Raymond Chu

Education	 University of California, Los Angeles (UCLA) Ph.D. in Mathematics Cumulative GPA 4.00 Qualification Exams Passed: Analysis and Applied Differential Equation 	Los Angeles Sep 2020 – Present			
	 Bachelor of Science in Applied Mathematics 	Sep 2016 – Jui	n 2020		
Research Interest	Analysis of Partial Differential Equations, Probability Theory, Stochastic Processes, Mathematical Modeling, and Applied Mathematics				
Publication	R. Chu. A Hele-Shaw Limit with a Variable Upper Bound and Drift. Submitt	Submitted. 2022			
	S. Christensen, R. Chu , C. Anderson, M. Roper. <i>Fast Asymptotic-Numerica Coarse Mesh Particle Simulation In Channel Of Arbitrary Cross Section</i> . Sub-		2021		
Awards	National Science Foundation (NSF) GRFP, Honorable Mention, NSF – The Only Honorable Mention for the NSF Graduate Research Fellowshij matical Analysis in 2022				
	 Horn-Moez Prize, UCLA 2021 Awarded to 3 Ph.D. mathematics students per cohort for academic excellence during first year of graduate studies 				
	Summer Mentored Research Fellowship, UCLA - A merit based summer research fellowship		2021		
	Undergraduate Research Fellowship, UCLA – A merit based scholarship for my undergraduate research		2020		
Research Experience	 Partial Differential Equations, UCLA 2020-Pres – Researching the well posedness of various Partial Differential Equations arising in physis settings using tools such as Analysis, Optimization, and Probability Theory 				
	The Mycofluidics Lab, UCLA – Mathematical modeling of inertial migration of particles across micro-		8-2020		
	 Used our model to derive new asymptotic scalings of forces in inertial migration, which we validated with numerical simulations 				
	– Wrote a numerical solver in MATLAB for a linearized Navier-Stokes sy	rstem			
	 Applied Math REU, UCLA 2019 – Used machine learning in MATLAB on a data set of 15 million entries to understand deforestation in Brazil 				
	- Constructed a mathematical model on deforestation based on the data set				
	– Wrote numerical solvers for the resulting model in MATLAB				
Presentation	The Stiffness Limit of Porous Medium Type Equations, UCLA Participating Analysis Seminar, Los Angeles, California, 2022.				
	inFocus Fast Inertial Lift Velocity Calculation In Arbitrary Geometry, 72 the American Physical Society's Division of Fluid Dynamics, Seattle, Washing		eting of		

	A Model of Deforestation for Agricultural Land Clearance in the Brazilian Rainforest, 4th Annual Intelligence Community Academic Research Symposium, Washington DC, 2019.			
Professional Service	 Departmental Reading Program Committee Member, UCLA 2021-Present Match 45 undergraduates per year with a graduate student mentor on a 1 on 1 reading course on advanced mathematical topics 			
	Undergraduate Studies Committee Representative, UCLA	2021-Present		
	 Help the undergraduate studies committee decide on educational policy and curriculum matters for undergraduates 			
Undergraduate	Departmental Reading Program Mentor, UCLA	2021-Present		
Mentoring	 Stochastic Calculus and Probability Theory 	Spring 2022		
	 Stochastic Processes and Optimization 	Winter 2022		
	– Fourier Analysis	Fall 2021		
	 Calculus of Variations for Fluid Mechanics 	Summer 2021		
	 Linear Algebra Applied to Machine Learning and Optimization 	Spring 2021		
Teaching	Teaching Assistant, UCLA	2020-Present		
Experience	 Math 142: Mathematical Modeling 	Spring 2022		
	 Math 266B: Applied PDEs (Graduate course) 	Winter 2022		
	 Math 266A: Applied ODEs (Graduate course) 	Fall 2021		
	– Math 131B: Real Analysis	Spring 2021		
	 Math 142: Mathematical Modeling 	Winter 2021		
	 Math 31A: Differential Calculus 	Fall 2020		
Graduate	– Probability Theory: Math 275A, Math 275B, Math 275C			
Course -	– Numerical Analysis: Math 269A, Math 269B, Math 269C			
	– Differential Equations: Math 266A, Math 266B, Math 266C, Math 251A, Math 251B, Math 251C			
	- Continuum Mechanics: Math 272A, Math 272B			
	– Real Analysis: Math 245A, Math 245B, Math 245C, Math 254A, Math 285G			
	– Harmonic Analysis: Math 247A, Math 247B			

– Harmonic Analysis: Math 24/A, Math 24/F
 – Complex Analysis: Math 246A, Math 246B