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Problem 1. Let 1 < p < co. Show that if a sequence of real-valued functions { f,, }»>1 converges

in LP(R™), then it contains a subsequence that converges almost everywhere.

Also give an example of a sequence of functions converging to zero in L?(RR) that does not converge
almost everywhere.

Proof. Assume f,, — f in LP(R). Then there exists a subsequence { f,, } such that
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Therefore,

|f’ﬂk - f|pd$ S 1
).

which by the monotone convergence theorem tells us that

Z/ |fnk - fnk+1|pdx = / Z Ifnk - f|pdx <1
k=1"F Rp=1

Therefore, it follows that for a.e. x that Y.~ | fn, (z) — f(2)|P < 00 80 fn,(z) — f(z) — 0 for a.e. z O

Problem 2. Let {p;}; be distinct points in C and let U := C\ {p1,..,pn}. Let A be the vector
space of real harmonic functions on U and let B C A be the subspace of real parts of complex
analytic functions on U. Find the dimension of the quotient vector space A/B, giver a basis of
this quotient space, and prove that it is a basis.

Proof. Fix 1¢(z) € A then define
9(2) = 0x0(2) — 10y (2)

then observe that this function satisfies the Cauchy-Riemann Equations since 1 is harmonic. And as g(2)
is real differentiable, we see that is must be holomorphic. Now notice that we have isolated singularities
at {p;}}_;, so for each of these isolated singularities define ¢; as the residue of g at p;. Then notice

n

hz) = g(z) =3

j=1

G

Z—Pj

is a holomorphic function that integrates to zero over any closed curve v C U thanks to the Residue
Theorem. Therefore, h(z) has a primitive which we denote by u(z). Now observe if we define

w(z) == (z) — Z cjlog |z — pj| = 0yu(z) —i0yu(z) = h(z)

j=1
And the Cauchy Riemann Equations tells us that

u'(2) = % = 0,;Re(u(z)) — idyRe(u(z)) = h(z)

i.e. @ is the real part of u(z) up to some positive constant. So it follows that @ is the real part of a
holomorphic function. Therefore, we have shown that the set of functions

{log |z — pjl}j=
spans A/B. And they are also linearly independent. Indeed, if
ch10g|z —p;|=0
j=1

So taking exponentials give
n
[Ilz=pil7 =1
j=1

Say ¢; # 0 then taking z = p; gives 0 = 1, so we must have ¢; = 0 for all j. Therefore, {log|z — pj|}?:1
is a basis of A\ B, so this vector space has dimension n with the above basis.
|



Problem 3. For an f: R — R, f € L*(R) define the Hardy-Littlewood maximal functions as

x+h

(M) = s g [ 1wy

Prove that it has the following property: There is a constant A such that for any A > 0,
A
m({z € R: (Mf)(x) > A}) < TIf][re

Proof. Let m(A) denote the Lebesgue Measure of the measurable subset A. We first need the following
covering lemma:

Lemma: Given a finite collection of balls {B;}Y, then there exists a collection of balls {B;; }7Ly that
are disjoint such that

N m
m(U B;) <3 Z m(B;;)
i=1 j=1

Proof of Lemma: Notice if B and B’ are balls such that they intersect with the radius of B greater
than or equal to B’ then B’ is contained in the ball concentric with B with 3 times its radius. Now we
proceed with a greedy algorithim. Choose B;, such that m(B;,) > m(B;) for any j then consider all the
other balls that intersect B;,. Then those balls are contained in a concentric ball of B;, with 3 times the
radius denoted by B~Z-1. Now iterate this process of choosing the maximal remaining balls (maximal in
the sense of volume) we eventialy stop to obtian a collection {B;, } such that they cover Ufil B; and are

disjoint such that

N m m m

m(lJ Bi) <m(lJ B)) =3 om(Bi) =33 m(Bi)

i=1 j=1 j=1 j=1
and the covering lemma is proven.

Now fix a compact subset A > 0 and fix a comapct subset K C {z : (M f)(z) > A}. Now by the
translation continuity of the lebegsue integral we know for any x € K there exists an ¢, > 0 such that
B.,(z) C {z : (Mf)(z) > A}. Therefore, by compactness we can find a finite subcover say B, for
i =1,..,N. This implies that by our covering lemma we can find a collection Baij such that they cover
the original balls and the measure inequality holds. Therefore,

N n ~ 3 3
m(K)SZm(Bai)S3Zm(Bsij)SX/ @< S
i=1 j=1 UB.,,

where the last inequality is due to the balls are disjoint. And the second last inequality is due to

[ 1@ = am(e,)

B,

51’]‘

and all the sets are disjoint. Now we use the inner regularity of the Lebesgue measure as its a Radon
Measure to conclude. O

O

Problem 4. Let f(z) be a continuous function ont he closed unit disk D such that f(z) is analytic
on the open disk D and f(0) # 0.

(1) Prove that if 0 < r < 1 and if inf},|—, [ f(2)| > 0, then

27
%/O log |f(re'®)|d6 > log | £(0)]

(2) Use (a) to prove that m({f € [0,27] : f(e? =0}) =0
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Proof. Let f(z) : & — C be holomorphic then we claim log(|f(z)|) is subharmonic. That is it satisfies
the mean value inequality: if z € C and B.(z) C 2 then

1
log /()] < 5- [

Indeed, if f(p) # 0 then on a small ball around p it’s non-zero so locally we can write log |f(2)| as the
real part of a holomorphic function, so log|f(z)| is harmonic and the inequality is an equality. Now

27
log | f (€' + 2)|df
0

if f(p) = 0 then log|f(p)] = —oc and the inequality is obvious. So this implies log|f(2)| is locally
sub-harmonic which is equivalent to being sub-harmonic. Now apply this claim to z = 0 to get a). An
alternative approach would be to derive Jensen’s formula. ]

Proof. Define the cut off function

gn(2) = max(log |f ()|, —n)

and notice that is is continuous and g, (z) — log|f(2)| as n — oo. Now observe by continuity and Fatou’s
lemma that
1 2m

) 1 27 ) 1 2 .
6 sos 6 sk 0
n do = — liminf g, < liminf — n
|gn ()] 27T/0 iminf|g, (re”)| < liminf o /O |gn (re”)]

2 0 r—1 g

Also observe that g, (z) is still sub-harmonic since it is the maximum of two sub-harmonic functions, so

we have
1 27

27 J, gn(re )d@_gn(O)

and as f € C(D) we have that f is bounded. So we have that if f*, f~ denotes the positive and negative
part of f then

1 2

27 2w
g (re') = g, (re"®)df > g, (0) = o / G (re®)df < =g, (0) + 5— / gi (re'®)do
0 0

%O 2T

Notice that f bounded implies log |f(z)| is bounded above, so we have

1 2w

5 | g€ <0+ 0= 1) +C

for n large since f(0) # 0. So it follows that for n large that g, (re®) € L'([0,2x]) with a L' bound

independent of n or  when n is large i.e.

1 27

37 | lon(elas <

so now again using Fatou’s Lemam gives
2

1 27 ] 1 27 ) 1 )
o | Noslre il = o [ timint g ()0 < timint o= [ g (e )la < €

so log(f(e")) € L'([0,27) so {0 € [0,27] : f(e?) = 0} has zero measure.

Problem 5. For f € L?(R) and a sequence {z,,} C R which converges to zero, define

fu(x) = flz+2p)

show that {f,} converges to f int he L? sense.

Let W C R be a Lebesgue measurable set of positive Lebesgue measure. Show that the set of
differences

W-W={zx—y:a,ye W}
contains an open neighborhood of the origin.
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Proof. Note that compactly supported continuous functions are dense in L?(R). Therefore, for any & > 0
there exists a g € C.(R) such that ||f — g||r2 < e. Say supp(g) = K then by uniform continuity we have
that for n sufficiently large we have sup,cx |g9(z) — g(x + x,,)| < e. Therefore,

[ 156 = s ) dm<4{/|f S +19(o) ~ S+ )2}

<16{ [ 1£(0) - g +19(e) - e+ )+ oo +2,) = fla 4

<16 (e +2vem(K) +¢) = 0
For the second part, let Wg := W N Br(0) then notice

XWgr € L?

and for R sufficiently large we have

0<m(Wg) = / Xy, dx
R

now assume for the sake of contradiction that W — W does not have a neighborhood of zero then there
exists a sequence x,, — 0 such that z,, ¢ W — W. Therefore,

/ xw (@)xw (z + zn)de = / xw (x4 zp)de =0
R w

since if w € W and w + z,, € W then z,, = (w + z,,) — (w) which would imply z, € W — W so the
integrand is zero. But we also have from from arguing like in 5a) that

0:/ Xw(x+xn)dm—>/ Xwg > 0
w w

which is our contradiction. [ O

Problem 6. Let p be a finite, positive, regular Borel measure supported on a compact subset of
C and define the Newtonian potential of u to be

Uuz) o= [

(1) Prove that U, exists lebesgue a.e. and that

/ / z)dzdy < oo
for every compact K C C.

(2) Prove that for almost every horizontal or vertical line L C C, u(L) = 0 and [, U, K z)ds <
oo for every compact subset K C L where ds denotes Lebesgue linear measure on L
(3) Define the Cauchy Potential of u to be

Su(2) = [ du(w)

cR— W

1

Z—Ww

\ ()

which trivially exists whenever U, (z) < co. Let R be a rectangle in C whose four sides
are contained in lines L having the conditions of (b). Prove that

2m/S )dz = u(R)

Proof. Define
1
U)o [ ()

|z —wl
then if K C C is compact then

1
/ Uu(z)dzdy = // ———dxdydp(w) thanks to Tonelli
K cJk |z —w|
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:// ! dedydp(w // dxdydp(w) = (I) + (I1)
C JKNBy (w) 2 — wl Kn|z—w|>1 |z—w|

Then observe
1
/ dxdy < C
Bi(w) |z — w]

because 1/|z| is integrable om B;(0). So

(1) < / Cadu(w) < K
C
since p is of finite measure and
(IT) < // ldzdydp(w) = m(K)u(C) = Ky < o
cJK

Therefore, for any compact set K we have U, € L' (K, dzdy). Now this implies U,, is finite a.e. i.e. exists
a.e.in K and let K = B, (0) and send r — oo to deduce U, is finite a.e. on C.

For the second part, assume for the sake of contradiction that there was the set of lines such that
(L) > 0 had positive (Lebesgue) measure. Then there must exist an n € N such that there are infinitely
many disjoint lines {L,, }men such that u(L,,) > 1/n. Notice that

C) > p( Lm) =D wlLm) > Y 1/n=00

meN meN meN

which contradicts that p is finite. Therefore, for almost every horizontal or vertical line we have p(L) = 0.

Now fix R > 0 and n € Z then [n,n + 1] x [-R, R] is a compact set of C so by part a) we have with

Fubini-Tonelli
n+1
/ / (z +dy)dzdy < o0

R
/ Up(z +iy)dr < oo
-R

this implies for a.e. y that

i.e. integrating along horizontal lines U, is finite for a.e. y € [n,n + 1]. For each n € Z define
R
Y ={yenn+1]: / Uu(x +1y)dx < oo}
-R

define Yg := (1,5 Y and notice Y,y = |J,, o, (Y%)¢ and each (Y})¢ has measure zero, so Yg is a set of
full measure. And if y € Yr we have

R
/ U,(z +iy)dr < oo
-R

ie if L={(z,y): 2z € [-R, R]} then

/ Uu(z +1y)de < oo
L

Now finally define Y := [z, Yr then arguing as before we see that Y is a set of full measure and if
y € Y then we have for any R > 0

R
/ Up(z +iy)dr < oo
-R
so it follows if we let L be the horizontal lines with y coordinates in Y then if K is compact then

/ Up(z +iy)de < oo
K

as desired.



Finally for the third part. Observe that

1 1 1
— Su(z)dz = — dzd
21t Jor n(2)dz 27m'/c/aRz—w zdp(w)

where Fubini is justified since S,,(2) € L' and Cauchy’s Theorem tells us that

/ 1 2miif w € R
dz =
AR Z — W 0 else

- / xr(w)dp(w) = p(R)
C

SO

Problem 7. Let H be a Hilbert space and let FE be a closed convex subset of H. prove that
there exists a unique element x € F such that

= i f
[lof] = Inf {ly]l

Proof. Let E be a closed subset of H. Then let
m := inf
inf |y
and let x,, be a minimizing sequence that is z,, € E and
|lzn|l = m

It suffices to show {x,} is Cauchy since H is complete. Indeed, observe that as F is convex that
(xn, + @) /2 and (2, — 24,)/2 € E. Therefore, m < ||(zp + zm)/2|] < ||lzn/2|] + ||zm/2]] — m so
[|(zn + xm)/2|| = m. But then by the parallelogram law we have

||35n||2 + me|2 = 2||zn + me2 = 2[|z, — J5m||2

and the left hand side approaches to 0 as n, m — co. Therefore, the sequence is Cauchy and we are done.
O

Problem 8. Let F(z) be a non-constant meromorphic function on C such that for all z € C
F(z+1)=F(z) and F(z+1) = F(z)

Let Q be a square with vertices z, 241, z+1%, z+ 1414 such that F has no poles or zeros on 0Q. Prove
that inside @ the function F' has the same number of zeros and poles (counting multiplicities).

Proof. By the argument principle
F'(2)

YoQ F(Z)

counted with multiplicity. But as the above integral is zero due to the periodicity we are done. O

dz = number of zeros in Q — number of poles in Q

Problem 9. Let
A={zecr?: Zn|acn|2 <1}
n>1
(1) Show that A is compact in the ¢? topology.
(2) Show that the mapping from A to R defined by

2m
inf
— § n o

n>1

achieves its maximum on A.
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Proof. Fix {z,} C A where we use the notation x,, refers to the sequence z, = {Tn1,%n,2...}. Then
notice for all n that {2, 1}nen is a bounded sequence. So there is a subsequence njl such that {z,1 1};en
1

converges to a number denoted by z;. Now note that again {z,,1 } is a bounded subsequence so there
i
exists a subsequence n? C n]1 with {z,2 o} converging to a number x5. Iterate this process for all n. Define
i

the sequence x = {x1, x2, .., } and consider the diagonal subsequence {z,~}. Then we claim z,» — z in
/2. First note x € A since for any N fixed we have

N

N
1> lim Z n|zji o> = Zn\xn|2

due to pointwise convergence so taking limits gives

oo
1> E n|a,|?
n=1
Now observe

e’} N N 0o
Z'xn_«rjj7n|2:Z|mn_mjj,n|2+ﬁ Z |xn—xjj,n2
n=1 n=1

n=N+1
N [e's)
9 1
< Z |xn ij,n| + N Z n|mn Tjin
n=1 n=N+1
N ) 9
< Z |xn - xjj,n| + N

now fix € > 0 and choose N so that 2/N < /2 and now make j so large such that the first sum is < /2
which can be done thanks to pointwise convergence. Therefore, z;; — x in £? so A is compact.

For the second part observe that since (e?, ") = 2716,,,, that
o0 oo oo oo
I Z ane™| |2, = (Z ane™, Z ane™) =21 Z |an|?
n=1 n=1 n=1 n=1
so it follows that for

2m
flx) ::/O aneme %

n>1
that
@) =560 = | [ [ | - [ S| L)< LIS o] ao
x Yy)l = o In€ Yne o | = 21 J, LTn —Yn)€
n>1 n>1 n>1
; o\ 1/2 1o
1 i , >
< Vo / Z(mn — yn)e™? =27 <Z |z, — yn2> = V27||x — yl|e
0 n>1 n=1

where the equality is due to {e’?/27} being an orthonormal basis of L?([0,27]) which shows that f is
continuous so it attains its max over A since A is compact. O

Problem 10. Let 2 C C be a connected open set, let zo € 2, and let U be the set of positive
harmonic functions U on Q such that U(zg) = 1. Prove for every compact set K C 2 there is a
finite constant M (depending on €, zp, and K) such that

sup sup U(z) < M

UelU ze K
You may use Harnack’s inequality for the disk without proving it, provided you state it correctly.
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Proof. Harnack’s Inequality on a ball states that if B,.(w) is a ball of radius r and center w and A is the
set of positive harmonic functions on B,.(w) then there exists a constant C'(r) depending only on r such
that
sup w(z) < C(r) inf wu(z)
2€B(w) zEB,(w)
for any u € A. Now if K C Q is compact then there exists a 6 > 0 such that d(K,) > 26. Then
the collection {Bs(2)}.ex is an open cover of K so there exists a finite sub-cover {Bs(z))}4_, where we
adjoined Bj/2(20). Therefore, by Harnack’s on each of these balls we have
sup u(z) <C inf  w(z)
2€Bs(2;) 2€Bs/2(2:)
Now as ) is connected in C it is path connected, so after a cyclic permutation on {z;}2Y, let v be a piece
wise line that connects z; to zi1 for i = 0,..,n — 1 where Bj,9(2;) N Bjs2(2i41) # 0. It therefore, follows
that
sup u(z) <C
2E€Bs(z0)
since u(zg) = 1, which implies as Bjs(z9) N Bs(z1) # 0 that
sup u(z) < C sup u(z) < C?
2€Bs(z1) Bs(zo0)
then again as all the balls are not disjoint we can iterate to get
sup < !
z€B5(z4)
Therefore, it follows that
sup u(z) < max{C,CNT1}1 .= A
zeUN Bs(2i)
and as K is contained in these balls we have
sup u(z) < A
zeEK
as desired. ]

Problem 11. Let ¢ : R — R be in C.(R). Prove that there is a constant A such that
[If * @|lne < A||f]lre foralll1 <p<g<ocand f €L

Problem 11. We first prove Young’s Convolution Inequality: If p,r, ¢ > 1 are such that

1 1 1
1+=>==+-=
r - p q
with f € L? and g € L?. Then we have

Lf = gller < [1fllLellgl|La
Indeed, observe that one has

|f * g S/If(y)g(x—y)ldy=/If(y)\l"’“lg(x—y)\l‘Q/Tlf(y)lp/Tlg(w—y)lq/rdy

= [1@Plgte = I (I (lgto = )=y

Notice that 1 11
r— r—
r pr rq rop
so we can apply Holder’s Inequality to obtain

=1

1
p g

1 1 1 1
r r r

1
q

£ gl < (AR gl AL ) lglla™ )

So now we have from the previous computation

/If*grdwé/’/f(x—y)g(y)dy

T




. ——
< [ ([ 15t =P gt gt )
<1117 lslly ™ [ [ 17te = wlPlowlrdady
<1111 ol [ ottt [ 15t =P

= [I71I5!1g1lg
so we have
1 * gl < 1 fllpllgllg
Now back to the problem, define » > 1 such that
(S|
r q P
then we can define
A= |lol|zr

to get the desired result.

Problem 12. Let F' be a function from the open unit disk I to D such that whenever z1, z5 and
z3 are distinct points of D there exists an analytic function f, ., ., from D to D such that

F(ZJ) = f21,22723(zj) for j=1,2,3
Prove that F' is analytic at every point of D.

Proof. By Montel’s Theorem the family {f., .. 25} 21 20.25ep Is uniformly Lipschitz. Therefore, the differ-
ence quotient
F(Zn) - F(Z) _ fzn,z,w(zn) - fzn,z,w(z)
Zn — % N Zn — %
is uniformly bounded where w # z, or z. So along a sub-sequence the difference quotients converge. Now
let z;(,) be a sub-sequence such that the difference quotient converges and z;(,) be another sub-sequence.
Then the family

{fzi(n) 125 (n) ,z}nEN

is pre-compact by Montel’s Theorem. So for § > 0 so small such that Bs(z) C D we have that along a
subsequence ny the functions fin) jn), = fzin).2;(n),» cONverge uniformly to a holomorphic function f

on Bs(z). This implies fi’(n) i f' uniformly on Bs(z) (denote the convergent sub-sequence as ny.

So as

F(Zz(nk)) F(Z) _ fz(nk),](nk),z(zz(nk)) fz(nk),J(nk),z(z) - f/(Z)
Zi(ne) T # Zi(ny) ~ #
and similarly
F(zin) = F() _ fiew).ien) 2(Zien) = fitn) g2 (2) 70
Zi(ng) — * Zi(ng) — %
where the convergence is due to uniform convergence of this families derivative. Therefore, the limit on
any two sub-sequence is the same, so we know the limit exists and is f’(z). Therefore, F' is holomorphic
on D.

O

Problem 13. Let X and Y be two Banach Spaces. Let A : X — Y be a compact operator.
Suppose X is reflexive and X™* is separable. Show that A is compact iff for every bounded
sequence {z,} there exists a sub-sequence {x,;} and a vector ¢ € X such that z,,, = ¢ +r,, and
Arp; - 0inY
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Proof. Let A be compact and {x,,} bounded. By Banach Alagou (since X is reflexive and X* is separable
so we can upgrade weak™ compactness to weak® subsequential compactness) the closed ball By,(0) C X
is weakly compact for M > 0. And as X* is separable, we know that Bj/(0) is weakly subsequentially
compact, so there is a subsequence {x,;} such that x,, = ¢ € By(0). Define ry,, := (2, — ¢) then
Tp, = ¢ +1p,. As Ais compact we can by looking at a furhter subsequence if necessary assume that
Az, converges. So

lim A(z,,) = lim A(¢ +1,,) = A(¢) + lim A(ry,)
j—o0

Jj—roo j—o0
Thus it satisfies to show
lim A(z,,) = A(9)
‘]*)OO
Indeed, let f € Y* and define y := lim; o, A(zy,)
§) = lim f(AGn,) = lim (A'f)(an,) = A(0) = F(A@)

which implies y = A¢ so this direction is proven.

The other direction implies A(x,,) — A(¢) by linearity so A is compact.
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2. FALL 2010

Problem 1. For this problem, consider just the Lebesgue measurable functions f : [0,1] — R
together with the Lebesgue emasure.

(1) State Fatou’s Lemma (no proof is required).

(2) State and prove the Dominated Convergence Theorem.

(3) Given an example where f,(z) — 0 a.e., but [ f,(z)dz — 1

Problem 1la. Fatou’s Lemma states that if f,, : [0,1] — [0, 00) are a sequence of Lebesgue measurable
functions then we have

1
/ liminf f,(z)dz < lim 1nf/ fnlz
0

n— oo n—oo

Problem 1b. DCT states that if f,, € L([0,1]) are such that f,, — f pointwise a.e. and if there exists
a g € L'([0,1]) such that |f,| < g then we have

fu = fin L'([0,1])
To see the proof first observe that 2g — |f — f,,| > 0 so we have by Fatou’s Lemma

1

1 1
/ 2g(x)d:c:/ liminf{2gf|fffn|}dx§11minf/ 29 — |f — fnldzx

so we have

1 1 1
0< liminf/ —|f = faldx = —limsup/ |f — fol ie. O Zlimsup/ lf = fnl
0 n—oo JQ n—oo J0

n—oQ

so f, — fin L*([0,1]) O.
Problem 1lc. Take f(z) = nxp,1/n(z) O

Problem 2. Prove the following form of Jensen’s inequality: If f : [0,1] — R is continuous then
1 1
/ eF@dx > exp{/ f(z)dx}
0 0

Proof. As e” is convex we have that for any y,z € R

eV > e +ef(y—z)

Taking z = fol f(z) and y = f(z) we have
1
el @) > elo f@)dz ol J@)de( () / f(z)d)
0

so integrating this gives

1 1
/ ef@dx > exp {/ f(:c)dx}
0 0

as desired .

Problem 3. Consider the following sequence of functions:
fn:10,1] = R by fn(x) = exp(sin(2mnz))

(1) Prove that f,, converges weakly in L([0,1])
(2) Prove that f,, converges weakly-* in L>°(]0,1]) viewed as the dual of L'(]0,1])
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Proof. Observe that

/01 exp(sin(2mnz))dz = 1 /O" exp(sin(2my))dy = rlzn/ol exp(sin(27y))dy = /01 fi(z)dz

n

So it follows that L : (L(]0,1]))* — R defined via

= [ sy

satisfies L(f,) — C = fo fi(x)dx so we make the guess that f, — C. Let L € (L'([0,1]))* then by
Risez-Representation Theorem there exists a g € L*([0,1]) such that

L(f) = /Olgfdw

for all f € L([0,1]). Note that L>°(]0,1]) < L([0,1]), so it suffices to show the problem L([0,1])
functions. We will first prove the problem when g € L>°([0, 1]) N C([0,1]) and use density to conclude (in
L' norm). Indeed, observe

1 i _ 1 ' fex sin(2mx x*ln_l e Eex sin(2mx))dx
L) = | ala)explsin(zmna))de = - [ g(%) explsin(zra))d > [ o) explsin(zra))a

SO

C n—1 k 1 n—1 k+1 z L .
Ui =5 St =3 3 [ (o) o)) ewisintaraas

Therefore, by uniform continuity if £ > 0 there exists a 6 > 0 such that if |z —y| < § = |g(x) —g(y)| < e.
Choose N so large such that if n > N then 1/n < ¢ then

C n—1 k 1 n—1 Lk+1
_ — < — 1 =
|L(fn) - ’;)g(nﬂ < kz:;)/k eexp(sin(27mz))dr = Ce

SO as
QE k—>0/
n
k=

it follows that L(f,) — C fo z)dr = L(C). Now the general case follows from density. Indeed, if
fn € C([0,1]) such that f, — f in Ll([ 1]) then we have

[ 16 = Dexptsinrne)| € 1 ~ Sl

SO
1 1 1 1
/ | exp(sin(2mna))—C fldz < / ((F—Fn) exp(sin(2mna)) |+ / | fon exp(sin(2mna)) —C fon|dat / Cf=C | =0
0 0 0 0
so if f € L([0,1]) then L(f,) — fol Cf(z)dz ie. (sin(2rnz)) — C in L.

Note we proved the second part in the proof of the first part. ([l

Problem 4. Let T be a linear transformation on C.(R) such that

T flzee < |IfllLe and m({z € R : [Tf(z)] > A}) < ||fl\|L1

Prove that for all f € C.(R)
/ Ti@)? < / @)
R R
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Problem 4. Fix f € C?(R) and assume that f > 0 then by the Layer Cake Decomposition we have

/.|Tf(x)|2dx _ 2/ slz: [Tf(@)| > slds
R R

Now we decompose f(z) = g(z, s) + h(x, s) where g(x, s) := min{ f(z), s/2} and h(z,s) =0if f(x) < s/2
and h(z,s) = f(z) — s/2 for f(x) > s/2. Then observe that since |T'f| < |Tg| + |Th| so if |T f| > s then
we must have [T'g| > s/2 or |[Th| > s/2 so

{z:|Tf(z)| > s} C{x:|Tg(x)] >s/2}U{z: |Th(z)| > s/2}
But as ||Tg||~ < ||g]|L= = s/2 we conclude the first set is a null set. Therefore,

/ |Tf(x)|?dx < 2/ slz : |Th(x)] > s/2|ds < 4/ [|h(z,s)||L1(r)ds

_4// (x) — 5/2)dads < 4// F(@)dwds
{z: f(1)>9/2} {z:f(x)>s/2}

=4 x)dsdx = 8 )2dx
i Jore

For a general f decompose it into its positive and imaginary part [

Problem 5. Let R\ Z denote the torus (whose elements we will write as cosets) and fix an
irrational number @ > 0

(1) Show that

N—-1 1
A}i_r)nOO— ;)f(na-i—l) :/ [z +Z)dx

for all f € C(R\ Z)
(2) Show that the conclusion is also true when f is the characteristic function of a closed
interval.

Proof. By Stone-Weiestrass trigonometric polynomials are dense on R/Z ~ [0, 1]. By linearity it suffices to
show that €272 for k € Z satisfies the desired conclusion to have it hold for all trigonometric polynomials.
Then

1 1
/ e27mik® 0. — / cos(2mkx) + isin(2wka)dx = 0
0 0

and we have

N—1 N— )
1 1 [1—exp(2mikna)
— E exp(2mikna) i exp(2mika)) =N ( 1= exp(2rika)

now because « is irrational we have the denominator is never 0, so as the numerator is bounded by 2 we

have
N-1

% Z exp(2mikna) — 0
n=0
so we have the desired conclusion for all trigonometric polynomials. Therefore, it follows for all continu-
ous functions by density. Since the sum operator is uniformly bounded for any N by the L*> norm and
the integral is continuous w.r.t. uniform convergence.

For the second part, if f(z) := X[a,(%) then it is obvious that there exists a sequence of functions
0 < up(x) < flx) < vp(x) <1 with u,(x) and v,(x) pointwise converging to f(x) where wu,, v, are
continuous. Then we have
N-1 N-1 N-1

! 1 1
/0 Up(z)dr = lim N Z up(na+2) < 1\}51100 i Z f(na+Z) < lim Z (na+2) = / vp (x)dx

N —oc0
n=0 n=0 n:O
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Then as all these functions are dominated by 1 DCT tells us that

lim up(z) = lim ; Un () :/0 f(x)

so it follows that

N-1 1
dim oy 3 fna 7)< | 1@

Problem 6. Consider the Hilbert spacc

H={f:D->C:f(z Zf 2 with [[£][7 =Y (1 + k)| f(k)* < oo}

k=0
(1) Prove that the linear functlonal L: f— f(1) is bounded.
(2) Find the element g € H representing L.
(3) Sow that f — ReL(f) achieves its maximal value on the set

Bi={feH:||f] <1and f(0) = 0}

that this maximum occurs at a unique point, and determine its maximal value.

Problem 6a. Observe that -
=> f(k)
k=0
/2 1/2
S \/1+|k Vel
1 1 k i <
)\Skzzolf( 1+|k|2_ Zlf (1+ |k[*) kz:%lﬂlﬂz S A

where the second inequality is due to Holder and the last one is due to the sum on the right is a convergent
sum.

and

Problem 6b. Observe that the inner product is

(f.9) =Y _ (1 + k) f(k)g(k)
k=0
so if g(k) = ﬁ then
(f9)=f(1)

Therefore, define

0 k

z
9(z) =)
2 T [P

which is a well defiend function on D since Y ﬁ converges absolutely and ||g||? = > W%P < 00 S0
g is the desired element representing L.
Problem 6c¢c. Note on B that we have

8

is such that
(f,9)=r(1)
for f € B by an identical argument as above since f(0) = 0. Now by Cauchy-Schwarz we have
[ReL(f)| = Ref(1)| = [Re(h, f)| < [|Al]

since ||f]| < 1. Now taking f := h/||h|| shows that this maximal value occurs. This maximal is also
unique since equality in Cauchy-Schwarz inequality happens iff f = Ak for some A and by the constraint
[|AR|| = 1 implies f = h/||h||.
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Problem 7. Suppose f : C — C is continuous on C and holomorphic on C\ R. Prove that f is
entire.

Proof. This is a standard application of Morrera’s Theorem/Schwarz Reflection Principle. |

Problem 8. Let A(D) be the C-vector space of all holomorphic functions on D and suppose that
L: A(D) — C is a multiplicative linear functional, that is

L(af + bg) = aL(f) + bL(g) and L(fg) = L(f)L(g)
for all a,b € C and all f,g € A(D). If L is not identically zero, show that there is a zp € D so that
L(f) = f(z0) for all f € A(D).

Proof. Observe that for any f € A(D) that
L(f) = L(f-1) = L(f)L(1) = L(1) = 1
So linearlity implies for any constant C' that we have L(C') = 1. Define
zo = L(z)

then observe

so linearity implies for any polynomial P we have
L(P(z)) = P(20)
Now we show zp € D. Assume zp ¢ D then —— € A(D) so

zZ—Zz0

zZ— 29 1
= L(z — 2)L

R O

but as L(z — z9) = 0 we arrive at a contradiction. Therefore, zp € D, so we have for any f € A(D) that

L(f — f(20)) = L((z — 20)g(2)) =0
where g(z) € A(D). So in particular linearity implies L(f) = L(f(20)) = f(20) for any f € A(D). 0

1=L(1) = L(

Problem 9. Let f(z) = > 7~ a,2" be holomorphic in D. Show that if

o0

> nlanl < ai

n=2

with a1 # 0 then f is injective.

Proof. If f'(20) # 0 for all 2y € D then the inverse function theorem implies f(z) is locally injective on
D and the open mapping theorem implies f(z) is injective on D. So we compute

o0 oo oo
Z na, 2"t a, + Z na, 2" > la1]| — | Z nanz"71|
n=1 n=2 n=2

Now for any z € D we have |z| < 1 so we have by the triangle inequality

[f'(2)] =

o0 o0 oo
| Znanz”_1| < Zn|an||z| < Zn|an|
n=2 n=2 n=2

from which it follows that -
If'(2)] > lar| = > nlan| >0
n=2

so it follows that f/(z) # 0 on D, so f is injective.
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Problem 10. Prove that the punctured disk {z € C : 0 < |z| < 1} and the annulus given by
{z € C:1 < |z|] < 2} are not conformally equivalent.

Proof. Assume for the sake of contradiction that there exists a conformal map ¢ from the punctured unit
disk to the annulus A; 2 := {z € C: 1 < |2| < 2}. Then notice this implies ¢ is bounded, so by Riemann
Extension Theorem ¢ extends to a holomorphic map on ID. Note by the mean value property we deduce
that 1 < |p(0)] < 2 so ¢ is still a surjective map onto A; 2. Now observe it is still injective since if
©(0) = @(w) for some w # 0 the open mapping principle tells us by taking small balls arounnd 0 and w
that ¢ is not injective on the punctured unit disk which is a contradiction. Therefore, we have found a
homeomorphism from the unit disk to the annulus A, 2, which is a contradiction since homeomorphisms
preserve simply connectedness. [ O

Problem 11. Let 2 C C be a non-empty open connected set. If f : 2 — C is harmonic such
that f? is also harmonic, show that either f or f is holomorphic on €.

Problem 11. Define the Wirtinger Derivatives

170 .0
82 _Q(azlay)

170 .0
8?—2(8x+lay>

and the Cauchy Riemann equations imply f is holomorphic iff &z f = 0 and f is holomorphic iff 9, f = 0.
A standard computation yields
0% f
= 477
020%
Now observe since Af = Af? = 0 we obtain
01 0F _
0z 0z
so as f is C? in the real sense we conclude either 9, f = 0 or d5f = 0in Qi.e. f or f is holomorphic. [

0

Problem 12. Let F be the family of holomorphic functions on D with
[ 1+ i)Pda.y) <1
D

prove that for each compact subset K C D there is an A > 0 such that |f(z)| < A for all z € K
and f € F

Proof. Let r := dist(K,Q)/2 where K is a compact subset of Q. Then for any z € K observe that
B,.(z) C 2 so the mean value property tells us that

1
- d
U(Z) 2 /BT(z) U(Z) ‘
so we have )
< — d
W < o [ s

1 1 1
< 2 (ﬁTHUHN(BT(z))) < ﬁ”uﬂm(m(o» = ﬁ

and this bound is independent of z € K so we have the desired conclusion. O
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3. SPRING 2011

Problem 1. Define what it means to say that f, — f weakly in L%([0, 1]).
Suppose f, € L?([0,1]) converges weakly to f € L?([0,1]) and define the primitive functions

/fn t)dt and F(x /f

Show that F,,, F' € C([0,1]) and that F,, — F uniformly on [0, 1].

Problem la. Let X := L?([0,1]) then X > f, — f € X means for any L € X* where X* is the
topological dual of X then L(f,) — L(f). Fix L € X then by Risez Representation Theorem we have
that there exists g € X such that Vf € X
1
— [ f@)(a)ds
0

so it is equivalent that f, — f to mean for any g € X that

/fn dx—)/f

Problem 1b. Since f, — f it follows that for any L € X* that sup,, |L(f,)| < oo since it is a convergent
sequence, so by the uniform boundness principle we have sup,, || fn|[2(j0,1)) < 0o. So as

1
Iﬂ@NSALﬁMWSHhmmm

due to Cauchy-Schwarz we have that the family is uniformly bounded. Now obserrve it is equicontinuous
since if 0 <z <y < 1 we have

Yy 1
[Fn(2) — Fn(y)] S/ Ifn(t)ldt=/0 | fa (D)Xt < | fullzz vz =y S Viz —yl

where the final inequality is due to || f,,||z2 being uniformly bounded, so the family is equicontinuous. So
now observe that as x4 (t) € X* = L?([0, 1]) we have

T 1 T
x):/o fn(t)dt:/o fn(t)X[O,w](t)dt%/o ft) =

so F,, — F pointwise. Then for any subsequence we have from Arzela-Ascoli a further subsequence which
uniformly converges to F(z), which implies the whole sequence uniformly converges to F(z) O.

Problem 2. Let f € L3(R) and
~Jsin(mz) s |z <1
9(@) = {O else
Show that
fulw)i=n [ fa =)o)y -0
R

Lebesgue almost everywhere.

Proof. Note that if we define ¢, (x) := ¢(nz) we have that

1/n
/(;Sn :/ sin(nmx)dr =0
—1/n

1/n

|fn(2)] < n/RIf(ﬂc—y) — f(@)llo(ny)|dy < n/ [f(z —y) = f(x)|dy

—1/n

so we have
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1
loc

1/n
lim sup {n/ |f(my)f(z)|dy} =0 a.e.

n— 00 71/»”

and Holder’s Inequality implies f € L .(R) so we conclude by the Lebesgue Differentiation Theorem

that

so fn(z) = 0 a.e. O

Problem 3. Let u be a Borel probability measure on R and define f(t) := [ e®du(x). Suppose
also that

L e
Show that p is supported at {0}.

\.

Proof. First observe that

and by using Taylor Expansion, we see that

] 1_eitac $2
}%Re< 12 ) )

and we have from Fatou’s Lemma that (since Re(1 — ¢%®) > 0 that

1— it 1— itz 2
0= liminf/ Mdu(x) > / lim inf Md,u(x) = / %du(m)
R R R

t—0 12 t—0 t2

So now suppose for the sake of contradiction that p is not supported on {0}, this means we can find a
measurable set with 0 ¢ E such that u(E) > 0. As p is a Borel probability measure on the metric space
R we conclude that p is regular, so we can find a compact set K C E such that u(K) > 0. As K is
compact there exists a minimum m € K such that |m| > 0 (since 0 ¢ K'). Therefore,

2 2 2
0=/£du(33) 2/ dp(e) > Zop(K) >0
B 2 K 2 2

which is our desired contradiction. O

Problem 4. Let f, : [0,1] — [0,00) be Borel functions with

1
sup/0 frn(x)log(2 + fn(z))der < 0o

Suppose f,, — f Lebesgue almost everywhere. Show that f € L! and f,, — f in the L' sense.

Proof. Assume that there exists a C' independent of n such that

1
Sup/ fn(z)log(2 + frn(z))de < C < o0
neNJO

and there exists an f such that f, — f and f, : R — RT. First observe that as log(z) is an increasing
function that log(2 + f.(z)) < log(2) so it follows that

1 1
sup/O frn(x)log(2)dx < sup/0 fu(x)log(2 4+ fr(z))dz < C

neN neN
so each f, € L' with a uniform bound of C. Then we have from Fatou’s Lemma that

1 1 1
| f@os2)ds < [ f@)los2+ f(0))de < limint [, (@) log(2 + fu(@)do < €
0 0 0

n—oo



20 RAYMOND CHU

and we have that f € L'. Now fix € > 0 and assume E is measurable with |E| < § then for AM = {x :
[fn ()| < M}

_ Vd 1082+ fu(@) .
/E fo)di = /E L /E oy g 4y =0 (D

now observe

! C
(1) < ([ fuloytontz + ) ) floxtz+30) <
and
(I) < Ms
so taking 6 = 53; we conclude that if M is very large then

/Efn(m)d:c <e

s0 {fn} is uniformly integrable. Now choose a § > 0 so small such that if |E| < § = [, fu(z)dz < /2.
Now by Egorov’s theorem there exists a compact set K C [0, 1] such that |[0,1] \ K| < ¢ and f,, — f on
K. So if n is large then supg |fn(z) — f(z)| < e/2 so

| 150 = s@lae = [ V@) = f@lde+ [ ifuf@) = sl

[0,1\K
<eg/2+¢€/2=¢
so f, — fin L' 0O.

O
Problem 5. Show that ¢°°(Z) contains continnuum many functions z,, : Z — R obeying
[|zallee =1 and ||z — zplee > 1
Deduce (assuming the axiom of choice) that the Banach Space £°°(Z) is not separable.
Deduce that ¢!(Z) is not reflexive.
Proof. Consider the set of binary strings i.e. z, = (Za,1,%az2,..) Where each z; = 0 or 1. This is

uncountably many distinct elements in ¢°°(Z). Fix any two distinct binary strings z, and xzg that are
not identically zero then

|zallee =1
And since z, # xg there is a j such that |z, ; — x| = 1. Therefore,

[[a — 2g|lee > 1

Let {e;};jen be a countable subset of £>°(Z). Arguing for the sake of a contradiction, if {e;} ey is
dense, then for each j we can find an «(j) such that x,;) is a binary string and

llej — zagplle= < 1/2
Then this implies if 5 # «(j) then the reverse triangle inequality implies
lle; —zsll = [lzag) — zsll = lle; —zapll 21 -1/2=1/2

Therefore, as {z(j)}jen is countable and {z,} is uncountable, we may find a binary string x5 ¢
{Za(;)}jen. Therefore, for all j € N then

lle; — x|l > 1/2

so e; cannot be dense. So we have arrived at a contradiction, so £>°(Z) is not separable.
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Note that the dual of £1(Z) is £>°(Z), so if ¢}(Z) was reflexive then ¢}(Z) = (¢°>°(Z))*. Now we claim
that if X* is separable then this implies X is separable (where X is a normed linear space). This lemma
will then gives us ¢(Z) is isomorphic to a non-separable space, so this implies ¢*(Z) is not separable, but
?1(Z) is separable, which is our contradiction. So it suffices to prove the lemma.

Indeed, let {f,,} € X* be a dense countable set. Then for each f, if we define

Ifnll :=" sup |fn( )|
e X:||z||=
then there is some z,, € X with ||x,|| = 1 such that

fu(@n) > 1/2||fal|

thanks to linearity. Now let .S be the set of finite rational combinations of z, i.e. x € S'if x = Zi:[:l qnTn
for some ¢, € Q and N € N. We claim S = X, so assume for the sake of contradiction it is not. So fix
z € X \ S with ||z|| = 1 then by Hanh-Banach there is some f € X* such that f(z) # 0 and f|g = 0.
But observe from the triangle inequality that

[fn(@n)| < f(@n) = falzn)| + [f(@n)] = |f(2n) = fo(zn)]

and by our choice of x,, we have

12|[full < [fn(@n)] < [f(2n) = fr(2a)]
ie.

and as f, is dense we can find a subsequence ny such that ||f,, — f|| = 0. Thus in particular, ||f,,|| —
0,from which it follows that || f|| = 0 i.e. f is the zero operator, which is our desired contradiction.
]

Problem 6. Suppose p and v are finite positive (regular) Borel measures on R™. Prove the
existence of the Lebesgue decomposition: There is a unique pair of positive Borel measures p,
and pg so that

K= fa + fhss o < v, and ps L v

Proof. As p is finite we have for any Borel set E that u(E) < oo. Therefore, consider
E = sup {| [flx)dv(z): / f(z)dv(z) < p(F) for all E Borel }
fELY(dv),f>0 v a.e. JR™ E

Let f, be a maximizing sequence i.e.

lim fo(z)dv(z) = E
RTL

n—oo

where f,, € L'(dv). Observe that if g,, := max{fi,.., fm} satisfy the above constraints too. Indeed,
gm > 0 trivially and if we define E; to be the set where g,, = f; we have

/gmdl/ Z/EmE fidv(x ;I/ (ENE;)=v(E)

where for the last equality we used E; partitions E. So it follows that f,, < g, for all n and the monotone
convergence theorem shows that

E= [ sup{fm(z)}tdv(z) < pR")
R™ meN

so if we define f := sup,,cy fm(2) then it obtains this maximum. Now define

)i= [ f@iv
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and note pi, K v g := {4 — fig. Suppose for the sake of contradiction that s is not perpendicular to v.
Then there is an € > 0 and a borel set E with v(E) > 0 such that

(us —ev) >0on E

i.e. for any Borel set F' we have
ps(FNE)—ev(FNS)>0

wWFNE)>ev(FNE)+ f(z)dv(x)
FNE
this means if g(z) := f(x) + exp(z) then we have found a strictly bigger maximizer, which is a contra-
diction to the definition of f(x). Therefore, us L v. So we have shown such a decomposition exists. Now
if there were two such decomposition’s denoted fiq1, 51, a2, [ts2 then we have

HMs1 — Hs2 = Hay — Hay

the left hand side is singular to v and the right hand side is absolutely continuous to v, so ps1 = ps2 and
a1l = Ma2, SO this decomposition is unique.

|
Problem 7. Prove Gorsat’s Theorem: if f : C — C is complex differentiable then for every
triangle A € C
/ f(z)dz=0
OA
where the line integral is over the three sides of the triangle.
Proof. ]

Problem 8. (1) Define upper-semicontinuous for functions f : C — [—o0, 00).
(2) Define what it means for such an upper-semicontinuous to be subharmonic.
(3) Prove or refute each of the following
e The pointwise supremum of a bounded family of subharmonic function is subhar-
monic.
e The pointwise infimum of a family of subharmonic functions is subharmonic.
(4) Let A(z) be a 2 x 2 matrix-valued holomorphic function (i.e. the entires are holomorphic).
Show that
z +— log(||A(2)||) is subharmonic

where [|A(z)]| is the operator norm on C2.

Problem 8a. An upper-semicontinuous function f : C — [—o0, 00) is a function such that for any a € R
{z€C: f(z) < a} is open

Problem 8b. We say a upper-semicontinuous function u : C — [—o00, 00) if for any r > 0 small enough

we have
1 27

flz) < — fz+ rew)dG
21 Jo=o

i.e. the local sub-mean value property.
Problem 8c. The first claim is true as long as the pointwise supremum is upper semi-continuous. Indeed,
observe if F is a family of subharmonic functions then for any z € C and f € F we have for r > 0 small
enough that we see for g(z) := sup ez f(2)

27

1 ) 1 27 )
16 < 5= [ ferretan < o [ g retyan
since f < g. Now taking the supremum over f for the left hand side implies

1 27 .
o) < o= | ot e
T Jo
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so g(z) satisfies the local mean value inequality, so if it is upper semi-continuous then it is subharmonic.

The second claim is false. Indeed, consider f(z + iy) := = and g(z + iy) = —z then f and g are
harmonic so they are subharmonic. And min{f(z + iy), g(x + iy)} = —|x| and —|z| is concave, so it is
superharmonic. In particular —|z| is not subharmonic.

Problem 8d. Note that

1A= sup  [[A(z)wl]2 = sup [(A(2)w, )]
weC2:||w||=1 w,£€C2:|w||=][€]|=1
where || - ||2 refers to the Euclidan norm on C2?. So we have
log([|A(2)]]) = sup log [{A(2)w, )

w,£€C2:||w||=]|€]|=1

and for each fixed w,& we have (A(z)w,§) is holomorphic in z so log|(A(z)w,&)| is subharmonic, so
log(]|A(2)]]) is subharmonic since it is the sup of a family of subharmonic functions.

Problem 9. Let E C [0, 1] be the Cantor Set. Embedding [0, 1] naturally into C, we may regrad
E c C. Suppose f: C\ E — C is holomorphic and (uniformly) bounded. Show that f is constant.

Proof. Note that E has measure zero. That is if ¢ > 0 there is a collection of balls B(ry,z,) C C such
that
EC U B(zy, ) and Z2rn <e
neN

Now let R C C be a rectangle. Then we will show [, f(z)dz = 0. This is trivially true if R C C\ E, so
assume RN E # (. Now as RN E is compact, we can find an N € N such that RN E C Ui\il B(rp, xn).
Now observe that R = (RN E)U (RN E®) and on the second set, f is holomorphic so it integrates to zero
over any closed curve in (RN E¢), so the only remaining parts of the integral is where the balls are at.

Now let 7; be a closed curve parametrization of the connected components of 8(UnN:1 B(rpn,xy)) where
i=1,...,m then

f(2)dz=> " | f(2)dz
OR i=177
so we have

f(z)dz

OR

N N

where M is the upper bound of f and ¢ means length.
N
<> Me2mr, = O(e)
n=1
sending ¢ — 0 implies that [, or f(2)dz =0, so it follows that f extends to a bounded entire function by

Morrera’s Theorem, so it is constant.
|

Problem 10. Let Q = {z € D : Im(z) > 0}. Evaluate
sup{Ref’(i/2) : f : © — D is holomorphic}

Proof. Consider the conformal map

z+1
O
where v conformally maps 2 to D. Then its inverse
1
V() =i

1—=z2
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is a conformal map of D to  such that —1/3 gets mapped to i/2. Also consider the automorphisms of
the disk for « € D

Da(2) :

T 1l-a
then ¢ maps 0 to o and a to 0. Therefore,

9(2) == ¢sus2)0 fo p~lo b_1/3

is a conformal map from D to D such that g(0) = 0. So by Schwarz Lemma we have

12 19" (0)] = [y (F(1/2)) ' (i/2)[( ™) (=1/3)]6 1 5(0)]

and by computation

Gule) = 1/(1 = faf?) and 6,(0) = 1= Jaf* and ()’ (2) = =
ie.
1> ;U‘I(Z/QN
T L |f(i/2)?
so we obtain the bound
1> 1f'(i/2)]

and by our computation above we see that this bound is obtained for any f : @ — D such that f(i/2) = 0.
For instance take

h(z) = ¢1/1(i/2) o ¢(2)

and this function obtains the desired bound.

Problem 11. Consider the function defiend for s € (1,00) by

="

et —1
Show that f has an analytic continuation to {s € C : Res > 0, s # 1} with a simple pole at s = 1.
Compute the residue at s = 1.

Proof. Note that
e —1=24+0@@*) asxz—0

so the integrand is of O(x*~2) near the origin, while far away it is of O(e~%) so if Re(s) > 1 the integral
is well defined. But notice by integration by parts with u = x/(e* — 1), dv = 2°~2 that in this region we

have
e AR & = = I

1—g)-1
lim efl-2)—1) _ ~1/2
z—0 (ex — 1)2
so the integrand is of O(z°~!) near z = 0 and O(e~?) as # — oo. Therefore, the integral converges for

Re(s) > 0 with s # 1, so this is a meromorphic extension of f to {s € C: Res > 0,s # 1}. It is also clear
from the form of f(s) that the pole is simple, so the residue at s = 1 is

3 Ooex(l—x)—lx:
/o (e -1z =1

And note that
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Problem 12. Let © := C\ (—00,0] and let log(z) be the branch of the complex logarithm on €
that is real on the positive real axis (and analytic throughout ). Show that for 0 < ¢ < oo, the
number of solutions z € €2 to

t
log(z) = .

is finite and independent of t.

Proof. Notie that if z = re? where 6 € (—, 7] then by our choice of log we have log(re?) = log(r) + i
so if ;
log(r) + 40 = ;(cos(@) —isin(6))

we obtain .
0= - sin(6)

and as t/r > 0 we see that 6 and sin(#) have different signs, which means § = 0 because 6 € (—m, 7).
Therefore, we must have

log(r) = ;
ie.
t=f(r):=rlog(r) >0onr>1
df

%:log(r)+1>00nr>1

so we have that f(r) is injective on (0,00) so there is at most one solution of log(r) = ¢/r. But it is clear

And observe that

Tlgglorlog(r) =00

so f(r):(1,00) — (0,00) is surjective, so there is one solution for every ¢.
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4. FALL 2011

[ Problem 1. Prove Egorov’s Theorem ]

Proof. O

Problem 2a. Let do denote the surface measure on the unit sphere S? C R3.

(1) For &£ € R? compute
/ e Sdo(z)
SZ

(2) Using this or otherwise show that the mapping
oo [ s+ pido@oty)
52 Js2

extends uniquely from f € C2°(R3) to a bounded linear functional on L?(R3).

. J

Problem 2a. We claim that the integral only depends on [£|. Indeed for any orthogonal matrix we have
that Az - & =2 - A7'¢ and A~ = A?. Then we have from integration by sub

/ ei‘”{do(m):/ eiAil‘”'gda(a:)z/ e AL
52 52 52

so wlog assume & = (0,0,|¢|) then

/e”'gda(x):/ cos(z[€|) + isin(z|¢])do(x)
S2 S2
2 T
- / / [cos(cos(@)[€]) + i sin(cos()]€])] sin(¢)ddd
0=0J =0

27 1
_ / / cos(ul€|) + i sin(ul¢|) dudd
6=0 =—1

1€l
= % cos(w) + i sin(w)dw
—l¢]
4
= g sin(le)

Problem 2b. Consider

L) = [ [ fdot)doty)
then for f € C2°(R?) we have

L= [ [ [ Fee e agdota)asty)
52 /g2 Jra
and in particular by Fubini since f € C°(R3) we have
L) = [ F© [ e [ ermraoty)do o)
R 52

6472

€[?

SZ
= | f(&)~5 sin(|¢])?
Rd

so in particular,

LN < ClIfllezllsin(€D/1€P N2 < K| fl|z2 = KI|f]]22

so L extends to a continuous operator for L? functions.
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Problem 3. Let 1 < p,q < oo such that 1/p+1/q = 1. Fix f € LP(R3) and g € LY(R3?).

(1) Show that
[F *)( / fa -

defines a continuous function on R3.
(2) Moreover, show that [f * g](z) — 0 as © — oo.

Problem 3a. Note that
I[f *gl(x) = [f*gl(y)| < / |f(x —2) = f(y — 2)|lg(2)|d=z
R3

<|f(@—y) = fy = 2)lleews,anll9(2)| e
and from the translation continuity of the integrals we deduce that this is a continuous map.

Problem 3b. Let f,,g, € C°(R?) such that ||f, — f|lrr < € and ||gn — g||z»r < &€ where ¢ > 0 is
arbitrary. Then

I[f * gl(z) = [fn * gn](@)] < /Rd |f(z —y)g(y) — fulz —y)gn(y)ldy

< /RS If(z = y)9(y) — 9(y) fulz —y)| + [9(W) fulz — y) — fu(z — y)gn(y)|dy

<|lgllzallf = falle + 1 fullzellg — gnllLe
Mye + Mse
where we used g € L? and f,, converges in LP so its bounded in LP. As this bound was independent of z
we conclude that
fn * gn — [ * g uniformly
but as f,, g, are compactly supported we have for Ky := supp(g,) and Ky := supp(f,) that

fn*gn—/fn In(y)dy

which implies supp(f, *gn) C K1+ Ko := {k1+ ko : k1 € K1, ko € Ko} which implies limg o0 fr%gn =0
for any n so uniform convergence implies lim, ., f *x g = 0.

- )

Problem 4. Let f € C*([0,00) x [0,1]) such that

0o 1
/ / |0 f (2, )2 (1 + t*)dzdt < oo
o Jo

Prove there is a function g such that f(t,-) converges to g(-) in L2([0,1]) as t — oco.

Proof. Notice by the fundamental theorem of Calculus that we have for t; < t5 that

2
Fltz) = ) = [ 150 s st

so we have

2 (S t) 2 2 2|2 2 = 1 2
r)—f z)| < + s 7(1 < 0, x + d d
|f(t27 ) (tla )| = Al |1 | |1 2| S (/tl | tf(sv )‘ |]' S | S> (/t1 ‘1 82‘2 S>

so it follows that

1 to
to, ) — f(t1,2)|?dx < o f 1 24
[ = st opas < ([ ) (7 [ osto.opin pas)
ta 1
< I
—C<[IH+QP“>
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and as 1/(1+2%)? € L([1, 00)) it follows that the integral term can be made arbitrarily small as ¢;,t3 — 0.
So we have {f(t,2)}se[0,00) is Cauchy as ¢ — oo so it converges to some function g(x) € L*([0,1]) since
L? is complete. |

Problem 5. For a function f € L'(R), we define

z+h
(M) =sw o [ |f)ldy
h>0 x—h

Prove that there is the following property: There is a constant A > 0 such that for any A > 0
A
m({e € R: M) > AP < SISl

If you use a covering lemma, you should prove it.

Proof. Vitali Covering Lemma Let {B;}}¥; be a finite collection of balls. Then there exists a subcol-
lection of balls B;, that are disjoint such that

N M
U Bic 3B,
i=1 j=1

Indeed, let B; be the ball with maximal radius of this finite collection. Then if B; N B; # 0 we also
remvoe B; from this collection. Now we have a smaller subcollection and we repeat our algorithim of
choosing the balls with maximum radius. It’s clear from construction that the new balls {B;, }Jj\il are
disjoint and as if B; N By, # () with B; being the circle with the biggest radius of the two balls then

.BkCZSE%

so we have found such a subcollection.

Now fix A and let m denote the Lebesgue measure then FI(A) := {z € R: (M f) > A} now let K C F())
be compact. Then we claim that F()) is open; indeed, if x € F'(A) then there is an r > 0 such that

1 x+T

g [ Wy = A)

Notice that A, (z)is continuous in x since

A@) = 5 [ £ Nemrirn ()

so DCT implies continuity. Therefore, by continuity there exists a small ball around = such that for any
y in this ball A, (y) > A. Therefore, for any € K there is a ball B, C F(\). Now compactness lets us
find a subcover say {Bj, .., By} and the covering lemma lets us find a subcollection of balls {By, .., By}
that are disjoint and K C U;V=1 B; C U]M=1 3]§j. So in particular,

A 3
m(E) <3Y mB) <3 [ 151 < 3l
j=1 j=1"DBj

where the last inequality is due to the balls are disjoint. Now we use that the lebesgue measure is a radon
measure so

m(F(\) = sup m(K)
KCF()\)

to get the desired result [.
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Problem 6. Let (X,d) be a compact metric space. Let p, be a sequence of positive Borel
Measures on X that weak* converge to a finite positive Borel measure pu, that is,

/ fdpn —>/ fdu for all f € C(X)
b's b's

Show that if K is compact then
u(K) > limsup g, (K)

n—oo

Proof. As K is compact, it is closed so x g is upper semi-continuous, so there is a sequence of functions
C(X) 3 fu(x) > xx with f,(z) = xx pointwise. Now we have

un(K)Z/ deunS/ Fndpin
b'e X
so we have

lim sup 1, (K) < / Jmdp
X

n—oo

where we used weak* convergence. Now as y is finite and f; is bounded that f; € L'(du) so by the
dominated convergence theorem we have

lim [ frdp= / Xrdp
X X

m— 00
SO
lim sup i, (K) < / xxdp = p(K)
n— o0 X
as desired. O

Problem 7. Compute fooo (ffggQ dx. Justify all steps!

Proof. Define f(z) := ﬁ and notice that it has a pole of order 2 at z =i and z = —i. Then f(z) is
meromorphic with poles of order 2 at z =i, —i. Let vz := {Re? : 0 < 0 <7} and v:= {-R(1 —t)+ Rt :
t €[0,1]} then

™ iRe®
_ T = 2
[m f(z)dz = /9:0 i R262i9)2ZR6 de

R a _Rsi R T —
e 51n(9)d0 < 7/ CRedG
[f(2)] < (1—- R2)? /9:06 ~(1-R?%)? 9:06

so the integral of f(z) over yg converges to 0 as R — oo. Therefore, by the residue theorem and
Re(f(z)) = <2 is symmetric that

= [T427)2
/OO _cos(@) _ miRes(f,1) = T
o (14+22)2 T 2

SO

Problem 8. Determine the number of solutions of
z2—2—e*=0

with z in the right half plane H = {z € C: Re(z) > 0}.
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Proof. Observe that we have for any solutions of z — 2 — e™# = 0 that
|z] <24 e7%] <3
since z is in the upper half plane. Therefore, it suffices to consider the region B3(0) N {z > 0} := U to
find our zeros. Notice on OU we have
|z —2| > |77

since on the circle part we have

lz=2|> 2| -2=1
and on {x = 0} we have |z — 2| = |iy — 2| = |y| + 2 > 1 so we have

|z — 2| > |e™*] on QU

so Rouche’s theorem implies they have the same number of zeros inside U which is exactly 1. (|

Problem 9. Let f be holomorphic on D* := D\ {0} such that f € L?(D,dzdy). Show that f
has a holomorphic extension to D.

Proof. Fix an 0 < e < 1 then on A, ;5 := {2 : € < |2] < 1/2} then for any 2y € A, /5 thereisa ¢ >0
such that Bs(z) C D*. So fix a p < 0 and z € A. 1/, then we have from the Mean Value Theorem that

1 27 0
— *)do
5 ezof(zwe )

/ z)dp = / /9 f(z+ pet®)dodp

f(z) =

SO

which gives

so in particular,

and from Holder’s we get

Lf(2) < I flle2Bscz))

so we have on A.; that f(z) is bounded and this bound is uniform so we have |f(z)| < C on By /5(0).
This allows us to use Riemann’s Theorem on removable singularities to conclude f(z) has a removable
singularity at zero. g

Problem 10. Let 2 C C be simply connected with 2 # C and f : 2 — Q is a holomorphic
mapping. Suppose there exists z; # 2o such that f(z;) = z; for i = 1,2. Show that f(z) = z for
all z € Q.

Proof. By Riemann’s Mapping Theorem there exists a conformal ¢ :  — C and by composing with a
Mobius Transformation we can assume t(z1) = 0 so it follows that

g::qpofoz/)_lzﬂ)—HD)

is conformal. Then we have g(0) = ¢ o f(21) = ¥(21) = 0 and g(¢(22)) = ¥ o f(22) = ¥(22). Therefore,
by schwarz lemma as g(0) = 0 and there is a p # 0 such that |g(p)| = |p| we have g(z) = %z for some
and from equality we conclude g(z) = z. This implies

flz) =2
as desired. 0
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Problem 11. Let f : C — C be holomorphic with f(z) # 0 for all z € C. Define U = {z € C:
|f(2)| < 1}. Show that all connected components of U are unbounded.

Proof. Assume that there existed a connected component of U denoted by €2 that is bounded. Then this

implies € is compact, so in particular we have on 99 that |f(z)| = 1 and since f(z) is never zero, we
know 1/f is holomorphic from which we deduce from the maximum modulus principle |f(z)| = 1 in Q
which contradicts the definition of U. O

Problem 12. A holomorphic function f : C — C is of exponential type if there are ¢; and ¢ > 0
such that
|£(2)] < cre2ll for all z € C

Show that f is of exponential type iff f’ is of exponential type.

Proof. For any z € C we have By(z) € C so by Cauchy’s Estimate

[f'(2)] £ max |f(w)] < max crexp(lezz + c2e™))
weEB1(z) 0€[0,27]

< exp(|ea])er exp |eaz]
so f’ is of exponential type.

Now observe
)= [ £@+ 50
Yoz
where v, = {tz : t € [0,1]}
1
_ / f(t2)dt + £(0)
t=0

SO
[f(2)] < |zller exp(ez|z])) + [(0)] < [er] exp(es|z]) + [f(0)] < |eal exp(es]z])
so f is of exponential type |
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5. SPRING 2012

Problem 1. Some of the following statements for functions f,, in L3([0,1]) are false. Indicate
these and provide an appropriate counter example.

(1) If f, converges a.e. to f then a subsequence of f,, converges to f in L3.

(2) If f,, converges to f in L? then a subsequence converges almost everywhere.

(3) If f,, converges to f in measure then the sequence converges to f in L>.

(4) If £, converges to f in L? then the sequence converges to f in measure.

. J

Proof. (1) is false since we can take f,, := n1/3X[071/n] then f,, — 0 everywhere except for = 0. But

1 1/n
/ fidx = / ndr =1
0 0

so f, does not converge along any subsequence to 0.

(2) is true. Indeed, as f,, — f in L? this means we can find a subsequence f,, such that we have

fni = Fllzsqoay <277
for any k£ € N. Now define

N
gN(x) = Z |f - fnk‘s
k=0

then notice that due to the monotone convergence theorem that we have

1 1 1 oo
. _ . o N 3
ngl})o/o IgN(:C)Ida?—/0 i g ()] —/0 kE_OIf foi]

and for each N we have the uniform upper bound

1 1 N
[lav@is [ Y2+ <o
0 0 k=0

so it follows that
o0
L2([0,1]) 3 g(z) := > _|f = fuil?
k=0

so it must be finite a.e., which implies the sum converges a.e., so f,, — f — 0 as k — oo a.e. along this
subsequence.

(3) is false. Indeed, let m denote the Lebesgue Measure, then if € > 0 we have for f,, ;= n'/?

m({z: |fu(x)] > e}) <m({z: [fu(z)] > 0}) <1/n

since these functions are supported on [0,1/n]. So we have f,, converges to 0 in measure, but arguing as
in (1) there is no subsequence of f,, that converges to 0 in L3.

X[0,1/n]

(4) is true. Notice if € > 0 then

1
/ [fn(2) = f(2)|dz > / () = f(2)|dz > em({z : [fu(z) = f(2)| > €})
0 {21 fn (@)~ (2) | >¢}

so we have

1
€

/O [fn(2) = f(2)] 2 m({z : [fuz) = f(2)| > €})

But by Holder’s Inequality we have

1
/O Fal@) — F(@)ldx < ||fa(@) — F@)llz2om
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so by choosing n sufficiently large we have for § > 0 that || f,.(z) — f()[|zs(0,1)) < d so we have

O s m{a s |fule) — f@)] > <))

and as ¢ is fixed we can let § — 0 to conclude lim, oo m({x : |fn(z) — f(z)| > €}) = 0. O

Problem 2. Let X and Y be topological spaces and let X x Y the Cartesian product endowed
with the product topology. B(X) denotes the Borel Sets in X and similarly, B(Y) and B(X xY).
(1) Suppose f: X — Y is continuous. Prove that E € B(Y) implies f~1(E) € B(X).
(2) Suppose A € B(X) and E € B(Y). Show that A x E € B(X xY).

Proof. Let A := {E € B(Y) : f7Y(E) € B(X)}. Then we claim that A is a o-algebra that contains
the open subsets of Y. Indeed, it is clear that Y € A since f~}(Y) = X and similarly for the empty
set. Now if {X;}3°, € A then as B(Y) is a o-algebra we have |-, X; € B(Y) with f~' (U2, X;) =
Uiz, f71(X;) € B(X) since each f~!(X;) is borel and borel sets are closed under countable unions.
Finally if E € A then E° € B(Y) with

FTUES) = (F7H(E)° € B(X)
since borel sets are closed under complements. Therefore, A is a o—algebra. And it contains the open

sets since f is continuous so if E C Y is open then f~1(E) is open i.e. f~}(E) € B(X). So if we denote
the collection of open sets in Y as G then we have

GCA=0(G) =BY)cA
since the o-algebra generated by the open sets is the borel sets and A is a o-algebra. Therefore, we have
proven (1).
For (2) we know the canonical projection map 7x : X x Y — X and 7y : X x Y — Y are continuous
since we are in the product topology. Then if A € B(X) and E € B(Y) then using part 1) gives
B(X xY)37m'(A)=AxY
B(XxY)>n,(E)=XxE
so we deduce that
BX xY)sa,Y(BE)Nny'(A)=AxFE

as desired.

Problem 3. Given f : [0,1] — R belonging to L!(dz) and n € {1,2,3, ..., } define

(k+1)/n
n/ fly)dy forz € [k/n,(k+1)/n)and k=0,.,n—1
k/n

Prove f, — f in L'(dz)

Proof. We first recall that compactly supported continuous functions are dense in L!([0,1],dz). In
particular, if € > 0 then there exists an g € C.([0,1]) such that ||f — g||11(0,1)) < &. We will first prove
the theorem is true for this dense subclass then extend it to f € L!(dz). Indeed, observe that

n=1 ,(k+1)/n (k+1)/n
g = gullis = / 9() — ga(@)ldr = 3 / l9(z) - n / o(y)dy|dz
k=0 k/n k/n
n=1 .(k+1)/n (k+1)/n (k+1)/ (k+1)/n
=S [l e - sy dr< Y / / ~ g(y)dyl de
0 k/n = Jin k/n
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So by uniform continuity if n is sufficiently large then we have |g(z) — g(y)| < ¢ for z,y € [k/n, (k+1)/n]
so if n is large enough

n(l/n)(1/n)ne =¢

so we have g, — g in L'(dz).

Now we also have by the traingle inequality

If = fullor@e) < = 9llerdz) + 1lgn — fallordz) + [l9n — 9ll 1 ()
so if n is large
<2+ Hgn - fn||L1(da:)

Now we compute

(k+1)/n (k+1)/n p(k4+1)/n
/ g — fnldw—z /k gn(a —fn(w)ldw— /k /k nlg(y) — £(y)ldyde

n

1 (k) /n
=5 [ o)~ iy = / 0() — F)ldy

h—0 Y k/n
o)

so we are done  [.

Problem 4. Let S = {f € LY(R3) : [ fdz = 0}

(1) Show that S is closed in the L' topology
(2) Show that SN L?(R3) is a dense subset of L?(R?)

Proof. For (1) observe that if f,, € S such that f, — f € L*(R?) where the convergence is in the L!
sense, then
oA=L
R3 R3

For (2) it suffices to show the problem for f € C. (]R3) since this is a dense subclass of L?(R3). Then
say f is supported on Bg(0) then define I := [;, f(x)dx then for ¢ > 0 choose M(e) > R such that
m(B(0, M)\ B(0,R)) =1/ i.e. 4/37(M(c)? R3)—1/5

Foo) = {f(x) for x € B(0, R)

S/ |f — fulde — 0asn — oo
R3

which gives us f € S.

—el for = € B(0, M(¢))\ B(0, R)

then [ f.(z) =0 and

[ 1@ - r@pas =22 [ ldr = e 50
R4 B(0,M (£))\B(0,R)

as desired.

Problem 5. State and prove the Risez Representation Theorem for linear functionals (on a
separable) Hilbert Space.
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Proof. Let H be our Hilbert space with inner product (-,-) and A € H* i.e. A is a continuous linear
functional. Then there is a unique y € H such that

A(z) = (z,9)

Indeed, notice as A is continuous we must have Ker(A) be a closed subset of H, so as it is a closed
subspace we have the decomposition

H = Ker(A) (P (Ker(A))*
So as long as A is not the trivial functional i.e. A(x) = 0 from which the theorem follows trivially with
y = 0 there must exist an z € (Ker(A))L. Now notice that for any x € H we have
zAx — Az € Ker(A)

so we have A
(zAx — xAz,2) = 0 = Ax||z|]* — (zAz,2) =0 = Az = Z—Z(aj,z)

So by defining y := %z then we have
Az = (z,y)
for any y € H. Uniqueness follows from if
(,y) = (z,2) forallx € H= (z,y —2z)=0forallx € H

which implies y = z.

Problem 6. Suppose f € L?(R) and that the Fourier transform obeys f (&) > 0 for almost every
&. Show that the set of finite linear combinations of translates of f is dense in the Hilbert Space
L?(R).

Proof. Define S as the closure of the set of finite linear combinations of translates of f then we know
that L2(R) = S @ S*. So it suffices to show S+ = (). Indeed, observe that if g € S+ then by Plancherel,
we have that

0= (fla—a).g) = (" f0).a0) = [ = foi0n
and as f,§ € L? we know f? € L', so its Fourier Transform is well defined and we have
0=F(f3)(a)
So as F(f§) =0 € L'(R) and f§ € L' we can apply the Fourier Inverse Formula to get
fala) =0
for a.e. a. This implies from f > 0 that g(a) =0 a.e.

Problem 7. Let {u,(z)} be a sequence of real-valued harmonic functions on D that obey
u1(z) > ug(z) >uz(z) >...>0 forallzeD

Prove that z — inf, u,(z) is a harmonic function on D.

Proof. Notice that if n > m then we have u, — u,, > 0 is a harmonic function and Harnack’s inequality
implies
r+ 2|

0 <up(z) —um(z) < p—p

(un(0) = um(0))

where z € D(r,0) C D(1,0) and we know that {u,(0)} is a cauchy sequence since it converges to
u(0) := inf,, u,(0). Therefore, {u, } converges locally uniformly (i.e. on every compact subset of D). By
the mean value property equivalence, we see that the limiting function is harmonic. And as the sequence
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is decreasing it must pointwise converge to u(z) := inf,, u,(z), which implies u(z) is harmonic on every

compact subset, so it is harmonic on D.
a

Problem 8. Let Q := {& +iy : z > 0,y > 0,2y < 1}. Give an example of an unbounded
harmonic function on 2 that continuously extends to 0 on 0f).

Proof. Notice that by squaring  that the domain becomes U := {z + iy : x € R,0 < y < 2}. Define
g(z) :=Im(e™) then g(0€) = 0 since the function becomes real valued. Also g(x + i/2) = €™ which is

unbounded, so the function Im(e”2) works.

|
Problem 9. Prove Jordan’s Lemma: If f(z): C — C is meromorphic, R > 0, and k > 0, then
- 100
[ i) < B supso)
r k er
where T is the quarter-circle z = Re’ with 0 < 0 < /2.
Proof. Note that
. /2 o sy .
/f(z)eikzdzz f(RezG)eszeeiRew
r 0=0
so we have from Holder p
/ f(z)e**dz| < sup |f(2)] Re~FEsin(9) gg
T zel 0=0
Now using that sin(z) > z/2 for z € [0,7/2] we have
/2 /2 ) kRm/4 9 oo 9
/ Re—kRsin(Q) < Re—kR@/Zde — 7/ e—9d9 < 7/ e—k: _ =
0=0 0=0 k Jo=o k Jo k
so we conclude that
ks 2 100
f(2)edz| < sup|f(2)]F < -2 sup (=)
r zel zel
O

Problem 10. Let us define the I' function via
I'(z) := / t*~le~tdt
0

at least when the integral is absolutely converges. Show that this function extends to a mero-
morphic function in the whole complex plane. You cannot use any particular properties of the T’
function unless you derive it from this definition.

Proof. Let us show first that I'(z) is holomorphic in the region U := {z : Re(z) > 0}. Indeed, observe

first _ N
T'(2)] S/ [t*= e tat g/ |t|Re() 1t
0 0

so I'(z) is absolutely convergent in the region Re(z) > 0 since the [t|'~¢ for € > 0 is integrable near the
origin and e~! gives enough decay factor at co. Also by the dominated convergence theorem, it follows
that T'(2) is continuous in U.

In particular, continuity implies that if R C U is a rectangle then I' € L'(R) so we have

/F(z)dz:// tzfleftdt:/ /tzfleftdt:()
R rJo o JR
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where in the last step we used the integrand is holomorphic in z. Therefore, Morrera’s theorem implies
I'(z) is holomorphic on U.

Now we claim that I'(z) has a simple pole at 2 = 0. Indeed, observe by integration by parts that
for z with Re(z) > 1 that we have from integration by parts

o0 1 o0
I'(z) :/ t*~le7tdt = 7/ te tdt
0 ZJo

so by analytic continuation I'(z) = 1 [*t%e¢~'dt on U. Therefore, it follows that I'(z) extends to a
meromorphic function on {z : Re(z) > —1} with a simple pole at z = 0. Now we can also keep iterating
this process infinitely many times to see I'(z) extends to a meromorphic function on C with simple poles

at the negative integers, or we can use the identity
zZI(z) =T(z+1)
to define I'(z) := 1T'(2 + 1) for z € {z : Re(z) > —2} then on {z : Re(z) > —3} and inductively to define

Tz

it on all of C. So it suffices to justify this formula. Indeed, observe on U we have

2I(z) = z/ t*~letdt = / et =T(z+1)
0 0

by integration by parts; therefore, by analytic continuation this property holds over {z : Re(z) > 0} then
we can use this as the definition of I'(z) for {z : Re(z) < 0}

O
Problem 11. Let P(z) be a polynomial. Show that there is an integer n and a second polynomial
Q(z) so that
P(2)Q(z) = 2"|P(z)|*> whenever |z| =1
Proof. Say P has degree m then observe that when P(z) # 0
Z"|P(2)|/P(z) = 2" P(2)
so when |z| =1 and P(z) # 0 we get that this is equal to
ein@ Z a—jefike — a—jei(nfk)ﬂ
k=0 k=0
so taking n = m we get
o |P(z)] _ Zm:?ei((m—k)G) = Q(?)
ORI
Observe z = > L, @;2™ " is a polynomial and when P(z) # 0 we have
P(2)Q(z) = 2™|P(2)|?
and when P(z) = 0 the equality is trivial. O

Problem 12. Show that the only entire function f(z) obeying both
()] < exp(|2]) and f(——e—) =0 for all n € Z

V14 |n|

is the zero function.

Proof. We first claim that f is an entire function of order 1. Indeed, by the fundamnetal theorem of
calculus we have

f(w) = / F(2)dz
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where v = {tw : t € [0,1]} so

1 1 |w]
f(w) = / wf' (tw)dt = | f(w)] < / ] exp(taw])dw = / exp(t)dt = exp(ju]) - 1 < exp(jw])

=0
Therefore, we f(z) is an entire function of order 1. Therefore, by Jensen’s Formula unless f = 0 then we
must the number of zeros in a circle of radius R must be of order C'R. However, as n/y/1+ |n| ~ /n
this implies there should roughly N2 zeros in a circle of radius N € N for large N. Therefore, f is the
zero function. O
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6. FALL 2012

Problem 1. Let 1 < p < oo and let f, : R® — R be a sequence of functions such that
limsup || fn||Lr < co. Show that if f, converges almost everywhere, then f, converges weakly
in LP.

Proof. Note that as 1 < p < oo we have that L? is reflexive, so weak-* convergence is the same as weak
convergence, so in particular as limsup ||f,||» < oo this is a bounded sequence in LP so by Banach-
Alagou, there exists a sub-sequence f,, and a f such that f,, — f but as f,, — g a.e.

We then claim f = g. Indeed, fix any compact set K C R? then by egorov for any ¢ > 0 there is a
compact set £ C K such that m(K \ E) < € and f,, — ¢ uniformly on E. Then for any ¢ € L? where ¢

is the dual conjuagte of p we have
K E K\E

and observe that by uniform convergence we have for k sufficiently large we have

/ g0 — futh] < e
E

and as g1 is in L'(K). We also observe

/ il < el lloxassllze = ofe)
K\E

/ lovi =000
lim / fonth = / fo
g [ g = [ po

which implies f = g by uniqueness of weak limits. So this implies every sub-sequence has a further
sub-sequence that converges to the same limit g; therefore, the whole sequence converges to g. O 0O

and

so it follows that

then this implies by DCT that

Problem 2. Suppose du is a probability measure on the unit circle in the complex plane such
that

lim 2"dp(z) =0

n—oo St

For f € L'(du) show that
lim 2" f(2)du(z) =0

n—oo g1

. J

Proof. By Stone Weiestrass we know that trigonometirc polynomials i.e. P(z) = ZM _ N Gn2" are dense

n=

in S'. So one has for any fixed trigonometric polynomial that

/51 2" P(z)dp(z) = __JXW:N /S1 a; 27" dp(z) — 0

Therefore, for f € L' (du) and e > 0 we can find a trignometric polynomial such that || P(z)— f(2)]| e (s1) <

€ then
/31 f(2)z" s/sl |f(2) — P(2)|du(z) ’/ )2"dp(z) /S P(2)2"dp(2)

<e+
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so this goes to 0 as n — oo. ]

Problem 3. Let H be a Hilbert Space and let E be a closed convex subset of H. Prove that
there exists a unique element x € F such that

lall = ing [yl

Proof. Let o := inf,cg ||y|| and let y,, € E be a minimizing sequence i.e. ||y,|| — «. Notice by convexity
that y”"’% € E so by the Parallelogram Law

2

Yn — Y
+||%||2

1 1
= S llgall + 5 llml?
and we have
a<||

<Mlyall/2 + lymll/2 = a

from which we deduce that ||y, — ym|| — 0 ie. {yn} is a Cauchy sequence, so as we are on a Hilbert
space and E is closed we know there exists a y € E such that y, — y. Now as the norm is continuous,
we know that ||y|| = a i.e. y is our minimizer.

yn+ym”2
2

Uniqueness arises since if a = ||y||, ||z|| for y, z € E then we know
y+z
a5l =lyll/2+]l=1l/2 = a

so again by the Parallelogram law we deduce that ||y — z|| =0 i.e. y = z.

Problem 4. Fix f € C(T) where T = R/27Z. Let s, denote the n-th partial sum of the Fourier
Series of f. Prove that

fim Enllz=m _

n—oo  log(n)

Proof. Recall that we have
N1 1" al
_ - —int inr __ in(x—t)
SN = Z (71- B fe dt> e =~ » f@) Z e dt
n=—N n=—N
= (f*Dn)(t)

where Dy (t) = 1 ZnNz_ ~ € and notice that its a geometric sum so we have

™

I emINE _ INFIE o mit(N+1/2) _ giN+1/2)t gin((N + 1/2)t)
™ N( ) - 1 — eit B e—i/2t _ ei/2t a sin(t/2)

Therefore, we have the formula

sin((N + 1/2)t)
sin(t/2)

SN = — Trf(a:—t)

Therefore, we have from Holder’s Inequality that
1 T |sin((N +1/2)t
o < — o0 _—
llsnllzee < [l fllzee(m) </_7T Sn(t2)

and the inner integral can be approximated by using concavity of log to deduce on = € [0, ] that
sin(¢/2 4 0/2) > tsin(1/2) := at

and oddness of sin gives us the bound |sin(¢/2)| > «|t| for ¢ € [—m, 7], so we conclude

O Isin((N +1/2)t T sin((N +1/2)t) 1 NTYAT sin()]
& </ T A

sin(t/2) at @ t




2
N k4+1)7 . T . N
1 ( sin(? 1 sin(t 11
Y P U e
« ko t aJo t akmw
k=0 k=1
so we have since sin(t)/t is continuous on [0, 7] that

IIsn ]| Lo c 1 1
LSEAIE s o [ —— 72 — < .
log(N) <lIflle log(N) ta £ log(N)kr | = Kllflle

since the Harmonic Series grows like log(/V). Therefore, the family of linear operators

_ salf)

is uniformly bounded.

Now by Stone Weiestrass we can find a trigonoemetirc polynomial P such that if € > 0 then ||f —
P||p(ry < e. Then notice that
/ P(x)e™™ =0

—T

for all but finitely many n since {e!"®} are orthogonal. Therefore,
[An (N < [An(f) = An(P)| + [An(P)] < KI[f = Pllze + [An(P)] < € + |An(P)]

and we know |A,,(P)| — 0 since we have only a uniform amount of finitely many terms are non-zero and
they are being scaled by 1/log(N). Therefore,

lim [A,(f)] =0

n—oo

Problem 5. Let f, : R® — R be a sequence of functions such that sup,, || f,||z2 < co. Show that
if f,, converges almost everywhere to a function f : R® — R, then

/R3“fle_lfn_f‘g_‘f|2|d$—>0

Proof. Notice that by expanding we have
ful? = |fn = F2 =112 = f2 = (F2 = 2fuf + £2) = [P =2fuf = 21> =2f(fn — )

Therefore, we have
/ [ ful? = | fo = [ = |F1?] dz = / 12f(f = fa)l
R3 R3

And notice by Fatou’s Lemma that

/ IfI> < liminf/ |fnl?dz < C
R3 n—oo  Jgs

Therefore, f € L?(R3), so there exists a compact set K such that on R3\ K we have ng\K IfI? < e.

By Egorov’s Theoremm there exists a compact subset K; C K with m(K \ K;) < € such that f, — f
uniformly on K;. In particular,

/ 2(f — fu)] = / 2F(F — fu)] + / 2F(F — fu)l + / 2F(f — )l = (1) + (IT) + (I11)
R3 K1 K\K; R3\K

Notice that Cauchy-Schwarz gives
() <2l fllez@lf = falle2) < Ke

due to uniform convergence and our prior estimates. Also

(1) < 2[[f[l2(vsen) 1S = fullz2@) = o(e)
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since f is uniformly integrable as its in L? and the second term is bounded by a constant. Also

(I11) < 2||fll 2@ s lf = fallz2e) < Ke

Therefore, we have
[ =gl 0
Ri}
as desired O

Problem 6. Let f € L'(R) and M [ denote its maximal function, that is,
1 T
Mf)(@)= sup — [ |f(z—y)ldy

0<r<oo 2r —r
By the Hardy-Littlewood maximal function theorem,

{z € Rt (Mf)(x) > A} < 3A7H|f]] e
Using this show that

1 T
limsup—/ |f(y) — f(z)|dy =0 for a.e. z €R

r—0 T —r

Proof. First we recall that C.(R) C L'(R) is a dense subclass and is g € C.(R) then g is uniformly
continuous. So if € > 0 then there exists a ¢ > 0 such that if |z — y| < ¢ implies |g(z) — g(y)| < e. Take

r < 0 then
1" 1 /"
lg(y) — g(x)|dy < o | €=¢

-r

2/,
so we have
1 T
lim sup —/ lg(y) —g(x)|dy =0 for all g € C.(R)
r—0 T J_r
Now we will use the maximal inequality to extend this to f € L'(R). By density, there is a sequence
{gn} C Cc(R) such that ||f — g|[r1r) < . Therefore, we have

3 [ V=@l < 5 [ 150 - awla+ 5 [ o)~ gu@ldy+ 5 [ laute) = r@idy
1 (" 1
<5 ) W —omWldy + 2+ lgn(z) = £ (@)

Since g, — f in L'(R) there exists a sub sequence such that g, — f a.e., so by replacing an n in this sub-
sequence we can assume ¢, (z) — f(z) for a.e. z. Denote E as the set  such that along this subsequence
we have g, (z) — f(z). Then if 2 € F and £ > 0 arbitrary then we have by taking n sufficiently large

3 1w - sy <o+ 3 [ 15w - autlay

T

Rei= (v B:tms o [ 170) = f@ldy>20) o e B o [ 10) - 0alw)] > 9)

r—0 TJ—r —r
C{z e R: (M(f —gn))(z) > 6}
SO
|Rs| <36 H|f —gnllzr <360t = 0asn — oo
Therefore, Ry is a null set. But notice that
(zeR: nmsupif F(y) — f(2)ldy > 26} © Rs U E®
r—0 27 J_,

and E° is a null set, so it follows from

1 [ > 1"
E= {wGRtlirjljgpg/_rlf(y)—f(x)\dy>0} ZnL_Jl{wGR:ligljgp%/_rlf(y)—f(w)ldy>n‘l}
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that F is a null set. So this implies the problem statement.

Problem 7. Let f be a function holomorphic in C with f(0) = 0 and f(1) =1 with f(D) C D.
Show that

(1) f'(1) eR

(2) f/(1) =1

Proof. Assume for the sake of contradiction that f/(1) = a 4 ib where b # 0 and a,b € R. Then by the

chain rule one has
1+tv)— f(1 1+4+tv)—1
w = lim M

y s
Fv= th—r>% t—0 t
where we choose v such that 1 4 tv € D for small enough ¢. So one has

Re( /(1)) = }g% Re(f(l—:tv)) -1 <

where we are using f(ID) C D. But as f’(1) has an imaginary component this means we can rotate and
find a v (thanks to rotating) such that Re(f’(1)v) > 0. In particular, we can choose v = —e — idb where
0 <e < 1landd >0 is a fixed constant chosen to ensure 1 + tv € D for small enough ¢. And we have
f'(1)v = —ae + 62b? so if ¢ is sufficiently small compared to § we have arrived at a contradiction.

0

Notice that for 0 < ¢t < 1
1—f(1—t¢ 1-R 1—t¢

t—0 t t—0

and we see from Schwarz Lemma that
|fA=t)|<1—t=—Re(f(1-1t)>t—1
so we deduce that
fly=1
as desired [J.

Problem 8. Let f: C — C be a non-constant holomorphic function such that every zero of f
has even multiplicity. Show that f has a holomorphic square root.

Proof. As the zeros of f(z) are isolated, we know there are only countably many of them. Enumerate
them as {z, }nen where z, # z,, unless n = m and with multiplicity 2m,, for m,, € N then define

Bp(2) :=exp(z 4+ 22/2 4 ... + 2™ /m)

Then either {z,} is finite or |z,| — 00, so by the Weiestrass Factorization Theorem we can find an entire
function g(z) with zeros only at z, with m,, multiplicity. Then we have f(z)/g?(z) is an entire function
with no zeros. Therefore, there is a entire function h(z) such that

F(2)/9%(2) = exp(h(2)) = [(2) = g°(2) exp(h(2)) = (9(x) exp(h(2)/2))
so f has a holomorphic square root g(z) exp(h(z)/2).

Problem 9. Suppose f is analytic in the unit disk D and {z,} is a sequence of real numbers
satisfying 0 < zp41 < z, < 1 for all n with lim,_,cc 2, = 0. Show that if f(zan4+1) = f(22,) for
all n € N, then f is constant.
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Proof. Assume by subtracting off by a constant that f(0) = 0. Now decompose f(z) = u(z) + iv(z)

where u and v are the real and imaginary parts of f. Now we restrict the domain of v and v to the real

axis. Therefore, as u(xan4+1) = u(x2,) we can apply Rolle’s theorem to conclude there is an ygl) such

(1)

that zop11 < ys5,, < oy for which v/ (z2,41) = 0. This lets us find a sequence {yé?} that converges to

n <
0 with o’ (yéz)) = 0 (we use prime to denote z derivatives since we are viewing v as a function on the
reals). So in particular continuity gives us «/(0) = 0 so using f’ = u, + v, we get that f/(0) = 0 since
we can do an identical argument on v. Now we can again repeating the above argument of using Rolle’s
we can find a decreasing sequence yéi) for which u” (yéi)) =0 to get f(0) = 0. We can keep iterating

this argument for all n to deduce that f(0) =0 and f(™(0) = 0 for all n € N, which means
A={z:f(2) =0, f"(2) = 0 for all n € N}

is a non-empty closed and open subset of a connected subset D so it is the entire space i.e. f(z) =0 in
D. |

Problem 10. Let {f,} be a sequence of holomorphic functions on D satisfying |f,(z)| < 1 for
all z€ D and n € N. Let A C D be the set of all z € D for which lim,,_,~ f,(z) exists. Show that
if A has an accumulation point in D, then there exists a holomorphic function f on D such that
fn = f locally uniformly on D as n — oo.

Proof. Fix a subsequence {f,,} and another subsequence {f,,}. By Montel’s theorem both of these
subsequence have a further subsequence that converges locally uniformly to some holomorphic functions
f and g respectively. As A has an accumulation point we deduce f = ¢g on an accumulation point, so we
must have f = g on D. Therefore, every subsequence has a further subsequence that converges locally
uniformly to f, which implies the entire sequence converges locally uniformly to f.

|

Problem 11. Find all holomorphic functions f : C — C satisfying f(z41) = f(z) and f(z+1i) =
e’ f(2).

Proof. Notice that f(z) := exp(—2miz) satisfies f(z+1) = f(2) and f(z+i) = €27 f(2). Let g be another
entire function satisfying the periodicity conditions, then h := ¢/f is an entire function since f never
vanishes.And h satisfies h(z+1) = h(z) and h(z+i) = h(z). In particular, let M := max_c[ ]2 |1(2)] < 00,
then from the periodicity condition, we see that this bounds h everywhere. So in particular, h(z) = C

for some constant C' by Liouville, so g = Cexp(—27iz) and this classifies all such functions.
|

Problem 12. Let M € R and 2 C C be bounded open set, and u : £ — R be a harmonic
function.

(1) Show that if
limsupu(z) < M

Z—r 20

for all z € 99, then u(z) < M for all z € Q
(2) Show that if u is bounded from above and there exists a finite set F' C 92 such that the
inequality in (1) is satisfied for all zg € Q2 \ F' then the conclusion of (1) is still true.

. J

Proof. If we fix an € > 0 then due to the inequality, for any zg € 9Q there exists a r > 0 such that
on B,(z0) N Q we have u(z) < M + . By compactness we can find a finite subcover of these balls say
{B,,(z)}Y, then on Q. := Q\ Ufil By, (z;) then we know that we have u(z) < M + € on 99, , so the
max principle implies u(z) < M + ¢ on .. But on the union of these balls we also have this inequality,
so we deduce that u(z) < M + ¢ on Q and letting & — 0 concludes (1).
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Part (ii) will follow from the standard elog trick. Indeed, let d := diam(2) and enumerate these finite

points as {2}, and define h(z) := —log|Z52| — —log |2 | — ... — —log|Z=2| then we have h(2)
is harmonic on  since its locally the real part of a holomorphic function with h(z;) := co. Then we
consider

u(z) —eh(z)

and thanks to the bounded above condition

limsupu(z) —eh(z) = —oo < M

Z—rZ2;

and if ¢ > 0 then for any w ¢ F' we have
limsupu(z) —eh(z) < M +46

zZ—w

since h(z) > 0. This lets us conclude with part (1) that
u(z) —eh(z) <M +6 on
and letting e — 0 since h(z) is finite on 2 we deduce that
u(z) <M +6
and finally letting § — 0 gives the claim
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7. SPRING 2013

Problem 1. Suppose f : R — R is bounded, Lebesgue Measurable, and

1 —
[ et h) — @)
r—0 J h
Show that f is a.e. constant on [0, 1].

. J

dr =0

Proof. Observe that for F(z) := [ f(y)dy that we have

T _ T z+h
A =20 2 [ sy fo) ae

thanks to Lebesgue’s Differentiation Theorem since f bounded implies f € L}oc(R). We also have for
<y

- _ . z y+h Yy
Flz + h) F(y+hh)+F(l/) F(z) fll L ! / F(2)dz

= o F(z)dz—ﬁ
:;L/:F(z—f—h)—F(z)dz
F(x+h)—F(y+h)+F(y) — F(x)
h

<]11/:|F(z+h)—F(z)|dz<}1l/O |F(z+ h) — F(z)|dz

So we have
Flx+h)—F(y+h)+ F(y) — F(x)
h

but by Lebesgue’s Differentiation Theorem we know that for a.e. = and u
. Flx+h)—Fy+h)+Fly) — F(z
i PEEM PG DL PG = F@) _ gy g
—0 h

lim
h—0

=0

so we have

so f is constant a.e. on [0,1].

Problem 2. Consider the Hilbert Space ¢?(Z). Show that the Borel o-algebra A/ on ¢2(Z) asso-
ciated to the norm topology agrees with the Borel o-algebra W on ¢?(Z) associated to the weak
topology.

Proof. We first recall that the weak topology is the coarsest topology for which linear functionals are
continuous so we have every open subset of the weak topology of £2(Z) is contained in the norm topology
of £2(Z). This implies W C N, For the reverse direction recall that ¢%(Z) is separable for instance take
finite rational linear combinations of {e;} where e; is 0 everywhere except for a 1 on the ith coordinate so
every open set is a countable union of balls. So it suffices to prove if x € ¢?(Z) then B,(z) € W. Observe
that y € B, (z) = U,eniy : [yl <7 —1/n}. And notice

lo = ylI* < 7* = ||2[]* — 2Re(z,y) + |lyl* < r*

and recall

ly|I> = sup (y,2)
l1=l1=1

so y € B.(x) iff for all z € £*(Z) with [|z|| = 1 such that
||z||* — 2Re(z, y) + (y,2) < r?
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As (2(Z) is separable, there is a countable dense subset which we label as v,, and we can assume 0 # v,
for any n. Then by continuity of the inner product we have for all ||z|| =1

||:c||2f2Re(:c,y)+(y,z)§r2<:>\|x||272Re(:c,y) (yaH ||)<7’ for all n

So for each n € N define £,,(y) := ||z||* — 2Re(z,y) + (v, Hz—zll) Then we have for any n € N
(@)= Jly:lyl<r—1/my = () &' (07 =1/n) eW
neN neENmeN

where we used £,,1([0,7 — 1/n]) € W since linear functionals generate the topology. (Note implicitly the
sum over n € N is only taken for r — 1/n > 0). Therefore, W = N.
]

Problem 3. Given f:R? — R, continuous, we define
1 T .
[Ar fl(z,y) == %/ f(z+rcos(0),y +rsin(0))dd  and  [Mfl(z,y) = Oiugl[Arf}(w,y)
By a theorem of Bourgain, there is an absolute constant C' so that
M fl|Lsrzy < C||fl|L2 ey for all f € Co(R?)
Use this to show the following: If K C R? is compact, then [A,xx](z,y) — 1 as 7 — 0 at almost
every point (z,y) € K (w.r.t to the Lebesgue measure).

Proof. We first extend the inequality to f = xx — 1. where 1. where will be an approximation of x.
Indeed for 0 < € < 1 define

K.:={zrcR?:d(z,K) <¢}
then K. is compact. Then by Uroshyn’s lemma there is a continuous function . such that ¥ = 1 on
K.)5 and 9. = 0 on K¢. Then we have for any 0 < ¢ < 1 that ¢./» < 1. € C.(R?) so we have from
construction that xrx — ¥ < e —¥e/2, XK < e , and Y5 € C.(R?) so we have

[A’I‘(XK - ’(/}e)] < [Ar('(/}e - %/2)] = [M(XK - %)] < [M(Q/JE - %/2)]
= [[[M(xx — ¥)llLs < (I[M(Ye = thep2)lllLe < Cllpe = e polre

then using that 1. < xx, € L3(IR?) since it is a compact set, so we have from the dominated convergence
theorem that
[[tbe = esallLs = 0ase—0

since by construction ¥, — xx pointwise. Therefore, for any € > 0 by Chebyshev inequality and our
above inequality we have

m({e  IMFOuc — )| > a)) < g — vepall

Now one repeats the proof of Lebesgue Differentiation Theorem to conclude the problem using the
approximation scheme 1. € C.(R?) since they converge in L3 and L' to yx by DCT.
O

Problem 4. Let K be a non-empty compact subset of R3. For any Borel probability measure p
on K, define the Newtonian energy I(u) € (0, —|—oo] by

// o=y WD)

and let Ry be the infimum of I(u) over all Borel probability measures p on K. Show that there
exists a Borel probability measure u such that I(y) = R.
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Proof. Take a minimizing sequence, that is a sequence {u,} of borel probability measures such that
I(pn) = R

which exists thanks to the definition of inf. So now as this is a sequence of Borel probability measures
that there exists a subsequence and a borel measure p such that s, — p i.e. for all f € C(K) we have

/deun%/deu

note that as 1 is continuous we immediately obtain p(K) = 1 so it is a probability measure on K. Now we
claim that ji,, ® i, — pu® p. Indeed, by Stone Weiestrass we know that continuous functions of the form
f(z)g(y) are dense in C(K x K), from which we get the desired claim by a standard density argument.
But notice that 1/|z — y| is not continuous, but it is lower semi-continuous, so we can approximate it
from above by continuous functions to get that the functional is lower semi continuous with respect to
weak convergence

I(p) = Rg

Problem 5. Define the Hilbert Space

H :={u:D — R: wu is harmonic and / |f (2, y)Pdady < oo}
D

with inner product (f,g) := [}, fgdzdy.

(1) Show that f +— g—m(o, 0) is a bounded linear operator on D.

(2) Compute the norm of this operator.

Proof. Note by the linearity of A that we have 0, f is another harmonic function and by the mean value
theorem we have that for 0 <r <1

1 1 T

where the last inequality is due to Green’s theorem since the first component of the normal if /7 = cos(0).

We compute to see
1 27

= — cos(0) f(r cos(0), rsin(0))do
™ Jo=0

Therefore, we have from Cauchy-Schwarz that
27

1
00,0 < = ([ 17rcos(o).rsin(o)as
m™r 6=0
so multiplying both sides by mr® gives
27
7r7’3|8mf(0,0)\2 < / r|f(r cos(9),rsin(0))|2d9
6=0

so integrating again in r from r =0to p <1
4 4
02 f(0,0)]* < — |f(z,y)|dedy < —; |f(z,y)|dxdy
TP JB,(0) TP JB1(0)
for all 0 < p < 1 so we can take p — 1 to yield
4
0.50.0P <2 [ |7(.pdady
T JB1(0)
i.e.

2
|8zf(070)| < ﬁHfHLz(Bl(O)

so it is a continuous linear operator.
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For part (2) taking f(x,y) = x gives

2 1
/ r2dxdy = / / 3 cos?(0)drdd = il
B.1(0) 9=0 Jr—=0 4

2
Nz

SO
1fllz2(B.(0)) = 1 = |02 £(0,0)]

so the sharp constant is 2/4/7.

Problem 6. Let
Xim{g s [ e fa)dalfa) € ' R))
(1) X is a subset of Cy(R)

(2) X is a dense subset of Cy(R)
(3) X # Co(R)

Proof. For (1) observe that if f(z) € L'(R) then

™

99 = [ e fla)dn = = [ D pa)dn = [ e po = /e
Hence, one has
9(6) = = / e (f(2) — f(z — 7/6))

so we have

19O < [If () = flz — 7/ L1 (ax)

which converges to 0 as £ — oo due to translation continuity of the Lebesgue integral. And g is continuous
due to the translation continuity of the Lebesgue integral.

For (2) observe that if f € S where S is in the Schwarz class then its fourier transform f is also in the
Schwarz class. In particular, the fourier inverison formula holds for f € S. Then for any f € S one has

f(§):/Re”ff(x)dx

since f € L'. Therefore, X contains the Schwarz class, which contains C2°(R). And the C2°(R) is dense
in Cp(R). So X is a dense subset of Cy(R).

Note that if we define for f € L'(R)

Lf:= / e’ f(x)dx
R
then this is operator is injective since due to Fourier Theory we have that

F(Lf)=f
so if Lf = 0 then we deduce f = 0, which by linearity of the operator implies it is injective. So now if Lf

was surjective to Co(R) then L : L'(R) — Cy(R) is bijective so by the open mapping theorem we have
that its inverse is continuous. Hence, we have constants C7,Cy > 0 such that

ILfllz= < Cil|fllzr and ||L7 gl[rr < Colgl|L=
for any f € L*(R) and g € Co(R). Taking g = Lf gives that
Collfller < [ILflle < Chllf]le

Taking f,, = (1/n)x[0,n)(2) = (1/1)X[n,q gives for £ # 0
0

Lf.(¢&)=(1/n) /On e dx — (1/n)/ e dx:

—-n
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1 . .
_ 7(ezn§ +e ing _ 2)
iné

which converges to 0 as £ — 0. Notice that
e 4 e — 2

since the expression is bounded near the origin since it converges to 0 and the expression decays to 0 as
& — oo. Hence, we have

|Loom) < C

|LfnllLe < C/n—0asn— oo

but we have
[|faller =1 for all n

which contradicts the contiuity of the inverse.

Problem 7. Let f : C — C be an entire function such that log|f| is absolutely integrable with
respect to the planar Lebesgue measure

Proof. As f is holomorphic we know log|f| is subharmonic i.e. we have the mean value inequality for

any z € C
2w

log |f|(2) < %/ Olog|f|(z+rei9)d9

so multiplying by r and integrating in r from 0 to R gives

g S < [ 1omIF(E)I0AE) < il Dl

so we have for any z by taking R — oo that
log[f(2)| <0=[f()| <1

so by Liouville’s Theorem we have that f is constant.

Problem 8. Let A and B be real positive definite n x n symmetric matrix with the property
||[BA || < ||z|| for all 2 € RY
(1) Show that for each pair z,y € R™
z— (y, BPA™ %)
admits an analytic continuation from 0 < z < 1 to the entire complex plane.
(2) Show that
1BYA™ || < |||
forall0<60<1

. J

Proof. As A and B are real positive definite n X n symmetric matrix, the Spectral Theorem tells us there
are \; > 0 and o; > 0 with orthogonal matrix S,V such that

A = STdiag(\1,...,\n)S and B = V "diag(oy, ..., 0,)V
Then using that A, B are symmetric, we have for any z,y € R" that
(y, B*A™*x) = (B*y, A~ *z) = (ST diag(\}, ..., \%) Sy, V ' diag(oy %, ..., 0, %)V)

ey O
where a® := exp(zlog(a)) where we use the standard complex log with a branch cut on the negative real
axis. So in particular, (y, B*A~%z) is some polynomial combination of {\?} and {¢?}, so z — (y, B*A~*x)
is an entire function for any z € C.
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Now observe for any 0 < # < 1 that
IBA=%)| = sup (y, B'A~"z)
lyll=1

Define the entire function for ||y|| <1

foy(2) = (y, B*A™"x)
for z€ {z+iy:0<z <1,y € R} and define
M(s) == sup | fa,y (s +it)|

Now observe that
M(1) <sup||B**A || = ||BA™ ]| < |||
t

Now observe
M(0) < Sgpl\B”A_”wll <(IB*IDAIAT N Ull]) = ]|

since the eigenvalues have magnitude 1. Therefore, by Hadamard’s three lines theorem we have for any
6 €10,1]

M(8) = M(6 + (1 - 0)0) < M(0)"M (1)~ < [[]|°|[z[|'~* = |||
Hence, we have

[|B?A=z|| = sup fr,(0) < sup M(0) <||z||
[lyll<1 [lyll<1

as desired. 0

Problem 9. Let P(z) be a non-constant complex polynomial, all of whose zeros lie in a half plane
{#z € C: Re(z) < o}. Show that all the zeros of P’(z) also lie in the half plane {z € C : Re(z) < o}.

Proof. By the fundamental theorem of calculus we have that
P(z)=alz— z1)(z — z2)...(2 — zn)
where z; are the zeros of P and o € C\ {0} and Re(z;) < 0. Then it follows that the log derivative

Pl(2) 1
P(z) 7Zz—zi

i=1

We already know that if w is a repeated root of P then Re(w) < o since P(w) = 0, so it suffices to
assume that w is a root of P’ but not a root of P. So this implies P'(w) = 0 <= P’(w)/P(w) = 0 (since
P(w) # 0). And we obtain

as Re(z;) < o we obtain

from which it follows that Re(w) < o. Therefore, all the roots of P’(z) also lie in the half plane
{z € C:Re(z) <o} O

Problem 10. Let f : C — C be a non-constant entire function. Without using either of the
Picard theorems, show that there exists arbitrarily large complex numbers z for which f(z) is
positive real.
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Proof. Let f be an entire function such that for arbitrarily large complex numbers f(z) is not positive
real. That is there exists a M € N such that

f|{z|z\>M}{Z|Z|>M}%C\{m$20}

But by compactness anf continuity we know that there is a K such that |Re(f)| < K on Bjys(0). Therefore
f is an entire function that maps the simply connected domain Q := C\ {z: z > K 4+ 1}. Q is simply
connected since it is star shaped, so by Riemann’s theorem there is a conformal map ¢ : 2 — D such
that

pof:C—D
so it follows from Liouville’s theorem that ¢ o f is constant. So it follows from ¢ being bijective that f
is constant. O
Problem 11. Let f(z) := —mz cot(nz) be a meromorphic function on C.

(1) Locate all the poles of f and determine their residues.
(2) Show that for each n > 1 the coefficient of 22" in the Taylor expansion of f(z) about z = 0

coincides with
=2
ani=3 K2n
k=1

Proof. By using cot(mz) = cos(mwz)/sin(mz) its clear that the poles of f(z) are at j € Z\ {0}. Then for
j € Z\ {0} we have the pole is simple by taylor expansion of sin(7z) so
Res(f,j) = lim _sz =—j
Z—j sin(mz)
where the last equality is due to L’hopitals rule (which extends to holomorphic functions thanks to the
taylor series expansion). So f(z) has a pole at each j € Z\ {0} with residue —j.

Now we recall that mcot(mz) = L +3°°° | 5% so it follows that
=222
= —1 — _—
f(2) Z:jl -
Now if we define
= 2z
g(Z) T ; z— n2

then —1 — g(2?) = f(z) so the 22" taylor coefficient of f(z) is the nth taylor coefficient of —g(z). Now
we see

and in general

= n’n! (n) =
g(n)(z) =(-1" Z (z E n2)'n+1 = ! (0) = Z %

which gives the desired result.
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8. FALL 2013

Problem 1. Let U and V be open and connected sets in C and f : U — C be a holomorphic
function with f(U) C V. Suppose that f is proper map from U into V ie. f~1(K) C U is
compact whenever K C V is compact. Show then that f is surjective.

Proof. Let us show that f(U) is open and closed. Indeed, if zg € f(U) then there exists a z such that
f(2) = 2o then as the proper condition implies that f(z) is non-constant, so the open mapping theorem
tells us that if € > 0 is so small such that B.(z) C U then f(U) so the image is open.

Now let {yn}nen € f(U) such that y, — y € V where f(z,) = y,, then K := {y,} U{y} is compact so
f~HK) is compact by properness

so the sequence {z,} C f~'(K), so it has a limit denoted z, along a subsequence z,,. Now we claim
f(20) = y indeed as f(zy,) = yn, — y it follows from continuity that f(z9) = y. Therefore, f(U) is a
non-empty open and closed subset of a connected subset V so f(U) =V. (Il

Problem 2. Show that there is no function f that is holomorphic near 0 € C and satisfies

21
fa/m?) ="

Proof. Assume f(z) is holomorphic then f(22) is holomorphic. Notice that if we define g(z) = 25/2 (2 — 1) =
23/2 — 25/2 then g(1/n?) = f(1/n?) and that g(2?) = 2> — 2° is holomorphic such that g(2?) = f(2?) on
an accumulation point so g(z?) = f(2?) for all z. But then observe we have the following contradiction
for z # 0

F2) = f((=2)?) = =2 + 2° = = f(*)

Therefore, f(z) cannot be holomorphic.

Problem 3. Does there exist a holomorphic function f : D — C such that
lim |f(zn)| = +o0
n—oo

for all sequence {z,} C D with lim,,_, |2,| = 17 Justify your answer.

Proof. No such functions exist. Indeed, as for any zo € 9D we have limsup,_,, |f(z)| = +oc0, we can find
a ball B(zp) such that on I N B(zy) we have |f(z)| > 1. By compactness we can find a finite sub-cover
denoted by By, .., By that cover 9D and on the compliment of these balls within D we know that f can
only have finitely many zeros, but they have no zeros in these balls. This implies that f has only finitely
many zeros on D, say {z;} with multiplicities m; then define

9(2) = f(2)/(z = z)™
which is a new holomorphic function that is non-zero everywhere. And as these zeros are all § for some
0 > 0 distance away from the boundary, we know that we still have
limsup |g(z)] = +o0
Z—20
Now fix an M > 0 large then for an zp € 9D we can find a ball B(zp) with radius < 1/M such that on
B(zg) we have |g(z)| > M. By compactness we can find a finite collection of balls By, .., By (with all of
their radius < 1/M) that cover D and on B; we have |g(z)| > M. Define Qp := D\ (Ui\[:1 B;) which
is open, and on 9 we have |g(z)| > M and since g never vanishes we can apply the Minimum Modulus
Principle (by looking at 1/g(z) which is holomorphic and applying the max-principle) to conclude that
lg(z)] = M on Qpr. As M — oo we know that Qp; — D so we conclude that |g(z)| = +oo everywhere
which is a contradiction, since g(z) then cannot be continuous, but it was holomorphic. O
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Problem 4. Let u be a non-negative continuous function on D\ {0} that is subharmonic on
D\ {0}. Suppose that u|0D = 0 and

1
lim 7/ u(2)d\(z) =0
=0+ 721og(1/7) Jizeco<|z|<r}

where integration is with respect to Lebesgue measure A on C. Show that then u = 0.

Proof. Observe that for € > 0 that we have for sufficiently small r > 0 that

1 1
— u(z)dA(z) < elog(—
2 Lo (2)dA(2) (\7’|)
so we know that z € B, /5(0) we have B, /4(z) C B,(0) \ {0} so we have from the mean value inequality
and non-negativity that

16 16 1 1
< — dA < — dA < 16elog(—) < 1l6elog —
W< oy [ e <5 i) < 6etosty) < 16tog

so u(z) = o(log(ﬁ).

Now fix any o > 0 then we know u(z) + alog(ﬁ) — —oo as z — 0 thanks to u(z) = o(log(1/|z])). So
there exists an R, = R > 0 such that on Bg_(0) we have v(z) = u(z) + alog(1/|z|) < 0. Therefore, on
the annulus Ay g = {|z] : R < |2] < 1} we have that v|pa, , < 0 but as v(z) is sub-harmonic it follows
that the max is obtained on the boundary so we have v(z) < 0 on A; g which by letting R — 0 implies
v(z) < 0 on D\ {0}. Therefore, letting o — 0 gives u(z) < 0 on D\ {0}, which implies from non-negativity
that u(z) =0 O O

Problem 5. Let {f,} be a sequence of holomorphic functions on I and suppose that

/ Fa(2)dA(2) < 1
D

for all n € N where dA denotes integration with respect to Lebesgue measure A on C. Show that
then there exists a subsequence {f,,} that converges uniformly on all compact subsets of D.

Proof. Fix a compact subset K C D and let dist(K,dD) := 2§ then for any z € K we have Bs(z) C D.
So by the Mean Value Property we have for any z € K and 0 < r < ¢

1 27 .
In(2) = 5= f(z+re®)ap
21 Jo=o
so we have
/[ e [ st e = ()aA)
rfnzdr:/ r—/ flz+re* drd9:—/ fn(2)dA(z
r=0 ( ) r=0 2m 0=0 ( 27 Bs(z)
so we have )
o)== [ R@dAE)
™ Bs(2)
so in particular, on K we have the uniform bound
1
Sup ()l < —=5

This implies on any compact subset the family {f,} is uniformly bounded. Therefore, for any n € N with
Q,, := By_1(0) we can by Montel’s theorem find a uniformly convergent subsequence on §2,,. We will

now use a diagonal argument: On ; we can find a subsequence { fn(1>} such that it convegres uniformly
k

on 2 to a limiting function which we denote by f. Then on 5 we can a subsequence n,(f) - n,(cl)
(k)

which f =) converges uniformly on €25 to f. We repeat this for all n. Define the index ny :=n;~ lLe.
k

for
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the diagonal subsequence then we have f,, — f uniformly on §2; for any j. Indeed, if € > 0 then there
exists an K € n such that if k£ # N then

angca') — fllL=(q,) <¢
,(j) for k > j we can take K; := max{K,n;} and obtain

Hf’ﬂk - fHLOQ(Qj) <e
Therefore, f,, — f uniformly on , for all n. Now if K is compact it must live in an ,, for some n
which implies f,, converges uniformly to f on K . ]

and since ny is a subsequence of n

Problem 6. Let U C C be a bounded open set with 0 € U and f : U — C be a holomorphic
map with f(U) C U and f(0) = 0. Show that |f"(0)| <1

Proof. We first observe by the chain rule that if f := fo fo...o f where we do n compositions, then we
have

Lm0 = (f o)

And we have that for all n that f™(U) C U and f™(0) = 0. Since U is bounded there exists an R > 0
such that U C Br(0). As U is open there exists an € > 0 such that B.(0) C U, so by Cauchy’s theorem
we have for g, := f"

1/n
501 < Hamllz < £ = 170 < ()
where U C Bgr(0). Letting n — oo gives
(O <1
as desired. 0

Problem 7. Show that there is a dense set of functions f € L?([0, 1]) such that 2 — /2 f(x) €
LY([0,1]) and [, 2~ /2f(x)dz =0

Proof. As C.([0,1]) is a dense subclass of L?([0,1]) it will suffice to show the claim for f € C.([0,1]). So
fix f € C.([0,1]) this implies there exists an § = 6(f) > 0 such f = 0 on [0,d]. Define I := fol Y2 f(x)dx
which is finite since z=1/2 € L'([0,1]) and f is bounded and for 0 < ¢ < § define

I
7x71/2+5

where
and we write

o | flz) for x € [g,1]
Jla) = {gg(x) for x € [0, ¢]

so observe
1 € !
/ v 2g dy = / —1/5()a * da + / 22 f ()
0 0 N

:—I—|—/1x1/2f(x)20

And it is clear that z='/2f¢ € L'([0,1]) and its clear f¢ € L?([0,1]). Then observe that

[rr-sm=[ g =5%
0 0 62(5) (52 2e
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and we observe
EE 86 2
I )

€

2

/ 2= 00

so f¢ — f and f so the desired class is dense.

SO

Problem 8. Compute the following limits and justify your calculations!

(1) limy_00 fo (1— 7)
(2) limpooo [y ( 1—|— L)~k cos(z/k)

Proof. We first compute

/ lim z (1 — 7) dx —/ " eXp(—x) =nl
0 k 0

k—o0

So we claim that
li n1—-)k=n!
A Jy TR
which we will justify by swapping the limits with the integral. Indeed, observe

k [e%S)
n Lk n Y
[ ea=r= [ e =D

T
a™(1— %)kX[O,k] — 2" exp(—x)
Notice by the AMGM inequality we have that
/(k+1) 14+ k(1-%2 14+ k-
(1 (17%)) - +k(1-%) 1+k—x ) T

and pointwise we have

= k+1 E+1 k41
ie.

T\ Tkt
_ Ve (1
(1 k;) =( k‘—i—l)

so the family is increasing and we can apply the Monotoe Convergence Theorem to interswap limits with
the derivative to get the integral is n!.

Notice pointwise we have
lim (14 k) kcos(z/k) — e ®

k—o0

so we should have

lim (1+ ) * cos(z/k)dx :/ e *=1
k—o0 0 k? 0
Notice that for &k > 2
1+7)20+5) =0+ D <0+ <1+35)7 e L'(0.0))
k 2 k 2 2
so by the DCT we can swap limits since
(1+ 1) eos(a/k)| < (1+5)7% € L!([0,00])
SO
lim (1+ ) k cos(x/k)da —/ e =1
k—o0 0 k' 0
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Problem 9. Let X be a Banach Space, Y a normed linear space, and B : X XY — R be
a bilinear function. Suppose that for each x € X there exists a constant C; > 0 such that
|B(z,y)] < Cylly|| for all y € Y, and for each y € Y there exists a constant C, > 0 such that
|B(z,y)| < Cyllz|| for all x € X.

Show that then there exists a constant C' > 0 such that |B(xz,y)| < C||z]|| - ||y|] for all x € X and
yey

Proof. Fix a y € Y and define the linear operator By : X — R and with B,(z) := B(xz,y) then by
assumption we have

By ()| < Cyll]|
so By € X*. So we consider the family F' := {B,},cy with [|y|| = 1 of continuous linear operators.
Fixing an x € X we see that
[By(z)| < Callyl| = C since [[y[| =1
Therefore,

sup  |By(z)| < o0
yeY,||yl|=1

so by the uniform boundness principle since X is a banach space, the family is uniformly bounded i.e.
there exists a C' > 0 such that for any x

|By(z)| < Cllz]| for all [|y[| =1
Now for y # 0 we have that
Y
B(Ly):B(%Ilyllm):IlyllB( Tyl

as desired [ O

Ly <cllyll- [l

Problem 10. Let f € L*(R) and define h(z) := [; f( (y)dy for x € R. Show then that
there exists a function g € L'(R) such that

e) = / g )
R
for £ € R i.e. h is the fourier transform of some function in L!(R).

Conversely, show that if g € L? (R) then there is a function f € L?(R) such that the fourier
transform of g is given by x +— h(z) := [ f( f(y)dy

. J

Proof. Let f, C L'(R) N L?(R) be such that f,, — f in L?(R). Then define

/fn ) )y

we then claim hn(x) — h(z) uniformly. Note that h(x) is continuous since h(z) = [ f( fly)dy =
Jo fle+y) f(—=y) = (7—of(y), f(—y)) where 7, f(y) := f(y — ). This implies contmulty since

Ih(m)—h(z)l=I(T—xf(y)—7-zf(y) FEI <y +2) = fly+ 2|l f]] 2

Now observe that

() — ha(2)] < / n = ) W) = Ful@ — ) F@)] + alz — 0)F@) — F@ — ) F)ldy
< fallzellfn = Fllze + 1A 22l — Fllzz =0

so we have uniform convergence.
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Now for each f,, we know that F 1 fR )e''*dx by computation since f,, € L' N L%, But again
since f,, € L' we have
hp = (fn)2
which implies F~! f]R 2¢itrq. So it follows that
mwzfgﬂmmwz/%m—mmmmwn / Zettr s
R R

and notice that by Plancherel Theorem that f,, € L2(R) so g,(z) € L'(R). Also notice that for g(z) :=
fR(f)%”rdm

(@) = @)l = | [ [(5(0)+ FOFalt) = Fute)] e

SO g, uniformly converges to g. So it follows that from taking n — oo on

() = / O

< fa+ fllz2llfn = fllze = 0

that
h(t) = / gty
R

and its clear by Cauchy-Schwarz that g € L'(R) as desired.

Let us formally derive what f should be first. Indeed, observe if we have such an f then

/ /f E-u)f dy—/F(x)e_ifxdm

where

S0 we expect

g(x) = /R(f(t))ze”xdt =F ) = Flga) = 2 = f = F (VF(9(x)

where

VF(g()) = ¢|f<g<x)>f<g<w>)>)l

and 0 when F(g(x)) = 0. O

Problem 11. Consider the space C([0,1]) of real-valued continuous functions on the interval

1/2
[0,1]. We denote [|f||oc := sup,eo,1 |f(#)] the supremium norm and by ||f||2 := (fol |f(x)|2)
the L? norm of the function f € C([0,1]).

Let S be a subspace of C([0,1]). Show that if there existed a constant K > 0 such that
[1flloo < K||f]|2 for all f €S, then S is finite dimensional.

Proof. Notice that if we endow S with || - ||2 then this is an equivalent norm, that the evaluation linear
functional (for z € [0,1])

is a continuous linear functional since
|Lo () < [If(@)[|Lee < K| f]|L2

so it extends to a continuous linear operator on S. So by Risez Representation Theorem (the equivalent
norm implies S is a Hilbert Space), we can find a g, € S such that

Lo(f) = (f.g0) = /O Faedy
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Fix N orthonormal vectors {e;(z)}Y;, then we compute from Bessel’s Inequality that

N N
Yo lei@)P = I go)l < llgall2
i=1 i=1

and we have
gzlls = (921 92) = 92 () < [1galloo < Kllgalle = [l92]l2 < K

so we have
N N 1
S Jeil@)? < K2 = Z/ les(2)[2dz < K2
i=1 i=170

i.e.
N < K?

so we can have at most K orthnormal vectors i.e. at most K linearly independent vectors since we can

preform Grahm-Schmit, so the space is fintie dimensional.
|

Problem 12. Let f : [0,1] — R be a continuous function that is absolutely continuous on each
interval [e,1] for 0 <e < 1.

(1) Show that f is not necessarily absolutely continuous on [0, 1].

(2) Show that if f is of bounded variations on [0, 1], then f is absolutely continuous on [0, 1].

Proof. For (1) we take f(z) := xsin(1/x) with f(0) := 0 then f € C(]0,1]) by the squeeze theorem and
f(x) € CH((0,1)) since

, . cos(1/x)

f(@) =sin(1/z) — L

which is continuous on the open interval (0,1). So in particular, if 1 > ¢ > 0 then on [, 1] we have
[|f/ 1| < C(e) so f(x) is lipschitz on [g, 1] so it is absolutely continuous on [e,1]. But f is not absolutely

continuous on [0, 1] since it is not of bounded variation. Indeed, notice that at z,, := m and z, — 0
as noo where n > 1 and sin(1/z,) = (—1)" so we have
N N N g N
Z |f(zn) — f(@ns1)] = Z I(=1)"zn — (_1)n+lxn+1| = Z |[Zn + Tnta| > g Z o+ 1 — 00
n=1 n=1 n=1 n=1

Therefore, the total variation is unbounded over [0, 1] is unbounded since

N
T([0,1]) = sup{ > _ [f(xn) = f(@ns1)| : 0 =121 < ... <ani1 =1}
n=1

and we can always adjoin to the above sum x 2 = 0 which only increases the sum size. So in particular,
f is not of bounded variation so it cannot be absolutely continuous.

For (2) we claim that the total variation is continuous i.e.

N
Ty(le,y]) = sup{Y_ [f(2) = f(zary)| sz =21 <. <ayir =y}

n=1
for any f with the above conditions. Indeed, by uniform continuity if € > 0 then there exists a 6 > 0

such that if |z — y| < § then |f(x) — f(y)|] < e. So notice we can find a partiton 0 =21 < ... < xy41 =1
such that

N
Tp([0.1]) S e+ Y | f(@isr) — fla2)]

=1
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Now fixing x € (0, 1] we can assume that © = z); and |z — zpr41| < 0 for some M since adding a point
to our partiton only increases the sum. So in particular,

M—-1 N
Tr((0,1)) < e + |f(2) = fleary)| + Y [Flwip) = fle) + D |f(@ip1) — f(@2)]
i=1 M+1
< 26 + T4 ([0, 2]) + Ty ([zpr41,1])
Therefore, as
Ty([0,1]) = T§([0,2]) + Ty ([x, war1] + Tr([wnr41,1]
we conclude that
Ty (o, aarsa] < 20

so in particular T is right continuous. But an identical argument using the if |x — zar—1| < ¢ shows that
T} is left continuous, so its continuous.

Now as T ([0, «]) is uniformly continuous since [0,1] is compact we can find a § > 0 such that if € > 0
is given then
T ([0,z]) < e when |z| <
Then on [§/2, 1] we know that f is absolutely continuous so we can find a > 0 such that if Zf\;l |z —yi| <

7 then Zf\il |f(z:) — f(yi)| < & where {z;}), and {y;}~, are in the interval [0, 1]. Let ¢ := min{d,n} /4

then if we are given
M

Z|$i—yi|<3

i=1
where the x;,y; € [0,1] then we know that if 2; € [0,d/2] then as

lzi —yi| <9/4=y; €[0,0/2]

So we relabel our sequence to {a;}L, {y:}L) and {x;}Y 4, {wi} iy Where x5,y € [0,6/2] for
1<i< M and z;,y; € [6/2,1] for M 4+ 1 <i < N. Then we have
N

Zlf Fwdl+ > | f( yz|<Z|fwz flyi)l+e

i=M+1
where the second inequality is due to absolute continuity of [§/2, 1] and observe
< Ty([0,6/2)) += < 2

by uniform continuity of the total variation. So f is uniformly continuous.
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9. SPRING 2014

Problem 1. Consider a measure space (X, X’) with a o-finite measure p and, for each ¢ € R,
let e; denote the characteristics function of the interval (¢,00). Prove that if f,g : X — R are
X-measurable, then ||f — gl|11(x) = [z [ler o f — et 0 gl|p1(x)dt

Proof. Notice that

/||€t0f—€t°g|\L1(x)=// lec o f —eq o gldudt
R RJX

so by Tonelli’s since the integrand is non-negative and p is o-finite we have

=/ /|€t0f—€t°9|dth=/ /‘Xf(z)Zt_Xg(x)2t|dth
X JR X JR

max{ f(z),g(x)}
/ X2t — Xotmoildt = / 1dt = |f(z) — g(z)|
R min{ f(x),g9(x)}

Now we compute

so this gives us

/R||€t°f—€t09||L1(X) =|If = glle(x)

Problem 2. Let f € L'(R,dz) and 3 € (0,1). Prove that

/|x—a|ﬂd e

for (Lebesgue) a.e. a € R.

Proof. Fix n € N then by Tonelli since |f(x)|/|x — a|® > 0 we can justify the following computation

/,_n/\xfawdd //_n‘xf dadz /|f |aw| |dm

and observe that
/n 71 da/w+n1da</n ——da < C(8,n)
a=—n |$ - a|ﬂ B r—n |a|6 o n | ‘ﬂ ’

since 1/|z|? € L}, .(R) so we have

/n_n/ |:|nf—(32|ﬁ dxda < C(B,n) /]R |f(z)|dx < oo

so we conclude that fR Ir al? da: < oo a.e. on [—n,n], which by letting n — oo implies this is true for a.e.
acR. O

Problem 3. Let [a,b] C R be a finite interval and f : [a,b] — R be a bounded Borel Measurable
function.

(1) Prove that {z € [a,b] : f(x) is continuous at x } is Borel Measurable.
(2) Prove that f is Riemann Integrable if and only if its continuous almost everywhere.

Proof. Define A := {x € [a,b] : f(z) is continuous at = } then we claim that A is a G set. Indeed, define
the oscillation

w(f, A) = sup |f(z)— f(y)l

T, yeA
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then notice that f is continuous at x iff

lim w(f, Br(r)) := w(f,z) = 0

r—0+

where the limit exists since its an inf. Now observe
A={z:w(f z) —0}—ﬂ{x w(f,z) ﬂAn

Now we claim that each A,, is an open set. Indeed, if w(f,x) < 1/n then there is a ball B,(x) such that
w(f,Br(z)) <1/n
Then for any y € B, /2(z) we can find a d, > 0 such that Bs,(y) C B,.(x) so it follows that
w(f, Bs, (y)) <w(f, Br(z)) <1/n

so B, a(x) C Ay so A, is open and the set of continuity is a G, so it is Borel Measurable.

Now we prove f is Riemann Integrable iff it is continuous a.e. Notice if B is the set where f(x) is
discontinuous on [a, b] then

B= U{anb w(f, UB

n=1

so it suffices to show m(B,,) = 0 for all n.

For the second condition fix a partition P a = z¢p < ... < x,, = b. Then define the lower and upper
Riemann Sums

U(f,P):= z_; <z€[221_13 » f(x)) Az; and L(f, P) := z_; (me[aggfl,mi] f(x)) Az,

where Az; = x; — x;_1. Observe

n

b
Z / (sup F(a)) s (o)dy and L(A.P) = Y- [ (inf (@) (0)dy

z€l; =

where I; = [z;_1,2;]. Then

U(f, P Z/ (f, ), (w)dy

So if f is continuous a.e., then m(A) = m({z : w(f,z) = 0}) = b — a. So in particular, w(f,I;) — 0 as
Az — 0 where Az := maxi<;j<, Az, so the dominated convergence theorem implies since the oscillation
is bounded since f is bounded that

U(f,P)— L(f,P) > 0as Az — 0

i.e. f is Riemann Integrable.

Now for the reverse direction fix £ > 0, since f is Riemann Integrable there exists an § > 0 such that
if Az < 0 then

n

0<U(f,P) = L(f,P) = > w(f, L)m(L;) <

i=1
Write F,, := {z : w(f,z) > 1/n} Now write

I'={ke0,1..,n: F,NI #0}

this implies

Fn C U Iz U {SC(), ..,ilfn}

iel
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so it suffices to show »._; m(I;) = O(e). Notice as I; N F,, # () that w(f, ;) > 1/n so we have

1 m(I;) < Zw(f, I)ym(I;) < Zw(f, I)m(l;) <e
i€l el =1
so it follows that
Zm([l-) <en
iel
this implies m(F,) = 0 so f is contiuous a.e. O

s ~

Problem 4. Consider a sequence {a, : n > 1} C [0,1]. For f € C([0,1]), define

)= Z 27" f(an)
Orive that there is no g € L' such that ¢(f f f(x)g(x)dx is true for all f e C([0,1]).

(2) Each g € L' defines a continuous functional T, € L> via

n= [ #al

Show there are continuous functionals on L>°([0, 1]) that are not of this form.

\. J

Proof. Define B([0,1]) to be the space of bounded functions on [0, 1] endowed with the sup norm, now
we extend ¢ to a map on this space via

= Z 27" f(an)

So now we can define a measure

w(E) := o(E)
and it is easy to see p is a measure and it is not absolutely continuous with respect to the Lebesgue
measure since p({a,}) = 27" and {a,} is a null set for the Lebesgue measure. Therefore, by Radon
Nikodyn there exists a my < m and A L m with A # 0 such that

p=mys+ A

:/fdu

due to linearity and equality holding for simple functions. So it follows that ¢ < u so ¢ is not absolutely
continuous with the Lebesgue measure. O

And notice that

For the second part, by Hanh-Banach as ¢ is a continuous linear functional on the subspace C([0,1])
we can extend it to a continuous linear functional on L*°(]0,1]). And the desired result holds since if ¢
is a functional of that form it implies its restriction is as well, which we proved in a) was not.

Problem 5. Recall that a metric space is separable if it contains a countable dense subset.

(1) Prove that £*(N) and ¢?(N) are separable Banach Spaces, but £ is not.
(2) Prove there exists no linear bounded surjective map 7 : £?(N) — ¢}(N)

Proof. Denote e; to be the vector that is 0 everywhere except for a 1 at the ith position. We claim that
finite rational combinations of e; are dense in ¢P for any 1 < p < oo. This immediately implies (1).
Indeed, if © = (z1, z2,...) € fP and € > 0 there is an N € N such that

0o
> lealt <e
n=N
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Then for each i = 1,..,N we can find a rational ¢; such that |z; — ¢;|P < €27%. This implies for
N .
Y=o @iei with y = (y1,92,...)

) N ) )
Z'-ﬁcn*ynv):Z‘*anflnrn+ Z |xn|p§252in+5:25
n=1 n=1 n=N+1 n=1

Therefore, we have shown finite rational combinations of e; are dense in /P for 1 < p < oo as desired.

To show ¢ is not separable we will show there exists an uncountable sequence {zs}aca such that
l|zalleee =1 and ||zq — xg|[eee > 1/2 whenever o # . This implies £ is not separable since if {v;} is a
countable sub-sequence of £°° then if

[|Za — villoo < 1/4
then
lzg = villoo = (|20 — xpl| —[|lzs —will 2 1/2 - 1/4 =1/4
so the v; cannot be dense since there are uncountably many xz. Now we construct such z,. Notice that
there are uncountably many binary strings i.e. sequences where every entry is 0 or 1. Observe that if z,,
and zg are different binary strings then

lza — zplle= =1

and ||z4||e=~ = 1, so we are done.

For (2), if T is surjective then its adjoint T* : £°°(N) — ¢2(N) is injective. So T™* is a linear isomorphism
from ¢°° to a subset of £2. This implies that 7™ (¢>°(N)) is separable since it is a subset of /2. But then
since (T*)~1 : T*(¢>°(N)) — £ is a homeomomorphism we see it preserves separability, which means
£°° is separable, which contradicts the first part.

(]

Problem 6. Given a Hilbert Space H, let {a,}n>1 C H be a sequence with ||a,|| = 1 for all
n > 1. Recall that the convex hull of {ay},41 is the closure of the set of all convex combinations
in {an}n
(1) Show that if {a,} spans H linearly (i.e., any x € H is of the form Y ;" cxan,, for some
m and ¢ € C'), then H is finite dimensional.
(2) Show that if (a,,&) — 0 for all £ € H, then 0 is in the closed convex hull of {a,},.

Proof. We argue by contradiction and assume that there are infinitely many a,, that are linearly inde-
pendent. Denote the largest subset of {a,} such that every term is linearly independent as {b,}. This
automatically implies span{b,} = span{a, } which exists thanks to Zorn’s Lemma. Now we go Gram-
Schmit on b, to obtain a new sequence {c,} that are orthonormal and span{«,} = span{a,}. Note
there are infinitely many «,. So in particular define
= 1
Y= ; —20n cH

since it is the limits of y, := Y";_,(1/n?)c, (and H is complete). But as a, is a linear combination of a,,
it must still linearly span H, but our y is not any finite linear combination of a,,. Thus we have arrived
at a contradiction. This implies H is finite dimensional.

For (2) notice that if vy,..,vx € H with ||v;|] = 1 then

1 1
HN Z vil| = N + sum of N inner products

taking v; to be some a,, we see that we can make their convex combination norm get arbitrarily close

to 0 for a correct subsequence thanks to (a,, &) — 0.
]
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Problem 7. Characterize all entire functions with |f(z)| > 0 for |z| large and

ey 1B

Proof. Notice that as zeros are isolated and f(z) is non-zero for large z we know that f has only finitely
many roots. So there is a polynomial P(z) with the exact same zeros as f. It follows that g(z) :=
f(2)/P(2) is an entire function with no zeros. Therefore, there is a h(z) entire such that

f(2)/P(z) = exp(h(z))
Then notice
o LOEIC _ o log | ()] = log PG _ - log /()] + Llog [P(2)]

<

so it follows that from log|g(z)| being finite on every compact set since it is a continuous function that
there is a C' > 0 such that
[log [g(2)]| < Clz|

This implies by taking exponentials that
9(2)] = |exp(h(2))] < exp(C]z])

i.e. g is an entire function of order 1 with no zeros, so by Hadamard’s Factorization Theorem we know
there is a linear polynomial Az 4+ B such that

g9(z) = exp(Az+ B) = p(z) = P(z) exp(Az + B)

so these functions are polynomials multiplied by the exponential of a linear function.

|
Problem 8. Construct a non-constant entire function f(z) such that the zeros of f are simple
and coincide with the set of all (positive) natural numbers.
Proof. We mimic the proof of Weiestrass Factorization Theorem. Define the canonical factors
B, :=(1—-2)exp(z + 2%/24 ..+ 2" /n)
and define
il z
9(z) == HEj(E)
j=1
then this is an entire function with simple zeros with zeros at the positive natural numbers.
|

Problem 9. Prove Hurwitz’s Theorem. Let 2 C C be connected open set and f,, f : Q@ — C be
holomorphic functions such that f,(z) converges uniformly on compact sets to f(z). Prove that
if f,(2) # 0 for all n then either f is identically zero or f(z) # 0 for any z € Q.

Proof. Define A := {z € Q: f(z) = 0}. Continuity implies A is closed, so we will show that A is open
which will imply either f =0 or f is never zero due to connectedness.

Indeed, fix 2z, € A. Assume for the sake of contradiction that f is not identically 0 in a neighborhood of
zn. Then as all the zeros are isolated, this implies there exists an € > 0 such that B.(z,) C € such that
on 0B.(z,) we have f # 0. Now by the argument principle we have that if we define v := ee?® + z, for
6 € [0,27) then

1 rr

dz>1
ori |, F° 7
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since we have at least one zero in our domain. But as f, — f uniformly on B.(z,) this implies by
Cauchy’s Integral Formula that f/, — f’ uniformly on B.(z,). Indeed, recall

1 fm(w) L% fo(2n + c€®)
/ e

Ami) gy = = .
(w — 2)2 YT on o get?

fn(2) =

T o

So we do have f/ — f’ uniformly. Therefore, we have

1 ! 1 !

211 )y fm 2mi ), f
which is a contradiction. This implies f is identically zero in a neighborhood of 0. So A is open and
closed, which implies by connectedness either f =0 or f is never zero. ]

Problem 10. Let a € [0,1] \ Q and let {a,} € ¢*(N) with a,, # 0 for all n > 1. Show that
an
= —_— D
=Y e

converges and defines a function that is analytic in ID which does not admit an analytic continuation
to any domain larger than D

Proof. We will show f, := Z?Zl an/(z — e converges locally uniformly to f. Indeed, fix a compact
set K C D then there is an 0 < r < 1 such that K C B,.(0). Then we have

|an|
—1-r

Qn

o — eian

this implies since a,, € £*(N) that f(z) is absolutely convergent on K. This implies f,, — f uniformly
on K and as f, is a finite sum of holomorphic functions on D we see that f, is holomorphic, so since
we have uniform convergence this implies by Morrera’s theorem that f is holomorphic on K. Then this
implies by taking a compact exahusation of D that f is holomorphic on D.

Now to see why there is no analytic continuation onto a larger domain that contains D. If such an
extension existed then it must contain a circle arc of OD. So by density of €’®™ on the Torus since « is
irrational we have that there is an €™ in this arc. But then lim, ,;_ |f(re?®™)| = 400, so this function
cannot be continuous on dD. Therefore, no such analytic continuation exists.

d

Problem 11. For each p € (—1,1) compute the improper Riemann integral
oo xp
[
0 2 +1

Proof. Fix e > 0 and R > 0 and define v, := {Re? : 0 € [0,7]}, 72 := {-R(1 —t) + et : t € [0,1]},
vz = {ee?? : 6 € [0,7]} (with v3 having clock wise orientation) and 4 := {e(1 —t) + Rt : t € [0,1]}
where all these curves except 3 have counter clock wise orientation. Now define ~ := Z?Zl ~; and now

we compute
P
[ e
427+ 1

where zP := exp(plog(z)) where log(z) := log(|z|) + iarg(z) with arg(z) € [—7/2,37/2] i.e. the log with
a branch cut on the negative imaginary axis. On the big circular arc v; we have

p ™ Rpepif )
/ 21 = | g Rie”
AR g—o 2?e®¥ +1
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SO

1+ "1+ R

p T Rtp RltP
[ )<
711+Z 0

since p € (—1,1) this goes to 0 as R — 0.

Now let us see what happens on the small semi-circle of radius €. Observe that on this circle circle

that |z| = € so we have
2P ds — T ogpe?
211 = 1 210 ¢
3 z4 4+ 0 + e<e

P 1+p
L d <
s 2241 14 ¢e2

which vanishes as € — 0 since p € [—1, 1] so the numerator is a positive power of €. So now we compute
the residuals at z = 4. to find the integral evaluation. Indeed,
2P exp(p(39))
Res(f, i) = lim — L e
(£,9) z=iz+1 21 24
and using if z is real then (—z)P = exp(plog |z|) exp(pim) = |z|P exp(ipm) to conclude

/Ooo v 1 y /7 P L (exp(p(n/20))

= 1m =
1+ 2?2 1+ exp(ipm) e—0,R—00 ., 1 + 22 1 + exp(ipm)

SO

Problem 12. Compute the number of zeros, including multiplicity, of f(z) := 2% +iz* + 1 in the
upper half plane in C.

Proof. By Rouche’s Theorem we know that if we can show |iz*| < |25+ 1| on the real axis, then 26 +1+iz*
has the same number of zeros on the upper half plane as z® 4+ 1 which has 3 namely 3 roots of unity.
Indeed, it suffices to show for real x that
flx):=a%+1—-2*>0
Observe as & — oo that f(z) — 400 so if f was non-positive somewhere, its minimum exist and is in
a compact set in R has to be non-positive. So differentiating, we have
f'(x) = b2t — 42 = 23(5x — 4)

so the potential zeros are z = 0 or = 4/5. And it is clear f(0), f(4/5) > 0 so f(x) > 0. So there are
exactly 3 roots in the upper half plane by Rouche’s Theorem (]
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10. FALL 2014

Problem 1. Let
A= {f e ®): [ 1P <)
R
Show that A is a Borel subset of L3(R).

Proof. Note that f € A if and only if there exists an M > 0 such that for all N we have fiVN lfI? <M
ie.

a-UNuer®: [ i1 em
m=0n=0 -n

so it suffices to show the linear functional
A= [ 1P

is Borel measurable since {f € L*([R) : [" [f|> <m} = A7*([0,m)). In particular, it suffices to show it
is continuous. Indeed, fix f,g € L?(R) then

n n % n 1/3
as-gl= [ If—g|2dw§</ f—gl3> (/ 13) — 23013 f — gl e

so in particular, A is continuous, so {f € L3(R) : [" [f|?> < m} is Borel, hence A is Borel.

Alternative one can use Fatou’s Lemma to show that {f € L3(R) : [" |f|* < m} is closed.

Problem 2. Construct an f € L'(R) so that f(z + y) does not converge a.e. to f(z) as y — 0.
Prove that your f has this property.

Proof. Let C be a fat cantor set, then m(C) > 0 and it has no open intervals. Define f(z) := x¢ then
this is not equal to 0 a.e. since m(C) > 0 and since C' is measurable so is ¢ and ¢ is supported on a
set of finite measure so it is in L!(R). Then notice for any x € C' as C has no open intervals around =,
we conclude there is a sequence y,, € K¢ such that y, — = to get

f(zx+yn)=0forall n

but f(z) = 1 and this is true for all z € K so we do not have a.e. convergence of the translates pointwise.

O
Problem 3. Let (f,,) be a bounded sequence in L?(R) and suppose that f,, — 0 Lebesgue a.e.
Show that f,, — 0 in the weak topology of L?(R).
Proof. Same argument as Fall 2012 Number 1.
O

Problem 4. Given f € L*([0,7]) we say f € G if f admits a representation of the form

flz):= icn cos(nx) and i(l +n?)|eq]? < 0o
n=0 n=0

Show that if f,g € G then fg € G.
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Proof. Note that due to the summation condition we have that

1+n
ZICnI Z Slenl < N1+ 0%) 7 el VT n¥lenls < oo

n=0

where we used Cauchy-Schwarz. Therefore, the sum that defines f(z) converges uniformly. So in par-
ticular, there exists a representative of f € L?([0,7]) that is continuous and we choose to look at this
representative. From now on we regard G as a subset of L?([0,7]) N C([0, 7]). We also may by taking an
even extension i.e.

f(=z) = f(z) for z € [0, 7]

may regard G as a subset of continuous even functions on [—m,7]. And we know that the basis of even
functions on C([—m,7]) in the L? norm is {cos(nz)}. So now fix f,g € G then fg is continuous and even.
Therefore, we have that the nth Fourier Coefficient in the L? sense is

Ty, = f(x)g(x) cos(nx) Z / b; cos(jz) ey, cos(ma) cos(nx)

7,m=0

o]
=T E bjcn,j
Jj=0

where f = Y bjcos(jz) and g = ) ¢;cos(jz) and we swapped sum and integrals thanks to uniform
convergence of each sum. So in particular, we have

Ay = E ban,j

Therefore, we have
Do+nan <3 D 0 Vi n2bllen|
n n J

Now we use that

V142 <14+ (n—j)2 + 1+ 52
to get

S o VI+r2byllen sl S VT (0= 5)lenslIbil + V1 + 52[bjlen ]
J J

So it follows that (x + y)? < 222 + 2y? with taking z,y as the above sums that

2 2

2
S ViERblien sl | S [ VIF @ Dleaslibs] |+ (VI 72Ibllens)
J J

so by Young’s Convolution Inequality we have that

Y@+ n)anl S llballes IV nleallle + 1V +n2[balll2]enller < oo

n

so fge G 0.

Problem 5. Let ¢ : [0,1] — [0, 1] be continuous and du be a Borel Probability measure on [0, 1].
Suppose u(¢p~H(E)) =0 for every Borel Set E C [0,1] with u(E) = 0. Show that there is a Borel
measurable function w : — [0, 00) so that

/f o ¢(x)du(x /f wu(y)  for all continuous functions f : [0,1] - R
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Proof. Let E be Borel measurable subset of [0, 1] then define f = xg(x) then we have fo¢(z) = xg-1(r)

1 1
/ f o d(x)dp(z) = / Yooy (@)du = p(¢~\(B))
0 0

This implies for any continuous function f : [0,1] — R that

1 1
/ fod(w)duz) = | fdo.
0 0

where we define the push forward measure ¢, (E) := u(¢~1(E)) by the definition of an integral. Now we
see from the condition of ¢.(FE) = 0 whenever u(E) = 0 that there exists an w € L'(du) such that
do. = wdp

i.e. for any continuous function f we have
1 1
| fodtaduta) = [ fmuwdnt)
0 0
and since ¢, is a positive measure, we know w(y) > 0 and its set where its +00 is a g null set, so we can

redefine it on this null set to make w(y) : [0,1] — [0, 00).
g

Problem 6. Let X be a Banach Space and let X* its dual space. Suppose X* is separable, show
that X is separable. (You may assume the axiom of choice).

Proof. Let {f,} be a countable dense subset of X*. For each n € N we can find an z,, € X such that

Falan) 2 S 1fal

So define D to be the set of all finite linear combinations of x,, and E to be the set of all finite rational
linear combinations of D. It suffices to show E is dense since D is a countable dense subset of E. Indeed,
assume for the sake of contradiction that D # X, so there is an x € X \ D, so by Hanh Banach there is
a linear functional f € X* such that

f(z) # 0 and fl5 =0
Now observe that

A< F = Fall + 1l < M1f = Full + 2fn(2n)

and as z,, € D we see that

= If = fall + 2fn(@n) = 2f (zn) < 3[|f = full
Therefore, as f,, is dense we conclude that
lfI[=0

i.e. fis the zero function, but this contradicts the fact that f(z) # 0. Therefore, we must have D = X,
so it follows that F is a countable dense subset of X.
O

Problem 7. Find an explicit conformal map from the Upper Half Plane-Slit along the vertical
segment

{z € C:Im(z) > 0}\ (0,0 + ¢h]
for A > 0 to the unit disk D.
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Problem 8. Let f: C — C be an entire function. Show that
If(2)] < Ced?l zecC
for some constants C, a if and only if we have
|F™(0)] < M n=0,1,..

for some constant M.

\. J

Proof. Note that as f is entire we have

n

> £(n)
n=0

Now for the < direction observe that |f(™(0)] < M™*! implies

> Mt N e |MZ‘“
@< S e = 3 P e
n=0 ' n=0 :

so this direction has been shown with C' = a = |M].

For the reverse direction, note that Cauchy’s Estimate implies for any R > 0

IO - s 1R < 0@

n! 7 2€0Br(0) R®
By taking derivatives on the final expression, we see that it is minimized when R = n/a i.e.
[ £(n) | < Cﬁ
an = |F0)|/n! < € exp(n)

now stirling’s approximation gives

n n
<\/ﬁa< a

~ o oal Y (n-1)

an

Therefore, we have

oo oo an
£G) = FOI€ D anlel” £ 3 el
n=1 n=1 :
In particular,
IF(0)] < na™ < (2a)™
as desired. O

Problem 9. Let Q C C be open and connected. Let (f,,) be a sequence of injective holomorphic
functions defined on 2 and suppose f,, — f locally uniformly in 2. Show that if f is not constant,
then f is injective in €.

Proof. Let w € Q and define A := {z € Q\ {w} : f(2) = f(w)}. Notice that A is closed since
A= f~Y(f(w)) and f is continuous. So it suffices to show A is open in O\ {w} to conclude the problem
since 2\ {w} is still connected (since 2 is open). Indeed, let zp € A then we have for 0 < ¢ < 1 that
B.(z9) C 2 and w ¢ B.(zp) and the argument principle tells us

1)~ fw)
/|z—z0|=s f/(z) de=1

where we are assuming for the sake of contradiction that f(z) is not identically f(w) in a small ball

around z, so as zeros of holomorphic functions are isolated we can find a small enough £ > 0 such that
f(z) = f(w) # 0 on |z — z9| = € which allows us to apply the Argument Principle.
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But notice that f,,(2)—fn(w) = f(z)—f(w) (which by Cauchy’s Integral Formula implies f (z) — f/(z2)
uniformly on B.(0)) uniformly on B.(z) and as f,, is injective the argument principle tells us that

fn(2) = fo(w) Y=
/|z zo|=¢ fTIL(Z) I 0

so uniform convergence tells us

0= lim dz>1

n—oo

B ulw) . [ SO =)
|z—2zo|=¢ fvlz(z) |z—zo|=¢ fl(z)

which is our contradiction. Therefore, it follows that A is open and closed. Therefore, as Q \ {w} is
connected we know that either f(z) = f(w) on Q\ {w} or f(z) # f(w) for any z € Q \ {w}. Therefore,
it follows that if f is not injective i.e. f(z9) = f(w) for some zp # w in  then f is identically f(w) in
Q. ]

Problem 10. Let B be the vecor space defined as follows
B:={u:C— C wu holomorphic and // lu(z + iy)|267("”2+92)dfcdy < oo}
C

Show that B becomes complete when we introduce the norm

] 2 := //|u i) e @) dady

Proof. Let 0 < r < R < oo then we claim that there is a C' = C(r, R) such that for all entire functions f
that

[fllLee(B,0)) < CIlISII
Indeed, notice that if § := Z£~ then if z € B,(0) then Bs(z) C Br(0) and so we have by the mean value

property that
7] e
= — u(z + iy)dxdy
w02 ) JBs(z) o+

2// u(z + iy |dxdy<—// u(x + 1y)|dxdy
71'6 BR(O

so Holder’s inequality gives
)2 < )2
dzd

which implies since the right hand side is 1ndependent of z € B,.(0) that

sup |u(2)]* < — // x +iy)Pdedy = — // u(z + iy) e R dzdy
2€B,(0) d Ba) 5 Br(0)

gw//w ule+ ig) e drdy < O, B)
R

so we have

where C(r,R) = 7((54}:7%2 Now take R = 2r. This implies if {u,} is Cauchy in B that we have local
uniform convergence since

sup  |un(2) — um (2)| Sr l|tn — um|] = 0 as n,m — oo
z€B,(0)

this implies there is an entire function u such that u,, — wu locally uniformly. Then as {u,} is cauchy, it
is a bounded sequence so Fatou’s lemma gives

// |u(z + iy)| —(@+y?) dxdy < hmlnf// |tn (z + iy)|267(m2+92)dxdy <M< o
C

n—oo
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where M := sup,, ||un||. That is v € B. Now by local uniform convergence we know that along any
compact subset K C C that

// u(z + iy) — un (2 + iy)|2e” @) dady — 0
K

And then observe that from the triangle inequality that

1/2
<// lu(z + ty) — un(x + iy)|26_(“2+y2)dxdy> <
C\K

1/2 1/2
<// U (2 + 1Y) — up(z + iy)|26(xz+y2)dxdy> + (// |u(x + iy))Ze(IQJ“?f)dmdy)
C\K C\K

The first term is small due to the sequence being Cauchy and the last term is small when the compact
set is big since ue~V***t¥* ¢ L2(C, dxdy). Therefore, ||u — u,|| — 0 and B is complete.

Alternatively It is also easy to see if we define du := e*(ﬁ*yz)dzdy to see that B is a closed subspace
of L%(C,du) due to the L? to interior L estimate. And since {u,} is cauchy in L?(C,dy) it converges
to some limit in L2, which combined with pointwise convergence along a subsequence implies u is the
limit in L?(dp), which allows us to skip our estimates above to show ||u — u,|| — 0.

O

Problem 11. Let Q C C be open, bounded, and simply connected and u a harmonic function on
Q such that u > 0. Show the following: for each compact set K C € there is a constant C'x > 0
such that

3 < C inf

Proof. As Q is simply connected open subset of C that is not all of C since €2 is bounded, we know by
the Riemann’s mapping theorem there is a conformal map ¢ : D — Q. Therefore, v(z) := uop is a
harmonic function on the disk. Hence, on any 0 < r < 1 we know by the Poisson Kernal Formula that
for z € B,(0)

) 1 [2 p2— |z
v(z) = — —_—
27 Jo—o |rei? — 2|2

1 [ r? — 2|2

21 oo (ret® — z)(re= — %)

v(re??)dz v(re?)dz

so the triangle inequality implies
O N e £ ) Gl 1) r+ |z
v(z) = |v(z)| < —/ v(re'?) do = v(0)
21 Jo=o (r—12?) r— |z

where we used the mean value property. And similarily, we also have

G T E N e
/O—< ) =

v 2 5 GEREE

2T

i.e. for any z € B,(0) we have
r+12
r— |zl

r— 12
- |Z|v(0) <w(z) <

so if |z| < r/2 this implies there are positive constants C; = C1(r) and Co = Ca(r) such that
C1v(0) < v(z) < Cyv(0)

v(0)

Hence,

Civ(0) < inf
10(0) < zeéf‘/z(o)”(z)

so it follows that

2 .
sup v(z) < —=— inf v(z
2€B,./5(0) (2) C1 2€B,/2(0) (2)
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this immediately implies for any compact set K C D that
sup v(z) < C}, inf v(z
sup o(2) < O inf v(z)

Now as conformal maps map boundary to boundary imples if F' C 2 is a compact set then there is an
1> R > 0 such that F' C ¢(Br(0)) and taking K = Bgr(0) above gives

sup uop(z) <Cg inf wop(z)
2€BR(0) 2€BR(0)

which implies since F' C ¢(Bg(0)) that

supu < Cp inf u
zEF zeF

as desired.

Problem 12. Let Q:= {z € C: |z| > 1}. Suppose u : Q — C is bounded and continuous on U
and is subharmonic on €. Prove the following: if u(z) < 0 on |z| =1 then u(z) <0 on Q.

Proof. This is the standard e-log trick. Indeed, fix € > 0 and notice log|z| is Harmonic on {2 then define
ue(2) :=u(z) — elog|z|

and observe that as u is bounded that

lim w.(z) = —o0
|z]| =00
so we for R sufficiently large we have that the subharmonic function u.(z) < 0 on 9{1 < |z| < R} so
u:(z) < 0 on {1 < |z|] < R} by the maximum principle. So letting R — oo shows u.(z) < 0 on  so

letting e — 0 lets us conclude that u(z) <0 on .
O
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11. SPRING 2015

Problem 1. Let f € L'(R). Show that

n’ (k+1)/n
/ flx)dx
k/n

lim
n—oo
k=—n?2

- [ \#@)ds

Proof. We will show this problem first for the dense subclass C°(R). Indeed, if f € C°(R) let K be a
compact set such that supp(f) C K. Let Z := {z € K : f(x) = 0} and notice that since f is continuous
and K is compact that Z is compact. So there exists z1,..,2y € Z such that Z C Ujvzl B(1, zj).

Now notice that if

(k+1)/n (k+1)/n
[ swa £ [ )i
k/n k/n

then by continuity that f must change signs on [k/n, (k+1)/n],so ZN[k/n,(k+1)/n] # 0. Fixann € N
and let I be the index in —n? < k < n? where ZN[k/n, (k+1)/n] # 0 and defining I, := [k/n, (k+1)/n].

Notice that this implies
N
U clUB@z2)
kel j=1
so this means |I| < 4Nn since each B(2, ;) covers at most 4n intervals of I;, since I, has length 1/n and
there’s IV of these balls. In particular, now we see

n® | p(k+1)/n nt1/n
S\ s [ ) = (S| [ s - [ e

so if € > 0 is arbitrary, we can from uniform continuity find an N so large such that if n > N then

[z -yl <1/n=|f(z) - fly)l<e
Taking n to be sufficiently large, we see that for « € Iy, that |f(z)| < e. Therefore, we obtain since each
interval Iy, is of length 1/n and height at most &
<N 2 =28 <8N 0
kZEI - =21
since ¢ is independent of N. So we have

(k+1)/n

k=—mn2 /n

Therefore, the problem is true for the dense subclass C2°(R). Now by density we can find C°(R) > f,, —
fin L*(R). Then we have

’I’L2

n+1l/n

— lim (@)l = / () ldx

n—oo —n

lim

n’ (k+1)/n
[ @)~ [ |fa)lis
k= —n2 k/n R
n’ (k+1)/n n? (k+1)/n n? (k1) /n
<y / ()| — / fyda||+]] 3O / () —/\fm(x)| o
k=—n2 |/ k/n k=—n2 |/ K/n k=—n2 " k/n R

+\ [ 15 = 1o

notice that the second term can be made small for large n and the third time is small for large m, so it
suffices to make the first term small. Indeed, observe the first term by the reverse triangle inequality

n+1l/n
< / £(@) — ()| < / 1F(&) = fu(a)]

—-n
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which can be made small for large m, which finishes the proof.
Remark: It is probably significantly easier to prove this statement first for the dense subclass of step

functions.

O

Problem 2. Let f € L? (R") and g € L} .(R™). Assume that for all real r > 1, we have

loc loc

[ @< [ s
r<|e|<2r r<|e|<2r
Here a,b € R are such that 3a + 2b +n < 0. Show that fg € L*(R")

Proof. Notice that

[ golar= [ igsiae S [ dselas =0+ D)

and Holder’s gives

o0

(I1) <Y Ifl e <joi<zm ) gl e @m <o <zmn) 1] Lo (2 < g <2m1)

m=0

5 Z 2m(a/2+b/3+n/6) < 00

m=0
where we used |[1]|z6(2m <|z|<omt1) S 2mn/6 gince the volume of a sphere in R” grows like " and that
(3a+2b+n)/6 <0 to get the sum converges. And notice

/ _ ol < WAl llllosqaisn Wlsaizn < o

since f € L? (R") and g € L} (R"), so it follows that

loc loc
[ 1glde < oc
Rn

Problem 3. Let f € L}, .(R™) and let
1
Mi(e)imsup s [ (f(wlay
( ) r>0 m(B(?", x)) B(r,r)‘ ( |
be the Hardy-Littlewood maximal function.
(1) Show that

mlfe: M) > s}) < /|f> @ >0

where the constant C,, depends on n only. The Hardy-Littlewood maximal theorem may
be used.
(2) Prove that if ¢ € C1(R), ¢(0) =0, and ¢’ > 0 then

/Sp(Mf(x))dx < Cn/lf(a:)l (/0<t<2|f($)| (p/t(t)>

Proof. Let us fix s > 0 and decompose

[(@) = f(@)X|p@)<s/2 T F(@)X|f2)>s/2 = 9(x) + h(z)
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then notice that for any r» > 0 we have
1

1 1
B0 D O B S S 337 Ly, PN

S
< 7+7/ h(y)|dy
2 m(B(r,x) B(r,w)‘ ( )|

since |g| > s/2. So if
1

mwmméwy@@>s

this implies that Mh(z) > s/2, so in particular {z : M f(z) > s} C {z : Mh(xz) > s/2}. And by the
Hardy-Little wood theorem we have there is a K,, a constant that depends only on n such that

m{z: Mh(x) > s/2}) < 218{" /R|h(x)|dx = Cn |f(2)|dx

S JIfI>s/2

by the definition of A where C,, = 2K,,. Thus we have

MWMMDwSQAwN@M

S

as desired.

For the second part, we have by the Fundamental Theorem of Calculus that and ¢(0) = 0

M f(x)
o(Mf(2)) = / S (1)t

/gp(Mf(x))dx < //cp’(t)X[o7Mf(x t)dtdx —/ / X[0,M f(z)]drdt By Tonelli

where Tonelli is justified by ¢’ > 0.

Amwmm&mMﬂ spc, [ 2] /;wJﬂ@Ww

2)|X| ot 2dadt = C,, /|f </°° ¢'(t) )dm —c, /|f <~/0<t<2|f(m)| w’t(t)dt> dx

]

SO

0

as desired.

Problem 4. Let f € L} (R) be 2r-periodic. Show that linear combinations of the translates
f(z —a), a € R are dense in L((0,27)) iff each Fourier coefficient of f is # 0.

Proof. Denote f (n) as the nth Fourier coefficient of f.

= Assume that {f(z — a)}aeR is dense in L'. Assume for the sake of contradiction that f(n) = 0.
For any {al}l L and {¢; )Y, let g(z) := vazl ¢if(z — a;). Then observe by Parsavel’s identity that we

have fo o(x)de = > nen @(n)o(n) so
27
| stwre e = gn) 0
0

But this implies since functions of the form g(z) are dense in L' that [|e"]| 12 (j0,2) = 0 but its not 0,
which is our contradiction.
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< Let S := span{f(x — a) : a € R} then if S # L'((0,27)) we have by Hanh Banach the existence
of £ € (L*((0,2m))* = L>°((0,27)) such that ¢|s = 0 but ¢ is not the zero function. So in particular, we
have by Risez Representation Theorem a g € L°((0,27)) such that for any u(x) € L'((0,2m))

E(u):/oﬂu(m)g(x)dx

Then we have
27

(fxg)a) =(f(x —a)) = | (z —a)g(z)dz =0

So we have that by taking the Fourier Series of (f * g) and using uniqueness of the Fourier Series gives

f(n)g(n) =0
and as f(n) # 0 for any n we deduce that g(n) = 0 so g = 0 i.e. £ is the zero function, which is a

contradiction.
O

Problem 5. Let u € L?(R) and let us set
Ula§) = [0 Putyhy, o e R

Show that U(x,€) is well defined on R? and that there is a C' > 0 such that for all u € L*(R), we
have
[ [0 ope € anic=c [ ut)Pay

Proof. Notice that by Cauchy-Schwarz that

1/2
|U(l‘7f)| < ||u\|L2(R) (/ |e—(9€+i§—y)2/22dy> < o0
R

since the Gaussian is in L2, so U is well defined. Now we will use Plancheral’s Theorem to prove the
second statement. Observe that

Ula,€) = e=="/2-in6+€/2 / e~V /2y (y)e Ve dy

Define the F,(y) := e~¥"/2tv%y(y) then
Uw,§) = ¢ /282y ()

[ [0 epeanie = [ [ |0 pagas

where we swapped integrals due to Tonelli since every term is non-negative. So Plancheral’s Theorem
gives
- / / e Fy(y) dyda = / / e Y2y (1) 2dyda

- / () / OV dudy

= [ uty) Py
since fe’(””*y)de = fe*(y)zdy and C = fe’dey as desired.

so we have that

Problem 6. When B; and Bs; are Banach spaces, we say that a linear operator T : By —
By is compact if for any bounded sequence (z,) € Bj, the sequence (Tx,) has a convergent
subseqeuence. Show that if T' is compact then Im7T has a dense countable subset.
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Proof. First note that T is continuous. Indeed, if it was not then there is a sequence {z,} such that
[|zn]| =1 and

1T ()| =
but then {T'(x,)} cannot converge along any sub-sequence, which is a contradiction to compactness. So
T is continuous.

Now we claim if D,. is a ball of radius r > 0 then T'(D,.) is pre-compact. Indeed, given any y,, € T'(D,.)
we can find z, € D, such that ||z,|| < r and T(z,) = y,. By compactness, we can find a subsequence
Zp, such that T'(z,,) converges to some limit y. So in particular, y € T(D,.), so T(D,.) is pre-compact,
so T(D,) is totally bounded, which implies T'(D,.) is totally bounded, which implies its separable. So we

have
T(By) = |J T(Dn)
neN
and each T'(D,,) is separable, so the entire space is separable.

Problem 7. Let C* := {2z € C: Im(z) > 0}. Suppose f, : D — CT is a sequence of holomorphic
functions and f,,(0) — 0 as n — co. Show that f,(z) — 0 uniformly on compact subsets of D.

Proof. Write f, = u,, + iv, where u, and v, are the real and imaginary parts of f,, respectively. Note
that v,, > 0 since f,, maps to CT. Therefore, by Harnack’s Inequality we have for any compact set the
existence of a constant C' = C'(K) that depends on the compact set K only such that

sup vp(2) < C(K) nf vy (2) < C(K)v,(0) =0
2€K ze

so it follows that as n — oo, we have that v,(z) — 0 uniformly. Therefore, by Cauchy’s Estimate it
follows that Vv, (z) — 0 uniformly on K, so by the Cauchy-Riemann equations we get that Vu,(z) — 0
uniformly on K. In particular, the Fundamental Theorem of Calculus then implies u,, — 0 uniformly on
K since lim,_, o u,(0) = 0, so we have that f,, — 0 uniformly on any compact subset as desired.

|

Problem 8. Let f: C — C be holomorphic and suppose
sup{|f(z)|®> +|f(iz)]?} < oo and |f(2)| < el forall z € C
z€R

Deduce that f(z) is a constant.

Proof. This will follow from the Phragmen-Lindeolf method. We will prove on each of the four half
planes. Indeed, define Ry = {2z € C : Re(z) > 0,Im(z) > 0}. Then notice that for £ > 0 if we define
g:(2) == f(2)(exp(—e(e*?2)3/?)) where 23/2 is the branch with the negative real axis removed. Then
(€792)3/2) = exp(3/2(log | 2| + iArg(z + ¢))) = |2|*/? exp(3/2iArg(z + ¢)). So we have
[(exp(—e(e"2)*?))| = exp(—¢lz|*/? cos(3/2Arg(z + ¢)))
Note that since z € R; we have
0 < Arg(z) < 7/2 = 3/2¢ < 3/2Arg(z + ¢) < 3m/4+ 3¢/2
As we want 0 < cos(3/2Arg(z + ¢)) we see we need
3/2¢ > —7m/2 and 37/4 + 3¢/2 < 7w/2
For instance take ¢ = —m/4 gives the desired bound, so we have a ¢ > 0 such that § < cos(3/2Arg(z —
w/4)). This implies
19:(2)] < 1f(2)| exp(—e]2*/25)
and we have that g. is bounded on OR; and as |f(z)| < el*| it follows that |g.(2)| — 0 as |z| — co. So for
r > 0 large enough we have that |g.(z)| < M := sup,cp{|f(z)]* + |f(iz)]*} < 0o on 0B,(0) N Ry URy,
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so it follows from the maximum principle that on B,.(0) N Ry that |g-(z)] < M and letting R — oo lets
us conclude

|9:(2)| < M on Ry
and letting e — 0 using that g.(z) — f(z) lets us conclude that |f(z)] < M on R;. Repeating this

argument on the other 3 half planes lets us conclude that f is a bounded entire function, so it is constant.
O

Problem 9.

Problem 10. Determine

/— y
f()I‘ aH T e R. .]Ubtify all manipulati()llb.

Proof. Note that this function has poles at z = i and z = = + 7. And that

;) = lim ! = .
Res(f,i) = lim Cri(ltz—2P) 20 +z—P

/) = lim - = =
Rl ) = R e - e (=) 2@

Define v := Re® for 6 € [0,7] and y_r_ g := —R(1 —t) +tR for t € [0,1] and y(R) := Yr + Y—R—R-
Then

dz - ™ Ret?
| o= ), mrmen e

and
R

n< [ e R

and notice that as R — oo that
1

[1— |z — Rei?|?|

since the denominator approahces co as R — 0o so we can find a C' > 0 thanks to continuity to get

— 0

R
I| <27C'———
||_7TCR271—>0

Therefore,
I / dz /°° dy
1m =
Rooo Ly T+ 22) 1+ [ —2?) o (T+92)A+ [z —y]?)

and by the residue theorem we have that

dz 1 1 1 1 2m
A(R) (1+22)1+ [;E—zP)dZ -7 ((1+ [z —1]?) i (x+2z)(m)> :ﬂ-(x? i x2+2ix) T 2244
]

Problem 11. Let Q := D\ {0}. Prove that for every bounded harmonic function v : Q@ — R
there is a harmonic function v : 2 — R obeying

Ju  Ov ou ov
=_—and — =——

dr Oy oy Jr
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Proof. We will show that u is the real part of a holomorphic function. Define g(2) := dyu — i0yu then
g is holomorphic on € since it is real differentiable in the real sense and we have that it satisfies the
Cauchy-Riemann equations. Indeed, we have
Jg 2 ) 1 ) 2
e Ot — 10, u and ;gy = —i0,,u — 0 ,u
and as u is harmonic we deduce that 9,9 = 1/i0,g so g is holomorphic on Q. Now let ¢ := Res(g, 0) which
exists since g is holomorphic on the annulus {0 < |z| < 1}. Then we have from the Residue Theorem
that for any closed curve v C D that
1
/g(z) —c—dz=0
~ z

so it follows that h(z) := g(z) — c% has a holomorphic primitive f on . In particular, it follows that
h(z) is holomorphic on D since h = f’(z). And notice that this implies

Re(f(2)) = u — clog ||

so u—clog |z| is harmonic on D. So from the maximum modulus principle it follows that |u—clog |z|| < C
where C' is an upper bound for u since log |1] = 0 and this is a bound on dB;(0). This implies ¢ = 0 since
if ¢ # 0 we have

dg

lim |u — clog|z|| = 00
z—0

since u is bounded. Therefore, u is the real part of the holomorphic function f(z), so it follows that it
has a harmonic conjugate, namely Im(f(2)).
([l

Problem 12. Find all entire functions f : C — C that obey
F'@)?+ f(2)" =1

Prove that your list is exhaustive.

Proof. Note that this implies
(f+if)(f —if) =1
so f'+if and f' —if omit the value 0, so there exists an entire function h(z) and g(z) such that
f'+if =exp(h(z)) and f' —if = exp(g(z)). From
(f' +if)(f —if) =1= g(z) = —h(2)
So we have that f' +if = exp(h(z)) and f' —if = exp(—h(z)). Therefore, we obtain that
exp(h(z)) — exp(—h(z ) .
1oy - TR~ OBHE) _ 7
plugging this into the ODE gives for w := h(z)/i that
—cos?(w) (W (2))? + sin?(w) = 1 = — cos?(w) (M (2))? = cos®(w) = (h'(2))* = -1

so we have
h'(z) = +i = h(z) = +iz + ¢
where ¢ € C, so we have that
f(z) =sin(z + ¢) or sin(—z + ¢)
for any constant ¢ € C. ]
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12. FALL 2015

Problem 1. Let g, be a sequence of measurable functions on R? such that |g,(x)| < 1 for all =
and assume that g, — 0 a.e. Let f € L'(R?). Show that the sequence

Fraue)i= [ fa =)o)y 0

uniformly on every compact subset of R,

Proof. We will show that when R > 0 is large enough that f * g,, uniformly converges to 0 on Br(0)
which will imply the claim. As f € L'(R?) we see that it is uniformly integrable. That is if £ > 0 then
there is a § > 0 such that if m(E) < ¢ then

/ f(@)ldz < e
E

and by the translation invariance of the Lebesgue measure this implies

[ 1@ wlds <<

for all y. Now by Egorov’s theorm we can find a K C Bg(0) with m(Bg(0) \ K) < 6 and g, — 0
uniformly on K. Then observe that if z € Br(0) that we have

£roal@ < [ 1f@-pa@ldy+ [ ife-yldy+ [ = pldy
K Br(0O\K R4\Br(0)
As g, — 0 uniformly on K we can find an N such that if n > N then ||g,||z~x) < € which implies
<clfllpmn +et [ 15— y)ldy
RI\Bg(0)

and we have fRd\ER(o) |f(z —y)|dy = f{lmfy\zR} |f(y)|dy then if x € B,.(0) for 0 < r < R we have for
ye{lr —yl= R}

yl >z —yl— ol > R—r = R—r
so we have {|z —y| > R} C {|y| > R —r}. Therefore,

[ s [ il
{lz—y|=R} ly|>R—r
So as f € L' we can find an R > 0 such that if R > R then

/ f(@)ldr < e
|z|>R

choosing such a large R implies for all x € B,.(0) we have
[fxgn(@)| <ellfllp +e4+e=Ce

which implies uniform convergence on every compact subset.

Problem 2. Let f € LP(R), 1 < p < 0o, and let a € R be such that @ > 1 — 1/p. Show that the

series
s n4+n="¢
S [ ety
n=1“"

converges for a.e. z € R

Proof 1
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Proof. Notice that by Tonelli and Holder’s Inequality for sums that

/9 / 1 1/p
Z/ flaty |dy—zn /|fer z2+n) |dz<<Zn q) (;/0 |f(x+n z+n|pdz>

where 1/p+ 1/q = 1. Notice as a > 1 — 1/p this implies —ag < —1 i.e. the sum to the left converges so

00 1 1/p
=C <§:1/0 |f(m+n_az+n)|pdz> = g(x)

So now it suffices to show that if j € Z that

Jj+1
/ lg(@)Pdez < oo
J

Indeed, observe by Tonelli as all the integrand are positive that

j+1 j+1 20 J-’rl
/ |g(x)\pdx:K/ Z/ lflx+n"%2+n |pdzdx—KZ/ / flea+n"%+n)Pdadz
J J
00 1 jt+1l4n+n=%z j+14+n+n~ “z
—KY / / | (w)|Pdwdz < K / / | (w)|Pdwd
n=1 0 Jj+n4+n—9z Jj+n4+n—9z

Then notice that the intervals [j+n+n=%z, j+1+n+n"%z] and [j+n+1+(1+n) @z, j+24+n+(14+n) "]

are disjoint, so we have
1
<k [ [1#@P =Kl <o
o JRr

so the sum is finite. O
Proof 2

Proof. Fix k € N then notice that it suffices to show that

k+1 o0 n+n—%
/k S [ Watyldy<oc
n=1v"

to get the desired claim. So Tonelli applies since all the theorems are non-negative to get

k+1 o© n+n~" k+1 oo
LX) weriiwte= 50 [ 156nn ute
k n=1vmn k
k+1 00 k41 oo
= /k / |f |X [n,n+n—2] (Z - LU dde - / / |f ‘X[n—i—w n+a:+n_“]( )dZdiC

k41 o0
/|f ‘/ ZX[ner n+z+n— a( )dmdz

Now we claim that we have the bound

k+1 o0
/k Z Xinta.ntatn—o](2)dr S min(|z — k7%, 1)

n=1

Indeed, observe that

k41 oo k+1 oo 0 k+1
A Z X[n-ﬁ-mm-}-w-ﬁ-n‘“](z)dq’. = /I; Z X[n+z,n+z+n—a] (Z)d.’ﬁ = ZA X[z—n—n—9,z—n) (x)dx

n=1 n=1 n=1

Now we note that the integral is zero when k£ > 2z —nor k+1 <z —n —n~% So the region where the
intgeral is non-zero is contained in k +n < z and (n+n"%) > z — (k+ 1). Notice that n+n"% > n so
the region where the integral is non-zero is contained in

nelz—(k+1),z—k)
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so we have that

[e%S) k+1 z—k
Z/ X[z—n—n—a,z—n)] (ﬂ?)d.’L‘ < Z min{'”l_a7 1} < mln{‘z - kl_a7 1}
n=1"Fk z—(k+1)

From which it follows that by Holder

k+1 o0

/le(Zﬂ/k > Xpntamntatn-a)(@)dzdz < || f||o|| min{|z — k[, 1}|| o
n=1

and aqg > (1 —1/p)qg = (1/9)qg = 1 where q is the Holder conjugate of p, so it follows that the right hand

side is finite.
O

Problem 3. Let f € L], .(R%) be such that for some 0 < p < 1, we have

[ f@lg@is
for all g € Co(R?). Show that f =0 a.e.

< lgllre

Proof. The key is to notice that if a set £ had measure m(FE) = § < 1 then m(E)Y? < m(E) so we
want to first plug in g to be the characteristic of a nice set say a cube and keep cutting the cube up into
smaller pieces which strengthens the bound to show f =0 a.e.

Now let R be a rectangle unioned with its interior. So as R is closed, we know that yp is upper
semi-continuous, so it can be approximated from above by continuous functions. But as R is compact
we can make these approximations g, € Co(R?) and we can assume g, > 0 with yg(x) = inf,>1 gn ().
Therefore, by the monotone convergence theorem since f; € L'(R?) we have

lim ‘ [ r@aners] = \ [ s

n—oo
and for each n we have again by the monotone convergence theorem that

| [ 1@t

<Algnllp = lIxrllp

so for any rectangle R

< m(R)l/P

/R flx)dx

Now we decompose R into smaller rectangles. Indeed, fix an N € N and cut R into equal 2V pieces with
each sub rectangle labeled R; for 1 < i < 2N Then we have

f(z)dz| = QZN: f(z)dx SQXN: f(z)dx
R = /R =1 /R

as N — oo since 1/p > 1. Therefore, f integrates to zero on every rectangle, which implies since every
open subset of R? is a countable union of rectangles that f integrates to zero on every open set. So in
particular, f =0 a.e. O

<3 m(R)P =2V ((m(R)/2V)/P) = 0

i=1

Alternative Proof

Proof. As f € L} (R%) we know that the lebesgue points of f are a set of full measure. Fix y € E then

loc

observe that if g(z) = mxjg(ny)(x) then there is a sequence of functions g, € Co(R?) such that
In < gnt+1 < g and g, — g pointwise (since g is lower semi continuous). Then

< ([ toypas)”

[ F@n@)ie
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so the monotone convergence theorem gives

1/p
im 2)gn(x)dx )P — (m(B(r.y)) /P!
| [ @] < ([ @) = oo
And note that |f(x)gn(x)| < |f(z)g(z)| € L'(R?) so DCT gives us
- z)dx m(B(r,y))/P1
= BT o 1@ < (B0

Note that as 0 < p < 1 that 1/p — 1 > 0 so we obtain

f(@)g(x)de
]Rd

, 1 _
I8 BT o] =

but as y € E we obtain |f(y)] =0, so f =0 a.e.

Problem 4. Let H be a separable infinite-dimensional Hilbert space and assume that (e,) is
an orthonormal system in H. Let (f,) be another orthnormal system that is complete, i.e. the
closure of the span of (f,) is all of H.
(1) Show that if >°°° | || fn — €n]|* < 1 then the orthonormal system (e, ) is also complete.
(2) Assume that we only have Y >~ | ||f, — €n||> < co. Prove that it is still true that (e,,) is
complete.

Proof. Let E := span(ey, ea,...) then it suffices to show E+ = {0} so fix any # € E. Then as (f,) is a
complete orthonormal system we know that

oo

fon

so motivated by this, we define y := > ° | (2, f,)en. Now we know that = L y so

S

[l = yl? = ll2]* + [|y]?

but we also have

0o 0o 1/2 00 1/2
lz = yll < S 11 f) (fo — en)ll < <Z(w,fn)2> <Z|fnen|2>

n=1

so in particular, we have

le = yll* < (Z , fn) ) = |zl

where we used Cauchy-Schwarz and that (f,) is a complete orthonormal system. In particular, this

implies ||y||* = 0, so by Bessels’ Inequality we conclude |(z, f,,)| = 0 for all n, which means x = 0 i.e.
E+ ={0}.

For (2) we define Ey := span{en,eny1, ..., } and Fy :=span{fn, fN+1, ..., ;- We know that we have
H=FEn® E]J\}

We also know that {ej,...,en} C Eﬁ, so it suffices to show there there is some N such that dim(Eﬁ) <N
to conclude that {e;} are a complete orthonormal system. First we show that E5 is finite dimensional
when N is large enough.

Indeed, for any closed subspace V' C H define my to be the orthogonal projection operator onto V.
Then we have

Imey (2) = 7y (2)]| = || Z ,en)en = (@, fo) full
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= || Z 2, fa)en — (@, fo) o+ (@ 0 = fa)enll < D (@, fa)l(len = ful) + 11 D (@, en = fa) fall
n=N n=N n=N

Z ;U fn Hen fn|| Z || x, e, — || )1/2

00 1/2 00 1/2 00
< (Z I(w,fn)|2> (Z ||€n—fn||2> 2l e = fal Y2 =0
n=N n=N

n=N
so we see that the operator norm of ng, — 7, converges to 0 as N — oo. Note that in the above
inequalities we used Cauchy Schwarz and Pythagerous Theorem for sums.

Note that we also have
H=Fy®Fyxand H=Ey® Ex
where dim(Ey) = N since {f,} is complete and as Tpy =id — g, and 7, + TpL = id which implies
we can choose an N so large such that

Hﬂ'Fﬁ - 71'E]%,”oz) = lmex — TExllop < 1/2

Now we claim this implies dim(Fy) < dim(E5%) = N which lets us conclude. Indeed, observe that for
any N + 1 vectors {z;}Y+" in Fi there is some aj,..,an1; such that WEZLV(ZZN:T a;z;) = 0 since Ex
has dimension N. But then

N+1 NA41 N+41 N1

*|| Z aii| > [|m ( Z aix;) = 7h (Y cama)|| = || Y o]
=1 i=1

ie. ZNtl a;r; = 0 so Fy has dimension at most N linearly independent vectors which lets us conclude
the problem since then {f1, ..., fx'} is a basis for F5- and the closure of {fx 41, ...} is a basis of Fiy. Hence,
the closure of {f1, f2,...} is a basis of H so it is also complete. |

Problem 5. Show that the Holder continuous functions form a set of first category (a meager
set) in C([0,1]).

Proof. Use C'* to denote the space of a Holder continuous functions. Then if 8 < o and f € C* we have

|f(z) = fy)l _ 1f@) = f)l f(z) = f(y)| am
|x_y\ay |z — y|P(a— ﬁ)—Cém_iy\BySC'x*m P<K

since a — 8 > 0 and x,y € [0,1], so we have f € C®. Therefore, the space of Holder continuous functions
can be written as

U (o, 1])

n=1

Then notice that
c'/™([0,1]) U {f Al fllern < M} = U Ey

=0 =0

If(w)*f(y)\

where |[f[|ca = || f||Le + sup, 4, w—ae - And then we claim each Ey; is closed. Indeed,

|f($)_— fiy” < ||fn_f||L°°+||fn||L°°+ |f(x):fna(z)| + |fn(x)__ fz(y)‘ |f(y):fna(y)|
[z —y| |z =y |z =yl [z =yl

which can be made arbitrarily smaller than M thanks to uniform convergence. So E}; is closed. Therefore,

if f € EM we claim that f 4 |z|/?™) ¢ EM. Indeed, observe at = 0 that for any z > 0
f(@) = (0) + el

|x‘1/n

Nl +

—ococasx —0

since | f(x) — £(0)|/|z|*/™ is bounded and e|z|~'/™ — co. Therefore, EM has empty interior, so the space
of holder continuous functions is meager. |
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Problem 6. Let u € L?(R%) and let us say u € H'/?(R9) if
(1+1¢[7)a(e) € L*(RY)
Show that u € H'/?(R?) iff

dydz < oo

/ u(z +y) — u(y)?

|y|d+1

Proof. Notice by Plancheral and Tonelli that that

u(z +y) — u(y)? o [[L—emey)?
/ [y|d+T dydr = [ |a(¢)] yld+1 WS

So it suffices to show there are C,Cy > 0 such that
|1 _ 627ri§~y|2

g WS Cal €11/2)?

Cr(1+ J¢[*2)?

But as u € L?(R?) we know that @ € L?(R%), so it suffices to prove

1_627r2§y2
o < [ E iy < calé

For the upper bound observe that

/ |1 2'm§ y|2 / |1 _ e27ri§-y|2d +/ ‘1 _ 627ri§~y‘2d
dy = Y Y
|y|d+1 lyg|<1 \Z/|d+1 lyg|>1 |y|dJrl

Using e” — 1 = [ e®dz = [1 — €| < [x[|e"] so

S g e
- Je<a |y[+* ly-€]>1 |y /€|a+1

S+ gl =gl
Now for the lower bound observe that, for any fixed & that there is an orthogonal matrix A such that
A(&/)€]) = en = (0,0,. . Also the FTC also tells us |1 — e”| > |z|.So we have

/|1 SV s [P, (APl el
y|d+T = ly|d+1 |yl
€71y - enl® o

|£|2
> A / o 2 e
wel<in(y-enl>1/2llyl) 1Yl €| <1y en|>1/2/]]] 1Y

|d—l

so we have the desired result O

Problem 7. Assume that f(z) is analytic in {z : |2| < 1} and continuous on {z : |z| < 1}. If
f(z) = f(1/z) when |z] = 1, prove that f is constant.

Proof. Note that f(1/z) is analytic on {z : |z|] > 1} and extends continuously to f(z) on |z| =
Therefore, by Morrera’s Theorem we conclude that

) fe)if z e {]z] <1}
9(2) = {f(l/z) else

is an entire function. However, as f extends continuously to {|z| = 1} f(z) is bounded on D, which
implies f(1/z) is bounded on C \ D. Therefore, g(z) is a bounded entire function, so by Liouville it is

constant which implies f is constant.
d
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Problem 8. Assume that f(z) is an entire function that is 27-periodic in the sese that f(z+427) =

f(z) and
| +iy)| < Cel

for some C' > 0 and 0 < o < 1. Prove that f is constant.

Proof. Note that as el*l > 1 this implies that
|f(z +iy)| < Celvlealzl — creallzl+lyl)

that is f is an entire function of order 0 < o < 1. In particular, we also have g(z) := f(z) — f(0) is an
entire function of order « that is 2m-periodic. So by periodicity we have that if we denote Z as the set of
zeros of g that

{2nr} C Z
Therefore, the zeros of g grow at least linearly. However, we know that if f is not identically O then by
Jensen’s formula that for large enough R that the number of zeros of g on Bg(0) should be bounded by
C|R|* where o < 1, but our zeros grow at least linearly, so which means g must be the zero function i.e.

f is constant.
O

Problem 9. Let (f;) be a sequence of entire functions such that

| [\siepe ety < 0
C

for some constant C' > 0. Show that there is a sub-sequence {f;,} and an entire function f such

that
/ / 1£5(2) — (=) 2e= 2+ dady — 0
C

Proof. We first claim that there is an entire function f such that f, — f uniformly on every compact
subset of C. Indeed, fix an R > 0 then we have for any zy € Br(0) that for any 0 <r < R
1 2

fi(z0) = Py - filzo+ rew)dﬁ

R
/ rfi(z)dr = —/ / filzo + re?)rdfdr
r=0 r=0J60=

i (20) / / z)dxdy
WRz BR(Zo)
so Holders shows

1fi(2)] < f\f//BR(zo)lfj ff//Bsz) i(2)]? < 5;%//@|fj(z)|2€—|2|2

which implies by the given assumptions that {f;(z)} is a uniformly bounded family on every compact
subset of C. Which implies by Montel’s theorem that on every compact subset we have a uniformly
convergent sub-sequence. By taking a diagonal sub-sequence we can find a sub-sequence {f;, (z)} that
uniformly converges to some function f on every B, (0) where n € N. This implies thanks to the Morrera’s
Theorem that f is holomorphic on every B, (0) so it is an entire function. And uniform convergence on
every compact subset implies that

0>//|f 21y 5 ) dmdy%//u * i, oy dedy

so it follows from Monotone Convergence Theorem that

¢ Jin [ [ 1P xn ooty = [ [ 17G)Fe1 dody
n—oo

so we have
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Then we have for any R > 0 that

) . 2 —2|z|? _ ) . 2 —2|z|% ) . 2 —2|z)?
/AMM@]@H@ dMy{/LWMm&)ﬂMe M@f/AwaM@)ﬂMe drdy

and
// |fie (2) — f(z)\ze_mz‘zdmdy < exp(—R?) // | fin(2) — f(z)‘2€_|2|2d$d3/ < K exp(—R?)
C\Br(0) C\Br(0)

thanks to our previous computation. Therefore, if e > 0 we can find an R so large such that [ f(C\BR(o) |fi, (2)—

f(z)|2e_2|z|2dxdy < &/2. And by uniform convergence on Bg(0) we can choose a K so large such that
for any £ > K we have

2
// 1£5 (2) = f(2)]Pe 1 dady < /2
C\Br(0)
This means for any k£ > K we have
[ L1500 = rope = dnay < <

so we have the desired result.

Problem 10. Use the residue theorem to prove that

/OO eoos(@) sin(sin(m))d—x =—(e—1)
0

Use a large semi-circle as part of the contour.

Proof. Fix R > 0 large and r > 0 small. Let vr be the semi-circle centered at the origin of radius R
i.e. yp = Re where 6 € [0,7] and v_g_,_, be the line from z = —R to z = —r with counterclock wise
orientation, and similarly for ., r. Let 7, be the semi circle of radius r starting at —r and ending at r
i.e. . = re' for 6 € [r,27]. Also notice that exp(cos(x))sin(sin(z)) = Im(e¢”) so

piw, A dx

)~ =Im /0 h exp(cos(z)) sin(sin(z)) = Im(eem)?

/OO exp(cos(x)) sin(sin(z)) = Im(e
0

Let v :=vr +—r——r +7 + 7r—r then we know by the Residue Theorem since e’ /z has a residue of e

at z = 0 that
iz dZ
/ee — = 27ie
- z
Uy

/ eeiz % _ / Z-exp(exp(—R sin(@))[cos(R COS(@)) +1 SiIl(R COS(G))]de — T
TR 6=0

and

where the last convergence is due to the dominated convergence theorem. And we also have
/ etz dz .
e — —me
. z
and notice on the real line our integrand is even, so we obtain by the Residue theorem that

° d i d
2/ ecos(@) sin(sin(a:))—x + e+ 1 =2me = / ecos(@) sin(sin(z))—x = E(e -1)
0 T 0 T 2
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Problem 11. Let Q := {(z,y) € R? : 2,y > 0} and let u be subharmonic on €, continuous on
such that
u(@,y) < |z + iy
for large (z,y) € Q. Assume that
u(z,0) <ax u(0,y) <by z,y>0
for some a,b > 0. Show that
u(z,y) < ax + by for (z,y) € Q

Proof. This is a standard application of the Phragmén-Lindel6f method. In general, in the sector {z :
a < Arg(z) < 8} we should have for any 0 < k < 57 that |z|¥ is a barrier function. Note for our domain
a =0, = 7/2 so we should have for any 0 < k < 2 that |z|¥ is a barrier. We want our barrier to grow
much faster than u at infinity, so we want 1 < k < 2 say k = 3/2. Now we notice that for any ¢ € [0, 27]

that 3
Re(e'?23/2) = |2|3/2 cos(iArg(z) +¢)

now we want to choose ¢ such that —3 < %Arg(z) + ¢ < 5 to make the phase term bounded above and
below by a positive constant and recall 0 < Arg(z) < 7 so we take ¢ = —%’T then we have the desired

bounds. Therefore, ¢(z) := |z[>/? cos(3Arg(z) — 2F) is harmonic so we have that for any € > 0
’U(l’, y) = ’U,(l’, y) —ar — by - E¢(2)

is subharmonic and we have

v(z,0) < —by — 5|x\3/2 cos(g — %T) <0
and 5 5
v(0,y) < —ax — ely[>/? (:OS(Z7T — g) <0

Then there exists an R(e) > 0 such that for any r > R(e) that
v(z,y) <0 on Q2NIB.(0)

since u — ax — by grows at most linearly and our barrier function is super linear. This implies by the
maximum principle that on QN B,.(0) that we have

v(z,y) <0on B.(0)NQ
and let 7 — oo to conclude for any € > 0 that
u(z,y) —ax — by —ep(z) <0 on

let £ — 0 to conclude
u(z,y) < ax + by

Problem 12. Find a function u(x,y) harmonic in the region between the circles |z| = 2 and
|z — 1] = 1 which equals 1 on the outer circle and 0 on the inner circle (except at the point where
the two circles are tangent to one another).

Proof. Note that the two circles are tangent at z = 2. We want to map this conformally onto a strip
and solve the problem there then invert back. We recall that Mobius Transformations map circles to
generalized circles i.e. circles and lines, so we choose a mobius transformation such that 2 is sent to infinity,
to make the circles become lines. Indeed, consider ¢(z) := 2%2 then this is a mobius transformation and

1 1 4

- Ty T i /2 __ - _
g = 0e) = & and 6(e"/?)

0y _
ole’) = -1
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o |z| = 2 gets mapped to the line Re(z) = —1/4. And similarly ¢(0) = —1/2 and ¢(1 +i) = —1/2 —i/2

so |z — 1| gets mapped to the line Re(z) = —1/2. And as ¢ is a continuous map on the interior,
we know that it maps § to a connected set with boundary Re(z) = —1/4 and Re(z) = —1/2, so
d(2) ={z: —1/2 < Re(z) < —1/4}. Then we want to solve the Problem

Au =0 on ¢(Q)

u=1on Re(z) = —1/2
u=0on Re(z) =-1/4
so we make the guess u = ax + by + ¢ for constants a, b, c. Then the PDE becomes solving a 2 x 2 matrix,
which implies that a = —4,¢ = —1,b = 0 so u(x + iy) = —4z — 1 = Re(—4z — 1) solves that PDE. So
uo ¢ =Re(—4/(z —2) — 1) is the desired harmonic function.
(|
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13. SPRING 2016

Problem 1. Let ,
Ky(z) = (4mt) 3/ 2e71el/4 - e R3 £ >0

where || is the Euclidan norm of x € R3.
(1) Show that the linear map

L3(R3) > f — t12K, * f € L®(R?)

is bounded, uniformly in ¢ > 0.
(2) Prove that t'/2||K, * f||p~ — 0 as t — 0 for f € L3(R3).

\.

Proof. Notice that by Holder’s Inequality that
| f < (| fllLe e 1 K¢l Loz (ms)

and
/ | K|/ 2dx = C/ t=9* exp(—3|z|?/8)dx = C’/ =3/l qyy = A3/t
R3 R3 R3
by the change of coordinates. So we have
K[ psr2 = Mt=1/?

So we have
2| Ky f| < M| f]] o

i.e. this functional is uniformly bounded in ¢.

For the second part, it suffices by the uniform boundness of the operator in ¢ to show that the result
is true for a dense subclass of L3. In particular, it suffices to show it for simple functions and as the
operator is linear, it suffices to show it for characteristics of measurable sets. Indeed, observe that

1 2 1 2
1/2 - - —|z—y|°/4t - —|z|* /4t
B (Ko xm) = (47)3/2¢ /Ee Ty < (4m)3/2¢ /R N de

1/2
= ti/ el Ady = C#1/2 5 0ast — 0
(4m)3/2 s
so t1/2(K, * f) — 0 is true for the dense subclass of simple functions since (K, * xg) > 0, so it is true by
uniform boundness in L? for functions in L3.

Alternative Proof Of Second Part: Heat Kernal Approach For the second part, notice that it
suffices to prove the claim for C°(R?) since its a dense subclass of L3 because we have if g € C°(R3)
and f € L? then

2K % fllooe < 8| Ke % (f = g)l oo + 2| K % gl
< O|f = glls + 7| K * g o
and the first term can be made small by using density of test functions on L3. Now we claim the following

lemma: If g € C°(R3) then as t — 0 we have K; * g(x) — g(x) uniformly. This implies the problem
since then we have t'/2||K; * g||p~ — 0 due to uniform convergence. Now observe

Ki(z)dz =1
R3

then

K * g(x) = g(z)| < / Ki(z —y)lg(z) — g(y)ldy + / Ki(x —y)lg(z) — g(y)|
Bs(x) lz—y|>6

by uniform continuity of g we can choose § > 0 so small such that if £ > 0 is given then

lg(z) —g(y)| <e= o Ki(z —y)lg(z) —g(y)|dy < e
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since K; > 0 and has mass 1. Now for the second integral, we have if M = ||g||r= then
[ K-l -l <2 [ Kiwyds
le—y|=6 |z[>6
As K; € L'(R?) we can find a compact set K such that fng Ki(x) <eso

2M Ki(z)dx < 2M Ki(z) +2Me
|z|>6 |z|>6NK

Then observe on |z| > § we have
Ki(z) < COt=3/20—0% /4t
S0

Ki(x)dx < Ct_3/26_52/4tm(K)
|6

and we know that as ¢ — 0 this term goes to 0 since exponential decays much faster than polynomials
grow, so we obtain if 0 <t < 1

|Ky * g(z) — g(x)| < e +e+2Me

and this bound is independent of x, so we conclude K; * g — g uniformly as desired.

Problem 2. Let f € L'(R). Show that the series

3 %f(w — V)

converges absolutely for almost all x.

Proof. Define F(x) := f(—=x) then it suffices to show that the series

=1 =1
;%F(Hﬁ):;%ﬂ—x—\/ﬁ)

converges for a.e. z. Indeed, fix a k € N then WLOG by replacing F with |F| if necessary we can assume
that F' > 0 to see

k+100 o~ k41 o~ k+1+n
| Gere v - Z} ) <x+¢ﬁ>:z/w J=F(a)ds

where the interswap of derivative is justified by Tonellis since F' > 0. Now observe

and
3° k+1+/m 3* kt14j . k+14j k+1+j
1 F 27 —1
/ —F(z)dz < Z / ﬂdw = M/ F(z) < C/ F(x)dx
= o Jkeym = ke T 1 J=1 Jeyja ktj—1
n=(j—1) n=(j-1)
since (2¢ — 1)/(x — 1) is bounded on [2,00). Therefore,
o0 k145
SZC’/ F(z)deQC/F(x)dz
= Ikt R

since each interval overlaps at most twice. Therefore, for a.e. x € [k, k+ 1] we know that > -, fF (z+

v/n) < co. Then as these sets are a countable partiton of R, it follows that for a.e. x € R the sum is
absolutely convergent.
O
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Problem 3. Let f € L}, .(R) be real valued and assume for all integers n > 0, we have that

loc
fl@+1/n) = f(z)

for a.e. x € R. Show that for each real number a > 0 we have

flx+a) = f(z)

for almost all x € R

Proof. For m,n € N let
Xmn ={x€eR: f(xr+m/n) < flx+(m—1)/n)}

then (U, ey Xm,n is a null set by the give assumptions. Therefore, X :=
measure i.e. for almost every x € R we have

fle+m/n) = f(z)

Then write E to be the Lebesgue points of f, and we have m(E¢) = 0 and let Y := E N X then this is
also a set of full measure. Finally if g(z) := f(z + a) let E5 be the Lebesgue points of g then this also a
set of full measure, so W := EN X N Ey is of full measure. And if z € W then we have that

Xc¢ is a set of full

m,neN “*m,n

x+a+r z4r
f(z +a) = lim — / f(4)dy and f(z) = lim ~ / F(y)dy

r—0 2r +a—r r—0 27

and as € W we know for any positive rational g that

flz+q) > f(z)

Now fix £ > 0 and a positive rational such that 0 < a — ¢ < § [we can assume a # 0 otherwise this is
trivial] then we have

o fly)dy — - fly)dy = Fy)dy + —

2r o 2r

1 x+a+r 1 r+q+r 1 z+a—r 1 z+a+r
[ sy
x

z+a—r r+q—r T4+q—r “+q+r

Then as f € Llloc it is locally uniformly integrable, so we can make the above two integrals smaller than

€ if § > 0 is sufficiently small i.e. choose § > 0 so small such that

1 /er“JFT 1 z+q+r
5 sy [ s <
2r Jova—r 27 Jotger
Therefore, as
1 peratr L o | e
2 dy =5, dy = o ~ f(y)dy >0
o )., TWW g | TWdy=g0 ] Tt o= f)dy 2

where for the above inequality we used that the set where f(y +¢) > f(y) is of full measure. So we have

1 r4+a+r 1 T4r
o fy)dy — — fly) =z —=

r+a—r 2r T—7
and letting ¢ — 0 and r — 0 using these points are Lebesgue points yields

flx+a)= f(z)

and as x € W is of full measure we are done.

Problem 4. Let V7 be a finite-dimensional subspace of a Banach Space V. Show that there
exists a continuous projection map P:V — Vj.
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Proof. Let {e1,..,e,} be a basis of V; then define on S := span(ey, ..., e,)

n
filz) = fj(Zaiei) =ajfor1<j<n
i=1
And as f; is a linear functional on a finite dimensional vector space, it is automatically continuous. By
Hanh-Banach, we can extend f; to a continuous linear functional on V. Then write

P) =Y fi(@)es
i=1
then we have Im(P) C V;. Also we have
P(z) = Zajej = P?*(x) = Zajej
i=1 i=1

where o; = f;(x). We also have Im(P) = V; by using P(x) is the identity on V;. So P(z) is a projection
map. ([l

Problem 5. For f € C§°(R?) define u(z,t) by

u(x,t) = /11@2 emfsinfé:ﬂ)f(ﬁ)d& reR2t>0

Show that limy o |[u(-,t)||2 = oo for a set of f that is dense in L?(R).

. J

Proof. Define fi(x) := sin(t|x|)/|x|f(x) then
u(a,t) = f(x) = |lullzz = [|fe(@)lle2 = [ fell 2

where we used Plancheral’s and that f(z) = f(—z). So we have

sin(t|€ 2
Il = [ ”)\ﬂm%5
r2 | [¢]
Notice that as )
lim | sin(|z|)] _q
(z.y)—=(0,0) ||

that we can find a § > 0 such that on Bs(0) we have

, 1
|sin(|z[)] = 52|

| sin(t]z])] > t/2]x]
so this gives us

2

t .
Z|f(§)|2 2 essinfeep, , )| f(€)?
Bs,+(0)

this implies on Bs/.(0) that
sin(t[¢])

ol ™a

Therefore, if liminf. ,q essinfecp_(0)] f(£)| = oo then we will have

2
MMW%z

Jim u(-,1)]|z2 = oo

and notice that such f € L? is dense since for any ¢ € L? such that liminf._,o essinfee p_(0y[g(§)] is finite

we can consider g + e|z|~V/2yp, (o) € L*.

]

Problem 6. Suppose that {¢,} is an orthonormal system of continuous functions in L?([0, 1])
and let S be the closure of the span of {¢,}. If supscg\ oy [|f[loo/|[f]]2 is finite show that S is
finite dimensional.
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Proof. Let K > 0 be such that
[ £llee < KI[f]l2

for f € S. Then notice that S C C([0,1]) where f is endowed with the L? norm since if f,, — f in L? we
have

||fn_f||oo §K||fn_f||2_>0

and each f,, € S can be approximated arbitrarily well with finite linear combinations of ¢, € C([0,1])
which implies that f is continuous due to uniform convergence.

Now observe that this implies the evaluation functional for y € [0, 1]

is continuous in this norm since
ILy (N < M flloe < K[| f]l2
so by Risez Representation Theorem since S is a Hilbert Space, we know that there is a g, such that

1
(F9:) = [ $@mto)dy = (@)
0
Now observe that
N N
S 1en@? =D 1(énr 9)* < llgyllr2
n=1 n=1

where the last inequality is due to Bessel’s Inequality since ¢,, are orthonormal. But we have that

gyll7= = (94, 9y) = 9(y) <[ flloo < K]|fyllL2
ie.
Hgy||L2 <K

so we obtain
N
S lén(m)? < K2
n=1

so integrating and using ¢,, are orthonormal implies
N < K?

therefore, we can have at most | K?| orthonormal vectors i.e. S is finite dimensional.

Problem 7. Determine

o a—1
/ x dx
0 Ttz

for 0 < a < 1 and Rez > 0. Justify all computation.

Problem 8. Let C; := {z € C;Imz > 0} and let f, : C; — C, be a sequence of holomorphic
functions. Show that unless |f,| — oo uniformly on compact subsets of C,, there exists a
subsequence converging uniformly on compact subsets of C..

Proof. First proof via Conformal Maps and Montels Define ¢(z) := (z+i)/(z—i) theny : Cy — D
is a conformal map. Then notice that g, := ¥ o f, : C; — D, so the family is uniformly bounded, so by
Montel’s Theorem there exists a subsequence that converges locally uniformly to another holomorphic
function g. We still denote this subsequence as g,,.

Case 1 If g(z) # —1 for any z € C, then we claim f, — ¢! o g locally uniformly. Indeed, fix a
compact set K C Cy and notice ¢p~1(2) = i(1+ 2)/(z — 1), so as g(z) # 1 on K and g(K) is compact,
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there is a 6 > 0 such that |g(z) + 1| > 2. By uniform convergence of g, to g on K, we may by assuming
n is large enough that |g, + 1| > §. Then

|fn - 1/719\ = W_l oo fy _¢_19| < 0(5)|¢Ofn _g| < 0(5)||1P0fn _QHLOO(K)

where we used that ¢y~ ! is Lipschitz whenever we are a finite distance away from —1 since it is holomor-
phic. Therefore, f,, — 1~ 'g uniformly on K, so we have f, — 1~ '¢ locally uniformly on K.

Case 2 By the maximum principle, if g(z) = —1 for any z € C4 then g(z) = —1 on C;. Now notice
we can reapply Montels theorem to any subsequence of {g,} to find a further subsequence that locally
uniformly converges. If every subsequence has a further subsequence that locally uniformly converges to
—1 then we have that g, locally uniformly converges to —1, so |f,,| = oo locally uniformly. But if there
exists a subsequence of g, that has a further subsequence that does not converge locally uniformly to
—1, then we may reapply Case 1 to deduce that along a subsequence the subsequence locally uniformly
converges. Hence, we are done.

Alternative Proof via Harmonic Function Theory Notice that if for all w € C; we have
lim Im(f,(w)) = oo
n—oo
then Harnack’s Inequality implies since v,, := Im(f,,) > 0 that for any compact set K
sup v (2) < C(K) inf v,(z)
2eK zeK
so we have local uniform convergence of the imaginary part to co. Now if there exists a point w such that
lim inf v, (w) = M < 0o
n—oo

then we claim we have local uniform convergence to a harmonic function along a subsequence.

WLOG by looking at the subsequence Im( f,,, ) (w) = Im(f)(w) = M < oo, we can assume Im(f,,)(w) —
M. By Harnack’s Inequality we obtain for any compact set K C C; with w € K that
sup vn(2) < C(Kun(w) < M(K)
zeK
i.e. the family of harmonic functions is uniformly bounded. Then observe that for z € K thereisa d > 0
such that d(K,0C, ) = 20 then for any z € K we have Bs(z) C C4 so

1
O, 0n(2) = W/B ( )8xivn(z)dA(z)
5(z

where dA is the lebesgue area measure. So by the divergence theorem we know

7,
= v (2)n;do(z
5 g, erEIdo(?)

where n; is the ith component of the normal and o is the surface area measure. So in particular, we have
that -
[Von(2)] < CUK) sup [on (2)] < C(K)
zZ€

where the last constant does not depend on n thanks to our earlier remarks. In particular, this implies
the family is uniformly Lipschitz and Bounded. So by Arzela-Ascoli there is a uniformly convergent
sub-sequence, which we denote by v,, — v uniformly on K. By taking a compact exhausation of K,
and diagonal subsequence, we can find a subsequence which we denote by m such that v,, — v locally
uniformly on K for any compact set K C C.

Now this implies that by the mean value equivalence of harmonic functions, that v is harmonic on C;
which is simply connected, so we can find a u such that u + iv is holomorphic on C;. Now we claim
that f,, = u+ C + v := f where C € R is some constant locally uniformly. Indeed, notice that on any
compact set K C C, we have

sup [Im(f(2)) = Im(f(z2))] = 0
zeK
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so the imaginary part of the holomorphic function f — f,,, converges to 0. In particular, by the Cauchy
Estimates we deduce that the gradients of the imaginary parts also go to zero uniformly, which imply
that the gradients of the real parts of f — f,;, go to 0 uniformly. This means f — f,, converges locally
uniformly to a constant, and we choose C' to make this constant 0 i.e. f,, — f locally uniformly on C,.

Therefore, we have shown if there is some zg such that

liminf v, (20) = M < o0
n— oo

then f,, converges locally uniformly along a sub-sequence to a holomorphic function on C;. But if the
alternative does not hold i.e.

lim v, (z0) = o0
n— oo

for every zg then |f,| — oo locally uniformly thanks to Harnack’s Inequality. O

Problem 9. Let f: C — C be entire and assume |f(z)| = 1 when |z| = 1. Show that f = Cz™
for some m € N and some C € C with |C| = 1.

Proof. As f is entire such that |f(z)| = 1 on D, there are only finitely many zeros on D and as each zero
is isolated, there is some € > 0 such that there are no zeros on {1 —e < |z| < 1 + ¢}. Enumerate the
zeros as {2z, }N_, then define the Blaschke products

Un(z) =

1—2,2

z— zZp

then |4, ()| = 1 with poles on 1/Z, on D and ¢, (z) = 0 iff z = z,. Then define

9(2) = f(2)/ [ ¥n(2)

then g(z) is a holomorphic function on the disk such that |g(z)] = 1 on dD. Then observe that for any
|z| =1 we have

z = % =g(2) =1/(9(1/Z)) := h(z) on OD

and g and h extends to be continuous on JD since f is entire and the blashcke factors do not have poles
on {1l —¢e < |z] <1+ ¢}. And similarly AS h(z) is holomorphic on C\ D and extends continuously to
0D. Therefore, by Schwarz Reflection Principle, we know that ¢g(z) extends to be entire with

_ Jg(z) for z €D
9(=) = {h(z) for ze C\D

Notice that g(z) is a bounded entire function since g and h are bounded, so

N
9(2) =C = f(z) = C [[ ¥n(2)

where |C| = 1 where the equality is due to analytic continuation since f(z) = CH2[=1 ¥n(2) on D.
However, notice that ¢, (2) is entire if and only if 2z, = 0 i.e. ¢, (2) = z, so f is entire iff
f(z) = C="

where m is the multiplicity of the zeros at the origin.

Problem 10. Does there exist a function f(z) holomorphic on D such that lim,_ | f(2)| = cc.
Either find one or prove that it does not exist.
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Proof. No. Suppose for the sake of contradiction that such a function existed, then for each w € D we
have

lim |f(2)| = oo

z—w
so for any M € N we can find an e(w) > 0 such that on z € Be(,)(w) N 0D we have |f(z)] > M. By
compactness, there are {w;}~; C D such that

N
OD C | Be(w)(w) NOD :=T4
i=1

Define ©; := D\T; then we the only zeros of f are in Q1 by construction, so as each zero is isolated there
are only finitely many zeros on Q1. Enumerate the zeros as {2;}%; and define the Blaschke products

¥n(2) = 1 -7,z
then ¢, (z) = 0 iff z = z, and |[¢,(2)| = 1 on ID. In particular, define

zZ— zn

N
9(z) = f(2)/ [T wnl2)

then g is a holomorphic function on D with no zeros on D such that lim|,|_,; [g(2)| = oo since the g extend
continuously to 0D. Then by repeating the above argument, we can find for any M € N a open and
connected subset €5 of D such that on 9y we have |g(z)| > M. Then as 1/g(z) is holomorphic, we
see that |1/g(z)| < 1/M on 9y so we see this implies 1/|g(z)| < 1/M on Qj; thanks to the maximum
principle. Notice also by construction Q,; — D as M — oo, so we conclude that

1/lg(2)[ =0

ie. |g(2)| = oo for all z, which implies |f(z)| = oo everywhere which is our contradiction. O

Problem 11. Assume that f(z) is holomorphic on |z| < 2. Show that

fz) - 2

z

>1

max
|z|=1

Proof. Notice that the residue of f(z)—1/z at z = 0is —1. So in particular, as f(z) —1/z is holomorphic
on B(0)\ {0} and the curve v := € where 6 € [0,27) with counterclock wise orientation is in the interior
of B3(0) \ {0} , we can apply the Residue Theorem. This gives

2wt = / f(z) —1/zdz
¥
but we also have the estimate
<2mM

[/f(z) —1/zdz

where M := max|,— | f(z) — 1/2| > 1 which exist since both functions are continuous on the compact
set {|z] = 1}. So combining this we conclude

M>1

as desired.

Problem 12. Find a real valued harmonic function v defined on the disk D such that v(z) > 0
and lim,_,; v(z) = 0.

Let u be a real valued harmonic function on the disk D such that u(z) < M < oo and
limsup,._,; u(re??) < 0 for all § € (0, 27). Show that u(z) < 0.
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Proof. Notice that as D is simply connected and f(z) := z — 1 is a holomorphic function on D that
vanishes nowhere, we can find a branch of the log such that g(z) := log(z — 1) is holomorphic on D. This
then implies that the real pet i.e. log|z — 1| is a harmonic function on ID. Then observe that

h(z) :=log(2) — log |z — 1| = log( )>0

2
|z =1

and is harmonic such that lim,_,; h(z) = oco.

Observe that the usual e-log trick does not work here since we only have radial limits, so we instead
proceed via Poisson Integral Formula. Indeed, observe if 0 < t < 1 and ¢ € [0, 27) then for any t < r < 1

2m 2 42 )
u(te'?) = ! / ot (Teze)dﬁ

T om o—p |rei? — tei¢|2u

and observe that ) 5 2 2
re—t 0 e —t .
e —tere )| = Mg e

= A(r,0)

so by Fatou’s Lemma we have

27 r2 2 » 27 r2 —¢2 0
/9 lim inf <A(7‘, 0) — mu(m )d0> < llng/e <A(T, 0) — mu(m )d9>

—9 1 =0

and by DCT we have
2m 2
lim A(r,0)do = A(1,0)do
=1 Jop=0 0=0
SO

. 27 7,2 _ t2 0 o2 1 . t2 ’
u(te'®) = limsu —————u(re")dh < ————— limsup(u(re"))dd <0
( ) 1r~>1 p/9:0 |7’610 — tew|2 ( ) - A:O |629 _ tezzp|2 Y p( ( )) >

where we used lim sup,._,; u(re??) <0 and 1 — 2 > 0.
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14. FALL 2016

Problem 1. We consider the space L' () of integrable functions on a measure space (X, M, u).
Suppose that f and f,, are functions in L!(u) such that

(1) fo(z) = f(z) for p almost every z € X and

2) [[fnlly = [1f1h
Show that then ||f, — f|l1 — 0.

Proof. Observe by the triangle inequality that |f| + |fn| — |f — fn| > 0 so we may apply Fatou’s Lemma
to see

R n—oo n—oo R

by pointwise convergence the left hand side converges to fR2| f| while the right hand side by norm
convergence and linearity of the integral becomes [p 2|f|dp — limsup,, ., [z |f — fnldp which lets us
conclude that since f € L'(u) that
0= timsup [ |f = fldu
R

n—oo

ie. ||fn — flli = 0 as desired. O

Problem 2. Let o be a finite positive Borel measure on R that is singular to the Lebesgue

measure. Show that
lim —M([I —natr) = +00
r—0+ 2r

for p a.e. x € R.

Proof. Write the Lebesgue measure as m then notice that 2r = m([x — r,z + 7]). As u L m there exists
a set A such that pu(A°) = m(A4) = 0. So now define for k € N

: plle —rz+1])
Fy = Al — T
bi=fr e lﬂ%ip m([z —r,xz+ 7))

<k}

then we claim that p(Fy) = 0 for any k, which implies that as
pll = v+ 7]

) < OO} = U Fy,

) keN

that u(F) = 0 since Fy C Fjy1 and limg 00 pi(Fr) = p(Upen Fr) = u(F). Therefore, F'U A° is a null set
for p, which implies the desired claim.

F:={r e A:limsu
{ Tﬁoer m([z —r,xz + 7]

Fix kK € N and € > 0 then by outer regularity of the Lebesgue measure there exists an open set U,
such that A C U, and m(U,) < €. Then for any = € F we have an r, > 0 such that

[z = 1o, 2 +re]) < km([z —re, @+ 12])

Now this implies F}, is covered by a collection of balls, so by Vitali’s covering lemma, we can find countably
many balls with radii x; and center r; such that z; € F} and the above inequality is true and the sub
collection of balls is disjoint and
Fk C U B5”($i)
keN
and by choosing the radii even smaller if necessary we can assume each B, (x;) C U, so in particular,

p(Fr) < p(Bsy, () < kY m([a; — b, + 5r]) = 5k Y m([a; —ri, @ + i+ 13])
k=1 k=1 k=1

< 5km(U.) < 5ke — 0
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where for the final inequality we used the balls are disjoint, so we conclude p(Fy) = 0 for all k. Therefore,
the desired claim holds.
|

Problem 3. If X is a compact metric space, we denote by P(X) to be the set of postivie Borel
measures p on X such that u(X) = 1.

(1) Let ¢ : X — [0,00] be a lower-semi continuous function on a compact metric space X.
Show that if u and p, are in P(X) and u,, — p with respect to the weak-star topology

on P(X), then
/(pd,u < liminf/wdun
n—roo

(2) Let K C R? be a compact set. For p € P(K), we define

1
E(M)Z/K/Kmdu@)du(y)

Show that F : P(K) — [0, o0] attains its minimum on P(K) (which could possibly be c0).

Proof. By Risez-Representation Theorem, we know that the dual space of the C(X) (since X is compact
we know all continuous functions are bounded) is the space of Radon Measures. So p,, — u in the weak
star topology iff for every f € C(X) we have

/fdun — /fdu

As ¢ is lower semi-continuous and bounded from below there exists a sequence of ¢,, € C'(X) such that
vn < ¢ and p, — p. We observe that as ¢ — ¢, > 0 that

/ edpin = / Emdpin
so we have from weak* convergence

lim inf/gpdun > lim inf / Om Ay, = /gpmdu

n—o00 n—00
and this holds for all m and from the Monotone Convergence Theorem (since ¢; is bounded below since
it is continuous and we are on a compact space) we have that

/ edp = lim / Omdp
m—roo

lim inf / iy, > / dp

For the second part assume the minimum isn’t +oo, otherwise every measure attains the minimum.
Let {,} be a minimizing sequence of E(u) i.e. E(u,) — inf,cpxy E(r). By Banach-Alagou combined
with C'(K) being separable , as pu, are probability measures, we know that there is a weak™ convergent
subsequence say fi,, that converges to p (since the weak* topology on C(K) is metrizable sicne C'(K)
is separable). p is a Borel Probability Measure since 1 is continuous so 1 = p,(X) — p(X). By Stone-
Weiestrass, functions of the form f(z)g(y) are dense in C(X x X) f € C(X) and g € C(X). This implies
that fin, ® fn, — @ p in the weak™ topology [Fubini is justified since p is a probability measure and
f € C(X) is bounded so f € L'(X)]. Notice that 1/|z — y| is lower semi-continuous, so by part (1) we
know that

so it follows that

E(p) <liminf | B(u,)= inf E
(1) < limin (hin) Lonte (v)

and since p € P(K) we obtain that it is a minimizer.
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Problem 4. Let L' = L'([0,1]) and L? = L?([0,1]). Show that L? is a meager subset of L!.

Proof. First observe that
oo 1 1 oo
L? = U{fG L*nrt :/ |f(z)|dx < n and / |f(z)Pdz < n} = U F,
n=1 0 0 n=1

We claim that F, is closed in L. Indeed, if f,, € F,, converge to f € L'(]0,1]) then we have that along
a subsequence we have f,, — f pointwise a.e. so by Fatou’s Lemma

1 1
| 1t@PF = [ tmint £, @)F < mint [ 1 @F <0

so f € F, i.e. F, is closed.

Now we claim F;,, has empty interior, indeed fix f € F,,. Then for € > 0 consider

€

ge(z) = f(z) — NG
then we have that ) )
| 15w = g@ldn =5 [ a2 =
0 2 Jo

and g.(x) ¢ F, since |g.(x)]? = |f|> —ex~™Y/? + % /42~ and the first term is in L' by definition of F,,
the second term is in L' by Holder’s Inequality, while the second term is not in L'. In particular,

1
/ 102 (2) 2z = +00
0

since the first two terms are bounded and the last term is unbounded in L!. Therefore, F,, has empty
interior in L' since for any f € F,, we constructed a sequence gim — fin L' and gi/m € Fy, so L? is
meager. O

Problem 5. Let X = C([0,1]) be equipped with the norm || f|| = max,¢[o,1) |f(z)|. Let A be the
borel o-algebra on X. Show that A is the smallest o-algebra on X that contains sets of the form

S(tB)={f € X: f(t) € B}
where ¢ € [0,1] and B is a borel subset of R.

Proof. Define the evaluation map for ¢ € [0,1] via
o(f) = f(2)
then ¢; is continuous linear function on X since

|0:(NI = [F O < [IF1I

and observe S(t, B) = ¢~1(B) so by continuity, S(t, B) is a Borel Subset of X i.e. S C A where S is the
o-algebra generated by S(t, B).

For the reverse inclusion observe that if » > 0 and f € X then
{g:llf =dl<ry= [ o F@&)—rf)+r)esS
q€Qn[0,1]
since g € (\eqn(o1] ¢ ((f(t) —r, f(t) + 7)) iff for every ¢ rational |f(q) — g(q)| < r, which by continuity
implies || f — g|| < r. Then observe

B.(f)= | (6" (f() =m, f(t) + m]) € S

meQ:m<r geQN[0,1]
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since g € B,(f) iff ||g — f|| < 7 so there is some rational ¢ such that ||g — f|| < ¢ < r. So in particular,
as A is the smallest o-algebra that contains open sets of X we see that A C S so combining all of this

we obtain S = A as desired.
O

Problem 6. Show that there is no sequence {u,} € ¢! such that (i) ||u,||1 > 1 for all n € N and
(#3) (up,vy — 0 for all v € £°.

Also show that every weakly convergent sequence in {u, } in £* converges in the norm topology of

ot

Proof. First Part Missing

For the second part, assume wu, — u. Assume for the sake of contradiction that there existed a
sub-sequence and € > 0 such that
[tn, —ully > €

then we know that )
Uy, —Uu,v) =0
(St — ;)

since wu,, weakly converges to 0, but ||2/e(up, —w)|| > 1 for large enough k, which contradicts the first

part, so ||u, — v|| = 0 i.e. we have strong convergence to zero.
]

N

Problem 7. Let H be the space of holomorphic functions on the unit disk that are in L?(D) with
respect to the Lebesgue measure on . Endow H with the inner product

(f.9) = / f(2)g()dA

Fix zp € D and define L,,(f) = f(z0) for f € H.
(1) Show that L,, : H — C is a bounded linear functional on .
(2) Find an explicit g, € H such that

Lzo(f) = f(ZO) = <f7 gz0>
for all f € H.

.

Proof. As zg € D there is a § > 0 such that Bs(z9) C D. Then for any 0 < r < ¢ notice that by the mean

value property that
27

f(z0) = % ; f(zo+ reie)dO

o 5 27
/r:o rf(zo0) = /T:O r%/o flzo+ rew)dé‘

e o= g
= — rf(z0 +re’)d) = — f(z)dA(z
27 Jr—0 Jo=0 (=0 ) 27 J Bs(20) ()4E)

where all the computation is justified since f € L?(ID) which allows us to use Fubini since D is a finite
measure space (i.e. L?(D) C L*(D)). So in particular, we conclude that

S = [ IG)AG)

SO

so we have

1 1 , 1/2
Ll = 1ol < =5 [ 170G < 2 ([176)17) T aac)
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where the last inequality is due to Holder. So in particular, we conclude that L., (f) is a bounded linear
functional on H.

We know such a function exists by Risez Representation Theorem. Note that by our previous computation
we have that if zyg = 0 that for any 0 < § < 1 that

Lo(f) = f(0) = .

m6? Bs(0)

f(2)dA(z)
and since %fXBé(o) — fXB,(0) as = 0 and is dominated by 2fx p; (o) for 1/2 < 0 < 1 we may apply the
DCT to get that
1
Lo(f) =+ [ 1dAG) = (£,1/m)
D

Now we observe that if we define the automorphism of the disk

Pz (Z) =

1—25z

zZo — %

then ¢.,(0) = zp and ¢,,(20) = 0 so we have
fodz(0) = f(20)

so we have

Lo(f) = Lo(f o ds) = © /D £ 0 g (2)dA(2)

™

So we know that by integration by substitution
1 _
== [ FOI63) PaAG) = (ro.0/m)
where 1) = (¢')'. Therefore, we have shown that

f(20)¥(20) = (f1,9(20)0/)

And as 1 is the derivative of a conformal map we know that i) # 0 anywhere, so we have for any F' € H
that

F(z0) = F(z0) (00 o) = ((Ffi, 9] /) = (7, P20y

and @w € H, so this is the desired function. a

Problem 8. Let f be a continuous complex-valued function on the closed unit disk D and f
holomorphic on the open unit disk and f(0) # 0.

(1) Show that if 0 < r < 1 and if inf||—, [f(2)] > 0, then

2
%/O log |f(re'®)|d6 > log | £(0)]

(2) Show that m({6 € [0,27] : f(e?) =0)}) = 0.

Proof. Note that as f(z) is holomorphic then whenever f(z) # 0 then in a small ball we know that
f(2) # 0 since Os are isolated, so whenever f(z) # 0 we can define a complex log in a small neighborhood
of z to get that log|f(z)| is locally the real part of the holomorphic function log(f(z)) whenever z # 0.
Then if f(z) = 0 then log|f(re?®)| = —oo, so it follows that log|f(z)| is sub-harmonic since it is upper
semi-continuous and locally satisfies the mean value inequality. So in particular,

1 27 .
%/O log | f(re®)|d6 > log |£(0)]

as desired.
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For the second part, fix an n € N and define g,(2) := max(log|f(2)[, —n). Then as f(2) is continuous
on D we see that g,(2) is continuous on D since

gn(2) = {logf(z)| for z € ||~ (e, 00)

—n else

and log | f(z)] is continuous on |f|~!(e™™, o0) since f is and they obtain the same value on the boundary.
Therefore, from continuity and Fatou’s Lemma we have

1 27 ) 1 27 )
an()do = 5 [ timint g (re”))
0 r—1

%0 2w

r—1 27

1 27 .
< liminf — / |gn (re®®)|dO
0

where we used g, (¢?) = liminf,_,; g, (re*) by continuity. Now recall that from part 1 that

27
%A]%WMWME%WW

and since f is continuous then f is bounded, so log|f| is bounded from above, so this implies

2m
3 | Doglsretyjan < €

where C'is independent of 7. And observe that |g,(re??)| < |log|f(re??)|| so we conclude that

1 2m

o= | lgale?)]do < C
2 0

and since |g,,(€'?)| increases to |log |f(e%?)|| we conclude from the monotone convergence theorem that
1 2m "
— 1 ' <C
3 | sl Il <
so log |(f(e"))| € L*(]0,2n]) which implies the problem.

Remark: These inequalities can also be proved using that |log|f(z)]|| is lower semi-continuous com-
bined with Fatou’s Lemma. O

Problem 9. Let p be a positive Borel measure on [0, 1] with p([0,1]) = 1.
(1) Show that the function f defined as

£ = [ ettt
[0,1]
for z € C is holomorphic on C.

(2) Suppose that there is an n € N such that
limsup | f(2)|/]z|" < o0

Z|—00

Show that then y is equal to the Dirac measure gy at 0.

Proof. Note that on any compact set K C C that on K x [0,1] we have that || is bounded due to
continuity. Say on K x [0, 1] we have that |e’**| < M then by Tonelli since all the terms are non-negative
we have

/K F()IdA() < /K /[071]|eithu<t>dA<z>= /K oy 0 8 A

</ Mdu(t) ® dA(z) = MA(K) < oo
Kx[0,1]
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where dA is the Lebesgue Area Measure on R? = C and A(K) is the Lebesgue measure of K. So
f(z) € L}, .(C,dA). So if R is a rectangle, then we know f(z) € L*(R) so we have by Fubini that

loc
f(z)dz = / / e dzdu(t) = 0
OR 0,1 Jor

since for any fixed ¢ we have e*! is holomorphic on the interior of R and its boundary. Also f(z) is
continuous due to DCT, so by Morrera’s Theorem, we deduce that f(z) is entire.

For any m > n, we know by Cauchy’s Estimates that for large enough m that

OS2 sup [£()] < mRTM <0
Rm™ z€BRr(0)

so it follows that f(z) is a polynomial of degree at most n. Now we assume for the sake of contradiction
that p is not any scalar multiple of the Dirac measure at z = 0. Indeed, if not then there is a set
0 ¢ A and that pu(A) > 0. As [0,1] is compact and p is finite, we know that it is inner regular, so
p(A) = supg 4 n(K) where K is compact, so we can find a compact K such that 0 ¢ K and p(K) > 0.
As K is compact there exists a min 0 < s € K. We will show that f(z) blows up on the negative
imaginary axis exponentially which contradicts that f(z) is a polynomial. . Indeed, observe that for any
x € (0,00)

fein) = [ etau) = [ et = e u)
[0,1] K
and p(K) # 0, so this implies on the negative real axis, that ¢ blows up exponentially i.e. f cannot be a
polynomial. Therefore, this is a contradiction so p is a scalar multiple of the dirac measure dy but from

1([0,1]) = 1 we see the scalar must be one. O

Problem 10. Consider the quadartic polynomial f(z) = 22 — 1 on C. We are interested in the
iterates f” of f defined to be f° = idc for n = 0 and

f*=/fo...ofntimes

(1) Find an explicit M > 0 such that the following dichotomy holds for each z € C: either
(i) |[f™*(2)| = o0 as n — oo or (i1) |f"(z)] < M for all n € Ny.

(2) Let U be the set of all z € C for which the first alternative () holds and K be the set of
all z € C for which the second alternative (i7) holds.
Show that U is an open set and K is a compact set without holes, i.e. C\ K has no
bounded connected components.

Proof. For the first part, observe that
[f(2)] = |2 - 1
so now we claim if |f(z)| > M := 10 then |f"(z)| > 10 for all n. Indeed, |f2(2)| > |f(2)|>? -1 > 10> -1 >

99. Now by induction, assume it holds for m then |f™*1(z)| > |f™(2)]*> — 1 > 10?2 — 1 = 99 as desired.
It therefore,follows that for any m if | f™(z)| > 10 then

m—1 2
@ e -1z T ER
so now we claim that if |f™(z)| > 10 then
i fmfl 2) 12"
(e 2 G

Indeed, by induction, the base case is true so

fm+n|2

|fm+n+1(z>| Z | 5 2 %Lfm—l(Z)|(2n+1)/22n+1_2 _ ‘fm_l(z)|2n+l/22n+l_1
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as desired. So if |f™(z)| > 10 for some m then

[f7 ()] =

so we have found such an M.

For the second part, notice that U is open since

U= = ") > My
m&ENy
and each set in its union is the preimage of a continuous function on an open set, so U is open. Notice
that K is compact since
K= () {=: /") < M}
m&ENy
and each set is closed while the m = 0 set is bounded and closed, so the entire set is bounded and closed
i.e. compact.

Assume for the sake of contradiction that C\ K has a bounded connected component. Write this
component as S.Then we from C = KU (C\ K) and S is a bounded connected component of C\ K that
on 98 we have for any m that | f™(z)| < M, so by the maximum modulus principle we have | f™(z)] < M
on S. However, as S C U we have |f™(z)| — oo, which is our desired contradiction.

]

Problem 11. Suppose f : C — C is holomorphic function such that z — g(z) := f(z)f(1/2) is
bounded on C\ {0}.
(1) Show that if f(0) # 0, then f is constant.
(2) Show that if f(0) = 0, then there exists an n € N and a € C such that f(z) = az™ for all
zeC.

Proof. Note that g(z) is holomorphic on C\ {0} and f(z) is entire and f(1/z) is holomorphic on C\ {0}.
As g(z) is bounded near 0, we know by Riemann’s Removable Singularity theorem that g(z) extends to
be an entire function on C. It therefore, follows that g(z) is a constant by Liouville theorem since g(z)
is a bounded entire function. So we have an a € C such that

f(2)f(1/z) =a
As f(0) # 0 that
lim f(1/2) = a/£(0)
so it follows that the singularity of f(z) at oo is removable. Therefore, f(z) has to be a constant since

non-polynomials have an essential singularity at co by just looking at the f(1/z) Taylor Expansion at
z = 0 and all non-constant polynomials have a pole at oo.

Let n € N be the multiplicity of the zero at z = 0 of f(z). Then f(z) = 2"¢g(z) where g and g(0) # 0

is entire. Therefore,

f(2)f(1/2) = g(2)9(1/2)
and g(z)g(1/z) is bounded on C\ {0} with g(0) # 0, so we may reapply the first part to deduce g(z) = a
for some a € N ie. f(z) = az". O
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15. SPRING 2017

Problem 1. Let K C R be a compact set of finite measure and let f € L°°(R). Show that the

function .
= 7m(K) /Kf(x—i-t)dt

is uniformly continuous on R. Here m(K') denotes the Lebesgue measure of K.

Proof. Fix h € R then observe

F(a:—i—h):m(lK)/Kf(x—l—h—&-y)dy:m(lm/KJrhf(x—i-t)dt

where K + h:= {z + h: x € K}. Therefore,
1
F h)—F(z)= —— _
(x+h)— F(z) m(K) /Rf(x +y) (XK+h — XK)
so we have from the triangle inequality that

Pl ) - Fo)| <

/ IXK+h — XK |dx

Now observe that xx4+n — Xk pointwise a.e. as h — (). So as K is compact there is an R > 0 such that
K C Bg(0), so now observe for h small enough that xx4n < X2B,(0) S0 by the dominated convergence
theorem

/ IXK+h — XK|dz =m((K +h)AK) - 0ash — 0
R

so we deduce that F'(z) is uniformly continuous since our above bounds are independent of z.

Problem 2. Let f, : [0,1] — [0,00) be a sequence of functions, each of which is non-decreasing
on [0,1]. Suppose that f,, is uniformly bounded in L?(R). Show that there exists a subsequence
that converges in L%(R).

Proof. Observe that by assumpution there is an M > 0 such that

mw<M:u—wm ‘/mf<M

where the last implication is due to f,, being non-decreasing. So in particular, we deduce

M
()] < i

so by the dominated convergence theorem it suffices to show that along a sub-sequence f,, converges
pointwise a.e. Now observe for any € > 0 that for = € [0,1 — ¢] that the sequence |f,,(x)| is uniformly
bounded. Therefore, by doing a diagonal subsequence argument we know that there is a subsequence
which we denote by ny, such that for ¢ € QN [0, 1) that

fr (@) = f(q)

Observe that if ¢ < ¢’ then f(q) < f(¢’) since f,, are non-decreasing.

e L'([0,1])

Now for any = € [0,1) define
Ly = inf f(q), Re »=sup f(g),¢ € QN[0 1)

q>x
Then observe that for ¢; < x < ¢o where ¢; € QN [0,1) that

frw (@) < frp (%) < frp(a2)
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so if L, = R, we deduce from squeeze theorem that f(z) := limg_,o0 fn, (x) is well defined. So if L, # R,
we see that from non-decreasing of f,, that we have an interval (L,, R,) and each such interval is disjoint
thanks to non-decreasing of f,,. There can only be countably many of these intervals since each of these
intervals contain a rational point, therefore L, = R, a.e., so f,, () — f(z) := L, a.e., so we can find a
pointwise sub-sequence on [0, 1) by a diagonalization trick. Then by applying DCT on this subsequence
on [0,1 —¢] for all € > 0 shows the desired result.

|

Problem 3. Let C([0,1]) denote the Banach Space of Continuous Functions on the interval [0, 1]
endowed with the sup-norm. Let F be a o-algebra on C([0,1]) such that the map defined by

Ly (f) = f(z)

is F-measurable. Show that F contains all the open sets.

Proof. Observe that if ¢ > 0 and f € C([0,1]) then
B.(f)= |J {geco):[If —gllx <a}

q€Q:g<e
and that
{g€C(0,1]) : IS = glloo <6} = () La([f(a) = 6, f(q) +6])
q€Q
Indeed, observe that g € (,cq Lq((f(q) — 6, f(q) +0)) iff for all ¢ € Q we have

l9(q) = fl@)] <0 = |g(x) = f(z)| <6

by density of rationals and continuity. Therefore, by definition as L,((f(g) — 9, f(¢) +0)) is F-measurable
since closed intervals are borel in R so we deduce that {g € C([0,1]) : ||f — glloo < 0} := A(S, f) € F .
So in particular, we have

B.(f)= |J AlenerF
q€Q:g<e
Now as C(]0, 1]) is separable (take polynomials by Stone Weiestrass), we deduce that every open set can

be written as a countable union of balls, so every open set is in F.
O

Problem 4. For n > 1, let a, : [0,1) — {0, 1} denote the nth digit in the binary expansion of x,
so that
x = Z an(x)2™" for all z € [0,1)
n>1
(We remove any ambiguity from this definition by requiring that lim inf a,,(x) = 0 for all z € [0,1).)
Let M([0,1)) denote the Banach space of finite complex Borel measures on [0, 1) and define linear
functionals L,, on M([0,1]) via

meaé%@wm

Show that no subsequence of L,, converges in the weak* topology on M (]0,1))*

Proof. Fix a subsequence nj. Then define

zi= Y 27" e0,1)

k even

x = Z an(x)27"

n>1

so we have
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where a,(z) = 0 for n # ny for some k where k is even. Therefore, liminf,,_, o a,(x) = 0 for instance
take k odd. So this is the digit binary expansion of x then define the Dirac Delta Measure at x d, i.e.
d:(E) =11if z € F and 0 else. Then

1if k is even
L, (02) =ap, (z) =
i (0z) = an (2) {Oifkis odd
Therefore, L, does not converge weak™® in this subsequence and as this subsequence was arbitrary, we
are done.

O

Problem 5. Let du be a finite complex Borel measure on [0, 1] such that
1
f(n) == / 2™ dp(xz) — 0 as n — 0o
0

Let dv be a finite complex Borel measure on [0, 1] that is absolutely continuous w.r.t. du. Show
that
P(n) = 0asn— oo

Proof. Notice by absolute continuity there is a f € L!(du) such that

1 1
o) = [ e) = [ pa)dula)
0 0
Now observe that
1
fa(—n) = / cos(2mnax) — isin(2mnx)du(z) — 0
0

where the convergence is due to [i(n) converges to 0 so its real and imaginary parts converge to 0 i.e.
fol cos(2mnx) and fol sin(2mnz) converge to 0 as n — oo.

Now by Stone Weiestrass, we know that trigonometric polynomials are dense in C([0, 1]) with the sup
topology. Now observe that for m € Z

1
/ eQmmermmdu(aﬁ) —0asn— o0
0

so by linearity we deduce that for each trignometirc polynomial P(x) that

1
/ P(2)e?™*du(z) — 0
0

Then as p is a finite complex Borel measure on a compact set we know that it is regular, therefore, by
Lusin’s theorem C([0, 1]) is a dense subclass of L*([0, 1], dp) in the L! norm. So we have that we can find
a trig polynomial P(x) such that [P — f|[ze((0,1)) < € where € > 0 is a fixed number. Then

1 1
)l < | [ (@) = PN du(o) + | | Pla)emdu(o)

< / |f<x>—P<x>|du<x>+\ / P(2)e " dpu(x)| < ep((0,1]) + / ()¢ dp(x)

so we deduce as € > 0 was arbitrary and u is a finite measure that

|P(n)] — 0 as n — oo

as desired. O
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Problem 6. Let D be the closed unit disc in the complex plane, let {p,} be distinct points in
the open disc D and let 7, > 0 be such that D,, = {z : |z — pp| < 7, } satisfy

(1) D,, C Dj

(2) D,N Dy, =ifn#m

(3) Yorn <o
Prove X =D\ |J,, D, has positive area.

Hint: For —1 < 2 < 1 consider #{n : D, N {Re(z) = z}}

Proof. Let m(x,y) = x i.e. the projection map onto the x coordinate. Then we have that for f(z) :=

> n Xn(D,) () that
1 1
/ f(x)dx = Z/ Xx(Dyp)dx = Z 2r, < 0o
-1 n -1 n

where the second equality is due to the monotone convergence theorem. Now this implies f(z) < oo a.e.
so if f(x) < co then we must have
#{n:D,NRe(z) =z} < 0

Then observe that J,, (D, N {Re(z) = x}) is closed since this is a finite union of closed sets due to our
earlier remark, so it cannot be all of D N {Re(z) = x}. Indeed this follows from D N {Re(z) = =} being
open. Now observe that for

= (D\[JDn) N {Re(z) = 2}}

we have that
E, U J(Dn N {Re(2) = 2}) = DN {Re(z) = z}
n
where the union is disjoint because each D,, is disjoint, so by countable additivity of the one dimensional
Lebesgue measure my we deduce my(E,) > 0 for a.e. x since the second set is closed and their union is
open. Now observe if my is the two dimensional Lebesgue meausre then

1
mao (X :/XX x,Yy dA x,y :/ / XD ez—wydydx
2(X) (eypdd@y) = [ | 6, ponmet=Y)

1
/ / (y)dydz = / my (Ey)dz >0
-1 — 1+932 r=—1

since the measure is > 0 a.e.

Problem 7. Let f(z) be a one-to-one continuous mapping from the closed annulus
{1<[z| <R}

onto the closed annulus
{1<|z[ < S}
such that f is analytic on the open annulus {1 < |z| < r}. Prove that S = R.

Proof. Let f be such an analytic function. By the open mapping theorem and continuity of f, it follows
that f maps boundary to boundary i.e. |f(e?)| = 1 or S and by continuity the modulus must be constant
on dD. If necessary, by considering f(z/R) we can assume that |f(e'?)| = 1 so that f maps 9D to 9ID.
Now consider

9(2) =1/(f(1/2))

which is holomorphic since we took two conjugates and 1/f has no zeros. Then observe that 1 /@ =e

l9(e)] =1/f(e) = f(")

60
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where for the last equality we used |f(e?®)| = 1. Therefore, by Schwarz Lemma, this implies that

f(z) = {f<z) for z e {1 < |z| < R}

g(z) for z € {§ < |2| < 1}

is holomorphic such that f(z): {1/R < |z| < R} — {1/S < |z| < R} such that |f(1/Rei~9)| =1/S. This
map still is injective since |f(z)| > 1 for any 1 < |z| < R so |f| # 1/|f|. We rewrite f as f with this
extension.

Now as |f(1/Re?)| = 1/S we see by a similar agument that
f2) =1/8* (f(1/(R?z)) on |¢| = 1/R

so in particular, again f extends to a conformal map from {1/R? < |z| < R} — {1/5? < |z| < S} since as
f is non-zero its maximum and minimum modulus must occur on the boundary and we have |f(e?)| = 1.
This map also has the property |f(1/R?e")| =1/52

Now by iterating this argument of Schwarz reflecting off on 9B, /z(0) we can extend f to a holomorphic
map on {0 < |z| < R} to {0 < |z| < S} such that |f(e®/R™)| = 1/S™, but then the singularity at 0 is
removable since f is bounded by S. Then observe that by construction we have for any n € N

(/R =1/8" =0

so f(0) = 0. Therefore, f extends to a conformal map from Bgr(0) to Bg(0). So as f(z) is differentiable
at z = 0 it is locally injective in a small neighborhood of 0, but we have

|f(e”/R") = f(0)| = 1/8™ < K1/R"

for some K; > 0 being the Lipschitz constant. But by considering the inverse of f and that f~1(0) = 0
we have that for some constant K5 that

[f7H(e?/8™) = F7H0) = 1/R" < K»/S"
so by letting K := max{K;, K5} we have that
(R/S)" < K and (S/R)" < K

so if S/R # 1 one of these two sides will approach co as n — co. Therefore, S = R as desired. O

Problem 8. Let ay,a9,...,a, be n > 1 points in D, so that

B(z) =[] -2

1—ajz

Jj=1

has n zeros in D. Prove that B’(z) has n — 1 zeros in D.

Problem 9. Let f(z) be an analytic function in the entire complex plane C and assume f(0) # 0.
Let {a,} be the zeros of f, repeated according to their multiplicities.

(1) Let R > 0 such that |f(z)| > 0 on |z| = R. Prove
L /27r log |f(Re™)|d0 = log | f(0)| + > lo R
271' 0 g - g g ‘an‘
lan|<R
(2) Prove that if there are constants C' and A such that |f(z)| < Cel?” for all z, then

£() o

|an|




114 RAYMOND CHU

Proof. The first part is known as Jensen’s formula. We will first prove the formula on D. As each zero
of f(z) is discrete and f is entire there are only finitely many zeros on D. Then define

B(z)= [] 12_“" [] Ba.(z

lan|<1 lan|<1

which is holomorphic on D since there are only finitely many zeros and the poles are at 1/a, which has
magnitude bigger than 1. Now we see that

log|Ba, (2)| = log| — a,| = log|ay|
and

1 271' .
7/ log | Ba, (¢)|df = 0
271— 0

since B,, is an automorphism of the unit disk so that |B,, (e’?)| = 1. And the only zero of B, is at a,,
so Jensen’s formula is satisfied for each B, . Then notice that ¢ = f/B is holomorphic on the unit disc
such that ¢ has no zeros. Therefore, there is a branch of the log such that log(g) is holomorphic since
D is simply connected. There, log |g| is holomorphic, so Jensen’s Formula holds for g due to the Mean
Value Property. Now notice that Jensen’s formula is multiplicative since log |zy| = log |z| + log |y| so we
have that f(z) = g(z)B(z) satisfies Jensen’s formula since g and B satisfies the formula.

Now observe that

o
| pia=tog(R/lan)
\

SO o
Z lOg Z / —dx —/ Z X:c>|an\
lan|<R an|<R lan|<R

and observe 3, p(Xa>(a.| (7 )) = n( ) where n(r) represents the number of zeros of f in B,.(0). So

r 2

2R 2R 2
/R n(r) < /0 Mdr = %/0 log | f(2Re™)|d6 — log | f(0)]

r r

Rnr 2 i
/ Umzifl%m&%w—mmw
0 0

So we have

so as n(r) is decreasign we deduce

2R 2R
n(R)log(2) = n(R)/ %dr < / @dr

R R r
so we have

I :
n(R)log(2) < 5 [ og | f(2Re )]0 ~ log|£(0)
2m J,

<—/‘mw&mw log | £(0)] < log|C] +2*R* — log | £(0)| <; R

so we have that
n(R) = O(R")
for R large.

Now observe that we only need to control the tail of the sum to show convergence so we can take n so
large such that if n > N then |a,| > R where R is chosen to be so large such that n(r) = O(r*) for any
r > R. Now observe that if 24 < R < 2M+1

Z(Q)A-&-sgi Z (1)>\+5

a
n>N n=M 2n<|a,, |<2n+1 jan]

o 00 oo
S Z 27n()\+s 2n+1 5 Z 9—n (A te) 2)\n+)\ Z 2fsn+)\ < 00
n=M
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since —e < 0.

Problem 10. Let aq,...,a, be n > 1 distinct points in C and let Q := C\ {aq,...,a,}. Let H(Q)
be the vector space of real-valued harmonic functions on Q and let R(2) C H(2) be the space of
H(®2)
R(Q)

real parts of analytic functions on 2. Prove the quotient space has dimension n, and find a

basis for this space, and prove it is a basis.

Proof. Let f € H(2) then by using the Cauchy Riemann equations we see that ¢ := f, —if, is holomor-
phic. Now ¢ is an analytic function except for isolated singularities at z = aq,...,a,. Sofor 1 < j <n
define ¢; := Res(g,a;). Now define

G

>
—~
IS
~—
Il
<
—~
I
~—
I
[

zZ— Qj;
j=1 J

so by the residue theorem over any closed curve « in € this function integrates to 0. So this implies that
h(z) has a primitive, which we denote by u(z). And the Cauchy Riemann Equation shows that w(z) is
the real part of u(z) up to constants iff w is differentiable in the real sense and v'(z) = w, — iw, and if
we define

n
w(z) == f(2) — ¢ Zlog |z — a;| = W, —iw, = h(z)
j=1
Therefore, H(2) > @w = Re(u) up to constants, so in particular @ € H(Q2) N R(2). So we have shown
{log|z — a;|}}_; span H(S2)/R(Q2). Since the a; are distinct we can find an ¢ > 0 such that Bc(a;) N
B.(ag) =0 for j # k so if

Zajlog\z—aj|:0:>0:/ Zajlog|z—aj|=2ﬂ'iaj:>aj:0
j=1 O0Bc(ak) j=1

so these functions are linearly independent and hence a basis of H(Q)/R(f2), so this vector space has
dimension n. |

Problem 11. Let 1 < p < oo and let U(z) be a harmonic function on the complex plane such

that
// |U(z,y)|Pdedy < oo
C
Prove U(z) =0 for all z =z + iy € C.

. J

Proof. For any r > 0 and 2y € C the mean value property tells us that
1
U(z0) = 7/ U(z,y)dxdy
BT(ZO)

2
so we have from Holder’s inequality that
1 _ _
[U(20)] < W|\U|\LP(BT(ZO),dxdy)(W2)1 VP e PU|| Lo (codady) — 0 as 7 — 00
since U € LP(C, dxdy), so it follows that
[U(20)| =0
so U(z) =0 for all z.

Problem 12. Let 0 < a < 1 and f(z) be an analytic function such that f € C*(D). Show there
is a constant A such that

()] < AQL = [z




116 RAYMOND CHU

Proof. Notice by Cauchy’s Theorem and the Residue Theorem that if |z] = 1—24 then for any 0 < € < 2§
1 1 —
|z—w|=¢e |z—w|=¢e

T 2mi (w—2) - 2mi (w—2)

_ L [T fetee) — £2) i
T 9 0 £2p2i0

so we have ‘
()] < sup |f(z +ee”) = f(2)|/e < Ce*

0

Now observe
1—|z| =26
so we have by sending € — 20 we see that
[f'(2) < C@o)* =C1— [z

as desired [
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16. FALL 2017

Problem 1. Suppose f: R — R is non-decreasing. Show that if A C R is a Borel set, then so is
f(A).

Proof. Define the set A :={A C R is borel : f(A) is Borel }. We claim that A is a o-algebra and that A
contains the open sets, which implies the desired claim.

First we will show that A contains the open set. As f(z) is monotone, it has only countably many
discontinuities say {d;}3°, and on each d; we have that f(d; ) :=lim - f(z) <lim_ -+ f(z) = f(d})
i.e. an upward jump discontinuity. Then for any open interval (a, b) we have that f(a, b7) is a countable
union of the form [f(a™), f(g; ) U[f(q}), flg;)u [f(gh), f(bT)] where the g; are in [a,b] and the end
points at f(a) and f(b) may be included or not. In any case, it is always a countable union of a mixture
of half open intervals, open intervals, or closed intervals, so f(a,b) is Borel. Therefore, this implies A
contains the open sets.

In particular, this implies f(IR) is Borel since R is open. Now if {4;}$°, € A then
o0 (o)
filJ 4 = r)
i=1 i=1

so A is closed under countable union. Then for any A € A we have that

f(R) = f(A)U f(A%)

and due to monotocity f(A) and f(A°) have at most a countable number of points common, so f(A¢) =
f(A)\ f(R)U countably many points. Indeed, if z € A and y € A are such that f(x) = f(y) then this
implies there is an interval containing x and y such that f is constant on this interval. Then the collection
of all intervals where f is constant is countable since on each of these intervals we can find a rational
not in any of the other intervals since x # y. So this f(A) and f(A€) differ by at most countably many
points, so (f(A))¢ differs from f(A€) by at most countably many points, so f(A¢) is Borel Measurable.
Thus A contains the borel o-algebra

O
Problem 2. Let {f,} denote a bounded sequence in L?([0,1]). Suppose that {f,} converges
almost everywhere. Show that then {f,,} converges in the weak topology on L?([0,1])
Proof. See Fall 2012 Problem 1.
([l

Problem 3. Let {u,} denote a sequence of Borel probability measures on R. For n € N and
z € R we define

Fo(x) = pn((—00,2])
Suppose the sequence {F,,} converges uniformly on R. Show that for every bounded continuous
function f : R — R the numbers

/R £ (@)dpn (x)
converges as n — o0.

. J

Proof. Note that C(R) is not separable, so we are not guaranteed that weak* compactness is equivalent
to weak™ subsequential compactness. Indeed, let u, = 6, then p, does not weakly converge on any
sub-sequence, but by Banach Alagou we know that {u,} is weak® compact. Therefore, we instead ap-
proximate p by its restrictions on compact sets.



118 RAYMOND CHU

Fix an R > 0 then consider v, := {ji,|(—g,r)} i-e. the measure restricted to [~R, R]. Then C(KR)
is separable so by Banach Alagou, there is a subsequence such that v, weak™ converges to v (we still
denote this subsequence as v,,). Then as F,, — F uniformly, we know that G, (z) := f(_oo 2] dv,, uni-

formly converges. Then by approximating intervals of the form (a,b] with linear functions it is easy to
see Gy (z) = G(z) = f(_oo 2] dv uniformly. Therefore, this implies that the entire sequence v, — v.

Then let € > 0 then by uniform convergence of F,, we can find an N € N such that if n,m > N then

sup ‘Fn(x) - Fm(x)| S €
zeR

Now as uy is a finite measure there is an R > 0 such that for Kr = (—R, R] that (1—(Fn(R)—Fn(—R)) =
un((K§) < e, then as

[Fn(2)] < [Fn(2) = Fn(2)] + [Fy(2)] < e + [Fy(2)]
we deduce that u,(K$§) < 4e for n > N.

Now for any bounded f we have

/Rf(x)d(un - um)‘

=| [ st | + [ 1@ =

Kr K¢,

Notice the first term converges by our previous argument since Kr C [—R, R] and we showed that
Hnl[— R, R Weak™ converges, so it is small for large n, m. And the second term is bounded by 8sup, ¢ [ f(2)e
since |pn(Kg) — pim (Kg)| < mu, (KR) + pm (Kr) = 8¢. Hence, [ f(x)dpn(z) converges for all f € C(R)
that is bounded.

O

Problem 4. Consider the Banach Space V' = C([—1,1]) of all real-valued continuous functions
on [—1, 1] equipped with the sup norm. Let B be the closed unit ball in V.

Show that there exists a bounded linear functional A : V' — R such that A(B) is an open
subset of R.

Proof. Define
1 0
A= [ saa = [ faas

then we claim A(V) = (—2,2). Indeed, fix € > 0 and define

1on [1/n,1]
fulx) :=< nx
—1lon [-1/n,—1]

then

1/n 0
A(f):2(1—1/n)—|—/ nx—/ nr=2-—1/n
0 —1/n
0 (—2,2) C A(f). To see that it is equality, notice that fol f(z) and f?l f(z)dx are both bounded by
1 so to get 2 = A(f), we need both integrals the first integral to be 1 and the second to be —1, which
means f =1 a.e. on [0,1] and f = —1 a.e. on [—1,0] which contradicts continuity. And it’s clear A is
linear and we have

IACHI < 2] fllv

so it is bounded.



119

Problem 5. Suppose f : R — R is a bounded measurable function satisfying f(z + 1) = f(x)
and f(2z) = f(z) for almost every x € R. Show that then there is a ¢ € R such that f(z) = ¢
almost everywhere.

Proof. Fix a representation of f such that f(z 4+ 1) = f(x) and f(2z) = f(x) everywhere. Then notice
that f(z) € L{,.(R), and that as f(z + 1) = f(z) it suffices to show the theorem on [0, 1]. Then denote
the Lebesgue Points of f as E then m(E N[0,1]) = 1. Fix zo,yo € EN[0,1]

1 Yyo+r 1 To+r
Fla) = lim o / ey and f(ao) = i o / e
Now notice for dyadic rationals of the form m /2™ where m,n € Z that

fl+m/2%) = f2" (& +m/2")) = f(2"z +m) = f(2"z) = f(z)
and we recall that dyadic rationals are dense in R. So in particular, there exists a dyadic rational m /2"
such that if € > 0 then zg < yo +m/2" < ¢ + ¢ then

yo+m/2"+r
F(w0) = Flyo +my2") = lim - / f(z)dz

yo+m/27 —r
SO
1 y0+m/2"+7‘ 1 To+Tr 1 yo+m/2"—r 1 y0+m/2"+r
x 1 1 1
o /Wm/% J@ ) =5 ( / f<w>> <5 / W)+ 5 / . ()]
<M
T

2

where M is a bound for f so by choosing ¢ = r“ since € was independent of r so we obtain the bound

|f(z0) — f(yo)| < lim M = 0

Therefore, f(xo) = f(yo)-

Problem 6. For f € L?(C). For z € C define
|f (w)|
g(z ::/ dA(w
= Jon T4

Show that then |g| is finite a.e. and g € L?(C)

Proof. Observe that by Cauchy Schwarz that

2
92" = </B(1,z) |wf—(rf|)1|/2 |w —1z|1/2 dA(w))

and 1/|z| € L'(B1(0)) since C = R?, so

g < ( [ o)

IN

Fis L dtw
</B(1,z) lw — Z|dA(w)> (/}3(1,2) lw — Z|dA( )>

|f (w)[*

|w — 2|

A(w) )

so we have
w)|?

f
Juer<c [ [ e i
C cJc lw — 2|
So by Tonelli since the integrand is non-negative

= w 2 w ; z w) = w 2 # z w
= [ [ ptgaaeiaw = [iwr [ oE )

= w 2 i z w) = w 2 w (0]
= [iwr [ e = [ iwPaaw <
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where we used fBl(w fBl(O \i;|dA w) < 00, 50 g € L?

\w ZI

Problem 7. Prove that there exists a meromorphic function f on C with the following three
properties:

(1) f(z)=0iff z€Z

(2) fz)=xiff z—-1/3€Z

(3) |f(z+iy)| <1forall z € R with |y| > 1

Proof. Define
o) = — sin(7z)
sin(m(z 4+ 1/3))
then this a meromorphic function with the first 2 properties. Now we will show there is a C' > 0 such
that
lim sup lg(z)| < C

z—300 with [Im(z)|>1 N

We will deal with the case that Im(z) > 1 as the other case is a similar argument. Indeed, write z = z+1iy
with ¥ > 1 then by the triangle and reverse triangle inequalities

‘ (Z)l B eiwz _ e—iﬂ'Z |ei7rz| + ‘e—iﬂz‘ _ ey +€—7ry
I = | im a1/ —eminrim) | = ™= — |e=imz|| — e — e
—27y
_ 1+e < 2
l—e 27y — 1 —e2
and similarily one shows that when y < 1 |g(z+iy)| is bounded. So by continuity on 2 := C\{|[Im(z)| < 1},
we deduce that |g(z)| is bounded on . Say this bound is M then

f(z) == g(z)/M

=C1 <
T

is the desired function [O.

Problem 8. Show that a harmonic function w : D — R is uniformly continuous iff it admtis the

representation
1 [ e 4 2 i0
u(z):%/o Re (ei‘g—z> f(e™)do

where f: 0D — R is continuous.

\. 4

Proof. Tt is a basic fact that u is uniformly continuous on I iff u is continuous on D. So define

1 [ (e 2 0
v(z) = %/0 <ei9 — z) u(e*)do

Then observe that v(z) is holomorphic on D since if R C D is a rectangle then by Fubini’s which can be
applied since v(z) € L}, (D, dA(z)) (because the integrand is continuous on any compact subset of D) we

have that
6
/ / / (6 + Z) u(e?)dzdd =0
R T2

where the last equality is due to P(z,0) := <

. Z) harmonic on D. Then as v(z) is continuous since

u(e?) and P(z,0) are, we deduce from Morrera’s that v is holomorphic. Therefore, its real part is

harmonic. Observe that
1 27 i0 )
w(z) := Re(v(z)) = —/ Re (e_ + Z) u(e?)do
27T 0

e — 2z
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so by the Maximum Principle it suffices to show w(e?) = u(e'?) to obtain u = w.

Note that f02 " P(z,0)d# = 27 which follows from the Fourier Series of P. By computation we have for
z € D that
1—|z|? 1— |z

16.1 P(z,0)) = . = — >
(16.1) Re(P(z,0)) 1—2Re(ze ) + 2] |e¥ — 2|2 20

Therefore, we have

lw(re™) — u(e™)| = %/0 i Re(P(re'?,0)) (u(ew) - u(eiw)) do
< QL (Re(P(rew7 0)) ’u(ew) — u(ew)} d9)+/ (Re(P(reiw, 0)) |u(ei9) — u(eiw)’) df
T J16—y|<sn6el0,2n] |0—|>5n6€[0,2n]

= () + (1)
Note that we can bound (I) due to continuity continuity of u and and that Re(P(z,6)) has mass 1 to
make (I) arbitrarily small for small §. And notice that

1—72

Re(P(re',0)) = P

— 0 uniformly on [§ —¢| > dasr — 1

this follows since the denominator is uniformly bounded on this set, while the numerator goes to zero.
Therefore,

lim w(re') = u(e™)

r—1

so it follows from continuity of w that w = u on dD, so by the maximum principle since both functions
are harmonic we deduce that w = u on D.

For the converse, note by the first part of our proof we showed that

[ e + 2 i0
u(z) := g/o Re (eie — z) f(e*”)do

is harmonic due to Morrera’s and Fubini’s Theorem. Also arguing like in the previous proof, we see that
u(e’’) = f(e)

Therefore, u extends to a continuous function on D (since its clearly continuous in the interior since the
integrand is continuous), so u is a uniformly continuous harmonic function.

]

Problem 9. Consider a map F' : C x C — C with the following properties:

(1) For each fixed z € C the map w — F(z,w) is injective
(2) For each fixed w € C the map z — F(z,w) is holomorphic
(3) F(0,w) =w forw e C
Show that then
F(z,w) = a(z)w + b(z)
for z,w € C, where a and b are entire functions with a(0) = 1, (0) =0, and a(z) # 0 for z € C

Hint: Consider

Proof. Fix a w € C such that w # 0 or 1 then define
L F(Zﬂw) B F(Z,O)
Jo) = oD TR 0)
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Then from condition (7) we see that the numerator is never 0 since as w # 0 we have F(z,w) # F(z,0) by
injectivity. Also as w # 1 we deduce from injectivity in w that F(z,w) # F(z,1) so we have f,(z) # 1.
Therefore, since fy,(z) is holomorphic that by Little Picard’s Theorem, we deduce that f,,(z) is constant
for w € C\ ({0} U{1}) but we have f1(z) =1 and fo(z) = 0, so we deduce that f,(z) is constant for any
w.

In particular, this implies that for all w € C that

fuw(2) = g(w)
but condition 3 implies that

we conclude that

so we have
F(z,w) = (F(z,1) — F(2,0))w + F(z,0) := a(z)w + b(z)

and note that by the given assumptions we have all the desired properties for a and b.

Problem 10. Let {f,} be a sequence of holomorphic functions on I with the property that
F(z) = |fa(2)* <1
n=1

for all z € D. Show that the series defining F'(z) converges uniformly on compact subsets and
that F' is subharmonic.

. J

Proof. We claim that if f is holomorphic then |f(2)|? is subharmonic. Indeed, if f(z) = u + iv where u
and v are the real and imaginary parts then

[f(2)? = lu(2)]* + [o(2)]?
so it suffices to show if u is a real valued harmonic function then (u(z))

A(u?) = 2uAu + 2Vu - Vu = 2|Vul|*> > 0

2 ig subharmonic. Indeed, observe

so u? is subharmonic. Therefore, each |f,(z)

F(z) = Synpz |fn(2) P

| is subharmonic. So in particular, as

i.e. F is the supremium of subharmonic functions, we have that F' is subharmonic as long as F(z) is
upper semi continuous and not identically oo (the second part follows from F(z) < 1). We will show the
last part by showing the sum converges locally uniformly to deduce that F(z) is continuous, from which
we get that its subharmonic.

Now we use Harnack’s inequality sicne each |f,|? > 0 is a non-negative subharmonic functions to for
any 0 < R < 1/2 that there is a constant C' = C'(R) that depends only on R such that

|fn(2)]* < C|fa(0)] for z € Bag(0)

so we have for z € Br(0) that
Yo <C Y (0P =0
n=N n=N

where the last implication is due to the sum at z = 0 being summable. Therefore, the series defining F'(2)
is uniformly summable on any compact set, so F'(z) is the uniform limit of the partial sums, so F(z) is
continuous and hence by our earlier remarks we have F(z) is subharmonic. O
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Problem 11. Let f: D — C be an injective holomorphic function with f(0) =0 and f/(0) = 1.
Show that then

inf{jwl: w ¢ f(D)} <1
with equality iff f(z) = z for all z € D.

Proof. First assume for the sake of contradiction that

inf{lw| : w ¢ f(D)} >1
Therefore, as f(D) is an open map since injective functions are non-constant and f(0) = 0 € D, we
deduce that there is an § > 0 such that B;15(0) C f(D). Let U C D be open such that f(U) =D. Note
this implies U C I since By44(0) C f(U) since conformal maps map boundary to boundary. So there is
some ¢ > 0 such that U C By_.(0).

Now define
g:=F""o
then g : D — U and
o) o 9 D ith (o) —
z) = e : D — D with A(0) =0
so by Schwarz Lemma, we deduce that
1

g0 <1-e=

<l-e=>1<1-¢

[F/(0)] —
which is our contradiction. So we must have inf{|w| : w ¢ f(D)} < 1 for any injective holomorphic
function with f(0) = 0 and f’(0) = 1.

Now we deal with the equality. Note that f(z) = z trivially obeys the given bound and if
inf{[w] :w ¢ F(D)} =1
implies D C f(D). Indeed, notice
inf{lw| : w ¢ f(D)} =1= forall w € f(D), |w| >1
so f(D)¢ C D, so by D C f(D). So it follows that f~}(D) C D with f~1(0) = 0 and (f~*(0)) = 1, and
this is a map from the unit disk to the unit disk, so by Schwarz Lemma we deduce that there is some 6
such that ‘ ‘
') =e2= f(2) =e 2
so f'(0) =1 implies # = 0 so f(z) = 2.

Problem 12. Let f,g,h be complex valued functions on C with
f=goh

Show that if A is continuous and both f,g are non-constant holomorphic functions then A is
holomorphic too.

Proof. As g is non-constant, then Z := {z € C: ¢’(z) = 0} is discrete. So for each zy € C\ Z there is
an € > 0 such that B.(z9) C C\ Z. So by the inverse mapping theorem by taking ¢ smaller if necessary,
we can find an inverse of g on B.(z9) and g~! on this neighborhood is holomorphic since ¢’(z) # 0 on
B.(z0) . Therefore, we have for any 2y ¢ h~!(Z) we can locally invert thanks to continuity which allows
us to avoid all the other zeros since the zeros are discrete

g 1o f(2) = h(2) for z € Bs(z)

for 6 > 0 small enough that h(z) ¢ Z and small enough to apply Inverse Function Theorem. In particular,
h(z) is holomorphic on C\ Z as it is the composition of two holomorphic functions.
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Now fix R > 0 then Br(0) N Z = {21, .., 2n} for some finite collection z; since the zeros are isolated.
Now it suffices by Riemann’s Removable Singularities theorem to show that & is bounded on Bg(0) to
show that h extends to a holomorphic function on Bg(0). But this follows from h being continuous.
Therefore, h is holomorphic on Bg(0) for any R > 0 so its holomorphic on C. |
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17. SPRING 2018

Problem 1. Suppose f € L'(R) satisfies
i [ 1= 10
h—0 R

N dr =20

Show that f =0 a.e.

Proof. Define
Fla) = [ sy

Let h > 0 and & € E where F is the lebesgue points of f then

T — F(x o+h
ol Hi ol )=;L</z f(y)dy> — f(z)

and now observe that if z,y € F where y < x then

x+h x x
F(x—i—h)—F(y—i—h)-i—F(y)—F(x):/+h F(z)dz—/ F(z)dz:/ F(z+h)— F(z)dz

Y
so it follows by the given assumputions that
|F(x+h)—F(y+h)+ Fy) —
h

Pl %/ |F(z + h) — F(2)|dz — 0
R

but as x and y are Lebesgue points ‘F(I+h)_F(y+hh)+F(y)_F(x)| — |f(z) — f(y)|. Therefore, we conclude

if z,y € E then f(x) = f(y) i.e. f is constant a.e. and the only constant in L' is 0 so f = 0 a.e.
O

Problem 2. Given f € L%(R) and h > 0 define
RN = [ (2F() = fla ) = fla =) f(@)da

(1) Show that
Q(f,h) >0 forall f € L*(R) and all h >0

(2) Show that the set
E:={fc L*R):limsup Q(f,h) < 1}
h—0

is closed in L?(R)

Proof. For thje first part observe that
W Q(f,h) = 2(f, ) = (fno f) = (fono ) 2 211 f1122 = 1172 = |I£1|72 =0
where (-, -) is the L? inner product, fy(z) := f(z + h), and we used Cauchy-Schwarz.

For the second part observe that formally we expect that

imsup Q(f, 1) = [ @) fw)ds = [ 17/ (@)
h—0 R R
where the last equality is due to integration by parts, but we do not have that f is smooth or that the
operator is uniformly bounded in A, so we remedy this by recalling that the Fourier Transform converts
differentiation into multiplication by polynomials. So by taking the fourier transform, we expect that E
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will be a space where (f(€)-€) € L2(R) with ||f(€) “&||2@) < 1 which will be a closed subspace. Hence,
we are motivated to use Plancheral to rewrite Q(f, h) as

27rzh§ —27rih£

so if f € F we have by Fatou’s Lemma that

2mih§ e*?ﬂ'ihﬁ

/R|f(,g)|247r2£2d£§hnn3£f/|f(£)|2(2_6 %

2 _ eZTrzhE —27rih§
§1imsup/ (&) ) <1

2
n—oo

where the first inequality is due to recognizing the exponential terms as a second finite difference scheme
for its negative second derivative.

Now let fn € E such that f, — f in L? then by passing along subsequences we can assume f, — f
and fn — f Therefore, by Fatou’s Lemma we have that

/ F(©)P4n2€? < limin / Fu©Pan2€ < 1
R n—oo R

So now it suffices to show

. X 9 _ p2mihE _ ,—2mihe
1@ Pameae = fim [ 1P e

h2
to deduce that f € E. But this follows from the Dominated Convergence Theorem since

92 _ e27rih£ _ 6—27rih£ <2
h2 ) ~ 5

for h small enough where the implies constant does not depend on h.

Problem 3. Suppose f € L'(R) satisfies

lim su // — =2 dady < 00
ot Ix—y\2+€2 Y

Show that f = 0 almost everywhere.

Proof. By the monotone convergence theorem, we deduce that

[ [,
rJr |T—yl?

Now we assume for the sake of contradiction that f # 0 a.e., so there is a § > 0 such that m({z : | f(z)| >
6}) # 0 where m is the Lebesgue measure on R'. Write A(8) := {z : |f(x)| > 6} then as x a(s) € Lj,.(R)
we deduce by Lebesgue differentiation theorem that there is a z € A(J) such that for any € > 0 we can
find a n > 0 such that

m(B(n,z) NA(9)) = (1 —e)m(B(n, 2)) = 2(1 —&)n

Now observe that
o0

U (m27 ", 2)\ B(n2—"=1,2): U

[f(@)f ()l [f(@)f ()l
————dzd ————dzd
/]R r lz—yl? v /A(é)ﬂB(n,z) /A(a)mB(n,z) |z —y|? Y

1 o (m(A(5) N B(n)))?
> 5 / / > §
Z A(S)NB(n) J A(S§)NB(n ‘.’E — |2 Z 8n22—2(n+1)

m=0

so we have
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Now notice that most of the measure of this annular partition of B(7, z) lives in the first few annuli, so
this implies there is an N(g) such that if n < N(e) then m(A(§) N B(n)) > 1/2m(B(n)) which follows
from m(B(n,z) N A(d)) > (1 —e)m(B(n,z)) and N(¢) — oo as € — 0. Therefore,

5 N 22— 2(nt) 5 V)
252 goan 3225 0
m=0

m=0

as € — 0, so we have arrived at a contradiction.

Alternative Proof via Lebesgue Differentiation Theorem As f € L'(R) we have that the set
of Lebesgue Points is a set of full measure. Let g be a Lebesgue point of f then

f(zo —hm—/ flx+x0)d

h—0 2h

and we have for any h > 0

(}L /z:ihf(x)|dx>2:< /* 1) dm) ( /+ £l ) /+ /+ WISy,

where the interswap of integrand is justified by Fubini since the integrand is non-negative.

zo+h pxoth
<4/ / |f(@)|[f(y ”ddy%()

|z —y?

where the convergence to zero as h — 0 is due to the itegrand being in L' thanks to the give assumption
combined with the monotone convergence theorem. Hence, for every lebesgue point of f we have f =0,
so f=0 a.e.

|

Problem 4. Fix 1 < p < co. Show that
f= [Mfl(z,y) := su / / flz+ h,y + £)dhdl
r>0 p>0 47”/) —r
is bounded on LP(R?).

Show that
[Ar fl(z,y) 4T3/ / flx+h,y + 0)dhe

converges to f a.e. as r — 0.

Proof. For the first part, we need the following result: If 1 < p < oo then for

Tf(a)i=sw [ i+ o)lds

r>0J—

[rs@rs [ ir@r

So observe that by Layer Cake Decomposition that

/]R\Tf(%)l”d”j - /Ooo ps"'m({z [T f(x)] = s})ds

we have

So as we have
(@) = (@)X 5@) <s/2 T (@)X f@)2s/2 = 9(x) + ()
we deduce that from ||Tf||r~ <||f||lpe= if
s <|Tf(x)] = [T (g(zx) + h(z))| < |Tg(x)| +|Th(z)| < s/2+ |Tg(x)|

i.e.

m({z : [Tf(x)| = s}) <m({z: [Th(z)| > s/2})
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so in particular, we have that

/R Tr@)P < / psPim({a  [Th(z)| > 5/2}) S / 52 / F@)xoe/2)

where the last inequality is due to Hardy Littlewood Maximal Inequality. Then Tonelli gives

[f(z)]
< / (@) / Y tdsda < / @)

Now we use this Lemma on our problem. Observe for f,(y) := f(x,y) that

as desired.

1 rore 1 /" 1 [*
/ / |f(z+ h,y+ £)|dhdl < sup — sup—/ | fy+e(z + h)|dhdl
—rJ—p p

drp r>0 21 J_p p>02p J_
Then observe sup,,- 2—1p f_pp | fy+e(x + h)|dhdl = T(fyte(x)) where T was defined earlier as the Hardy
Littlewood Maximal Operator. So we have

[Mf(z,y)] < T(T(fy+e(x)))

/R / M (2, ) Pdyda < / / IT(fy o)) Pydec = / / T(fy o)) Pddy
< [ [ 1+ ordedy = 1111,

so M f is a bounded linear operator from LP to LP.
For the second part, it’'ll be identical to the usual proof of Hardy Little Maximal Inequality implies

Lebesgue Differentiation Theorem since thanks to the first part lets us obtain a similar estimate as the
Hardy Little Maximal Inequality via Chebyshev’s inequality. ]

Problem 5. Let p be real valued Borel measure on [0, 1] such that

1
1
du(t) = 0 for all 1
/037+t w(t) or all z >

Show that p = 0.

Proof. We will show that if f(¢) is continuous then

/0 F(H)dp(t) = 0

which will imply the claim. Observe that p is finite since it is real valued everywhere and p([0,1]) € R.
Observe that for h > 0 we have

0—1/1 L _ ! d(t)—/1 ! du(t)
“h)y zrt zaht P T ) Gr@rhr
So letting A — 0 with the DCT shows that (since 1/(x +t)(z +h +t) < 1/2% < 1 € L'(dy,[0,1])

L |
|, Gt =0

and repeating this argument n times shows for any n € N

L |
|| G =0

N

|, L=

n=1

so in particular
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where a,, € N. Observe that A defined to be the set of finite linear combinations of 1/(2 +¢),1/(2 +
t)%,...,1/(2 + t)" forms an algebra. It vanishes nowhere since 1/(2 +t) # 0 for t € [0, 1] and it separates
points since if ¢1 # to then 1/(2+t1) # 1/(2 + t2) since 1/(2 + ¢) is injective on ¢ € [0,1]. Therefore, by
Stone Weiestrass, A is dense in C([0,1]) with the sup-norm, so it follows by uniform convergence that if

f(t) is continuous then
1
| #raute) -

which implies =0

Problem 6. Let T denote the unit circle in C and let P(T) denote the space of Borel Probability
Measures on T and P(T x T) denote the space of Borel Probability Measures on T x T. Fix
wu,v € P(T) and define

M:={yeP(TxT): / s Tf(w)g(y)dw(sc,y) = Af(m)du(x%/rg(y)du(y) for all f,g € C(T)}

Show that F': M — R defined by
// sin? dfy( ,e'?)
TxT

achieves its minimum on M.

Proof. Let {v,} C P(T x T) be a minimizing sequence i.e. F(v,) — inf, F(v) then by Banach Alagou
and Risez Representation Theorem (since C(T) is separable, we can upgrade weak™ compactness to weak*
subsequential compactness on bounded subsets) we can find a subsequence which we still denote by {~,}
such that ~y,, weak star converges to . That is if f(z,y) € C(T x T) then

[ e | e

Taking f = 1 implies v € P(T x T). Also observe that if f,g € C(T) = f(z)g(y) € C(T x T) so we have

[ r@sares = m [ [ @aanen) = [ @i [ s

so v € M. Also observe that sin (9%) € C(T x T) so weak* convergence implies
F(yn) = F(v)

but as 7, is a minimizing sequence this implies v is a minimizer.

Problem 7. Let F': C x C — C be (jointly) continuous and holomorphic in each variable. Show
that z — F(z, 2z) is holomorphic.

Proof. Fix an R > 0 then if |w| < R then we have from the Residue Theorem that

_ F(§ w)
Flow)=om /g_R €%

217ri/|7,|=R (1:](6 1)
F(z,w) = /|£| R/ )_ )dfdﬂ

Now using the residue formula again gives

so it follows
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En)
déd
F(z,2) 47T/§|R/nR £ 2) 2)577

Now let R C Br(0) be a reactangle then

2T up .
/ F(z,2)dz = —5 / / / F(Re Ree ) R2e"+9) dipdfdz
OR 42 Jor Jo Re'? — z)(Re® — z)

27 7 0
F(Re'?, Re') 2
R2e'+) dpdfdz = 0
47r2/9 / /aR Re'? — z)(Re' — 2) ¢ pavaz

since the integrand is holomorphic in z and the swap of integrals is justified by continuity of the integrand
which on z € Bgr(0) (just parametrize OR and convert the contour integral into a regular integral then
undo the parametrization on the last step for the rectangle). And as F(z,z) is continuous, we deduce
from Morrera’s that F(z,z) is holomorphic on Bg(0). And as R was arbitrary we conclude F(z,z) is
entire. ]

ie.

Problem 8. Determine the supremum of
ou
o
x
among all harmonic functions v : D — [0, 1]. Prove that your answer is correct.

0,0)]

Proof. Fix 0 < R < 1 and define ug(z) := u(Rz) € C(D) and is harmonic on D. So by Poisson Integral
Formula we have for 0 < r < 1 that

1 27 1— 2 ) 1 27 1— 2 )
ug(re'®) = / |.7r.u(Re’9)d0 = —/ ! u(Re'?)db
0

2 et — reiv|? 27 1—2rcos(f — ) + 12

so now we have by identifying re’¥ = r cos(p) + irsin(¢) = x + iy that for z > 0

un(w,0) = 1/% LT (R
“ 27 Jo 172xcos(0)+x2u ¢

Hence

Oupr 0) — 1 /27r —22(1 — 2z cos(#) + 22) — (=2 cos(f) + 2x)(1 — $2)U(Rei0)d9

R 0) = —

oz (z,0) 27 (1 — 2z cos(f) + x2)2
where differentiating under the integral sign is fine since R < 1 so the Poisson Kernal is smooth in Br(0).
In particular,

8UR 1 2m i0
5 —=(0,0) = 27T/ 2cos(B)ur(Re')do

so we have from 0 < u < 1 that

dug 1 [7/? 2
2 0)df = —
ox oy 00 = T /_,r/g cos(9) ™

UR (7 u
— 0.0) <
(9.13 R():Z‘ (91‘( ’ )7

SEES

so define f: ST — [0,1] via

0 else

= {1 onf e [—n/2,7/2]

then

1 2 1— 2 )
u(z) = 7/0 o |_Z| F(e)do

27 z|
is the desired harmonic function with these properties. Note that the usual proof of if f € C(9D) then
the usual proof of

2m
lim u(re®) ::i/O 1| f(e?)do = f(e)

r—1 27 le? — 2|
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extends to bounded functions at every point of continuity of f. Therefore, u(re??) — X[—m/2,x/2] €Very-
where except at § = £7/2 i.e. u obtains the boundary data f a.e., so by our above computation our
function u obtains the boundary data.

Alternative Proof By the mean value property we have for any 0 < r < 1

ou 1 ou 1
%(0,0) =—3 /B o 8x(z)dA(Z) = 777"2/83,.(0) unido

where n4 is the first component of the unit normal on 0B,(0) i.e. z/r.
1 2w 0 1 2 0
=— ru(re’) cos(0)df = — u(re’) cos(0)dd
mwr 0=0 " Jo=0

Since 0 < u < 1 we deduce

ou 1 [/ 2
—(0,0) < — 0)do = —
ax( 0) = r /e_ﬂ/z cos(f) r

So sending r — 1 we deduce that

Ou 2

=—(0,0) < =

33:( )<
And from construction we see that the max must be 1 on [—7/2,7/2] and 0 else, so we use the same
function as before. O

Problem 9. Consider the formal product
1+ —-)*1-—

(1) Show that the product converges for any z € (—o0,0)

(2) Show that this resulting function extends to an entire function.

Proof. Notice if a,, := (1+ 2)*(1 — 2) then a,, — 1 as n — oo, so by looking at the tail of the product if
necessary, we can assume a, € Bj /2(1). This means we can define the standard complex logarithim i.e.
log(z) where 6 € (—7, 7] and log(a,,) is well defined. So now by taking logs we see that by taking limits

log(H an) = Zlog(an) = Zlog(an -141)= Z(an — 1)+ O0((a, — 1)?)
n=1 n=1 n=1 n=1
so the product converges iff
Z(an -1)
n=1

converges. So we need to show the following sum converges

-2y -]

hE

1

3
Il

Observe that
(1+x) z(1 —i—x)z_1

so Taylor Expansion at = 0 gives
(1+2)* =1+ za + O(z?)
so we have
z z 22
(47 0-2) == 5+ 2) 40 0/m) = 1= 5 + 0 (1/n2)
Therefore,

o

S0+ -2 2: 0 (1/n?)

n=1 n=1
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which converges.

For the second part, notice that for any z € C we can define the complex log for a, so we have
(1+1/n)* = exp(zlog(l+1/n)) is a well defined holomorphic function (where we are using the standard
log branch). And by our earlier computations the sum converges locally uniformly on compact subsets
of C so

M M |2
| I a, = exp( E (an — 1) + O((an — 1)?)) = exp( E O(ﬁ))
n=N n=N n=N

so the product converges locally uniformly, hence the limit is holomorphic.

Problem 10. Let C* = CU {o0} be the Riemann Sphere and  := C*\ {0,1}. Let f: Q — Q
be a holomorphic function.

(1) Prove that if f is injective then f(2) =

(2) Make a list of all such injective functions.

Proof. Let
z

p(2) = —

then ¢ is a Mobius Transformation such that ©(0) = 0, ¢(1) = oo, and p(c0) = 1. In particular, if
U :=C\ {0} then p(U) = Q2 so
g(z):=p tofop:U—=U

And since ¢ is conformal it suffices to show that if g is injective then it is surjective.

Now g is a holomorphic function on C\ {0}. By Great Picard Theorem the singularity at 0 is either
removable or a pole.

Removable Singularity Case If g(z) has a removable singularity at 0 then g extends to be an in-
jective entire function. Indeed, if g(0) = g(w) for some w # 0, the open mapping theorem implies that g
is not injective on C\ {0} (since a small ball around 0 and around w maps to a ball around g(0) = g(w)).
Therefore, g(z) is an injective entire function so g is a linear function i.e. g(z) = az+b, so it follows that
g is surjective. And as g(z) # 0 for z # 0 it follows that b = 0 so g(z) = az.

Pole Case If g(z) has a pole at z = 0, then 1/¢ has a removable singularity at z = 0 and since g
does not map to 0, so we see 1/g is an injective holomorphic function on C\ {0} that has a removable
singularity at z = 0. By applying our previous case, we deduce that 1/g(z) = az+b = g(z) = ﬁ. As
g(z) has a pole at z = 0 we must have b = 0 and a # 0, so g(z) = 1/(az) which is a Mobius Transforma-
tion and ¢(0) = oo with g(oo) = 0, so it follows from Mobius Transformations being conformal that g is
surjective on U.

By our previous considerations we must have

g(z) =1/(az) or az
for some a € C that is not 0. So by undoing our mobius transformations we deduce that

f(2) = po(1/az) oo~  or po (az) 0!

Problem 11. For R > 1 let Ar be the annulus {1 < |z| < R} . Assume there is a conformal
map F' from Ag, onto Ag,. Prove that R; = Ry.
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Proof. See Spring 2017 Number 7.

Problem 12. Let f(z) be a bounded and holomorphic on D. Prove that for any w € D that we

have
6=+ [ (f(z)dz

7 Jp (1 —Zw)?

Proof. Let w € C then define
w—z

Yu(z) = 1—Z2w

then 1, is an auotmorphism of the disk such that ¢, (w) = 0 and ,,(0) = w. Therefore, notice if
f o, : D — C so the mean value property tells us that for 0 < r < 1

1
Fw) = Fpu(0)) = /B AT

2

and as f is bounded we have f € L1(D) so we can take limits to get

/fo%dzf /f )Y |2dz

where the last equality is due to change of variables and that v, is an automorphism so its inverse
derivative is well defined by the inverse function theorem. Note that

—1y_ AW —1 _ 1= |wl?
ql)w (Z) - 1 — w2 = 8Z(¢w (Z)) - (1 _ EZ)Q
so in particular,
_l P 1_|w|2 1_‘w|2 Z:l 0 (2 e
) =+ [ FO (o (s = = 2 (). 00(2)

so as 1), # 0 anywhere, we have that if F' is holomorphic then

HPE) ) = £ (g ) = Fw) b, (w)

It therefore, follows that

(), () (2)) = F(w)
and L uf? .
| R e T e T
1.e.

1 1
flw) = ;/Df(z)mdz
as desired. 0
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18. FALL 2018

Problem 1. Let {f,} be a sequence of real-valued Lebesgue measurable functions on R, and let
f be another such function. Assume that
(1) fn — f Lebesgue a.e.
2) [g x| fn|dz < 100, for all n, and
) f]R |fn($)|2dx < 100
Prove that f, € L! for all n, that f € L', and that ||f, — f|/z1+ — 0. Also show that neither
assumputions (2) nor (3) can be omitted while making these deductions.

Proof. Notice that for any n we have

1/2
_ 2
/RIfnldx—/lmKllfnd$+/z|>1|fn|d$ < ﬁ(/m<l|fn ) +/ 2]l ful

< V2| fallp2ry + 100 < 10V2 + 100 =: C

where we used Holder’s inequality and the given inequalities. Therefore, f, € L'(R) and by Fatou’s
Lemma

/ |f|dz = / liminf | f,,|dz < liminf/ |folde < C
so f € L'(R) and similarly Fatou implies that
/ 12||f] < 100 and / \fu2dz < 100
R R

Now observe that for any M > 0 that

]
— foldz = — fald |d
/le fuldx /|w<M|f f|x+/m>M||f fnldz

1
<[ Af-tldos g [ e - e
|z| <M lz|>m
200
/z|<M | M

so if € > 0 choose M so large such that 200/M < e/3/ Also as By (0) is a set of finite measure, we know
by Egorov’s Theorem that for any 6 > 0 we can find a set K C Bps(0) such that f,, — f uniformly on
K. So we choose N € N so large such that if n > N then sup,cx |f(z) — fo(x)| < e/(6M) then

/\f fn\dx+/B gl

1/2
<€/3+</ |f_fn|2> 52 +e/3
By (0)\K

< 2¢/3 4 20061/2
so choosing § > 0 such that 2006/? < /3 gives

<e¢
so f, = fin L%

Now if (2) is satisfied but (3) this means we do not necessarily have control of the function near the
origin. Indeed, consider

Jn(®) :=nxp0,1/m)(x) = fr — 0 ace.

[ tnldz =1, [ 1 =0 = o0, [ jalifal < [ 151 =1

with
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and f, clearly does not converge to 0 in L' since each f,, has mass 1.
Now if (3) is satisfied but (2) is not, then we do not have control of the tail. Indeed consider

Fu@) = xn (@) = [ 10 = [l = [ a/n= /200

and f, pointwise goes to 0 but clearly does not go to 0 in L' since each f,, has mass 1.

Problem 2. Let (X, p) be a compact metric space which has at least two points, and let C'(X)
be the space of continuous functions on X with the sup norm. Let D be a dense subset of X and
for each y € D define f, € C(X) by
fy(@) = p(z,y)

Let A be the sub-algebra generated by the collection f, (with pointwise addition and multiplication
of functions).

(1) Prove that A is dense in C(X) under the uniform norm.

(2) Prove that C(X) is separable.

Proof. For the first part, we will use Stone-Weiestrass. First notice that since X has at least two points
so does D since the two points are a non-zero distance away from one another. We claim A seprates
points. Indeed, let z,y € X with x # y then d(z,y) = 6 > 0. As D is dense there is an x,, € D such that
d(z,x,) < /2 then we have

and we also have from the triangle inequality that
fo, () = d(zn,y) =2 d(z,y) —d(zn,y) 26 —0/2=0/2> fp,(x)
Therefore, f,, (z) # fz,(y), so A separates points.

Now it vanishes nowhere since if x € X then as X has at least two points there is a y € X such that
x #y <= d(z,y) = § > 0. then there is a y,, € D such that d(y,y,) < §/2 which implies

fon (@) = d(z,yn) > d(z,y) — d(y,yn) > 6/2> 0

so as X is a compact metric space, Stone Weiestrass implies that A is dense in C(X).

For the second part, we know that as X is compact, it is totally bounded. Therefore, X is separable
so we can find a countable dense set £ and we can similarly define Ag to be the sub-algebra generated
by f, for y € E. Then Ag = C(X) and let

S := { finite rational polynomial combinations of f,}

ie. feSif f= Z]Ail ¢; Hf\[:(lj) fy: where ¢; € Q then S is countable and S = Ap, so S is a countable
dense set in C(X) so C(X) is separable.
]

Problem 3. Let (X, p) be a compact metric space and let P(X) be the set of all positive prob-
ability measures on the Borel o-algebra. Assume that p, weakly converges to p. Prove that
n(E) = p(E) for all E with u(F) = p(Int(E)).

Proof. If F is a closed set then we know that yp(z) is upper semi-continuous so there exists a sequence
of f, € C(X) such that f, > xr and f, — xr pointwise. Then we have for any m

lim sup / XFdpy, < limsup / Jmdpn = / Jmdp
X X X

n—oo n—oo
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so then as f,, — xr and f; > f,, for any m with f; € L'(X,du) (this follows from X is compact so f;
is bounded and u being a probability measure), so by DCT we know fX fmdp — fX xrdu i.e.

lim sup / Xrdpn < p(F)
X

n—oo

Now if G is an open set, we know that x¢ is lower semi continuous so we can find f,, € C(X) such
that xg > fn and f,, = xq. Therefore,

1iminf/ xadpy > 1iminf/ Jmdpn :/ Jmdp
n—oo [x n—oo [y X

so applying the monotone convergence theorem gives

n—o0

liminf [ xqdpn 2/ xcdp = p(G)
X X

Now by applying these two lemmas we see that for any set E with the given conditions that

lim sup pi, (E) < limsup i (E) < p(E) = p(E) = p(Int(E)) < lim inf p (Int(E)) < liminf i, (E)
n—oo n—oo n [ee) n o0

which implies
uW(E) = lim p,(E)

n—oo

as desired.

Problem 4. Let T be the unit circle in C and for each « € T define the rotation map R, : T — T
by Rs(z) = az. A Borel probabiltiy measure p on T is called a-invariant if pu(Ry(E)) = u(E) for
any Borel set 2 C T.
(1) Let m be the Lebesgue measure defined on T (defined, for instance, by identifying T with
[0,1) through the exponential map). Show that for each o € T that m is also a-invariant.
(2) Prove that if v is not a root of unity, then the set of powers {a™ : n € Z} is dense in T.
(3) Prove that if we fix @ € T that is not a root of unity then the only a-invariant Borel
probability measures is the Lebesgue measure.

Proof. For the first part if a € T then a = ¥ for some 1 € [0,27). So if E = {€? : 0 € [0y, 6]} then we
have R, (E) = {9+ 1 0 € [0y, 01]} = [0 + 1,01 + ] s0

m(Ra(E)) = m([0o + 1,01 + ¢]) = m([0o, 01]) = m(E)

where in the last inequality we used that the Lebesgue measure is translation invariant for intervals.
Then as E generates the Borel o-algebra on T, we see that for any Borel Set E that m(R,(E)) = m(E).

For the second part, let a be a non root of unity, then as T is compact in C there is a subsequence which
we still denote by o™ such that a™ is convergent in T. We define |[e? ||y := inf{¢) € [0,27) : e!¥ = €%} i.e.
we want the angle in [0, 27). Let the limit point be denote by 8. Now if ¢ > 0 we know that evenetually
for large enough n,m with m > n that

0<|la™—a™|r<e

where we have the lower bound since « is not a root of unity. This means o ~" corresponds to a non
trivial rotation that rotates us at most by e degrees. Since £ > 0 is arbitrarily small and the rotation
is non-trivial, we can rotate our fixed point 8 to be arbitrarily close to any other v € T with ™. This
means {a"} is dense in T.

For the third part, we claim that the Lebesgue measure m is the unique borel measure on R such that
m([0,1]) = 1 and is translation invariant. Recall by Stone Weiestrass that trignometric polynomials are
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dense in C([0,1]) under the sup-norm. So we first show that if p is another translation invariant measure
such that 1([0,1]) =1 then
1 .
. lifk=0
/ eszksz(x) _ 1
0 0 else

Note that the k = 0 case is trivial since we imposed p([0,1]) = 1. Indeed observe that

1

/O ' cos(2ma)dp(z) = /0 Y2 os(2m)du() /1 cos(2m)dp() = /0 Y2 os(2m ) () /O Y2 cos(2mz)du(z) = 0

/2
where for the third equality we used the translation invariance of p to change the integration to 1/2 to 1
combined with cos(27(z + 1/2)) = — cos(2mx). The same trick works for e2™**% of splitting the integral

to where cos(2rkz) or sin(2mkz) changes sign and using translation invariance lets us deduce that

v 1ifk=0
/ eka;ch(x) _ 1
0 0 else

Therefore, we see that for any trignometric polynomial P that
1 1
/ P(z)du(z) = / P(z)dm(x)
0 0
so Stone Weiestrass implies that for all f € C([0,1]) that

/0 ' f(@)du(a) = / ' f(a)dm(z)

Therefore, u = m.

So by this lemma it suffices to show that if u is an a—invariant Borel probability measure on [0, 1]
then it is translation invariant. Indeed, observe if F C T is Borel then observe for all n € N

HW(RL(E)) = p(RLN(E)) = ... = u(E)

where the power to n indicates we do do the rotation n times. Then by part b the set {a"} is dense in
T, so if B € S' we can find a sequence ny such that o™ — 3. And we have

w(REFE) = p(E) for all k
Then to take the limit observe that

W(RE) = / Xams 5 (@) dp(z)

and this is dominated by xt(z) lets us use the DCT combined with Xxqo»r g(z) — xgr(z) to conclude
HRsE) = lim (R E) = u(E)

so p is a translation invariant measure such that ([0, 1]) = 1 so it follows that p is the Lebesgue measure.
O

Problem 5. Let {f,} be a sequence of continuous real valued functions such that f,, — f point-
wise everywhere on [0, 1].

(1) Prove that for every € > 0 there is a dense set D, such that if z € D, then there is an
open interval I 3 z and a positive integer IV, such that if n > N, then

sup |fn(y) — f(y)| < e
yel

(2) Prove that f cannot be the characteristic function of xgnjo,1)
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Proof. For each N € N and ¢ > 0 define
Fyei= () {z€[0,1):|ful(2) = fm(2)| < &}
n,m>N

then F . is closed since each f,, is continuous. And pointwise convergence everywhere implies that

oo
0,1 = | J Fy.
N=1

so by Baire Categroy Theorem, we know that

D= | J Int(Fy.)
N=1

is open and non-empty. Now we claim D, is dense; indeed, if (a,b) is an open interval then

oo

[a,b] = U [a,b] N F), .

n=1
so again by Baire we now that there is some M such that Int([a, b] N Fr,c) # 0 this implies that
(a7b)r]ﬁh4£ #ZQ
so D, is dense. And for each z € D, by definition there is some N, such that « € Int(Fy, ) so there is
some 0 > 0 such that Bs(z) € D, and

sup | fu(y) — fm(y)| < e for all n,m > N,
y€Bs(x)

using pointwise convergence implies that

sup |fuly) — f(y)| <efor all n,m > N,
yEBs ()

as desired.

For the second part, suppose C([0,1]) > fn — Xaqno,1] everywhere. Then let 2 € [0, 1], so by part 1
there is some interval I and integer N, such that if n > N, then

S;ér;lfn(y) - fl<1/3

so by density of Q there is some r € R\ QNI so f(g) = 0 this implies

sup |fu(r) <1/3
qeInNQ

so by density of R\ Q in I and f,, being continuous we deduce that
sup | fn(r)| < 1/3
yel

so if ¢ € QN I we have
[fnl@) = F@I = [f(@)] = [ful@) 21 -1/3=2/3

so we cannot have f,, — f everywhere.

]
Problem 6. Let f in L2(R) and assume that the fourier transform satisfies | f(€)| > 0 a.e. Prove
that the set of finite linear combinations of translates f,(z) := f(x — a) is norm dense in L*(R)
Proof. See Spring 2012 Problem 6. |

Problem 7. Let f(z) be an analytic function on the entire plane such that U(z) :=log|f(2)] is
in L(C,dA) . Prove that f is constant.
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Proof. See Spring 2013 Problem 7. ]

Problem 8. Let D be the space of analytic functions on D such that f(0) = 0 and f’ € L*(D,dA)
(1) Prove that D is complete in the norm

Isit=( [, If’(2)|2>1/2

(2) Give a necessary and sufficient condition on the coefficients a,, for the function

)= Zanz"

n>1
to belong to D.

Proof. Let f,, C D be a Cauchy Sequence in || - ||. Now we use that for any compact set K C D that

Al (r0) < ClISf L2y

where C = C(K) is a constant that depends only on K and not on f. This is shown by Mean Value
Property combined with integration (for instance see Fall 2013 Number 5 for a proof of this lemma).
Therefore, we have for f € D that
| ze ) < CIISI

so we see that

fn = FinllLee ) < CUE) | fn = fiml
so as the space C(K) is complete we see there exists a function g € C(D) such that f/ — g locally
uniformly on D. In particular, g is holomorphic. And as {f.} is a Cauchy Sequence in L2, which is
complete we know that there is a limit h € L2, so it follows from uniqueness of limits that ¢ = h. So in
particular, g € L?(D) and is holomorphic on D.

As D is simply connected by Cauchy’s Theorem, there exists a primitive of g which we denote by f
such that f(0) = 0 (since primitives are determined uniquely up to constants). In particular as f' = g
we deduce that f is holomorphic with f(0) = 0 and f’ € L?(D,dA) so f € D. And we have

o = fll = lfn = 9gllz2@) = 0
where the last line is due to our definition of g and f € D. Therefore, D is complete in the norm || - [|.

For the second part, notice f(re®) = 3" _ a,7"e™? and we have f(0) = 0 so it suffices to find

equivalent conditions for the derivative of the sum being in L?(D). By local uniform convergence, we
know that we can differentiate term by term to see

e 0) — § nanrn—lei(n—l)Q
n>1

so we have by local uniform convergence and f’ € L?(C,dA) that

/|f | dA / A 7‘|f 7‘6 | dfdr = Z / /0: na rn- 1 1(" 1)0)(777/@7‘“71671-(“71)6)
r=0
= QWZ/ 27‘_1n2|an|2dr

n>1

9 is an orthogonal family in [0, 27]. So

1/ Z2my =7 Y nlanl®

n>1

where for the final equality we used e

so we have
f € L?(D) <= Zn|an\2 < oo

n>1
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which is the desired equivalence

O
Problem 9. Consider the meromoprhic function g(z) = —mz cot(nz) on the entire plane C.
(1) Find all poles of g and determine the residues of g at each pole.
(2) In the Taylor series representation Y - axz® of g(z) about z = 0, show that for each
E>1
_ 2
az =) 2k
n>1
Proof. The poles are at n € Z '\ {0} and are of order 1. Now fix n € Z \ {0} then we have
. cos(mz)
R =lim —7(z —n)z——= = —
es(g,n) lim 7(z n)zsin(wz)
For the second part, recall that
_ 1 222
m cot () *+Z = kz 9D =-1-> 5
k>1 k>1
so if we define h(z) := Zk>1 —2%- then h(z?) = g(z) and h is holomorphic since the sum converges

locally uniformly away from ne€zZ\ {O} In particular, observe that the 2kth taylor coefficient of g is the
kth taylor coefficient of h(z). Now observe

2 = dn=i
z):—l—zzmﬁ Z()dzﬂ Wf(z)

k>1 3=0
where f(2) := Y, zs27=. So in particular,

(n) dn— 1
A (0) = —2n = ()

since the sum for f(z) converges locally uniformly we can differentiate term by term to see that

(n)
f TL' Z Z _ k2 n+1
k>1
SO
0 =Y
k>1
so we see that
2
aze = z2n
k>1

as desired.

Problem 10. For —1 < 5 < 1 evaluate

o0 B
|
o 1+a?

Proof. See Spring 2014 Number 11.
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Problem 11. An analytic Jordan Curve is a set of the form

I'=f{lzl=1})

where f is analytic and 1 — 1 on an annulus {r < |z] < 1/r}, 0 <r < 1.

Let C* = CU {o0} be the Riemann sphere, let N < 0o, and let @ C C* be a domain for which
0f) has N connected components, none of which are single points. Prove there is a conformal
mapping from 2 onto a domain bounded by N pairwise disjoint analytic Jordan Curves.

Proof. O

Problem 12. If o € C satisfies 0 < |a| < 1 and if n € N show that the equation
Efz—1)"=a

has exactly n simple roots in the half plane {z : Rez > 0}.

Proof. Let us first show all the roots are simple of
fz)=€ez-1)" -«

So if zg is a repeated root we know that f(z9) = f'(z0) = 0, so by differentiation,

e (20— 1)" +e®(n)(zo — )"t =0
and as 0 < |a| we know that zp — 1 # 0 so
(o—1)+n=0=>2=1—n
Now we claim that
e (0 — 1)"] > 1

which will imply all the roots are simple since 0 < || < 1. Indeed, observe that

A EUPS P (A

e e

we note the equality is true for n = 1 and by differentiation in n we see the left hand inequality is
increasing in n, so we have the desired inequality. Therefore, every root is simple since f(zg) # 0.

Now it suffices to show there are n roots in the half plane {z : Re(z) > 0}. To do this we parameterize
Yr as a square of length R with center R for R > 1. It is easy to see that on the boundary of this contour
that |e*(z — 1)"| > 1 > |a| so by Rouche’s theorem,

Eflz-1)" -«

has the same number of zeros as e?(z — 1) in this square. Therefore, by taking R — oo we see in this half

plane there are n roots in this half plane.
|
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19. SPRING 2019

Problem 1. Let f € C?(R) be a real valued function that is uniformly bounded on R. Prove
that there exists a point ¢ € R such that f”(c) = 0.

Proof. Assume for the sake of contradiction that f”(x) # 0 for any # € R, so as f € C? we know that
either f”(x) > 0 or f”(x) < 0 for all x € R. Without loss of generarlity, by looking at — f if necessary we
can assume that f”(z) > 0 for all x € R. Then f(z) is convex and as f”(z) > 0 we know that f/(x) is
strictly increasing, so there is some zy € R such that f’(xg) # 0. Then by a first order taylor series with
remainder term expansion we see that

f(x) > f(zo) + f'(z0)(z — x0) for all z € R

i.e. convex functions lie above their tangent lines. Now if f’(xg) > 0 then taking z — oo gives
lim, o f(z) > oo so f is not uniformly bounded. And if f'(zp) < 0 then taking x — —oo implies
lim, oo f(2) > 0o so f is unbounded in either case, so we have arrived at a contradiction. So f”(c) =0
for some ¢ € R.

(|

Problem 2. Let u be a Borel probability measure on [0, 1] that has no atoms. Let also u1, o, ..
be Borel probability measures on [0, 1] such that u,, weak™ converges to p. Denote F'(t) := u([0,¢])
and F,(t) := pun([0,¢]) for each n > 1 and ¢ € [0, 1]. Prove that F}, converges uniformly to F.

Proof. Note that for each fixed ¢t € [0,1] that we can find a sequence of continuous functions f,, g, €
C(]0,1]) such that

fa(@) < Xp0,4(2) < gn()
with f,, — X0, (2) and g, — X[0,4 (%) pointwise, so in particular, we have

1 1
| £u@)ion(@) < ) < [ gala)di
0 0
so taking m — oo along with p,, weak™® converges to u gives

Hmsup,,_, o0 Fu(t) < fy gn(@)dp
fol fo(x)dp < liminf,, o F,(t)

so now using DCT and MCT we see that
1 1

Jim ; fa(x)dp = Tim ; gn(z)dp = F(t)
so we deduce that

lim F,(t) = F(¢)

n—o0

so we have pointwise convergence everywhere. A small modification of the above proof shows that
tn(la, b)) = u(fa,b]) for all a < b.

Notice each F,,(t) is a monotone function that converges to a continuous function F'(t) (it is continuous
since it has no atoms), so we have F,, — F uniformly since [0, 1] is compact. Indeed, as F' is continuous
on [0,1] if € > 0 there is a 6 > 0 such that if z,y € [0,1] and |z — y| < ¢ then |F(z) — F(y)| < /2. Now
as fix ¢ € QN [0,1] then by pointwise convergence we can find an N(q) such that if n > N(g) then

[fn(q) = F(g)| < /2
and as Q N [0,1] is dense in [0,1] we know that [0,1] C U, Bs/2(qn) where g, is an enumeration of
Q. Therefore, we may find a finite subcover Uivzl Bs/2(qn) and let M := maxi<j<ny N(g,). Then for

m > M, if x € Bs/2(q,) such that if < ¢, we have from F,, being monotone increasing that (where we
reorder ¢, such that ¢, < ¢u11)

Fm(x) — F(qn) < Frulgn) — F(qn) < e/2
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but we also have
Fn(z) = Flgn) = Fn(gn-1) — Fgn) 2 —€/2
so it follows that
[Fm(z) = Fgn)| < €/2
for all m > M. Now observe if n > M that
|Fo(2) = F(2)] < |Fo(z) = Fgm)| + |Fgm) — F(z)| <e/2+¢/2 =«

where x € Bs(g,,). The case of > g, is also similar. Therefore, we have shown F,, — F uniformly.
O

Problem 3. Let f(t) be a positive continuous function such that lim;_,o f(t) = 0. Show that
the set {hf : h € L*(R,m),||h||]1 < K} is a closed nowhere dense set in L!(R,m), for any K > 1.

Let {f.} be a sequence of positive continuous function on R such that for each n we have
limyy o0 f(t) = 0. Show that there exists g € L'(R,m) such that g/f, ¢ L'(R,m) for all
n.

Proof. Denote E := {hf : h € L*(R,m), ||h||s < K} then if E > f, — f in L! then we have for each f,
that f, = g,h where g, € L'(R,m) with ||g,||1 < K. So by looking at a subsequence if necessary, we
have that g,, — f/h pointwise, so Fatou’s Lemma gives

/|f/h|dx=/liminf |gn|dx < liminf/ |gnldx < K

so it follows that f € E. To see that it has empty interior, observe that if f € E and € > 0 that for any
N € N we have that for gy (z) := f(x) + (¢/2) X0, 0m41) ()

M+1
IIf(:c)ng(z)Hl:/ 2z — /2
M
i.e. gr(x) € B(f). Now observe that

M+1 e

so now as limyy_, f(t) = 0, we can find an M € N such that if § > 0 then on [M, M + 1] we have
|f(¢)| < 4. So in particular, we conclude

[ lons(@)/@ldn = o

now choose 0 so small such that £/(26) > K + 1. Thus it follows that gy (x) ¢ E. So E has empty
interior in L*.

For the second part define E, ps := {hf, : h € L'(R,m),||h|[s < M} where n, M € N. Then E,, 5 is
a closed set with empty interior. Then as L!(R,m) is complete we know that L! is not meager i.e.

Ll(Ra m) 7é U En,M
n,MeN
so in particular there is some g € L*'(R,m) such that G' € (,,, ysen E5 5y ive. foralln, M € N|g/ fu|l > M

ie. g/fn ¢ L'(R,m) for any n € N.
]
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Problem 4. Let V be the subspace of L>([0,1], ) (where p is the Lebesgue measure on [0, 1])
defined by

V:={feL*(0,1],p): lim n/{o y ]f(x)du exists }

n—roo

Prove that there is a continuous linear functional ¢ € L*([0,1],4)* such that
o(f) = limp 00 f[O,l/n] f(z)dp for every f € V.

Show that, given any <p 6 LOO([O 1] w)* satisfying the condition above that there is no g €
L([0,1], i) such that o(f fo x)du for all f € L>([0,1], u)

Proof. Define the linear functional ¢ : V — R via
o) = tmn [ fla)du
[0,1/n]

and this is linear and well defined since f € V. It is also continuous since

d
n/[O)l/n] f(x)dp

< n/ @)l < |1l
[0,1/n]

hence by taking limits

le (N < M fllzee
so ¢ € V*. So by Hanh-Banach we can extend ¢ to a linear functional ¢ on L ([0, 1], 1) such that the
[|6]] = |l¢|| where the operator norm on the left is taken over L>°([0, 1], ) and the right is over V. So

this extension is continuous and this proves the first part.

For the second part note that over C([0,1]) C L>([0,1], ) that ¢|c(jo,1)) = do where o means the
dirac delta at zero since if f € C([0, 1])

f(0) = lim f(x)du

So now if we assume for the sake of contradiction that there is some g € L'(]0, 1], ) such that o(f) =

fo x)dp. Then for any y € (0,1) we have for h > 0 small enough that (y —h,y+h) C (0,1) and we
can ﬁnd a continuous function f, > X[y—p,y+r] such that f,, — X[y—_p,y4r) pointwise with f,, € C([0,1])
with || fn||L= < 2 so we have from the dominated convergence theorem

y+h
/ fo(x)g(x)de — g(z)dz
y—h
where the first equality is due to ¢(f) = f(0) for all f € C([0,1]). In particular, we have

y+h 1 y+h
0= / g(x)dzr = hm / g(x)dx =0
y

so by Lebesgue differentiation Theorem we have g(z) = 0 a.e., but

which is our contradiction.

Problem 5. Prove that LP([0, 1], 1) are separable Banach spaces for 1 < p < oo but L*([0, 1], )
is not (u is the Lebesgue measure on [0, 1]).

Also prove that there is no linear bounded surjective map 7" : LP([0, 1], u) — L*([0,1], u), if p > 1.
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Proof. We claim that for 1 < p < co that step functions with rational coefficients over rational intervals
are dense in LP([0,1],u) for 1 < p < oo. Indeed, first fix E C [0,1] p-measurable, then as u is outer
regular, we know

1
/ xedu(z) = p(F) = inf{u(G) : E C G and G is open}
0

Now let E C G where G is open. Then since [0, 1] is separable, we know that G = |J;=, I; where I, are
disjoint open intervals. So then we have p(G) = lim,, Z?zl w(I;), so if € > 0 we can find some N € N
such that if n > N |u(G) — Z?=1 w(I;)] < e . Now each I; we can thanks to density of rationals on [0, 1]
a rational interval J; such that I; C J; and p(J; \ I;) < so it follows that And

(/Olle(x)— ) ( ) (/Z+Ix )Up
(Zw\f) @mm)

< 9¢1/p

_277

So now it follows that we can approximate simple functions arbitrarily well with finite rational combina-
tions of step functions on rational intervals in L for p € [1,00) and as this set of functions is countable,
we deduce LP([0,1], u) is separable for p € [1, c0).

L*°([0,1]) is not separable since for every irrational p € [1/4,3/4] \ Q we can define for 0 < ¢ < 1/8
fp(®) := X[p—c,p+e (). Then we have for p, ¢ distinct irrationals in [1/4,3/4] that

o (@) = fa(@)l|Loe (o) = 1

But there are uncountably many such functions, which implies L°°([0, 1]) is uncountable.

For the second part, assume for the sake of contradiction that such a T existed, then we define its

adjoint T : (L1([0, 1], u))* =2 L=°([0,1], ) — (LP([0,1], ))* = L9([0, 1], ) where 1/p+ 1/q =1 via
T*(f) == f(T): LP([0,1], ) = R

Now as T is surjective we claim that T is injective. Indeed, as the adjoint is linear it suffices to show
if T*(g) = 0 then g = 0. Indeed, observe T*(g) = g(T) so as T is surjective, we know this means for
all f € L1([0,1],u) that g(f) = 0 so by Hanh-Banach, we must have that g € (L'([0,1], z))* is the zero
functional. So T* is injective. So we have that L°°([0, 1], ) is a isomorphic to a subset of L4([0, 1], ) i.e.
T*(L*>([0,1], 1)) (note T* is bounded). Notice that the first space is separable, while the second is not.
This contradicts the isomorphism, so no such maps exist.

]

s ~

Problem 6. Let H be a Hilbert space and {{,,}, a sequence of vectors in H such that ||&,|| =1
for all n.

Show that if {£,,} converges weakly to a vector £ € H with ||¢]| = 1, then lim,, o ||&, — &]| = 0.

Show that if limy, o ||€n 4+ &m|| = 2,then there exists a vector £ € H such that
lim ||, —¢|[ =0
n—oo

Proof. For the first part, by the Parallelogram law, we have that
[16n + €I1* + 11€n — &I = 2[[&all* + 21I€]I* =

Now observe that

1€n + €17 = (6n + & &n + &) = 16l P + 1IEN17 + (60, &) + (§,&n) =2+ (&0, &) + (€, &)
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Now as &, — £ we know that for any g € H that (§,,9) — (£, g). Taking g = £ gives that
[ +&|> = 4 as n — o0

that is
|\§n—§||2—>Oasn—>oo

For the second part, notice again by Parallelogram Law that

an +§7n||2 + ||€n _£||2 = 2H§n||2 +2H§m||2 =
SO
[€n = &mll? = lim 4 — &, +&nll” =
n,Mm—00

where the last equality is by the given assumpution. Now that H is complete we conclude since {&,}

forms a Cauchy Sequence.
|

Problem 7. Let f: C — C be entire non-constant, and let us set

1 271' .
T(r)i= 5= | oz, Ifre™)

Here log, (s) = max(log(s),0). Show that T'(r) — oo as 7 — oo

Proof. By Jensen’s formula if we use p to denote the zeros of f and 0 is not a root of f we have

2T
log |70+ 3 log 7| = 5- / log | £ (re")|dyp < T(r)

[pl<r

So in particular, if f has at least one zero denoted by & then for r large enough we have

T(r) = log|f(0)| +log

r
f’ — 00 as T — 00
so this proves the theorem when f(0) # 0 and f has at least one zero.

Now if f has no zeros, we know there is an entire function g(z) such that f(z) = exp(g(z)). Then
computation gives log|f(z)| = Re(g(z)) which is a harmonic function. So it suffices to show if v : C — R
is harmonic then

1 2m

o
WLOG u(0) # 0 by adding a constant if necessary. Then by the mean value theorem we know that for
>0

uy (re™)dp — 00 as r — oo

uO)| < o5 [ Ju@ldac)
B (0)

2

so it follows that if 0 < e < 1 that for R large that

/ lu(2)|dA(z) > B2
Br(0)

otherwise we could find a sequence {R,} such that R,, — oo and
1

<
u(0)] < e

—0

So now we have two cases either R large or there is an € > 0 such that fBR(O) lu(2)|dA(z) 2 R?>*¢ for R
large or no such ¢ exist i.e. fB © |u(z)|dA(z) < R2. For the first case, observe that

R
/ / / r(uy (re??))drdd = / rT(r)dr > R**¢
BR(O) 6= r=0 r=0
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where for the last equality follows from
u(0) = / () — u)dA(2)
Br(0)

where u_ := —min{u,0} and |u| = u4 + u_ to deduce the above inequality. From which it follows that
T(r) — oo as R — oo since if T'(r) is bounded on some subsequence R,, — co the above inequality will

be invalid. Now if
/ fu(2)|dA(z) < R?
Br(0)

u(z)] < RB?

where z € B,.(0), so it follows that u is at most a polynomial of degree 2 at most, from which computation
implies the result.

this implies for any 0 < r < R that

Now if f(z) has a zero at the origin, we know that f(z)/z™ for some m is entire with no-zeros at the
origin (take m to be the order of the zero). Then we can repeat the computation above to get

1 Mm ;
3 | Tome 1Fre )i > o0
so in particular, as log|f(re?)/r™| = log |f(re®®)| — log |r™| < log | f(re'®)| for r > 1 so it follows that

1 m .
%Amamwmw»m

Problem 8. Show that
. z z
sin(z) — zcos(z) = 5 | I (1 - )\2> ,2€C

n=1
where ), is a sequence in C such that A\, # 0 or all n and

> Al <00

neN

Proof. Observe that f(z) := sin(z) — zcos(z) is an entire function of order 1, so by Hadamard’s factor-
ization theorem, we know if {\,,} are the zeros of f(z) with A, # 0 that

f(z) = exp(az +)2° [ (1 - )\i)ez/,\n

n=1 n

since f is an entire function of order 1 with a zero of order 3 at z = 0 where the product converges locally
uniformly on C. We also know there are infinitely many roots since if f(z) had finitely many roots say
21, ..,z then f(z) = Hj\il(z — z;) exp(g(z)) where g(z) is an entire function and f(z) is not of this form.
Now that f(z) = —f(—=z) combined with \A,, being the zeros of f(z) (with A, # 0) shows there is an m
such that A\, = —\,,,, so using the local uniform convergence let us rearrange terms in the sum to get

2

£(2) = exp(az + b)z3 H(1 - %)
n=1

n

since (1 — z/\,)e*/ (1 — 2 /A )e*/*m = (1 — 22/)A2) because A, = —\,. Now using oddness of f again
gives
22

oo o0
exp(az—|—b)23H 1—)\—2)—exp —az +b)z Hl——
n=1

n=1
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so it follows that a = 0. So now it suffices to show that b = log(1/3) since Jensen’s formula gives for any
€>0that ) |An|717% < 0o and specifying e = 1 gives the desired sum bound. Now we differentiate
f(2) to see that

F"(2) = 6exp(b) + 2h(2)

where h(z) is a holomorphic function. Now using f"/(0) = 2 gives exp(b) = 1/3 i.e.
30 T1 22
f(z) == /3H(1—/\7)
n=1 n

as desired and the sum properties hold.

Problem 9. Show that if A(ID) is the space of holomorphic functions on D and
U:={feAD):|f|=1on 0D}
then show f € U if and only if

1-a;z

N J— .
f) =A]] =
j=1

for some a; e Dand 1 < j <N <ooand [N\ =1

Proof. Let a; € D then for |z| = 1 then z = € for some 6 so
a; _ _
e~ agl = J2l[1 — & = 1~ Fay] = |1 — 2751

ie. |z —aj|/[1 —@jz| =1 on 0D and this is holomorphic since 1/a; ¢ D because 1/|a;| > 1. Therefore,

with a;, € D and |A| = 1 with finite N is in U.

For the converse, let f € U, then notice as f is holomorphic its zeros are isolated and it has no
zeros on 0D, so there are only finitely many zeros of f on D. Enumerate them as {q; }évzl then g(z) :=

f(z)/ Hj\/:l f:aijjz is holomorphic on D with no zeros and is norm 1 on the boundary of the disk. Therefore,
by applying the maximum modulus principle on 1/g combined with the maximum modulus principle on
g we see that |g| = 1 everywhere on D. In particular, the Cauchy Riemann Equations then imply g is

constant so g = A where || =1 i.e.

for some a; € D with 1 < j < N < oo and |A| = 1.

Problem 10. For a > 0,b > 0, evaluate the integral
e log
———d
/0 (x 4+ a)? + b2 *

Problem 11. Let v € C*(R) be a smooth 2m-periodic function. Show that there exists a
bounded holomorphic function f in the upper half-plane Imz > 0 and a bounded holomorphic
function f_ in the lower half plane Imz < 0, such that

(f+ (@ +ie) — f-(x —ig))

ole) = i,




149

Proof. As u is C* and 2 m-periodic we know that

1
= E ane™ where ay, :/ u(x)e™ """
0

neZ
where the sum converges absolutely i.e. the Fourier Series of u agrees with u. Therefore, we can define

= %Zaneinz and f —_ Za”ﬂ —inz

nez nEZ

then f, is a bounded holomorphic function in the upper half plane and f_ is a bounded function on
the lower half plane. (Note they are holomorphic since the sums are locally uniformly convergent in the
upper and lower half plane respectively) Then observe that

f+(1~ + iE) _ f T — ZE Z an zn(w-i—za) +e in(z— 15) Z ane znz e~ e enE)
nEZ nEZ

Now we recall that the sum is absolutely convergent on R so f converges absolutely on 0 < Im(z) < M
for any M > 0 and similarily for f_, so we can take the limit ¢ — 0 inside the sum to get

lim fy(z +ie) = f-(z —ie) = f(2)

as desired.

Problem 12. Let H be the vector space of entire functions f : C — C such that

/vw&ww<w
C

Here dy(z) = e~ 1" d\(2) where X is the Lebesgue measure on C.

(1) Show that H is a closed subspace of L?(C,dpu).
(2) Show that for all f € H we have

:iéﬂm&%mm

Proof. Refer to Fall 2014 Number 10 for a solution of (1).

Observe that if (f(2),9(z)) = f(w) where (,) is the inner product on L?(du) then

(f(2),9(2) =D anw
n=0

where > a, 2" is the Taylor Expansion of f(z) (which is possible since f is entire). As g(z) is entire we
can write g(z) = >_ b, 2" then we have

_ n zn@ —inf |r)?
ngnoo/ /9 Za r Zb re ") e " dldr

and by uniform convergence of the sums we have
/ / 2n+1anaei(n—m)96—|r\2d9dr
r=0J6

R 27
/ / T(Za retnf) Zb e m)e I dodr =
r=0J6=0
o0 R2
= 2277/ r? g b, bre~ I dr = Zﬂ'anb / re”"dr — Zﬂanb n!
n=0 T

now orthogonality of e'™? tells us
n=0 n=0

n,m=0

SO

o0 o0
> anw™ = (f.9) =Y wanbyn!
n=0 n=0
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1w

pe 1.e.

as desired. Note that all of the above formal computation is justified since our g(z) is entire so the
convergence of the sums is uniform.

O
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20. FaLL 2019

Problem 1. Given o -finite measures 1, 12,1, V2 on a measurable space (X, X)), suppose that
i < v; for i = 1,2. Prove that the product measure pu; ® g and 1 @ v5 on (X x X, X ® X)
satisfy p1 ® po < 11 ® vo and the Random-Nikodym derivatives obey

d(u1 ® pe) duy, | dus

- (@,y) = —(@)—(y)

d(l/l X 1/2) dVl dV2
for vy @ vy ae. (z,y) € X x X.

Proof. By Radom-Nikodym as u; < v; and all the measures are o-finite that there exists f; € L1(X, dv;)
such that for any F € X we have for i = 1,2

B) = /E Fi(@)dv(x)

So it follows that if E; € X that by the definition of the product measure that

0 s (By % Bz) = () () = ( 3 A ) ( 3 R )

= /E e fi(z) fa(y)d(n @ va)(z,y) = (fi(z) f2(y))d(n ® v2)(E1 x Es)

where the last equality is justified by Fubini since fi(z)f2(y) € L*(d(v1 ® 12)) and the measures being
o-finite. So as p1 @ pe = (fi(z)f2(y))d(v1 ® va) for rectangles and rectangles generate the X ® X it
follows that

d(p @ p2) = (f1(x) f2(y))d(1 @ v2)
so in particular, we see that u; ® ps < 11 ® vo and the Random-Nikodym derivative of p; ® po is
fi(x) fa(y) for v1 @ vy ace. in (z,y) € X x X as desired. O

Problem 2. Let p be a fintie Borel measure on R with p({z}) = 0 for all x € R and let
o(t) = [ e du(x). Prove that

Proof. Observe that

[eracs [ ([ ([ [ [ f et

where the last equality is due to Fubini’s Theorem which can be applied since p is a finite measure so
@Y ¢ LN (du(z) ® du(y) @ dt, R x R x [T, T) since the integrand is bounded. Applying Fubini again

gives
/// " dtdp(x)dp(y —2//bln D) dyu(x) ()

1 (7 B sin(T'(z — y))
g7 [ tetpa= [ [ ot aua)duty)

(z—y)

so we have

where we define
sin(T(x — y))
T(x—y)
and this definition makes the integrand continuous. So as the integrand is bounded by a constant and u
is finite we may apply DCT to see that

Jin o [ tePdt = [ [ xmpdute)dn) = [ atddutn) =0

=1forx=y
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where the last equality is due p having no atoms. O

Problem 3. Consider a measure space (X, X) with o-finite measure p and let p € (1,00). Let
LP->° be the set of measurable f : X — R with [f], := supt>0 tu(|f| > t)/P finite. Let

fllp.o0 == sup / | fldp
P pex u(Bye(0,00) ME) u(E)-1/p
prove that there exists ¢1,ca € (0, 00)- which may depend on p and p - such that

Ve LP™ tei[flp < ||fllpoe < c2lflp

Proof. Observe that if u(|f| > t) > 0 then

1
p({[f >t} =1e

£ llpoe > / Fldp > tu(|f] > )7
{IfI>t}

so taking the supremium implies

£ 1lp.0o = [Fp
For the reverse inequality fix a E € X with u(F) € (0,00). Then from the Layer Cake Decomposition

i [ = s [t € Bs 1@ > e < i [ mingu(E). (151> 1)

1 e . Pl # @ # 0o .
< W/t_o mln{N(E)» [f]p/t }— /J(E)lfl/p /t:() M(E)dt—i— ,u,(E')ll/P/a [f]p/t dt

where a = [f],/p(E)Y/P so

as desired

Problem 4. Let A C R be measurable with positive Lebesgue measure. Prove that the set
A—A:={z—y: zy € A} has non-empty interior. Hint: Consider the function p(z) =
S xa(@ +y)xa(y).

Proof. Assume for the sake of contradiction that A — A has empty interior. Notice that 0 € A — A, so
this means there exists a sequence x,, — 0 such that x,, ¢ A — A. Notice by translation continuity of the
Lebesgue Integral that

lim | Ay + zn)xa(y)dy = / xXa()Pdy = m(4) > 0

n—oo

where m is the Lebesgue measure. However, observe

/XA(y+xn)XA(y)dy=/AXA(ermn)dy

and y + z, ¢ A for any y € A. Indeed if y + z,, € A then z, = (y + ©,,) — y so &, € A — A. Therefore,

/ XAy + xn)dy =0
A

which is a contradiction. Therefore, A — A has non-empty interior.
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Problem 5. Prove the following claim: Let? be a Hilbert space with he scalar product of z and
y denoted by (x,y) and let A, B : H — H be (everywhere-defined) linear operators with

Va,y € H: (Br,y) = (z, Ay)
Then A and B are both bounded (thus continuous).

Proof. Consider the family of
Le(y) == (B, y)
where ||z|| < 1 this is continuous since

Lz (y)] < [|Bz||([ly]]) = C(@)lly]l

and by assumption we have

Lo ()| = |(z, Ay)| < (llzID([|Ayl]) < [|Ay]]
i.e. the family is pointwise bounded. So by Uniform Boundness Principle, we deduce that

sup || L[| < C
llell<1

for some C. Now observe that if ||z]| <1

||[Bz|| = sup (Bz,y) = sup L.(y) <C
llyll<1 llyll<1

Therefore, B is continuous and an identical argument shows that A is continuous.

Problem 6. Prove that there exists a continuous linear functional functional ¢ on ¢£°°(N) such
that
¢(x) := lim x,

n— oo
whenever the limit exists.

Also show that ¢ is not unique.

Proof. Let S := {x € £*°(N) : lim, o @, exists } then S is a linear subspace of £*°(N). So define
¢:S—Rvia

o(x) = nl;rr;o T

Observe also

[6(@)] < [|znlle
so by Hanh Banach we can find an extension of ¢ from S to ¢ such that ||¢|| < 1. This proves that
such a functional exists.

For non-uniqueness, observe that S is closed, so fix any & ¢ S then there is a § > 0 such that
d(z,S) = § > 0 then define for any y € S

Yaly + Az) = Aa||z||
where « is a constant we’ll choose later. Observe
ly + Xz|| = Ally/A + z|| > A0 > Aa|(||z]]) = [¢aly + Az)]

where « is chosen so that |af||z|| < 6. Then by Hanh Banach this function extends to a continuous
functional on ¢*°. Notice ¢, = 0 on S, so if we choose «, 8 > 0 with o # 3 such that |«|||z|] < § and
|B|2|] <6 then

¢(x) + Yo(2) and ¢(z) + s (x)

are two such extensions and they are not equal since o # 3.
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Problem 7. Let J C R be a compact interval, and let u be a finite Borel measure whose support
lies in J. For z € C\ J define

Fu(z) o= [ —antt

Prove that the mapping p — F), is one-to-one

Proof. Assume that J = [a,b] where a # b and that F),, (z) = F),,(z) then define p := pq — po then we
want to show p = 0. We have that for z € C\ J

b
Fue) = [ ntt) = [ Zaut =0

RZ—1
Now we have for any 0 < h < 1/2
@@+1+mfp__1/b 1
h hl, G+1—-8)(b+1+h—1t)
Notice that the integrand is bounded by 1/(1+h) < 1 and p is finite, so by the Dominated Convergence

Theorem we have that
b
-1
0= ——du(t
L w+1—@2“0

and similarily by differentiating again with an identical argument gives for any n € N

b 1
:/a brio

so let A be the sub-algebra generated by {1/(b+ 1 —t),1/(b+ 1 —t)?,...} then this family of functions
vanish nowhere [a,b] since 1/(b+ 1 —1t) # 0 on [a,b]. It also separates points since 1/(b+ 1 —¢) is
injective. Therefore, as [a,b] is compact, Stone Weiestrass tells us A is dense, from which it follows that
if f € C([a,b]) then

dp(t)

b
/ F(t)du(t) =0

i.e. 4 = 0 by Risez Representation Theorem, so the mapping u — F),

O
Problem 8. A function f : C — C is entire and has the property that |f(z)| = 1 when |z| = 1.
Prove that f(z) = az™ for some integer n > 0 and some a € C with |a| = 1.
Proof. See Spring 2016 Number 9.
]

Problem 9. Determine the number of zeros of the polynomial
P(2) =25 —62%2 +102 +2

in the annulus {z € C: 1 < |z| < 2}. Prove your claim.

Proof. Observe that if A:={z € C: 1< |z]| <2} then |2® + 10z] > |2 — 62?] on JA, so by Rouche P(z)
has the same number of zeros on A as 2% + 10z. But observe if 1 < |z| < 2 that 25 4+ 10z = 2(2° + 10)
so the only roots on A have to be when 2% + 10 = 0. Let & be a root of unit of order 5 i.e. 2 =1 then
—(10)1/5¢; is a root of 2° + 10 and there are 5 of them. And as 1 < (10)*/% < 2 it follows that these roots

are in A, so P(z) has 5 roots on the annulus.
]
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Problem 10. Evaluate

x

lim sin(t?)dt

T—00 0

Justify all steps.

Proof. Recall that sin(t?) = Im(e“g). Let 74— be the straight line segment from a to b and v := Re*
for 6 € [0,7/4] then define

Y (= Y—R T YR — Yo— Reir/4
Notice that

. w/4
/ 67 4y = / exp(R2(— sin(20) + i cos(26)))d6
YR 0

Notice that

. sin(20)
5% 20
and so on 0§ € [0, 7/4] we have sin(26)/(20) > § > 0 for some §. Therefore,

. 2
/ e dz
YR
And we also have

1
/ i’ dz = Rei”/4/
Y

t=0

=1

/4
< / |exp(—R%6)|df = 7/4exp(—R?6) — 0 as R — oo
0

1 R
exp(i(t2R%e™/?)) = Re””/ exp(—t*R?) = ei”/4/ exp(—t?)dt
0— Rei™/4 0 0
0

lim / e dz = e”/4ﬁ =(1+ z)—ﬁ

R—o0 v 2 2\/5

0 Reim™/4
So it follows from Cauchy Theorem that
R
im [ et = (140 YT
R—o0 J 2\/5
SO

/ b Tm(e')dt = / h sin(t2)dt = v/7/(2V/2)
0 0

Problem 11. Find a conformap map of the domain
D={z2€C:|z—1]<V2|z+1| < V2}

onto the open unit disc centered at the origin. It suffices to write this map as a composition of
explicit conformal maps.

Proof. Note that the two circle B (1) and B, 5(—1) intersect at z = £i. So consider the conformal map
1-V2—i,z+4i
p(z) = -(
1—v2+4i

this is a Mobius Transformation that sends i — 0o, —i +— 0,1 — /2 ~ 1. Using that Mobius Transforma-
tions maps circles to circles and lines, we deduce that ¢ maps D to

H :={z € C:Re(z) >0 and Im(z) < 0}

since ¢(1++/2) = —i. Now we apply ¢ := iz to map this into the region {z € C : Re(z) > 0 and Im(z) >
0} and use the map 22 to map it into {z € C: Im(z) > 0} and finally the Cayley Transform
z—1

¢= z+1
to map this into the unit disc. Composing all of our maps give the desired conformal map.

Z—1
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Problem 12. Show that

o0 tz
F(z):= —dt
=] Few
is well defined (by the integral) and analytic in {z € C: Re(z) < 1/2}, and admits a meromorphic
continuation to the region {z € C: Re(z) < 3/2}

. J

Proof. We define t* := exp(zlog(t)) where log(t) is the standard branch of the logarithim, so that ¢* is
holomorphic since ¢ € [1,00). Write z = x + iy and then

|t = | exp(x log(t) + iy log(t)| = | exp(xlog(t)| = ¢

Therefore,

F(x+1 S/ dt,ﬂ/ —dt
I ( y)‘ | m N t3/2

so if Re(z) = # < 1/2 then x — 3/2 < —1 so that the integral defining F'(z) is absolutely integrable i.e.
it is well defined. Also if R C {z € C : Re(z) < 1/2} is a rectangle then as the integral defining F is
absolutely integrable we may apply Fubini to see

F(z):/ / 7dt:/ / P gi—o0
/é)R arJ1 V1413 1 Jor V1413

where for the last equality we used t*/+/1 + t3 is holomorphic for ¢ € [1,00). Therefore, by Morrera’s
Theorem since F'(z) is continuous we see that F'(z) (by the DCT) is holomorphicin {z € C : Re(z) < 1/2}.

Intuitively from our earlier bound the pole should be at z = 1/2. So we rewrite

P ) 7 J o 3/2 t3/2 J
z) = t= [ P ———at
) /1 V143 /1 1413

since we will want to integrate by parts to pick up a 1/(z — 1/2) factor. This leads to by integration by
parts

F(z)= L 5 /OO r dt
z2—1/2  2(z—=1/2) J; (1 +13)3/2
so this integral converges by an identical computation as above if Re(z) — 9/2 < —1 = Re(z) < 7/2.
Therefore, F'(z) extends meromorphically onto {z € C: Re(z) < 3/2} with a pole at 1/2. O
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21. SPRING 2020

Problem 1. Assume f € C°(R) satisfies
/ e*tﬁf(x)d:r =0forany ¢t >0
R

show that f(z) = —f(—x) for any z € R

Proof. Observe that we have for any h > 0

2

—( ya? _ —tx
/R(e t+h ; et )f(x)dx:()

so by the Mean Value Theorem and Dominated Convergence Theorem we can tkae h — 0 inside the
integral to conclude

/ xQe*me(x)d:c =0 for any t > 0
R

then we can keep iterating this process since p(ac)e_f”2 for any polynomial is in L' to conclude that for
any finite sum that

Z /anx e*mf (z)dz =0 for any t > 0 = Z /an z)dx =0

n even n even

Now let f be supported on [—M, M] then we have

By Stone Weiestrass, polynomials are dense in C([—M, M]) under the sup-norm. Then there is a poly-
nomial P(x) = Zgzl bpa™ such that ||f(x) — P(@)||pee(—ar,m) < €/(2M) where € > 0 is given. Now

decompose f(z) = f(x)+2f(_x) + f(z)_Qf(_z) = feven(T) + foaa(z) i-e. the even and odd decomposition of
f and observe that since the integral is symmetirc we have

Z/_ ana" f(z)dr =0 = Z/ AT foven (z)da =

n even n even “

Therefore, since feyen is even and Stone-Weiestrass we conclude that f can be uniformly approxiamted in
[ M, M| by even polynomials, but then choosing a,, to be these polynomials coefficients lets us conclude
that

M
/ ‘feven(x)|2dx =0
-M

SO feven = 0 i.e. f is an odd function as desired.

Problem 2. Assume f, : R — R is a sequence of differentiable functions satisfying

[ 1alar < vana [ 17 G0)hde <1
R R

Assume also that for any € > 0 there is an R(g) > 0 such that

sup / (@)l <&
|z|>R(e)

n

Show that there exists a subsequence of {f,,} that converges in L'(R).
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Proof. Proof One: Frechet Kolmogorov Theorem We will prove the family is first equicontinuous
in the LP norm. Indeed, observe for any h > 0 that by the Fundamental Theorem of Calculus that

x+h

a4 1) — fula)] < / 1) ldy

x

so we have
/R @t h)— fou(@)|de < / / Xior ] () £ ()| dyd = / / Xty @) F ()| ddy = h / 1 (@)lde < h

where the interchange of integration is justified by Tonelli since the integrand is non-negative.

Now we claim this implies combined with the second given condition implies that {f,} is relatively
compact in L'(R). By completeness of L!(R) it suffices to show that {f,} is totally bounded. We
will do this with an approximation argument using Arzela-Ascoli. Indeed, fix any p € C°(B;(0)) with
llol| L1 (r) = 1 and define p,, := np(z/n) also has mass 1. Then define for any n,m € N

@) = (o> £2)@) = [ ple =1 )
Then it is well known g, (z) € C*°(R) and we have the bounds

||gm,n||L°° < anHL1 < HPmHLO" = C(m)

so the family {g,,n }nen is uniformly bounded in the sup norm. Also

|gm,n(x) - gm,n(x + h)‘ < /R |an(y)an(z +h— y) - fn(x - y)\dy

Slpmllzeellf (@ +h) = f(@)|lr @) < hlloml L~

so the family {gm n}nen is totally bounded in C(|z| < R(e)). Therefore, if € > 0 we can find finitely
many N such that
N

{gm,n}nGN - U Be/(QR(e))(gm,n)

n=1

where the ball is with respect to the sup norm. Now observe that
1
[ 1@ -gnnt@lde < [ [ lon@lifale)-tate-n)ldzdy = [ Jpn)] [ 1fale)-fulo-)ldedy < - <=
R R JR B1/m(0) R m

for m large enough. Notice that this bound is independent of n. Hence, now we claim that

N
{fn} - U BSE,Ll(]R)(fj)

i=1

where these balls are taken over LI(R) metric. Indeed, observe if £ € N then we can find an 1 <n < N
such that [|gm.n — gm.k||L < & then

[[fn = frllor(el<rie)) < fn = gmnllii(ei<rie) T 119me = Imnllii(zi<ree) + 11k = gnrllr(el<re)
< 3¢
And we know that
I[fr = frllzrgei>ree) < fnlloreisre) + 1 fellzrge)>ree) < 2¢

Hence, we conclude
[ fr = frllzrm) < 5e

so {f.} is totally bounded in L*(R); therefore, it is precompact since L*(R) is complete. So there exists
along a sub-sequence denoted ny and an f € L*(R) such that || fn, — f|[z1@®) = 0 O

Proof Two: Helly’s Selection Theorem
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Proof. We use the following theorem:

Helly’s Selection Theorem Given {f,} a sequence of monotone functions such that the family is
uniformly bounded, there exists a sub-sequence that converges everywhere.

The proof is a standard application of Bolzano-Weiestrass, a diagonalization argument along Q, and
using the limiting function has to be monotone to define f(z) := limg_,, f(q) where f(g) is the limit of
the subsequence f,, along rationals.

Notice that this automatically extends into BV functions since they are the difference of two monotone
functions. And observe that by the fundamental theorem of calculus that for all z € R

\%@%1%@NSAUH@Wx§1

[ Vntaide =1

we conclude that |f,(z)] <1 a.e., which by continuity implies | f,(x)| < 1 everywhere. And as the total
variation of differentiable functions is just the L' norm of the derivative, we see that {f,,} is a family of
bounded variations that is uniformly bounded. So by Helly’s Selection Theorem, we deduce that along a
subsequence which we still denote by n that f,(z) — f(x) pointwise everywhere. By Fatou’s lemma we
deduce

and from

/ |f(z)|dx < liminf/ | fo(2)|do <1
R n—oo R

/ 1 (2)|da <hm1nf/ fula)| <
|z|>R(e) "0 Jlz|>R(e)

So now let K := Bpg(:)(0) which is compact so now fix ¢ > 0 and by Egorov’s theorem we have a set
E C K such that m(K \ E) < ¢ such that f, — f uniformly on K. Then

[ \nte) = F@lide < [ 11ute) - 5 MM+memHumm

And as || ful|lre < 1 we see that || f||~ < 1 so we see for n sufficiently large thanks to uniform convergence
on F which is of finite measure that we have

/|fn ~ f(a)|de < 3¢

and for € > 0

so for large enough n
/ |fn(z) — f(z)|dz < Be

Therefore, we have ||f, — f||z1 — 0.

Problem 3. Prove that L>°(R") N L3(R") is a Borel subset of L3(R")

Proof. Observe that

L>®(R™) N L3(R™) U{f € L3R™) : [|fllpe@n) <n} o= | 4n

n=1 —

and we claim each A, is closed in L3(R"). Indeed, if f, € A converges to f € A in the L? sense we

conclude that f € L3(R™). Also along a subsequence which we denote by nj we have f,,, — f pointwise

a.e., so we conclude that || f|[ ;e ®n) < n since each || fy, ||L~ < n. Therefore, f € A, so we have written
L*(R™) N L3(R™) as a countable union of closed sets in L3(IR™), so it is Borel subset of L3(R").

([
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Problem 4. Fix f € L'(R). Show that
2
lim f(z)sin(az™)dx =0

n—oo 0

Proof. We will first show the statement for step functions. By linearity of the integral it suffices to show
that it is true for characteristic functions of intervals to show its true for all step functions. First observe
that if 0 < a < b < 1 then

b
/ sin(z")dx — 0

since sin(z™) — 0 as 0 < a,b < 1 and by applying DCT with f(z) =1 to get the above convergence.

Now we show that if 1 < a < b < 2 then
b

lim sin(z™)dx =0
n— oo a

via the method of non-stationary phase. Indeed observe that

b b
/ sin(z™)dz = Im / e dx
b b
o n 1 d o n
" 1 — 447<zw )d
/a o /a inan—1 dz \° v
1 [ ei" ela” /b an (1—m
=—|o—=—-—= -] ¢
in \bn=1  qn-1 “ inx™
b 1/ 1 1 (1—mn)
/ " d << + >+(b—a)—>0
a na™

bn— 1 anfl
This implies that if 0 < a < b < 2 that

And we have

so integration by parts gives

so it follows that

since a,b > 1

b
/ sin(z™)dx — 0

Therefore, if f(x) is a step function we have ff f(x)sin(z™)dx — 0. Now if f € L*([0,2]) we can find a
sequence of step functions f,, such that f, — f in L([0,2]) so this gives

/|fm ~ f(@)ldz +

where the first term is small due to L' convergence and the second is true by our earlier computation.
|

mn

/fm )sin(z"™)dz| — 0

Problem 5. Rigorously determine the infimum of

/ 11 IP(2) — |ol[*da

over all choices of polynomials P(x) € R[x] of degree not exceeding three.
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Proof. Consider the subspace V of at most three degree polynomials in L?([—1,1]). It is clear that V is
a subspace of L(R). Observe then that if f(z) € L*([-1,1])

1
f = inf / P(z) — |z||*d
it 17() = P = in [ |P@) = lolPda
so this reduces to an orthogonal projection question. Indeed, if f, is the orthogonal project of f onto V'
then for any P(z) € V
WP —=fIP=11P = fo+fo—=FP =V = Fil + [ fL = fI?

where in the third equality we used Pythagerous Theorem since V- € (P — f1) L (f1L — f), so it follows
that f, is the inﬁmum To find f; we do Grahm Schmit on {1,z,22,23}. Doing this gives us that

{1/2,+/3/2x, —1/3)4/8/45, (z® — 3/5x2)+/175/8} := {v1,vq,v3,v4} is an orthonormal basis of V.

Therefore, notmg that
4

fL= Z(fa Ui)vi

=1

gives us the minimizer if Z?:l( ||, v;i)v; as desired.

Problem 6. Let us define a sequence of linear functionals on L>°(R) as follows:
1 [e.¢]
L.(f):= —'/ e f(x)dx
n.Jo

(1) Prove that no subsequence of this sequences converges weak-*.
(2) Explain why this does not contradict Banach-Alaoglu Theorem.

Proof. For the first part observe that L, (1) is just I'(n + 1) so L, (1) = n!. Now we need the following
lemma

Lemma: For a fixed € > 0 there exists a sequence of intervals {[a,, b,]} for n large where a,, b, — oo

as n — oo such that
1 bn 1 (oo}
—/ z"e Pdx — — e dx

<e
n! n!

An

i.e.most of the mass of L, (1) is concentrated on the intervals [a,, by,].

Proof of Lemma Recall stirling’s approximation i.e. n! ~ v/ 27m2—: so we see that

1 3 en n"e" e 1

— e dr ~ ———— 2"e Fdr < =(z)"——=—=0

n! Jo n"v/2mn /0 V2 V2r3npnt1/2 (3) V2m\/n
and as exponential growth beats polynomials decay we can find such a b,. Hence, we have proved for n
large that most of the mass lives in [n/3,b,] for some b, that tends to co as n — co.

Now fix a subsequence n; and by choosing a further subsequence if necessary we can assume that
[nk/3,3ny] are disjoint. Then define

Z X[nk/33nk] Z X[nk/33nk )

k even k odd
which is well defined since all the intervals are disjoint. Then for n large enough, thanks to our lemma
we know that L,, (f) < 1/2if k is odd and L, (f) > 1/2 if k is even. Therefore, this subsequence does
not converge weak* and as this subsequence was arbitrary we conclude that L,, does not converge weak*
on any subsequence.

For the second part, this does not contradict Banach Alagou since the weak* topology is not metrizable,
so compactness is not equivalent to subsequential compactness.
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Problem 7. Let Fjs denote the set of functions holomorphic on I and continuous on D that
satisfy

27
/ F(e)]d0 < M < o0
0

Show that every {f,} contains a subsequence that converges uniformly locally on D.

Proof. Fix a compact set K C D then there is a § > 0 such that d(K,9D) = 6. Then we have by Cauchy’s
Integral Formula that for w € K and any f € Fjs

_ 1 f2) 1 [T fE) g
flw) = 27Ti/|z|_1 z—wdz N %/‘9:0 e _°

I f(e)] M
|()‘_27r/90 1) d9_27r5

hence for any subsequence {f,} C Fps we have that it is uniformly bounded on every compact subset,
so it follows by Montel’s theorem that along a subsequence f,, converges uniformly locally on D.

SO

O

Problem 8. For each z € C define

0 (nl)?

(1) Show that the resulting function is entire and |F(z)| < el
(2) Show that there is an infinite sequence a,, € C so that

Pz = [[0-5)

and the product converges locally uniformly on C.

Proof. For the first part it suffices to show the sum defining F'(z) converges locally uniformly since each
term in the sum is holomorphic. Observe that since

oo
=3 B
n=0 n

converges for all z € C that if K C C is compact then there is an R > 0 such that K C Bg(0) so

n=0 n=0

Therefore, by the Weiestrass M-test the series defining F(z) converges locally uniformly on C so F(z) is
an entire function since each term in the series is entire.

For the bound, observe that
< |Z|2n
| Z 22n n'

and

LS
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since we only omitted the odd terms in the series expansion. So it suffices to show that (2n)! < 22"(n!)2.
The case of n = 1 is obvious , so assume it is true for n and then we will show its true for n + 1. Indeed,
observe if

(2n)! < 22" (n))? = (2n +1)! < (2n + 1)22"(n!)?
and it’s clear that (2n + 1) < 4(n + 1)? so we conclude that (2n + 1)! < 227*2(n + 1)!? so we obtain that
IF(2)] < e

as desired.

For the second part, recall from part a) that F(z) is an entire function of order one, so by Hadamard’s
factorization theorem we can write

F(Z) — paztb,m H 17 ?) z/an

n=1

for some a,b € C, m is the multiplicity of the zero of F(z) at z = 0 and a,, are the zeros of F(z) and
the product converges locally uniformly on C. Notice that F'(0) = 1 so we conclude m = 0. Also as

F(z) = F(—2) we conclude for every n € N we can find an m € N such that a,, = —a,,. Now observe
2
z z z
1— Z)e/on(1 — Z)e/om = (1 - =
(1= el = =) (-
since a,, = —ay,, so by rearranging terms in the product which is allowed since the product converges

locally uniformly we have that
(oo}
z) = e th H (1
n=1
b

Now using F'(z) = F/(—z) we conclude that a = 0. Using F'(0) =1 gives us 1 = €’ so

Pz = [[0-5)

so it suffices to show that there are infinitely many zeros of F(z).

Now assume for the sake of contradiction that there are only finitely many roots of F(z) say {z1, .., 2n }.
Then F(z)/ H?:1(Z — zj) is a entire function with no zeros so there is an entire function g(z) such that

n
H z—zj eg(z

but as |F(z)| < el*l we see that |g(z)| < C|z|, which by Cauchy’s inequalities imply g(z) = az+b for some
a,b € C. Then observe as F'is even that H?Zl(zfzj) is an even function since if F'(z;) = 0= F(—z;) = 0.
Therefore, we see using F(z) = F(—2) that a = 0 so F(2) = [[j_,(z — zj)e® which means F is a
polynomial. But clearly F' is not a polynomial, which is our contradiction. Therefore, F'(z) has infinitely

many zeros i.e. there are infinitely many a, which lets us conclude.
|

Problem 9. Let f(z) € L'(C) N C*(C). Show that the integral

o e

defines a C'! function on the entire plane such that

<3 n ’gi,) u(z +iy) = f(z +iy)

ox

In this problem d\ represents the Lebesgue measure on C and C! is meant in the real variable
sense.
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Proof. Note that the integral is well defined since 1/z € L'(B1(0),d\(z)) and f € L'(C). In particular,
DCT implies that u(z) is continuous. In addition, by a change of variables we have that

ue) = =5 [ v

so we have that for h real that

u(z + h) —u(z) :7i/ flE+z+h)— f(E+2)
h o hé

By Taylor Expansion of f we know that since h is real

f(€+z+h):f(£+z)+%(§+z)h+o(h)

SO
. u(z+h)—ulz) af
Jim “EEE S 2 [ evazane
And similarily
ou, . i Oy f(§+ 2)
9y =5 e e
so we have
Oou .Ou _ of ﬁ
Ge+ign) =5 [ £ (Fhera+ Fea)
. 1 of of __1 19
SN <R§( €+2+ S e+ ) i) =5 A0

so by the Generalized Stokes Theorem we have that

1 1
“omi ). el o ll_ggf(£+z)d2)

Note the first integral goes to zero as R — oo since f(£)/¢ € L'(C). Now using that f\g\:e %dé = 27i we
have that

1 1 f(z) = f(€+2)
© 2mi |¢|=e Zﬂg +2)d2 " 2mi |€]=¢ &
27 %
- J) = fe(;eeJrZ)sewdH%O

where the convergence is due to unlform continuity of f on By(z). Therefore,
Oz +i0yu=f
so it solves the PDE. O

Problem 10. Evaluate the improper Reimann Integral

© .2 14
/ ac2 sin(x) de
o T¢+1 =z

Justify all manipulations

Proof. O

Problem 11. Let K C T be a compact proper subset.

(1) Show there is a sequence of polynomials P,(z) — Z uniformly on K.
(2) Show there is no sequence of polynomials P, (z) that uniformly converges to Z on T
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Proof. For the first part this is just simply a consequence of Runge’s theorem since Z = 1/z on T. Recall
that Runge’s Theorem implies that if K is compact such that C\ K is connected, then any holomorphic
function on a neighborhood of K can be uniformly approximated by polynomials in K. Indeed, 1/z is
holomorphic on €\ {0} and since K is a proper subset of T we have C\ K is connected.

Indeed, recall that Runge’s Theorem shows by using the Cauchy Integral Formula and a Riemann Sum
Approximation that if f is holomorphic on a neighborhood of a compact set K, then there is a sequence of
rational functions { R,, } with poles outside of K such that R, uniformly converges to f. It suffices to show
that the rational function 1/(z — zp) where zy ¢ K can be uniformly approximated in K by polynomi-
als when C\ K is connected since every R,, can be written as a polynomial combination of such functions.

Indeed, fix zg ¢ K, then choose a z; ¢ K far away from zo. Then as C\ K is open and connected, we
can find a curve « : [0,1] — K¢ such that v(0) = z; and y(1) = z5. Then we have

I 1i(2)n
z—2z1 s l—zlz 2=

where the sum converges when we choose z; such that |z/z1] < 1 for all z € K. Choosing such a z; we
see that 1/(z — 2z1) can be uniformly approximated in K by its partial sums due to Weiestrass M-Test,
so 1/(z — z1) can be uniformly approximated by polynomials in K. Now if we let p := 1/2d(K,) then
we can choose points {w;}¥, such that w; € v with |w; —w; 1] < p and wg = 21 and wx = 2. Then we
claim we can uniformly approximate 1/(z — w;41) by polynomials in 1/(z — w;). Indeed, observe

1 o 1 - 1 i (wiﬂwi)n
Z—wit1 (2 —w)(1— ) 2 —wy z—w

Z—w; n=0

. . Wi g1 —W;
which converges since |[=HE =t
K2

K by polynomials since we can do it for 1/(z — w;) combined with our earlier observation that we can
uniformly approximate 1/(z — wg) by polynomials of 1/(z — w1). Then by iterating this process N we
deduce that 1/(z — z9) can be uniformly approximated by polynomials in K and hence so can every
rational function with poles outside of K. This proves Runges Theorem.

< 1/2. Then this means we can uniformly approximate 1/(z — wp) in

Assume for the sake of contradiction that 1/z can be uniformly approximated by polynomials P,, on
T. Then we have from uniform convergence

2mi = / 1dz = / lim P,(z)dz = lim P,(z)=0
\ \

Z‘:l yA Z‘:l n—oo n—oo ‘Z‘:l

which is our contradiction.

Alternative Proof: Assume that P,(z) a sequence of polynomials uniformly converge to Z =1/z on
T. Then the uniform limit of these polynomials denoted by f(z) extends to be a holomorphic function
on D such that f(z) =1/z on T. Then we have that for large enough n that

sup |P,(z) —1/z] <1 = sup |zP,(2) — 1| < 1
|z|=1 |z|=1

so by the maximum modulus principle |zP,(z) — 1] < 1 on D but taking z = 0 gives a contradiction.
O

Problem 12. Let u be a continuous subharmonic function on C that satisfies

Show that u is constant.
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Proof. This given condition implies if € > 0 that u(z) — elog|z|] — —o0 as |z| — oco. Now consider
the annular domain Qg1 := {1 < |z|] < R} for R > 1. As log|z| is harmonic on Qg1 we have that
u(z) — elog|z| is subharmonic on Qg 1, so by the maximum principle

sup u(z) —elog(z) = max u(z)—clog(z)
zEQR 1 Z€00R 1

But from the given conditions of u(z) — elog |z| — —oo we see by taking R — oo that
sup u(z) —elog(z) = maxu(z)

2€|z|>1 |z|=1
where we used log(1)=0 and continuity of u to deduce theres a max over {|z| = 1}. Now by letting e — 0
we see that

sup u(z) = maxu(z)
z€|z|>1 |z|=1

but then this implies that u(z) has an interior maximum on D C C. Therefore, u(z) is constant (subhar-

monic functions with an interior maximum are constant thanks to the submean value inequality).
O
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22. FaLL 2020

Problem 1. Suppose f : [0,1] x [0,00) — [0, 1] is continuous. Prove that

, 00
F(z) :=limsup f(z,y)

Y—r o0

is Borel Measurable.

Also show that for any borel set E C [0, 1] there is a choice of continuous function f : [0,1] x R —
[0,1] so that F agrees with the indicator function almost everywhere.

Proof. Note that intervals of the form [a, ] for 0 < a < b < 1 generate the borel o-algebra on [0, 1], so it
suffices to show F~!(a,b) is borel. Observe

Flab)= ] () {z:b>f(x,q) >a}

M=0qeQ:q>M

i.e. there is an M € N such that for any rational ¢ > M we have b > f(x,q) > a. Note that we are
using continuity to conclude that if for all Q 3 ¢ > M we have b > f(x,q) > a then for any y > M that
b> f(x,y) >aie b>F(x) > a.

Define f, := f(z,q) then as f is continuous so is f, so we know that {x : b > f(x,q) > a} = f;'((a,b))
so this set is open. Therefore, F~'([a,b]) is Borel Measurable. It is also easy to verify that {F Borel :
F~Y(E) is Borel } is a o-algebra and we showed it contains the closed set so it contains the borel o-
algebra, so F' is Borel Measurable.

For the second part, let A denote the set of Borel Subsets of [0,1] such that there is a continuous
function f so that F' agrees a.e. with the indicator function of that set. We claim A is a o-algebra.
Indeed, observe that [0,1] € A and () € A by defining f(z,y) = 1 and f(z,y) = 0 respectively.

Now if E € A then there is a continuous f such that the corresponding F' agrees a.e. with the indicator
function of E. Then notice 1 — F then agrees almost everywhere with the indicator function of E€NJ[0, 1],
which corresponds to the function 1 — f. So this set is closed under compliments.

Now we claim that A is closed under finite intersections. Indeed, if E¢, F5> € A then there is a corre-
sponding fi; and fs continuous such that F; agrees a.e. with the indicator function of F;. Then observe
XAnB = XAXB S0 we can take g := fi fo then limsup,_, . g(z,y) will agree with xg,ng, a.e.

Now let {E;}2, € A. As A is closed under finite intersections and compliments, we may assume
WLOG that E; are disjoint. Then if {f;} are the corresponding continuous functions we can define
[ :=>"i fi(z,y) which is well defined when y is large since E; are disjoint. Therefore, this set is closed
under countable union.

So now it suffices to show that it A contains intervals of the form (a,b). So define for y > 1

Oforz<a-—1/y
ylx—(a—1/y)) fora—1/y<zx<a

flzyy) =q1lfora<xz<b
—y(z—(b+1/y)) +1forb<z <b+1/y
0 else

i.e. we are adjoining a small line to the end of x|, that dissapears as y — oo. This f has all the desired
properties for y > 1 and for y < 1 just make the function equal to f(z,1). Therefore, A contains the
borel g-algebra, which implies the problem.

|
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Problem 2. Show that there is a constant ¢ € R so that
1

lim f(z) cos(sin(2mna))dx = c/o f(x)dx

n—oo 0

for every f € L'(]0,1]) where n is taken over N.

Proof. Observe that

1
1
cos(sin(mnx) = -
0 n

Now fix f € C([0,1]) then observe that

n—1

j+1 1
/ cos(sin(mx))dx = / cos(sin(rz))dx =: ¢
0

“M

1 n—1

JH
= f(=) cos(sin(mz))dx
n JZO/J n

/ f(z) cos(sin(mnz))dx =
0

So by uniform continuity of f if € > 0 we can find a 6 > 0 such that if z,y € [0,1] and |z — y| < § then
|f(x) — f(y)] < e. Choose n so large such that 1/n < § then

n—1 i1 1 . n—1 i1
ijz:(:)/jﬁ f(z)cos(sm T) dm—Z/J+ ) cos(sin(mz)) Sij;)/jﬁr |[f(xz/n)— f(j/n)| <e
And observe that
n—1 ]+1 . n—1
TILJZ/ cos(51n(7rx) = 711]2 f(=)— c/ flx

where the last convergence is due to f is continuous so the Riemann Sums converge to the integral of f.
Therefore, we have

1 1
nh_}rrgo - Z/ ) cos(sin(mz))dx = nlgr;o f(x) cos(sin(mnz))dz = C./o f(z)dx

0

so this shows the result for f € C([0,1]), so now by density if f € L'([0,1]) then there is a sequence
fn € C([0,1]) such that || f,, — fllz1(j0,1)) — 0 s0

2) cos(sin(2mnz) )dz — ¢ /O ' flayde] < /0 ) - fm(x)|dx+‘ /0 () cos(sin(2mna))di — /0 (@)

e / () = fn(@)ld

so all three terms converge to 0 in the limit. Therefore,
1

lim f(x) cos(sin(2mnx))dx = C/o f(z)dx

n—roo 0

for all f € L1([0,1]) for ¢ := fol cos(sin(mz))dx.



169

Problem 3. Let du, be a sequence of probability measures on [0, 1] so that

/  f@)dino)
/ /[] (o2 ) () ()

converges for every g € C([0,1]?
(2) Show by example that under hypothesw it is possible that

/ /o<x<y<1d“n<x>dun<y>

converges for every f € C([0,1]).
(1) Show that

does not converge.

Proof. As [0,1] is compact and p, is a sequence of Borel Probability Measures, we know that they are
Radon. Therefore, by Risez Representation Theorem and Banach Alagou there is a subsequence such
that p,, — pie. for any f € C([0,1]) we have

/0 ' f @)y, () - /  fa)dp

And by the given assumption we know that fo x)dp, converges so it must converge to fo x)dp. Now
if we fix two sub-sequence, then each by Banach Alaogu has a further weakly convergent sub-sequence
and if we test any f € C([0,1]) along the limit measures we obtain the same value. Therefore, by Risez
Representation Theorem since measures are uniquely determined by their action on C([0, 1]) we conclude
that the two weak limits are the same, so as every subsequence has a further subsbequence that converges
to the same limit we know that u, — pu.

Now we claim that i, ® p,, — p®p which will prove the claim. Indeed let A C C([0, 1]?) be the algebra
generated by functions of the form f(x)g(y) where f,g € C(]|0,1]). Then constants are in this space, so
A vanishes nowhere and if (s1,t1) # (s2,t2) then WLOG x # s, then byd efining A > g(z,y) = = then
g(s1,t1) # g(sa,t2), so this family vanishes nowhere. Therefore, as [0, 1]? is compact, we know by Stone
Weiestrass that A is dense in C([0,1]?).

So there is a sequence {f,(x)h,(y)} that converges to g(z,y) in the sup norm. Then

/ /[ )yt () dpim (y / Jo@)djim (@ /hn<y>dum<y>ﬁ / ' fu@)du(a) / ha(w)duy)

- / Fol@)ha (y)dp(z)dp(y)
[0,1)2

where the interchange in derivatives is justified since f,h, € L'([0,1]?, ftm ® ptrn) for any m because f,,h,
is bounded and i, ® p,, is a probability measure.

So uniform convergence implies

lim // 9(x, y)dpim (x)dpm (y // 9z, y)dp(x)du(y)
m—00 [0,1]2 0,1]2

so the limit exists.
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Problem 4. Let X be a separable Banach space over R and let F': X — R be norm-continuous
and convex. Suppose x, — x show that

F(z) < sup F(xzy)

Proof. We claim that F(z) is weakly lower semi continuous which implies the claim. Indeed, it suffices
to show if @ € R then A := {z : F(z) < a} is weakly closed. Indeed, notice that A is convex since F is
convex and is norm-closed. So now let y € A, then {y} is compact and convex since it is a singleton, so
by Hanh Banach there exists a linear functional £ and 8 € R such that

Ac{x:l(z) <P} and y € {x: l(z) > B}

Notice as linear functionals generate the weak topology that {z : ¢(x) > (5} is open in the weakly
open. Therefore, A is weakly closed, so F' is weakly lower semi-continuous. So fix 0 < ¢ < 1 then as
{y: F(y) > F(z) — e} is weakly open and z is i this set, we see that

liminf F(x,) > F(z) —¢
n—oo
since x,, — x so letting ¢ — 0 gives

F(z) <liminf F(x,) < sup F(z,)

n—oo

as desired.

Problem 5. Suppose f € L!([0,1]) has the property that

/ @)l < m(E)Y2
E

for any Borel Set E C [0,1]. Here m represents the Lebesgue measure on [0, 1].
(1) Show that if 1 < p < 2 then f € LP([0,1]).

(2) Show that there is a function f satisfying the above bounds and is in L!([0, 1]) but is not
in L%([0,1]).

Proof. Note that the original question has a typo and it was supposed to be 1 < p < 2.
Observe by the Layer Cake Decomposition that

1 oo oo
x)|Pdr = PAm{a | f(z)| > t})dt < P2 x)|dz | d
| s@pd=p [ ot @)= har<p [ (/{W}f( ) )t

where the second inequality is due to Chebyshev’s Inequality. Therefore, combining this with m({z :

|f(z)] > t}) <1 gives
)P < "~ min(1, x)|dx
/0 F)l _p/t:O ( (/{f|>t}|f( ) >)

1 s}
gp/ tp*QdH—/ =2 (/ |f(x)|d3:>
=0 =1 (1>

and as 1 < p < 2 notice the first term is bounded. So we focus on bounding the second term. Using the
given inequality gives the second term is bounded by

IS IS 1/2
<p / o2 mn(o F(@)] 2 ) e <p [ (/{|f|>t}|f(x)|dx> dt

=1 t=1
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and by reiterating the above argument n times we deduce that

00 o ‘ 1/2n
| e (/ f<x>|dx><p | s (/ f<x>|dx> at
t=1 {IfI>t} t=1 [f1>t

1/2n
And for any fixed n we can bound (flf\>t |f(:1:)|d:1:) since f € L*([0,1]) and this integral converges
as long as

n

p—2-Y 1/2 <1

j=1
ie.
n
p<1l+) 1/2*
j=1
and as n — oo the sum converges to 1, so we conclude that f € LP([0,1]) for 1 < p < 2 from our

inequalities.

For the counter example take f(z) :=1/ 22~1/2 which is non-negative. Then notice for any 0 < a <
b < 1 that

/bf(x)dx\/l;\/&ﬁvba

where the inequality can be seen by squaring both sides. Then observe that
{E Borel : / f(z)dz < m(E)'/?}
E

forms a o-algebra, which contains the open intervals, so this is true for any Borel set and f ¢ L? since

1/]z[ ¢ L*([0,1]). .

Problem 6. Suppose f :[-1,1] — R is C! and odd. Show that
1 1
[ 1r@lds< [ 1 @)ds
~1 —1

Proof. First observe that as f is odd that f is even, so it suffices to show the inequality on [0,1]. Now
as f(x) is odd we know that f(0) = 0 so by the fundamental theorem of calculus if 0 < 2 < 1 we have

fla) = [ iy = / @l < / 1 / 1 )y

— /01 /01 X0, (W1 (y)|dydz = /01 If’(y)l/olxm,x](y)dx = /Oly|f’(y)|dy < /01 ' (y)|dy

where the interchange in integrals is justified by Fubini since the integrand is non-negative. In particular,
we have shown

1 1
/0 1 (@)lde < / 1 (v)ldy

which implies from the odd condition on f that

[ @i < [ 156

-1
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Problem 7. Let Aj; = {z : |z — a;| < r;} where 1 < j < n be a collection of closed disks with
radii 7; > 0, all contained in D. Let ©:=D\ (U; A;) and let u :  — R be harmonic. Prove that
there exists real numbers ¢y, .., ¢, such that

u(z) — Zci log|z — a;|
i=1

is the real part of a holomorphic function on 2. Show also that ¢y, ..., ¢, is unique.

Proof. By considering the Cauchy Riemann equations we define ¢(z) := d,u(z) —i9yu(z) which is holom-
rophic in Q since it is C! in the real sense and satisfies the Cauchy Riemann Equation since u is harmonic.
Now as u(z) is holomorphic in a small ball that contains A; that is disjoint from the other A;, we con-
clude that u(z) admits a Laurent Series Expansion near each A;. So let ¢; be the residue of g at a; then

consider
n

h(z):=g(z) =)

i=1

then by the Residue Theorem we know that h(z) integrates to zero along any closed curve. Therefore,
h(z) admits a primitive which we call v(z). We claim that up to a constant that

w(z) = u(z) — ch log |z — a;|
j=1

G

z—aj

is the real part of v(z). Indeed, observe that by computation one has
0w — i0yw = g(z) = 0, Re(v(z)) — i0yRe(v(%))

so one has w = Re(v(z)) + C for some constant. Therefore, we have that w(z) is the real part of a
holomorphic functions. So now it remains to verify uniqueness of ¢;.

So if i
w(z) == u(z) — ch log |z — a;|
j=1

is the real part of a holomorphic function on Q of say f then by the Cauchy Riemann equations (f’ =
Wy — fWy)
n
flz2)=9(z) =)
i=1
and as this function must integrate to zero along any closed curve, we see that c; must be the residue of
g(z) since we can take a small circular curve around each A; and apply the Residue Theorem.

¢

z—aj

]

Problem 8. Let f: D — D be holomorphic and satisfy f(1/2) = f(—1/2) = 0. Show that
[f(0)] <1/4

Proof. Consider the automorphism of the disk
z—(1/2
u(z) = 2
1-(1/2)z
then g := f /4 is a holomorphic function since there is a removable singularity at z = 1/2 and g(—1/2) = 0.

It is still a map to the disk because of the maximum principle since [¢)1| = 1 on dD. Then as go;(0) =0
we have from the Schwarz lemma that

lg 09| < |zl = [g(0)] < [7H(0)] = 1/2
But observe that g(0) = —2f(0) so we conclude that
f(0)] <1/4
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as desired.

Problem 9. Consider the following region
Q:={z+iy:0<z<occand 0 <y<1/x}

Exhibit an explicit conformal map from 2 to D.

Proof. Observe 092 = {(z,0) : 2 > 0} U {(z,1/z) : o >0} U (0,y) : y > 0 then
22(09Q) = {(2,0) : 2 € Ry U {(z,2i) : x € R}

so we know that z?(Q) is either contained in {(z,y) : 2 € R: 0 < y < 2} or its complement since 2? is
continuous and  is connected. But by plugging in a point we see that 22(Q) = {(z,y) ;2 € R: 0 < y <
2} := Qy since 2? is conformal on Q. Now consider 52(€) = {(z,y) : © € R,0 < y < 7} := Q. Then
exp(22) = {(z,y) : ¢ € R,y > 0} so then we take the Cayley Transform

z—1

o) 1=

then this is a conformal map from the upper half plane to the disk. Then ¢(z) := ¢ oexpo(n/2z) oz
our desired map.

2 s

O

Problem 10. Let K C C be a compact set of positive area but empty interior and define a
function F' : C — C via

F(z) ::/K ! dp(w)

w—z
where du denotes the planar measure on C.
(1) Prove that F(z) is bounded and continuous on C and analytic on C\ K.
(2) Prove that F(K) = F(C).

. J

Proof. As K is compact there is an R > 0 such that K C Bg(0) then
1 1
FeI< | dutw) < [ odulw) = C < o
Br(0) lw — 2| Br(0) [w]

where we are using 1/|z| € L(Br(0), du(w)) since C = R?. This implies F(z) is bounded on C. Note
that F(2) is continuous since 1/w € L*(Bgr(0), du(w)) due to the continuity of the Lebesgue integral with
respect to translation.

Now let R C C\ K be a rectangle, then as F' is bounded we have that it is locally integrable, so

/RF(z)dz:/R/Kwl_zdu(w)dz:/K/Rwl_Zdzd,u(w):0

where the interchange in derivative is justified by Fubini and the last expression is 0 since w € K and
R cCc C\ K so 1/(w — z) is holomorphic on R. Therefore, as F'(z) is continuous and integrates to zero
over any rectangle C\ K, Morrera’s theorem tells us that F'(z) is analytic on C\ K

Part 2: Missing

Problem 11. Let f, be a sequence of analytic functions on a connected domain {2 such that
|fn] < 1forall n € Nand z € Q. Suppose the sequence {f,,(z)} converges for infinitely many z in
a compact set K in Q. Prove that {f,(z)} converges for all z € .
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Proof. Let K C Q) be compact then there is a § > 0 such that d(K, 9Q) = 2§ then for any z € K we have
Bs(z) C Q. Therefore, by Cauchy’s estimate we have for z € Q

[fa(2)] <1/0
so the family { f,,(2)} is uniformly bounded and equicontinuous so by Arzela-Ascoli there is a sub-sequence
such that f, converges uniformly on K. Then by a standard diagonlization argument, we can find a sub-
sequence that converges locally uniformly on 2 and by Cauchy’s Integral Theorem we see local uniform
convergence implies the limit is holomorphic.

Let {z;} be infinitely many points in K such that {f,(z;)} converges. As K is compact there is a
limit point z € K and by looking at a subsequence if necessary assume that z, — z. Then given two
susbequence of f,, by our previous argument we can find further subsequences where both converge
locally uniformly to a holomorphic function f(z) and g(z) respectively. But we know that f(z,) = g(zn)
for alln € Nand f(z) = g(2) since {f,.(2;)} converges. Therefore, have f = g since holomorphic functions
are determined by their values on any infinite set with an accumulation point. So every sub-sequence has
a further sub-sequence that converges where the limit is the same, so the whole sequence converges.

|

Problem 12. Let Q:={z € C: —2 < z < 2}. Show that there is a finite C' > 0 such that
FOP<C [ [fw- 0P +15(+)Pldo

for every holomorphic function f : 2 — ID for which the right hand side is finite.

Proof. We will prove this by using Cauchy’s Integral Formula over a large rectangle. Indeed, let Sg :=
{(z,y): =R <z < R,—1 <y <1} with counter clockwise orientation

1 . 1

Oy R POy LS Py (K P S R =
OSRr w -1 R+Zt —R t+ t=—1 —R+ t

so by the triangle inequality combined with |f| < 1 gives

2 Rofea)] )
'f(o)'g/t:,l |R+z't|d”/R [t d”/,R I

o< [T e,

[t + 4| [t — i

and taking R — oo

so using Cauchy-Schwarz gives
|FO] <+ DllLz@an 1/ ¢+ DllLz@ar + 1f ¢ = DllLz@an 11/ (¢ = D)llL2® a0

< CIFE+ D Lzwan + (=Dl L2r.ar)
where we used 1/(t + i) € L*(R,dt) si 2 decays fast enough at oo and thanks to the i factor
it is integrable near the origin and similarily for 1/[t — i|. Now using (|a| + [b])? < 4(|a|* + [b|?) gives

FO) < 4C / P+ D) + |f(x — 1) Pda

as desired.
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