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Abstract

A root of an n-valued map ϕ : X → Dn(Y ) at a ∈ Y is a point x ∈ X
such that a ∈ ϕ(x). We lift the map ϕ to a split n-valued map of fi-
nite covering spaces and its single-valued factors are defined to be the lift
factors of ϕ. We describe the relationship between the root classes at a
of the lift factors and those of ϕ. We define the Reidemeister root num-
ber RR(ϕ) in terms of the Reidemeister root numbers of the lift factors.
We prove that the Reidemeister root number is a homotopy invariant up-
per bound for the Nielsen root number NR(ϕ), the number of essential
root classes, and we characterize essentiality by means of an equivalence
relation called the Φ-relation. A theorem of Brooks states that a single-
valued map to a closed connected manifold is root-uniform, that is, its
root classes are either all essential or all inessential. It follows that Y if
is a closed connected manifold, then the lift factors are root-uniform and
we relate this property to the root-uniformity of ϕ. If X and Y are closed
connected oriented manifolds of the same dimension then, by means of
the lift factors, we define an integer-valued index of a root class of ϕ that
is invariant under Φ-relation and this implies that if its index is non-zero,
then the root class is essential.
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1 Introduction

Let X and Y be connected, locally path connected, semi-locally
simply connected Hausdorff spaces and let f : X → Y be a map.
Choosing a ∈ Y , a point x ∈ X is a root of f at a if f(x) = a. The
Nielsen root number NR(f) of f is a lower bound for the number of
roots of g : X → Y for every map g homotopic to f . An extensive
survey of the Nielsen root theory of single-valued maps is presented
in [2].

Let Dn(Y ) be the nth unordered configuration space of Y , that
is, the space of unordered subsets of n points of Y , then an n-valued
map is a continuous function ϕ : X → Dn(Y ). A point x ∈ X is a
root of ϕ at a if a ∈ ϕ(x). The Nielsen root number for n-valued
maps, which we will denote by NR(ϕ) and will be define precisely
later, was introduced in [8] and the Nielsen root theory of n-valued
maps was developed further in [5]. The purpose of the present paper
is to extend our understanding of this topic.

An n-valued map ϕ : X → Dn(Y ) is split if there are maps
fi : X → Y for i = 1, . . . , n such that ϕ(x) = {f1(x), . . . , fn(x)}
for all x ∈ X. For such n-valued maps, its Nielsen theory can usu-
ally be reduced to the single-valued case. For instance, Theorem 3.2
below states that NR(ϕ) is the sum of the NR(fi). However, n-
valued maps are not usually split. For instance, the n-valued maps
of the circle are classified up to n-valued homotopy by an integer
d, their degree, and by Corollary 5.1 of [3], such a map is split if
and only if d is a multiple of n. Nevertheless, it is possible to obtain
information in the non-split case by lifting ϕ to a split n-valued map
of finite covering spaces of X and Dn(Y ). The single-valued factors
of the split map are called the lift factors of ϕ. This technique,
applied to the fixed point theory of such maps, was introduced by
Gert-Jan Dugardein, see Section 3 of [6], and it was exploited in
that paper.

In Section 2 we define the lift factors for the root theory of an
n-valued map ϕ. The set of roots of a map are partitioned by means
of an equivalence relation into subsets called the root classes of the
map. The Nielsen root number of the map is the number of such
classes that are essential, which can be described informally as the
classes that cannot be removed by a homotopy. Thus the root classes
are central to Nielsen root theory and, in Section 2, we describe how
the root classes of an n-valued map and those of its lift factors relate
to each other.

The precise definition of the Nielsen root number NR(ϕ) of an n-
valued map appears in Section 3 along with that of the correspond-
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ing Reidemeister number, which is defined in terms of the Reide-
meister numbers of its lift factors. As in single-valued root theory,
the Reidemeister number is a homotopy invariant upper bound for
the Nielsen number.

In Section 4, for an n-valued homotopy Φ = {ϕt} : X × I →
Dn(Y ), we discuss an equivalence relation on the root classes of
homotopic n-valued maps called the Φ-relation. We prove that Def-
inition 3.7 of [2] can be generalized to n-valued maps in order to
characterize essential root classes in terms of the Φ-relation.

A theorem of Brooks from [1] is the motivation for Sections 5
and 6. He proved that if f : X → Y is a map where Y is a closed
connected manifold, then either all its root classes are essential or
all are inessential. We call such a map root-uniform and, in Section
5, we study the relationship between an n-valued map and its lift
factors with respect to root-uniformity. Then, in Section 6, we apply
Brooks’ theorem in the setting of a map ϕ : X → Dn(Y ) where Y is
a closed connected manifold, and thus it applies to the lift factors
of ϕ. In particular, we find conditions under which the Nielsen root
number and the Reidemeister root number of ϕ are equal. This
section also contains an example to demonstrate that, in general,
n-valued maps to closed connected manifolds are not root-uniform
when n > 1.

Section 7 concerns maps ϕ : X → Dn(Y ) for which X and Y
are closed connected oriented manifolds of the same dimension. In
the single-valued setting, it is possible to define an integer-valued
root index of a root class which, if non-zero, implies that the root
class is essential. We show that such an index can be defined for
the root classes of ϕ by means of that of its lift factors. A root
class of ϕ of non-zero index is essential, but if, for some homotopy
Φ = {ϕt} : X×I → Dn(Y ) with ϕ0 = ϕ, a root class is not Φ-related
to any root class, then its root index is zero.

2 Lift factors and root classes

An n-valued map ϕ : X → Dn(Y ) induces the fundamental group
homomorphism ϕ# : π1(X) → π1(Dn(Y )). The group π1(Dn(Y ))
is isomorphic to the braid group Bn(Y ) (see Chapter I, Section 3
of [9]). A homomorphism ρ : Bn(Y ) → Sn, the symmetric group,
is defined for β ∈ Bn(Y ) by ρ(β) = σ where β(1) = σβ(0). Let

θ = ρϕ# : π1(X) → Sn. Denote by p : X̂ → X the covering space
of X corresponding to the kernel ker(θ) ⊆ π1(X), which is a fi-
nite covering space because the index of ker(θ) in π1(X) equals the
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order of the image of θ which is a subset of Sn. Let Fn(Y ) be
the configuration space of ordered subsets of n points of Y and let
q : Fn(Y )→ Dn(Y ) be the covering space defined by q(y1, . . . , yn) =

{y1, . . . , yn}. Choose x̂∗ ∈ X̂ and let x∗ = p(x̂∗) ∈ X. Choosing

y∗ ∈ q−1(ϕ(x∗)) ⊆ Fn(Y ), we claim that there is a lift ϕ̂∗ : X̂ →
Fn(Y ) such that ϕ̂∗(x̂∗) = y∗. From the definition of the covering

space p : X̂ → X we have

ϕ#(p#(π1(X̂))) = ϕ#(ker(θ)).

Thus, under the isomorphism of π1(Dn(Y )) to Bn(Y ), the sub-

group ϕ#(p#)(π1(X̂)) is mapped to Pn(Y ), the subgroup of pure
braids. On the other hand, the isomorphism takes the subgroup
q#(π1(Fn(Y )) of π1(Dn(Y )) onto Pn(Y ). Therefore, the sufficient

condition ϕ#(p#(π1(X̂)) ⊆ q#(π1(Fn(Y ))) is satisfied and the lift
exists.

If ϕ̂∗(x̂∗) = y∗ = (y∗1, . . . , y
∗
n) ∈ Fn(Y ), then for i = 1, . . . , n,

define ĝi : X̂ → Y such that ϕ̂∗ = (ĝ1, . . . , ĝn) is the split n-valued

map where ĝi(x̂
∗) = y∗i . We call the maps ĝj : X̂ → Y the lift factors

of the n-valued map ϕ : X → Dn(Y ). (Compare Section 2 of [6].)

Theorem 2.1. The lift factors ĝ1, . . . , ĝn : X̂ → Y of ϕ : X →
Dn(Y ) are independent of the choice of the lift ϕ̂ : X̂ → Fn(Y ) of ϕ.

Proof. Let ϕ̂∗ : X̂ → Fn(Y ) be the lift of ϕ such that ϕ̂∗(x̂∗) = ŷ∗.

Let ϕ̂ : X̂ → Fn(Y ) be another lift of ϕ such that ϕ̂(x̂∗) = ȳ =
(ȳ1, . . . , ȳn). There is a deck transformation σ ∈ Sn of q : Fn(Y ) →
Dn(Y ) such that σ(ŷ∗) = ȳ. Then σϕ̂∗(x̂∗) = ȳ = ϕ̂(x̂∗) and thus,
by Proposition 1.34 of [10], ϕ̂∗ = σϕ̂. In terms of lift factors, ϕ̂∗ =
(ĝ1, . . . , ĝn) and therefore

ϕ̂ = σϕ̂∗ = σ(ĝ1, . . . , ĝn) = (ĝσ(1), . . . , ĝσ(n)).

We conclude that the lift factors ĝi : X̂ → Y are the same maps for
all lifts ϕ̂ of ϕ.

Theorem 2.1 implies that the set of lifts is in one-to-one corre-
spondence with the set of permutations of the n-tuple (ĝ1, . . . , ĝn)
of the lift factors and therefore there are n! lifts of ϕ.

If ϕ = {f1, . . . , fn} : X → Dn(Y ) is a split n-valued map, then
the image of ϕ# : π1(X) → π1(Dn(Y )) is isomorphic to a subgroup
of the group Pn(Y ) of pure braids. Therefore θ is the constant

homomorphism and consequently X̂ = X. Then, if we impose an
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order on the fi, we can define ϕ̂ = (f1, . . . , fn) : X → Fn(Y ) and the
fi may be viewed as the lift factors ĝi = fi of ϕ.

Let A and B be spaces such that a group G acts on A and a
group H acts on B and let ψ : G→ H be a homomorphism. A map
f : A→ B is a homomorphism of group actions if f(ga) = ψ(g)f(a)
for all g ∈ G and a ∈ A.

Lemma 2.1. Let p : X̃ → X be a regular covering space with deck

transformation group D(X̃) and let q : Ỹ → Y be a regular covering

space with deck transformation group D(Ỹ ). If f̃ : X̃ → Ỹ is a lift

of a map f : X → Y , then f̃ is a homomorphism of the action of

D(X̃) on X̃ to the action of D(Ỹ ) on Ỹ .

Proof. Choose x̃0 ∈ X̃ and let ỹ0 = f̃(x̃0) and x0 = p(x̃0) so that

y0 = q(ỹ0) = f(x0). Let f̃x0 : p−1(x0) → q−1(y0) be the restriction

of f̃ . It is sufficient to prove that f̃x0 is a homomorphism of the ac-
tions of the groups of deck transformations. Let x̃i, x̃j ∈ p−1(x0). By
Chapter 5, Theorem 7.2 of [12], we can represent the deck transfor-
mation that takes x̃i to x̃j by some α ∈ π1(X, x0), that is, αx̃i = x̃j.

Let w : I → X be a loop at x0 such that [w] = α. Let w̃ : I → X̃

be the lift of w such that w̃(0) = xi, then w̃(1) = xj. Let ỹi = f̃(xi)

and ỹj = f̃(xj), then f̃ w̃(0) = ỹi and f̃ w̃(1) = ỹj. Since f̃ is a lift
of f , then

[qf̃ w̃] = [fpw̃] = [fw] = f#[w] = f#(α).

So ỹj = f#(α)ỹi and we conclude that f̃(αx̃) = f#(α)f̃(x̃) and

therefore f̃ is a homomorphism of the group actions.

Roots x0, x1 of ϕ : X → Dn(Y ) at a ∈ Y are equivalent, that
is, in the same root class, if there is a path v : I → X from x0 to
x1 such that for the splitting ϕv = {f1, . . . , fn} : I ( Y , there is
some fj : I → Y that is a contractible loop at a. Roots x̂0, x̂1 of

ĝi : X̂ → Y at a are equivalent and hence in the same root class if
there is a path v̂ from x̂0 to x̂1 such that ĝiv̂ : I → Y is a contractible
loop at a.

Lift factors ĝi, ĝj : X̂ → Y are equivalent if there exists σ ∈ im(θ)
such that σ(i) = j. Denote the set of lift factors of ϕ by LFϕ. Define
an action µ : im(θ) × LFϕ → LFϕ by sending each lift factor ĝi to
the lift factor ĝσ(i). The equivalence classes of lift factors are the
orbits of this action.

Denote the set of roots of ϕ by root(ϕ) with the corresponding
notation for single-valued maps.
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Theorem 2.2. Lift factors ĝi and ĝj are equivalent so that there
exists σ = θ(α), for some α ∈ π1(X), such that σ(i) = j if and only
if ĝj = ĝihα where hα is the deck transformation corresponding to
α. The deck transformation hα defines a one-to-one correspondence
between the root classes of ĝi and the root classes of ĝj.

Proof. Suppose ĝi and ĝj are equivalent, that is j = σ(i) where
σ = θ(α) ∈ Sn for some α ∈ π1(X). By Lemma 2.1, the map

ϕ̂ : X̂ → Fn(Y ) is a homomorphism of group actions with respect

to the actions of im(θ) on X̂ by deck transformations and of the

symmetric group Sn on Fn(Y ). Therefore for x̂ ∈ X̂ we have

ϕ̂(hαx̂) = (ĝ1(hαx̂), . . . , ĝn(hαx̂))

= σ(ĝ1(x̂), . . . , ĝn(x̂))

= (ĝσ(1)(x̂), . . . , ĝσ(n)(x̂))

so σ(i) = j implies ĝj = ĝihα.
Conversely, suppose ĝj = ĝihα and let σ = θ(α), then ĝihα = ĝσ(i).

Therefore ĝj = ĝσ(i) so j = σ(i) and thus ĝi and ĝj are equivalent.
To prove that hα defines a one-to-one correspondence between the

root classes of ĝi and the root classes of ĝj = ĝihα, let x̂ ∈ root(ĝi),
then

a = ĝi(x̂) = ĝi(hαh
−1
α x̂) = ĝj(h

−1
α x̂)

so h−1α (root(ĝi)) ⊆ root(ĝj). Since ĝj(x̂) = ĝi(hα(x̂)), we conclude
that the restriction h−1α : root(ĝi) → root(ĝj) of h−1α is a homeo-

morphism. Suppose x̂0, x̂1 ∈ R̂i, a root class of ĝi, so there is

a path v̂ : I → X̂ from x̂0 to x̂1 such that ĝiv̂ is a contractible
loop at a. Then h−1α v̂ is a path from h−1α (x̂0) to h−1α (x̂1) such that
ĝj(h

−1
α v̂) = ĝiv̂ so it is a contractible loop at a and therefore h−1α (x̂0)

and h−1α (x̂1) are in a root class R̂j = h−1α (R̂i) of ĝj and thus h−1α
maps root classes of ĝi to root classes of ĝj.

Theorem 2.3. Let ϕ : X → Dn(Y ) be an n-valued map with lift

factors ĝi : X̂ → Y for i = 1, . . . , n. The roots and root classes of ϕ
and of its lift factors are related in the following ways.

(a) p−1(root(ϕ)) =
⋃n
i=1 root(ĝi).

(b) Let R be a root class of ϕ then, for each i = 1, . . . , n, either

p−1(R) ∩ root(ĝi) = ∅ or p−1(R) ∩ root(ĝi) = R̂i, which is a root
class of ĝi.

(c) If R is a root class of ϕ and p−1(R) ∩ root(ĝi) = R̂i, then

p(R̂i) = R.
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Proof. (a) If x0 ∈ root(ϕ) and x̂0 ∈ p−1(x0), then ĝi(x̂0) = a for
some 1 ≤ i ≤ n, and therefore p−1(root(ϕ)) ⊆ root(ϕ̂) which is the
disjoint union of the sets root(ĝi). Conversely, if p(x̂0) = x0 and x0
is a root of ϕ at a, then since qϕ̂ = ϕp it follows that x̂0 is a root of ϕ̂

at a. Therefore, p−1(root(ϕ)) = root(ϕ̂) for any lift ϕ̂ : X̂ → Fn(Y )
of ϕ.

(b) Let x0, x1 ∈ root(ϕ) be in the same root class so there
is a path v : I → X with v(0) = x0, v(1) = x1 and for φv =
{f1, . . . , fn} : I → Dn(Y ) there is 1 ≤ i ≤ n such that fiv is a
contractible loop at a. For x̂0 ∈ p−1(x0), let v̂ be the lift of v such
that v̂(0) = x̂0 and set x̂1 = v̂(1). Write ϕ̂v̂ = (ĝ1, . . . , ĝn)v̂ =
(ĝ1v̂, . . . , ĝnv̂) : I → Fn(Y ). By the uniqueness of splittings (Propo-
sition 2.1 of [8]), there exists ĝj such that ĝj v̂ = fi. Therefore ĝj(v̂)
is a contractible loop at a and thus x̂0 and x̂1 are in the same root
class of ϕ̂. Conversely, suppose x̂0, x̂1 ∈ root(ϕ̂) are in the same root

class so there is a path v̂ : I → X̂ with v̂(0) = x̂0, v̂(1) = x̂1 and
ĝi(v̂) is a contractible loop at a. Then x0 = p(x̂0) and x1 = p(x̂1)
are in the same root class of ϕ by means of the path v = p(v̂). Thus
the inverse image under p of a root class of ϕ is the union of root
classes of lift factors.

(c) Since p−1(R) ∩ root(ĝi) 6= ∅, there exists x0 ∈ R and x̂0 ∈
p−1(x0) such that ĝi(x̂0) = a so x̂0 ∈ R̂i. Given x1 ∈ R, as above let
v be a path from x0 to x1 such that some fiv is a contractible loop

at a and lift v to v̂ at x̂0. Since p(R̂i) ⊆ R and we have shown that

x̂1 = v̂(1) ∈ R̂i, we conclude that p(R̂i) = R.

Theorem 2.4. Let R be a root class of an n-valued map ϕ : X →
Dn(Y ). (a) If root(ĝi) ∩ p−1(R) = R̂i, then root(ĝj) ∩ p−1(R) = R̂j

if and only if ĝj is equivalent to ĝi. (b) If ĝj is equivalent to ĝi so

that ĝj = ĝihα for some deck transformation hα, then h−1α (R̂i) = R̂j.

Proof. (a) If ĝj is equivalent to ĝi, then, by Theorem 2.2, ĝj = ĝihα
where hα is a deck transformation. Let x̂0 ∈ R̂i, then ĝj(h

−1
α (x̂0)) =

ĝi(x̂0) = a so root(ĝj) ∩ p−1(R) 6= ∅ and thus by Theorem 2.3(b) it

is a root class R̂j of the lift factor ĝj.

Conversely, suppose root(ĝi) ∩ p−1(R) = R̂i and root(ĝj) ∩
p−1(R) = R̂j. Let x0 ∈ R, then since p(R̂i) = p(R̂j) = R by

Theorem 2.3(c), there exists x̂i ∈ R̂i and x̂j ∈ R̂j such that p(x̂i) =
p(x̂j) = x0. Therefore there is a deck transformation hη such that
hη(x̂i) = x̂j. The cardinality of p−1(x0) equals the cardinality of
im(θ). For each α ∈ im(θ) there is a point of p−1(x0) that is a
root of some lift factor. The points are distinct for distinct elements
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of im(θ) because im(θ) acts transitively on p−1(x0). Therefore we
conclude that the lift factors ĝi and ĝj are equivalent.

(b) Let x̂0 ∈ R̂i which means that p(x̂0) ∈ R and ĝi(x̂0) = a.
Since hα is a deck transformation, ph−1α (x̂0) = p(x̂0) ∈ R. Further-

more, ĝjh
−1
α (x̂0) = ĝihαh

−1
α (x̂0) = ĝi(x̂0) = a so h−1α (x̂0) ∈ R̂j.

Example 2.1. Let S1 be the complex numbers of norm one. Define
ϕ : X = S1 → D2(S

1) by ϕ(z) = {
√
z,−
√
z} where if z = eit for

some 0 ≤ t < 2π then
√
z = eit/2. The homomorphism θ : Z =

π1(S
1) → S2 is an epimorphism so ker(θ) = 2Z. Therefore, the

covering space p : X̂ → X is the double cover p : S1 → S1 defined by
p(z) = z2. The map ϕ lifts to ϕ̂ = (ĝ1, ĝ2) : S1 → F2(S

1) where the
lift factors are defined by ĝ1(z) = z and ĝ2(z) = −z. The root class

of ϕ is R = {1}, the root class of ĝ1 is R̂1 = {1} and the root class

of ĝ2 is R̂2 = {−1}. Since θ is an epimorphism, the lift factors ĝi
and ĝ2 are equivalent.

3 Reidemeister and Nielsen root numbers

Let ϕ : X → Dn(Y ) be an n-valued map and denote its lift factors

by ĝj : X̂ → Y for j = 1, . . . , n.

Following [2], a left coset of π1(Y ) by ĝi(π1(X̂)) is a Reidemeister
class of the lift factor ĝi and the number of such classes is called the
root Reidemeister number RR(ĝi) of ĝi. Suppose lift factors ĝi and
ĝj are equivalent so there exists σ = θ(α) ∈ Sn for some α ∈ π1(X)
such that σ(i) = j and therefore, by Theorem 2.2, ĝj = ĝihα where
hα is the deck transformation that corresponds to α. Then since hα
is a homeomorphism which implies that it induces an isomorphism

of fundamental groups, the set of left cosets of π1(Y ) by ĝi#(π1(X̂))
is in one-to-one correspondence with the set of left cosets of π1(Y )

by ĝj#(π1(X̂)), which implies that RR(ĝi) = RR(ĝj). Denote the
equivalence class of the lift factor ĝi by [ĝi] and the common value of
the root Reidemeister number of the root factors in the equivalence
class by RR[ĝi]. The root Reidemeister number RR(ϕ) of the n-
valued map ϕ : X → Dn(Y ) is the sum of all the RR[ĝi]. If n = 1,
then this is the definition of [2]. If ϕ = {f1, . . . , fn} : X → Dn(Y ) is
split, then since the fi are its lift factors, RR(ϕ) is the sum of the
RR(fi) by definition.

Theorem 3.1. If ϕ, ϕ′ : X → Dn(Y ) are homotopic, then RR(ϕ) =
RR(ϕ′).
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Proof. Let Φ = {ϕt} : X × I → Dn(Y ) be a homotopy such that
ϕ0 = ϕ and ϕ1 = ϕ′. By the covering homotopy property, we can lift

Φ to Φ̂ = {ϕ̂t} : X̂×I → Fn(Y ) such that ϕ̂0 = ϕ̂. The homotopy Φ̂

splits as Φ̂ = {ϕ̂t} = {(ĝ1t, . . . , ĝnt)} so each lift factor ĝi0 of ϕ̂ is ho-
motopic to the lift factor ĝi1 of ϕ̂′ and thus they induce the same fun-
damental group homomorphisms, so there is a one-to-one correspon-

dence between π1(Y )/ĝi0#(π1(X̂)) and π1(Y )/ĝi1#(π1(X̂)). More-
over, since ϕ and ϕ′ induce the same homomorphism of fundamental
groups, they define the same equivalence relation on the lift factors
and therefore RR(ϕ) = RR(ϕ′).

If R is a root class of ϕ and Φ = {ϕt} : X × I → Dn(Y ) is a
homotopy with ϕ0 = ϕ, by [8] there is a unique root class R of
Φ such that R = R ∩ (X × {0}). The root class R is essential if
R ∩ (X×{1}) 6= ∅ for all homotopies such that R = R ∩ (X×{0})
and it is inessential otherwise. The Nielsen root number NR(ϕ) of
ϕ is the number of essential root classes.

Theorem 3.2. Let ϕ = {f1, . . . , fn} : X → Dn(X) be a split n-
valued map, then NR(ϕ) =

∑n
i=1 NR(fi).

Proof. The roots, and hence the root classes, of the fi are disjoint.
Moreover, by Theorem 2.1 of [4], if Φ = {ϕt} : X × I → Dn(Y )
is an n-valued homotopy such that ϕ0 = ϕ, which is split, then Φ
splits as Φ = {Φ1, . . . ,Φn} such that Φi(x, 0) = fi(x) for all x ∈ X.
Therefore, a root class of ϕ is a root class of some fi and it is essential
as a root class of ϕ if and only if it is an essential root class of fi.

Theorem 3.3. Let ϕ : X → Dn(Y ) be an n-valued map with Nielsen
root number NR(ϕ) and Reidemeister root number RR(ϕ), then
NR(ϕ) ≤ RR(ϕ).

Proof. Let R be an essential root class of ϕ. By Theorem 2.3 there

is a root class R̂i of a lift factor ĝi such that p(R̂i) = R. By Theorem

2.4(a), if ĝj is equivalent to ĝi, then there is a root class R̂j such

that p(R̂j) = R. Thus, for each essential root class of ϕ there is
a contribution to the sum of the RR[ĝi] and therefore NR(ϕ) ≤
RR(ϕ).

In Example 2.1, since the lift factors ĝ1 and ĝ2 induce isomor-
phisms of π1(S

1), then RR(ĝ1) = RR(ĝ2) = 1 and since the lift
factors are equivalent, RR(ϕ) = RR[ĝ1] = 1.

The possible relationships between the Nielsen number NR(ϕ)
and the Reidemeister number RR(ϕ) are illustrated by the following
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split 2-valued maps of surfaces. Let T = S1 × S1 be the torus. In
all the examples the range of ϕ is F2(T ) and a = (1, 1).

Example 3.1. Define ϕ = (f1, f2) : T → F2(T ) by setting ϕ(eit1 , eit2) =
{(eit1 , 1), (ei(t1+ε, 1)} for a small ε > 0. Then NR(f1) = NR(f2) = 0
because both f1 and f2 are homotopic to maps without roots at a so
NR(ϕ) = 0 by Theorem 3.2. On the other hand, π1(T )/f1#(π1(T )) =
Z⊕ Z/Z⊕ 0 = Z so RR(ϕ) =∞.

Example 3.2. For an example like 3.1, but with NR(ϕ) > 0, we
let ϕ(eit1 , eit2) = {(eit1 , eit2), (ei(t1+ε), 1)} now NR(ϕ) = 1 since
NR(f1) = 1, but still RR(ϕ) =∞.

Example 3.3. Define maps f1, f2 : T#T → T by the matrices de-
termined by the fi# : π1(T#T )→ π1(T ) as follows:

f1# =

[
1 0 2 -1
0 1 1 -1

]
and

f2# =

[
0 0 3 -1
0 0 1 -2

]
.

Since π1(T ) is abelian, a map k : T#T → T factors through the one-
point union T ∨ T . That is, k = (k1 ∨ k2)q where q : T#T → T ∨ T
is a quotient map. If

k# = [k1# k2#] =

[
k11 k12 k13 k14
k21 k22 k23 k24

]
then the degree of k is deg(k1) + deg(k2) = det(k1#) + det(k2#). If
we define k : T#T → T for x ∈ T#T by k(x) = f1(x)(f2(x))−1,
then

k# = f1# − f2# =

[
1 0 -1 0
0 1 0 1

]
.

A theorem attributed to Kneser states that if f : M → N is a map of
closed oriented surfaces and a ∈ N , then f is homotopic to a map
without roots at a if and only if the degree of f is zero. Since the
degree of the map k is zero, it follows that f1 and f2 are homotopic
to maps f ′1 and f ′2, respectively, such that ϕ = (f ′1, f

′
2) : T#T →

F2(T ). The degree of f ′1 is also zero and thus f ′1 is homotopic to
a map without roots at a so NR(f ′1) = 0. The image of f ′1# is
the subgroup of Z ⊕ Z generated by the columns of its matrix so
f ′1# is an epimorphism and RR(f ′1) = 1. On the other hand, the
columns of the matrix of f ′2# generate the subgroup 0 ⊕−5Z which
implies that RR(f ′2) = 5. The degree of f ′2 is nonzero so one of its
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root classes is essential. Therefore, by a theorem of Brooks [1] (see
Theorem 6.1 below) all the root classes of f ′2 are essential and thus
NR(f ′2) = RR(f ′2) = 5 so NR(ϕ) = 5 by Theorem 3.2 whereas,
since ϕ is split, then RR(ϕ) = RR(f ′1) +RR(f ′2) = 1 + 5 = 6.

Example 3.4. For an example in which NR(ϕ) = 0 but RR(ϕ) > 0,
define ϕ = (f1, f2) : T#T → F2(T ) as follows. The map f1 is as in
the previous example. Define f2 : T#T → T by f2 = rf1 where
r : T → T is r(eit1 , eit2) = (ei(t1+ε), eit2). By calculations like those
in the previous example, NR(ϕ) = 0 but RR(f1) = RR(f2) = 1 so
RR(ϕ) = RR(f1) +RR(f2) = 2.

4 Φ-related root classes

If C : I → X, then C−1 : I → X is defined by C−1(t) = C(1 − t).
Let Φ = {ϕt} : X × I → Dn(Y ) be an n-valued homotopy, then
Φ−1 : X × I → Dn(Y ) is defined by Φ−1(x, t) = ϕ1−t(x).

Lemma 4.1. Let Φ = {ϕt} : X × I → Dn(Y ) be an n-valued ho-
motopy and C : I → X a path. Define < Φ, C > : I → Dn(Y ) by
< Φ, C > (t) = ϕt(C(t)), then < Φ−1, C−1 > (t) =< Φ, C >−1 (t).

Proof. From the definitions we have

< Φ−1, C−1 > (t) = ϕ1−t(C(1− t)) = < Φ, C >−1 (t).

Let Φ = {ϕt},Φ′ = {ϕ′t} : X × I → Dn(Y ) be homotopies such
that ϕ0 = ϕ′0 and ϕ1 = ϕ′1. Define [Φ] = [Φ′] if there exists
Ψ: X × I × I → Dn(Y ) such that Ψ(x, 0, t) = Φ(x, t),Ψ(x, 1, t) =
Φ′(x, t),Ψ(x, s, 0) = ϕ0(x) = ϕ′0(x), and Ψ(x, s, 1) = ϕ1(x) = ϕ′1(x).
Let C,C ′ : I → X such that C(0) = C ′(0) and C(1) = C ′(1). De-
fine [C] = [C ′] if there exists K : I × I → X such that K(0, t) =
C(t), K(1, t) = C ′(t), K(s, 0) = C(0) = C ′(0) and K(s, 1) = C(1) =
C ′(1).

Lemma 4.2. If [Φ] = [Φ′] and [C] = [C ′], then

[< Φ, C >] = [< Φ′, C ′ >].

Proof. From the hypotheses we have the maps Ψ: X × I × I →
Dn(Y ) and K : I × I → X. The homotopy < Ψ, K > : I × I →
Dn(Y ) that is defined by < Ψ, K > (s, t) = Ψ(K(s, t), s, t), has the
required properties because

< Ψ, K > (0, t) = Ψ(K(0, t), 0, t) = Ψ(C(t)), 0, t)

= Φ(C(t), t) =< Φ, C > (t)
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and < Ψ, K > (1, t) = Φ′(C ′(t), t) =< Φ′, C ′ > (t).

Let ϕ, ψ : X → Dn(Y ) be maps and choose a ∈ Y . Roots x0, x1 ∈
X at a of ϕ and ψ respectively are Φ-related, for Φ = {ϕt} : X×I →
Dn(Y ) such that ϕ0 = ϕ and ϕ1 = ψ, if there exists C : I → X such
that C(0) = x0, C(1) = x1 and for < Φ, C >= {f1, . . . , fn} : I →
Dn(Y ) some fi : I → Y is a contractible loop at a. If x0 and x1 are
Φ-related, we write x0Φx1.

Lemma 4.3. If x0Φx1, then x1Φ
−1x0.

Proof. Since x0Φx1, there exists C : I → X such that C(0) = x0, C(1) =
x1 and for < Φ, C > = {f1, . . . , fn} there is a contractible loop
fi at a. Then C−1(0) = x1, C

−1(1) = x0 and, by Lemma 4.1,
< Φ−1, C−1 > =< Φ, C >−1= {f−11 , . . . , f−1n } and f−1i is a con-
tractible loop at a so x1Φ

−1x0.

Lemma 4.4. If Φ = {ϕt},Φ′ = {ϕ′t} : X × I → Dn(Y ) such that
ϕ0 = ϕ, ϕ1 = ϕ′0 = ψ and ϕ′1 = ζ and define ΦΦ′ = Φ′′ = {ϕ′′t } : X×
I → Dn(Y ) by ϕ′′t = ϕ2t for 0 ≤ t ≤ 1/2 and ϕ′′t = ϕ′2t−1 for
1/2 ≤ t ≤ 1. Let x0, x1 and x2 be roots of ϕ, ψ and ζ, respectively,
at a. If x0Φx1 and x1Φ

′x2, then x0ΦΦ′x2.

Proof. Since x0Φx1 and x1Φ
′x2, there are paths C,C ′ : I → X such

that C(0) = x0, C(1) = C ′(0) = x1, C
′(1) = x2 and for < Φ, C >

= {f1, . . . , fn} and < Φ′, C ′ >= {f ′1, . . . , f ′n}, there are contractible
loops fi and f ′j at a, respectively. Now CC ′ is a path from x0 to x2
defined by CC ′(t) = C(t) for 0 ≤ t ≤ 1/2 and by CC ′(t) = C ′(2t−1)
for 1/2 ≤ t ≤ 1. The map < ΦΦ′, CC ′ > : I → Dn(Y ) can be split as
< ΦΦ′, CC ′ >= {f ′′1 , . . . , f ′′n} where f ′′k (t) = fi(2t) for 0 ≤ t ≤ 1/2
and f ′′k (t) = f ′j(2t−1) for fi and f ′j such that fi(1) = f ′j(0). Writing
f ′′k = fif

′
j, in particular, the map f ′′k = fif

′
j is a contractible loop at

a and therefore x0ΦΦ′x2.

Lemma 4.5. Let Φ = {ϕt},Φ′ = {ϕ′t} : X × I → Dn(Y ) such that
ϕ0 = ϕ′0 = ϕ, ϕ1 = ϕ′1 = ψ and suppose x0 and x1 are roots of ϕ
and ψ at a, respectively. If [Φ] = [Φ′] and x0Φx1, then x0Φ

′x1.

Proof. Since x0Φx1 then there is a path C from x0 to x1 such that
for < Φ, C >= {f1, . . . , fn}, some fi is a contractible loop at a. By
Lemma 4.2, [Φ] = [Φ′] implies that [< Φ, C >] = [< Φ′, C >] and
therefore x0Φ

′x1.

Theorem 4.1. If x0, x
′
0 ∈ X are roots of ϕ : X → Dn(Y ) at a that

are in the same root class and x1, x
′
1 ∈ X are roots of ψ : X →

Dn(Y ) at a that are in the same root class, then x0Φx1 implies
x′0Φx

′
1. Therefore, the Φ-related condition is defined for root classes.
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Proof. Define ϕ̄ = {ϕ̄t}, ψ̄ = {ψ̄t} : X × I → Dn(Y ) by ϕ̄t = ϕ
and ψ̄t = ψ for all t ∈ I. The points x0, x

′
0 ∈ X are in the same

root class of ϕ, so there is a path C from x0 to x′0 such that for
ϕC = {f1, . . . , fn} : I → Dn(Y ) some fi is a contractible loop at a.
Since < ϕ̄, C > (t) = ϕ̄t(C(t)) = ϕ(C(t)) = {f1, . . . , fn} such that
some fi is a contractible loop at a, then x0ϕ̄x

′
0 and, similarly, x1ψ̄x

′
1.

Since ϕ̄−1 = ϕ̄, then by Lemma 4.3, x0ϕ̄x
′
0 = x′0ϕ̄

−1x0 = x′0ϕ̄x0.
Given that x0Φx1, then Lemma 4.4 implies x0Φϕ̄x

′
1 and then also

that x′0ϕ̄(Φψ̄)x′1. Define ∆: X×I×I → Dn(Y ) by ∆(x, s, t) = ϕ(x)
for 0 ≤ t ≤ (1−s)/2,∆(x, s, t) = Φ(x, t) for (1−s)/2 ≤ t ≤ (s+3)/4
and ∆(x, s, t) = ψ(x) for (s+3)/4 ≤ t ≤ 1. The homotopy ∆ proves
that [ϕ̄(Φψ̄)] = [Φ] and therefore, by Lemma 4.5, x′0Φx

′
1.

If Φ = {ϕt} : X → Dn(X) is an n-valued homotopy, R0 is a root
class of ϕ0 and R1 a root class of ϕ1 that is Φ-related to R0, then
we write R0ΦR1.

Lemma 4.6. Let ϕ : X → Dn(y) be an n-valued map and ϕ̄ =
{ϕ̄t} : X × I → Dn(Y ) the n-valued homotopy such that ϕ̄t = ϕ for
all t ∈ I. Let R,R′ be root classes of ϕ. If Rϕ̄R′, then R = R′.

Proof. Let x ∈ R and x′ ∈ R′. Since Rϕ̄R′, then there exists
C : I → X such that C(0) = x,C(1) = x′ and for < ϕ̄, C >=
{f1, . . . , fn} : I → Dn(Y ) defined by < ϕ̄, C > (t) = ϕ̄t(C(t)) there
is some fi that is a contractible loop at a. Since ϕ̄t(C(t)) = ϕC(t),
then fi proves that x and x′ are equivalent roots and, since the root
classes are disjoint, then R = R′.

Lemma 4.7. Let ϕ, ψ : X → Dn(Y ) be n-valued maps and Φ =
{ϕt} : X × I → Dn(Y ) an n-valued homotopy such that ϕ0 = ϕ and
ϕ1 = ψ. Let Rϕ be a root class of ϕ and Rψ be a root class of ψ.

(a) If RϕΦRψ, then RψΦ−1Rϕ where Φ−1(x, t) = Φ(x, 1− t).
(b) Let Φ = {ϕt},Φ′ = {ϕ′t} : X × I → Dn(Y ) such that ϕ0 =

ϕ, ϕ1 = ϕ′0 = ψ and ϕ′1 = ζ : X → Dn(Y ). Let Rϕ, Rψ, Rζ be root
classes of ϕ, ψ and ζ, respectively. If RϕΦRψ and if RψΦ′Rζ, then
RϕΦΦ′Rζ.

(c) Let Φ = {ϕt},Φ′ = {ϕ′t} : X × I → Dn(Y ) such that ϕ0 =
ϕ′0 = ϕ, ϕ1 = ϕ′1 = ψ and let Rϕ and Rψ be root classes of ϕ and ψ,
respectively. If [Φ] = [Φ′], then RϕΦRψ implies that RϕΦ′Rψ.

Proof. By Theorem 4.1, parts (a), (b) and (c) follow from Lemmas
4.3, 4.4 and 4.5, respectively.

Theorem 4.2. Let ϕ, ψ : X → Dn(y) be n-valued maps and Φ =
{ϕt} : X × I → Dn(Y ) an n-valued homotopy such that ϕ0 = ϕ and
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ϕ1 = ψ. Let Rϕ be a root class of ϕ and let Rψ and R′ψ be root
classes of ψ. If RϕΦRψ and RϕΦR′ψ then Rψ = R′ψ. Therefore,
the homotopy Φ determines a one-to-one correspondence between a
subset of the set of the root classes of ϕ and a subset of the set of
root classes of ψ.

Proof. Since RϕΦRψ, then RψΦ−1Rϕ by Lemma 4.7(a). Therefore
RψΦ−1ΦR′ψ by Lemma 4.7(b). Let ψ̄ = {ψ̄t} : X × I → Dn(Y ) such

that ψ̄t = ψ for all t. We claim that [Φ−1Φ] = [ψ̄] so that Rψψ̄R
′
ψ

by Lemma 4.7(c) and therefore Rψ = R′ψ by Lemma 4.6. To prove

that [Φ−1Φ] = [ψ̄], define ∆: I × I × X → Dn(Y ) as follows. Set
∆(s, t, x) = ψ(x) for 0 ≤ t ≤ s/2 and 1 − s/2 ≤ t ≤ 1 and define
∆(s, t, x) = ϕα(t) where

α(t) = 2(1 + s)t+ s2 − s− 1

for 1/2 ≤ t ≤ 1− s/2 and ∆(s, t, x) = ϕβ(t) where

β(t) = −2(1 + s)t+ s2 + s+ 1

for s/2 ≤ t ≤ 1/2.

Theorem 4.3. Let ϕ : X → Dn(Y ) be a map and Φ = {ϕt} : X ×
I → Dn(Y ) a homotopy such that ϕ0 = ϕ. Let R0 be a root class
of ϕ and R the root class of Φ such that R ∩ (X × {0}) = R0, then
R∩ (X × {1}) 6= ∅ if and only if there is a root class R1 of ϕ1 such
that R0ΦR1.

Proof. Suppose there is a root class R1 of ϕ1 such that R0ΦR1.
Therefore, there exists C : I → X such that x0 = C(0) ∈ R0, x1 =
C(1) ∈ R1 and for the splitting < Φ, C >= {f1, . . . , fn} : I →
Dn(Y ) some fi : I → Y is a contractible loop at a. Let R ⊆ X × I
be the root class of Φ such that R∩(X×{0}) = R0. Define C ′ : I →
X × I by C ′(t) = (C(t), t), then ΦC ′(t) = ϕtC(t) =< Φ, C > (t)
and therefore (x1, 1) ∈ R so R ∩ (X × {1}) 6= ∅.

Conversely, suppose R ∩ (X × {1}) 6= ∅ and choose (x1, 1) ∈ R
so there is a path D : I → X × I such that D(0) = (x0, 0) and
D(1) = (x1, 1) and ΦD = {f1, . . . , fn} : I → Y such that some
fi : I → Y is a contractible loop at a. Define πX : X × I → X
and πI : X × I → I to be the projections, that is, πX(x, t) = x
and πI(x, t) = t. Then πID : I → I such that πID(0) = 0 and
πID(1) = 1. Let Θ: I×I → I such that Θ(s, 0) = 0 and Θ(s, 1) = 1
for all s ∈ I, Θ(0, t) = πID(t) and Θ(1, t) = t for all t ∈ I. Let
D′ : I → X × I be defined by D′(t) = (πXD(t), t), then Γ: I × I →
X×I defined by Γ(s, t) = (πXD(t),Θ(s, t)) is a homotopy from D to
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D′ relative to the endpoints. Since ΦD = {f1, . . . , fn} : I → Dn(Y )
such that some fi : I → Y is a contractible loop at a, then ΦD′ =
{f ′1, . . . , f ′n} : I → Dn(Y ) such that f ′i : I → Y is a contractible loop
at a. But

ΦD′(t) = Φ(πXD(t), t) = ϕt(πXD(t) =< Φ, πXD > (t).

Therefore, letting R1 be the root class of ϕ1 that contains x1, we
conclude that R0ΦR1.

We thus have the following equivalent characterization of essen-
tial root classes.

Corollary 4.1. A root class R0 of an n-valued map ϕ : X → Dn(Y )
is essential if and only if for every homotopy Φ = {ϕt} : X × I →
Dn(Y ) with ϕ0 = ϕ there exists a root class R1 of ϕ1 such that
R0ΦR1.

Although the homotopy invariance of the Nielsen root number
for n-valued maps can be deduced from the corresponding property
for the coincidence number as in [8], it is also a consequence of
properties of the Φ-related concept.

Corollary 4.2. Let Φ = {ϕt} : X × I → Dn(Y ) be an n-valued
homotopy. If R0 is an essential root class of ϕ0 and R1 is a root
class of ϕ1 such that R0ΦR1, then R1 is also an essential root class.
Therefore NR(h0) = NR(h1).

Proof. Let Γ = {γt} : X × I → Dn(Y ) be a homotopy such that
γ0 = ϕ1, then Φ ◦Γ = {(ϕγ)t} : X × I → Dn(Y ) defined by (ϕγ)t =
ϕ2t for 0 ≤ t ≤ 1/2 and (ϕγ)t = γ1−2t for 1/2 ≤ t ≤ 1 is a homotopy
such that (ϕγ)0 = ϕ0. Since R0 is an essential root class of ϕ0, there
is a root class R2 of (ϕγ)1 = γ1 such that R0(Φ ◦ Γ)R2. By Lemma
4.7(a), R0ΦR1 implies that R1Φ

−1R0. Therefore R1(Φ
−1 ◦Φ ◦ Γ)R2

by Lemma 4.7(b) and, since [Φ−1 ◦Φ ◦ Γ] = [Γ], then Lemma 4.7(c)
implies that R1ΓR2. Theorem 4.3 then implies that R∩(X×{1}) =
R2 6= ∅ so R1 is essential. By Corollary 4.1, the homotopy Φ induces
a one-to-one correspondence between the root classes of ϕ0 and those
of ϕ1 and since the Φ-relation preserves essentiality, we conclude that
NR(h0) = NR(h1).

5 Root-uniform maps

An n-valued map ϕ : X → Dn(Y ) is root-essential (resp. root-
inessential) if, for every n-valued map ψ : X → Dn(Y ) homotopic

15



to ϕ, every root class of ψ is essential (resp. inessential). If a map is
either root-essential or root-inessential, it is said to be root-uniform.

In [1], Brooks proved that every single-valued map f : X → Y ,
where Y is a closed manifold, is root-uniform. We will discuss con-
sequences of Brooks’ theorem for n-valued maps in the next sec-
tion. In this section, we we will explore the root-uniform concept
for ϕ : X → Dn(Y ) in the more general setting where X and Y are
as in the previous sections.

Let ϕ = {f1, . . . , fn} : X ( Dn(Y ) be a split n-valued map.
Then since the root classes of the fi are disjoint and a homotopy
of a split n-valued map is split by Theorem 2.1 of [3], then ϕ is
root-essential (resp. root-inessential) if and only if every fi is root-
essential (resp. root-inessential).

If ϕ is not necessarily split, we still have

Theorem 5.1. Let R be a root class of ϕ : X → Dn(Y ) and let R̂i

be a root class of a lift factor ĝi : X̂ → Y such that p(R̂i) = R. If

R̂i is an essential root class of ĝi, then R is an essential root class
of ϕ.

Proof. Let Φ = {ϕt} : X × I → Dn(Y ) be a homotopy such that
ϕ0 = ϕ and let R be the root class of Φ such that R∩ (X×{0}) = R.

By the covering homotopy theorem there is a lift Φ̂ = {ϕ̂t} : X̂×I →
Fn(Y ) of Φ such that ϕ̂0 = ϕ̂. Let R̂i be the root class of Φ̂ such

that R̂i ∩ (X̂ × {0}) = R̂i, then R̂i ∩ (X̂ × {1}) 6= ∅ because R̂i is
essential. Consequently, R ∩ (X × {1}) 6= ∅ and we conclude that
R is also essential.

Corollary 5.1. If a lift ϕ̂ : X̂ → Fn(Y ) of ϕ : X → Dn(Y ) is root-
essential then ϕ is root-essential.

In Example 2.1, the root class {1} of the identity map ĝ1 : S1 →
S1 is essential because all self-maps of S1 homotopic to the identity
are onto. Therefore, by Theorem 5.1, {1} as a root class of ϕ is also
essential.

Theorem 5.2. If ĝi, ĝj : X̂ → Y are equivalent lift factors, then
there is a one-to-one correspondence between the root classes of ĝi
and the root classes of ĝj such that a root class R̂i of ĝi is essential

if and only if the corresponding root class R̂j of ĝj is essential.

Proof. Let σ = θ(α) then, by Theorem 2.2, ĝj = ĝihα where hα is

the deck transformation corresponding to α ∈ π1(X). Let R̂i be

a root class of ĝi then also by Theorem 2.2, R̂j = h−1α (R̂i) is the
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corresponding root class of ĝj. Let Ĥ = {ĥt} : X̂ × I → Y be a

homotopy such that ĥ0 = ĝj. Define Ĥ ′ = {ĥ′t} : X̂ × I → Y by

Ĥ ′(x̂, t) = Ĥ(h−1α (x̂), t). Then ĥ′0 = ĝi because

Ĥ ′(x̂, 0) = Ĥ(h−1α (x̂), 0) = Ĥ(ĝjh
−1
α (x̂), 0) = (ĝi, 0).

Now let R̂i ⊆ X̂ × I be the root class of Ĥ such that R̂i ∩ (X ×
{0}) = R̂i. Let 1I denote the identity map of I. Repeating the

argument above, the homeomorphism h−1α ×1I : X̂×I → X̂×I takes

the root class R̂i to a root class R̂j of Ĥ ′ such that R̂j ∩ (X×{0}) =

R̂j. Moreover, (h−1α × 1I)(R̂i ∩ (X × {1}) = R̂j ∩ (X × {1}) so

either both are empty or both are not and thus R̂i is essential if and

only if R̂j is essential.

Corollary 5.2. If ĝj, ĝi : X̂ → T are equivalent lift factors and ĝi is
root-essential (resp. root-inessential), then ĝj is also root-essential
(resp. root-inessential).

6 Maps to closed manifolds

Theorem 6.1. (Brooks [1]) Let f : X → Y be a map where X is
a connected, locally path connected, semi-locally simply connected
Hausdorff space and Y is a connected closed manifold, then f is
root-uniform. If f is root-essential, then NR(f) is the order of
π1(X)/f#(π1(X)), that is, the number of left cosets of π1(X) by
f#(π1(X)).

Let ϕ : X → Dn(Y ) be an n-valued map of those same spaces,

then every lift factor ĝi : X̂ → Y is root-uniform and thus, by
Theorem 6.1 and Theorem 5.2, each µ-orbit consists either of root-
essential lift factors or of root-inessential lift factors and thus ϕ̂ is
root-essential (resp. root-inessential) if and only if all the µ-orbits
consist of root-essential (resp. root-inessential) lift factors.

Theorem 6.2. If Y is a connected closed manifold and the action
µ of im(θ) on LFϕ is transitive, then ϕ̂ is root-uniform. If ϕ̂ is
root-essential, so also is ϕ and

NR(ϕ) = RR(ϕ) =
∑
[ĝi]

#(π1(Y )/ĝi#(π1(X̂)))

where #(π1(Y ))/ĝi#(π1(X̂))) is the number of left cosets of π1(Y )

by ĝi#(π1(X̂)) and the sum is taken over the µ-orbits of lift factors.
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Proof. The map ĝ1 : X̂ → T is root-uniform by Theorem 6.1. For
2 ≤ i ≤ n, since the action µ is transitive there exists σi ∈ im(θ)
such that ĝi = ĝ1hαi

for σi = θ(αi). Thus, by Theorem 5.2, if
ĝ1 is root-essential (resp. root-inessential), so also are all ĝi and
thus ϕ̂ is root-uniform. Therefore, by Corollary 5.1, if ϕ̂ is root-
essential, so also is ϕ. The calculation of NR(ϕ) = RR(ϕ) follows
from Theorems 6.1 and 5.2.

Example 2.1 is a simple instance of the following:

Corollary 6.1. A non-split 2-valued map ϕ : X → D2(Y ) is root-
essential if ϕ̂ is root-essential.

Proof. If a 2-valued map ϕ : X → D2(Y ) is not split, then the ho-
momorphism ϕ# : π1(X) → π1(D2(Y )) is non-trivial by Theorem
3.1 of [7]. Thus θ : π1(X)→ S2 is an epimorphism so the action µ is
transitive and thus if ϕ̂ is root-essential, ϕ is also root-essential.

The following example demonstrates that, in contrast to Brooks’
theorem, if n > 1 then an n-valued map to a closed manifold need
not be root-uniform. Some µ-orbits may consist of root-essential
lift factors and others consist of root-inessential lift factors. In the
example, there is one µ-orbit of each type.

Example 6.1. Represent the points of the unit circle S1 in polar
coordinates as S1 = {eiu : 0 ≤ u < 2π}. We define a split 2-valued
self-map ϕ : T ( T of the torus T = S1 × S1 by

ϕ(eiu, eiv) = ((eiu, eiv), (1, ei(v+ε)))

for a small ε > 0. Let a = (1, 1), then there are two root classes
R1 = {(1, 1)} and R2 = S1 × {ei(−ε)}. The class R1 is essential
because every self-map of the torus homotopic to the identity is onto.
To prove that R2 is inessential, define Φ: T × I ( T by

Φ((eiu, eiv, t) = ((eiu, eiv), (eitε, ei(v+ε))).

7 Maps of closed orientable manifolds

Throughout this section, X and Y will be connected closed ori-
entable m-manifolds. Roots are always defined with respect to a
chosen a ∈ Y .

Let f : X → Y be a map and R a root class of f then, since the
root classes are a finite set of compact subsets of X, there is a closed
neighborhood N of R such that N \ R contains no roots of f . As
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in [2], consider the composition L∗(f,R) = (f |N)∗e
−1
∗ k∗ : Hm(X)→

Hm(Y, Y \ {a}) where k : X → (X,X \R) is inclusion, the inclusion
e : (N,N \ R)→ (X,X \ R) is an excision and f |N : (N,N \ R)→
(Y, Y \{a}) is the restriction of f . Choose generators u and v of the
infinite cyclic groups Hm(X) and Hm(Y, Y \ {a}), respectively. The
root index λ(f,R) is the integer defined by L∗(f,R)(u) = λ(f,R) ·v.

Let ϕ : X → Dn(Y ) be an n-valued map and let R be a root

class of ϕ. By Theorem 2.3(a) there is a lift factor ĝi : X̂ → Y of

ϕ with a root class R̂i such that p(R̂i) = R. Define the root index

λ(ϕ,R) of R by setting λ(ϕ,R) = λ(ĝi, R̂i). The root index λ(ĝi, R̂i)

is well-defined because X̂ is an orientable m-manifold since X is and
p : X̂ → X is a finite cover.

Theorem 7.1. The definition of λ(ϕ,R) is independent of the choice

of the lift factor ĝi such that p(R̂i) = R.

Proof. Let R be a root class of ϕ, let R̂i be the lift class of the lift

factor ĝi such that p(R̂i) = R, and let ĝj be another lift factor of

ϕ such that p−1(R) ∩ root(ĝj) = R̂j. Therefore, ĝj is equivalent to
ĝi by Theorem 2.4(a) and consequently, by Theorem 2.2, ĝj = ĝihα
for some deck transformation hα. Let N̂i be a closed neighbor-

hood of R̂i such that N̂i \ R̂i contains no roots of ĝi. Since hα is
a homeomorphism that is a lift of the identity map of X, if we let

N̂j = h−1α (N̂i), then N̂j is a closed neighborhood R̂j such that N̂j\R̂j

contains no roots of ĝj. Choose generators u and v of the infinite

cyclic groups Hm(X̂) and Hm(Y, Y \ {a}), respectively. The root

index λ(ĝi, R̂i) is the integer defined by L∗(ĝi, R̂i)(u) = λ(ĝi, R̂i) · v
for L∗(ĝi, R̂i) = (ĝi|N̂i)∗e

−1
i∗ ki∗ : Hm(X̂) → Hm(Y, Y \ {a}) where

ki : X̂ → (X̂, X̂\R̂i) is inclusion and the inclusion ei : (N̂i, N̂i\R̂i)→
(X̂, X̂ \ R̂i) is an excision. In the same way, the root index λ(ĝj, R̂j)

is the integer defined by L∗(ĝj, R̂j)(u) = λ(ĝj, R̂j)·v for L∗(ĝj, R̂j) =

(ĝj|N̂j)∗e
−1
j∗ kj∗ : Hm(X̂) → Hm(Y, Y \ {a}) where kj : X̂ → (X̂, X̂ \

R̂j) is inclusion and the inclusion ej : (N̂j, N̂j \ R̂j) → (X̂, X̂ \ R̂j)

is an excision. By Theorem 2.4(b), hα(R̂j) = R̂i and, because hα is

a homeomorphism, hα(X̂ \ R̂j) = X̂ \ R̂i and therefore hα∗kj∗ = ki∗.

Since hαej = ei(hα|N̂j), then (hα|N̂j)∗e
−1
j∗ = e−1i∗ hα∗. Moreover,
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ĝj = ĝihα implies that (ĝj|N̂j)∗ = (ĝi|N̂i)∗(hα|N̂j)∗. Consequently,

L∗(ĝj, R̂j)(u) = (ĝj|N̂j)∗e
−1
j∗ kj∗(u)

= (ĝi|N̂i)∗(hα|N̂i)∗e
−1
j∗ kj∗(u)

= (ĝi|N̂i)∗e
−1
i∗ ki∗(u) = L(ĝi, R̂i)(u)

and therefore λ(ĝi, R̂i) = λ(ĝj, R̂j).

Theorem 7.2. Let ϕ, ψ : X → Dn(Y ) be n-valued maps and Φ =
{ϕt} : X × I → Dn(Y ) an n-valued homotopy such that ϕ0 = ϕ and
ϕ1 = ψ. Let R0 be a root class of ϕ and R′1 a root class of ψ such
that R0 and R′1 are Φ-related, then λ(ϕ,R0) = λ(ψ,R′1).

Proof. Choose points x0 ∈ R0 and x′1 ∈ R′1, then there exists a path
C : I → X such that C(0) = x0, C(1) = x′1 and for < Φ, C >=
{f1, . . . , fn} : I → Dn(Y ) some fk : I → Y is a contractible loop at
a. Since x0 ∈ root(ϕ), by Theorem 2.3(b)(c) there is a lift factor

ĝi of ϕ with a root class R̂i of ĝi such that p(R̂i) = R0. Choose

x̂0 ∈ R̂i and let Ĉ : I → X̂ be the lift of C such that Ĉ(0) = x̂0. Set

x̂′1 = Ĉ(1), then p(x̂′1) = x′1 so x̂′1 is in a root class R̂′j of a root factor

ĝ′j of ψ such that p(R̂′j) = R′1. Let Φ̂ = {ϕ̂t} : X̂×I → Fn(Y ) be the

lift of Φ such that ϕ̂0 = ϕ̂. Since Φ̂ is a lift of Φ and Ĉ is a lift of C,

then qϕ̂t(Ĉ(t)) = ϕtp(Ĉ(t)) = ϕt(C(t)) that is, q(< Φ̂, Ĉ > (t)) =

< Φ, C > (t) for all t ∈ I. Now < Φ̂, Ĉ >= (f̂1, . . . , f̂n) : X̂ →
Fn(Y ) and < Φ, C >= {f1, . . . , fn} such that some fk : I → Y
is a contractible loop at a so, since q : Fn(Y ) → Dn(Y ) induces a

monomorphism of fundamental groups, then some f̂` : I → Y is a

contractible loop at a. Therefore the points x̂0 and x̂′1 are Φ̂-related

and thus, by Theorem 4.1, the root classes R̂i of ĝi and R̂′j of ĝ′j
are Φ̂-related. The homotopy Φ̂ splits as Φ̂ = (Ĥ1, . . . , Ĥn) where

each lift factor Ĥk : X̂ × I → Y of Φ̂ is a homotopy between a lift
factor of ϕ and a lift factor of ψ. In particular, there is a lift factor

Ĥk of Φ̂ that is a homotopy between ĝi and ĝ′j. Theorems 4.6.1 and

4.10 of [2] then imply that λ(ĝi, R̂i) = λ(ĝ′j, R̂
′
j) so, by definition and

Theorem 7.1, λ(ϕ,R0) = λ(ψ,R′1).

In particular, if ϕ = {f1, . . . , fn} : X → Dn(y) is a split n-valued
map, since the root classes are disjoint, the set of root classes of ϕ
is the disjoint union of the root classes of the lift factors fi. Thus
R is a root class of ϕ if it is a root class of some fi and λ(ϕ,R) =
λ(fi, R). Let Ri be a root class of fi, Rj a root class of fj and
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H = {ht} : X × I → Y a homotopy such that h0 = fi and h1 = fj.
If RiΦRj, then λ(ϕ,Ri) = λ(fi, Ri) = λ(fj, Rj) = λ(ϕ,Rj).

Lemma 7.1. Let f : X → Y be a map and R an inessential root
class of f at a, then λ(f,R) = 0.

Proof. Since R is inessential, there is a homotopy H = {ht} : X ×
I → Y such that h0 = f and R∩(X×{1}) = ∅ for R the root class of
H such that R∩ (X×{0}) = R. Let N be a closed neighborhood of
R such that N\R contains no roots of f at a. Let Nt = N∩(X×{t})
and Rt = R ∩ (X × {t}). Let kt : X → (X,X \ Rt) be inclusion,
et : (Nt, Nt \ Rt) → (X,X \ Rt) be inclusion which is an excision,
and f |Nt : (Nt, Nt \Rt)→ (Y, Y \ {a}) be the restriction of f . Then
L∗(f,R) = (f |Nt)∗(et)

−1
∗ kt∗ : Hm(X) → Hm(Y, Y \ {a}) is indepen-

dent of t because the homomorphisms are induced by homotopic
maps. Since R1 = ∅, then Hm(N1, N1 \ R1) = Hm(N1, N1) = 0, so
L∗(f,R) is the zero homomorphism and therefore λ(f,R) = 0.

Theorem 7.3. Let R be a root class of ϕ : X → Dn(Y ) such that
λ(ϕ,R) 6= 0, then R is essential.

Proof. To prove the contrapositive statment, let R be an inessential
root class of ϕ. Therefore, there is a homotopy Φ = {ϕt} : X × I →
Dn(Y ) such that ϕ0 = ϕ and R∩(X×{1}) = ∅ for R the root class of

Φ such that R∩ (X×{0}) = R. Let Φ̂ = {ϕ̂t} = (Ĥ1, . . . , Ĥn) : Φ̂×
I → Fn(Y ) be the lift of Φ such that ϕ̂0 = ϕ̂ and let R̂i be a root

class of ĝi, a lift factor of ϕ, such that p(R̂i) = R. Let Ĥk be the

factor of Φ̂ such that Ĥk ∩ (X̂ × {0}) = ĝi and let R̂ be the root

class of Ĥk such that R̂ ∩ (X̂ × 0) = R̂. Since R ∩ (X × {1}) = ∅,
then R̂ ∩ (X̂ × 1) = ∅ and therefore R̂i is an inessential root class
of ĝi. By Lemma 7.1 and the definition of the root index, we have

λ(ϕ,R) = λ(ĝi, R̂i) = 0.

For Example 2.1 we have λ(ϕ, {1}) = λ(ĝ1, {1}) and since ĝ1 : S1 →
S1 is the identity function, we can choose homology generators so
that λ(ĝ1, {1}) = 1 and therefore since λ(ϕ, {1}) 6= 0 we conclude
that NR(ϕ) = 1.

From the contrapositive statement of Theorem 7.3, we have the
following consequence.

Corollary 7.1. Let R be a root class of ϕ : X → Dn(Y ) and let
Φ = {ϕt} : X × I → Dn(X) a homotopy such that ϕ0 = ϕ. If R is
not Φ-related to any class of ϕ1, then λ(ϕ,R) = 0.
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