BASIC QUALIFYING EXAM

RAYMOND CHU

These are my solutions for the Basic Qualifying Exam at UCLA. The exams can be found here. I wrote
these solutions up while studying for the Fall 2020 Basic Exam. These solutions should have a majority
of the solutions for the basic exam from 2010 Spring to 2020 Spring.

I am very thankful to Jerry Luo, Yotam Yaniv, Joel Barnett, Steven Truong, Jas Singh, Grace Li, Xinzhe
Zuo, John Zhang, and James Leng for many useful discussions on these problems.
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1. SPRING 2010

Problem 1. Recall that if A € R®*"™ and B € R™"*" then AB is invertible if and only if A and B are
invertible. Let us define the matrix U := [uq,...,u,] and Y := [y1, .., yn] then U + Y is invertible if and
only if UT(U+Y) = I+UTY is invertible. And I+ UTY is invertible if and only if the columns {u; +y;}
form a basis of R"™.

Notice that [[UTY]|3 = 31, ;(UTY)}; = Te(YTUUTY) = Te(YTY) = 357, Vi3 < 1. So it suffices to

show if ||B||2 < 1 then I + B is invertible. Indeed, fix  such that (I + B)z = 0 then

z; + ijBij =0 for all 4
j=1
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n
Tr; = — E iCjBij
Jj=1

Let z := (21,..,2,)T and y := _(Z?:1 zjBij, ..., Z?:l 7;By;)T so we get = y. Then by taking norms
we get

n n n
][ = Nyl =Y 2Biy)* < l«ll* Y Bf < ||l
i=1 j=1 ij=1
where the first inequality is due to Cauchy-Schwarz and the last inequality applies whenever ||z|[? # 0
due to ||B]|3 < 1. Therefore, we get # = 0. so I + UTY is invertible so {u; + y1, .., U + Y} is linearly
independent.

Problem 2. By spectral theorem we can write there exists a basis of orthonormal eigenvectors of A.
Write the eigenvectors as {vy,..,v,} where v; is associated with A; as defined in the problem. Then for
any fixed k we have for U := span{vi} @ ... ® span{vy} which is k& dimensional

(Az,z) > min U(Ax,ac) = Ag

max min >
V,dim(U)=k ||z||=1,2€V l|z]|=1,2¢€

where the last inequality follows from

k k n n
(Az,z) = (Z Q;\iv;, Z%’Uz‘) = Za?/\i > Zaf)\k = A\
i=1 i=1 i=1 i=1

since >~ a? =1 due to ||z|| = 1 and {v;} are orthonormal.

For the reverse inequality fix a k dimensional subspace U then we claim that at least k eigenvectors live
in U. Indeed, if there are only ¢ < k eigenvectors say v;,,..v;, then U C span(v;,) @ ... ® span(v;,) so
U has at most dimension ¢ < k which is a contradiction. So as there exists at least k eigenvectors in U.
This implies that min||z)j=1,zev (Az, 2) < A\p where ||z|| = 1 since we have at least k eigenvectors. As U
is arbitrary we conclude.

Problem 3. If ST =TS and S,T are normal then we have a basis of orthonormal eigenvectors for T
i.e. T(v;) = A\jv;. Then

so S(v;) is either a eigenvector of T with value A or S(v;) = 0. In either case we have for E(\;,T)
that S : E(A\;,T) — E(X;,T) is a normal operator. So by the spectral theorem there exists a basis of
eigenvectors w; such that S(w;) = a;w;. Union all of these eigenvectors in all E();,T) along with using
V =@&}_,E(X\;,T) to conclude.

Problem 4a. As A is symmetric and SPD we get all of its eigenvalues are non-negative. But the trace
is the sum of the eigenvalues, which implies all of its eigenvalues must be zero. Therefore, by spectral
theorem it implies A is similar to the zero matrix, so A is the zero matrix.

Problem 4b. Using TT* is self adjoint we get T' = T™ so we have

T2 =4T - 31
which implies the minimal polynomial divides 22 — 4z + 3 = (x — 1)(z — 3) so all of its eigenvalues can
be 1 or 3 so it is Positive Definite.

Problem 5. We get that the minimal polynomial M (t) = TI?_; (t — ;)% ! so both of these matrix have
a Jordan Block of size a; — 1 for A;. But as P(¢) = I, (t — \;)® we get that the total size of the Jordan
Blocks of \; is a;. So we must have one Jordan block of size a; — 1 and one of size 1 for A\;. Therefore,
both matrix have the same JCF, so they are similar to one another.

Problem 6a. By direct computation we get
2 312 1]|-1 3
=Bk

W [2 320 m2n 1] [-1 3
A_[110 o |1 -2

Problem 6b. We have

take n = 100



Problem 6c. By direct computation we get

An (279 _ an+1
Ap—1 N Qp

Problem 7. This is a typical diagonalization argument. Indeed enumerate the rationals as {g,}. Then
1)

{fn(q1)} is bounded sequence in R so there is a convergent sub-sequence n,’ and a limit f(¢1) and

{f,(g2)} is also bounded so there exists a sub-sequence n? of ngl) and a limit f(g2). Repeat this for

l(ck)' Then for any j we have as fni,’f)(qﬂ') — f(g;) so for any
fixed € > 0 the existence of N such that we have for any m > N

|fom(g5) = flg5)l < e

By construction we have ny is a subsequence of ng,lf), so we also have for large enough £ that

|fan(a5) = flg)| < €
Problem 8. As K is a closed subset of a complete metric space it is easy to see that K is complete.
Assume K is also totally bounded. Then let {z,,} be an arbitrary sequence in K. Then there exists an
integer N such that K C Ufil Bi(#) for z; € K. Then if {x,} is a finite set we are done so assume it is
infinite this implies there exists a ¢ such that there are infinitely many terms of x,, in By(z;). Let y1 := 2;

all n and define the sub-sequence ny := n

and let this new subsequence which has infinitely many terms in Bj(z;) be defined as {xg)}. Repeat the

argument to find a ball of radius 1/2 with center yy := zi@) such that there are infinitely many terms

{33511)} in By (21(2)) with this new subsequence denoted {xg)}. We can do this for all n with balls of radius
§") and let w, := x;"). Then we claim w,, is Cauchy. Indeed, if n < m

n n 1
A(wn, ) < dwn, 57) + d(5" wm) < 5

1/2™ and cenreres y,, := z

where the last inequality is due to w,,w,, € B & (wy,). Then completeness implies we have a convergent
subsequence.

Problem 9. Since V f(z0, 0, 20) # 0 we can WLOG assume that 0, f (2o, 0, 20) # 0. Then as f € C!
with f : R14+2 — R such that f(zo,y0,20) = 0 and 9, f(xo,¥0,20) # 0 we can apply the Implicit
Function Theorem to find a open neighborhood U C R? with (yo, 29) € U such that 9, f (0,30, z0) # 0
in U and a function ¢ : U — ¢(U) such that

f(@(&t)v S’t) =0

and 0y, (w2, 23) = —0,, f(0f) 1. Take the surface as (¢(s,t), s,t) then it is a differentiable surface in
U due to the derivative formula above and f € C! and 9, f (%o, ¥, 20) # 0 in U.

. t2uiu
Problem 10a). Fix u = (u1,uz2) then f(tu) — f(0) = 2 so we have

ty/utu?

f(tu) — f(0) __ uiug
NG e

Therefore, the directional derivative exists for all directions at (0,0) and is

Uiju2
Problem 10b. If f was differentiable at (0,0) then the directional derivative for all u would be given
by Df(0) - u which implies that the directional derivative are linear with respect to the directions. But

obviously if u # v then Df(0)-u+ Df(0)-v # w so it implies there cannot be differentiable
at the origin.

Problem 11. Fix € > 0 then there exists an N7 such that if n > N; then if n > N; we have

o0
Z lan| < e
k=n

and there exists an a such that )" a,, — a so there exists an Ny such that if n > Ny then if n > No

zn:ak —k
k=1
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Then as o is a bijection on N there exists an N3 such that if n > N3 then o(n) ¢ {1, ..., max{Ny, Na}}.
Take any N > max{Ny, No, N3} then

N N No N
D o) = < |Y Aoty = Y _an|+ Y an—a
n=1 n=1 n=1 n=1
=l D> aplte
i:o(i)¢{1,...,N1
< Z la;| + e < 2e
i=N1+1
SO Ug(n) — Q.
Problem 12a. False. Take f, as a triangle on [0, 5] with mass 1. Then max,e( 1] fn = n and

1
fo fn(@) = %

Problem 12b. Type writer function. Le. fi = 1, fa = xj0,1/2;, f3 = X721 fa = X014 f5 =
X(1/4,1/2]s J6 = X[1/2,3/4]s f=x(3s..)- This does not converge to 0 anywhere but converges in L' to the 0
function. This function is not continuous but we can modify it by making it into tents to get the desired
result.



2. FALL 2010

Problem 1a). We first prove that if infyc g yer p(z,y) > 0 then K N F = (. Indeed, assume this was
false then there exists a sequence {z;,y;} C K x F with

lim d(z;,y;) = 0

Jj—4o00
Then as K is compact there exists a sub-sequence z;, C K and z € K such that z;, — . This implies

lim d(xvyjk) =0

k——+oo

thanks to the triangle inequality. But this implies x is a limit point in the closed set F', so we must have
x € F. Therefore, x € K N F which is a contradiction.

For the reverse direction just note that if x € K N F then
0< inf Kd(x,y) <d(z,x) =0

rzeK,ye
so we must have K N F = .

Problem 1b. If f is a continuous function then

G(f) = A{(z, f(z)) : z € R}

is closed subset of R%. Then let F := {(x,0) : # € R}. Then we have G(f) and F is closed subset of R.
Then taking the standard metric in R? we have G(exp(—z?)) and F are disjoint since exp(—z?) # 0 for
any z € R. But we have

inf d(z,y) =0
zE€G(exp(—x2?),yeF ( y)

since d((z,0), (z,exp(—2?)) = exp(—2?) — 0 as x — +o0.

Problem 2a. We say a bounded function f in [a, ] is Riemann integrable if for any & > 0 we can find
a partition such that the lower Riemann sum within epsilon distance of the upper Riemann sum with
respect to this partition. Le. if € > 0 we want to find a partition P = {a = 29 < 1 < ... < zy = b} such
that

N

N
Z inf  f(x)Az;+¢> Z sup  f(z)Az;

P TE€[ri—1,x] i—1 TE€[Ti—1,74]
where Ax; == x; — 2,1

Problem 2b. Let f be continous on [a,b] then it is uniformly continuous so there exists a § > 0 such
that if |z — y| < 6 then |f(z) — f(y)| < +=. Let mesh(P) := max\, Az; < § then

b—a-
N N
inf r)— su )| Az; < Ar;, =¢
Sl S s fwan <Y
This implies
N N
Z inf  f(x)Az; +¢> Z sup  f(z)Aux;
=7 o€l@i-1,xi] T3 z€lwio1,zil
as desired.
Problem 3a. If f € C3(R) then we have for any z,y € R
"
Fa) = F@) + £ @) - o)+ 5D o2

for some £(y) € (x,y) and if g : R? — R then we must have for any z,y € R?

9(x) = g(y) + Va(y) - (& —y) + (z — )" D>g(£(y)) (x — y))
where £(y) = (£(y1),&(y2)) where €(y;) € (24, ;) and D? is the Hessian Matrix.
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Problem 3b. Fix u,v € R? with u = (uy,us),v = (v1,v2(. Let h: R — R be defined by
h(t) := g(tu+ (1 — t)v)

then
%h(t) = 0g(tu+ (1 —t)v)(u1 — v1) + Oyg(tu + (1 — t)v)(ug — v2)
S0
4 h(t)limo = Vg(0) - (4~ v)
and
d2

Wh(t) = 0% g(tu+(1—t)v)(uy —v1)2+8§yg(tu+(1 —t)v)(us —vg)z+26§yg(tu+ (1—t)y)(ug —v1)(ua—v2)

= (u—v)TD%*g(tu + (1 — t)v)(u —v)
By Taylor Theorem for single variable function with remainder

h(1) = h(0) + Tg(v) - (u—v) + = v>TD292<£<v>>(u )

but h(1) = g(u) and h(0) = g(v) so we arrived at the desired result.

Problem 4 a. We claim that the family {Zi\;l ;P +7Y} j.e. finite linear combinations of ef @7 ig
dense in [0, 1]?. Indeed, this is family is an algebra because e®#t7:¥efiv %y = (BitBi)e+(vi+7)y and this
family is closed under finite linear combinations. This family vanishes nowhere since e” is never 0 and
if (z1,y1) # (22,y2) then WLOG z1 # z2 then f(z,y) := e® satisfies e®* # e*2, so it separates points.
Therefore, as [0,1]? is compact Stone Weiestrass implies this family is dense in C([0,1]?) with the sup
norm. This implies if f € C([0,1]?) then for any £ > 0 there is an N such that for

N
sup [ f(2,y) = Y el T <e
i=1

N
= sup |f(z,y) — Zaieﬂixe"iy
(@a)e0.1)? g

(z,9)€[0,1]2
Let g;(z) := ;% h;(z) := €7*¥ and we have arrived at the desired conclusion.
Problem 4b. No, if it were true then for any & > 0 we can find a {g;(z)}X; such that

N N
f(@,y) =Y (9:@)?| <e= flay) > Y (9:(@)* —e> —¢

i=1 =1
Letting ¢ — 0 we get that f(z,y) > 0. So if this were true then any continuous function such that
f(x,y) = f(y,x) must be positive, but take f(x,y) = —x? for a counter example. This implies the claim
is false.
Problem 5a. Recall span(S) is defined as the smallest subspace that contains S. Let V = R? and
S={(z,2v+1): 2 € R} and S’ = {(z,3x + 1) : € R} then span(S) = span(S’) = R? since the only
subspace that contains them is R%. So span(S) N span(S’) = R? but span(S N S’) = span(P) = {0}.
Problem 5b.
Problem 6. By Cayley-Hamilton if p is the characteristic polynomial of 7" then p(T') = 0. And the
roots of p are the eigenvalues of T so p(0) # 0 since T is invertiable. So p(T) = >0 | ;T  + ¢l =0
where ¢ # 0 then

n
—r(y S =1
=1

with 79 := I then 77! = =" | %Ti_l = ¢(T) for a polynomial q.
Problem 7. Let {v;}? ; be an orthonormal basis of V and {w;}, be an orthonormal basis of W then
n < m since dim(V') < dim(W). Let T(v;) = w; for i = 1,..,n then

(T(v2), T(v;))w = (wi, wj)w = i
and

(vi, vj)v = i
so
(T(vi), T(v;))w = (vi, v3)v



this implies for any v,v’ € V that
(T(0), T )w = (0.0)v
Problem 8. Let z € I/Vll + VVQl then x = wy + we with w; € VViL then for any z € W, N W,
(x,2) = (w1, 2) + (w2,2) =0
sox e (Win WQ)L. Now let eq, .., e, be a orthonormal basis of WlJ- and vy, .., vy, be a orthonormal basis
of W5-. Now we have
dim((W1 N Wa)4) = dim(V) — dim(W;) — dim(Ws) + dim(W; 4+ W)
= dim(Wi") + dim(W3") — dim((W; + Wa)*)
and
dim(Wi" + W;) = dim(Wi) + dim(W5") — dim(W5- 0 ;")
so it suffices to show (W; + Wa)t C Wit N W3t since that implies
dim((Wy N Wa)t) — dim(Wi + W5) = dim(Wi- N W;5) — dim((W; + Wa)t) <0
. Indeed if z € (W + W)t then for any w; € W; (z,w;) = (z,w; + 0) = 0 since w; +0 € Wy + Wy so
xr € Wit N W3-, This implies
dim((Wy N Wa)*) < dim(Wi- + Wy")
but we already have Wit + Wit C (W1 N Wa)t so W'+ W8 = (W1 N Wa)t
Problem 9a. Solving x = A~ (Bz + ¢) gives z = (-1, —1).
Problem 9b. No, take zg = (0,0) then for all n z,, has positive components so it cannot converge to
(_1? _1)'
Problem 10. Note that as f is Lipschitz with say constant M then xy(¢) is also Lipschitz with constant
M. So the family is equicontinuous. But they are also uniformly bounded on any compact subset since

we have x;(0) = 0. So Arzela Ascoli implies the existence of a subsequence that converges uniformly to
a limit x(t) on [N, N]. So it suffices to show that

2(t) = / Fa(t), 1)

Problem 11. We have due to Jensen’s Inequality
2

/01 P> (/ F@) =1

and the min is attained by f(z) = x. This min is unique thanks to the strict convexity of |- |?. Indeed, if
f and g are both mins then we have for A € (0,1) that |\f'(x) + (1 —X)g'(z)]? < A|f'(2)| + (1= N)|¢' (z)]
with the inequality strict unless f'(z) = ¢’(z). But since f # g and the boundary conditions we know
that f'(x) # ¢'(x) for a set of positive measure on [0,1]. This means

1 1
/ A (@) + (1 - N)g' (@) < / AP @+ (1 -Vl @) =1
0 0

which is a contradiction.
Problem 12. Note

2 pr(t)
| tatide= [ [ ptto.6.0)dpas
D(t) 9=0J p=0

d ( ) 2 d r(t) ( )
— flz,t dx:/ —/ pf(p,0,t)dpdo
dt Jp) =0 dt J,—o

So one has

_ / fdo v / ") Fr(0), 0,6 (1)d0
D(t) =0
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3. SPRING 2011
Problem 1. We know that if the eigenvalues of A are A1, A2, A3 then the characteristic polynomial is
X(#) = (t = M)t = A)(t = Xg) = (12 = tha — tA1 + M da) (= A3)
=15 — (A1 4+ A2+ A3)t2 F Aoz + A3A1 4+ A o) — A dods

=13 — 4% + t(Modz + A3h1 + A o) — 2
where we solved for the det using the hint. Using the given identities we get A Az + AaAs + A1 A2 = 5 so

X(t) =13 — 4t + 5t — 2= (t — 1)*(t — 2)
Therefore, the minimal polynomial is either

(t—1)(t—2) or (t—1)*(t —2)

this means either

1
J =diag(1,1,2) or J = |0
0

O ==

0
0
2
Problem 2. If A is diagonalizable then
A=S"'DS

where D is a diagonal matrix, so

AF = 57'D*s
which means A* is diagonalizable.

Now assume A* is diagonalizable. As F = C then we can find a Jordan matrix J and an invertible matrix
V such that
A=Vv-Lv

then

Ak =v-tky
but as the Jordan form is unique (up to permutation) and A* is diagonalizable this must mean J* is a
diagonal matrix. This occurs if and only if all there is no 1s above the diagonals since we cannot have a
zero eigenvalue. So we must have J be a diagonal matrix, so A is diagonalizable.
Problem 3. We claim that when H is Hermitian then we can find a basis of V' consisting of orthonormal
eigenvectors of H.

We prove the problem by induction on the dimension. It is trivial when the vector space is 1 dimen-
sional. So now assume it holds for any vector space of dimension less than n. Let H be a Hermitian
operator on an n dimensional complex inner product vector space V. As the field is complex we know
that there exists an eigenvector v; with length 1. Let U := span(v;) then V = U @ U* and as H({U) C U
we have H(U+) C U™ thanks to H being self adjoint. And dim(U~+) =n —1 < n so we can consider the
restricted operator H |1 and apply the induction hypothesis to find {vs, .., v, } such that H|y o (v;) = \v;
and (v;,v;) = §;; and UL = span(va, ..,v,). This implies V = span(vi,..,v,) and H(v;) = \v; with
(vi, vj) = dij.

Now we fix a orthonormal basis of V {ey, .., e, } where we assume every linear operator L matrix form

is written as
[L(el)v 0 L(en)]
Then for the unitary operator U(v;) = e; (it is unitary since it maps an orthnomrla basis to an orthonormal
basis)
UHU '(e;) = \ie;

so UHU ! = diag(\1, .., \,). But as U is unitary we have U~ = U*.
Problem 4.
Problem 5. If Az = b then for any y € (ker(AT)) then

(b,y) = (Az,y) = (2, ATy) =0
so b € (ker(AT))t. And dim((ker(AT))*) = dim(range(A)) which completes the proof.



Problem 6. Let us consider w = Ay + (w — Ay) where w — Ay € Range(A)* then

|4y — w|| < [|Az — Ay[| + [[Ay — w] = [[Az — w]|

where we used (Az— Ay) L (Ay—w). So the minimizers are exactly the y such that w— Ay € Range(A)*
ie. forany x € V

0=(w— Ay, Az) = (A*w — A" Ay, x) =0
or the y such that A*Ay = A*W as desired.

Problem 7. Follows by IVT. Indeed, f(1) = —1 and f(0) = 1 so by IVT there exists a root between 0
and 1.

Problem 8a.

—1 else

f(x):{lifxe(@ﬁ[o,l]

Problem 8b.
n for x € (0,1

0 else

then f,, — 0 everywhere but

/Olfn(ﬂf)dxl#/olf(w)o

Problem 9. Assume there exists a point f(z*) > 0 then continuity implies there is a § ball where

flz) > %*) S0
b x* 46 *
/f(:v)z/ 1)
a T*—0 2
which is a contradiction

Problem 10a. Let f : G C R? — R. We say f is differentiable at (x¢,9o) € G if there exists a linear
transformation D f(zg, yo) € R?**! such that for = := (0, yo)

[f(®+h) — f(=) - Df(x) - h|
lIhll—=0 1Al
Problem 10b. Define Df(x) := (0, f(x), 0, f(x)). Then

=0

2

f(90+h)—f(ﬂ’3)ZZf(pi+1)—f(pi)

=1
with py := @, p2 := (2o + h1,y0) and p3 := (xo + h1,y0 + ho)
2
= Z hlaﬂh f(Qi)
i=1

with ¢; — @ as [|h|| — 0]| thanks to MVT. Then

flx+h) - f(x) - Df()- h‘ _ ‘hl(azf(fh) = 0uf(2)) + ha(8y f(g2) = 0. f ()
|1l [l

<10:f(q1) = O0uf (@) + 10y f(q2) — O f ()]
which converges to 0 as h — 0 thanks to continuity of the partial derivatives.

Problem 11a. We claim that all connected sets in R are intervals. Indeed, let £ C R be connected.
then the map f(z) := x is continuous so f(F) is connected. Assume for the sake of contradiction that
E is not an interval. Then there must exist an =,y € F and a z € E° such that x < z < y but the
intermediate value theorem implies z € f(E). But observe f(F) = E which is a contradiction so all
connected sets in R are intervals so they are arcwise connected.
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Problem 11b. Take the topologist sin curve
.1
G(f) = {sin(-)} U {0,0}

for € (0,1].Note that {x,sin(1)} is connected since the map = — (z, sin(%

T
and {0,0} is connected. Then as (z,sin(+)N{0,0} # 0 we get the claim. But it is not path connected so
it is not arcwise connected since there is no way to extend sin(1/z) to a continuous function on [0, 1].
Problem 12a. Note that

) is continuous for = € (0, 1]

T(f) ~ T(g) = / " f@) - o)

IT(f) = T(9)llL> < /O 1f(x) = g(@)llz = cl|f(z) = g(@)||=

so it is a contraction map so we have an f such that T'(f) = f. But as f € C([0,1]) we actually have

o(x) =1+ / " fa) e V(0. 1)

Indeed, fix e > 0 then by uniform continuity we can choose a & > 0 such that if d(z,y) < § then
d(f(x), f(y)) < e so

N0 =i [T s <k [ o) - s <
when h < 4. So if ' Y ’
f=t4 [ s@=r=1
but we also have f(0) = 1. '
Problem 12b. An approximation for exp(t) thanks to the proof of Banach Fixed Point theorem.
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4. FALL 2011
Problem 1. Let (X,d) be a compact metric space. Set

g(x) == d(f(z), z)

which is continuous, so it attains a min as X is compact at z € X. If f(z) # z then we have

9(f(2)) = d(f*(2), f(2)) < d(f(2),2) = g(=)
which contradicts the minimality so f(z) = z. So we have found a fixed point. But also if x = f(z) and
y = f(y) and = # y then we have
d(z,2) = d(f(2), f(z)) < d(z,2)
So it is unique.
Problem 2. As f € C! we have for any z,y that

1
f@) = 1) = [ Vfta+ (1= 9) - (@ = )i
Let g(t) := f(tz + (1 —t)y) = ¢'(t) = Vf(tz + (1 — t)y) - (x — y). Then we have for any ¢ > 0
g'(t) = g'(0) = (Vf(te + (1= t)y) = Vf(y) - (z — y)

= (Vi(tz + (1= 1)) = VI@) - 5 (e —9) > llta — )| = ctlla — I
Therefore, ¢'(t) > ¢’(0) this implies

(@)~ fy) > / 70) = Vi) (@)

This condition implies convexity (in fact is equivalent). Indeed, let us fix a € [0,1] then let z :=
az + (1 — o)y then we have

so we get

so we arrived at

af(@)+ (1 -a)f(y) = flaz+ (1-a)y)
i.e. f is convex.
Problem 3.

Problem 4a. Note that the sum > o (—1)"1 := 3™  a, converges thanks to Dirichlet’s criterion.

And it is unconditionally convergent. So we claim for any « € R there exists a bijection ¢ : N — N such
that > ° | ay(n). Indeed note if we let

_ai + ag o a; — |a;]

pi = 5 n; : 5
then p; is the non-negative terms of a,, and ¢; is the non-positive terms of a,,. We also must have ) p;
and > n; diverge. Therefore, there exists an N such that ngl pi > a> Zf\gfl pi. Note that p; = 0 iff
n; # 0and n; = 0iff p; # 0. Let {i1,..,in} C {1,.., N1} be the index such that p; > 0 then for 1 < j < N
define o(j) = i;. Then there exists an Ny such that Y~ p; + Zj\zl nj <a<Y Moy 4 Zj\i“l—l nj.
Again let {i1,..,iy@} C {1,.., N2} such that n;, # 0 and define o(j + N) =4; for 1 < j < N® By
induction we repeat this procedure for all N i.e. we find an Ny, such that

Nop, Nap_1 Ni,—1 Nop_1

Zpi+ Z n; > o> Z pi + Z n;
i=1 i=1 i=1 i=1
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and Ny, 41 such that

Zpi Zni§a<2pz Z ni
i=1 i

and putting o (i) as the index of non-zero terms of p; from Na,_o to N2 then of the index of the non-zero
terms of g; from Ny, _1 to Napy1. Then we get the following estimate
Nap, Nap—1 Nay,

Zao(”) >z Z Ag(n) = 0>a-— Z > —Qg(Nyp+1 0
o= i=1 i=1

since a,, — 0

Problem 4b. This sum converges absolutely by the p-test. So any rearrangement converges to the same

sum. Let
o

o= Z(_n”%

n=1
then fix € > 0 then there exists N7 such that if n > N; we have

o0

> an| <e

k=
and as Y a, — a we can find an Ny > N; such that

N2
E ap — Q
n=1

so for any rearrangement o there exists an N3 > Ny such that if n > N3 then o(n) ¢ {1, ..., No} then for
any n > N3

<e€

o(n) — &

n N3 N2
< Zaa(n) - Zaj JrZaj -«
k=1 j=1 j=1
n N2 No
< Zaa’(n) _Zaj + Zaj -«
k=1 j=1 j=1

IA

Z G (k) +e€

k:o(k)¢{1,..,N2}

< Z lan| + ¢ < 2e
n=Nz

Problem 5. Just take any monotone function with countably many jumps.
Problem 6. See Fall 2012 number 3.
Problem 7. See Fall 2016 number 4.
Problem 8. We will show that for an arbitrary complex valued matrix A then there exists a basis of
generalized eigenvectors. But as null(A—AI) = null((A— \I)?) this implies every generalized eigenvector
is an eigenvector. First we show

V =range(A™) @ ker(A")
for n = dim(V) By rank nullity it suffices to show their intersection is the zero element. Let v €
range(A™) + ker(A™) then

v=A"z = 0= A" = A"z = A"z =0

so the first claim holds. Now fix an eigenvalue A associated with eigenvector v of A. Let

G(A\A) = null((A— D7)

then we argue by induction. The case n = 1 is trivial, so assume the induction holds true for any subspace
withd dimension less than n. Then

=G\A)aeU
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for U := range((A — AI)™). Now we claim A(U) C U. Indeed, if z € U then
(A= AN"Az =A(A-I)"xz =0

so we can apply our induction hypothesis onto the restricted operator Ay to find a basis of generalized
eigenvectors of A|y on U. It is clear that these are generalized eigenvectors of A, so we found a basis of
eigenvectors of A on V. So we are done.

Problem 9. Let L : V — V be self adjoint such that there exists a unit vector
L — pual| < <

As L is self adjoint there exists a basis of orthonormal eigenvectors. Let us denote the orthonormal
eigenvectors with eigenvalue \; € R as v;. Then

p= > oo = 1= Jlal P = 3 0)?
i=1 i=1
Then
n
(Lx — px, Ly — px) :Z V2 (z,v;)* < €2

As1=3""  (x,v;)? there exists a j such that (z, ) 1. Then
(A —n)? <

This implies
|Aj -l <e

as desired.
Problem 10. As Ais areal matrix and A3 = I its eigenvalues must be either 1 repeated with multiplicity
3 or a single eigenvalue 1 with 2 complex conjugate roots of unity (with order 3). In the first case we get
A is the identity matrix then our other eigenvalues must be the 2 complex conjugate roots of unity. Let
these eigenvalues be denoted as A and A so over C A is diagonlizable to the form

A = S diag(1,\,\)S
where S may be a complex matrix. Then note that the matrix diag(A, \) is simialr to

n= [l ]

with # = 2% since the eigenvalues of R are A\, \. Therefore, there exists U such that

3
diag(\,\) = URU !

1|1 01 0Of]1
S i
so A is similar to the desired form with either § = 0 or <F. Note that if A and B are real matrix such
that A is similar to B over C then they are similar over R
Problem 11. dim(ker(S)/im(T)) = dim(ker(S))—dim(im(T)). and dim(Im(T)) = dim(V), dim(W) =
dim(U) + dim(null(S)) so we get both sides of the equality as dim(ker(S)) — dim(im(T)).
Problem 12. Note if « satisfies

SO

[|Az — b < [|Ay — bl|
for all y then Az — b € range(A)t. But R® = range(A) @range(A)t and b = Az + (b — Ax) with
Az € range(A) and b — Az € range(A)* so Az must be the same value for any minimizer.



14 RAYMOND CHU

5. SPRING 2012

Problem 1. Tt is clear that p(A, B) > 0 and p(4, B) = p(B, A). Now if p(A4, B) = 0 then fix z € A so

0 = sup 1nf |z —y| > mf |z — y|
z€EAYE

so infyep |z — y| = 0 that is there exists a sequence {y,} C B such that y, — = soz € B = B
since B is closed. Therefore, A C B. The reverse subset follows from sup,cpinfyea |z —y| = 0. So
p(A,B) =0 <= A = B. Now we prove the triangle inequality. Observe for all a € A,b € B and c € C
for A, B,C € ) we have
la—b| < Ja—cl +|c— b]
inf |a —b] <|a—c|+ inf [c =]
beB beB

inf la —b] < inf{|a— el + inf le — 0|}

mf |a—b| < mf la — ¢ +sup mf |c — b

beB
sup inf |a — b < sup mf la — | + sup mf |c— bl < p(A,C) + p(B,C)
acAbEB acAcCE

This inequality also holds for sup,c g sup,c 4 |a — b| so we have
p(A, B) < p(A,C) + p(B,C)
so p is a metric as desired.
Problem 2. Fix £ > 0 then as f is uniformly continuous there exists a § > 0 such that on d(z,y) <
5 = d(f(z), f(y)) < e. Consider a uniform partition of [a,b] by [a;—1,a;] where a; —a;_1 < §. Then as
fn — f and {a;} is finite we can find an N such that for all n > N we have
|fn(ai) = flas)| <€

for all a;. Now fix x € [a;_1, a;] then we have by uniform continuity that

[f(z) = flai)| < e |f(x) = flaita)| < e
Then by convexity we have
f(z) < max{f(a;), f(ai+1)}
SO
fo(@) < max{fn(a), fn(aiy1)} <max{f(a:), f(ait1)} +e < f(z) +2¢
i.e. for all n > N we have
fa(@) — f(z) < 2¢

For the reverse inequality if = € (a;—1,a;) then convexity implies that

fo(@) = falai) _ falaivr) = fo(ai) _ fa(2) = fn(ait1)

T —a; - Qit1 — @y - T — @it
SO
ule) 2 (2 = e PO =LAy g
and
fule) < (= ap PO ZIl8)

so we have
fa(z) = f(z) = (2 — a1 - f(a;)

By uniform convergence on {a;} and uniform continuity of f we have f,(a;+1) — f(a;) < —2¢ and the
secant slope terms are

)fn(ai-i-l) — Jula) Fulaie) — (2 — ai)f(a'i-‘rl) — f(ai)

Qi1 — A4 Q41 — A4

0 (fuaisn) = Flaien) + £(a) = fa(a)) = Falaizr) + fulai)
Giy1 — @4
by rewriting a;+1 = a; + (a;41 — a;). Note 0 < ﬁ < 1, then using triangle inequality and f,(a;) —
f(a;) we get that

falz) — f(x) > —5e
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so we have

[fn(z) = f(@)||Loo(ap) < De
for n > N so we have uniform convergence.
Problem 3. Bisection Method and completeness of (R, | - |).

Problem 4. Note that a,, > 0 implies s, > 0. Let C, := Z?:l Sn. We claim s, < M which would
imply it converges which s, is an increasing sequence bounded above. Indeed fix an n then we have as
% — s there exists an M such that 02";;’ < M Then using Csy, < (n—1)s1 + (n+ 1)s, we get

S1 S1 Sn Sn,

SE A V|

2 2n+2+2n_
SO

sn§2M—|—S—1§2M—i—sl
n
Therefore, s,, = Z;;l a;. Now let a :=lim,_, s, < +00. then we claim s,, — a. Indeed,

Cn Z?:l(si - a)

|7 —a| = | n |

For £ > 0 there exists an N such that if n > N then |S; —a| <e. Then if n > N
n N n

< Zi:l |S; — al _ Zi:l |S; — al + Zi:N |S; — al

- n n n

29M (n—N)e _2M
<4< +¢
n

n n
which converges to 0 as n — co. Therefore, % — a so by uniqueness of limit a = s.

Problem 5. Define T': C([0,1]) — C([0,1]) via T(f) := e* + %Tz) Note that T'(f) € C([0,1]) since it
is a addition and composition of continuous function and its domain is [0, 1] since 22 is bijection from
1

[0,1] to [0,1]. Use Banach Fixed Point Theorem since it’s a contraction map with a = 3.

Problem 6. Note that the vector field (247, — 27z is conservative since V arctan({) = (247, — 221 2)-
However arctan($) is not differentiable on the y-axis. And as our path must start and end at (1,0), we
necessarily do not have zero circulation (since the potential cannot be made C! on any open neighborhood

of the curve). Indeed, we do not have zero circulation since the path v(t) := (cos(¢),sin(¢)) we have

I(y) =/O Tosin(®) meos(t)

cos2(t) + sin’(t)

Problem 7. We have A = [411 _03} and its eigenvalues are 1,3 so it is diagonlizable and we must have

. 1/n
lim,, o0 an/ =3

Problem 8. As A € C™*" there exists an Upper Triangle Matrix T" such that
A=85*TS

where S is unitary thanks to Schur’s Decomposition. As similar matrix share the same eigenvalues and
the eigenvalues of the upper triangular matrix T are the diagonal entries, it suffices to find 7; — T such
that T is diagonalizable. Indeed, consider T, := T + diag(hy, .., h,) where h; < % and are chosen such
that (T,)i; # (Th);; for any j # ¢. Then as T,, has distinct diagonal terms and is upper triangular, it has
n distinct eigenvalues, so it is diagonalizable. So T, = V,*D,,V,, where V is unitary. So

Ay = S*T,8 = S*V* D, V,,S = (V,,.8)* D, (V,,.S)

converges to A entry wise as n — oo. Note that if A, B are unitary so is AB, therefore (V,,5)* is the
inverse of (V,,.5). Therefore,

A, =S*VD,V,S = B;L;B;' — S*TS = A
Problem 9.
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Problem 10. It is always equal. Indeed, we have A = V*T'V where T is a upper triangular matrix and
V is unitary. Then note that e = V*eTV which can easily be seen by the definition. So

det(e?) = det(e?)

and
N N
exp(Tr(A)) = exp(Y_ Tii) = [ [ exp(Tii)
i=1 i=1
since similar matrix share the same trace. We also know that (e”);; = 1+ Ty + 7;—1,27 + ... = exp(Ty;) And

det(eT) = (eT);; since eT is upper triangular. Therefore, we have det(e?) = exp(Tr(A)) for any complex
valued matrix.

Problem 1la. By Cayley Hamilton A solve its characteristic polynomial which is of degree 2. Solve for
this.

Problem 11b. If P(A) and Q(A) are second degree polynomial such that P(A) = Q(A) = 0 make them
both monoic. Then (P — Q)(A) =0 and P — @ is a first degree polynomial which is impossible since A
is not a constant multiple of the identity matrix.

Problem 12. They are equivalent over via 2’ := z + iy and ¢y’ := o — iy then Q(2',y’) = 2® + y? =
Q2(x,y) and the transformation is non-singular since

1 | |=| |2
1 =i |y| |
and the matrix is of full rank. But by Sylvester Law of Inertia two quadratic forms are equivalent over R
if and only if the associated symmetric matrix A of @1 and B of Q2 have the same number of positive,
negative, and zero eigenvalues. We have
0o 1 10
- 2 -
=8 el
But notice 1/2 and —1/2 are eigenvalues of B so they cannot be equivalent over R.



17

6. FALL 2012

Problem 1. We prove the statement by summation by parts. Indeed, let B,, := Y. | b; then we have

for any m > n
n

—1
2": aib; = Z a;(B; — Bi—1) = i: a;B; — ”z: ai+1B;
i=m i=m

i=m i=m—1

n—1
= aan - amBmfl + Z B’L<a"L - ai+1)
i=m

So
n n—1
Z aibi| < |anBn| + |amBm-1] + Z |Bil(a; — ait1)
i=m i=m
since a; is decreasing. Therefore, as |B,| < M we have
n n—1
Z a;b;| < M(lap| + |am—1] + Z(ai — Qit1)
i=m i=m

= M(|an| + |am—1‘ +am — an)
< M(2lan| + [am| + am-1)

Then as a, — 0 we can for any € > 0 find any N such that for k > N we have |ax| < 2Le then choosing
n,m > N we have
n
>
i=m

$0 S, 1= >, a;b; is a Cauchy sequence, so it is convergent.

<e

Problem 2a. We say a bounded function f is Riemann Integrable on [0, 1] if and only if for all € > 0
there exists a partition P such that if P = {0 = 29 < #1 < ... < &, = 1} with I; := [2;-1,2;] and
Az; = x; — ;i then for w(f, ;) == sup, ¢y, |f(x) — f(y)| we have

n

Z w(f, I,)AJCZ S g

i=1
i.e. the upper and lower Riemann sum difference can be made arbitrarily small.

Problem 2b. Fix a uniform partition of size € i.e. dx; = € for all . Then since f is non-decreasing then

w(f, Ii) = f(x;) — f(xi_1) so

n

Yo w(f L) Az = £(f(b) - f(a))
i=1
since the sum is telescoping. Then as f is bounded we have

<2Me

for M := || f]|re. Therefore, it is Riemann Integrable.

Problem 3. If f,, — f uniformly then the 3¢ trick shows f is continuous. The converse is known as
Dini’s Theorem. Indeed as f is continuous any fixed £ > 0 we have

Gni=A{z: f(2) = fu(z) > —¢}

is open since it is the preimage of an open set on a continuous function. Then as f,(z) — f(z) for all
x € X we have

e

n=1

As X is compact there exists a finite subcover so

N
Xc |G,
k=1
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Note that f,(z) > fo1(z) implies f(z) — fu(zx) < f(z) — fat1(x). Therefore, we have for all n >
max{ny,.,ny} =K

f(@) = fulz) 2 f2) = fr(2) > —

where we can ensure f(z) — fi(x) > —e thanks to the monotocity and finite subcover. And we have

fo(@) = f(z) = f(z) = fulz) <O

Therefore, we have for all n > K that

1f (@) = fre(@)l|Loe(x) < €

so we have uniform convergence.
Problem 4. Let F, be closed sets such that int(F,,) = § and assume X is complete with

X = [j F,
n=1

Clearly X cannot have empty interior for int(X) = X # 0 so there exists an x € X N Ff. Then we must
have an n such that n > 2 and B (z) N F; = () for otherwise we would get z is a limit point which would

imply # € F; which is a contradiction. Let this ball be denoted as Bp, (z) then we must have By, (x)
is not contained in Fy since it has empty interior, so there exists an z3 € By, (z) N F§. Similarily we
can find an n > 3 such that Bi(z3) N Fy = @. Choosing n smaller we can assume By, (x2) C By, ().

Proceed inductively to generate points z,, with radius h, < 1 such that By, (z,) C Bp,,, (zn+1) and
By, (z,) N, F,, = 0. Then {z,} forms a Cauchy sequence so there exists an « € X such that x, — z.
But « € By, (z,,) for all n so z ¢ |J,—, F,, = X which is our contradiction. So BCT holds.

Problem 5. An equivalent form of BCT is that if G,, are open dense sets then (2, G, is dense in a
complete metric space. This implies is not a Gs for we could define H,, := (—00,¢,) U (¢n,00) for an
enumeration of g,. Then this is an open dense set, so G,, N H,, is an open dense set (density is due to
G,, is open). But (2, (G, N H,,) is the empty set but BCT says it is dense, which is a contradiction. In
fact it shows any countable set in a complete metric space cannot be a Gj.

Problem 6a. Assume for sake of contradiction that there exists an (z*,y*) such that F(z*,y*) is non-
zero (wlog it is positive). Then by continuity there is a small square with (z*,y*) at the center such that

F(z,y) > %y*) But then for this square we have the integral mass is positive since

F * *
S s 2
so F'=0.

Problem 6b. We have for any square 1 < z < #y with {3 <y </,

Lo Ly Ly 2 Ly
/ / 82, f(w,y)dydz = / / &2 f(a,y)dyda = / O (2, L2) — Do f (2, s)
x:@l y:€3 :fg JZ:el y:é3

f(lo, L) — f(br, La) — f(L2, l3) + f(£1, 03)
Lo
so by 6a) we must have 02, f(z,y) = 8§7yf(x,y).
Problem 7. This means there exists an N such that AN = A. Therefore, if we let j(z) be the minimal
polynomial of A we have the existence of a polynomial p such that
pla)u(z) = w(@V "1 = 1)

N-1

=z H (x —A)
i=1
where \; are the (N — 1) roots of unity. In particular this implies that p(z) has no repeated root which
is equivalent with A being diagonalizable.
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Problem 8. Note that [wy,ws] = (Hws,w1). Then w € W iff for all v € W we have (Hw,v) = 0 i.e.
H(W) C W+. Then the restricted operator satisfies H|y : W — W=, As det(H) # 0 we must have H
is injective i.e. dim(W) = rank(H|w ). Then

n = dim(W) + dim(W) > dim(W) + rank(H|w) = 2dim(W)
where we used Im(H|w) C W+ ie.

For the examples take H = diag(1,—1,1,—1,....).
Problem 9. Note that we have R™ = I'm(A)® (Im(A))* so there exists by € Im(A) and by € (Im(A))*+
such that b = by + by. Then

11 = bII* < [[br = B[ + || Az — by ||?

= ||b — Az|”
where for the equality we used Pythagerous theorem since by — b € (Im(A))*+ and Az — b; € Im(A).
Then as f(z) := ||Ax — b||? is convex the minimum is unique i.e. Az = by is the unique min. Then we

have for any x,y € M A(x —y) =by —by =0s0ox —y € N. Then fix an xg € M then for any x € M we
have ¢ = xg + (x — o) where g € M and x — 29 € N so M C xo + N. Choosing the same x( as before
we have Az = by then we have for any y € N A(x+y) = by i.e. it minimizes the problem so zg+ N C M
ie. M =x29+ N.

Problem 10. Note that P(A) = (A+ I)3(A — I) = 0 so as the minimal polynomial divides P(A) all
of A eigenvalues are —1 or +1. As rank(B) = 2 we have nullity(B) = 2 i.e. the eigenspace of —1
has dimension 2 so there are two Jordan Blocks with eigenvalue —1. As |Tr(A)| = 2 we must have 3
eigenvalues of —1 and 1 eigenvalue of 1. But as we only have two eigenvalues, we must have a 2 x 2
Jordan Block of —1, a 1 x 1 Jordan Block of —1 and a 1 x 1 Jordan block of 1

Problem 11.

Problem 12. We have rank(A) > r if and only if there exists a 7 x r sub-matrix such that it has
invertible. Then we have for any linear operator L that L is invertible if and only if L7 is invertible since
ker(L) = range(LT)*t. This implies rank(A) = rank(AT).
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7. SPRING 2013

Problem 1a. See 2012 Fall Problem 2a)

Problem 1b. See 2012 Fall Problem 2b)

Problem 1lc. Observe that > -, 2% =1landlet S, :=5>7_, 2% and let Ij := [Sk_1, Sk] with Sp := 0.
Then [0,1] = U Iy is a disjoint union except at the end points. Let

fi= {Sk for x € I,
then this is a monotone function with infinitely many jumps i.e. it is discontinuous on a countable set
but it is Riemann Integrable thanks to monotocity.

Problem 2.

Problem 3. We will show sequentially compact implies complete and totally bounded first. Given any
Cauchy sequence the sequential compactness implies there is a sub-sequence that converges, but a cauchy
sequence with a convergent sub-sequence is convergent. Hence it is complete. It is totally bounded since
if not there exists an g9 > 0 such that if the space is denoted as X we have

X SZ BEO (‘Tl)
thus there is an x5 such that d(x2,z1) > ¢ but being not totally bounded implies
X & Bey(1) U Bey (2)

similarily we can find an x3 such that d(x;,z3) > €9 and d(x9,x3) > €9 due to X not being totally
bounded such that

X & Bey(21) U By (22) U Bey (23)
Thus proceeding by induction we can find a sequence {x,} such that for any m we have
d(xnv JCm) > &g
which means there cannot be a convergent sub sequence. So X must be totally bounded.
Now assume X is totally bounded and complete. Fix a sequence {z,,} C X and assume z,, has infinitely

many distinct values for otherwise the sequence will have a convergent sub-sequence and there will be
nothing to prove. As X is totally bounded we have y, .., yn such that

X C B%(yl)U...UB%(yN)

Thus there exists an 1 < ¢ < N such that there are infinitely many values of z,, € B 1 (y;). Denote this

subsequence as a:g) then there exists z1, .., zps such that

M
X C U B% (Zl)
i=1
and again there exists a subsequence zg) of xg) such that they are infinitely many terms of xg) in B 1 (z5)

for some j. Proceeding inductively we can find a sequence xslk) such that x%k) is a susbequence of ;vﬁ,k_l)
(n)

and there are infinitely many terms of x,(f) in B 2 (wj(k)) for some w](-k). Let the subsequence y,, =
2
i.e. the diagonal susbequence then for n > m

1 1
d(ynaym) < d(ynvw](‘m)) + d(w](‘m)a ym) < Qim + 277”
since as n > m we have 2™} ¢ B (w'™) since it is a subsequence of 2™, Therefore, it is Cauchy
k T J k

then by completeness there exists a limit. So the space is sequentially compact.
Problem 4. We prove the stronger general result: If f : [1,00) — [0,00) such that f is decreasing and

limy 400 f(z) = 0 then
N

N+1
R / f(2)de

i=1
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converges to a finite limit. Indeed, as f(x) — 0 we have for all ¢ > 0 an M > 0 such that for x > M such
that f(z) <e. Then let ay := vazl f(z) - 1N+1 f(z)dz then we have for N > M

N N+1
— - A d
lan — ap] i:%:ﬂf(z) /M+1 f(2)de
N-M M+1+i .
-3 /MH FOM +3) — f(x)da

N-M M+1+i

=3 [ ) - S

i=1 M+

N-M . M+1+i
< Z/ FOM +i) = f(M +i+1)da

= > f(M+i)— f(M+i+1)
i=1
=f(M+1)— f(N+1)
< 2¢
for M, N large. So it is a Cauchy Sequence and we conclude by the completeness of R. The third equality
we used f(M +1i) > f(z) on [M + i, M + 1+ i] so that the term is already positive. Note that

b= 10) —/ f(2)da
j=1 !
for f(x) := 1. By our result we have

n+1
1) - / 1)

1 1

n

<

converges so
n

=310~ [ - / ")

j=1
and since f decreases to 0 that lim, f;ﬂrl f(7) = 0. So h,, converges to the limit of Z?:l fG) -

)
sin(n(6))

Problem 5a. There is a typo and it should be U, (cos(8)) = sn(ey base case s trivial since Uy = 1.
Then we have

sin(8)U,,+1(cos(6)) = 2 cos(8) sin(nb) — sin((n — 1))
= 2cos(f) sin(nf) — (sin(nd) cos(—0) + sin(—0) cos(nf))
= cos(0) sin(nf) + sin(f) cos(nd) = sin((n + 1)0)
so induction holds.
Problem 5b. Consider z — cos(f) then we get

/ U (2)Up ()1 — 22da = / sin(n#) sin(md)do

™

—1 0
Problem 6a. Note by Schur’s Decomposition we have that any complex matrix is unitary equivalent to
an upper triangular matrix i.e.

A=UTTU
where T is upper triangular and U~! = UT. Then we recall if an operator has only distinct eigenvalues
then it is diagonalizable and that the eigenvalues of an upper triangular matrix are its diagonals. Then
consider
Ay, := UN(T + diag(hy, .., hn))U

where \/h? + ... + h2 < + and h; are chosen such that Tj; + h; # T, + h; for all i # j. Letting k — oo
gives Ay, — A and each Ay is diagnolizable since it has distinct eigenvalues.
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Problem 6b. Note that f(A) := det(A — A\I) is continuous from R™*™ — R isnce it is a polynomial of
the coefficients of A. So if A,, — A we have f(4,,) — f(A4). Let

et 20

with § = 5 then this has only complex eigenvalues. So if A, — A we must have for large n that A, has
complex eigenvalues. Therefore, there does not exist a sequence of real diagonolizable matrix A,, such

that A,, — A. So they are not dense.
Problem 7a. We define
|A][ := sup [[A(z)]|

[Jx]|=1
Note that
A < (1Al [J[]
S0
142(@)IF < [JAll [[A@)]] < [JA]P]|l]
S0
142]] < ||l
Problem T7b. By the observation above we have for when |z| =1
A2
exp(A)(z) ==z + Az + 2('96) + .
A 2
§1+||A|\+%+...
= exp(||4]])

so we have

exp(A4)(z) < [z[exp(]|A]]) < oo
so the series makes sense everywhere.
Problem 7c. Note if ||A]| < 1 then for |z] =1 we have

o0

o0 A n
log(I + A)(z) < 1+Z% < A" < +o0
n=1 n=0

where the last line is justified via ||A|] < 1.
Problem 7d. No thank you.
Problem 8a.
(T, y) = (2, T"y)

Problem 8b. Typo it should be transpose of the conjugate matrix. But it follows from writing out the
inner products.

Problem 8c. We have z € ker(T) iff for all y € V
0= (Tz,y) = (z,T"y)

ie. x € Im(T*)* so Ker(T) C Im(T*)*. Then fix y € Im(T*)*. So for all z € V we have
0=(y,T"2) = (Ty,z)

so Ty = 0 Therefore, Im(T*)*+ = Ker(T).

Problem 8d. This implies that if L is an operator then it is invertible if and only if 7™* is invertible. Use
that rank(T') > r iff there exists an r x r submatrix such that the submatrix is invertible. This implies
that rank(T*) > rank(T) by choosing r = rank(T) and the other inequality follows from replacing T'
with 7% and using T** =T.
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Problem 9a. Observation 1: If
s cos(f)  sin(h)
" |—sin(f) cos(6)
then its eigenvalues are cos(f) 4 isin(f) and cos(f) — isin(f) and any z € C such that |z| = 1 can be
represented as cos(f) + i sin(6).

Observation 2: As A is orthogonal so its eigenvalues A satisfy |[A| = 1. But as A is real if A is complex
valued then A is an eigenvalue since eigenvalues come in complex conjugate pairs for real valued matrix.

Observation 3: A is normal, so it is diagonalizable over C.

By observation 1 as A is diagnolizable over it has a basis of eigenvectors. Order the eigenvalues such that
all the real ones are from 1 to j i.e. A1,..,\; are real. Then for A;y; to A, these are the complex valued
eigenvalues, but by observation 2 we have for any Aj 11 = Aj4, for some £ > 1. Order the eigenvalues so
Aj+2 = Aji1s Aj+3 = Aj44, ... till n. Then we have by observation 3 that

A=U*DU
where U~! = U* and for D = diag()\1, .., \,) then the complex conjugate eigenvalues i.e. Aj+1, Ajy2 and
Aj43y Ajga,.. till Ap_1, A, are similar to a rotation matrix since rotation matrix are diagnolizable over C
since they are unitary i.e. we have

i 8- [, )

where V,”! = V;* for any i > j. Then notice we have D = A1 @ A2 D .. D Aj1 DAj3D.. DA
. : A0 .

where A; = [£1] for ¢ < j. And A;41 = {Oj )\j] and similarily till A,,_; and we have VjAjJerj*+1

equal to some rotation matrix. Therefore, D is similar to A1 @ ... G R;j11 D ... @ R,, where Ry, := B is

some rotation matrix and the change of basis matrix is a block matrix along the diagonals with unitary

blocks so its inverse is its conjugate transpose. Then as multiplication of unitary matrix is unitary we

have shown

A=V*BV
where B is of the desired form. However, the similarity is over C to get similarity over R note that
V =V, +iVy where V; and V5 are real matrix, so
(Vi +iVa)A = B(V1 +iV3)
but as A and B are real we must have
VoA = BV,
and V3 A = BV}, therefore for any r € C we have
(Vi +7rV2)A = B(V1 +1V2)

Then as we have for f(r) := det(V; + rV3) and f(i) # O since it is invertible then f(r) is a non-zero
polynomial. So there are only finitely many roots so there exists an r € R such that f(r) # 0so (V1 +1Vs)
is invertible. So

A= (Vi +rVa) 'B(Vi +1Vh)
so they are similar over R.
Problem 9b. Asn is odd there must exist a real eigenvalue which is either —1 or 1. Let this eigenvector
associated to it be denoted by v then A%v = A\2v = v. We note v is real since A is real so A — \I is also
real so its Kernal is real.

Problem 10a. By computation we get C' is of the form

1 a b ¢
01 a b
0 01 a
0 0 0 1

then GG = Id is a subspace of the set of 4 x 4 matrix.
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Problem 10b. It is 3 dimensional since there are 3 free parameters a, b, and c.

Problem 11a. Note that
1 1| [Foo1| | Fa
1 0 Fn_z o Fn—l
\/g.

so in particular we get F;, = %(/\{L — A%) by diagnolizing the matrix where \; = HT‘@ and A\ = 1*2
Then

F, AP — B MAT = A !
= =X\ — X+
Foq - Ay T T T g

Since A\ — 0 as n — oo we have the second term approaches A2 so the it approaches A;.

Problem 11b. Note that playing with the explicit solution we have
FonysFony1 — Fo = (M) (A3) (Fant1 Fono1 — F3,)

and M2)2 = 1 so the result follows from induction.

Problem 12. Note

oo

1 n,.—2n
DB

for x € (—1,1). So for any € > 0 with € < 1 we have

1600
/ / n 2n
0
'S

Z( n—2n <Z 2n: ()<+OO

n=1

so it is uniformly convergent on [0,1 — €] So by umform convergence we can swap the integral and sum

= nic:l/ol_s(—l)”x%

since

o n(l _6)2n+1
=2V
n=1 n+
Note that
> 1
—1)"
Z( ) 2n+1

n=1

converges due to summation by parts since |y (—1)"| < M and monotonically goes to zero. So

Abel’s Theorem says

2n+1

oo (1 _ 8 2n+1 oo
li -1
513%”:1( e z::
and
o0 l1—e 1 T
N Y et
— 2n+1 =0 )y 1422 4

where in the last inequality we used that f(e) := 01_5 ﬁ is continuous to get lim. o f(¢) = f(0) = %.
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8. FALL 2013

Problem 1. Fix {a,} such that a,, is positive. Assume

n

Py=[]0+a)

i=1
converges to a non-zero limit a. Then as P,, > 0 for all n we can take the log of it to see

log(P,) = Zlog(l + a;)
i=1
So as log(z) is continuous on (0, 00) and P, — a > 0 we have
nh%rr;o log(P,) = log(nh%rr;O P,) =log(a) >0

Therefore, > ; log(1 + a;) converges so log(1 + a;) — 0 so a; — 0. Then as we have
1 1
lim log(z +1)

=1
x—0 x
we conclude there exists an § > 0 such that if |z| < § then
1 < log(z + 1) <9

2 x
Then as a; — 0 there exists an N such that for ¢ > N we have |a;| = a; < 0 so for any M > N we have

1 M M M
* — . . .
(*) 5 E a; < 1Og(az+1)§2é a;
i=N i=N =N

Therefore, for any fixed € > 0 choosing NV, M large enough from convergence of Zf\i ~ log(a; +1) we have

M
Z log(a; +1) < %
i=N
In particular,

M M
E a;| = E a; S 9
i=N i=N

N .
so {) ;= a;} forms a Cauchy sequence so it converges.

Now assume 25:1 ap, converges then by (x) vazl log(a; + 1) converges. So

N N
P, := Zlog(ai +1)= log(H 1+ a;)
i=1 i=1
Therefore, there exists an a such that
N
log(H 1+a;) —a
i=1

Then we have by taking exponentials and using that it is a continuous map to see
N
H 1+ a; — exp(a)
i=1
which is strictly bigger than 0. And the equivalence is proved.
Problem 2a. Let
A :={z: f(x) is not continuous }
we claim that
A={z: lim f(y)# lim+ fly) =B
Yy—=T y—x

Note for any x that the left and right limits of f are well defined since f is monotone and locally bounded
(by the right and left end points of the interval). So B makes sense and it is clear B C A. Butif x € A
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then the left and right limits are well defined so we must have lim,_,,- f(y) # lim,_,,+ f(y) for otherwise
f would be continuous at x. Then for each x € A we can pick ¢ € (lim,_,,- f(y),lim,_,.+ f(y)) N Q.
But as f is monotone we have for any z € that ¢ ¢ (lim,_,.- f(y),lim,_,.+ f(y)) since f is monotone.
Therefore, we have found an injection from A to . So A is countable.

Problem 2b.

Problem 3a. For any partition of [0, 1] we have

S bttin) ~ w6 = 3l — 67+ Fltgen) — 162

n—1 n—1

< Z It — ]+ | F(tin) = FE) =D (e — t5) + (f(ti41) — F(t5))

i=1
=1+ f(1) - f(0)

where for the second equality we used f is increasing and ¢;41 > t; and the last equality we used it was

two telescoping sums.

Problem 3b.
Problem 4. See 2012 Fall number 6 a).
Problem 5. See Fall 2011 number 2.
Problem 6. I do not think compactness is needed. Indeed, assume {x,} does not converge to = then
there exists an g9 > 0 such that for any N there is an n(N) > N such that
d(xn(N)wx)ziEO
Take N =1,2,3,.. then there is a sequence x, ) such that
d(zn(ny, T) > €0
But as z,,() is a sub-sequence we can find a further sub-sequence that converges but this is a contradiction
since
d(Tp(ny, ) > €0
for all N.

Problem 7. Let Py denote the N + 1 dimensional space of polynomials of degree N and define the lin-
ear map ¢ : Py — RN via ¢(P) = (P(21),.., P (21), P(2), .., PU2) (25), ..., P(2y), ..., PU™2)(2,)).
Then it suffices to show 1 is bijective which is equivalent to showing it is injective since dim(Py) =
dim(RNTY). If 4(P) = (0, ...,0) then z; is a (m; + 1) root of ¢ so ¥ has N + 1 roots which implies by the
fundamental theorem of algebra that P = 0. Therefore, this map is bijective so the desired result holds.
Problem 8. As P is an orthogonal projection withe trace 2, we have the existence of a unitary matrix
U such that
P = U"Tdiag(1,1,0)U
Therefore,
P — I =U"diag(1,0,0)U

i.e. it has rank 1. So we must have the existence of p,q € R3 such that

P—I=pq"
and as P — [ is self adjoint and as (P — I)? = P — I we have

P—T=pq"pg" =qp"pg" = aqq"

for some a = ||p||?>. We can assume a = 1 since we can put the put the constant into ¢. So

P—1I=qq"
for some ¢ and we have diag(P — I) = (¢?,¢3,q3) so we have
Vs
vz U7

P=1I+qq"

o = %

v2
Ve

g ==

SO
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for any choice of the ¢ with the above signs.
Problem 9. Fix v € V such that v # 0. Then consider

W= {v, Av, .., A¥"1v}
where kK — 1 < d — 1 is the largest integer such that the above list is linearly independent. So we have
Qg, .., @k_1 such that
aov + a1 Av+ ...+ a1 AP o + AFv =0
this implies T(W) C W. Therefore, for A|w in the basis of {v, Av, .., A¥"1v} we have A(A™v) = A™*1(v)
for m = 0 till k — 2 and A(A*"1v) = —apv — a1 Av — ...ap_1 A*~1v ie. it is a companion matrix so Ty
characteristic polynomial if denoted g(t) is
(—=D)* (g + st + o1 tF71 +1F)
Then we claim this divides the characteristic polynomial of 7. Indeed fix a basis of w = {v, Av, .., AF¥~1v}
and extend it to a basis of V' 3 := {v, Av, .., A*"1v, w1, .w, } then in this basis we have
| B1 B
=% 5]

so its characteristic polynomial f(t)

0 By —tl

= det(By — tI)det(Bs — tI) = g(t)det(Bs — tI)
so the characteristic polynomial of A divides the 0 characteristic polynomial of Aly. But as f(T) =
p(T)g(T) for some polynomial p we have f(T)v = p(T)g(T)v = 0 since g(T)v = 0. As v is arbitrary it
implies f(T)v = 0 for all v € V so T satisfies its own characteristic polynomial. And the characteristic
polynomial is of degree d so we are done.

Problem 10.
Problem 11. We say T is normal iff T*T = TT* where T is the adjoint of T" then we have

(Tz,Tx) = (2, T"Tx) = (2, TT"z) = (T"x,T"x)

F(t) = det(A — tI) = det [Bl —tI B, }

so ||Tz|| = ||T*z||. Now by Schur’s Decomposition as T is complex there is a unitary matrix U such that
T=U"AU

where A is an upper triangular matrix. We will show from ||Tz|| = ||T*z|| that A is in fact diagonal.

Note that unitary equivalence preserves normal operators so ||A|| = ||A*||. Then

1Aen)]|* = lau[”
1A (en)]|* = lan|? + |ara|? + ... + |arn|?
S0 @12 = ... = a1, = 0. Then using a15 =0
1 A(e2)]]” = |aze|®
1A% (e2)|I* = laga|* + azs[* + ... + [azn|?
so ag; = 0 for j # 2. We can proceed inductively to show all the non-diagonal terms are zero. So A

is a diagonal matrix. So 7T is unitarily equivalent to a diagonal matrix. This means there exists an
orthonormal basis such that Tv = Av for some A. Indeed,

TUT =UTA
TUT = [Tuy,..,Tu,] UTA=[A\ug, ..., \nity,]
where u; is the ith column of UT so T(u;) = M\u; and we have u; are an orthonormal basis since U is
unitary. So we have a orthnormal basis of eigenvectors.
Problem 12. Note
Ca(X) = (X = 12(X —2)?
and that A is similar to B if and only if they have the same Jordan Canonical Form. We can either have

the Jordan form as 4 1 x 1 block, or one 2 x 2 block with two 1 x 1 block, or two 2 x 2 blocks so there
are a total of 4 similarity /congruence classes.
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9. SPRING 2014

Problem 1la. Note that
tt = —1 =t = cos(f) + isin(f)

—1 and sin(40) = 0. So 0 = T, 3% 5% T Note that cos(Z) + isin(F) = cos(ZF) —

such that cos(46) s o, In

isin(ZF) and cos(2F) + isin(2F) = cos(2F) — isin(2F) so the matrix
z 0
am [P0
" ne
with

_|cos(8) —sin(8)
R(6) := [Sin(e) cos(f)
has characteristic polynomial t* + 1. But as all the eigenvalues of A are distinct we have the minimal
polynomial is the characteristic polynomial.

Problem 1b. This question is false. But it can be shown that all sub-spaces are of even dimension i.e.
for A take W = span{a,b,0,0} for a,b € R or span{0,0,a,b}. To see why it has to be two dimensional.
Fix W C R* such that W is a subspace and let A(W) C W where A is defined in part a. Assuming
W # {0} this means if we fix an orthonormal basis {wy,..,w,} of W and extend it to a orthonormal
basis of R™ i.e. 8 = {wy, .., Wm, V1, .., Un—m} then A written in this basis takes the form

A= |5 3]

In particular this implies the restricted operator Ay characteristic polynomial divides the characteristic
polynomial of A since if we let g(¢) be the characteristic polynomial of A and f(t) be the characteristic
polynomial of Al we have
g(t) = det(A — tI) = det(By — tI)det(Bs — tI) = f(t)det(Bs — tI)
And since Alw is a real operator all of its eigenvalues come in complex conjugate pairs so either the
characteristic polynomial of By is t* + 1, (t — A1)(t — A1), or (t — A2)(t — A2) for \; = cos(6;) + isin(6;)
with 8, = T or 65 = 34” If the characterlstlc polynomial of B; is t* + 1 then we are done since B; will be
adx4 matrlx i.e. the basis of W has dimension 4. So WLOG assume that the characteristic polynomial
of By is (t — A1)(t — A1). Then By is similar to the rotation matrix R(%) which implies By is a 2 x 2
matrix. So W has dimension 2 so either dim(W) is 2 or 4.
Problem 2. Note that
rank(ST) + nullity(ST) = dim(V) = rank(ST) = dim(V') — nullity(ST)
> dim(V') — nullity(S) — nullity(T')
SO
rank(ST) > rank(S) + nullity(S) — nullity(S) — nullity(T)
= rank(S) — nullity(T)
which is equivalent to the desired inequality.
Problem 3. Assume for the sake of contradiction that A~! exists then

B—-AT'BA=1
which implies n = tr(I) = tr(B — A~'BA) = tr(B) — tr(B) = 0 which is a contradiction.
Problem 4. We claim this holds for all invertible matrix B indeed
det(BA — XI) = det(B~'(BA — X)B) = det(AB — \I)

where we used det(AB) = det(A)det(B) = det(B)det(A) = det(BA). Now we claim the set of invertible
matrix is dense in R"*™. Indeed, given any matrix A € R"*™ we can extend it to an operator over . So
by Schur’s Decomposition we have A is unitarily equivalent to an upper triangular matrix i.e.

A=UTTU

and the eigenvalues of A are the diagonal terms of T'. So consider

1
A, =UN(T + EI)U



29

then as there are only finitely many eigenvalues there exists an N such that for n > N we have diag(T—l—%I )
have no zero entries. Therefore, A,, is invertible and clearly as n — oo we have A, — A and A, is real
valued since we are adding a real valued matrix to a real valued matrix. Then since the determinant is
a continuous function since its a polynomial of the coefficients of the matrix we have for a given B there
exists B, — B where B,, are invertible so

lim det(AB,, —tI) = lim det(B, A —tI)

n—oo n—oo

so continuity lets us put the limit inside so
det(AB — tI) = det(BA — tI)
Problem 5. Note V = range(L) @(range(L))* and we see that for any b there exists unique b; €
range(L) and by € (range(L))* such that b = by 4 by. Then L(z) minimizes
|[L(x) — bll
if and only if L(z) = by since
161 = Bl1* < |lbr = blI* + [|L(2) — bu|]* = [|L(z) — b]|?
where the last line we used Pythagoras theorem since by — b € (range(L))* and the other term is in
range(L). So by is a min but the convexity of f(x) := ||L(x) — b||? tells us the minimum is unique since
L(z) — b is affine and || - || is convex. Therefore, all minimizes x satisfy L(z) = by so if  and y minimize
it then L(z) = L(y).
Problem 6. Note the spectral theorem implies that

A=U"DU
where U is unitary and D is a diagonal matrix since A is a normal operator so
A*=U*D*U

Note for any given polynomial P we have

P(A)=U"P(D)U
so it suffices to show there exist a polynomial such that P(D) = D*. Note that if P(z) = Y1, auz" we
have P(D) = >0 a; D If we let diag(D) = (M1, ..., \n) and diag(D*) = (j31, .., 3,) then it suffices to
show there exists a P such that P(\;) = ; for all ¢ = 1,..,n. Indeed this will just be the usual Lagrnage
Polynomials indeed fix a j and note

X — )\1
Pj(z) := H)\, Y

i#j I
satisfies
lifk=y
P:(\;) =
5(%) {0 else
So let

P(z) =) BiP;(x)
j=1

then it satisfies
P(X) = Br
for all k. Therefore, P(D) = > " a; D" = diag(> ;| a1, g @ihy) = diag(B1, .., B,) = D* so
P(A) = A* as desired.
Problem 7. We will write out our counter example {a,,,} in matrix form:

1 -1 0 .. O 0 0 O
-1 1 -1 1 0.. 0 0 O
0 0 1 -1 1 -1 .. 0 . O

and so on. Then summing along each row we get zero and summing column we get zero since there
are only finitely many 1s and —1s. In particular, >  Gnm = D, @nm = 0 and these sums converge
absolutely since there are only finitely many terms. However, >, a,| = +oo since there are infinitely
many 1s and —1s.
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Problem 8a. Note that by induction one easily sees that we have

£ () = Qn(t)e t fort >0
0fort<0

where @), is a rational function so it suffices to show lim;_,¢+ f (")(t) = 0. Then as we have exponentials
e~ decay faster than any rational functions at ¢ = +oo we have the limit is zero so it is smooth.

1
T2 —
Problem 8b. Note that we have f(t> — 1) = {(e) | Plor —l<t<d is smooth since it is the
else

composition of two smooth functions. In particular in R? we have

F(lf2 = 1) = { T for Jt] < 1

0 else
is smooth since its the composition of two functions. Then as this function is strictly positive we can
divide by its L' mass to find a function as desired in the problem statement
Problem 9. See Fall 2010 number 11.

Problem 10. This is one side of Arzela-Ascoli. Enumerate Q N[0, 1] = {gn }nen then for any {f,} C F
we have from uniform bound of the family

[fulq)l < M

so by compactness of [0,1] we find a limit f(g1) along the subsequence ng) such that f o) (q1) = f(q1).
Then by induction for any k we find have that '

|f - (ar)] < M

so we find a limit f(qz) and a subsequence n(¥) € n(*=1) such that f,0(ak) = f(q1). Let the subsequence
my = nfck) then we have for any n € N that f,, (¢,) converges. Fix ¢ > 0 then by equicontinuity there
is a ¢ > 0 such that if d(x,y) < 0 then for any f € F we have |f(z) — f(y)| < §. Then as QN [0,1] is

dense we have

[0,1] €321 Bs(gn)
so compactness gives us a finite subcover say qi, .., gy are the centers. Then as fi,, (z) — f(q;) for all
1 <i< N we can find an M such that if k,m > M then

€
| frnn (@) = fini (@0)] < 3
for any 1 <4 < N. Then for any z there exists a ¢; such that x € Bs(g;) so

i () = fon (@) < [ fmic (2) = Frni (@) + | Fini (@) = frn (@) + [ (@) = fom,, (2)]

so the first and last term are controlled by /3 due to equicontinuity while the second term if less than
e/3 if k,n > M so we have for k,m > M

| foni (@) = fm,, ()| < €
so it is a uniformly cauchy subsequence of C'([0,1]) which by completeness implies the existence of a limit
f.
Problem 11. We note that this means F is a compact subset of C([0,1]). In particular, F is totally

bounded. We claim this implies F is totally boubded. Indeed, fix ¢ > 0 then there exists fi,.., fy € F

such that
N

Fc U Be/2(fl)

i=1
then as f; € F there exists an g; € F such that d(g;, f;) < 5. Then for any f € F there is an i such that
d(f, fi) < 5 so d(f,g:) < d(f, fi) +d(fi,9:) <€ Le.

N
Fc|JB()

i=1
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for g; € F so F is totally bounded. Then we have the existence of g1, .., gy € F such that
N
F C U Bl (gz)
i=1
so for any f € F we have ||f|| <1+ maxi<;<n ||g:|| so it is uniformly bounded. For equicontinuity fix
€ > 0 then we have the existence of g1, ..,gn € F such that
N
Fc|JBes(g)
i=1
Then there exists a § > 0 such that if d(z,y) < 6 then for all 1 <7 < N that d(g;(x), g:(y)) < £/3 due to
uniform continuity of g; since [0, 1] is compact. Then for any f € F there is a g; such that ||f —g;|| < /3
so if d(z,y) < 6 then

[f(@) = fW)l < [f (@) = gi(@)] +1gi(x) —gi(W)| + |9i(y) = Fy)| < e/3+¢e/3+¢/3=¢
so the family is equicontinuous.
Problem 12a. Note that EN[0,1] = {J,-, int(Z,) so E is open in [0, 1].
Problem 12b. We need the following lemma: If A C R is a perfect set i.e. it is a closed set that has
no isolated points then A is uncountable. Indeed we first show A is complete. Indeed given a Cauchy
sequence {z,,} C A we have that there exists a limit in R which implies 2 € A. Now this means Baire
Category Theorem can be applied. Indeed, as A is countable we have

(oo}
A= U {an}
n=1
but each {a,} is closed with empty interior so BCT says there exists an n such that {a,} has non-empty
interior which is our contradiction.

Now we have 4 cases either 0 is an isolated point or a limit point, or 1 is an isolated point or a limit
point. WLOG assume that 0 and 1 are limit points for if say 1 is an isolated point then E := E — {1}
would be closed and we can repeat the proof below. Now fix x € F that is not 0 or 1 and we claim x is
a limit point. Indeed assume not then z is isolated because F is closed then there exists an € > 0 such
that
(x—e,x4+e)NE={x}

This is our contradiction. Indeed, let x € I; then WLOG z is a left end point then (z —e,x) ¢ I; but as
there is no interval end points in (z —¢, ) and I,, cover [0, 1] we must have an I, such that (z —e,2) C I}
but as it does not have a end point in (x — €, z) its right boundary point must be greater than or equal
to z hence we must have I N I; # () which is a contradiction. Therefore, F is a countable perfect set
(since each T, has two points), which is a contradiction.
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10. FaLL 2014
Problem 1. Let v:=2 —y,w := x + y then

v? + w? 1
H = = —_
Fix ¢ > 0 and R > ¢ and let the annul us with outer radius R and inner radius be defined as e
AR = Br(0) — B:(0). Then Ag . is compact and f is continuous so f attains a min over Ag .. Our
goal is to show there exists an R and e such that the min becomes a global min. Indeed, on B.(0) we
have f(v,w) > min,ep,_ (o) |71\ = 1 and on R? — Bg(0) we have f(v,w) > R;. Then as f(1,1) = 2 we see
by taking R big enough and ¢ small enough that

2
min f(v,w)zmin{%,§}>2:f(1,l)

’L)E]Rz—AR)E
and (1,1) € Ag .. Therefore, if z := min, ) ea - f(v,w) then
z< f(1,1) <  min__ f(v,w)
’UGIszAARY‘s

Therefore, z is a global minimum and it is attained at a point v # 0 <=z #y [O.

Problem 2. Claim: If A is closed and the union of two disconnected sets X, Y then X and Y are closed.
Indeed, let z € X then z € A = A implies that x € X or Y. So z € X or Y, but as we have X NY =0
and x € X implies x is not in Y i.e. x € X, so X is closed.

Now assume for the sake of contradiction that A is disconnected so there exists closed sets X,Y such
that
A=XUY XnY =90

then

ANB=(XNB)U(YNB)
and

(XuY)nBCcXnNY =10
so it follows that X N B or Y N B = () since AN B is connected. Assume X N B = (), then

AUB=XU(YUB)
and
XN(YUB)=(XNY)U(XNB)=10

therefore, we have A U B is disconnected which is a contradiction.

Problem 3. As f is continuous on [0, 1] compact we know that f is uniformly continuous. So for any
€ > 0 there is a 6 > 0 such that if d(z,y) < ¢ then d(f(x), f(y)) < 6. Note that

0,1 c |J Bs(z)

z€[0,1]

so by compactness there exists a finite subcover say Uivzl Bs(x;) where we ordered the centers such
that ;1 < x; < x;41. Then from pointwise convergence we can find an N such that if n > N then
|fru(z;) — f(x;)] <eforall 1 <i< N. Then observe for any y € (z;_1, ;) that form monotonicity

fa(@iz1) < fuly) < fulws)
In particular, we have for n > N that
fal@iz1) = f(i) < fuly) = f@i) < falzi) — fz) <e
In addition we have
|frn(@io1) = f(z)] < |fa(@ioy) = flrim)| + [ f(zio1) — flzi)| < e +e=2¢

where the first € is due to pointwise convergence and the second ¢ is due to uniform continuity of f. So
putting these inequalities together gives

|fn(y) = flas)] < 2¢
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Then we have

|fn(y) = F)| < |fn(y) = f@a)| + | f(2:) — f(y)] < 3¢

In particular, this means that if n > N that

sup |[[fu(z) — f(2)]| < 3¢

z€[0,1]
so it converges uniformly.

Problem 4. We will show that the family is uniformly Lipschitz on [—1, 1], which thanks to the equi-
bound on f,, implies by Arzela-Ascoli the desired result. Indeed fix y < z € [-1,1],z € (1,2) then we

claim we have
f@) = fly) o f(z) = f(y)
xr—y - zZ—

Then for any h > 0
f@)=fQy+(1=X2)2) <Af(y) + (1 =N f(2)

for A :=
f(z) — f(y> 2||f||Loo ([-2,21]) 2Hf‘|L°° [-2.2) _ C
r—y - z—y - z—1 '
and a similar argument shows if w € (—2,—1) then
fx) = f(w) _ f(z) = f(y)
r—w B xr—y
which implies
flz) = fly
M > Ol fllLee ((~2.2)
=Yy

which implies convex functions are locally Lipschitz with a constant that only depends on the max
of f over the domain. Therefore, since our family is uniformly bounded by 1 the claim follows from
Arzela-Ascoli.

Problem 5. We claim for all n we have a,, < 2. Indeed, a; = V2 < 2 then by induction we have
ai+1 =2+a,<4d=ap41 <2

so we have that a,, is a bounded sequence. Now we claim a,, is a monotone increasing sequence. Indeed,
for any n we have

—2—|—an 1> 20y, 1>a
which shows that a,, is a monotone increasing sequence bounded above by 2, so it converges. To find the
limit note that we just need to solve

n—1

24z=2= lim a,=2

n—-+oo
Problem 6. Note that

n—1
S - = 15 )
k=0

k=0
where y,in) € (&, 5H) due to the MVT. So as |f’| € C([0,1]) we have Riemann’s criterion that for the

n’

partition P, := {zp:=0 < a1 := l < X9 1= 3 < ..<xp:=} and any yi € [xx_1, ;] that

k‘ k nl
= m IS <">|f/ /(@) |da

n—+oco n
k=0

as desired.

Problem 7. Computation gives that solutions are of the form

1 2 4
0 -3 -5
el +8 0
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Then the norm squared is given by
fla,B) = (1+2a+48)* + (=3a—58)* + (1 + a)* + 32

and we want to minimize this over all o, 8 so we find the points where

Ouf =08f=0
and compare their values. This gives the min is at
34 13
=719 P

Problem 8. We have an eigenvalue of n + k — 1 with the vector (1,1..,1)T. We also (n — 1) eigenvalues
k — 1 with the eigenvector e; —eq, €2 — e3 and we have (n — 1) of these and they are linearly independent.
So our determinant is (k — 1)"~Y(n + k — 1).

Problem 9. We know that as A € C"*"™ that there exists an invertible matrix S such that

A=Y LB L P IS

where J; are Jordan Block. WLOG put ¢, + 1,.., k as the Jordan Blocks with zero diagonal. Then as

A # 0 we know that £ > 1. Then for 1 < ¢ < ¢ — 1 let the diagonal terms of each block be denoted as

A1, Ae—1 and A; # 0 for 1 <4 < /—1 so there exists a «; such that A\; +«; # 0 and \;. Solet B; = «o;Id
1

for 1 < ¢ < £ — 1 with the same size as J;. Then fix any ay, ...,a; € C such that a[jzk’ #+ ; OT ZeTo
where n; denote the size of J;. Define
0 0
Bpyg = [ O}

Aotk
where By, is of size ngqr, and By is zero everywhere except the (ngyr, 1) entry. Then Bf+k =0 so its
only eigenvalues are zero. But we have

Jotk + Beyr = super diagonal(1,..,1) + Byyk

In particular the transpose of Jyix+ Byt is the companion matrix with characteristic polynomial z™¢++ —
«;. So we have the eigenvalues of

A+ B =8 ((J1 + B1) P (2 + Bo) B . Bk + Br))S

1
are \; +a; for 1 <i</¢—1 and a;ﬁzk while the eigenvalues of B are «; and 0. And by construction
these are different.

Problem 10. We can have at most n? — (n — 1) 1s since if we had more than that there would be at
least two rows with all ones. Then let

11 1 1. 1
A=1(0 1 1 .. 1
1 0 1 1

i.e. it is one everywhere except the first subdiagonal. Then this is invertible since if
Axr =0

then we get from the first two equations

ixi:Oand ixi:O
i=1 i=2

which gives z; = 0. Repeating a similar argument usign the 1st row and jth column for j > 1 gives
x;—1 = 0. But then this means z1,..,2,—1 = 0 but using the first equation again gives =, = 0. So its
kernal is only the zero vector so it is invertible.

Problem 11. Note that A? is still a integer matrix so Tr(A?) € Z but Tr(A%) = X3 + 23 + A% + 7.
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Problem 12. Note that a;; = fol r~ i~ ie. Ais a gram matrix. Let (f,g) := fol f(z)g(x) then this
is an inner product so if £ € R™ we have

doai&ly =) (@2l e
i,J

i,J

= Z(ﬁﬂfi*lvfﬂ?]‘*l) = (Z fiﬂﬁi*l,ZQﬂﬁj*l) = (Z L'l Z{il‘ifl)
N 1 i—1(12 ] ! 2, 2i-2 2 l
:”Z:m [ :/0 ng =0

with equality iff £ = 0 so the quadratic form is positive. And we also have a;; = a;; so A is symmetric
so it is positive definite.
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11. SPRING 2015

Problem 1. We claim f < 2. Indeed, observe that
1+ 1 <2
10

so inequality fails at x = 2. But as f(0) = 0 and f is continuous we see if there exists a point y such that
f(y) > 2 then IVT implies there exists a point where f(z*) = 2 which contradicts the inequality.

Problem 2. Define

[f]a = sup |f(£L’) - fiy)|
z,y€[0,1] |35 —yl
TFY

Then let F C C([0,1]) be a bounded sequence i.e. for all f € F we have ||f||ca := ||f||1= + [flce < C
where C' does not depend on f. Then the family is totally bounded since ||f||r~ < C and as [f]ce < C
it is equicontinous with modulus of continuity Clz — y|®. So by Arzela-Ascoli there exists a uniformly
convergent subsequence which we denote by {f,} to a limit function ¢ € C%([0,1]). We know g €
C“([0,1]) since C*(]0,1]) is a closed subset of C([0,1]). Now we want to show that for any f < « we
have
[ fn = gllesqo,1y) — 0
As f, — f in C([0,1]) it suffices to control [f,, — g]cs. Indeed observe that if we let f:= f,, — ¢

B

f(@) = F)] _ <f(x) —f(y)ﬂ> " (| f) - 1@ —f(y)|>‘* @)= f ) (If(x) - fw)

|z —y|? |z —yl@ |z —yl®

_B 1-£
< 2| fl e [f]ee
_B
< 0223 f|[ha
1-£ 1-£

Note that 1—§ > 0 since @ > 3. This implies F C C” since we can have [f]g < 2'7 || f|| =" [f]ce. This
inequality also implies that [f]cs = [fn — glcs — 0 as n — +o0. So they converge in C”. The problem
statement has a = % > % = 0.

Problem 3. Fix 0 < |h| < 1 then notice for any n € N that

fla+h)—fx) _fla+h) —flat+y
h h
_ fl@+h)—flz+i)h—1 RIC
B h— h
= (1) + (1)
Note to make (/1) become zero in the limit we just need to choose a sequence n such that - is bounded.
Indeed, assume that 0 < h < 1 then there exists an IV such that

+f@+3)— fl@)

~—

1
n

1 1
- <h< =
N+1~— — N
SO )
N—l—lZEZN
So we get
N+1>L>1
N — Nh—

so along this sub-sequence of N we get (IT) — 0. Also note that since f is Lipschitz that
fla+h) = flz+3)

<cC
1 —
h=a
so it suffices to show that along this same subsequence of N that
h— L
- N — 0

h

S

|z —y[®
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Indeed, we have the estimate

_71<h i<0
N(N+1) — N —
S0 .
_ h— L
Lo
h(N2+ N) h
so w e get
_ 1
NN h-%
N2+N h —

Therefore, (I) and (II) both converge to 0 as h — 0. Therefore, f is differentiable and f’ = 0 on R which
is connected so we also have that f is constant.

Problem 4. We first need the following lemma: Let f be a function with the IVT property then if
f is discontinuous at xo then there exists an €y > 0 such that we have a sequence {z,} — o and
f(xn) = f(xo) + 5 or f(xy) = f(xo) — %. For now assuming the lemma is true, we have our contradic-
tion since there exists a sub-sequence with f(x,r) = f(xo) + 5 or f(zn,) = f(xo) — 5 for all k. Say

f(xn,) = f(xo) — % for all k then A := f~*(f(zo — %)) is a closed set so as x,,, — x we have zp € A

but this implies f(zo) = f(x0) — % which is a contradiction. So it suffices to prove the lemma.

Let f have the IVT property and assume it is discontinuous at xy then there exists an €y > 0 such that
there exists an y with |z — y| < + and
|f(z0) = f(y)| = €0

Assume that f(y) > f(xo) then we have f(y) > eo + f(x0). In particular, this means f(zg) + 5 €
[f(z0), f(y)] so by the IVT property there exists an x,, € (2o,y) such that f(z,) = f(wo) + 5. Note if
f(x0) > f(yo) an identical argument yields the existence of an x,, such that f(x,) = f(xo) — % and the
lemma holds. Which concludes the problem.

Problem 5. We proved this in Spring 2013 Number 4 and used it to prove that problem.
Problem 6. Let the operator T': C([0,1]) — C([0,1]) be defined via

Then we have
1 [t 1
IT(F) =Tl < 5 [ NF = slluw = 511F oo~

where we used | cos(s)| is bounded by 1. Then Banach Fixed Point Theorem implies that there exists a
unique fixed point of T(f) i.e. f(t) =e! + %fol cos(s)f(s)ds and f € C([0,1]).

Problem 7. This quadratic form is associated to the following symmetric matrix

9 6 =5
A=1|6 6 -1
-5 -1 6
x
which has a negative eigenvalue so there exists an (x,y, z) such that [z,y,2]A |y | = f(z,y,2) <0
z

Problem 8a. This is false. Let
A = diag(2,2,2)
then det(A) = 8. If A,, — A then we have each entry of A,, converges to each entry of A. But observe
that f : R3*3 — R defined via
f(A) = det(4)
is a continuous map since it is a polynomial int he coefficients of A. So in particular if A,, — A then
f(An) = f(A) but for all n we have f(4,,) =1 and f(A) = 8 which is a contradiction.
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Problem 8b. This is true. Indeed, by Schur Decomposition we have
A=UTTU

where T is an upper triangular matrix. Fix k € N and let hy, := {hq, .., h,} such that ||h|| < & such that
Ty + hy # Tj; + hy for all j # 4. This is possible for any k since we have a finite number of eigenvalues
then let us define

A, = UN(T + diag(hy, .., hy))U
then Ay has distinct eigenvalues and A,, — A since d(A4, A) = (321, h3)? < + for any k.
Problem 9. Fix a basis of Uy N W7 i.e. {v1,..,v4} extend it to a basis of U; + Wy with the first d — ¢
elements being from U; and the next d¢ from W; and extend it to a basis of R" i.e.
{01, ey Uy Uty vy Ug—py W1y ooy Wd—g5 @15 -+, G ;- NOow do the same i.e. start with a d element basis of Uy N W5
extend it to a basis of Uy + Wo with the first d — £ elements from Us and the next from W5 and the finish
the rest to form a basis of R™. Denote this basis of
{Uil), - v((il),ugl), . ugllje,wgl), ..,w((iljé, qgl), - qg)}. Define T via T'(u;) = T(ugl)),T(vi) = T(Ugl)),T(wi) =
T(wfl)),T(qi) =T i(l)). This is possible since U1,V1,U2,V?2 all have the same dimension and their

intersections do as well. Therefore, we have found an operator such that T'(Uy) = Uy and T'(W;) = Wh.

Problem 10. Note that
A Bl|I Q] (A 0
C D||0 S| |0 I

so we have det(M)det(S) = det(A) as desired.
Problem 11. Let 6,, := Qf—l” then consider

R cos(fy,) —sin(6,)
" |sin(8,)  cos(6y)
these are 11 commuting matrix with order 11. Note that we have Rgl) = Id and no smaller number k
such that R¥ = Id since

no Isin(kf,)  cos(k6y,)

and k6,, = 27{’1”“ and nk divides 11 iff £ = 11m for some m € N since 11 is prime.
M- 5 11|14 o0]{1/6 1/6
|1 —-1]|0 -2||1/6 -5/6

Problem 12a. We have
151 et 0 1/6  1/6
exp(M) = [1 1] [o 62] [1/6 5/6]

Problem 12b. We claim given any matrix A that exp(A) has positive eigenvalues. Indeed given any
matrix A € C"*" we can find a unitary S € C"*" such that

A=S5"(T)S
where T is upper triangular by Schur Decomposition. Then
exp(4) = S*(exp(T))S

Note that applying any polynomial to T still results in an upper triangular matrix. In particular
exp(T);; = exp(Ty;) so all the eigenvlaues of exp(A) are of the form exp(7T;;) > 0. And the claim is
proved But M has an eigenvalue —2 which implies there is no map A such that exp(A) = M.

. [cos(ké)n) sin(k&n)}

so we have
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12. FALL 2015

Problem 1. Fix ¢ > 0 and N € N then for any n > N we have n = alN + r where o € N and
r€{0,1,..,N — 1} then
anp, Ao N+r Ao N + ar AqN

a;
— = < < + max —
n aN+r ~ aN+r — aN i=1,,N-1n

aanN
< + max —
aN  i=1,.,N-1n

N
=—+¢
N +
for n large enough where we used max;—; . n—1 % — 0. So it follows that
a
lim —= < inf =
n—oo N neN n

this implies

. Qn . an,
lim = inf —
n—oo 1 neN n

as desired [
Problem 2. Observe that as h > 0

h(z)dz < h(z) < h(z
2in, 0 [ o < [ oot < gt | io

So for the continous function

we can apply IVT to find a ¢ such that

b b
FK%3/9®M@Mx=ﬂO/wmwm
as desired [J

Problem 3. By Dini’s Theorem since f,, is non-increasing, [—1, 1] is compact, and f,, — 0 continuous
we have f,, — 0 uniformly. Now we sum by parts i.e. for B,, := Y ., b; we have

7 —1
zn: aibi = XL: B Bl 1 Z B; iy — —1a; = zn: Biai — nz: Bjaj_H
i=m i=m

i=m j=m-—1

:Bnan— m— 1am+ZB CLJ+1)

So we have for n > m for B, := 37 (~1)

n—1
9m () = gn(@)| < |Bpfr(x) — By fm(2)] + | Z B;(fj(@) = fit1(z)]
using that |B,| < C we have

C(|fn (@) + [fm(2)]) + Z Clfi(@) = fia(2)]

using f; is non-increasing we have

= C([fn(@)| + [ fm(2)]) + Z C(fi(@) = fi+1(x))

j=m

=mmwwmmw+icmw—mm>
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Then as f,(z) is a montone sequence this is equation to

= C(fn@) + (@) + frn1(2) = fo1(2))

then using sup, |fj(z)] — 0 we have that the sequence {g(z)} is Cauchy in C([—1,1]) we have by
completeness of C([—1,1]) the existence of g € C'([-1,1]) such that g, (z) — g(z) uniformly.

Problem 4. Let us define the operator from T : C([0,00)) — C([0,00)) by

T .= —2x ‘ —2td
(= [ e ar
then
- 1
AT T@) <1 slli= | eat = 5(f.0)

Therefore, T is a contraction mapping so there exists a unique fixed point of T i.e. there is some
f € C([0,00)) such that T'(f) = f. By Banach’s Fixed Point if we start with any f € C([0,00)) then
define f, 11 := T(fy) then f,41 converges to the unique fixed point i.e. f. To explicitly find f note that

— o2 ¢ 72td
f=e Jr/o f()e 'dt

and differentiate to find f, which converts this integral equation into a differential equation.
Problem 5. By the implicit function theorem we have

Oyx(y,z) = =0y F(0,F)~1

(9Zy(:v,z) = _aZF(ayF)_l

8$Z($,y) = _81F(azF)_1
so multiplying them we get

0yx0,Yy0,2z = —1
Problem 7. By Sylvester Rank Theorem we have
rank(T) — ker(S) < rank(ST) < min{rank(S),rank(T)}
Take S = AT and T = B then
1 < rank(ATB) <3

Problem 8. Follows from direct computation.

Problem 9. Since we have
det(A — NI) = det((A — AI)T) = det(AT — \I)
we conclude A and AT have the same eigenvalues. Therefore, as
AT =4

we must have for every positive eigenvalue a negative eigenvalue. Therefore, the product of the eigenvalues
must be non-negative i.e. det(A) > 0.

Problem 10a. Note that exp(A) is absolutely convergent for all  since
o A"
Al < — < A
lespll < 32 500 < explAl)

then if AB = BA we can apply binomial theorem to see

~ (A+DB)" - () AR BF
eoarm =3 B S S (1)

n=0 n=0

since by Cauchy Product and AB = BA we have

(i anA"> <i ka‘€> = i(i an_ kA" FbraB)
n=0 k=0

n=0 k=0
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Problem 10b. Let

a2
then
exp(A) = {8 8} exp(B) = {8 2}
and cwen(B) = g | #eotd 8= ;]

Problem 11a. Note that for any m >0
ker(Adim(V)) = ker(Adim(VHm)
so if there exists a square root we must have
§10 £
but S2 = 0 but as dim(V) = 6 we must have ker(S%) = ker(S1°) = ker(S'?) but the last two do not

agree so no square roots exist.
Problem 11b. Consider
Sii+1 =1 and 0 else
where S € R¥2X12 then S0 #£ 0 but S*2 = 0 so define A := S? then A has such a square root.

Problem 12. We know M = diag(1,2, 3,4, ..,n)+A where A is a matrix of all ones let A := diag(1,2,3,4,..,n)
Then
(Mz,z) = (Az,x) + (Ax, x)

n n
=D _gwi+ (Y wk)’ 20
j=1 k=1

so M is positive definite.
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13. SPRING 2016
Problem 1. Let xz,, — = then we either have

f(.’l?,.%‘) - f($n7x) S f(max) - f(l’,l'n) S f(.’L‘,.T) - f(xvxn)
or
flz,z) = f(z,2n) < fz,2) = f(2,7,) < fl,2) — f(20, )
in either case we have as noo that |f(z,z) — f(@n,zn)| — 0 so g(z) := f(z,x) is continuous.

Problem 2a. We say f is Riemann Integrable if for any € > 0 there exists a partition P of [a, b] with
P={a=20<m < ..<uzp=>0}and I; := [x;_1,2;] and w(f, [;) := f(z) — f(y)| with
5$i =T, — X1

> w(f LA
=1

Problem 2b. Fix ¢ > 0 and as z,, — x there exists an N such that if n > N then z,, € B%(x) = 1.
Then for i = 1,..,N let ;11 := Bzis+1 (x;). ;N 1I; # 0 for i # j then we can make the radius of each

ball smaller to ensure they are disjoint so WLOG assume that I; N I; = ) whenever j # i. Then consider
any partition that contains I, .., Iny41 call the remaining intervals Iy 4o, ..., Ias then observe

lifi=1,. ,N+1

0 else

SO
N+1

M
le L) Ax; < Zl 5T <e

so f is Riemann Integrable.
Problem 3. Note that

n—1 1 1 L2
S i [ 1@ =3t n [ s
k=0 0 n
and we have - -
It =@t @) - [ @ s @)
Taking A = —% gives along with the MVT of integrals that
1k, Skt
:nf(n)_f(gk)/ﬁ (x—T)
k I
= 2pky o L

where &, € (£, EEL) S0

This is a Riemann Sum so it converges to
1

= | f@)=f(0) = f(1)

0
So

n

k

S -n / F(x) = £(0
n

k=0

In particular, this implies

Zn:f—n/f

k=0
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diverges. I assume the correct question was to find the limit of
S £ -n [ f@)
n 0
k=0

Problem 4. As f is a continuous map from [0, 1] — [0, 1) we know from continuity that there exists an
x* € [0,1] such that S(z*) is the max. In particular, 8 < 8(z*) < 1. So define the map T : C([0,1]) —
C(]0,1]) defined via

1
7(7) = ala) + [ A0 (0
0
is a contraction map on the complete metric space C([0,1]). Consider the iteration scheme

fo(x) = 0
fasi(2) = afz) + /0 B() £ (1)t

Then we have for any n > m we have

T(fn) = T(fun) = / B (fult) = ()

So
T (fn) = T(fr)llL=(0,1) £ V() = fn (Ol 0,1)
for v := fB(z*) < 1. In particular, iterating this inequality gives
T (fn) = T(fu) [l <A™ o) = frmm (O] = 7" || fr—m )]
< ’ym(l‘fn*m - fn7m71|| + ||fn7m71 - fn7m72H + Hf1<t)||)
<y TMAN AN+ (D

=AD"
k=n
so it is Cauchy and completeness implies the existence of a limit f. Then f,, — f uniformly so
Jim T(f) =T( lim f,) =T(f)
and
2, TUn) = Jiog fva =
ie. f=T(f). So the limit is a fixed point. To find it explicitly we differentiate the integral equation
T(f)=f
and solve the ODE.
Problem 5. As Vg(zo,yo) # 0 we can assume WLOG that dyg(xo, o) # 0. Then the Implicit Function
Theorem implies there exists an open neighborhood U C R! containing 2o and a map ¢ : U — o(U)
satisfies
g9(z, o(x)) = g(wo,y0) =0
for x € U. Then we get
d
0= —9(z, () = ug(z, p(x)) + ¢'(2)9y9(z, p(2))

i.e. Bra (2))

P(o) = — 22 PE)

9yg(z, ()
Then let us define
Y(2) = flz,0(x))

then ¢ has a minimum at x = zy so we have

0= L&) lemrs = e 0, 9(a0)) + By 70, P(0)) (0)
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Putting these together we get and that ¢(z¢) = yo gives

8a:f(x07y0) — 8yf($07y0)
amg(x()vyo) ayg(x(]ay())

so it follows that for A\ := gﬁzgzg = g:ﬁzgzgg that 9, f(zo,y0) = Adzg(xo,y0) and 9y f(z0,y0) =

A0y g(wo, yo) i-e. Vf(x0,90) = AVg(wo,yo)

Problem 6. Let us consider an open ball B,(x). Let us assume that y is a limit point then there exists
an y, C By(x) — y. Then there exists an N such that for n > N we have

d(y, yn) <

- 2
for any n > N. So we have for any n > N
d(,y) < max{d(@, yn), d(yn,y)} < max{d(z, y), 5} <7

since yy, € By(z) so it follows y € B,(z) i.e. the open ball is also closed.

Now consider a closed ball. Let € := §. Then if y € {y : p(z,y) < 7} then for any 2z € B.(y) we have
d(z7) < max{d(zy), d(y,v)} < max{z, d(z,y)} <7

ie. z€{y:p(z,y) <r}so B(t) C{y: p(x,y) <r}. So it is also open since every point is an interior
point.
Problem 7. We need the following lemma: Lemma 1 If A is a real normal matrix, then A is unitarily

equivalent to the following matrix
B:=Ri@PrR.P.. PR

N [Ailcos(6;) —|\;|sin(6;)
Ri =[] or {IMI sin0;) | A| cos(8y)
Since A is normal it is complex diagonalizable and since A is real all the complex eigenvalues come in
conjugate pairs. Fix a complex eigenvalue say A then A\ = ||e?? for some 6 € [0, 27]. Then the eigenvalues

of
[)\| cos(f) —|A| sin(@)]
[A|sin(8)  |A|cos(6)
is exactly |A|(cos(#) + isin(f)) = X and |\|(cos()

similar to

where

—isin(f)) = X\. This matrix is normal so it is unitarily

diag(\, \)

By composing bases we get the lemma.

Now since M is orthogonal it is normal and eigenvalues have magnitude 1 so the lemma implies there
exists complex unitary matrix such that

M=U"REPREP. .. PRU
=(RiEPrEP .- PRIV

Then U = A+ iB where A and B are real. So we get for any r € C

(A+rB)M = (R P R P .. P Rm) (A +1B)

Let p(r) := det(A + rB) then p(i) # 0 since U is invertible. Therefore, p is not the zero-polynomial so
there exists only finitely many roots so there exists an r € R such that p(r) # 0. In particular,

=(A+rB) " (RiEP R EP .. P Rm)(A+7B)

Let V := (A + rB) which is real. So
TR EPREP - PRV

Then this implies



45

Assume that M has 2k complex roots. WLOG assume that Ry, .., R be the rotation matrix in lemma 1
while Rg1, .., Ry be the diagonal matrix. Consider

L=V PLr . PrPL P - Pl.)V

where I is the identity matrix with the size of R; and L; is real. Then we clearly have

m

[[Li=V'(RiEPRrREP . - PRn)YV =M

i=1
so if there exists even a single complex eigenvalue we have m < n — 1. So the claim is proved for unitary
with even a single complex eigenvalue since L; is the identity on a n — 2 dimension subspace. When the
unitary matrix only has real eigenvalues relabel the R; such that R; = [1] for 1 < ¢ < k and Ry4; = [—]]
for 1 <i<n—k. If k=mnthen M = I and there is nothing to prove. We just replace Ry ; and Ry4it1
with
W; :=diag(—1,-1,1,1..,1)

Then if k is even we are done, but if k is odd the the we keep the last entry as Wy := [—1]. Then we do

k ¢
[z [[wi=M
i=1  i=1
and k+{¢<n-—1aslong as k> 1. If k =1 we just do
Wy = diag(1,-1,1,1..,1)

to get the result.
Problem 8. Assume

(I+A)z=0
then
1+ ap1xy +ag1re =0
T + a12x1 + agers =0
so we have
HJZ||2 = (anﬂfl + a21x2)2 + (0421‘1 + a22x2)2
2
1
<2l af) < Ellx\l2
ij=1
by Cauchy Schwarz, so we must have ||z|| = 0 i.e. 2 =0 so I + A is invertible.
Problem 9. Let A € R3*3 be defined via
A = [1)1,’[127’03]

then det(A) # 0 iff vy, ve,vs are linearly independent over R. and
det(A) = (2 — 2°)
so they are linearly independent over R iff z # 0 or £+/2.
Note that if they are linearly independent over R they are linearly independent over Q. So it suffices

to check at 2 = 0 and = = ++/2. It is easy to show that at 2 = 0 they are not linearly independent over
. It is easy to verify the Kernals at 2 = /2 are spanned by

-1

and at x = —+/2 is spanned by

so they are linearly independent over .
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Problem 10a. Fix A € Mat(3,C). By Schur Decomposition there exists a unitary matrix U and an
upper triangular matrix T such that

A=U"TU
Fix a sequence of numbers {hgk), ey hg‘)} such that T;; + hﬁ"') #Tj; + hg.k) fori#jand ) | |hgk)\ <
then define

1
k

Ay, == U(T + diag(h\®, ..., h"HU
Then Ay has distinct eigenvalues and Ay — A as k — oo
Problem 10b. Let A := diag(1,2,3) then if A, — A then we have det(A4,, — A\I) — det(A — M) but if
A, has only one Jordan Block then we must have

det(Ap, — M) = (A= \p,)?

for some A\, but this can never converge to

A=1)(A=2)(A—3) =det(A— )
Problem 11.

Problem 12. As A is self adjoint and Avy, = (2k — 1)vg, we have v; L v; for any ¢ # j. The result then
follows from bilinearity of the inner product.
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14. FaLL 2016
Problem 1. We claim similar matrix share the same eigenvalues. Indeed, if
SAS™! = B = SA(z) = BS(z)

for all z. Let Az = Az then
ANSx = BSx

and as S is invertible we have Sx # 0 so Sz is an eigenvector of B with eigenvalue A. This shows all the
eigenvalues of A are eigenvalues of B and a similar argument shows that they share the same eigenvalue.
We then note that the Jordan Canonical Form implies that all the eigenvalues of B? are the eigenvalues
of B cubed. But as B is similar to B? for each eigenvalue A\ we must have A3 = A\ = A(A\? — 1) = 0 so
either A =0 or A = +1. But as B is invertible 0 cannot be an eigenvalue so the only eigenvalues are +1

which are roots of unity.
Problem 2. Note that A is a Jordan Block so we have
" on pon—l
w5 "]

So

oo 2 00 n2n71
exp(4) = {Znao nl Zzn:ig ﬁ }
n=0 n!

Let B := exp(A) then

IB|IP = sup |[Bz|[*=  sup  (Bz,By)
[|lz||=1 l|lz||=1,]|y||=1
= sup (BTBm,y)
l|lz||=1,]|yl|=1

And BT B is symmetric so it is real diagonalizable. So we get if we let A be the largest eigenvalue of BT B

that

1B]] = VA
So one just computes the eigenvalues of BT B to get ||B]|.
Problem 3.
Problem 4. We use the following lemma: A matrix A has rank(A) > r iff there exists an r x r submatrix
of A such that the submatrix is invertible. This can be easily seen to be equivalent to having r linearly
independent columns so we omit the details. Now let r = rank(A) then there exists an r X r submatrix
that is full rank. Then as A,, — A we must have the same entries in the r x r submatrix converge to the
r X r submatrix of A. Then as the det is a polynomial map of the coefficients we must have for sufficiently
large n the det of the r x r submatrix of A,, is non-zero due to continuity. So this implies for sufficiently
large n we have rank(A,) > r i.e.

rank(A) < liminf rank(A,)

n—oo

Problem 5.
Problem 6a. Let
vi=(V2,m,..,1)
thenA\/ie(@iff)\:q\/iforqe(@butqﬂwgé@.
Problem 6b. Notice that A — 3] is a rational matrix. We consider the companion matrix
[A—3I 0]
where the 0 represents an n x 1 matrix. As 3 is an eigenvalue of A we have that A — 31 has a non-zero

kernal. So to find the Kernal we just preform Gaussian Elimination till A — 31 is of the form

Lixr On—pxn—r 1

O O V2
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where Iy, is the r x r identity matrix for » = rank(A — 3I) and we have r < n — 1. Then we have that
v1 and vy are in the Kernal of A — 31 but preforming Gaussian Elimination on rational entries leaves the
entries rational i.e. [vl O} € Q™ and this is also in the Kernal.

Problem 7.
Problem 8a. This is a standard diagonal argument.

Problem 8b. Let
Oifx <n
n(x) =
fn(@) {1 fx>n+1

with a line connection the two between © = n and n + 1. Then we have f,(m) = 0 for any m > n so
lim,, 00 frn(m) = 0 but lim,, o fr(m) =1 for all n. So the double limits do not agree.
Problem 9. If f, — f uniformly then for any ¢ > 0 there exists an N € N such that || f,, — fi|[z~ <
for n,m > N. Then for any n,m > N we have

[fn(2) = fn(W)] < |fnl2) = In (@) + S5 (@) = In @)+ [N (Y) = fu ()]

< 2 +1fnla) — Iv)

As fy is continuous there exists a oy > 0 such that if d(x,y) < on = d(fn(x), fn(y)) < § so

[fo(@) = fu(y)| <e
for z,y such that d(x,y) < dy. Then fi,.., fy—1 are uniformly continuous let d; be chosen such that
d(z,y) < 6; = d(fi(z), fi(y)) < e then let 6 := min{dy,...,dn} then if d(z,y) < § we have

d(fi(z), fi(y)) <e

i.e. the family is equicontinuous.

Now if f, — f pointwise and {f,} is equicontiuous. Then fix € > 0 then there exists a ¢ > 0 such that
if |fn(x) — fo(y)| < e and |f(x) — f(y)| < € whenever d(z,y) < . Now consider the open cover of [0, 1]

[07 1] C U B5($)
z€0,1]
so there exists a finite subcover Bs(x;) for i = 1,.., N. Then as f,(z;) = f(x;) there exists an M; such
that if n > M; then |f,(x;) — f(x;)| < e. Let M := max{M;, .., My} then |f,(x;) — f(x;)] < & for any ¢
when n > M. Then for any = it must live in some ¢ ball say x; then
|f(@) = fu(@)| < [f(2) = fQ@a)| + [f(@i) = fal@i)| + | falzi) = fulz)] < 3¢
&)
sup|[|f — full <3¢
for any n > M i.e. uniform covergence.
Problem 10. We are asked to minimize for g(z,y) := z* +y* — 2
min
(@,y):9(w,y)=0

fult) = {sin(n) fort <

sin(1) for ¢ >

Problem 11. Let

3=3I=

then if there exists a sub-sequence that converges to a limit f then we must have f(t) = sin(}) for
t € (0,1]. But this limit cannot be continuous since sin(1/t) cannot be extended to be continuous on
[0,1]. So it is not compact, hence not complete.

Problem 12. As f is convex we have for any © < z; < y where z; := (1 — X)a + Ay for A € [0, 1] that

@)~ 1) _ @)~ 16) _ ) - fe)
T — 2zt T -y T Y=
In particular sending z; — y and z; — x that

y—x
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’SO e (y—2)f'(2) + f2) < fly) < (y = 2)f'(y) + f(2)
f) 2 f@)+ @)y - 2)

whenever y > x and if x > y we have the inequality

| f(xfz - ZJ;(Z/) < /()
[@) < (@ =) f () + 1) = F) + (- 2)f (@) < ()

whenever x > y. The inequality is trivial for x = y so we have arrived at the conclusion.

For the reverse fix z,y and let 2z := Az + (1 — A)y then
f) = f(2) + Af'(2)(z —y)

and
f@) > f(2)+ (A =N f'(2)(y — )
(I=Nfy) +Afy) = f(z)

as desired.
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15. SPRING 2017

Problem 1. It is clear that range(MM7T) C range(M) so it suffices to show rank(MM?) = rank(M).
Now fix x € Ker(MMT) thenf or any y € R" we have

(MM z,y) =0= (M"2, M"y) =0
taking y = = we get M7z = 0. In particular, we have shown that Ker(MM7T) c Ker(MT). But we
trivially have Ker(M7T) C Ker(MM7T) so Ker(MT) = Ker(MMT) i.e. nullity(MT) = nullity(MMT).
But using nullity(M7T) = nullity(M) we get

rank(MM?T) = rank(M)

so we have range(MMT) = range(M) as desired.
Problem 2.

Problem 3a. As M = M7 and MM7T = I we get M? = I. In particular, as M is normal it is complex
diagnolizable so it has a basis of eigenvectors. Let A be an eigenvalue associated with the eigenvector x
then we have x = M2z = A2x so A = 1. As M is positive def all the eigenvalues are positive i.e. A\ = 1.
Therefore, by the spectral theorem we have the existence of complex unitary matrix U such that

M=U"IU=1
so M =1.
Problem 3b. No.
Problem 4.

Problem 5. Fix a polynomial F(X) then F(z) = a[[_,(z — x;) for some z; and a. Then we claim
F(T)x = 0 for x # 0 iff F has an eigenvalue as a root. The direction eigenvalue as a root imply F(T)z = 0
for z # 0 is trivial by taking an eigenvector as x. For the other direction let k£ > 0 with H?Zl (T—z;1I) ==z

be the largest integer such that Hf:I(T — x;1)x # 0 then we have Hle(T — x;I)x is an eigenvector of
T — z411. So this implies F(T) is invertible iff F' does not have any eigenvalues as roots i.e. iff the
minimal polynomial and F' do not share ant roots.

Problem 6b. Just do Grahm-Schmidt on

ool bl Bl o

Problem 7. Let the operator T': C([0,1]) — C([0,1]) be defined via

z N2
r(5)i=1- ([ ur)
Indeed this maps to C([0, 1]) since

o< () ([ ) < [ere

where the second last inequality is due to Jensen’s Inequality. So in particular,
0<T(f) <1

and the continuity is clear. Then observe

T(f) - T(g) = (/;tgf— (/Oztf)zZ(Axtg—tf)(AItf+tg)
/Oxtgé/olltglé

where we used ||g||L~ < 1. In particular this implies

) =T < [ 1t =tglat < [ 1f = gllumt = 5117 =slli

i.e. T is a contraction map and an operator on a complete metric space. So it follows from Banach Fixed
Point Theorem that this admits a unique fixed point.

M| —
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Problem 8. Note that by integrating by parts we have

@ = s@e - Plioo - [ - prw
f(l)—;f(O) _/01< _%)f,
IO pay D [ - D
IS LI SR

Therefore,

ORFIONN .
f—/o f(z)dx

. 2
where we got 1/8 since max,e01)|% — %] = &

! x2 x 11 ]‘ ! 1"
| G-prw<g [ 1@

Problem 9a. Let d(z,y) := dist(z,y) then notice that by the reverse triangle inequality it suffices to
show for any € > 0 and any x € X that there exists a z € Z. where Z. is coutable such that

d(z,z) <e

As C(X) is separable there exists a countable set of functions {f,} such that for any g € C(X) we have
an n such that

lg(a@) = fu(@lz= < 5

Fix an z € X ad let g(z) := d(x, z) then g(z) € C(X) so there exists an n such that
€
llg(@) = fa(@)l| = [[fa(@)]] < [l9(2) = fa(2)llz= < 5

Let {gn} C {fn} be chosen such that for each n there exists an z,, such that

€
ld(zn, 2) = gn(2)llLe < 5

2
then we have g,(x,) < 5. Then fix an arbitrary € X then this implies there exists an n such that
€
i, 2) = gn(2)]| <

In particular this implies
d(x, xn) < [Jd(x; 20) = gn(zn)l| + llgn(zn)| <€

If we let Z. := {z,} then the claim is shown.
Problem 9b. In a we have shown for any € > 0 there exists a countable set Z. such that for any x € X
there exists a z € Z. such that

d(z,z) <e
Let g, := % and consider Z := |J;—, Z., which is countable since it is a countable union of countable
sets and for any € > 0 and € X there exists an z € Z such that

d(z,z) <e
so X is separable.

Problem 10a. As K is compact it is closed. In particular, if K can be written as the union of two
separated sets A and B then A and B are both closed. But as K is bounded so are A and B. In
particular, A and B are compact and

K = AU B such thatAN B =
Then we must have the existence of an g9 > 0 such that d(A, B) > &p. Let a € A and b € B then by
assumption there exists a sequence g, 1, .., T, such that xo = a and z,, = b with ||z —2p_1]] < F. As
9 =a € A and x,, = b € B this implies there exists an integer such that x; € A and 41 € B and we
have ||[zg41 — xx|| < % but this contradicts d(A, B) > &g. Therefore, K is connected.

Problem 10b. Take the topologist sine curve.
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Problem 11. We claim that the family is uniformly bounded on [0, 1] and that it is equicontinuous on
[+,1] for any k € N. Indeed, note that

1+¢2 2
so the family is uniformly bounded. And we have by the fundamental theorem of calculus as f, are
continuous that

1 n
n 1 T

n

FI — n < 1+7
and on [, 1] we have

n
||F’I/L(z)||L°°(%,l) <1+ 1

k2
Noting that

we get that there exists a constant that depends only on k such that C = C(k)
IE (@) Lo 1,1y < 1+ C(K)

So it is equicontinuous with lipschitz constant 1 + C(k). So by Arzela-Ascoli there exist a uniformly

convergent subsbequence on [%, 1] denoted by n,(f) to a function f;(x). We can similarly find a uniformly
convergent subsequence on [%, 1] where n,(f) C ngf) to a function fo(x). Note that by uniqueness of limit

we have fi(z) = fa(z) for z € [3,1], so we may as well call this limit f.Do this for all k. Then we define
ng = n,(f) i.e. the diagonal subsequence. Then note F,,(0) = 0 for all n. Then define f(0) := 0 then
F,, (x) = f(z) for all z € [0,1].
Problem 12. Let

F(y;t) = y* + ty* + %y
then note that as |y| — 400 that we have F(y;t) — oco. Therefore, there exists a compact set K (t) such
that for ¢ K(t) we have F(x) > 1 but F(0;¢t) = 0. Therefore, as F(y;t) is continuous for any fixed
t there exists a min of F(y;t) over K(t). This minimum is the global minimum since F(y;t) > F(0,0)
for x ¢ K(t). So a global minimum exists on a compact subset. We can take a slightly larger compact
subset to ensure that the global minimum is an interior point then we must have 0, F(y,t) = 0 i.e.

4y + 2yt + 12 =0
so there is at most 3 candidates for the global min which we denote by {y1(¢),y2(¢), y3(¢)}. But notice
that
02, F(y:t) =12y 4 2t

so if t > 0 then F' is uniformly convex so the minimum is unique. So assume ¢t < 0. Then we have on
Aq(t) := (—o0, —‘/%], As(t) = (—@, ‘/Tjt), and As(t) := [@, 00) then the global mi cannot occur in
As(t) since if y > 0 then F(—y;t) < F(y,t). And if the min occurs in As(t) then F(y;t)|a,() is concave
so y; must be a max since critical points of concave functions are global maxs. Therefore, the global min
must occur in As(t). But on Ag(t) we havedZ, F(y;t) < 0 for x — /=6 so there is at most one zero.
Therefore, there is a unique global minimum y; (¢).
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16. FALL 2017
Problem 1b. Do grahm-schmidt on {1, x, 22 23}.

Problem 2a. Indeed we have
det(AB — ) = det(AA Y (AB — \I)) = det(A"'(AB — \I)A)
=det(BA — \I)
so AB and BA do have the same characteristic polynomial when A is invertible.
Problem 2b. Note that the set of complex invertible matrix are dense and that det(A) : C"*"™ — C is
a continuous map since it is a polynomial of the entries of A. Indeed, given a matrix A we can consider
it as an operator on C then Schur’s Theorem tells us that there exists unitary matrix U and an upper
triangular matrix 7" such that
A=U"TU
then consider )
A :=U"(T+ -1)U
n
then Ap — A in entry wise. And there exists an N € N such that if £ > N then (Ag);; # 0 for any
1 <i < nie 0isnot an eigenvalue of A;. Therefore, given an A € C"*" then we have a sequence
A, — A such that A; is invertible then
det(ApB — \I) = det(BA, — \I)
for all k. Then taking limits along with the continuity of det gives
det(AB — M) = det(BA — \I)
Problem 3. The matrix is diagonlizable so we get

1 = aedl + Bett
xo = aedt + 2[eH
for a, B € R.
Problem 4a. Fix an arbitrary finite collection of {e;};c then if
L:= Z aiefﬁ =0
i€F
then for any i € F we get
Le;))=0=0; =0
since ef&(ei) = 05
Problem 4b. We claim this is a basis iff V' is finite dimensional. Indeed if V is finite dimensional, then

givenan T € V*ie. T :V — R let {v1,..,v,} be a basis of V then for any « € V there exists unique
constant aq, .., a, such that

T(x) =T i) => a;T(v;) = T(v;)ef (x)
i=1 i=1 i=1

since ef(ej) = a; SO {ef&} spans V* and is also linearly independent, so it is a basis of V' when V is finite
dimensional.

Now assume for the sake of contradiction that {el#} is a basis and V' is infinite dimensional. Let {e; }ier
be a basis of V' where [ is an infinite counting set. Then consider the operator T': V' — R defined via

Id(z) ==
Then fix any finite collection of {e;};c then fix j ¢ F then
L(.’E) = Zaiei
ieF
has
L(ej) =0
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since j ¢ F. Therefore, we cannot represent the Id operator with finite linear combinations of {ef&} S0 it
is not a basis.

Problem 5a. Yes. We have 0 € X then if f,g € X then af + g € X since there exists i1, ..,iny and
Ji,--ja such that {af(e;, ), ...,af(eiy)} and {g(ej,), ..., g(e;,, )} span the image of f and g so the image of
af + g is a subset of the span of span{af(e;,),...,af(ein)} + span{g(e;, ), ..., g(ej,, )} which has at most
dimension N+ M soaf+ge€ X

Problem 5b. Nofor /€Y and -ITeYbwtI—-I=0¢Y

Problem 5c. We claim X NY = (. Fix a basis {e;};c; of V. Then if f € X then there exists e;,, .., €
such that {f(e;,),.., f(ein)} is a basis of ém(f). In particular this implies for k ¢ {i1,..,inx} that there
exists constant aq, .., an, ai such that

N
> af(es,) +aif(es) =0

i=1

In particular, this implies {aq €y, ..., aneiy, are;, } € ker(f) for all k ¢ {i1,..,in} and there are infinitely
many such k and the set {a1€;,,...,ane;,are;, } and {aie;,, ..., dne;, ame;, } are linearly independent
whenever i,, # i, and both are not in 41, ..,75. So the kernel of f is infinite dimensional which implies
XNy =9.

Problem 6a. This is true by Spectral Theorem.

Problem 6b. This is false. We need it to be Hermitian or Normal to be able to apply the Spectral
Theorem. Take
|1+ 1
A= [ 1 1-— z}

then characteristic polynomial is (z — 1)? but A — I # 0 so it only has one eigenvector. Therefore, it is
not diagnolizable.
1 2
A= {2 2}

then over R its characteristic polynomial is 2 — 3z — 2 = 22 — 2 over Z/37Z which does not admit any
roots over Z/37 so it has no eigenvalues so it is not diagnolizable.

Problem 6c¢. Consider the matrix

Problem 7. As a, is decreasing we have the following inequality

9] [eS) 9]
D an<) 2Ma;m <23 an
n=1 n=1 n=1

In particular, fozl 2"agn converges iff Zzozl an converges. Therefore, we must have 2"asn — 0. Now
fix an k € N then there exists an n such that k € [2",2""1] then we have from the decreasing condition
that

kax < kagn < 2" lagn = 2(2"agn) — 0
so we have kap — 0 since 2"ag, — 0.

Problem 8a. Assume L is discontinuous at xy. Then there exists an €y > 0 such that there exists a
sequence x,, — g and

|L({En) - L(.’Eo)| > €y
In particular as L(x,) = lim,,, f(z) this implies that there exists an N such that if d(zo,y) < +
then |L(zo) — L(y)| < . As y, — z¢ we can find an N; such that d(y,,z0) < 5%. Then as L(y,) =
lim,_,,, f(z) this means we can find an N such that if d(z,y,) < Niz then d(f(2), L(yn)) < 5. Choose
z such that d(z,y,) < min{ﬁ, 7} then d(z,y,) < Niz and d(z,20) < d(2z,yn) + d(yn, z0) < 7 so we
have

1

L(en) = L(wo)| < [L(@n) = £(2)] + () = Llao)| < 5 + 5 =<

which is a contradiction.
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Problem 8b. Let A := {z € [a,b] : f(z) # L(z)} = U,_ {z € [a,b] : | f(z) — L(z)| > 1} := U7, A,
We claim that each A,, is countable. Indeed, if not there exists an n such that A, is uncountable thus
there exists a sequence {z}} C A, with infinitely many distinct terms. Thus as [a,b] is compact there
exists a subsequence such that z; converges to a limit z. We still denote this subsequence as xj. Then

we have
L(xzy) — L(x)
flzr) = L(z)

since zx — x but then this implies by uniform continuity of L that there exists a § > 0 if d(xg,z) < 0

then
{|L<xk> - L(@)| <
|f(zr) — L(z)| <
choose large enough k such that d(xg,z) < 6 then

|f(xr) = L{zx)| < [f(2r) — L(2)| + [L(2) — Lzp)| < 3%

g g

but L

|f(zr) — L(zk)| > -
since x; € A, which is a contradiction. Therefore, there exists only countably many terms in each A,.
Therefore, as A is a countable union of countable sets it is countable.
Problem 8c. Note that b implies that f(x) is continuous except for a countable set. Now we claim that
if f is continuous except for on a countable set that it is Riemann Integrable. Indeed, fix ¢ > 0 and
let w(f,I;) denote the oscillation of f on the interval I;. Enumerate the subset of discontinuity where
w(f,qn) > a:= D where w(f, q) := lim, o w(f, By(¢n)) and consider

L, := B (qn)
and for each « ¢ D Then we have for any « ¢ D the existence of an e, > 0 such that w(f, B, (z)) < «

abc | JI,u |J B.(2)

n=1 z€la,b]—D

So compactness ensures there exists a finite subcover say
N M
la,0] | J I;, u | B, ()
j=1 i=1
Let B, (z;) := J;. Let P be any partition that contains the points
N . - M
U{Qz, = 550 % + 271} U U{Iv — &, T + &}
j=1 i=1

Then if P={a =1ty <t; < ..<tg =>b}and let At; :=¢; —t;—1 and T; := [t;_1,t;] then note that for
any ¢ we have either
€

Ti C {q’LJ - 91,

qi; + Qi} or {x; — i, m; +&;}
vj

for some 7; or i. Then
n

K M
> Atw(f,T) €Y sowl(f L) + Y 22w(f. )
Jj=1 i=1

J=1
Let M :=||f||p~ < oo then we have
M
< 2eM + Z 2e;a
i=1
<2eM +2(b—a)x
choose o« = ¢ then we have
<e(2M + (b—a))

i.e. the lower and upper sums are within Ce for a constant C' > 0 so f is Riemann Integrable.
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Problem 9. Fix z € X and n,m € N then assume m > n so there is a k such that n + k = m then
k—
o), P74 @) € 3 (@), @) < plas @) on + mps + o+ o]
i=0
and as

o0
E Cp < 00
n=1

and ¢, > 0 we get that {f"(x)} := {x,} is a Cauchy Sequence, so completeness implies there exists a
limit z*. But by continuity (since f is Lipschitz with constant ¢;) we have
. n41 T _
Jim f*7 () = lim f(zn) = f(2)

and
lim "™ (z) = lim f"(z) ==
n—o0

n—oo
so f(x) = x. Uniqueness follows from if there exists two fixed points then ¢, > 1 for all n so we do not
have )" ¢, < cc.
Problem 10. As [a,b] is compact and f € C([a, b]) stone Weiestrass implies that there exists a sequence
of polynomial p, — f uniformly but for any p, we have
b
| @paa) =0

a

so by uniform convergence we have
b

0= lim f(x)pn(w)—/b lim f(z / fe

n—oo a a n—oo
i.e. f =0 everywhere due to continuity.

Problem 11. Note that x — log(z) is concave on (0,00). We can assume a,b # 0 for otherwise the
inequality is trivial. So we have

log(Z + %) > Liog(a?) + L1og(v)
(0] — — — 102\ — 10
q " p q

alP  b?
log(; + ;) > log(a) + log(b)

So exponentiation of both sides give
a? bl
—+—>ab
p q

as desired

Problem 12. See Fall 2014 number 10 and 11.
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17. SPRING 2018
Problem 1. Let V := C°°(]0,2]) and let L : V — V be defined via for f € C*°([0,2])

L(f)=f
Then
L(e*) = ket
i.e. et is an eigenvector with eigenvalue k. Then we claim {ekt}}g:1 is linearly independent. Indeed this

is trivially true for k£ = 1 so assume it holds when & = n — 1. Then if

n
g akekt =0
k=1

for all ¢t € [0,2] then applying L gives

and multiplying the first quantity by n gives

k=1

Subtracting these quantities give
n—1

Z(n — k)oyett

k=1
which by induction implies a(n—k) =0 for all 1 <k <n—1 but as n # k we get a1, .., a,—1 = 0 which
then implies ay, = 0.
Problem 2. As A% = A we have for any « € R® that

x = Ax + (x — Ax)
and z — Ax € ker(A) since A2 = A i.e.
R® = range(A) @ kernal(A)

Now we claim that we have Al,qpge(a) = Id. Indeed, fix 2 € R® then we have = u+v for u € range(A)
and v € ker(A) so there exists a w such that u = Aw then we get Av = Au = A%w = Aw = u i.e. if
x € range(A) we have Az = x. Therefore, if

I — (A + B) is invertible
then for any x € range(A) such that z # 0 we have
—B(z) #0

In particular, R® = range(A) @ kernal(A) implies that ker(B) C ker(A). And we can repeat the same
argument to get ker(B) = ker(A). Therefore, rank nullity implies rank(A) = rank(B).

Problem 3. Take

0 1
A=)
then A%2 =0 and A™ = 0 for all n > 2. Therefore,
A2
et =T+ A+0=T+A+

but A # 0.

Problem 4. All of these matrix have eigenvalues 1 so they have a real Jordan Canonical Form. So they
are similar iff they have the same Jordan Canonical Form. Note we get by computation that A, B,C, D, E
all have a minimal polynomial (z — 1)? so we have that they all have the following Jordan Form

1 10
010
0 01
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but F' Jordan Form is

1
0
0

O~ =

0
1
1

so A, B,C, D and E are similar to one another while F' is similar to itself.

Problem 5a. Note that A is positive definite iff

)

2
Z §iAij$j >0

i,j=1

for all £ = [£1,&)]T # 0. Then if A and B are positive definite we have

Z gz A’Lj +BU Ty = Z €7A7J:E] + Z §1szx] >0

7,7=1 3,j=1 7,7=1
for all £ # 0 since A and B are positive definite. Therefore, A + B is positive definite.
Problem 5b.
Problem 6.

Problem 7. By Dirichlet’s test since % — 0 monotonically it suffices to show for any p there exists an
M = M (p) such that for any N

By Euler’s Identity we have

0 _ ,—i0
¢ 2: = sin(0)
So
1 N
Z sin(mn/p) = % ; e P
1 <1 o ewr(nJrl)/p 1— 6177(n+1)/p)
2 1—¢'n 1—e %%
since the denominator is never zero we have
1 1— eiw(n+1)/p 1— e—iﬂ'(n"rl)/p 1 2 2
= — - — <c - - = M(p) <
(e e )| < 3 (e ) = M <o

so the sum converges for any p.

Problem 8. Let us follow the hint. We first claim z,, — 0. Indeed, we will use induction to show
0 <z, <1 then Taylor’s Theorem with remainder implies x,41 := sin(z,) < x,. The base case is given
then if 0 < x,, < 1 then we have 0 < sin(z,) = x,+1 < 1. Therefore, {z,,} converges since it is a bounded
monotonic sequence. Say the limit is z. Now it converges to 0 since the continuity of sin gives us

lim z,41 = lim sin(z,) = sin(z)
n—oo n—0o0

x = lim 2,41 = sin(x)
n—oo
so we have x = 0 since Taylor’s theorem with remainder implies the unique fixed point has to be at x = 0.
Now we proceed with the hint: we claim that
. 1 1
lim ——-— — —
z=0sin”(z) T
exists. Indeed for any fixed  Taylor’'s Theorem with remainder implies sin(z) = = — %3 cos(&(x)) for
&(x) € (0,2) so
1 1 1 22t cos(é(w)) — COS2(f) 5

Snf(@) 2 @ (1l - 2 cos(E(n) + co(€(@) )

Wl =
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In particular, this means
1 1 R 1
2 2 a9
Ty T 3
Now we claim if a,,y1 — a,, — L then %» — L Indeed,

S (i1 — ;) + ar

n _p = L
n n
_ Z?;ll (ai+1 — ai) + ayp — nL
n
S N (air1 —a; — L) + (a1 — L)

n
So we have for any € > 0 an N € N such that if n > N then |a,41 — a, — L| < € and

n N
an 1 1
;—L‘SE E |ai+1—ai—L|—|—n<<E |ai+1—ai—L>+|a1—L|>

i=N =1
e(n—N) , M(N +1)

<
- n n
where M := max{max;—1, a |a;41 — a; — L|,|a1 — L|} Taking n to be sufficiently large we get
< 2¢
so we have 2= — L. Therefore, we have
1 . 1
nx2 3
i.e. )
nas
— =3
1
i.e.
Vnz, = V3
as desired.

Problem 9. Fix an interval [a,b] and € > 0 then we have for any partition P := {xg =a < ... < z,, = b}
with uniform step size Az < e with intervals I; := [x;_1,2;] and w(f, ;) := sup, ,¢;, | f(z) — f(y)| that

D Aww(fi L) =e) flai) = f(wia) = e(f(b) - f(a) < 2Me

where M := ||f|[Loc[a,) 5O f is Riemann Integrable.

Problem 10. Fix x € U then let A := f~1(f(x))NU i.e. the preimage of f on f(x). Then this is closed
in U since f is continuous since it is C* (since the partials are continuous on U). We also claim it is open.
Indeed fix € A then x € U so there exists an € > 0 such that B.(x) C U. Then for any y € B.(x) we
have tz + (1 — t)y € B.(x) for 0 <t < 1 since balls are convex. In particular, we get

g(t) = f(tz+ (1 t)y)
is C* and

9(1) — g(0) = ¢'(&)

for some £ € (0,1). But ¢'(t) = Vf(tz+ (1 —t)y)-(x —y) = 0so g(1) = g(0) i.e. f(y) = f(z). Therefore,
A is open. But as U is connected we must have A = U i.e. for all y € U we have y € f=(f(z)) i.e.
fly) = f(z) for all y € U i.e. f is constant.

Problem 11. As X is compact and f is continuous we have
f(X) = f(X)

now fix x € X then consider z,, := f(x,,—1) with 2o := 2. Then as X is compact there exists a subsequence
such that z,,, — y. Then for any € > 0 we have for large enough n; that

€ > p(@ny Tnypy) = P (@), S0 7 (@)
= pla, [T (z)
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i.e. for y ;= fre+17"~1(z) we have

plz, f(y)) <e
sox € f(X) = f(X). In particular, we get X C f(X) = f(X) but the other subset is trivial so X = f(X)
i.e. f is surjective.
Problem 12. Let € > 0 then by equicontinuity there exists a § > 0 such that if d(z,y) < J then for any
f € F we have d(f(x), f(y)) < & so choose x € X and let y € X such that d(x,y) < ¢ then there exists
an f; € F such that

9(x) < fi(z) +¢ < fily) +2¢ < gy) + 2¢
ie.
g(x) — g(y) <2
and we also have the existence of an f such that
9(y) < fa(y) + € < fo(z) + 2 < g(x) + 22
i.e.
lg(z) — g(y)| < 2¢
whenever d(x,y) < 4 so g is uniformly continuous.
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18. FaLL 2018
Problem 1. Assume that

oo

>
2a, +1
n=1
converges then we must have ﬁ — 01i.e. a, — 0. So there exists an n > N such that
2a, +1 <3
so for any fixed € > 0 there is an M such that for any n,m > M
> > =
o Z 2a; +1 Z 3
j=n j=n

for Therefore, as a; is non-negative we must have )" a; converges which is a contradiction.
Problem 2. Assume
AUB=XUY XNY=XnY =90
as A is connected we have A C X or A C Y. WLOG assume A C X then Y C B. Then
R*"=XuUYUC
and
(Xuo)nY =(XnY)u(CnY)chu(CnB)=0
and

(Xul)NnY c(XnY)u(CnY)chu(BNY)=10
but R™ is connected so this is a contradiction.

Problem 3. Let f and g be Riemann Integrable such that there is an o > 0 with

l9(z) — 9(y)| = alz —y|
Then g is injective since if g(x) = g(y) then

0=lg(z) = g(y)| > alz —y|

so we can define its inverse on im(G). Then its inverse is Lipschitz since

lz —yl=lg(g~" (=) — g9~ W) > alg™"(z) — g~ ' (v)|

Now we just need to show that f o g set of discontinuity has measure zero. In particular, if we let
E := {z : f is discontinuous} then we want to show g~!(E N im(G)) has measure zero. But as g~!
is Lipschitz this set indeed has measure zero. Indeed we have for any € > 0 there are open intervals
(an,by) such that ENim(G) C U,—,(an,b,) with Y b,, — a,, < & because E Nim(G) has zero measure.
Then g (B 0 im(G)) © Uy g Hansbn) = Uy (enrdy) and S — e = g7 1(03) — 91 (af) <
S Ly —ar) <13 b, —a, = £ letting € — 0 shows g~ (E Nim(G)) has zero measure. Then as g set
of discontinuity has measure zero, we conclude that f o g has a set of discontinuity has measure zero. So
f og is Riemann integrable.

Problem 4. We claim that f is concave i.e. we have the following secant line inequality if z < z; < y
then
F@) ~ fe) | F@) ~ f@) | F) -~ ()
T—z Ty Y=z
Indeed, as f is differentiable on (x,y) MVT implies there exists a &, € (z, z;) such that %ﬁfz') = f'(&)
ad a & € (2¢,y) such that % = f’(&) so in particular, as & < & we have
fle) — 1G)  F) ~ fGz)
T — 2 o Y— 2t
As y € (0,1) there exists an € > 0 such that y +¢g € (0,1) so

f(x) — f(z) S fly+e)— flz)
f—z2 = yte—xun

= L(e)
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Note that L is well defined for 0 <<; and is continuous so we have

flx) — f(z) > Tim L(e) = fly) — f(2)
f—z T 0 Y=z
and a similar argument gives
f@) = ) o F) = ) fw)— f(z)
T — 2zt o rz=y Y — 2t

Letting 1 < x2 € (0,1) we have 0 < z1 < x2 so the secant line inequality with x = 0,2z, = z1,y = 9

gives
flx) o f(z2)
T2 )
since f(0) =0 i.e.
g(x) := @

is a decreasing function on (0,1).
Problem 5a. Fix z,y € 0B then as

h(z) = g(z) + |& — 2|
is a continuous map on 0B which is compact, we get the existence of a minimum i.e. a z* such that

M) = inf [g(z) + | — 2]
ie.
f(x) =9(z") + |z — 27|
and then we have that
fy) <g(@®) + [y — 27|
since f(y) < g(z) + |y — z| for any z € OB. Then
fly) = (@) <g(@®) + |y — 2" —g(@") — [z —a™| = |y — 27| =[x — 2" < |z -y
We can repeat a similar argument to get

f@) = fly) <z -yl
which implies
[f (@) = f(y)] <[z =yl
so f is 1-Lipschitz.
Problem 5b. By Arzela-Ascoli it suffices to show M (g) is equicontinuous, closed, and uniformly bounded.

It is closed since if f, C M(g) converge to f uniformly, then we have f|sp = g since uniform implies
pointwise and f would be 1—Lipschitz since

[f(@) = f)l < [ (@) = fu(@)| + [fu(2) = fu()] + [ fn(y) = F(y)]

and for any € > 0 we can find an N such that if n > N the [|f,, — f[|z~ < § so we get

[f(@) = fW)l S e+ [falz) = fuly)| S e+ [z -yl
as ¢ is arbitrary we conclude that f is 1-Lipschitz i.e. M(g) is a closed subset of C(B).

Now we claim that for any f € M(g) that f is 1—Lipschitz on B. We now that f on int(B) is 1—Lipschitz
and f on OB is 1—Lipschitz so it suffices to show if z €int(B) and y € B then

[f(@) = f)| < [z -yl
Indeed fix ¢t € (0,1) and define

0t) = flty + (1 —t)x)
then £(0) = f(z) and £(1) = f(y) and ty + (1 — ¢)x €int(B) since ||tz + (1 —t)y|| < |t]||z]| + (1 = O)||y|| =
[t]||z]| + (1 —t) < 1 for ¢t # 1. Then we have

|f(z) = £(t)] < tle —y| < |z —y
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letting ¢ — 1 and using continuity of £(t) we get

|f(x) = f(y)] <]z —yl

Let M :=sup,cyp |9(z)| then for any f € M(g) and any y € B we have for any z € 0B
FWOI<1f(y) = f@I+1f@)] <y —2[+ M <1+ M

so by Arzela-Ascoli we conclude M(g) is a compact subset of C(B)
Problem 6. We will show that F' is C!. Fix € > 0 then consider

F(x+h)— F(z) o0 e_mdt
L - o t1/2

Notice these integrals have finite volume since

Ool_eftw< 11_67ta: 00 | _ etz
o $3/2 ~Jo $3/2 + 1 $3/2

- Ytx +/°° 1
= J t3/2 L 132

=2x+2

where we used that e™*® is convex to get that its tangent line lies below e~**. And we have
0 otz 1 etz 00—tz 1 1 oo .
— < — + —5 < —> + e "
/0 t1/2 — /(; t1/2 /1 t1/2 — /O $1/2 /;

which is finite for any = € (0,00). Then we have

F(z+h)—F(x) l/‘x’ et _ gt(z+h)
=

h $3/2

1 o hte—tT 4 L;th—tf(x)
- E/O t3/2

o temte
_ /O S o)
since the O(h?) term is integrable. So we get
oo —tx
ron e
which is continuous since
< hte=' 4+ O(h?)
Fle+h) - Fle)= [ 220

where the O(h?) term is integrable. Then as
o0 o0
/ hvte™t® < h/ e =hC(z) =0
0 0

so it is continuous. It is also injective since F’ > 0 and its inverse is well defined on range(F) and is C*

thanks to

) — L
(FY(F@) = Frs

and F'(z) # 0. It is easy to see lim, o F(z) = 0 and lim,_, 1o F'(z) = 400 so F is actually a bijection.
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Problem 7. We claim that
R™ = range(T) @ Ker(T)

Indeed, given z € R™ we have v = Tao + (x — Tz) and « — Tz € Ker(T). So it suffices that
range(T) N Ker(T) = {0}. If € range(T) N Ker(T) there is a y such that Ty = =z and Tz = 0
implies T2y = 0 but T?y = Ty so 0 = Ty = x. So the claim is proved.

Now we claim that T'|,q,ge(r) = Id. Indeed, if 2 € range(T') then there is a y such that T'(y) = x
then T(z) = T?(y) = T(y) = x. Now fix a basis of range(T) and extend it to a basis of ker(T) i.e.
{V1, ., U, W1, .., Wy } Where v; € range(T) and w; € Ker(T) then T on this basis is

[Tv1, Tvay .., T, Twy, .., TWp— ] = [V1, V2, .., U, 0, .., 0]
ie. if we let 8 := {v1, .., U, W1, .., Wp—m } then

=[5 )

where Id is an m x m block of the identity matrix where m = rank(T). This is the desired bases.

Problem 8. As X is symmetric we know from the spectral theorem that there exists a unitary matrix
U such that

X =UDU"
where D = diag(\q, ..., A\p) and A\; € R. Then we have for z in with im(z) > 0 that
X —2I=U(D - z2I)U"

s0
G:= (X -z)"'=UDUT
where D = diag()\l% L) note that \; — z # 0 since A; € R and Im(z) > 0. Then notice that

AR v
Z|Gu|2 G*G Z)\2+|z\2 ij

and

1
:Z)\i_
=1

Then note that

n

=Y e

as desired

Problem 9. We claim ker(f) + ker(g) = R™. Indeed, it suffices to show dim(ker(f) + ker(g)) = n.
Indeed as f,g € V* are linearly independent we have f, g # 0 so dim(ker(f)) = dim(ker(g)) = n—1 since
Im(f) =R. But as f andg are linearly independent we know that ker(f) # ker(g) for if ker(f) = ker(g)
then

f=cg
which implies they are not linearly independent. Therefore,
dim(ker(f) + ker(g)) = dim(ker(f)) + dim(ker(g)) — dim(ker(f) N ker(g))
>n—14n—-1—-(n—-2)=n

so ker(f) + ker(g) = R™ so this means for any v € R™ there exists a vy € ker(f) and vy € ker(g) such
that v = v; + vo. Therefore, by linearity,

f(v) = f(v1) + f(v2) = flv1)
9(v) = g(v1) + g(v2) = g(v2)

as desired.
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Problem 10. Note we diagonlize the matrix into

10 0]t 0o 01 0 o0
A=1|1 1 0|0 5 Of|-1 1 0
12 100 3] [1 -21
so we have
100t o o]t 0 0
A=11 1 0/ |0 5 O||-1 1 0
1 2 1[0 0 5] [1 -21
1 0 0 100
= 1— = 0| =11 00
-ty mr—m 3] 100

Problem 11. Note that if we let W be the set of 3 x 3 symmetric matrix we have

R =V W
since . .
A:A—i-A +A—A
2 2
and VNW = {0} In particular,
dim(V) =3
since
1 00 0 0 0 0 0 0 010 0 01 0 00
0 0 0 0 0 0 0 0 0 100 0 00 0 01
0 0 0 01 0 0 0 1 0 0 0 1 00 010
are 6 linearly independent matrix in W and
00 O 0 1 0 0 01
00 -1 -1 0 0 0 00
01 0 0 0 0 0 0

-1
are 3 linearly independent matrix in V so this forms a basis of V since R3*3 = V@ W. Note that it is
an inner product since

1 A
<A+AB,C >= JTr((A+ AB)CT) = Tr(AC’T) +5Tr (BCT)
thanks to the linearity of trace and
1 1
<A B>= §Tr(ABT) = §Tr(BAT) =< B, A)

since trace(AT) = trace(A). Then note that

<A A>= 5 Tr(AAT) = Z |ai;|?
,j=1

so < A, A >> 0 with equality to zero iff A = 0. So it is an inner product. To find an orthonormal basis
do Grahm-Schmit on the basis vectors of W mentioned above.

Problem 12. Fix a basis {v1,...,v,} of V. Then let W; := {v1,..,0;-1, Viq1,...,Un} 50 as T'(v;) € wi
for all i # j we get that for i # j
vj) = Zakvk

ki

= E QUL

=y,
which implies that oy = «; = 0 We can repeat this argument for all k # j to get

Fix a £ # i or j then we get

T(v;) = a;jv;
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So T in this basis is T' = diag(a, .., @) so it suffices to show a; = «a; for all 4,j. Fix ¢ # j and then
we have for E;; := span{v; + v;} and let W;; := {ey : k # 4, j} then let M := E;; + W;; which is n — 1
dimensional. Therefore, we have as T (M) C M that
T(v; +vj) = a(v; +v;) + Z Br vk
ki k

but

T(Ul' —+ ’Uj) = Q;V; + Olj"Uj
so we must have 8y = 0 for all k¥ # ¢,k and o = a; = ;. Iterating this with ¢ fixed at 1 and letting
2<j<nshowsa=q; forall 1 <i<nie Tv; = auv; for all i so T is a constant multiple of the
identity.
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19. SPRING 2019

Problem 1. To show it is complete it suffices to show it is a closed subsbet of the complete metric space
(C([0,1]), ] - l|zee). Indeed, fix € > 0 then if X > f,, — f then there exists an N such that if n > N then
|| fn(z) = f(2)]|L~ < § so we have
[f (@) = FW)l < [f (@) = fa@)| + [fu(z) = fa@)] + [fn(y) = FW)] < €+ [fn(2) = fr(y)]
<etlr—yl
Letting € — 0 gives
[f (@) = f(y)] <[z =yl

so f € X so it is a closed subset of a complete metric space, so X is complete.

We will show that X is path connected which implies it is connected. Fix f,g € X and define
V() =1 =t)f+1g
then for any fixed ¢ € [0,1] we have v(t)(z) € X since
[y (#)(@) =) ()] < (1 =If(2) = f(y)] +tlg(z) — g(y)]
<z -yl
Now we claim  is continuous. Indeed, if given an ¢ > 0 then if |t; — t2| < £ then
Iv(t1) = v(t2)llLee < [t1 — t2|([|fllLoe + llgllL) <e(([[fllze + [lgllze)

S0 <y is continuous. Therefore, X is path connected.

Problem 2. Note that
% an — An+41
0 Ap—1 (079

3 3| [e] Z fann
1 0 b an
We can solve for a,, and compute lim,,_,, directly by diagonalizing this matrix.

Problem 3. First observe that since f(x) > 0 that ﬁ is finite so

1 L fly) = flz)

fl@)  fl)  f@)f@)

So in particular we have

SO
L 1| ) - f()
f@) fy)|~ 62

Now as f is Riemann Integrable for any € > 0 there exists a partition P = {a = ¢ < ... < x,, = b} with
Az; = x; — i1, i = [wi-1, 23], and w(f, I;) == sup, ey, | f(x) — f(y)| such that

> Amw(f, 1) < 6%

i=1
then as

;Afmw(?fi) < ﬁ;Axiw(ﬁ L) <e

so the lower and upper Riemann sums are within ¢ and as ¢ is arbitrary we conclude that % is Riemann
Integrable.
Problem 4. Let

Then note that
l(a) = £(b) = f(b)g(a) — g(b)f(a)

so Rolle’s Theorem implies there exists a £ such that

£ =0
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ie.

as desired where £ € (a,b).

Problem 5. Let X* denote the completion of X. Embed (X, d) to (X*,d*) via the identity map. Then
we next claim theres an isometric embedding of (X*,d*) to (C(X™),|| - |[z~)) which is a Banach Space.
Indeed, fix an x € X* and define

Dy (y) 1 d" (2", y)
then @, : X* —» C(X*) and

[ @2 (y) — Py (Y)|| L = Sup ld(z*,y) —d(y*,y)| < d(z",y")
Jex-

and taking y = y* gives

sup |d(z*,y) —d(y*,y)| > d(z*,y")
yeX*

ie.

1@ (y) = Py (Y)[ L = d* (2%, ")
so the map ® is an isometric embedding of X* to C(X*). Let X := C(X*) with norm || - ||pe then
for any fixed x the map 9, : X — C(X) defined via 9, (y) := d(z,y) is an isometric embedding into
C(X) ¢ C(X*) which is a Banach Space where we used that d(z,y) = d*(z,y) when z,y € X.

Problem 6. Note that
o0 T o0 o0
/ —Qe_x/"dm = / ue “du = —/ e “du=1
o n 0 0

and we note that limg_, o xe~n = 0 since exponential decay is much faster than linear growth, so the
maximum over Rt must be attained om a compact set. In particular, we will have d,ze™ % = 0 at the
max or z = 0. The critical point z* satisfies

A A
e W,—ie n :0
n
SO
*
T
1-—=0=2z"=n
n
o)
1
*
fo(2") = —
en

but f,,(0) = 0 so the max must occur at 2* so we have

1
lfnllLee = — =0
ne

so f, uniformly converges to 0.
Problem 7. We find the characteristic polynomial to find out it is
x(z) = -1 — 22 + 132 — 23
then Cayley-Hamilton gives us
0=x(A)=—Id—2A? +13A — A3 = Id = A(—2A +131d — A?)
so A7l = (131d — A3 - 2A).

Problem 8. We claim that this subspace is the space of trace zero matrix and its dimension is n? — 1.
Indeed, trace zero matrix have dimension n? — 1 since if we define the matrix E() to satisfy

ke 0 else

Then E(9) for i # j is in the space of trace zero matrix, so there are at least n? — n of them. Then we
define the n — 1 matrix E(® for 2 < i < n with
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lifk=4diand j=1
EW ={ difk=i—landl=i—1
0 else
then there are n — 1 matrix in the space of trace zero matrix. Then these matrix are linearly independent,
so there at least n? — 1 independent matrix in the space of trace zero matrix. But as Id has non-zero
trace the dimension cannot be greater than n? — 1, so the dimension of trace zero matrix is n? — 1. We
will prove these two definitions are equivalent over R? so we have the dimension is 3. Let U denote the

subspace of trace zero matrix. Then we clearly have W C U since if C' € W then C = AB — BA for some
A, B then tr(AB — BA) = tr(AB) — tr(BA) = 0.

Now it suffices to show that on the basis E(??), E(2) ECD) that this property is true. Fix any diagonal
matrix D = (1,0) then for any matrix B we have

10 b2
DB—BD—[b21 O}

so for E(12) and E®Y this property clearly holds. And
pen _[1 0] _Jo 1]t 0] _1 o][o 1
0 —1 0 0]]|0 O 0 0[]0 O
so we have U C W so dim(W) = 3.

Problem 9. We write D in its matrix form with respect to the standard bases {1,z, 22, .., 20}

D = super diag(1,2,3,..,10)

Then
o0 Dn
n=1
10
DTL
=T r
n=1
since D is nilpotent. Then as ) 2 ; DT? is nilpotent all of the eigenvalues must be one. This follows from

if A and B are nilpotent such that AB = BA then AB is nilpotent thanks to the binomial theorem. And
we have

e D
rank:(z F) =10
n=1 :

so its kernal is one dimensional, so the only eigenvector are constants i.e.

c
0

0
Problem 10. As A is diagonalizable there exists a U such that and a diagonal matrix U such that

A=U"'DU

o ol fo =0
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So if A I} is diagonalizable so would - = B. But observe that the characteristic polynomial

D
0 A 0 D
B is just the characteristic polynomial of A squared. But note for \; := D,; we have

Tn4+1
A2To — Tn4-2

(B = MI)a =0« | Ann = T2n
Tn+1

A2Tp42

/\7L$n+2

so for all Ay # 0 we get x4 = 0 s0if A\; =0 we also get \jz; — xpi1j =0 = 2y = 050 T4 = 0 for
all k > 1. Therefore, we x must be of the form x = (z1, .., 2,,0,..,0)T. But

(B—M)x=Ax — Xz

so it must be an eigenvalue of A i.e. for each eigenspace the multiplicity of the eigenvectors is the same
as D, so B cannot be diagonalized since it only has n eigenvectors and not 2n.

Problem 11. As rank(A) = rank(A?) we must have nullity(A?) = nullity(A) i.e. the generalized
eigenspace of 0 for A is the same as the eigespace. So in Jordan Canonical Form A must have no non-
trivial blocks of 0. Then as we have only finitely many eigenvalues, we see for small enough A that A+ AI

is invertible. So by JCF we have
LhEP - P IU

for Jordan Blocks Ji and any Jordan block with a diagonal zero must be 1 x 1. In particular, we can
write _
. ld 0
amvifl 9o
where J is an invertible matrix so we have
- 13
(A+ A A=U" [(‘7 t AOU d 8} U

SO

0 0

So one direction is proved. Now if limy_,o(A + )"t A exists then it must have no non trivial size zero

Jordan Blocks. Indeed,
A=U"" L@ P v

(A+ AN =U N ((h+ D) P Pk +AD)7!

and say Ji is a Jordan Block with zero diagonals and is of size k x k for £ > 1 then the diagonal terms
of (Jx + AI)~1J, super diagonal have terms of the form C/\ for some constant C so we have it blows
up, so the limit does not exist. So at most the Jordan Blocks of zero are of size 1 x 1. This means that
the generalized eigenspace of zero is equal to the eigenspace of zero, so we have ker(A) = ker(A?) so we
have rank(A) = rank(A?).

Problem 12. Assume otherwise then there is an x such that Az = 0 with ||z|| =1

n
Qi Xy = — E aijxj

j=1,j#i

lim(A+ M) tA=U"" [I 0] U
A—0

then

so taking norms squared gives



Applying Cauchy-Schwarz gives

n n
<0 (@)l

i=1 j=1, i

= aj<1
i#£]
but

n n
Z(aiixi)Q > Z lzi|? =1
i=1 i=1

so we have the contradiction that 1 < 1 so we must have A is invertible.

71
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20. FaLL 2019
Problem 1. If A, is invertible then as A=1(e;) # 0 we get
Ax(A7re)) £0
=e1+ Mep, A7 (er))er #0
ie. 1+ A(er, A71(e1) # 0. For the converse fix x such that Ay = 0 then
A_l(Am + Aep,z)er) =0
SO
x4+ Mep,z)A  (e1) =0
so if x = (x4, .., z,) we get that
T+ )\xlAl_ll =x1(1+ e, A7 e1)) =0

so we must have z; = 0 but this implies = 0 since if z; = 0 then we have Ay (z) = Az and Az = 0 iff
z=0.

Problem 2. Notice that by staring at the matrix we get that the eigenvalues and eigenvectors of 42+ A
are

1 0 1 0
0 1 0 1
A= {6a67070} 0 1 0 -1
1 0 -1 0
so we have
1 1 1 1 T
E0E pooalE 0 F 0
R A B KOOt B IR
o F 0 Lyl w o
1 0 v 0 1 0 ~7 0
where for the last step we used that our eigenvectors form an orthogonal matrix. In particular, let
1 1 1 1 T
0 E pooglE o E 0
a1 w O Bljo2zoo0 |0 5 0 5
o - o —-X(looo0oof|0 L o -—=
V2 . V2 00 0 0 V2 . V2
1 0 -7 0 1 0 ~7 0
then A is symmetric since
1 1 1 1 T
F0E pooalE 0 F
o |0 m Ym0 6 o000 5 0
0o = o —-%{jooo0oof]0 &£ 0o -2+
V2 L V2 00 0 0 V2 . V2
1 0 v 0 1 0 -5 0

Problem 4.

Problem 5. View A as a complex operator then we have that

A=U LB .. P InU

where J; is a Jordan Block. In particular

Ak =N IEEP .. P IEU
Then note that JF is either A\¥ or (’;) )\ffe where )\; are the eigenvalues of A. Then if |)\;| < 1 we have
)\f — 0 and (]Z) )\f*Z — 0 since (’Z) is polynomial growth while )\f is exponential decay. So we have each

entry of Jik goes to 0. In particular, this means all the entries of A* converges to zero. Then as we have

||AH(2)p = sup (Az, Az) = sup (AT Az,z) = max |0y
||| |=1 ||| |=1 lsisn
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where o; are the eigenvalues of AT A (spectral theorem guarantees the existence of a basis of eigenvectors
in R). But as AT A is positive definite, we have that max;<;<, |0;| < Tr(AT A) = ||A]|3 so we have

2

14llop < NlAllz = | D layl®
i

for any matrix. As A* entry wise goes to zero there exists for any € > 0 an N such that if & > N then

|a§§-€)|2 < = where a'% is the ijth entry of A*, so

n2 i

2
k k
14 lop < | Y lal)? | <&
ij

for k > N so we have
14" op = 0

For the converse fix let v be an eigenvector associated to the eigenvalue A where ||v|| =1 then
I\eu] = [AR] < []A¥||op — 0
so we must have || < 1
Problem 6a. If B is invertible define T : M"™ — M™" via
Tp(A) := (BT)"'AB™!
since rank(B) = rank(BT) so BT is also invertible. Then
Ts(Lp(A) = (BT)"'BTABB ' = A
Lp(Tp(A)) = BY(BT)'AB™'B=A

so Lp is invertible with inverse T’g.

Now assume Lp is invertible, but that B does not have full rank. Then range(B) # R". Let

0 on range(B)
A=
Id on range(B)*

then A is not the zero operator but
Lp(A)=0
which implies Lp is not invertible, so this is a contradiction.
Problem 6b and 6c¢c. Assume rank(B) = k then we define the new linear map
Tp : M™ — M" where Tp(A) := (BT)E,AE,B

where E; are invertible matrix. In particular, as rank(B) = rank(B™) we have due to Jordan Elimination
the existence of elementary matrix such that

(BT E, = diag(1, ...,1,0,..,0) FEyB = diag(1, ..., 1,0, ..,0)

where both have k ones. Then this map has the same range as Lp since Lg(E1AFE;) = Tp(A) and
Tp(Ey'AE; ') = L(A). This lets us deduce that for a general matrix A that T(A) has n? — k? zeros.
So the kernal(T) has dimension n? — k2, so its range must have dimension k? = rank(B)2.

Problem 7. Consider the operator L : [0, 1] — [0, 1] defined via
L(x) = cos(x)

Note that this is well defined since cos([0,1]) C [0,1]. And as [0, 1] is a closed subset of R it is complete.
Then note that for z < y € [0, 1]

L(z) = L(y) = cos(x) — cos(y) = (= — y) sin({(z,y))

by MVT where &(z,y) € [z,y] but as sin is an increasing function we have

|L(x) = L(y)| < [sin(1)[|z —y|
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and |sin(1)| < 1 so we can apply Banach Fixed Point Theorem to obtain the existence and uniqueness
of a fixed point on [0, 1] of the operator L i.e. there exists a unique solution to

x = cos(x)
on [0, 1].
Problem 8. Note for any h € (0, 1] that

h h 1 1 2 1
2 T S e T e = g 2 <O

nez nez nez neN

so the sum is well defined. Note that by symmetry we have

h h
Z1+n2h2 =23 14 n2h2

newL neN

Define
Flash) = —s
T ] 4 a2k
then for z € [0, 00) we have f(z;h) is a decreasing function. In particular, we have the following inequality

(o9}
h o h
————<h —d
gl—i—n%?_ +/0 1+ 222"

T T
=h+-=-<1+—
+2_ +2
so we have )
0D o <2+
nez
i.e.

h
sup —5 <+
he(0,1] 7% 1+ n2h?

Problem 9a. Let the map F : R® — R be defined via
F(z,y,2) = 2+ z+y)e” -2
then F' € C*°(R3) since the partials are smooth and
F(0,0,0) =0

2__ex__ey

with
VF(0,0,0) = (0,0,2)
so as the 1 x 1 submatrix corresponding to %—5(0,0, 0) is non-singular with F' € C*(R?), we can apply

implicit function theorem to find an open subset U C R? with (0,0) € U where since 2£ 2 0 at (0,0,0)

we can use continuity to make %—5 # 0 in U and a function ¢ such that

F(z,y, o(z,y)) =0 for (z,y) €U
and ¢(0,0) = 0. Then for the regularity of ¢ we have by the implicit function theorem that

-1 -\ T
wo_ (OF (0F\ ' oF (oF
¥=\ oz \ oz "oy \ Oz
where 0,F # 0 in U. Then as F is smooth and %—I; # 0 we can use product rule/quotient rule to see that
peC>=()
Problem 9b. Note that Vi (0,0) = (0,0)7 so it is a critical point. We compute the Hessian at (0,0) to
get
D%p(0,0) = diag(1/2,1/2)

so D2y is positive definite, so it is at a min.
Problem 10.
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Problem 11a. Fix {f,} C X that is a Cauchy Sequence. Then fix an ¢ > 0 then there is an N such

that if n > N then .

(@) = fn (@)l < 5

so in particular we have for any = € [0, 1] that
‘fn(x) - fm(m)‘ <
by completeness of [0, 1] we determine that there exists an f
fu(x) = f(2)
Then we notice that as f,(z) — f(z) there is an N, such that if n > N, then |fn, (z) — f(2)] <
e €
£@) = @) < 17(@) ~ fre @) + 1) = fal@) < 5+ 5 =¢
since we may as well assume that N, > N. So we have

1f(2) = fala)||L> <&
so we have f,(z) — f(z) uniformly. So it suffices to show f(x) is decreasing but this follows since by

taking n large enough we have for x <y

J@) < Jal@) +5 < July) + 5 < fly) +e

o,

x) € [0,1] such that

[Sl0)

so letting € — 0 shows when = <y we have

flx) < f(y)
as desired. So it is complete
Problem 11b. Take {#"} C X since 2" is an increasing function and on [0, 1] we have 0 < 2™ < 1. But

n 0ifo<x<1 .
v %{111»‘1::1 = 1)
so if there exists a subsequence z™ that converged it must converge to f(x). But as it is a uniformly
convergent subsequence the limit must be continuous since z" € C([0,1]). This shows no subsequence
uniformly converges so it is not sequentially compact.

Problem 12. We clearly have that if f: £*° — R is continuous then f|x is continuous for any compact
set K. So it suffices to show the other direction. Indeed, let x,, — x then define K := {z,,} U{z} then we
claim this is a compact subset of ¢>°. Indeed, take {y,} C K if it only has finitely many terms then we
are done, so assume it is infinite. Then as x,, — x for a fixed € > 0 there is an N € N such that if n > N
then d(z,,x) < €. Then as {y,} is an infinite subset of K there must be a k such that if n > k then
{Yn}tn>k C {Tn}n>n so in particular z is a limit point of {y,} so K is compact. But as f|x is compact
we have

[l (@) = fli(z)

ie. f(x,) — f(z) so f is continuous.
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21. SPRING 2020
Problem 1. Note that
Tr(AB — BA) =Tr(AB) —Tr(BA) =0
so we cannot have
AB - BA=1d
because it would imply ¢r(Id) = 0 which is false.

Problem 2. We claim if for a matrix C' and D that if C' is similar to D then they have the same
eigenvalues. Indeed,

det(C — M) = det(SS™(C — AI))
= det(S™HC — A\I)S) = det(D — \I)

so they have the same characteristic polynomial. Indeed, then as B is similar to B® implies that if x is
an eigen vector with eigenvalue A then

Bx =Mz Bz =)z
so for every eigenvalue A\ we must have A = \5. But as B is invertible we have A # 0 so
A =X =A==
Problem 3.
Problem 4a. Notice this implies for all z,y € C that
(x+y,Alx+y)=0
i.e. since (z, Az) =y, Ay) =0
(y, Az) + (z, Ay) = 0
Taking xtoix also gives
(y, A(iz)) + (iz, Ay) =0

—i(y, Az) + i(z, Ay) = 0
(y, Az) + (z, Ay) = 0

implies
—i(y, Az) + i(z, Ay) =0
{i(y,Ax) +i(z,Ay) =0
ie.
2i(x, Ay) =0
ie.
(z,Ay) =0
for all z,y € C so
Ay=0
for all y so A is the zero operator.
Problem 4b. Take
_ |cos(3) —sin(%)
- [sin(5)  cos(%)
then
(Av,v) =0

since it is a rotation of v by 90 degrees.
Problem 5.
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Problem 6. Assume that T € M,,xn(R) eigenvalues satisfy |\;| < 1. By viewing T as an operator over
C we can find a basis such that
T=U"'JU

JT=1LEP LB P in

where J; is a Jordan Block with diagonal entries being the eigenvalues of T'. Note that

™ =U"'J"U

I=1Prep.-p

So it suffices to show for an arbitrary Jordan Block J; that |(J;)kr| < 1 implies J* = 0 where J; is of size
mm. This follows from that

where

and

O R O P I P
JU=10 A (Mt () AT
0 0 A"

i.e. each entry is either 0 or A" or (})A"~*. But as [\| < 1 we know that A" — 0 and as exponentials
decay much faster than polynomials grow L’hopital gives (Z) A""kQ as n — oo. Therefore, J® — 0. So
we have T — 0.

Now if T™ — 0 fix an eigenvector x with eigenvalue A\ then we have
Tz = A"z —0
so [Al < 1.
Problem 7. Both parts follow from IVT.
Problem 8. Density of polynomials in C([a,b]) implies this.
Problem 9. See Fall 2016 number 11.
Problem 10a. This is Banach’s Fixed Point. Fix an z € X then let x,, := f(2,,—1) with z¢ := z then
ifn>m
d(@nt1, Tmr1) = d(f" (@), fM(2)) < A™d(f"7" (@), @)
SN (d(f (@), @) + AT @), (@) A ed(f (1), )

<d(f(z),x) %X”H -0
k=0

since it is a convergent sum due to A < 1 so {z,} is Cauchy. Then completeness implies there exists a
limit say z then

limy, o0 Tp = limy 00 Tpp1 = limy oo f(2n) = f(2)
{limn_>OO Ty =2
i.e. f(z) = z where we used continuity of f. This is unique since if f(z1) = z1 and f(22) and 2z # 29
d(z1,22) = d(f(21), f(22)) < Ad(21, 22) < d(21, 22)
which is a contradiction so it is unique.
Problem 10b. Uniqueness follows from if z # y and f(z) = f(y) then we get

d(z,y)*
d(z,y) < m
ie.
1< L
~ 1+d(z,y)
but as d(z,y) < +o0o we have
1 <1

1+ d(z,y)
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which is a contradiction so there is uniqueness.

To see existence fix x € X and define xg := x with 2,41 := f(z,). Then we have

d(.%‘n+1,l‘n) < d(-rnaxn—l) (

Note that the function

d(xna mn—l)

_omeontl) ) < <
1+d(zn,xn_1)> < d(xn, Tn—1) < d(zo, 1)

x
is an increasing function so we have from d(x,11,%,) < d(xg,x1) that
d(@n, Tn-1) d(zo, 1)

=<1

1+ d(@n,xn_1) — 1+ d(zo,z1)

so for our fixed z if we let A := {f"(x) : n € N} where f™ means the nth iterate of f then we have
fla:A— A Now fix u,v € A then assume that u = f"*1(z) and v = f**™*1(z). Then

d(u,v) = d(f" (), [N (@) < d(z, f™(2)
<d(z, f(x)) +d(f(x) () + .. +d(f" (), 7 (2))
<d(z, f(@) 1+ A+ ..+ A™)

gi)\i<M
=1

d(f"(x), f"(x)) < M

i.e. there exists an M > 0 such that

for any n, m so we have

d(z,y)
= 1
Ao +1 1+M - ¢°
on A so we have f|a satisfies

d(fla(z), fla(y)) < ad(z,y)
so it is a contraction mapping on A. Therefore, by the proof in 10a {f,(z)} is a Cauchy Sequence. By
completeness of X we conclude a limit in X and an identical argument as in 10a concludes that the limit
is a fixed point.
Problem 11.
Problem 12a. See Fall 2016 number 12.

Problem 12b. If f” > 0 then by Taylor’s Theorem we have
2

F@) = F@) + @) - )+ 7ew) TS

for some £(y) € [min{z,y}, max{x,y}] but as f” > 0 we have
fly) = f@) + )y — o)

then part a) implies the desired result.
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