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Abstract

Identifying two types of deforestation, land clearance for farming and il-
legal logging, we develop mathematical models to predict the modes of
deforestation. Working from first principles, we build individual agents
known as farmers that then illegally clear forest in the area of concern. To
account for illegal logging we develop a continuous model in which loggers
take optimal paths to the location of their crimes, who then must return to
"sell" their goods. We discuss some of the optimal control results used in
the illegal logging model, and describe the numerical implementation of
the illegal logging and farming models. We detail the numerical methods
for the optimal path and Hamilton-Jacobi equations involved in the model.
Finally, we test the effects of different patrol strategies on the occurrences
of illegal logging and measure to what extent they improve the amount of
pristine area.
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1 Introduction

Deforestation, and in particular, illegal logging and land clearance have
some of the most damaging effects on the world’s forest. Modeling and
quantifying deforestation has become a recent area of study for ecologists,
political scientists, and applied mathematicians. The efficient and effective
deployment of law enforcement to the threatened area is the best deterrent
for these crimes [1]. Building a model to predict the interactions between
the criminals and police is a difficult problem. A crucial first step in this
problem is identifying significant parameters to consider.

Rigorous studies have validated the correlation between certain param-
eters and deforestation in tropical regions such as Brazil [21]. The three
dominant categories of parameters are identified by Pfaff and other au-
thors, as accessibility, population, climate, and demand [3, 13]. Accessibil-
ity accounts for distance to roads, rivers, and major highways, elevation,
the presence of trees or foliage, as well as recent deforestation events in the
area. Population density accounts for distance to cities and markets, as well
as the presence of farms and other rural settlements. Climate and demand
factors refer to the seasonal effect, such as precipitation and the global de-
mand of soy, beef, lumber and other commodities. With these significant
parameters identified, the goal is to inform law enforcement agencies as to
the best strategies for combating deforestation.

Further analysis of enforcement strategies has been carried out in the
state of Roraima, Brazil, using satellite imaging built to detect deforesta-
tion events [7, 23]. The strategy on the part of the federal government of
Brazil was to monitor deforestation events in each municipality and dis-
patch federal patrols to the municipalities with the most events. The satel-
lite data employed (DETER), was updated daily and was effective in detect-
ing any deforestation events larger than 25 hectares in size. This particular
macro-strategy proved more effective than typical enforcement strategies,
however, the issue remains of how to identify effective microscopic patrol
strategies for law enforcement.

1.1 Previous Work

A similar question was asked and answered with a game-theoretic model,
Protection Assistant for Wildlife Security (PAWS), where an iterative Stack-
elberg security game was used to describe the interactions between wildlife
poachers and rangers [9]. Previously repeated Stackelberg security games
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were utilized to model the protection of vital infrastructure in the case of
attack. PAWS employed a discrete approach to determine effective patrol
strategies in an area of interest. Machine learning techniques were used
to determine animal density for each cell in the grid, as well as assign an
accessibility score to each cell. Cells that were topographically significant,
i.e., cells necessary to enter or exit a region, or cells with high accessibil-
ity score, were designated key access points. These were then deemed as
nodes and edges were drawn to connect the nodes, so that cells with a
higher accessibility score were traversed when possible. Other considera-
tions such as time of patrol and the inclusion of base camp from where to
start and end were included for realism, as well as an uncertainty of animal
density based on the time of last patrol in that cell. Similar algorithms such
as INTERcept and SHARP have been developed and deployed around the
world with varying success [11, 12].

In a paper by Albers [1], the problem of deforestation was modeled
in a spatially continuous setting. The author of this paper considered a
circular area of interest, and modeling how deforestation and patrolling
against this, might be described. The patrollers are allocated a budget E,
meant to represent the resources available. Budget is used to determine
a patrol strategy for the defenders. This is done by giving each radius
r a probability of detection φ(r), then the chance of the attackers getting
caught as they are moving from distance dc to d is given by:

Φ(d) =
∫ d

dc

φ(r)dr

The attackers are assumed to move in radially from their starting radius,
dc, and any ground touched by the attackers is now considered unpristine,
while the remaining land is termed pristine as seen in figure 1b. Addition-
ally, the profit that the attackers received by moving a distance d into the
protected area is given by:

P(d) = (1−Φ(d))B(d)− C(d)

where B is the benefit to the attacker, C is the cost of traveling into depth d
and (1−Φ(d)) represents the probability of not being captured.

A rational attacker will find the d that solves the following optimization
problem:

max
d

(P(d))

The defenders then want to minimize the d that solves this problem.
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(a) Level sets evolving to a time t (b) Albers’ radial evolution

Figure 1: Level set method and Albers’ curve evolution

Some issues with this model are the assumption that the area involved
is circular, the lack of terrain information, and the uniform behavior of the
attackers and defenders. These problems are addressed in a paper from
Arnold et al. [2], where a similar modeling problem is generalized to any
closed, simple curve in R2. The primary tool employed in this model is the
level set method [19]. Starting with a closed, simple curve Γ, a Lipschitz
continuous function is defined, such that φ0 : R2 → R, where φ0(x, y) is
positive inside Γ, negative inside of Γ, and zero at the boundary. Note that
these requirements on φ0 are satisfied by the signed distance function to
the curve Γ, where distance outside of the curve is negative and positive
outside. The function φ : R2 × [0, ∞) → R is then defined by the initial
value problem: {

φt + v(x, y)|∇φ| = 0
φ(x, y, 0) = φ0(x, y)

where v(x, y) is some non-negative velocity function. Next we define the
zero level set Γ(t) = {(x, y) | φ(x, y, t) = 0} and this contour represents the
set of points that can be reached from the original contour Γ after traveling
time t. In this model cost represents the effort expended by extracting at
any point in the protected area, and the velocity is allowed to depend on
capture probability and terrain data. The validity of this model hasn’t been
tested against real-world data, but has been modified and improved by
Cartee and Vladimirsky [5].

The purpose of this project is to use the data gathered and categorized
by Slough et al. [23] to build a predictive continuous model to describe de-
forestation events in the state of Roraima. Further, we attempt to determine
effective patrol strategies for law enforcement on microscopic scale, and im-
prove upon the model of Arnold et al. [2]. First, we will explain some of
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Figure 2: Yosemite national park, attackers moving in from the boundary

the analysis and data organization that went into building a foundation
for our model. Using this data analysis as justification we then build the
theory and implementation of a farming model which describes deforesta-
tion for agricultural purposes. Considering the other type of deforestation
event that Slough et al. [23] observed, we construct a logging model which
describes deforestation for the purpose of acquiring and selling timber. We
discuss the control-theoretic framework of this latter model and conclude
with the results of both models, and suggested directions for future work.
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2 Preparation and Analysis

In the beginning of the project, we were given a data set named DETER.
The purpose of DETER is to monitor and prevent deforestation in Brazil,
specifically Mucajaí, a municipality within the state of Roraima, Brazil [23].
In the DETER data set, the space is discretized with polygons and each
polygon is assigned a Boolean value to determine whether or not a defor-
estation event occurred in that polygon in each year and month. Informa-
tion such as distance to roads and distance to river for each polygon is also
included. This set contained data from 2006 to 2015.

We then found another data set, PRODES [15]. This data set is the
official data set the Brazilian Government uses to make annual statistics re-
lating to deforestation. The major difference between DETER and PRODES
is that the purpose of PRODES is to observe deforestation to make annual
statistics. PRODES only includes yearly data from 2001 to 2015.

2.1 Data Analysis

Our goal was to use both of these data sets to generate an accurate model
of deforestation in Brazil. Our first step was visualizing the data set to
have a better intuition for deforestation in Brazil. In figure 3 we plot the
location of deforestation events, a portion of the roads and all the rivers
near Mucajaí. One of the first observations we made about the data set is
that most deforestation events happen near the roads and the events that
are farther away tend to be very close to the rivers. In fact, 90 percent of
the deforestation events from the PRODES data set lie within 5 km of the
roads. This observation makes sense as proximity to the roads or rivers
reduces the time it takes to travel to the extraction site and the city, which
reduces the cost an extractor associates with going to the extraction site.

After this observation, we wanted to generate a probability density
function (PDF) from the data set. Suppose we are given a set of points
{xi}N

i=1 where N is very large (for the PRODES data set N ≈ 36, 000) sam-
pled from a PDF φ. Then we would like to reconstruct φ from these sam-
ples. This is an ill-posed problem since there are infinitely many PDFs that
could give rise to the data. For instance one popular method known as
kernal density estimates (KDE) fixes a PDF f with its mass centered at 0,
then fixes a parameter h > 0 called the bandwidth. The predicted PDF is
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Figure 3: Dark blue is rivers, black is a subset of roads, light blue is area close to Mucajaí,
and red dots correspond to deforestation events

defined by

Φ(x) :=
1

Nh2

N

∑
i=1

f
(

x− xi

h

)
Thus Φ is a PDF where the points {xi}N

i=1 were very likely to be chosen
since f mass is centered at the origin. A popular choice of f is the standard
Gaussian. We implemented this method with f as the standard Gaussian
and h = 3 km. In figure 4 we plot a heat map of the PRODES data set
with the color being dependent on Φ. The more yellow spots correspond
to larger Φ.

Another popular method is maximizing a regularized logarithmic like-
lihood. We first motivate the maximization of log likelihood. Assume
{xi}N

i=1 was drawn independently and identically distributed with density
φ. Then our goal is to find a PDF Φ such that it maximizes the chances of
{xi}N

i=1 being chosen and use Φ as an approximation for φ. Observe that
as {xi} are assumed to be independent

P({xi}N
i=1) = ΠN

i=1P(xi)
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Figure 4: KDE with standard Gaussian and h = 3 km on PRODES data set

i.e., the probability of choosing the set {xi}N
i=1 is equal to the product of

choosing each event. We now take logarithms on both sides to convert the
product into a sum:

log(P({xi}N
i=1)) =

N

∑
i=1

log(P(xi))

Since log(x) is an increasing function, maximizing the probability of the set
being chosen is equivalent to maximizing the log likelihood ∑N

i=1 log(P(xi)).
The maximum log likelihood method approximates φ by

φ ≈ arg max
v,v≥0,

∫
v=1

N

∑
i=1

log(v(xi))

However, this maximization problem tends to be lead to non-smooth PDFs.
Accordingly, the method of maximized penalty likelihood estimate (MPLE)
actually defines

φ ≈ arg max
v,v≥0,

∫
v=1

N

∑
i=1

log(v(xi))− f (v, x) (1)
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where f is a regularization term added to increase smoothness of the ap-
proximation PDF. It has been observed that the PDFs generated by MPLE
with sharp gradient changes lead to the PDF being not smooth, so a popu-
lar f is

f := −α
∫

Ω
|∇v|

where α > 0 and Ω is the spatial domain we are interested in. This reg-
ularization term helps reduce sharp gradient changes, which leads to a
smoother PDF.

To approximate a solution to (1), we followed [14] and considered the
following discrete version of (1)

arg min
v≥0

{
∑
i,j
|∇vi,j| − µ ∑

i,j
wi,j log(vi,j)

}
subject to ∑

i,j
v = 1 (2)

where w is a weight matrix and ∇v :=
(

vi+1,j−vi,j
∆x ,

vi,j+1−vi,j
∆y

)
and µ > 0.

We solve this constrained optimization problem by adding two penalty
functions for each constraint

arg min
v≥0

∑
i,j
|di,j| − µ ∑

i,j
wi,j +

λ

2 ∑
i,j
|di,j −∇vi,j|+ γ(1−∑

i,j
vi,j)

2

where λ, γ > 0 are fixed. These are punishment terms for not satisfying
the constraints. To more strongly enforce this constraint, the authors of [14]
solved

(uk, dk) = arg min
v≥0,d

{
∑
i,j
|di,j|−µ ∑

i,j
wi,j +

λ

2 ∑
i,j
|di,j −∇vi,j − bk−1|

+ γ(1−∑
i,j

vi,j − bk−1
1 )2

}
where

bk = bk−1 +∇uk − dk

bk
1 = bk−1

1 + ∑
i,j

uk
i,j − 1
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These vectors bk and bk
1—the so-called ’Bregman’ vectors—are initialized

so b1 = b1
1 = 0. These vectors introduce a harsher penalty to the min-

imization problem for straying away from the constraints. Then we used
the authors’ code to solve this minimization problem which converges with
speed O(n2). The authors recommended the usage of µ = 10−4, λ = 2µn4,
and γ = 2µn2. We tested this choice of µ with a 10-fold cross validation for
µ = 10−i for i = 0,. . . , 10 and found that µ = 10−4 was optimal.

Figure 5: MPLE with µ = 10−4 on PRODES Data Set

In figure 5 we plot a heat map of MPLE. The red locations correspond
to larger values of the density function. To check the accuracy of MPLE, we
generated random events with the MPLE PDF and compared it to real data.
We plot the results of this random sampling in figure 6. This figure shows
that the predicted event locations from MPLE are almost identical to the
actual data, which leads us to believe MPLE is a good PDF approximation
for our purposes.

We also used the DETER data set to see if there is a seasonal component
to deforestation. In figure 7, we plot the average percentage of deforestation
that occurs in each month. This bar graph shows that in May to July there
is a strong drop in deforestation compared to other months. Those months
correspond to the rainy season in Mucajaí, confirming our suspicions that
the data expresses seasonality.
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(a) Deforestation location predicted
by MPLE

(b) Deforestation location from
PRODES

Figure 6: A comparison of PRODES deforestation data and synthetic data generated from
the MPLE density function
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Figure 7: Seasonality of Deforestation in Mucajaí

2.2 Indicator Function of Trees

Since we are trying to model deforestation events, we need to know exactly
where the trees are. Therefore, we need to define the indicator function of
trees for all grid points in our region of interest. The PRODES data set
provides some information about tree coverage locations, so we use the
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PRODES data with some modifications to obtain our indicator function of
trees over the years from 2001 to 2015. The specific algorithm we use to
construct the indicator function of trees for each year is as follows:

1. Use the previous year’s forest coverage location data for the next
year’s initial indicator function of trees. For example, we use year
2004’s forest coverage location data for the year 2005’s initial indica-
tor function of trees. For n = 2009, . . . , 2015, we denote the initial
indicator function of trees in year n to be χ0

trees,n. We only use such n
because PRODES data set only provides forest coverage location data
for the years 2008 to 2014 in our region of interest.

2. Get the modified indicator function of trees for the year 2009 by set-
ting the locations where deforestation happened in year 2009 to be 1.
That is, the modified indicator function of trees for the year 2009 is

χ1
trees,2009 = min(1, χ0

trees,2009 + χevents,2009),

where χevents,2009 is the indicator matrix of events in the year 2009.

3. For years from 2008 to 2001, we trace backwards. That is, for n =
2008, 2007, . . . , 2001, we first let χ0

trees,n = χ1
trees,n+1. Then we get the

modified indicator function of trees for the year n by setting the loca-
tions where deforestation happened this year to be 1:

χ1
trees,n = min(1, χ0

trees,n + χevents,n).

4. For years from 2010 to 2015, we get the modified indicator function
of trees for the year n by setting the locations where deforestation
happened this year to be 1:

χ1
trees,n = min(1, χ0

trees,n + χevents,n).

5. Obtain the final indicator function for trees in the year 2015 as χtrees,2015 =
χ1

trees,2015.

6. Make sure that the indicator function will not increase over the years,
by taking the maximum of two consecutive years to modify indicator
functions of trees backwards. That is, for n = 2014, 2013, . . . , 2001, we
trace back to get the final indicator function for trees to be χtrees,n =
max(χ1

trees,n, χtrees,n+1).
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(a) Indicator function of trees for 2001 (b) Indicator function of trees for 2015

Figure 8: Indicator function at the beginning and end of the time period

Figure 8a and 8b show the indicator function of trees for the year 2001 and
2015. The yellow color denotes value 1 and blue denotes value 0 for the
function. There is significant difference inside the red box as trees have
been added as we trace back to 2001.
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3 Farming Model

Slough et al. [23] concluded that there are two main types of deforestation
that occur in Roraima. The first type is agricultural deforestation, wherein
farmers illegally expand their farms to increase their crop output. In this
section, we describe how we model this phenomenon. The second type of
deforestation is illegal acquisition and sale of timber. This is addressed in
section 4.1.

As mentioned in the previous section, we observe that most deforesta-
tion events occur near the roads or cities. Further, in the southeast portion
of Roraima, there is a region with many roads and small cities. We focus
on modelling illegal farming in this region, pictured in figure 9.

Figure 9: The southeast region of Roraima where we test our farming model.

3.1 Overview of the Farming Model

We first assume that the farmers have perfect information regarding pa-
trol. Also, farmers choose locations for farms probabilistically based on
expected profit. To define the expected profit, we first have to define the
cost and expected benefit.

Because most events happen near cities and along the roads the cost has
dependence on the distance to cities and distance to roads. In addition, we
observed that the deforestation events tend to cluster around one another.
Therefore, we defined the cost at each point per month in the year n as
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C(x, y) =
c1 · dr(x, y) + c2 · dc(x, y) + c4

1 + c3 · An(x, y)
, (3)

where dr(x, y) denotes the distance to roads at location (x, y), and dc(x, y)
denotes the distance to cities at location (x, y). The distances are calculated
from the center of a farm to the nearest road or nearest city. The measure-
ment of fixed costs associated to running a farm is denoted as c4. Note that
c1, c2, c3, c4 ≥ 0 can be adjusted to fit the deforestation data. The final cal-
culation of expected profit should be the sum of all costs in related months.
This is because there exist ongoing costs when farmers are travelling back
and forth. The accessibility at location (x, y) in the year n is denoted as
An(x, y). For Accessibility, we first define {(x(n)i , y(n)i )}M(n)

i=1 as the defor-
estation events which occurred in the year n. Then we fixed a parameter
h > 0 called the bandwidth and define the accessibility contributed by the
year n as

An
h(x, y) :=

M(n)

∑
i=1

1
2πh

exp

− (x− x(n)i )
2
+ (y− y(n)i )

2

h2

 (4)

Finally we obtain the accessibility for location (x, y) in the year n as

An(x, y) :=
3

∑
k=1

1
2k An−k

h (x, y) (5)

So accessibility is a weighted sum of Gaussian with expected values at
the deforestation locations and standard deviation h where the influence
of each Gaussian decays over time by a factor of 1

2 for each year that has
passed and we consider only the previous 3 years events. This assumes
that farmers develop infrastructure as they plant farms, reducing costs for
nearby farms.

Now we move on to define expected benefit. First we defined the benefit
per square meter per month by:

B(x, y) := ξχtrees(x, y)
1

1 + ||∇E(x, y)||γ

where χtrees(x, y) is the indicator function for the presence of a tree at
location (x, y), E(x, y) is the elevation, and ξ represents the conversion
of the value of a tree to currency. Typically, we choose ξ = 5000. We
scale this factor by 1

1+||∇E(x,y)||γ because if the area has sharp changes in
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elevation, then it will be harder to farm, while if it is almost flat then
||∇E(x, y)|| ≈ 0⇒ B(x, y) ≈ ξχtrees(x, y).

Benefit and cost are not the only factors that farmers consider when
choosing a farm location. They also account for the probability of getting
caught illegally making and expanding their farms in their expected benefit
calculation. In any given month, we model the probability of not being
captured by

1− ψ(x, y) · S
where ψ(x, y) is capture probability at location (x, y) (dependent on patrol)
and S is the area of the farm.

Assume a farm starts with area S0, and expands for i months at a rate
of dS, then the size of the farm at the end of the ith month will be Si =
S0 + i · dS. As the minimum area of deforestation in PRODES is about 10
square meters and the average is about 105 square meters per year, we
choose S0 = 10, dS = 105

12 . Thus, the probability of not being captured by
the end of the ith month at location (x, y), if we assume that the capture
probability in different months are independent, is

βi(x, y) =
i

∏
j=1

(1− ψ(x, y) · Sj).

The expected benefit farmer will receive in month i is

E(Benefiti(x, y)) = B(x, y) · Si · βi(x, y)− α · B(x, y) · Si · (1− βi(x, y))

Here α > 0 is a parameter that measures the strength of punishment. For
example, α = 2.5, means that if a farmer is caught, then he will be fined
with the amount of 2.5 times the benefit he will gain from that farm in
month i. And the expected benefit which a farmer will receive by the end
of month i is

i

∑
j=1

E(Benefitj(x, y))

As a farm cannot last forever partly due to lack of nutrition in the land,
we assumed that a farm can only operate for at most Kmax months. For our
experiments, we choose Kmax = 36. Therefore, a farmer will chose a month
between 1, .., Kmax such that they maximize their expected profit.

Thus, the expected profit function for a farmer is

E(P(x, y)) :=

(
max

i=1,...,Kmax

i

∑
j=1

(
E(Benefitj(x, y))− C(x, y)

))
+
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where ( f )+ := max( f , 0). So if farmers choose a spot (x, y), then they will
stay in that spot until they gain the expected highest profit or until get
caught.

Then we normalize E(P(x, y)) to make it into a probability density func-
tion. Farmers will choose where to plant their farms randomly with this
density.

3.2 Fitting Parameters

To fit the model to our data, we try to optimize our set of parameters by
maximizing the average F1 score, as defined later in this section. Note
that we are fitting the parameters using the predicted model and PRODES
data from 2005 to 2015, on the bottom right part of the region described in
PRODES, as in Figure 9. The range of area is [-61.3, -58.8868] in longitude
and [-0.1293, 1.54] in latitude. We fit 500× 500 grid points in this region to
generate our results and fit the parameters.

Due to sparsity of the events, the way we define true positive instances
should have some tolerance of position offset. Specifically, given a pre-
dicted probability density function for illegal farming, the true data points
where events happen in the region from 2005 to 2015, and a threshold,
we claim that an event is truly predicted if for a square centered at the
event point, there is at least one point within the square with predicted
probability density function value larger than or equal to the threshold.

First we denote the grid points to be (xi, yj), for i, j = 1, . . . , 500. Then
we define the matrix that counts the number of events in each grid in the
year n by NEn, where NEn(xi, yj) is the number of real events in year n
whose location has (xi, yj) as the nearest grid point. Denote the probability
density function generated by the expected profit for the year n to be f n.
Then the event prediction function can be defined as

pn(xi, yj) := χ f n(xi,yj)>ε·NEn(xi,yj)
· χNEn(xi,yj)>0,

where ε is the threshold for prediction, and χ is the indicator function.
For a grid point to have events, we require NEn(xi, yj) > 0. To account for
multiple events, we require f n(xi, yj) > ε · NEn(xi, yj), which means that if
there are, for example, two events at a grid in the year n, then to claim that
a grid point is predicted, we require the probability density function by the
expected profit to be at least twice that of the threshold.

Now we define the notion of true positive and false positive. To deal
with sparsity of the events, we define the true positive function for the year
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n by
tpn(xi, yj) := max{pn(x, y) : (x, y) ∈ U(xi, yj)},

where U(xi, yj) is a neighborhood of the point (xi, yj). For our experi-
ment, we take a square centered at (xi, yj). That is, we define U(xi, yj) :={
(xi+di, yj+dj) : di, dj = −4, . . . , 4, i + di, j + dj ∈ [1, 500]

}
.

To define the false positive function, we omit the tolerance region. That
is, we define the false positive function for the year n by

f pn(xi, yj) := χ f n(xi,yj)>ε · χNEn(xi,yj)=0.

Therefore, the number of true positive points and false positive points
in the year n can be calculated as TPn := ∑500

i=1 ∑500
j=1 tpn(xi, yj) and FPn :=

∑500
i=1 ∑500

j=1 f pn(xi, yj) respectively.
The recall (true positive rate) for the year n can then be calculated as

Rn :=
TPn

number of events in year n
=

TPn

∑500
i=1 ∑500

j=1 NEn(xi, yj)
,

and precision for the year n can then be calculated as

Pn :=
TPn

number of ’predicted’ events in year n
=

TPn

TPn + FPn .

The ’predicted’ here is not quite well-defined, as we consider a tolerance
neighborhood only for true positive events but not for false positive events.
However, by summing over the number of true positive events and false
positive events, we can approximate the notion of the number of ’predicted’
events.

Finally, we have the F1 score for each year:

F1n :=
2 · (Pn · Rn)

Pn + Rn . (6)

We then average the F1 scores to obtain the average F1 score for the pre-
dicted model, and optimize parameters c1, c2, c3, c4, cp, γ, ε and α to achieve
the highest average F1 score, where ε is the threshold we use to define the
true positives. Here, cp is a parameter to fit in our initial model, where
we use ψn = cp ·m f n−1, and m f n−1 is the probability density function for
deforestation events generated using the MPLE method from PRODES for
the region in the previous year, year n− 1. The optimized set of parameters
we find is c1 = 1

1000 , c2 = 1
10000 , c3 = 10, c4 = 10, cp = 1, γ = 1, ε = 10−5;
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and α = 2.5. These yield an average F1 score of 0.59. This score is not
perfect because of the sparsity of real deforestation events, but the aver-
age recall (true positive rate), which measures the ability of our model to
predict where events will happen, is 0.72, which is better.

3.3 Time Series Model

In the farmer’s model so far, the Profit density has been static. Now we con-
sider a simulation wherein multiple farmers plant their own farms. Then
the benefit near their selected farm should decrease as the next farmers
cannot farm there. Hence, the Profit density should be updated based on
each farmer. Accordingly, we want to design a time series model with the
goal of accurately predicting deforestation events caused by farmers.

We assume that for a fixed year N that we have data about the deforesta-
tion events for year N− 1, N− 2 , and N− 3 and a patrol density ψ(x). We
first generate an initial Profit PDF by following the procedures in section
(3.1). Now we randomly generate a point x1 ∈ Ω according to the profit
PDF where Ω is our spatial domain. This node x1 represents the location
of where the first farmer of this year decided to plant a farm. In particular,
we assume that the farmer creates a square farm centered at x1 with length√

S0 (and hence area S0). Now we expect the benefit to decrease near this
farm, so if we fix K ∈ [0, 1), and let S1 denote square farm belonging to the
first farmer, then we do the following update to benefit:

B(x) = B(x) ·min{1, K + dist(x,S1)}

This update decreases the benefit linearly based on distance to the farm
with points in the farm benefit being decreased by the factor K. In practice,
we chose K = 1

2 and we choose to keep K > 0 because in our data set,
multiple events happened on the same node which is due to the coarseness
of our grid. In addition, as the farmer constructs a farm at x1 we expect
this farmer to create infrastructure which makes it more accessible for other
farmers to get near x1. Therefore, we update accessibility by the following
formula

A(x) = A(x) +
1

2πh
exp

(
−||x1 − x||2

h2

)
Then we normalized A so that it retains its initial mass.

Now we also assume that farmer 1 wants to expand his farm’s area by
dS by the end of this month, but as this activity is illegal, there is a chance
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he can get caught while expanding their farm. To simulate this we do a
Bernoulli trial with probability p = ψ(x1) · S0. If the trial is successful,
the farmer is caught, so he does not expand his farm and he also receives
a fine of αB(x1)S0. Otherwise, if the trial is a failure, the farmer is not
caught and expands his farm to by a constant factor dS. Now we use the
updated benefit and accessibility score to update the Profit PDF. We repeat
this procedure for all the farmers we want to simulate in the first month.

Generated Data For 2015

(a) Time Series Model for 2015

2015 real data

(b) Data from PRODES data set for 2015

Figure 10: Time Series Generated Data compared to Real Data

Now assume we are in month i where 1 < i ≤ 12. We update ψ to ac-
count for changes in patrol strategy. Next we define N(i) to be the number
of farmers released in the simulation from month 1 to the end of month i,
Sj denote the farm of the jth farmer, and xj as the center of the square farm
of farmer j. Now for 1 ≤ j ≤ N(i − 1) we simulate a Bernoulli trial with
p = |Sj|ψ(xj) to determine whether or not they get caught expanding their
farm this month. Then we update the Benefit generated by each farmer j
for each new node inside Sj and update the Profit. We repeat the initial
procedure with this updated Profit to generate new farmers location and
repeat this process for all desired months. In figure 10 we plot the Time
Series prediction for centers of the farms created in 2015 compared to the
deforestation events that occurred in 2015 according to PRODES data. In
figure 11 and 12 we plot an exaggerated square farms corresponding to
the farms the farmer chose in the months June and December. The red
cross indicates the farmer got caught expanding their farm, and we had 34
farmers getting caught in the simulation for 2015 out of 626 extractors.
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Month 6.000000

Figure 11: Result of time series simulation in June of 2015. Black boxes correspond to
farms and red crosses means the farmer was caught. The sizes of the farm has been
exaggerated to make farms more visible.
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Month 12.000000

Figure 12: Result of time series simulation in December of 2015. Black boxes correspond
to farms and red crosses means the farmer was caught. The sizes of the farm has been
exaggerated to make farms more visible.
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4 Logging model

Illegal logging is another contributing factor to deforestation, which ex-
hibits quite different behavior from farming. Loggers obtain profit from
timber rather than land. They may go deeper into the forest where trees
are more valuable. Judicious path planning that balances both travel time
and capture risk then plays a major role in loggers’ decision making. In our
model, we assume that deforestation events at least 10 km from the high-
ways are logging events. We build up a more realistic model to describe
loggers’ decision making process which can be useful to evaluate, compare
and design patrol strategies.

Our logging model is based on Albers [1] where loggers want to maxi-
mize their expected profit P, defined as

P = ΦB− C.

Here B is the pre-determined initial benefit that depends on the category
and quality of timber and is assumed to be static. C represents the cost and
is measured by the traveling time of both going in and out of the forest.
Φ describes the probability of not being captured, which depends on pa-
trollers’ detection ability and loggers’ trajectories. We follow the Stakelberg
game model and assume loggers have perfect information about patrol.

Diverging from previous models where extracting happens instanta-
neously, we introduce the notion of logging time. Actual logging time will
influence the risk of being detected and the amount of trees loggers can
obtain. The latter will further influence the travel velocity when loggers
return from the forest.

The loggers then need to choose the optimal logging spot, along with
logging time and traveling path. To address the resulting optimization
problem in random domain geometries, we transform the optimal path
planning problem into a time-dependent Hamilton Jacobi equation and
appeal to the level set method as in Arnold et al. [2]. We then perform a
parameter sweep to find the optimal logging location and time.

In section 4.1 we will fully formulate the problem. The resulting opti-
mization problem will be further addressed in section 5.

4.1 Model Construction

We assume each location x in the domain Ω ⊂ R2 has a fixed amount of
timber, but with different total value B(x). Different from previous mod-
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els where logging happens instantaneously, we use t to denote the actual
logging time. Under the constant production rate assumption, t

T B(x) gives
the actual benefit if there were no patrollers, where T is a global constant
representing the time to clear all the trees in one location.

Loggers can be detected when they are logging or on their path back
while returning with their illegal goods. We assume that the capturing
event is a Poisson process, with (capture) intensity ψ : Ω → R known to
loggers. The probability of not being captured while logging at x after time
t is e−ψ(x)t. Longer logging time means larger benefits, but also larger risk
of being detected. The probability of not being captured when they are
walking back following path X(s) is then given by e−

∫ τ
0 ψ(X(s))ds where τ

is the traveling time. Here we assume the loggers will only get captured
when they actually have timber with them and they will lose all of the
benefit after being detected. The expected benefit one can obtain by logging
at location x for time t is then B(x) t

T e−ψ(x)te−
∫ τ

0 ψ(X(s))ds.
The cost, represented by the travel time is easy to calculate given a path

and the associated velocity. In our model, we firstly define the move-in
velocity field v : Ω → R2 following the transportation system, so that pa-
trollers travel with highest velocity when they are on major highways and
a little bit slower when they are on waters and secondary highways. When
patrollers are off highways or waters, their velocity is scaled according to
terrain slope following Arnold et al. [2]. When they travel out, we assume
their velocity will decrease because of the loaded cars or boats in the form
of v(x)/(1+ c(t/T)γ), where t is the logging time mentioned before and c,
γ are two parameters that model the impact of traveling with trees. The in-
creased traveling cost may be another reason that loggers decide to spend
less than the maximal logging time.

The previous analysis leads to a more realistic way of calculating profit
for logging at position x for time t and following path Xin, Xout. The profit
function is

P(x, t, Xin, Xout) = B(x)
t
T

e−ψ(x)te−
∫ τout

0 ψ(Xout(s))ds − α(τin + τout),

where α is the coefficient to convert time to monetary value, while τin and
τout are the traveling time. Rational loggers will then try to solve the opti-
mization problem

Popt(x) = max
t,Xin,Xout

P(x, t, Xin, Xout) (7)
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and may go to the spots with positive profit. It’s worth mentioning that the
optimal path going in and out of the forest can be different because of the
patrollers.

4.2 Simplification and Approximation

We need to simplify and rephrase the optimization problem (7) before we
move on to solve it.

First of all, since Xin is independent of the other two terms, we will be
able to solve for Xin as in the classical minimal time path planning problem.
As for the coupled t and Xout, we focus on the path planning part in our
work. For each given t, we will try to find the optimal Xout. In practice,
we discretize [0, T] into n levels and solve the model for t = iT/n, at each
x, where i = 1, . . . , n. We then take the maximum profit among these n
candidates as an approximation for the optimal expected profit over the
entire period.

Second, the exponential term e−
∫ τout

0 ψ(Xout(s))ds causes some trouble. Since
the capture intensity, i.e., the path integral on the power takes the form of
the standard running cost, we use the linearization 1− β

∫ τout
0 ψ(Xout(s))ds

as an approximation for some positive constant β. Note that the expected
benefit goes to 0 under estimation when

∫ τout
0 ψ(Xout(s))ds reaches 1/β,

while the actual probability of being caught on the way back is 1− e−1/β.
Different β may be used to describe extractors’ degree of risk-aversion.
When β is set to be 1, the linearization gives the first order Taylor expan-
sion of the exponential term at 0 but the resulting expression is always an
under-estimation. Loggers will refuse to go to one spot if the probability of
being captured on their way back is greater than 1− e−1, which is approx-
imately 0.63. For less risk-averse loggers, we may use a smaller β and the
resulting expression can be an over-estimation when the capture intensity
is within certain range.

Based on these two modifications, the problem can be rewritten as

Popt(x, t) ≈ max
Xin,Xout

B(x)
t
T

e−ψ(x)t
(

1− β
∫ τout

0
ψ(Xout(s))ds

)
− α(τin + τout)

=B(x)
t
T

e−ψ(x)t −min
Xin

∫ τin

0
αds

−min
Xout

∫ τout

0
B(x)

t
T

e−ψ(x)tβψ(Xout(s)) + αds, (8)
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where both minimization problems fall into the category of free-time-fixed-
point path planning problem, with the minimal time problem being a typ-
ical example. We will move on to solve this optimization problem in the
following two sections.
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5 Path Planning with Optimal Control Theory

In this section, we will transform the optimal control problem in our model
into a Hamilton-Jacobi equation, then describe a method to find the optimal
path based on the solution to the Hamilton-Jacobi equation.

When we mention the solution to a Hamilton-Jacobi(-Bellman) equation
or eikonal equation below, it always denotes the viscosity solution in the
sense of Crandall and Lions [6].

5.1 Static Hamilton-Jacobi-Bellman Equation

A general formulation of the optimal control we need to solve in our model
can be written as

min
α∈A

∫ τ

0
r(x(s))ds

s.t. ẋ = v(x)α(x)
x(0) = x0

τ = inf{t : x(t) = xend}

(9)

Here α(·) is the control, taken from set of valid control functions A. The
function r is always positive and represents some running cost incurred
along the trajectory determined by α. Now we transform this problem into
a static eikonal equation. From Bardi and Capuzzo-Dolcetta [4], there are
two theorems regarding this transformation.

Theorem 1.1: Dynamic Programming Principle (DPP). Suppose yx(t, α)
is the trajectory following the differential equation in (9), starting from x
and using the control function α. Define the time of reaching the end point
as

tx(α) =

{
inf{t : yx(t, α) = xend}, if {t : yx(t, α) = xend} 6= ∅,
+∞, otherwise.

Define the minimal cost by

u(x) := inf
α∈A

{∫ tx(α)

0
r(yx(s, α))ds

}
. (10)

Then u(x) satisfies the Dynamic Programming Principle (DPP). That is, for
t ≤ tx(α),

u(x) = inf
α∈A

{∫ t

0
rds + u(yx(t, α))

}
, ∀t ≥ 0, (11)
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Theorem 1.2: Static Hamilton–Jacobi–Bellman equation. Suppose u(x)
is defined as in Theorem 1.1, then u(x) is the solution to the static Hamil-
ton–Jacobi–Bellman equation

sup
α∈A
{−v(x)α(x) · ∇u(x)} = r(x),

u(xend) = 0, u(x) ≥ 0, ∀x ∈ Rn
(12)

Formally, to go from (11) to (12), we move u(x) to the right hand side
of (11), divide by t and let t→ 0. Using the chain rule and the ODE solved
by yx(t, α), we arrive at (12).

5.2 The Eikonal and Hamilton-Jacobi Equations

In this part we will show the connection between eikonal equation and
Hamilton-Jacobi equation. For nonnegative function v(x), we consider a
Hamilton-Jacobi equation

ut + v(x)|∇u| = 0, (x, t) ∈ Rn × (0,+∞),
u(x, 0) = g(x), x ∈ Rn. (13)

From Dolcetta [8], we have these two theorems:

Theorem 2.1 For any y ∈ Rn, the equation

v(x)|∇d(x; y)| = 1, x ∈ Rn \ {y},
d(y; y) = 0, d(x; y) ≥ 0, ∀x ∈ Rn, (14)

has a unique solution d(· ; y).

Theorem 2.2 Assume that g(x) ≥ −C(1 + |x|) for some C > 0. Define the
function

Φ(x) =

{
0 if x = 1
+∞ otherwise

Then the function

u(x, t) = inf
y∈Rn

{
g(y) + tΦ

(
d(x; y)

t

)}
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is the unique solution of (13) which is bounded below by a function of
linear growth and such that

lim inf
(y,t)→(x,0+)

u(y, t) = g(x).

Consider the initial function g(x) = |x − z|, the Euclidean distance to a
point z. By Theorem 2.2, we have that

u(x, t) = inf
y∈Rn

{
|y− z|+ tΦ

(
d(x; y)

t

)}
= inf

y∈Rn

d(x;y) = t

|y− z| (15)

is a solution to the equation (13), where d(x; y) is the solution to the eikonal
equation (14).

According to (15), u(x, t) = 0 if and only if d(x; z) = t . Thus we deduce
the connection between the solution w(x) = d(x; z) to the equation (14)
where y = z and the solution u(x, t) to the equation (13):

w(x) = t if and only if u(x, t) = 0.

In this way, any eikonal equation can be transformed into a time-dependent
Hamilton-Jacobi equation, and vice versa.

Note that the equation (13) is a level set equation as considered by Osher
and Sethian [19]. If g(x) is the signed distance function to a contour Γ(0),
we can evolve Γ(0) by level set motion when we solve the PDE. If we define
Γ(t) = {x : u(x, t) = 0}, then Γ(t) represents the set of points which can
be reached from the original contour with traveling time t in the velocity
field v(x). This is displayed in figure 13. The interpretation of the level
sets Γ(t) as the reachable sets after traveling for time t from an initial state
gives a connection between the level set equation and the optimal control
problem for path planning. In view of the equivalence of (13) and (14),
we can obtain the level sets from the solution to either equation; that is,
Γ(t) = {x : u(x, t) = 0} = {x : w(x) = t}.

5.3 Finding the Optimal Path

In our model, the optimal control problems have the form (9) where A =
{α : |α(·)| = 1}. If we define the optimal cost u(x) as (10), then u(x)
satisfies

sup
α∈A
{−v(x)α(x) · ∇u(x)} = r(x).



5. Path Planning with Optimal Control Theory 29

Figure 13: Level set evolution with velocity v(x) = 1, from an initial contour Γ(0) (blue).
The contours Γ(2) and Γ(4) (red) represent the contours which could be reached after
traveling for t = 2 or t = 4 respectively. These are zero level contours of the solution
u(x, t) to equation (13).

Since v(x) ≥ 0, ∀x ∈ Rn, we can solve for the optimal control α(x) explic-
itly using the Cauchy-Schwarz inequality:

α(x) = − ∇u(x)
|∇u(x)| .

Thus u(x) solves the eikonal equation

v(x)|∇u(x)| = r(x),
u(xend) = 0, u(x) ≥ 0, ∀x ∈ Rn.

Since the running cost function r(·) is always positive, we can transform
this into the corresponding Hamilton-Jacobi equation

φt +
v(x)
r(x)
|∇φ| = 0, (x, t) ∈ Rn × (0,+∞),

φ(x, 0) = |x− xend|, x ∈ Rn.
(16)

In order to find the best trajectory for the optimal control problem (9),
we can evolve level sets Γ(t) outward from xend according to (16). This
level sets represent the reachable sets after time t with the velocity field
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v(x)/r(x). This time t is no longer traveling time, but rather cost associ-
ated with the optimal control problem. Hence the level sets Γ(t) represent
contours of equal traveling cost. To find the optimal path from x0 to a
desired end point xend. We evolve level sets outward from xend until they
reach x0. That is, we evolve (16) until the time t∗ such that φ(x0, t∗) = 0.
This t∗ represents the optimal cost associated with traveling from x0 to xend.

As we solve (16), at each (x, t) we can resolve the optimal control value

α(x, t) = − ∇φ(x, t)
|∇φ(x, t)| .

We can use this to resolve the optimal trajectory, by integrating the ODE in
(9) backwards from time t = t∗ to t = 0, so that the optimal trajectory is
given by

ẋ = −v(x)
∇φ(x, t)
|∇φ(x, t)| ,

x(t∗) = x0.
(17)

We should solve the ODE backwards because the function φ(x, t) may not
be differentiable at (xend, 0), and thus we cannot determine the value of
the optimal control at that point. Note, the optimal trajectory will always
travel parallel to ∇φ which is normal to the level sets Γ(t).

In summary, we find the optimal trajectory in two steps:

1. Evolve the level sets. Solve the equation (16) until the time t∗ such
that φ(x0, t∗) = 0. Here t∗ is the optimal cost in the problem (9).

2. Track back. Solve the dynamic ODE (17) backwards in time, starting
from x(t∗) = x0. This ODE gives the optimal path we need.

The process of finding an optimal path is displayed in figure 14.

5.4 Optimal Control Problem in Our Model

As described in the previous section, the loggers in our model attempt to
solve the optimization problem

Popt(x, t) ≈ max
Xin,Xout

B(x)
t
T

e−ψ(x)t
(

1− β
∫ τout

0
ψ(Xout(s))ds

)
− α(τin + τout)

=B(x)
t
T

e−ψ(x)t −min
Xin

∫ τin

0
αds

−min
Xout

∫ τout

0
B(x)

t
T

e−ψ(x)tβψ(Xout(s)) + αds.
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(a) Level set contours (b) Normal directions (c) Optimal path

Figure 14: To find the optimal path from the start point (green dot) to the end point (red
dot), we first evolve the level sets from the end point until they reach the start point, and
then let the point travel along the normal direction of the level sets to find the optimal
path.

This formula contains two optimal path planning problems: one is the path
moving into the forest and the other is the path moving out. Given a start
point x0 and an end point xend, we need to solve these two optimal control
problems.
The optimal control problem regarding travel into the forest is:

min
a∈A

∫ τin

0
αds

s.t. Ẋin = v(Xin)a(Xin)

Xin(0) = x0

τin = inf{t : Xin(t) = xend}.

(18)

The optimal control problem regarding the path moving out of the forest
is:

min
a∈A

∫ τout

0
B(xend)

t
T

e−ψ(xend)tβψ(Xout(s)) + αds

s.t. Ẋout =
v(Xout)

1 + c(t/T)γ
a(Xout)

Xout(0) = xend

τout = inf{t : Xout(t) = x0}.

(19)

The corresponding level set equation for (18) is

φt +
v(x)

α
|∇φ| = 0, (x, t) ∈ Rn × (0,+∞),

φ(x, 0) = |x− xend|, x ∈ Rn,
(20)
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and the level set equation for (19) is

φt + ṽout(x)|∇φ| = 0, (x, t) ∈ Rn × (0,+∞),
φ(x, 0) = |x− x0|, x ∈ Rn,

(21)

where

ṽout(x) =
v(x)

(1 + c(t/T)γ)(α + B(xend)
t
T e−ψ(xend)tβψ(x))

. (22)

We describe the numerical methods for solving these equations in the
ensuing section.

Note that the denominator of (22) depends on the end point xend. In
our model, for a fixed logging time t and a fixed starting point, we need to
evaluate Popt(xend, t) for every possible end point. Theoretically, we need to
solve all these problems over different end points independently and evolve
different level set equations for each end point. In order to reduce the
computational burden, in practice, we discretize B(x) t

T e−ψ(x)t into several

levels. Let bmin = minx

{
B(x) t

T e−ψ(x)t
}

and bmax = maxx

{
B(x) t

T e−ψ(x)t
}

.
We let b0, b1, b2, . . . , bn be a uniform partition of the interval [bmin, bmax].
Then grouping the possible ending points into n + 1 collections based on
these values, we only need to evolve n + 1 level set equations with velocity
modified for each of b0, b1, . . . , bn. A similar discretization is employed by
Arnold et al. [2].
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6 Numerical Methods and Implementation

In this section, we describe the numerical implementation of the optimal
control problem from Section 5. To begin, we discuss the general con-
cerns related to numerically solving Hamilton-Jacobi equations, and ad-
dress some specific issues related to level set equations.

6.1 Numerical Schemes for Hamilton-Jacobi Equations

Recall, the general Hamilton-Jacobi equation in two spatial dimensions is
given by

φt + H(φx, φy) = 0,
φ(x, 0) = φ0(x).

(23)

In the case of the basic optimal path planning problem, the Hamiltonian
will take the form H(x, y, φx, φy) = v(x, y)

√
φ2

x + φ2
y; however, we suppress

the dependence of H on x and y to simplify the notation.
Because Hamilton-Jacobi equations give rise to solutions with discon-

tinuities in their derivatives, ordinary difference methods, which are per-
fectly suitable for advection equations, will often fail to capture the com-
plex dynamics at play [6]. Instead, we trade the Hamiltonian H(φx, φy)
for the numerical Hamiltonian Ĥ(φ+

x , φ−x ; φ+
y , φ−y ) which somehow com-

bines the forward difference approximations φ+
x , φ+

y and backward differ-
ence approximations φ−x , φ−y to the derivatives, in order to more accurately
simulate the system.

Osher and Shu [18] suggest many choices for the numerical Hamil-
tonian, each having its own advantages and disadvantages. Perhaps the
easiest to implement is the Lax-Friedrichs Hamiltonian:

ĤLF(φ
+
x , φ−x ; φ+

y , φ−y ) = H

(
φ+

x + φ−x
2

,
φ+

y + φ−y
2

)
− αx

2
(φ+

x − φ−x )−
αy

2
(φ+

y − φ−y ).

(24)

Here we are adding diffusion to the equation which is on the order of the
grid parameters ∆x, ∆y. The coefficients αx, αy depend on the derivatives
of H and determine the amount of diffusion that is added. This numerical
Hamiltonian has two advantages: first, it is easy to implement, and sec-
ond, the added diffusion results in smooth solutions. However, in cases
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of optimal path planning, where the motion is driven by a given velocity
field v(x, y), the excessive diffusion can qualitatively change the results,
especially near regions of zero velocity [2, 20].

Accordingly, we opt for the minimally diffusive Godunov Hamiltonian:

ĤG(φ
+
x , φ−x , φ+

y , φ−y ) = ext
u∈I(φ−x ,φ+

x )
ext

v∈I(φ−y ,φ+
y )

H(u, v) (25)

where
I(a, b) = [min(a, b), max(a, b)] (26)

and

ext
x∈I(a,b)

=

{
mina≤x≤b if a ≤ b,
maxb≤x≤a if a > b.

(27)

These extrema are designed to capture a formal similarity between Hamilton-
Jacobi equations and conservation laws, wherein the most important nu-
merical consideration is tracking the directions of the characteristics.

The Godunov Hamiltonian can be more difficult to implement, but be-
cause it is non-diffusive, it is far preferable for optimal path planning prob-
lems. In certain cases, the extrema in (25) can be resolved explicitly. For
example, when H(φx, φy) = v(x, y)

√
φ2

x + φ2
y and v ≥ 0, we have

HG(φ
+
x ,φ−x , φ+

y , φ−y ) =

v(x, y)
√

max{(φ−x )+, (φ+
x )−}2 + max{(φ−y )+, (φ+

y )−}2
(28)

where A+ = max{A, 0} and A− = −min{A, 0}.
Having decided on the Godunov Hamiltonian, we simply need to ap-

proximate the derivatives φx, φy and integrate (23) in time. Following Osher
and Shu [18], we use the essentially non-oscillatory second order approxi-
mations to the spatial derivatives and explicit second order total variation
diminishing Runge-Kutta time stepping to evolve the equation. Specifi-
cally, if our discrete domain is given by {xi}, {yj}, {tk} and φk

i,j is our ap-
proximation to φ(xi, yj, tk), then our scheme reads

φ∗i,j = φk
i,j − Ĥk

i,j∆t,

φk+1
i,j =

1
2

φk
i,j +

1
2

φ∗i,j −
1
2

Ĥ∗i,j∆t.

where Ĥk is the Hamiltonian evaluated at φk and Ĥ∗ is the Hamiltonian
evaluated at φ∗.
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Considering our specific case once again, this scheme will be stable
and approximate the solution at second order so long as our grid spacing
parameters ∆x, ∆y, ∆t satisfy the CFL condition

V∆t
(

1
∆x

+
1

∆y

)
< 1

where V = maxx,y v(x, y) [17].

6.2 The Redistancing Problem for Level Set Equations

As discussed in Section 5, the level set equation

φt + v(x)|∇φ| = 0,
φ(x, 0) = φ0(x),

(29)

is of particular interest to us. Here the initial function is the signed distance
function to the initial contour Γ(0) which we desire to evolve via level set
motion. However, when we solve the equation numerically, since the ve-
locity function v may be non-smooth, after some steps, there will be some
regions where the distortion accumulates and instabilities arise, causing
the level sets Γ(t) = {x : φ(x, t) = 0} to become an unreliable measure of
the points which can be reached by time t. However, because φ is a math-
ematical abstraction, and the only quantity we are concerned with is Γ(t),
we can circumvent this issue by periodically halting the time integration of
the equation and replacing φ with the signed distance to the current level
set Γ(t). This is knows as redistancing. It will prevent φ from developing
instabilities, and thus ensure that the level sets Γ(t) are reliable.

There are many ways to accomplish this redistancing. In our algorithm,
we use a "crossing time" method. We need to solve the eikonal equation

|∇u| = 1, x ∈ R2

u(x) > 0, x ∈ R2 \Ω,
u(x) < 0, x ∈ Ω \ ∂Ω,

where Ω is a closed set in R2. In our case, Ω will represent the interior
of the current level set Γ(t). We consider the Hamilton-Jacobi form of this
eikonal equation,

wt + |∇w| = 0, x ∈ R2, t > 0

w(x, 0) = w0(x), x ∈ R2,
(30)
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where the initial function w0(x) has zero level set ∂Ω but is not the signed
distance function to ∂Ω as desired. The connection between the Hamilton-
Jacobi equation and the eikonal equation is that w(x, t) = 0 if and only if
u(x) = t [8].

We use the first order Godunov scheme and first order time step to
solve the equation (30). First, the zero level-set contour of w(x, t) will be
evolved outward from Ω. For each point (xi, yj) outside Ω, when we detect
that the signs of wk

i,j and wk+1
i,j are different, we set the signed distance

function u(xi, yj) = (k + 1)∆t. Next, we use the initial function −w0, so
that the zero level-set contour will be evolved inward from Ω. Again for
each (xi, yj) inside Ω, when we detect that wk

i,j and wk+1
i,j have different

signs, we set different u(xi, yj) = −(k + 1)∆t.
We also implemented several other methods to do the redistancing.

One method based on a Hopf-Lax formulation is suggested by Royston
et al. [22]. Given x ∈ Rn and w satisfying equation (30), we need to solve
w(x, t) = 0. This equation can be solved numerically by the secant method,

tk+1 = tk − w(x, tk)
tk − tk−1

w(x, tk)− w(x, tk−1)
,

where the initial t0 and t1 can be chosen from the nearby nodes. Equation
(30) can be solved by Hopf-Lax formula,

w(x, t) = min
y∈Rn

{
w(y, 0) + tH∗

(
x− y

t

)}
,

where H∗ is the convex conjugate of H. Since H(p) = ‖p‖2, this formula
can be written

w(x, t) = min
y∈B(x,t)

w(y, 0)

and this optimization problem can be solved by projected gradient descent.
This method has the advantage of being easily parallelizable so that the
computational complexity will not be influenced too much by the dimen-
sion. The disadvantage of this method is that it contains two iterative parts:
the secant method to solve the equation φ(x, t) = 0 and projected gradient
method to find the minimum of φ0(y) in y ∈ B(x, t) and these pieces are
embedded in the sense that we must re-solve (29) via the Hopf-Lax for-
mula for each iteration tk of the secant method. Since our model is in R2,
the calculation burden of those solvers is much greater than that of simply
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solving the time-dependent eikonal equation, which is why we opt for the
previous method.

Another method for redistancing, as employed in Arnold et al. [2],
Parkinson et al. [20], is to explicitly calculate the distance from each grid
point to a polygon which approximates the current level set. For each
point, the distance to the given polygon is the minimum distance between
the point and each edge of the polygon. Thus we must calculate the dis-
tance from the point to each edge individually. This computation can be
parallelized in both the grid points, and the sides of the polygon. How-
ever, in our 2-dimensional model problem, if the size of grid is n× n, the
number of edges of the polygon will be O(n2) after some time steps, and
calculating the distance between each point and this polygon will have the
computational complexity O(n4). Empirically, we found this to be much
slower than the crossing time method.

Finally Zhao [24] proposed a fast sweeping method for redistancing.
This method is a type of Gauss-Seidel iteration. The strategy is to ’sweep’
through the grid from different directions and update the entries in a spe-
cific order accordingly. Again, our implementation of this scheme is slower
than the crossing time method. We also tried to replace the Gauss-Seidel
iteration here with the Jacobi iteration. Since for an n× n matrix, the Gauss-
Seidel iteration needs n steps to update all the entries in this matrix while
Jacobi iteration only needs one step. However, the convergence of the Ja-
cobi iteration is suspect. One advantage of this method is that it does not
require the initial function to be a good approximation of the signed dis-
tance function; it only requires knowledge of the boundary of Ω. However,
in our model problem, when we pause the time integration in order to
perform the redistancing, we assume that the function φ(x, t) is a good ap-
proximation to the distance function to the current level set Γ(t), and since
this is true, the fast sweeping method has no advantage over the crossing
time method.

6.3 Implementation Tricks

In order to give a complete account of our numerical methods, we also
describe three small implementation tricks that are specific to the problem
at hand.

First, when we solve the level set equation numerically, we perform
redistancing very frequently—roughly every 10 time steps. In order to
reduce the computational burden, we only perform the redistancing near
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the zero level set contour, then use very simple linear approximation of the
distance on the points which are far away from the zero level set. Since
the zero level set is the only quantity of interest, and since the level set
evolution depends only on the local values of φ(x, t), this will not affect
the quality of the solution. More explicitly, suppose the current level set
is Γ(t) and we want to find the signed distance function u(x) to this level
set. Further, assume that Γ(t) is contained in the box [a, b] × [c, d]. If we
perform the redistancing every n time steps, then we only need to use the
crossing time method to calculate the distance function for points in the
rectangle

R = [a− 2n∆x, b + 2n∆x]× [c− 2n∆y, d + 2n∆y].

This is because the crossing time level set is propagating with speed 1, so
if it is originally contained in [a, b]× [c, d], then it will remain inside R after
n steps, and further, it will remain unaffected by information propagating
inward from the exterior of R, where we are not perfectly resolving the
distance function. For any point x in the grid but not in R, we take the
value of the signed distance function u(x) as the boundary value of R plus
the L1 distance between this point and R, namely

u(x) = u(y) + d1(x, y), y = arg min
y∈∂R

d1(x, y).

Thus, for example, if (xi, yj) is the top right corner of R, then u(xi+k, yj+`) =
u(xi, yj) + k∆x + `∆y.

Second, in implementing crossing time method, we need to evolve equa-
tion (30) two times, once outward and once inward. In some cases the
inward evolution does not need many steps since the region inside the
zero level-set contour will be much smaller than the region outside, due
to the increased velocity along the road and river network in Roraima. So
in practice, if there are some successive steps wherein we don’t detect any
sign changes from wk

i,j to wk+1
i,j , we assume that the inward evolution is

complete and halt the iteration.
Third and finally, as described above, when we perform the redistanc-

ing, the value of u(xi, yj) = (k + 1)∆t when wk
i,j and wk+1

i,j have a different
sign. However, in reality, the point (xi, yj) could be much closer to k∆t than
it is to (k + 1)∆t. This is especially true of points along the initial contour.
These points lie between distances −∆t and ∆t and will be moved from
their original location to the midpoint of the contours corresponding to dis-
tance −∆t and ∆t, causing the initial contour to be distorted. Accordingly,
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rather than explicitly setting u(xi, yj) = (k + 1)∆t, we construct a linear
interpolant w̃i,j(t) between the values wk

i,j and wk+1
i,j and set u(xi, yj) = t0

such that w̃i,j(t0) = 0.
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7 Logging Experiments

In this section we will apply the level set solver to our model as described
in section 6. We give a detailed description of the experimental setup in
section 7.1 and analyze the numerical results in section 7.2.

7.1 Experimental Setup

In order to test our model, we first need to prepare data, choose coefficients
and design patrol evaluation metrics.

First, we discuss the calculation of the logging benefit function. we
weren’t able to find references on tree category data in the state of Ro-
raima. Moreover, neither PRODES nor DETER is a good indicator of log-
ging events due to low spatial resolution and other technical issues. For
example, logging generally will not lead to land clearance, which would
be detected by PRODES or DETER. Nevertheless, We decided to construct
the benefit function for logging based on PRODES data. We make the as-
sumption that deforestation for farming purpose only takes place within
10km of the major highways and treat all the other deforestation events as
the result of logging, which are plotted in figure 15a. We then design the
benefit based on the post-hoc reasoning that high benefit gives rise to high
event frequency within the region. Specifically, we use the same technique
as in KDE by stamping a 2-D Gaussian to each event. We then generate the
logging benefit by linearly combining the generated density function and
the binary benefit function used in the farming model as is shown in figure
15b.

Next, the logging model is much more sensitive to the transportation
system than the farming model because of the long travel distance to high
benefit regions. We try to design a realistic velocity field, as shown in figure
16, to accurately capture the movement of loggers throughout the region.
We first get the highway and water map from OpenStreetMap contribu-
tors [16]. We assign velocity 1, 0.8, 0.7 to major highways, waterways and
secondary highways respectively. For off highway and off water areas, the
velocity is the average of the vertical and horizontal gradients of each cell,
based on a USGS digital elevation model [10].

After this, we need to model the capture intensity. Patrollers’ capture in-
tensity is a complicated concept related with patrol resources like available
patrollers and equipment, patrol strategies like patrol path and frequency,
and patrollers’ capture ability. For now, we just deal with the capture in-
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(a) Events at least 10km away from high-
ways

(b) Benefit constructed for logging

Figure 15: Logging benefit

Figure 16: Velocity field in the state of Roraima

tensity in a simplified and ideal setting, where ψ(x) can be any function
that fulfills the budget constraint:∫

Ω
ψ(x)(1 + µd(x))2dx ≤ E

where E is the total budget, d is the Euclidean distance to the major high-
ways and µ is a constant. The penalty term (1 + µd(x))2 reflects the fact
that it is more expensive to patrol regions far away from highways. In the
experiment, we always set capture intensity so that the constraint reaches
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equality, which means the patrollers are always using the entirety of their
budget.

Among ψ satisfying the budget constraint, we would like to decide
which patrol strategies are more effective than others. We’ve designed
three different metrics to evaluate patrol efficiency.

• Pristine area ratio PR: we define the regions with non-positive profit
as pristine area. PR calculates the ratio of the area of pristine region

over the area of the state as
∫

Ω 1{P(x)≤0}dx∫
Ω 1dx .

• Pristine benefit ratio PB: this metric weighs pristine area by benefit

as PB =
∫

Ω B(x)1{P(x)≤0}dx∫
Ω B(x)dx and represents the ratio of benefit within the

pristine area over the total benefit.

• Weighted profit WP: as in the farming model, we also interpret the
positive part of the profit as the probability density for loggers to
choose the logging location. We then define WP as the expected profit

by WP =
∫

Ω P+(x)2dx∫
Ω P+(x)dx , where P+(x) = P(x)1{P(x)≥0}.

We run the model on a 600 × 600 grid and set time step size to be
min{∆x, ∆y}/(2 max Ṽ) to satisfy the CFL condition, where ∆x and ∆y
are the spatial grid size in x and y directions and Ṽ is the modified ve-
locity in the time-dependent Hamilton-Jacobi equation. We will do a re-
initialization every 10 time steps. We set α = µ = 2

(5 maxx∈Ω d(x)) ≈ 7.33×
107, β = 1

ln(10) ≈ 4.34× 10−1, T = 2000000.

7.2 Results

We tested our model with different patrol budgets and patrol strategies.
We also explored the influence of logging time and changing the velocity
when traveling with goods. In the end, we will look into optimal logging
paths and discuss interesting findings.

7.2.1 Example 1: No Patrol

We first impose no patrol. Recall that the returning velocity is modified
following v(x)/(1+ c(t/T)γ) to take into account the influence of carrying
timber. When the amount of timber has no influence, i.e., c = 0, the optimal
paths traveling in and traveling out are the minimal time path, and the
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loggers will always use the maximal logging time T. The resulting profit
is shown in figure 17a. We then tested c = 1, γ = 0.5 and γ = 2. Since
0 ≤ t/T ≤ 1, γ = 0.5 gives a harsher penalty to velocity than γ = 2, and
thus a higher cost. As we can see from figure 17, expected profit is 0 in
most of the region when γ = 0.5. Profit for γ = 2 is only a little bit smaller
than the c = 0 case. In all of the following experiments, we will set c = 0
and only look into the influence of patrol.

(a) c = 0 (b) c = 1, γ = 2 (c) c = 1, γ = 0.5

Figure 17: Returning velocity depends on trees obtained, no patrol imposed

7.2.2 Example 2: Comparison of Different Budget

In this example, we set ψ(x) = B(x)E
(1+αd(x))11

∫
Ω(1+αd(x))−9B(x)dx , which is shown

to be a good patrol strategy in section 7.2.4. We then set E to be 0.001, 0.002
and 0.004. The resulting profit is plotted in figure 18. It’s clear that higher
budget will give lower profit. In all of the following experiments, we fix E
to be 0.002.

7.2.3 Example 3: Influence of Patrol on Logging Time

We use the same experimental set up as in the previous example, and we
fix E as 0.002. Recall that we discretize the logging time and search for the
optimal time by parameter sweep. In all of the experiments, we discretize
logging time into 10 different levels. We plot the optimal logging time in
figure 19a. We then sample 5 points in this region which have optimal
logging time 3, 4, 6, 8 and 10 respectively and are marked as red points in
figure 19a. Figure 19b shows the profit as a function of logging time at
each point and we see that there are different optimal logging times for
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(a) E = 0.001 (b) E = 0.002 (c) E = 0.004

Figure 18: Expected profit with different budget

each point. This is because the risk of capture is higher at some points,
making logging for extended periods of time very dangerous.

(a) Optimal time
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(b) Profit changes with logging time
at different spots

Figure 19: Influence of patrol time

7.2.4 Example 4: Comparison of Different Patrol Strategies

In this example, we compare the patrolling efficiency for different cap-
ture intensity functions ψ(x). We plot the corresponding capture intensity
function, profit and optimal time for each experiment and summarize the
evaluation based on aforementioned metrics in table 1.
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First, we consider a patrol only based on distance to roads by setting

ψ(x) =
E

(1 + αd(x))r
∫

Ω(1 + αd(x))2−rdx
,

where r is chosen to be 1, 3, 7, 11. We may want to give more attention
to regions which are close to roads as logging and patrol costs are low in
these regions. Larger r means the patrol is more concentrated near the
highways, while smaller r leads to more uniformly distributed patrol. Fig-
ures 20 - 23 exhibit the corresponding capture intensity, profit and optimal
time. When r = 1, loggers will fully exploit logging time and clear the
forest at almost all of the locations, which means capture risk is not a huge
threat. When r increases, the optimal logging time along with the profit
near highways starts to decrease, while profit far away into the forest in-
creases. These results give us the clue that we shouldn’t concentrate too
much along highways. Moreover, all four profit plots have the pattern that
high benefit regions are high profit regions, which inspire us to take benefit
into consideration.

(a) Capture intensity (b) Profit (c) Optimal time

Figure 20: Patrol based on distance only, r = 1

Next, we set

ψ(x) =
B(x)E∫

Ω(1 + αd(x))2B(x)dx

so that the capture intensity is proportional to the benefit. The result is
shown in figure 24. Clearly, the intense patrol in high profit regions make
those regions less vulnerable. Figure 24b shows that profitable regions now
cluster around highways where both the initial benefit and the travel cost
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(a) Capture intensity (b) Profit (c) Optimal time

Figure 21: Patrol based on distance only, r = 3

(a) Capture intensity (b) Profit (c) Optimal time

Figure 22: Patrol based on distance only, r = 7

(a) Capture intensity (b) Profit (c) Optimal time

Figure 23: Patrol based on distance only, r = 11

is relatively low. The optimal logging time at the northwest corner is much
shorter than in other regions.
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(a) Capture intensity (b) Profit (c) Optimal time

Figure 24: Patrol based on benefit only

Previous experiments inform us that we need to balance benefit and
distance when designing a patrol strategy. Here, we set the patrol

ψ(x) =
B(x)wE

(1 + αd(x))r
∫

Ω(1 + αd(x))2−rB(x)wdx

We tested this patrol with w = 0.5 and 1, r = 3, 7, 11, 15. Results are plotted
in figures 25 - 32. Both the figures and table 1 confirm that w = 1, r = 11 is
the best choice.

(a) Capture intensity (b) Profit (c) Optimal time

Figure 25: Patrol based on benefit and distance, w = 1, r = 3

All previous experiments show that both distance to roads and bene-
fit are important factors for patrol allocation. For now we do not have a
method to find optimal patrol strategies, but our model can be applied to
evaluate and compare different strategies.



7. Logging Experiments 48

(a) Capture intensity (b) Profit (c) Optimal time

Figure 26: Patrol based on benefit and distance, w = 1, r = 7

(a) Capture intensity (b) Profit (c) Optimal time

Figure 27: Patrol based on benefit and distance, w = 1, r = 11

(a) Capture intensity (b) Profit (c) Optimal time

Figure 28: Patrol based on benefit and distance, w = 1, r = 15

7.2.5 Example 5: Optimal Paths

Finally, we calculate the optimal paths that loggers take to and from their
logging sites. We use the same patrol strategy as shown in figure 30a. We
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(a) Capture intensity (b) Profit (c) Optimal time

Figure 29: Patrol based on benefit and distance, w = 0.5, r = 3

(a) Capture intensity (b) Profit (c) Optimal time

Figure 30: Patrol based on benefit and distance, w = 0.5, r = 7

(a) Capture intensity (b) Profit (c) Optimal time

Figure 31: Patrol based on benefit and distance, w = 0.5, r = 11

sampled 500 points in Roraima based on expected profit and plotted the
optimal path going into the forest (figure 33a) and going out of the forest
(figure 33b). We find that the optimal paths that go deeper into the forest
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(a) Capture intensity (b) Profit (c) Optimal time

Figure 32: Patrol based on benefit and distance, w = 0.5, r = 15

in the northwest corner cluster into one trajectory and the optimal paths
going in and going out are quite similar. One reason why this happens
is that the capture intensity is much smoother than the velocity field due
to the rivers running across this region. The fast travel speed along the
river outweighs the risk of being captured. Moreover, if we zoom into the
northwest corner, we can see that the optimal paths for different directions
are not exactly the same because of the influence of patrol.

(a) Optimal path of go-
ing into the forest

(b) Optimal path of go-
ing out of the forest

(c) Optimal path zoom
in

Figure 33: Optimal path
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Patrol based on Parameters WP PA PB

Distance only

r = 1 0.2792 0.5674 0.3485
r = 3 0.3813 0.5630 0.3302
r = 7 0.6192 0.5459 0.2864
r = 11 0.8215 0.5237 0.2459

Benefit only 0.1696 0.6820 0.5105

Benefit and
distance

w = 1, r = 3 0.1044 0.6828 0.6805
w = 1, r = 7 0.0811 0.7318 0.7394
w = 1, r = 11 0.0661 0.7737 0.7883
w = 1, r = 15 0.1091 0.7508 0.6115
w = 0.5, r = 3 0.1044 0.6828 0.6804
w = 0.5, r = 7 0.0856 0.7374 0.6121
w = 0.5, r = 11 0.3038 0.7370 0.5569
w = 0.5, r = 15 0.6211 0.7232 0.5018

Table 1: Comparison of different patrol strategies
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8 Conclusion

Identifying two modes of deforestation, clearance of land for farming and
illegal logging, we build up two mathematical models to describe the ob-
served events. To describe land clearance we developed an agent based
model for individual farmers who acted as static attackers, clearing more
land with each time step and thus causing more deforestation. For illegal
logging, we built a control theoretic model to predict the paths of the log-
gers and the locations they may choose to target. Additionally, we detailed
the numerical solvers used for the Hamilton-Jacobi and control theoretic
equations. Finally, we tested various patrol strategies with the logging
model and the determined which patrol strategies best protected the for-
est.

8.1 Farming Model: Main Achievements and Future Work

In our farming model, we constructed the expected profit formula for farm-
ers to decide where to clear land for illegal farming. We also performed
time series analysis to simulate the behaviors of farmers and growth of
farms, with capture probability built in. We compared our model with real
deforestation data and evaluated the results with average F1 score. The
strength of our model is that it takes into account many realistic factors
such as distance to roads, distance to cities, clustering effect, tree coverage,
punishment, capture possibility and maximum operation time for farms.
Besides this, our model is easy to explain and understand.

In future, we can improve our model by doing some of the following:

• Further optimize our set of parameters.

• Consider more realistic factors.

• Try different patrol strategies and possibly find the optimal one.

• Design a better algorithm to model farm expansion.

8.2 Logging Model: Main Achievements and Future Work

In all previous models, the illegal logging events happen instantaneously
when the criminals arrive at the logging location. In our model, we con-
sider the logging events occurring over a period of time so that the crimi-
nals have a chance of being caught while they are cutting down trees. The
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criminals may not take all the benefit from a spot (i.e. cut down all the
trees in a spot) and they will balance between the chance of getting caught
and the benefit they can gain in order to find a optimal logging time.

We believed this is closer to modeling real life, since we can see on
the satellite map that there are some places where logging events occurred
but trees still remain. With our model, we can evaluate the intensity of a
logging event rather than merely decide whether an event will happen or
not.

With different logging times, criminals carry different amount of timber
with them as they travel out of the forest, and the amount of timber will
influence the velocity. We also calculate the capture probability in a more
reasonable way than [2].

Besides this, our model and experiments are based on real data set.
The elevation, river, different types of roads and cities are all included in
our model, and criminals embark from different cities rather than from the
boundary of the region.

In the future, we can do the following to improve our model:

• Remove the linear approximation of capture probability. In our cur-
rent logging model, we use a linear approximation of the exponential
term to make the formula in the optimization problem easier to deal
with. This approximation is not ideal since the exponential term will
never become negative but the linear approximation will. We would
like to directly deal with the exponential term in the formula to make
our model more accurate.

• Optimal patrol strategy. Currently we have some metrics to evaluate
whether a patrol strategy is good or not. We use these metrics to com-
pare different patrol strategies, but we would like to try to analytically
solve the optimization problem over the patrol strategy to maximize
or minimize these metrics. Failing this, we would like to design a
method to perturb a given patrol strategy in order to improve it.

• Realistic patrol strategy. Not all the patrol strategies are realistic. For
example, a patrol strategy that only patrols some spots far inside the
forest is not available since most of the policemen live in the cities
and they need to travel along some path from where they live to go
deep into the forest. We’d like to solve the following problem: given a
desired patrol density, how do we arrange policemen to get a realistic
patrol strategy to approximate the desired one. Here the arrangement
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of policemen includes the traveling path, the velocity, the number of
policeman (or the ratio of the number of policemen in each policeman
group to the total number of policemen).

• Improve the model with more real data We suspect that there might
be some other data which could be included to improve our model.
For example, the price of timber, the distribution of different kinds
of trees and the population density all likely have significant effects
on illegal logging. We don’t have these data now but would like to
include them in the future.



Bibliography 55

Bibliography

[1] H. J. Albers. Spatial modeling of extraction and enforcement in devel-
oping country protected areas. Resource and Energy Economics, 2010.

[2] D. J. Arnold, D. Fernandez, R. Jia, C. Parkinson, D. Tonne, Y. Yaniv,
A. L. Bertozzi, and S. J. Osher. Modeling environmental crime in pro-
tected areas using the level set method. SIAM Journal on Applied Mathe-
matics, 79(3):802–821, 2019. ISSN 0036-1399. doi: 10.1137/18M1205339.

[3] J. J. Assunção, C. Gandour, and R. Rocha. Deforestation slowdown in
the Brazilian Amazon: prices or policies? 2012.

[4] Martino Bardi and Italo Capuzzo-Dolcetta. Optimal control and viscos-
ity solutions of Hamilton-Jacobi-Bellman equations. Springer Science &
Business Media, 2008.

[5] Elliot Cartee and Alexander Vladimirsky. Control-theoretic models of
environmental crime - preprint, 06 2019. URL https://arxiv.org/
abs/1906.09289.

[6] M. G. Crandall and P.-L. Lions. Two approximations of solutions of
Hamilton-Jacobi equations. Mathematics of Computation, 43(167):1–19,
1984.

[7] C. G. Diniz, A. A. d. A. Souza, D. C. Santos, M. C. Dias, N. C. d. Luz,
D. R. V. d. Moraes, J. S. Maia, A. R. Gomes, I. d. S. Narvaes, D. M. Va-
leriano, L. E. P. Maurano, and M. Adami. DETER-B: The new Amazon
near real-time deforestation detection system. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 8(7):3619–3628,
July 2015. ISSN 1939-1404. doi: 10.1109/JSTARS.2015.2437075.

[8] I. C. Dolcetta. The Hopf-Lax solution for state dependent Hamilton-
Jacobi equations (viscosity solutions of differential equations and re-
lated topics). 2002.

[9] F. Fang, T. H. Nguyen, R. Pickles, W. Y. Lam, G. R. Clements, B. An,
A. Singh, B. C. Schwedock, M. Tambe, and A. Lemieux. PAWS — a de-
ployed game-theoretic application to combat poaching. AI Magazine,
38(1):23–36, Mar. 2017. doi: 10.1609/aimag.v38i1.2710. URL https:
//www.aaai.org/ojs/index.php/aimagazine/article/view/2710.

https://arxiv.org/abs/1906.09289
https://arxiv.org/abs/1906.09289
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2710
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2710


Bibliography 56

[10] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley,
M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shi-
mada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Als-
dorf. The shuttle radar topography mission. Reviews of Geophysics,
45(2), 2007. doi: 10.1029/2005RG000183. URL https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183.

[11] D. Kar, F. Fang, F. Delle Fave, N. Sintov, and M. Tambe. A game of
thrones: When human behavior models compete in repeated Stackel-
berg security games. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pages 1381–1390. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2015.

[12] D. Kar, B. J. Ford, S. Gholami, F. Fang, A. J. Plumptre, M. Tambe,
M. Driciru, F. Wanyama, A. Rwetsiba, M. Nsubaga, and J. Mabonga.
Cloudy with a chance of poaching: Adversary behavior modeling and
forecasting with real-world poaching data. In AAMAS, 2017.

[13] W. F. Laurance, A. K. M. Albernaz, G. Schroth, P. M. Fearn-
side, S. Bergen, E. M. Venticinque, and C. Da Costa. Predic-
tors of deforestation in the Brazilian Amazon. Journal of Bio-
geography, 29(5-6):737–748, 2002. doi: 10.1046/j.1365-2699.2002.
00721.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1046/
j.1365-2699.2002.00721.x.

[14] G. O. Mohler, A. L. Bertozzi, T. A. Goldstein, and S. J. Osher. Fast
TV regularization for 2D maximum penalized likelihood estimation.
Journal of Computational and Graphical Statistics, 20(2):479–491, 2011.

[15] National Institute of Space Research (INPE). PRODES de-
forestation. Accessed through Global Forest Watch in 07/2019.
www.globalforestwatch.org.

[16] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org, 2017.

[17] S. J. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer Verlag, 2003.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2699.2002.00721.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2699.2002.00721.x
 https://www.openstreetmap.org 


Bibliography 57

[18] S. J. Osher and C.-W. Shu. High order essentially non-oscillatory
schemes for Hamilton-Jacobi equations. SIAM Journal of Numerical
Analysis, 28(4):907–922, 1991.

[19] Stanley Osher and James Sethian. Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi formulations.
Journal of Computational Physics, 79:12–49, 1988.

[20] C. Parkinson, D. J. Arnold, A. L. Bertozzi, Y. T. Chow, and S. J. Os-
her. Optimal human navigation in steep terrain: a Hamilton-Jacobi-
Bellman approach. Communications in Mathematical Sciences, 17:227–
242, 01 2019. doi: 10.4310/CMS.2019.v17.n1.a9.

[21] A. S. P. Pfaff. What drives deforestation in the Brazilian Amazon?:
Evidence from satellite and socioeconomic data. Journal of Environ-
mental Economics and Management, 37(1):26 – 43, 1999. ISSN 0095-
0696. doi: https://doi.org/10.1006/jeem.1998.1056. URL http://www.
sciencedirect.com/science/article/pii/S0095069698910567.

[22] M. Royston, A. Pradhana, B. Lee, Y. T. Chow, W. Yin, J. Teran, and S. J.
Osher. Parallel redistancing using the Hopf–Lax formula. Journal of
Computational Physics, 365:7–17, 2018.

[23] T. Slough, J. Urpelainen, and Johns Hopkins SAIS. Public policy un-
der limited state capacity: Evidence from deforestation control in the
Brazilian Amazon. Technical report, mimeo, 2018.

[24] H. Zhao. A fast sweeping method for eikonal equations. Mathematics
of computation, 74(250):603–627, 2005.

http://www.sciencedirect.com/science/article/pii/S0095069698910567
http://www.sciencedirect.com/science/article/pii/S0095069698910567

	Introduction
	Previous Work

	Preparation and Analysis
	Data Analysis
	Indicator Function of Trees

	Farming Model
	Overview of the Farming Model
	Fitting Parameters
	Time Series Model

	Logging model
	Model Construction
	Simplification and Approximation

	Path Planning with Optimal Control Theory
	Static Hamilton-Jacobi-Bellman Equation
	The Eikonal and Hamilton-Jacobi Equations
	Finding the Optimal Path
	Optimal Control Problem in Our Model

	Numerical Methods and Implementation
	Numerical Schemes for Hamilton-Jacobi Equations
	The Redistancing Problem for Level Set Equations
	Implementation Tricks

	Logging Experiments
	Experimental Setup
	Results
	Example 1: No Patrol
	Example 2: Comparison of Different Budget
	Example 3: Influence of Patrol on Logging Time
	Example 4: Comparison of Different Patrol Strategies
	Example 5: Optimal Paths


	Conclusion
	Farming Model: Main Achievements and Future Work
	Logging Model: Main Achievements and Future Work

	Bibliography

