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Abstract. We first recall the amazing property that holomorphic functions on an open connected
subset of C are uniquely determined by their values on any open sub-domain. The proof of this fact

is due to the Taylor Series expansion of holomorphic functions and carries over to harmonic functions

since they are also analytic. And as the laplacian is the prototype of uniformly elliptic PDEs, we expect
this unique continuation property to extend to uniformly elliptic PDEs. However, solutions to uniformly

ellipitic PDEs may not be analytic, so we need to proceed via a new method. So we choose to proceed

via Carleman’s Method of showing the Unique Continuation Property for Harmonic Functions that
generalizes to uniformly ellipitic PDEs, uniformly parabolic PDEs, and even some hyperbolic PDEs.

1. Introduction

A remarkable feature of holomorphic functions on a domain Ω is that they are uniquely determined by
their value on any open sub-domain of Ω (throughout this report we assume U,Ω are open and connected
subsets of Rd). That is if U ⊂ Ω is open (U may not necessarily be Ω) then knowing the holomorphic
function on U suffices to understand its global behavior on Ω. In particular, this allows us to uniquely
extend holomorphic functions from a sub-domain U to Ω, which is commonly called analytic continua-
tion for holomorphic functions. In fact, an analytic function is uniquely determined by its value on any
accumulation point inside Ω since they are analytic.

Since the real parts of holomorphic functions are harmonic functions, an interesting question to pose
is can we re-construct a harmonic function u : Ω → R from its data on any sub-domain U ⊂ Ω. This
is true since harmonic functions are analytic. And since harmonic functions are the prototype of the
class of uniformly elliptic PDEs, we expect a similar result to hold for this class of PDEs. However,
there are solutions to uniformly elliptic PDEs that are not analytic. So we have to use a different proof
strategy to show a similar result for uniformly elliptic PDEs. Now we say u : Ω ⊂ Rd → R has the
unique continuation property if the values of u on any open sub-domain U ⊂ Ω is enough to uniquely
determine u on Ω. From our previous discussion, we see that holomorphic or harmonic function has
the unique contiuation property. And we expect this result to still be true for a solution to a uniformly
elliptic PDE.

In this report we focus on deriving the result for Harmonic functions using the method of Carleman
known as Carleman’s estimates. This method was first introduced by Carleman in [3] to prove the unique
continuation property for a two-dimensional elliptic equation. The first crucial step in the method is to
show that if L is our linear uniformly elliptic PDE operator, then we have that the inverse operator L−1

is continuous. That is we want to show under some Banach Space X and Y where L : X → Y that

||u||X ≤ C||Lu||Y
this is a common technique known as the method of apriori estimates. The motivation for such method
comes from the open mapping theorem from functional analysis. This theorem implies that if we had a
bijective continuous linear operator L from a Banach Space X to another Banach Space Y , then L−1 is
continuous. That is there is a C > 0 independent of u ∈ X such that

||L−1(L(u))||X ≤ C||Lu||Y ⇐⇒ ||u||X ≤ C||Lu||Y
so if we expected our PDE operator was injective (i.e. uniqueness), then it would be a bijection onto
its image and we would expect a similar estimate as above. In other words, we expect the inverse to
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be continuous. (See [6] for more discussion on the method of apriori estimates and the open mapping
theorem) However, we do not expect the converse continuity i.e.

||Lu||Y . ||u||X

because differentiation is an operation that reduces regularity, while we expect the reverse to hold since
the inverse operator (integration) increases regularity.

One of the major difficulties with the method of apriori estimates is figuring out the right Banach
space to put our solutions in to make the inverse operator continuous. Common spaces to put the
solutions in are Sobolev Space (for a review of Sobolev Spaces see [4] and for Lp spaces see [5]) and
in particular H1(Ω) := {u : u ∈ L2(Ω) and ∇u ∈ L2(Ω)} where the gradient is interpreted as the
distributional derivative (where we implicitly assume the distributional derivative is a function). An
important distinction of H1(Ω) to other Sobolev spaces is that it can be endowed with a Hilbert Space
structure by defining its norm as

||u||2H1(Ω) :=

ˆ
Ω

|u|2 + |∇u|2dx

However, these are not the only spaces that are appropriate for showing the inverse operator is continuous.
We can also define weighted Sobolev spaces where if we denote m as the Lebesgue measure on Ω ⊂ Rn
then we integrate with respect to w(x)dm instead of m where w(x) > 0 is called the weight function.
One important choice of weights are exponentials since the solutions might oscillate very rapidly at a
low amplitude near ∂Ω, which will be very hard to detect with a non-weighted norm, but by adding an
exponential weight, these details can be picked up thanks to the weight.

In particular, Carleman’s method consists of first deriving the weighted H1 bounds
ˆ
U

s(|∇u(x)|2 + u2)e2sϕ(x)dx .
ˆ
U

|Lu|2e2sϕ(x)dx

where s > 0 is a free parameter such that the above inequality holds independent of u ∈ C∞0 (U) for s
large enough, e2sϕ(x) is our weighted function, and L is our uniformly ellipitic PDE operator. Note that
Carleman’s method extends to parabolic and hyperbolic PDE operators as well. And we closely follow
with some slight modifications the proofs in [7] which proves Carleman’s estimates for the Heat Equation,
then for general uniformly parabolic PDE operators. And the main technique for deriving such estimates
is integration by parts, which is why we assume ∂U ∈ C1.

There is a slight problem with the above Carleman’s estimate. The region of validity of s in the above
inequality depends on u, so to overcome this a second large parameter λ > 0 will be introduced along
with the weight ϕ(x) also depending on λ. This will allow us to choose the region of validity of the
inequality for s provided that λ is sufficiently large. Then this will allow us to derive a stability estimate
of the form

||u||H1(U(ε)) . ||u||1−θH1(U(0))F
θ + F

where F = ||∆u||L2(U) + ||u||H1(Γ) + ||∂νu||L2(Γ) where Γ ⊂ ∂U is open in ∂U , ∂νu is the normal derivative
of u on Γ, θ ∈ (0, 1), and U(ε) ⊂ U(0) will be appropriate sub-domains and U(ε) → U(0) as ε → 0 in
the sense of Hausdroff distance. So we see this stability condition implies by taking ε → 0 that u being
a harmonic function with u = ∂νu = ∂τu = 0 (where ∂τu is the tangential component of the derivative)
then u ≡ 0 a.e. on U(0). This is a weaker condition than the unique continuation property, but is still
in the same spirit. Then we conclude by using this inequality will be used to finally prove the unique
continuation property of harmonic functions.

Note that we closely follow and slightly modify the proof of [7] and [2] chapter on Carleman Type
Estimates and Their Applications to derive the above stability result. However, in [7] even though they
proved the stability result in the unique continuation property section, they do not even mention why
the stability result implies the unique continuation property.
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2. Carleman’s Method For UCP applied to the Laplacian Operator

In this report we will focus on the case of our PDE operator being the Laplacian that is Lu := ∆u =∑n
j=1 ∂

2
xjxj

u. Suppose u ∈ C∞(Ω) where Ω ⊂ Rd such that u = 0 on supp(u) ⊂ U where U is an open
set contained in Ω. Then we want to derive estimates of the formˆ

U

s(|∇u(x)|2 + u2)e2sϕ(x)dx .
ˆ
U

|∆u|2e2sϕ(x)dx

where ϕ(x) > 0 is an appropriate weight function. Let us assume for now we have already chosen such a
ϕ. Then we define

w(x) := esϕ(x)u(x) and P (w) := esϕ(x)∆(e−sϕ(x)w(x)) = esϕ(x)∆u

This implies that
P (w) = ∆w − 2s∇ϕ · ∇w + w(s2|∇ϕ| − s∆ϕ)

And also notice that the right hand side of the inequality is simplyˆ
U

|∆u|2e2sϕ(x)dx =

ˆ
U

|P (w)|2dx

so it suffices to find upper and lower bounds of ||P (w)||L2 . A common technique for finding such a lower
bound is to decompose P = P+ +P− and to use the inner product structure to get ||P ||L2 ≥ 2(P+, P−).
So it suffices to find a nice decomposition of P such that we can bound

´
U
s(|∇u(x)|2 +u2)e2sϕ(x)dx by a

constant multiple of (P+, P−) for large enough s. In particular, we choose the symmetric decomposition
of P that is we decompose

P =
(P + P>)

2
+

(P − P>)

2
:= P+ + P−

where P> is the adjoint of P in L2(U) for functions that vanish on ∂Ω. For example, if L(u) := ∆u then

(Lf, g) =

ˆ
U

(∆f)gdx =

ˆ
U

f(∆g)dx⇒ L> = L

where we integrated by parts twice using f, g = 0 on ∂U . In particular, this mean L> = L. Then by
direct computation we have

P>(w) = ∆w + 2s∇w · ∇ϕ+ w(s∆ϕ+ s2|∇ϕ|2)

from which it follows that

P+ = ∆w + w(s2|∇ϕ|2) and P− = −2s∇ϕ · ∇w − ws∆ϕ
so now it suffices to derive lower bounds of (P+, P−). The major advantage of this decomposition is that
after some calculus and basic inequalities, one can show that the highest power terms of |∇w|2 and w2

with respect to the parameter s in (P+, P−) is positive. This will then let us obtain the desired lower
bound. Indeed, observe thatˆ
U

|∆u|2e2sϕ(x)dx =

ˆ
U

|P (w)|2dx = ||P+(w)||L2(U)+||P−(w)||L2(U)+2(P+(w), P−(w)) ≥ 2(P+(w), P−(w))

And

(P+(w), P−(w)) = −
ˆ
U

2s∆w(∇ϕ · ∇w) + sw(∆w)(∆ϕ) + 2s3w|∇ϕ|2(∇ϕ · ∇w) + s3w2∆ϕ|∇ϕ|2dx

= (1) + (2) + (3) + (4)

where (j) corresponds to the integral of the jth integrand. Now we compute to see that

(3) = −
n∑
i=1

ˆ
U

2s3w|∇ϕ|2∂xi
(ϕ)∂xi

(w)dx = −
n∑
i=1

ˆ
U

s3|∇ϕ|2∂xi
(ϕ)∂xi

(w2) =

n∑
i=1

ˆ
U

∂xi
(s3|∇ϕ|2∂xi

(ϕ))w2

=

ˆ
U

∇ · (s3|∇ϕ|2∇ϕ)w2dx = s3

ˆ
U

(∇(|∇ϕ|2) · ∇ϕ)w2 + ∆ϕ|∇ϕ|2w2

Observe that the second term cancels out (4). Then we also have that

(2) = −
n∑
i=1

ˆ
U

sw(∆ϕ)∂2
xixi

(w)dx =

n∑
i=1

ˆ
U

∂xi
(sw(∆ϕ))∂xi

wdx =

ˆ
U

s|∇w|2∆ϕ+ sw (∇w · (∇∆ϕ)) dx
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Now Cauchy-Schwarz combined with |ab| ≤ a2+b2

2 gives∣∣∣∣ˆ
U

sw(∇w · (∇∆ϕ))dx

∣∣∣∣ ≥ −sˆ
U

|w||∇w||∇∆ϕ|dx &ϕ −s
ˆ
U

|w||∇w|dx ≥ −1

2

ˆ
U

s2|w|2 + |∇w|2dx

And finally

(1) = −
n∑

i,j=1

ˆ
U

2s(∂2
xixi

w)(∂xj
ϕ)(∂xj

w)dx = 2s

n∑
i,j=1

ˆ
U

(∂xi
w)(∂2

xjxi
ϕ)(∂xj

w) + (∂xi
w)(∂xj

ϕ)(∂2
xixj

w)dx

= 2s

n∑
i,j=1

ˆ
U

(∂xi
w)(∂2

xjxi
ϕ)(∂xj

w)+
1

2
(∂xjϕ)∂xj ((∂xiw)2)dx = 2s

n∑
i,j=1

ˆ
U

(∂xiw)(∂2
xjxi

ϕ)(∂xjw)−1

2
(∂2
xjxj

)ϕ(∂xiw)2dx

= 2s

ˆ
U

(∇u)>D2ϕ(∇u)− 1

2
∆ϕ|∇w|2dx

where D2ϕ is the Hessian of ϕ. Note that the Laplacian terms cancels out the previous Laplacian term.
Therefore, combining all these terms we arrive at the estimateˆ

U

|P (w)|2 ≥
ˆ
U

2s(∇u)>D2ϕ(∇u)− C(ϕ)s(
|w|
2

+
|∇w|2

2
) + s3(∇(|∇ϕ|2) · ∇ϕ)w2

Now if we assume that D2ϕ is uniformly positive definite i.e. there is a λ > 0 such that for any ξ ∈ Rn
we have ξ>D2ϕξ ≥ C|ξ|2 and an r > 0 such that (∇(|∇ϕ|2) · ∇ϕ) ≥ r on U then we have

≥ s
ˆ
U

2λ|∇w|2 − C(ϕ)

(
sw2

2
+
|∇w|2

2s

)
dx+ s3

ˆ
U

rw2dx

Since we are considering s large this means we can find an s0 = s0(w) so large such thatˆ
U

s3rw2 − C(ϕ)s2w
2

2
dx ≥ r

2

ˆ
U

s3w2dx and

ˆ
U

2sλ|∇w|2 − C(ϕ)

2
|∇w|2dx ≥ λ

ˆ
U

s|∇w|2dx

Therefore, there is a constant K > 0 such that for s large enough we haveˆ
U

|∆u|2e2sϕ(x)dx =

ˆ
U

|P (w)|2dx ≥ K
ˆ
U

s3w2 + s|∇w|2

Now recalling that w = esϕu gives for s large enoughˆ
U

|∆u|2e2sϕ(x) &
ˆ
U

(s3u2 + s|∇u|2)e2sϕ(x)

where the implies constants are independent of u ∈ C∞0 (U). Note if we define H2(U) as the space of
function that are in L2(U) such that their first and second distributional derivatives are in L2(U), then
the above inequality extends to functions u ∈ H2

0 (U) since C∞0 (U) is a dense subclass. Where H2
0 (U) is

the space of u ∈ H2(Ω) such that they have zero boundary data in the sense of trace.

So the first immediate question is does there exist a function ϕ(x) with the properties of D2ϕ being
uniformly positive definite with constant λ and (∇(|∇ϕ|2) · ∇ϕ) ≥ r for some r > 0 on U . Explicitly fix
x0 /∈ U then consider

ϕ(x) := |x− x0|2

then D2ϕ(x) = 2In (where In is the n× n identity matrix), so we can take λ = 2. Also we observe that

(∇(|∇ϕ|2) · ∇ϕ) = 2

n∑
i,j=1

(∂2
xixj

ϕ)(∂xiϕ)(∂xjϕ) = 2|∇ϕ|2 = 2(∇ϕ)>D2ϕ(∇ϕ) = 16|x− x0|2

so in particular ϕ(x) is a valid weight function. In addition, we see that (∇|∇ϕ|2) · ∇ϕ > 0 is implied
if |∇ϕ|2 > 0. Therefore, we have proven the following version of Carleman’s estimate for the Laplacian
operator:

Theorem 2.1. (Local Carleman estimates for the Laplacian) Let u ∈ H2
0 (U) where ∂U ∈ C1 then

if ϕ(x) ∈ C2(U) is a weight function such that there is a λ > 0 and r > 0 such that

(1) ξ>D2ϕ(x)ξ ≥ λ|ξ|2 for all ξ ∈ Rn
(2) |∇ϕ| ≥ r > 0 on U
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then there is a constant C = C(λ, r) such that for all s sufficiently large we have the following estimateˆ
U

(s3u2 + s|∇u|2)e2sϕ(x)dx ≤ C
ˆ
U

|∆u|2e2sϕ(x)dx

Also notice that our estimate could be sharper since we did the crude estimate of dropping the terms
||P±(w)||L2(U) when deriving a lower bound. Indeed, with small modifications of our above derivations
we can obtain the following version of Carleman’s estimate with 2 large parameters s and λ:

Theorem 2.2. (Carleman’s Estimate with 2 large parameters for Laplacian) Let ψ ∈ C2(U)
be such that |∇ψ| > 0 on U with ∂U ∈ C1. Then set ϕ(x, t) := eλψ(x,t) then there is a C,C0 = C0(λ)
such that if λ ≥ C and s ≥ C0 then for any u ∈ H2

0 (U)

λ

ˆ
U

(λsϕ)3e2sϕ|u|2 + (λsϕ)1e2sϕ|∇u|2 + (λsϕ)−1e2sϕ|D2u|2 ≤ C
ˆ
U

e2τϕ|∆u|2

Proof. For a full proof see [2] Chapter 3 Theorem 3.2, but this estimate can also be derived very similarly
to the way we derived our original Carleman’s estimate. This estimate can also be derived by modifying
the proof in [7] from the Parabolic Case to the Elliptic Case.

�

Remark 2.1. Notice by introducing a second large variable λ we are now able to choose s independent
of u ∈ H2

0 (U). This is a key feature that will be crucial for the stability estimate that we are about to
prove.

But for the next stability result we will need to include boundary terms. These terms were neglected
earlier since we assumed u ∈ C∞c (U) so the boundary terms went away when we integrated by parts.
However, when u does not vanish on ∂U we have the following Carleman’s estimate

Theorem 2.3. (Carleman’s Estimate with 2 large parameters for Laplacian with Boundary
Terms) Let ψ ∈ C2(U) be such that |∇ψ| > 0 on U with ∂U ∈ C1. Then set ϕ(x, t) := eλψ(x,t) then
there is a C,C0 = C0(λ) such that if λ ≥ C and s ≥ C0 then for any u ∈ H2(U)

λ

ˆ
U

∑
|α|≤1

s3−2|α|e2sϕ|∂αu|2 ≤ C

ˆ
U

e2sϕ|∆u|2 +

ˆ
∂U

∑
|α|≤1

s3−2|α|e2sϕ|∂αu|2dS


where we are using multi-index notation.

Remark 2.2. In the above inequalities, we can also replace ∆u with a uniformly elliptic PDE operator
Lu under some structural conditions and even under some geometric constraints on U we my replace ∆u
with a hyperbolic operator. See [2] and [7] for more details. One major difference in the approach of our
harmonic function and a general parabolic or ellipitic operator is that one decomposes P = P1 +P2 where
P1 has all the first order terms (with respect to s) elements of P , while P2 has the second and zeroth
order. And one estimates ||P1||L2(U) + 2(P1, P2) instead, but the details are very similar. (Note that one
cannot use the same symmetric decomposition as before since the operator may not be in divergence form,
so figuring out the adjoint is much more difficult).

Note that either of these Carleman’s estimate already implies a weak unique continuation property.
That is if ∆u = 0 and u ∈ H2

0 (U) then u = 0 a.e. on U thanks to the inequalities. The main purpose
of unique continuation property is to extend u from being zero on U to all of Ω, which is not at all clear
from this inequality. But it turns out that Carleman’s inequalities imply stability inequalities that make
the unique continuation property easier to deduce.

Theorem 2.4. (Stability Estimate) Let ψ ∈ C2(U) be such that |∇ψ| > 0 on U with ∂U ∈ C1 and
define U(ε) := U ∩ {x : ψ(x) > ε} then let u be C∞(U) ∩H2(U) solve

∆u = f in U

u = g on Γ

∂νu = h on
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where f ∈ L2(U), h ∈ L2(Γ), g ∈ H1(Γ) and if we assume

U(0) ⊂ U ∪ Γ

where Γ ⊂ ∂U is C1 and is open in ∂U . Then we have for some θ ∈ (0, 1) that

||u||H1(U(ε)) .
(
||u||1−θH1(U(0))F

θ + F
)

where
F = ||f ||L2(U) + ||g||H1(Γ) + ||h||L2(Γ) = ||∆u||L2(U) + ||u||H1(Γ) + ||∂νu||L2(Γ)

where θ and the implied constant in the inequality both depend on ε > 0.

Proof. We closely follow the proof in [2]. for this stability result. The idea is to let χ be a smooth cut
off function that is identically 1 on U(ε/2) and 0 on U \ U0. This gives uχ vanishes on ∂U \ Γ, so in the
Carleman estimate with boundary terms (Theorem 2.3), we will only keep the boundary terms over Γ.
Applying Theorem 2.3 onto uχ yields combined with shrinking the integration domain of the left hand
side of the inequality to U(ε/2) where χ ≡ 1 gives

sλ
∑
|α|≤1

||esϕ∂αu||2L2(U(ε/2)) ≤ λ
∑
|α|≤1

s3−2|α|||esϕ∂αu||2L2(U(ε/2)) ≤ C

ˆ
U(0)

e2sϕ|∆(uχ)|2 +

ˆ
Γ

∑
|α|≤1

s3−2|α|e2sϕ|∂α(uχ)|2


for C ≤ λ and s ≥ C0(λ) as defined in the theorem. Now we use

∆(uχ) = χ∆u+ u∆χ+ 2∇u · ∇χ⇒ |∆(uχ)|2 .χ |∆u|2 + |u|2 + |∇u|2

Also as
∇(uχ) = u∇χ+ χ∇u⇒ |∇(uχ)|2 .χ |u|2 + |∇u|2 = |u|2 + |∂νu|2 + |∂τu|2

where we recall that ∂τu is the tangential component of the derivative of u. Therefore, on Γ we have
|∂τu|2 = |∇g|2, so we have the estimatesˆ

Γ

s3e2sϕ|uχ|2 + se2sϕ|∇(uχ)|2dS .χ
ˆ

Γ

e2sϕ(s3|u|2 + s(|∂νu|2 + |∂τu|2))ds

Let Φ := supx ϕ = supx e
λψ(x) yields

λs
∑
|α|≤1

||esϕ∂αu||2L2(U(ε/2)) ≤ C(λ, χ)e2sΦ

(ˆ
U(0)

(|∆u|2) +

ˆ
Γ

s3(|u|2 + |∂νu|2 + |∂τu|2)

)
+C(λ, χ)

∑
|α|≤1

||esϕ∂αu||2L2(U(0))

Recalling from the theorem that we can take λ > C lets us choose λ > 2C, so we obtain

sC(λ, χ)
∑
|α|≤1

||esϕ∂αu||2L2(U(ε/2) ≤ C(λ, χ)e2sΦs3F 2 + C(λ, χ)
∑
|α|≤1

||esϕ∂αu||2L2(U(0)\U(ε/2))

That is if we define γ := eλε and β := eλε/2 then we have from U(ε) ⊂ U(ε/2) that

e2sγ ||u||H1(U(ε)) ≤
∑
|α|≤1

||esϕ∂αu||2L2(U(ε/2)

so we have

e2sγ ||u||H1(U(ε)) ≤ e2sΦs2F 2 +
1

s
e2sβ ||u||H1(U(0))\U(ε/2) ≤ e2sΦs3F 2 +

1

s
e2sβ ||u||H1(U(0))

so we have

||u||H1(U(ε) ≤ e2sΦ−2sγs2F 2 +
1

s
e2s(β−γ)||u||H1(U(0)) . e

2sΦ−2sγF 2 + e2s(β−γ)||u||H1(U(0))

Now noting that if ||u||H1(U0) ≤ F implies the desired inequality, so if this is not the case then define

s := log(
||u||L2(U(0))

F
)/(Φ + 1− β) > 0

then we get

θ =
γ − β

Φ + 1− β
in the above inequality as desired.
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Now that we have the stability inequality, we are ready to show the unique continuation property
of harmonic functions. The major achivement in this theorem compared to the previous inequality, is
that we only need a harmonic function u and its derivatives to vanish on Γ (which we do not necessarily
assume to be all of ∂U) to conclude u ≡ 0 on U(0).

Theorem 2.5. (Unique Continuation Property Of Harmonic Functions) Let Γ be any nonvoid
open subset of ∂Ω. Then if ∆u = 0 in Ω with u ∈ H1(Ω), u = ∂νu = 0 on Γ then u ≡ 0 on Ω.

Proof. We refer to [2] corollary 4.2 for a full proof of this, but we will give an outline of a different proof
based on chaining domains. By the previous theorem, we know that if ψ(x) ∈ C2(Ω) such that |∇ψ| > 0

and if we define Ωψ(0) := {x : ψ(x) > 0} then if Ωψ(0) ⊂ Ω ∪ Γ that u ≡ 0 on Ωψ(0). Then the idea is
after we construct such a ψ to construct another function φ such that ∂Ωφ(0)∩∂Ωψ(0) is open to reapply
the previous theorem (since we can now take Γ := ∂Ωφ(0) ∩ ∂Ωψ(0)) to get u ≡ 0 on Ωφ(0). Then we
want to keep constructing such functions till we fill up the domain to get u ≡ 0 on Ω. (Note that we
expect that since Ω is connected that we can chain our domains in this way to fill up Ω).

�

Remark 2.3. Note that Theorem 2.5 is named Unique Continuation Propert of Harmonic Functions
since if a harmonic function vanishes on an open set U ⊂ Ω then it vanishes on a ball. Then we want to
chain balls like in the previous argument to deduce that u ≡ 0 on Ω (since Ω is connected we can chain

balls). And we only need to chain countably many balls since we can write Ω =
⋃
n∈N Ω ∩Bn(0) and the

each element in the union is compact.

Also note that this gives an alternative proof that holomorphic functions on a connected open domain
are uniquely determined by their value on any sub-domain without using their analyticity properties. This
is due to their real and imaginary parts are harmonic functions, which implies holomorphic functions have
the unique continuation property.

�

3. Conclusion

In summary, the observation that holomorphic functions on a connected domain are uniquely de-
termined by their values on any open sub-domain leads to the observation that an interesting class of
functions have the unique continuation property. However, the usual proof of holomorphic functions
having the unique continuation property is due to their analyticity is too strong for a large class of
interesting solutions to PDEs. And a popular method of extending this unique continuation property
to a large class of solutions to uniformly elliptic, parabolic, and even hyperbolic PDEs is Carleman’s
Method. This method consists of first deriving weighted L2 norms bounds on u by Lu where L is the
PDE operator. And the main trick for deriving such bounds is integration by parts. Then after deriving
these weighted L2 norms, we then extend it next to a stability result like Theorem 2.4. And finally the
stability result will usually be strong enough to imply the unique continuation principle.

And the great flexibility of this method is that it can also be applied to other uniformly elliptic PDE
operators, uniformly parabolic PDE operators, and even some hyperbolic PDE operators under suitable
constraints. We refer to [3], [7], and [1] for further discussions of such extensions.
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