dimension. In
the single-valued setting, it is possible to define an integer-valued
root index of a root class which, if non-zero, implies that the root
class is essential. We show that such an index can be defined for
the root classes of ¢ by means of that of its lift factors. A root
class of ¢ of non-zero index is essential, but if, for some homotopy
O ={p}: XxI — D,(Y) with py = ¢, aroot class is not ®-related
to any root class, then its root index is zero.

2 Lift factors and root classes

An n-valued map ¢: X — D, (Y) induces the fundamental group
homomorphism ¢4 : m(X) — m(D,(Y)). The group m(D,(Y))
is isomorphic to the braid group B,(Y) (see Chapter I, Section 3
of [9]). A homomorphism p: B,(Y) — S,, the symmetric group,
is defined for 8 € B,(Y) by p(8) = o where (1) = 03(0). Let
0 = ppy: m(X) = S,. Denote by p: X — X the covering space
of X corresponding to the kernel ker(f) C m(X), which is a fi-
nite covering space because the index of ker(6) in m1(X) equals the



order of the image of § which is a subset of S,. Let F,(Y) be
the configuration space of ordered subsets of n points of Y and let
q: F,(Y) — D,(Y) be the covering space defined by q(y1,...,y,) =
{Y1,...,yn}. Choose 7* € X and let z* = p(z*) € X. Choosing
y* € ¢ o)) C F,(Y), we claim that there is a lift ¢*: X —
F,(Y) such that ¢*(z*) = y*. From the definition of the covering
space p: X — X we have

(P4 (m1(X))) = py(ker(9)).

Thus, under the isomorphism of m(D,(Y)) to B,(Y), the sub-
group go#(p#)(m()?)) is mapped to P,(Y), the subgroup of pure
braids. On the other hand, the isomorphism takes the subgroup
qu(m (F,(Y)) of m(D,(Y)) onto P,(Y). Therefore, the sufficient
condition <p#(p#(7r1()?)) C qu(m(F,(Y))) is satisfied and the lift
exists.

If o*(z*) = v* = (yi,...,y) € F,(Y), then for i = 1,...,n,
define g; : X — Y such that & = (g1, ..., Gn) is the split n-valued
map where §;(*) = y. We call the maps g;: X — Y the lift factors
of the n-valued map ¢: X — D, (Y). (Compare Section 2 of [6].)

Theorem 2.1. The lift factors g1,...,Gn: X = Y of p: X —
D, (Y) are independent of the choice of the lift o: X — F,(Y') of ¢.

Proof. Let ¢*: X = F, (Y) be the lift of ¢ such that ¢*(z*) = g*.
Let ¢: X — F,(Y) be another lift of ¢ such that 90( ) =
(U1, -+ ,9n). There is a deck transformation o € S,, of ¢: F,,(

D, (Y) such that o(g*) = gy. Then 0p*(2*) = g = ¢(2*) and thus,
by Proposition 1.34 of [10], * = o@. In terms of lift factors, ¢* =
(g1, - -, gn) and therefore

~

Y= 0(15* - U(ﬁl? s 7gn) = (90(1)7 s 7go(n))-

We conclude that the lift factors g;: X — Y are the same maps for
all lifts ¢ of . ]

Theorem 2.1 implies that the set of lifts is in one-to-one corre-
spondence with the set of permutations of the n-tuple (g1, .., gn)
of the lift factors and therefore there are n! lifts of ¢.

fo={fi,....fu}: X = D,(Y) is a split n-valued map, then
the image of ¢4 : m (X) — m(D,(Y)) is isomorphic to a subgroup
of the group P,(Y) of pure braids. Therefore 6 is the constant
homomorphism and consequently X = X. Then, if we impose an



order on the f;, we can define ¢ = (f1,..., fn): X — F,(Y) and the
fi may be viewed as the lift factors g; = f; of ¢.

Let A and B be spaces such that a group G acts on A and a
group H acts on B and let v»: G — H be a homomorphism. A map
f: A — B is a homomorphism of group actions if f(ga) = 1¥(g)f(a)
for all g € G and a € A.

Lemma 2.1. Let p: X = X bea reqular covering space with deck
transformation group D()A(/ ) and let q: Y =Y bea reqular covering
space with deck transformation group D(?) If f: X =Y is a lift
of a map f: X =Y, then f is a homomorphism of the action of
D(X) on X to the action of D(Y) on Y.

Proof. Choose 7g € X and let Jo = f(fo) and zo = p(Zo) so that
yo = q(J0) = f(xo). Let fuy: p~'(20) = ¢ (yo) be the restriction
of f. It is sufficient to prove that fmo is a homomorphism of the ac-
tions of the groups of deck transformations. Let Z;, Z; € p~!(x¢). By
Chapter 5, Theorem 7.2 of [12], we can represent the deck transfor-
mation that takes Z; to Z; by some a € m1(X, x¢), that is, aZ; = ;.
Let w: I — X be a loop at xy such that [w] = a. Let @: [ — X
be the lift of w such that @(0) = x;, then @(1) = x;. Let §; = f(x;)
and §; = f(z;), then f(0) = 3 and fw(1) = §;. Since f is a lift
of f, then

[af @] = [fpd] = [fw] = felw] = fa(a).

So §; = fu(a)y; and we conclude that f(a:i) = f#(a)f(i“) and
therefore f is a homomorphism of the group actions. ]

Roots zg,x; of ¢: X — D,(Y) at a € Y are equivalent, that
is, in the same root class, if there is a path v: I — X from z( to
xy1 such that for the splitting wv = {f1,..., fu}: I — Y, there is
some f;: I — Y that is a contractible loop at a. Roots Zg,2; of
Ji: X - Y at a are equivalent and hence in the same root class if
there is a path © from Zy to 2 such that g;0: I — Y is a contractible
loop at a.

Lift factors g;, g;: X — Y are equivalent if there exists o € im(6)
such that o (i) = j. Denote the set of lift factors of ¢ by LF,,. Define
an action p: im(#) x LF, — LF, by sending each lift factor g; to
the lift factor g,;. The equivalence classes of lift factors are the
orbits of this action.

Denote the set of roots of ¢ by root(y) with the corresponding
notation for single-valued maps.



Theorem 2.2. Lift factors g; and g; are equivalent so that there
exists o = 0(a), for some o € m(X), such that o(i) = j if and only
if gj = Giha where h, is the deck transformation corresponding to
a. The deck transformation h, defines a one-to-one correspondence
between the root classes of g; and the root classes of g;.

Proof. Suppose ¢; and §; are equivalent, that is j = o(i) where
o = 0(a) € S, for some a € m(X). By Lemma 2.1, the map
Q: X = F,(Y) is a homomorphism of group actions with respect
to the actions of im(#) on X by deck transformations and of the
symmetric group S,, on F,(Y). Therefore for = € X we have

@(haj:) - <§1<h0z£)7 s 7gn(haj))
= J(Ql(-f:)a s 7gn(£))
= (ga(l)(i)v s 7.@0(71)('%))
so o(i) = j implies §; = Giha.
Conversely, suppose §; = §;ho and let o = 0(a), then g;ha = o).
Therefore §; = §,() so j = o(i) and thus g; and g; are equivalent.
To prove that h, defines a one-to-one correspondence between the
root classes of §; and the root classes of §; = g;ha, let & € root(g;),
then
a = §i(&) = Gi(hahy'2) = g;(h,'?)
so h'(root(g;)) C root(g;). Since g;(2) = gi(ha(Z)), we conclude
that the restriction h;': root(g;) — root(g;) of hy' is a homeo-
morphism. Suppose Zp,T; € }A%Z-, a root class of ¢;, so there is
a path v: I — X from ZTo to 2y such that ;0 is a contractible
loop at a. Then h;'d is a path from h; (%) to h '(%;) such that
g;(hy*0) = g;0 so it is a contractible loop at a and therefore h (%)
and h'(#) are in a root class R; = h3'(R;) of §; and thus h;'
maps root classes of g; to root classes of g;. ]

Theorem 2.3. Let ¢: X — D,(Y) be an n-valued map with lift
factors g;: XY fori=1,....,n. The roots and root classes of ¢
and of its lift factors are related in the following ways.

(a) p! (o0t () = UL, 100t(3).

(b) Let R be a root class of ¢ then, for each i =1,...,n, either
p~1(R) N root(g;) = 0 or p~L(R) N root(g;) = R;, which is a root
class of g;.

(¢) If R is a root class of ¢ and p~'(R) N root(g;) = R, then

~

p(R:i) = R.



Proof. (a) If zg € root(p) and &g € p~'(zg), then g;(Zo) = a for
some 1 < i < n, and therefore p~!(root(y)) C root(¢) which is the
disjoint union of the sets root(g;). Conversely, if p(Z¢) = x¢ and z
is aroot of p at a, then since g = ¢p it follows that zy is a root of ¢
at a. Therefore, p~(root()) = root(p) for any lift ¢: X — F,(Y)
of .

(b) Let wg,z1 € root(yp) be in the same root class so there
is a path v: I — X with v(0) = zo,v(1) = 21 and for ¢v =
{fi,.- s fu}: I — Dy(Y) there is 1 < i < n such that fiv is a
contractible loop at a. For &y € p~*(z), let 0 be the lift of v such
that 0(0) = & and set ; = 0(1). Write 0 = (§1,...,00)0 =
(910, ...,Ga0): I — F,(Y). By the uniqueness of splittings (Propo-
sition 2.1 of [8]), there exists ¢; such that g;0 = f;. Therefore g;(0)
is a contractible loop at a and thus z; and z; are in the same root
class of ¢. Conversely, suppose Zg, 21 € root(¢) are in the same root
class so there is a path 9: I — X with 9(0) = &, 9(1) = 4, and
9:(0) is a contractible loop at a. Then z¢ = p(&) and =1 = p()
are in the same root class of ¢ by means of the path v = p(9). Thus
the inverse image under p of a root class of ¢ is the union of root
classes of lift factors.

(c) Since p~!(R) N root(g;) # 0, there exists g € R and %, €
p~(zo) such that g;(2¢) = a so 2y € ﬁz Given z1 € R, as above let
v be a path from zg to x; such thaﬁ some f;v is a contractible loop
at a and lift v to v at Zy. Since p(R;) C R and we have shown that

#1 = 9(1) € Ry, we conclude that p(R;) = R. O

Theorem 2.4. Let R be a root class of an n-valued map p: X -
D, (Y). (a) Ifroot(g;) N p~*(R) = R;, then root(gj) Np Y (R) = R,
if and only if g; is equivalent to g;. (b) If §; is equivalent to §; so
that g; = Giha for some deck transformation hy, then hgl(ﬁi) = Ej.

Proof. (a) If g; is equivalent to g;, then, by Theorem 2.2, §; = g;h,
where h, is a deck transformation. Let & € R;, then G;(h M (20)) =
Gi(%o) = a so root(g;) N p~'(R) # 0 and thus by Theorem 2.3(b) it
is a root class ﬁj of the lift factor g;.

Conversely, suppose root(g;) N p~'(R) = R; and root(g;) N
p YR) = Ej. Let 79 € R, then since p(R) = p(é) = R by
Theorem 2.3(c), there exists z; € R; and & zj € R such that p(z;) =
p(Z;) = xo. Therefore there is a deck transformatlon h,, such that
h,(2;) = &;. The cardinality of p~'(z) equals the Cardinality of
im(f). For each a € im(f) there is a point of p~!(zy) that is a
root of some lift factor. The points are distinct for distinct elements



of im(6) because im(f) acts transitively on p~!(zy). Therefore we
conclude that the lift factors g; and g; are equivalent.

(b) Let &9 € R; which means that p(Z) € R and (&) = a.
Since h,, is a deck transformation, ph_'(Zo) = p(2o) € R. Further-
more, §;hy (&) = Gihahy ' (d0) = Gi(d0) = a so hy'(ig) € Ry, O

Example 2.1. Let St be the complex numbers of norm one. Define
0: X = St = Dy(SY) by p(2) = {\/z,—/2} where if z = €' for
some 0 < t < 2m then /z = e*/>. The homomorphism 0: 7 =
m1(SY) — Sy is an epimorphism so ker(0) = 2Z. Therefore, the
covering space p: X — X is the double cover p: S* — St defined by
p(z) = 22, The map ¢ lifts to p = (g1, 92): S* — Fy(S') where the
lift factors are defined by G1(z) = z and Go(z) = —z. The root class
of ¢ is R = {1}, the root class of g1 is Ry = {1} and the root class
of o 18 Ry = {—1}. Since 0 is an epimorphism, the lift factors g;
and g, are equivalent.

3 Reidemeister and Nielsen root numbers

Let ¢: X — D,(Y) be an n-valued map and denote its lift factors
by g;: )?—)onrjzl,...,n.

Following [2], a left coset of 71 (Y") by g;(m1(X)) is a Reidemeister
class of the lift factor g; and the number of such classes is called the
root Reidemeister number RR(g;) of g;. Suppose lift factors g; and
g; are equivalent so there exists o = f(a) € S, for some a € m(X)
such that (i) = j and therefore, by Theorem 2.2, §; = g;h, where
h, is the deck transformation that corresponds to .. Then since h,
is a homeomorphism which implies that it induces an isomorphism
of fundamental groups, the set of left cosets of 71 (Y) by giu(m (X))
is in one-to-one correspondence with the set of left cosets of m(Y")

~

by Gjx(m (X)), which implies that RR(g;) = RR(g;). Denote the
equivalence class of the lift factor g; by [¢;] and the common value of
the root Reidemeister number of the root factors in the equivalence
class by RR[g;]. The root Reidemeister number RR(yp) of the n-
valued map ¢: X — D, (Y) is the sum of all the RR[g;]. If n =1,
then this is the definition of [2]. If o = {f1,..., fu}: X = D,(Y) is
split, then since the f; are its lift factors, RR(y) is the sum of the
RR(f;) by definition.

Theorem 3.1. If ¢, ¢': X — D,(Y) are homotopic, then RR(y) =
RR(¢').

A~



Proof. Let ® = {¢;}: X x I — D,(Y) be a homotopy such that
¢o = ¢ and ¢y :Acp’ . By the covering homotopy property, we can lift
O tod={p}: X xI— F,(Y)such that ¢9 = ¢. The homotopy ®
splits as ® = {&e} = {(911,- - -, gne) } s0 each lift factor g;o of ¢ is ho-
motopic to the lift factor g;; of ¢’ and thus they induce the same fun-
damental group homomorphismﬁ, so there is a one-to-one correspon-
dence between 71(Y)/Giox(m (X)) and m1(Y)/Ging(m1(X)). More-
over, since ¢ and ¢’ induce the same homomorphism of fundamental
groups, they define the same equivalence relation on the lift factors
and therefore RR(p) = RR(¢'). O

If Ris a root class of ¢ and ® = {¢;}: X x I — D,(Y) is a
homotopy with ¢y = ¢, by [8] there is a unique root class R of
® such that R = R N (X x {0}). The root class R is essential if
R N (X x {1}) # 0 for all homotopies such that R = R N (X x {0})
and it is inessential otherwise. The Nielsen root number N R(p) of
¢ is the number of essential root classes.

Theorem 3.2. Let ¢ = {f1,..., fa}: X — D,(X) be a split n-
valued map, then NR(¢) =31, NR(f;).

Proof. The roots, and hence the root classes, of the f; are disjoint.
Moreover, by Theorem 2.1 of [4], if & = {¢p:}: X x I — D,(Y)
is an n-valued homotopy such that ¢y = ¢, which is split, then ®
splits as ® = {®4, ..., P, } such that ®;(z,0) = fi(z) for all x € X.
Therefore, a root class of ¢ is a root class of some f; and it is essential
as a root class of ¢ if and only if it is an essential root class of f;. [

Theorem 3.3. Let ¢: X — D, (Y) be an n-valued map with Nielsen
root number NR(p) and Reidemeister root number RR(yp), then
NE(p) < RR(p).

Proof. Let R be an essential root class of ¢. By Theorem 2.3 there
is a root class R; of a lift factor g; such that p(R;) = R. By Theorem
2.4(a), if g; is equivalent to g;, then there is a root class R; such

~

that p(R;) = R. Thus, for each essential root class of ¢ there is
a contribution to the sum of the RR[g;] and therefore NR(p) <
RR(p). O

In Example 2.1, since the lift factors ¢g; and ¢, induce isomor-
phisms of m(S'), then RR(g;) = RR(g2) = 1 and since the lift
factors are equivalent, RR(¢) = RR[j1] = 1.

The possible relationships between the Nielsen number NR(yp)
and the Reidemeister number RR(p) are illustrated by the following



split 2-valued maps of surfaces. Let T = S x S! be the torus. In
all the examples the range of ¢ is F»(T) and a = (1,1).

Example 3.1. Define o = (fi1, fa): T — Fo(T) by setting p(e™, ™) =
{(e,1), (eir< 1)} for a smalle > 0. Then NR(f;) = NR(fs) =0
because both fi and fo are homotopic to maps without roots at a so
NR(p) =0 by Theorem 3.2. On the other hand, mi(T)/ f14(m1(T)) =
ZOL]Z®0=7 so RR(p) = .

Example 3.2. For an example like 3.1, but with NR(yp) > 0, we
let (e, e2) = {(e,e™), (1) 1)} now NR(p) = 1 since
NR(f1) =1, but still RR(p) = o0.

Example 3.3. Define maps fi1, fo: TH#T — T by the matrices de-
termined by the fiy: m(T#T) — m(T) as follows:

10 2 -1
ﬁ#"[O 11 4}

and
o = 0 0 8 -1
=10 0 1 -2

Since m(T') is abelian, a map k: TH#T — T factors through the one-
point union TV T. That is, k = (k1 V ko)q where q: THT — TV T
is a quotient map. If

B _ ki k12 ki3 ki
by = kg koul = { ka1 koo ko3 k24}

then the degree of k is deg(ky) + deg(k2) = det(k1x) + det(kay). If
we define k: T#T — T for v € T#T by k(z) = fi(z)(f2(z))7},
then
1 0 -1 0
k#:ﬁ#_ﬁ#:[o 10 1}

A theorem attributed to Kneser states that if f: M — N is a map of
closed oriented surfaces and a € N, then f is homotopic to a map
without roots at a if and only if the degree of f is zero. Since the
degree of the map k is zero, it follows that fi and fo are homotopic
to maps fi and f}, respectively, such that ¢ = (f{, f5): TH#T —
F5(T). The degree of f{ is also zero and thus f] is homotopic to
a map without roots at a so NR(f;) = 0. The image of fi, is
the subgroup of 7. ® 7 generated by the columns of its matriz so
fly is an epimorphism and RR(f]) = 1. On the other hand, the
columns of the matriz of f, generate the subgroup 0 & —5Z which
implies that RR(f5) = 5. The degree of f} is nonzero so one of its

10



root classes is essential. Therefore, by a theorem of Brooks [1] (see
Theorem 6.1 below) all the root classes of f5 are essential and thus
NR(f}) = RR(f5) =5 so NR(p) = 5 by Theorem 3.2 whereas,
since @ is split, then RR(¢) = RR(f]) + RR(f}) =1+5=6.

Example 3.4. For an example in which N R(p) = 0 but RR(y) > 0,
define o = (f1, f2): TH#T — F5(T) as follows. The map fy is as in
the previous example. Define fo: THT — T by fo = rfi where
r: T — T is r(e™, e2) = (e!h+9) ¢2). By calculations like those
in the previous ezample, NR(v) = 0 but RR(f1) = RR(f2) =1 so
RR(p) = RR(f1) + RR(f2) = 2.

4 &-related root classes

If C: I — X, then C7': I — X is defined by C~(t) = C(1 —t).
Let ® = {¢}: X x I — D,(Y) be an n-valued homotopy, then
1. X x I — D,(Y) is defined by @~ !(z,t) = o1_4().

Lemma 4.1. Let ® = {p;}: X X I — D,(Y) be an n-valued ho-
motopy and C: I — X a path. Define < ®,C >: 1 — D,(Y) by
<®,C > (t)=pi(Ct)), then < 1.C71 > (1) =< @,C > (¥).
Proof. From the definitions we have
<O OS>t =p 4 (C(1—1)=<®,C > ().
O

Let & = {apt} P = {gpt} X x I — D,(Y) be homotopies such
that o = ¢ and ¢; = ¢|. Define [®] = [®'] if there exists
U: X xIxI— D,(Y) such that ¥(z,0,t) = ®(x,t),¥(z,1,t) =
¥ (2,), U(,5,0) = ol) = (), and (z, 5, 1) = o1 (x) = ¢ (z).
Let C,C": I — X such that C'(0) = C"(0) and c(1 ) C’'(1). De-
fine [C] = [C'] if there exists K: I x I — X such that K(0,t) =
C(t),K(1,t) =C'(t),K(s,0) = C(0) = C'(0) and K(s,1) =C(1) =
C'(1).
Lemma 4.2. If [®] = [®'] and [C] = [C'], then

< ®,C>]=[<d, C >].

Proof. From the hypotheses we have the maps W: X x I x [ —
D,(Y)and K: I x I — X. The homotopy < W, K >: 1 x 1 —
D, (Y) that is defined by < ¥, K > (s,t) = W(K(s,t),s,t), has the
required properties because

< WU, K > (0,t) = W(K(0,1),0,t)



and < U, K > (1,t) = ®'(C'(t),t) =< ', C" > (). O

Let p,¢: X — D,(Y) be maps and choose a € Y. Roots xg, z1 €
X at a of ¢ and 1) respectively are ®-related, for & = {¢i}: X xI —
D, (Y) such that ¢y = ¢ and ¢ = ¥, if there exists C': I — X such
that C'(0) = z,C(1) = 21 and for < ®,C >={f1,..., fu}: [ —
D, (Y) some f;: I — Y is a contractible loop at a. If zq and x; are
d-related, we write xo®xy.

Lemma 4.3. If 2¢®x;, then 2, 'ay.

Proof. Since xo®xy, there exists C': I — X such that C(0) = zo,C(1) =
z1 and for < &,C > = {f1,..., fn} there is a contractible loop
fi at a. Then C7Y0) = z,C7'(1) = zy and, by Lemma 4.1,
<O L0t >=<®C >t={f ..., f71} and 7! is a con-
tractible loop at a so 1P xy. O

Lemma 4.4. If & = {¢},?" = {¢}}: X x I — D,(Y) such that
po=¢,1 =gy = and ¢} = ( and define @' = " = {¢]'}: X x
I = Dn(Y) by ¢f = o for 0 < t < 1/2 and ¢ = ¢h_, for
1/2 <t < 1. Let xg,x1 and x5 be roots of @, and (, respectively,
at a. If xo®xy and x19'xo, then xo®P z,.

Proof. Since xo®x;, and x19 x4, there are paths C,C": I — X such
that C'(0) = zo,C(1) = C'(0) = x1,C'(1) = x5 and for < ,C >
={fi,..., fu}and < ®' . C" >={f],..., f/}, there are contractible
loops f; and f; at a, respectively. Now C'C" is a path from xq to z,
defined by CC'(t) = C(t) for 0 < ¢t < 1/2and by CC'(t) = C'(2t—1)
for 1/2 <t < 1. Themap < &', CC" >: [ — D,(Y) can be split as
< @Y CC" >={f/,..., f!} where f//(t) = fi(2t) for 0 <t < 1/2
and fy/(t) = fj(2t —1) for f; and f] such that f;(1) = f;(0). Writing

i = fif}, in particular, the map f;’ = f;f] is a contractible loop at
a and therefore xq®d'z,. O

Lemma 4.5. Let ® = {p}, ' = {¢,}: X x I — D,(Y) such that
Yo = ¥y = @, 1 = ¢ = Y and suppose xo and x1 are roots of ¢
and v at a, respectively. If [®] = [®] and zoPxq, then zo®'z.

Proof. Since z¢®x, then there is a path C' from zy to x; such that
for < ®,C >={f,..., fn}, some f; is a contractible loop at a. By
Lemma 4.2, [®] = [®'] implies that [< ®,C >] = [< ¢',C >] and
therefore xo®'x;. O

Theorem 4.1. If xg,z(, € X are roots of ¢: X — D,(Y') at a that
are in the same root class and x1,xy, € X are roots of : X —
D, (Y) at a that are in the same root class, then xo®xi implies
xy®x’. Therefore, the ®-related condition is defined for root classes.
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Proof. Define ¢ = {¢:},¢ = {th}: X X I — D,(Y) by o1 = ¢
and ¢, = ¢ for all t € I. The points zg,z; € X are in the same
root class of ¢, so there is a path C from zy to z{ such that for
oC ={f1,..., fu}: I = D,(Y) some f; is a contractible loop at a.
Since < @,C' > (t) = ¢(C(t)) = @(C(t)) = {f1,-.., fa} such that
some f; is a contractible loop at a, then z¢pz) and, similarly, 2,9 .
Since ¢! = @, then by Lemma 4.3, zopx) = 2,@ ‘zo = T)HpTo.
Given that x¢®z, then Lemma 4.4 implies zo®@z| and then also
that 2,@(®)a!. Define A: X x I x I — D,(Y) by A(z, s,t) = p(x)
for 0 <t < (1—s)/2,A(z,s,t) = (x,t) for (1—5)/2 <t < (s+3)/4
and A(z, s,t) = ¢(x) for (s+3)/4 <t < 1. The homotopy A proves
that [p(®1))] = [®] and therefore, by Lemma 4.5, ), ®z. O

If & ={p}: X = D,(X) is an n-valued homotopy, Ry is a root
class of ¢y and Ry a root class of ¢; that is ®-related to Ry, then
we write Ro®PR;.

Lemma 4.6. Let ¢: X — D,(y) be an n-valued map and ¢ =
{@i}: X X I — D,(Y) the n-valued homotopy such that ¢, = ¢ for
allt € I. Let R, R’ be root classes of . If RpR’', then R = R'.

Proof. Let x € R and 2/ € R'. Since RpR’', then there exists
C: I — X such that C(0) = z,C(1) = 2’ and for < ¢,C >=
{fis.- s fu}: I = Dp(Y) defined by < ¢,C > (t) = @:(C(t)) there
is some f; that is a contractible loop at a. Since ¢(C(t)) = ¢C(t),
then f; proves that x and 2’ are equivalent roots and, since the root
classes are disjoint, then R = R'. [

Lemma 4.7. Let ¢,¢: X — D,(Y) be n-valued maps and & =
{oi}: X x I = D,(Y) an n-valued homotopy such that ¢y = ¢ and
o1 =1. Let R, be a root class of ¢ and Ry be a root class of 1.

(a) If R,®Ry, then Ry® 'R, where ! (x,t) = ®(x,1 —t).

(b) Let ® = {p},® = {p}}: X x I — D,(Y) such that py =
0,01 =y = and ¢} = (: X — D,(Y). Let R,, Ry, R be root
classes of v,v and ¢, respectively. If R,®Ry and if Ry®' R, then
R PR,

(c¢) Let @ = {¢1},® = {p;}: X x I — D,(Y) such that vy =
0o =@, 1 = ¢ = and let R, and Ry be root classes of ¢ and 1,
respectively. If (@] = [®'], then R, PR, implies that R,P'Ry.

Proof. By Theorem 4.1, parts (a), (b) and (c) follow from Lemmas
4.3, 4.4 and 4.5, respectively. O

Theorem 4.2. Let ¢, ¢: X — D,(y) be n-valued maps and & =
{oi}: X x I = D,(Y) an n-valued homotopy such that ¢y = ¢ and
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o1 = . Let R, be a root class of ¢ and let Ry, and R, be root
classes of . If R@CDR% and R,®R,, then Ry = R;. Therefore,
the homotopy ® determines a one-to-one correspondence between a
subset of the set of the root classes of ¢ and a subset of the set of
root classes of .

Proof. Since R,PRy, then Ry® 'R, by Lemma 4.7(a). Therefore
Ry®'® R}, by Lemma 4.7(b). Let ¢ = {¢y}: X x I — D,(Y) such
that ¢y = ¢ for all t. We claim that [®~'®] = [¢)] so that RyQR),
by Lemma 4.7(c) and therefore R, = R, by Lemma 4.6. To prove
that [®@71®] = [)], define A: I x [ x X — D,(Y) as follows. Set
A(s,t,z) = (x) for 0 <t < s/2and 1 —s/2 <t < 1 and define
A(s,t,x) = pqa@) where

alt) =2(1+s)t+s>—s—1

for 1/2 <t <1—5s/2and A(s,t,x) = pg) where
B(t)=—-2(1+s)t+s"+s+1

for s/2 <t <1/2. O

Theorem 4.3. Let p: X — D,(Y) be a map and ® = {¢;}: X X
I — D,(Y) a homotopy such that o9 = ¢. Let Ry be a root class
of ¢ and R the root class of ® such that RN (X x {0}) = Ry, then
RN (X x {1}) # 0 if and only if there is a root class Ry of p1 such
that Roq)Rl.

Proof. Suppose there is a root class R; of ¢; such that Ry®R;.
Therefore, there exists C': I — X such that xy = C(0) € Ry, x; =
C(1) € Ry and for the splitting < ®,C >= {fy,....fo}: [ —
D, (Y) some f;: I — Y is a contractible loop at a. Let R C X x I
be the root class of ® such that RN(X x{0}) = Ry. Define C": I —
X x I by C'(t) = (C(t),t), then ®C'(t) = ¢:C(t) =< ©,C > (¢)
and therefore (z1,1) € Rso RN (X x {1}) # 0.

Conversely, suppose RN (X x {1}) # 0 and choose (z1,1) € R
so there is a path D: I — X x I such that D(0) = (z0,0) and
D(1) = (21,1) and ®D = {f1,...,fa}: I — Y such that some
fir I — Y is a contractible loop at a. Define mx: X x I — X
and 77: X x I — I to be the projections, that is, wx(z,t) = x
and 7y(x,t) = t. Then m;D: I — I such that 7;D(0) = 0 and
7rD(1) = 1. Let ©: I x I — I such that ©(s,0) =0 and O(s,1) =1
for all s € I, ©(0,t) = n;D(t) and ©(1,t) = ¢ for all t € I. Let
D': I — X x I be defined by D'(t) = (mxD(t),t), then I': [ x [ —
X x I defined by I'(s, t) = (mx D(t), O(s,t)) is a homotopy from D to
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D' relative to the endpoints. Since @D = {fy,..., fu}: I = D,(Y)
such that some f;: I — Y is a contractible loop at a, then ®D’ =
{fi,---, f1}: I — D,(Y) such that f/: I — Y is a contractible loop
at a. But

OD'(t) = B(rxD(t),t) = p,(mx D(t) =< &, 7xD > (t).

Therefore, letting R; be the root class of ¢, that contains z;, we
conclude that Ry®R;. O

We thus have the following equivalent characterization of essen-
tial root classes.

Corollary 4.1. A root class Ry of an n-valued map ¢: X — D, (Y)
is essential if and only if for every homotopy ® = {¢}: X x [ —

D, (Y) with oo = ¢ there exists a root class Ry of @1 such that
RyPR,.

Although the homotopy invariance of the Nielsen root number
for n-valued maps can be deduced from the corresponding property
for the coincidence number as in [8], it is also a consequence of
properties of the ®-related concept.

Corollary 4.2. Let ® = {¢;}: X x I — D,(Y) be an n-valued
homotopy. If Ry is an essential root class of ¢y and Ry is a root
class of 1 such that Ry® Ry, then Ry is also an essential root class.

Therefore N R(ho) = NR(hy).

Proof. Let I' = {w}: X x I — D,(Y) be a homotopy such that
Yo = ¢1, then @o ' = {(¢)1}: X x I — D,(Y) defined by (¢7v); =
o for 0 <t < 1/2 and (py); = 719 for 1/2 <t < 1is a homotopy
such that (@) = @o. Since Ry is an essential root class of g, there
is a root class Ry of (p7y)1 = 71 such that Ry(® o I')R,. By Lemma
4.7(a), Ry® R, implies that R;® ' Ry. Therefore Ry (® 1o ®oT)R,
by Lemma 4.7(b) and, since [®~! o ® o I'] = [['], then Lemma 4.7(c)
implies that R1I"Ry. Theorem 4.3 then implies that RN(X x {1}) =
Ry # () so Ry is essential. By Corollary 4.1, the homotopy ® induces
a one-to-one correspondence between the root classes of ¢y and those

of 1 and since the ®-relation preserves essentiality, we conclude that
NR(hy) = NR(hy). ]

5 Root-uniform maps

An n-valued map ¢: X — D,(Y) is root-essential (resp. root-
inessential) if, for every n-valued map ¢: X — D,(Y) homotopic
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to ¢, every root class of 1) is essential (resp. inessential). If a map is
either root-essential or root-inessential, it is said to be root-uniform.

In [1], Brooks proved that every single-valued map f: X — Y,
where Y is a closed manifold, is root-uniform. We will discuss con-
sequences of Brooks’ theorem for n-valued maps in the next sec-
tion. In this section, we we will explore the root-uniform concept
for p: X — D, (Y) in the more general setting where X and Y are
as in the previous sections.

Let ¢ = {f1,...,fu}: X — D,(Y) be a split n-valued map.
Then since the root classes of the f; are disjoint and a homotopy
of a split n-valued map is split by Theorem 2.1 of [3], then ¢ is
root-essential (resp. root-inessential) if and only if every f; is root-
essential (resp. root-inessential).

If ¢ is not necessarily split, we still have

Theorem 5.1. Let R be a root class of : X — Dn(Y) and let R
be a root class of a lift factor g;: X — Y such that p(R) =R.If
E 18 an essential root class of g;, then R is an essential root class
of .

Proof. Let ® = {¢;}: X x I — D,(Y) be a homotopy such that
o = ¢ and let R be the root class of ® such that RN (X x{0}) =

By the covering homotopy theorem there is a lift P = {¢e}: X X I —
F,(Y) of ® such that ¢y = ¢. Let R, be the root class of ® such
that R; N (X x {0}) = Ry, then R; N (X x {1}) # 0 because R; is
essential. Consequently, R N (X x {1}) # 0 and we conclude that
R is also essential. ]

Corollary 5.1. If a lift ¢: X — F.(Y) of o: X — D,(Y) is root-
essential then o is root-essential.

In Example 2.1, the root class {1} of the identity map g;: S* —
S is essential because all self-maps of S' homotopic to the identity
are onto. Therefore, by Theorem 5.1, {1} as a root class of ¢ is also
essential.

Theorem 5.2. If g;,9;: X 5 Y are equivalent lift factors, then
there is a one-to-one correspondence between the root classes of g;
and the root classes of g; such that a root class R; of g; is essential

if and only if the corresponding root class Ej of g; is essential.

Proof. Let ¢ = 6(«a) then, by Theorem 2.2, g; = §;h, where h, is
the deck transformation corresponding to a € m(X). Let R; be
a root class of g; then also by Theorem 2.2, R; = h_'(R;) is the
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corresponding root class of g;. Let H={h}:XxI—>Y bea
homotopy such that hy = g;. Define H = {hj}: X x I — Y by
H'(z,t) = H(h;'(%),t). Then h{ = §; because

H'(#,0) = H(h.'(2),0) = H(g;hy'(2),0) = (3,0).

Now let R; € X x I be the root class of H such that R; N (X x
{0}) = R;. Let 1; denote the identity map of I. Repeating the
argument above the homeomorphlsm hlx1;: X x ] — X x I takes
the root class R; to a root class RJ of H' such that RJ N (X x{0}) =
R;. Moreover, (h7' x 1,)(Ry N (X x {1}) = R; N (X x {1}) so
either both are empty or both are not and thus ]3% is essential if and
only if fij is essential. ]

Corollary 5.2. If g;, g;: X =T are equivalent lift factors and g; is
root-essential (resp. root-inessential), then §; is also root-essential
(resp. root-inessential).

6 Maps to closed manifolds

Theorem 6.1. (Brooks [1]) Let f: X — Y be a map where X is
a connected, locally path connected, semi-locally simply connected
Hausdorff space and Y is a connected closed manifold, then f is
root-uniform. If f is root-essential, then NR(f) is the order of
m(X)/ fa(m (X)), that is, the number of left cosets of m(X) by

fy(m(X)).

Let ¢: X — D,(Y) be an n-valued map of those same spaces,

then every lift factor ¢;: X — Y is root-uniform and thus, by
Theorem 6.1 and Theorem 5.2, each p-orbit consists either of root-
essential lift factors or of root-inessential lift factors and thus ¢ is
root-essential (resp. root-inessential) if and only if all the p-orbits
consist of root-essential (resp. root-inessential) lift factors.

Theorem 6.2. If Y is a connected closed manifold and the action
p of im(0) on LF, is transitive, then ¢ is root-uniform. If ¢ is
root-essential, so also is ¢ and

NR() =3 #mY) (X))

[44]

where #(m (Y ))/gz#(m()?))) is the number of left cosets of m(Y)
by Gix(m1(X)) and the sum is taken over the p-orbits of lift factors.
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Proof. The map ¢, : X — T is root-uniform by Theorem 6.1. For
2 < i < n, since the action p is transitive there exists o; € im(0)
such that ¢, = gi1ha, for o; = 0(«;). Thus, by Theorem 5.2, if
g1 is root-essential (resp. root-inessential), so also are all g; and
thus ¢ is root-uniform. Therefore, by Corollary 5.1, if ¢ is root-
essential, so also is ¢. The calculation of NR(p) = RR(p) follows
from Theorems 6.1 and 5.2. ]

Example 2.1 is a simple instance of the following:

Corollary 6.1. A non-split 2-valued map ¢: X — Do(Y) is root-
essential if ¢ is root-essential.

Proof. 1f a 2-valued map ¢: X — Dy(Y') is not split, then the ho-
momorphism @y : m(X) — m(D2(Y)) is non-trivial by Theorem
3.1 of [7]. Thus 6: 7 (X) — Ss is an epimorphism so the action p is
transitive and thus if ¢ is root-essential, ¢ is also root-essential. [J

The following example demonstrates that, in contrast to Brooks’
theorem, if n > 1 then an n-valued map to a closed manifold need
not be root-uniform. Some p-orbits may consist of root-essential
lift factors and others consist of root-inessential lift factors. In the
example, there is one p-orbit of each type.

Example 6.1. Represent the points of the unit circle S* in polar
coordinates as ST = {e™: 0 < u < 27w}. We define a split 2-valued
self-map p: T —o T of the torus T = S' x St by

@(eiu’ eiv) _ ((eiu7€iv)7 (Lei(v-&-e)))
for a small € > 0. Let a = (1,1), then there are two root classes
Ry = {(1,1)} and Ry = S* x {9}, The class R, is essential

because every self-map of the torus homotopic to the identity is onto.
To prove that Ry is inessential, define ®: T x [ —o T by

@((eiu, e“’,t) _ ((eiu’ eiv)’ (eite’ei(ere))).

7 Maps of closed orientable manifolds

Throughout this section, X and Y will be connected closed ori-
entable m-manifolds. Roots are always defined with respect to a
chosen a €Y.

Let f: X — Y be a map and R a root class of f then, since the
root classes are a finite set of compact subsets of X, there is a closed
neighborhood N of R such that N \ R contains no roots of f. As
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in [2], consider the composition L,(f, R) = (f|N)«e; 'k: Hp(X) —
H,.(Y,Y \ {a}) where k: X — (X, X \ R) is inclusion, the inclusion
e: (N,N\ R) — (X, X \ R) is an excision and f|N: (N,N\ R) —
(Y, Y\ {a}) is the restriction of f. Choose generators u and v of the
infinite cyclic groups H,,(X) and H,,(Y,Y \ {a}), respectively. The
root index \(f, R) is the integer defined by L.(f, R)(u) = A(f, R)-v.

Let ¢: X — D,(Y) be an n-valued map and let R be a root

class of ¢. By Theorem 2.3(a) there is a lift factor g;: X — Y of
¢ with a root class R; such that p(R; ) = R. Define the root index
A, R) of R by setting A(, R) = A(§:, R;). The root index \(g;, R;)
is well-defined because X is an orientable m-manifold since X is and
p: X — X is a finite cover.

Theorem 7.1. The definition of A(¢, R) is independent of the choice
of the lift factor g; such that p(R;) = R.

Proof. Let R be a root class of ¢, let ﬁz be the lift class of the lift
factor ¢; such that p(R;) = R, and let g; be another lift factor of
¢ such that p~'(R) Nroot(g;) = ﬁj. Therefore, g; is equivalent to
g; by Theorem 2.4(a) and consequently, by Theorem 2.2, §; = g;hq,
for some deck transformation h,. Let NZ be a closed neighbor-
hood of ]% such that ]v \E contains no roots of g;. Since h, is
a homeomorphlsm that is a lift of the identity map of X, if we let
N =h;, (N) then N is a closed neighborhood R such that N; \R
contalns no roots of g;. Choose generators u and v of the mﬁmte
cyclic groups H,,(X) and H,(Y,Y \ {a}), respectively. The root
index (g, /) is the integer defined by L.(gs, B:)(u) = A(gi, Ri) - v
for Lu(gi, Ri) = (I Ni)wei hiw: Hn(X) = Hpn(Y, Y\ {a}) where
kit X — ()? X\R;) is inclusion and the inclusion e;: (N;, N;\ R; ) =
(X, X\ R;) is an excision. In the same way, the root index A9 R, )
is the 1nteger defined by L, (G5, R ) (w) = (g5, R]) v for L.(g;, Rj) =
(gj|N) ke Hu(X) — Hp(Y, Y\ {a}) where kj: X — (X, X\
Rj) is 1nclu81on and the inclusion e;: (Nj, ]/\\fj \ fij) — (X, X\ fi])
is an excision. By Theorem 2.4(b), ha(ﬁj) = R; and, because hy, is
a homeomorphism, ha()A( \ R; ;) = X \ R; and therefore hokjs = Kis.
Since hqe; = e,;(ha|N) then (hq |N) L= e ha.. Moreover,
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3; = §ihe implies that (;|N;), = (6:|N;)+(ha|N;)s. Consequently,
L9, R;)(w) = (45IN))we; kju(u)
= (Gil Ni)s(hal Ni)wej Ry ()
= (Gil Ni)wer, hin(u) = L(gs, i) (u)
and therefore A(§;, R;) = M5, R;). O

Theorem 7.2. Let p,1: X — D,(Y) be n-valued maps and & =
{ot}: X x I = D,(Y) an n-valued homotopy such that ¢y = ¢ and
w1 = 1. Let Ry be a root class of ¢ and R} a root class of 1 such
that Ry and Ry are ®-related, then (¢, Ry) = A(¢, R}).

Proof. Choose points xy € Ry and 2] € R}, then there exists a path
C: 1 — X such that C(0) = z¢,C(1) = 2} and for < &,C >=
{fi,.- s fu}: I = D,(Y) some f.: I — Y is a contractible loop at
a. Since zo € root(p), by Theorem 2.3(b)(c) there is a lift factor
g; of ¥ with a root class R; of g; such that p(R) = Ry. Choose
Zo € R; and let C: T — X be the lift of C such that C(0) = 2. Set

# = C(1), then p(:cl) = 2/ so & is in a root class R’ of a root factor
g; of 1 such that p(R;) = R|. Let ® = {4, }: X xI — F,(Y) be the
lift of @ such that ¢y = ¢. Since ® is a lift of ® and Qis alift of C,
then q@y(C(t)) = @p(C(t)) = w:(C(t)) that is, ¢(< @,C > (1)) =
< ®,C > (t)forallt € I. Now < &,C >= (fi,...,fa): X —
F,(Y) and < ®,C >= {fi,..., fu} such that some f,: [ — Y
is a contractible loop at a so, since q: F,,(Y) — D,(Y) induces a
monomorphism of fundamental groups, then some fg: I - Yisa
contractible loop at a. Therefore the points Zy and &} are d-related
and thus, by Theorem 4.1, the root classes ﬁ of g; and R' of g;
are ®-related. The homotopy d sphts as d = (Hl, o ,Hn) where
each lift factor Hk XxI—>Yofdisa homotopy between a lift
factor of ¢ and a lift factor of ¢. In particular, there is a lift factor
H . of ® that is a homotopy between ¢; and g g] Theorems 4.6.1 and

4.10 of [2] then imply that A(g;, R;) = A5, R;) so, by definition and
Theorem 7.1, Ay, Ry) = A(¢, R)). O

In particular, if o = {f1,..., fu}: X = D,(y) is a split n-valued
map, since the root classes are disjoint, the set of root classes of ¢
is the disjoint union of the root classes of the lift factors f;. Thus
R is a root class of ¢ if it is a root class of some f; and A(p, R) =
A(fi, R). Let R; be a root class of f;, R; a root class of f; and
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H = {h}: X x I —Y ahomotopy such that hy = f; and hy = f;.
If R (I)Rj, then /\(QO, ) = /\(fl, z) = )\(fj,Rj) = )\(QO,RJ)

Lemma 7.1. Let f: X — Y be a map and R an inessential root
class of f at a, then \(f,R) = 0.

Proof. Since R is inessential, there is a homotopy H = {h;}: X X
I — Y such that hy = f and Rﬂ(X x{1}) = 0 for R the root class of
H such that RN (X x{0}) = R. Let N be a closed neighborhood of
R such that N\ R contains no roots of f at a. Let N; = NN(X x{t})
and B, = RN (X x {t}). Let k: X — (X, X \ R;) be inclusion,
er: (Ngy N\ Ry) — (X, X \ R;) be inclusion which is an excision,
and f|Ny: (N, Ne\ Ry) — (Y, Y \ {a}) be the restriction of f. Then
L.(f,R) = (fINy)«(er); b : Hin(X) = Hp(Y,Y \ {a}) is indepen-
dent of ¢ because the homomorphisms are induced by homotopic
maps. Since Ry = (), then H,,(Ny, N \ Ry) = H,,(N1,N1) = 0, so
L.(f, R) is the zero homomorphism and therefore A(f, R) =0. O

Theorem 7.3. Let R be a root class of ¢: X — D,(Y) such that
A, R) # 0, then R is essential.

Proof. To prove the contrapositive statment, let R be an inessential
root class of ¢. Therefore, there is a homotopy ® = {¢:}: X x I —
Dy, (Y) such that ¢o = ¢ and RN(X x{1}) = () for R the root class of
® such that RN (X x {0}) = R. Let ® = {¢;} = (Hy,...,H,): ®x
I — F,(Y) be the lift of ® such that ¢y = ¢ and let ﬁz be a root
class of § 9i, a lift factor of ¢, such that p(ﬁ) R. Let Hj be the
factor of ¢ ® such that Hk N (X x {0}) = g; and let R be the root
class of Hy, such that RN (X x 0) = }A% Since RN (X x {1}) = 0,

then R N (X x 1) = () and therefore R; is an inessential root class
of g;. By Lemma 7.1 and the definition of the root index, we have
A, R) = A4, Bi) = 0. 0

For Example 2.1 we have A(p, {1}) = A(g1, {1}) and since g;: S* —
St is the identity function, we can choose homology generators so
that A(g1,{1}) = 1 and therefore since A(p, {1}) # 0 we conclude
that NR(y) =

From the contrapositive statement of Theorem 7.3, we have the
following consequence.

Corollary 7.1. Let R be a root class of ¢: X — D,(Y) and let
O ={p}: X xI — D,(X) a homotopy such that o = ¢. If R is
not ®-related to any class of 1, then A(p, R) = 0.

21



References

[1] Brooks, R., Certain subgroups of the fundamental group and the
number of roots of f(x) = a, Amer. J. Math. 95, 720 - 728
(1973).

[2] Brooks, R., Nielsen root theory, Handbook of Topological Fixed
Point Theory, Springer, 375 - 431 (2005).

[3] Brown, R., Fized points of n-valued multimaps of the circle, Bull.
Polish Acad. Sci. 54, 153 - 162 (2006).

[4] Brown, R., Nielsen numbers of n-valued fiber maps, J. Fixed
Point Theory Appl. 4, 183 - 201 (2008).

[5] Brown, R., On the Nielsen root theory of n-valued maps, J. Fixed
Point Theory Appl., to appear.

[6] Brown, R., Deconinck, C., Dekimpe, K. and Staecker, P. C., Lift-
ing classes for the fized point theory of n-valued maps, Topology
Appl. 274, 26 pp. (2020).

[7] Brown, R. and Goncalves, D. On the topology of n-valued maps,
Advances in Fixed Point Theory, 8, 205 - 220 (2018).

[8] Brown, R. and Kolahi, K., Nielsen coincidence, fized point and
root theories of n-valued maps, J. Fixed Point Theory Appl. 14,
309 - 324 (2013).

[9] Hansen, V., Braids and coverings: selected topics, London Math.
Soc. Student Texts 18, (1989).

[10] Hatcher, A., Algebraic Topology, Cambridge U. Press (2002).

[11] Hopf, H., Zur Topologie der Abbildungen von Manigfaltikeiten,
II, Math. Ann. 102, 562 - 623 (1930).

[12] Massey, W., Algebraic Topology: An Introduction, Harcourt,
Brace (1967).

22



