
MATH 31A: WEEK 6

RAYMOND CHU

0.1. Linearization. Given a function f(x) that is differentiable at x = x0 our idea is to try to approx-
imate f(x) by an easier to understand function with a controlled error. We will show that the tangent
line is a good approximation to f(x). Recall that as f(x) is differentiable at x = x0 then

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0)

so

lim
h→0

!
f(x0 + h)− f(x0)

h
− f ′(x0)

"
= 0

Let ε(h) denote the error between the secant line of f(x0) and f(x0 + h) and f ′(x0) i.e.

ε(h) :=
f(x0 + h)− f(x0)

h
− f ′(x0)

Then we have
lim
h→0

ε(h) = 0

so for h close to 0

ε(h) =
f(x0 + h)− f(x0)

h
− f ′(x0) ≈ 0

So we have by multiplying both sides by h that

f(x0 + h)− f(x0)− hf ′(x0) ≈ 0

i.e.
f(x0 + h) ≈ f(x0) + hf ′(x0)

So we can approximate for h close to 0 f(x0 + h) by the tangent line of f(x0).

Let us see how much error we get from this approximation. Going back to

ε(h) =
f(x0 + h)− f(x0)

h
− f ′(x0)

we get by multiplying both sides by h that

hε(h) = f(x0 + h)− f(x0)− hf ′(x0)

so
hε(h) + hf ′(x0) + f(x0) = f(x0 + h)

Recalling we are approximating f(x0 + h) by f(x0) + hf ′(x0) we get

f(x0 + h)− (f(x0) + hf ′(x0)) = hε(h)

where the left hand side is the error in our approximation of f(x0+h) using the tangent line approximation.
So the error in our approximation is always hε(h). It is known that

|hε(h)| ≤ M
h2

2

for M := max |f ′′(x)| where the max occurs is taken on the closed interval [x0, x0 + h] (if h > 0) or
[x0 + h, x0] (if h < 0). This means

|f(x0 + h)− (f(x0) + hf ′(x0))| = |hε(h)| ≤ M
h2

2

i.e. at worst the error in our approximation is M h2

2 .
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0.2. Example. Approximate sin(.1) using linearization at x0 = 0 and find the maximum between this
approximation and sin(.1).

Solution: As x0 = 0 we have
sin(h) ≈ sin(0) + cos(0)h

where we used d
dx sin(x) = cos(x). So we have

sin(.1) ≈ .1

By our previous discussion the maximum error is M h2

2 where M is the max of |− sin(x)| on [0, h] since
d2

dx2 sin(x) = − sin(x). We can use | sin(x)| ≤ 1 to get

M
h2

2
≤ h2

2

so the error is at worst (.1)2

2 = 1
200 . For a sharper bound we can use maxx∈[0, 1

10 ]
|− sin(x)| = .0998.. ≈ .1

so the error is at worst approximately

.1
h2

2
= .1

1

200
=

1

2000

and we have

| sin(.1)− .1| = .00016653 <
1

2000
so we see the approximation is really good.

0.3. Example. Linearize f(x) =
√
8 + x at x0 = 0 and use this to approximate f(.4) and find the

maximum and relative error in this approximation.
Solution The Tangent Line Approximation says

f(h) ≈ f(0) + f ′(0)h

Then using

f ′(x) =
1

2
√
8 + x

gives

f ′(0) =
1

2
√
8

and f(0) =
√
8 so

f(h) ≈
√
8 +

1

2
√
8
h

so

f(.4) ≈
√
8 +

4

10

1

2
√
8
=

√
8 +

1

5
√
8

Again by our discussion we have the error is at worst M h2

2 for M = maxx∈[0,.4] |f ′′(x)|. Then using

f ′′(x) = − 1

4(8 + x)3/2

so

max
x∈[0,.4]

|f ′′(x)| = |f ′′(0)| = 1

64
√
2

so the error is at most
1

64
√
2

(.4)2

2
≈ .0009

and in fact we have

|f(.4)−
√
8− 1

5
√
8
| = .00086... < .0009

so our error bound is correct. The relative error is given by

|f(.4)−
√
8− 1

5
√
8
|

|f(.4)| = .0002975...
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0.4. Max/Min. Extreme Value Theorem: If f(x) is continuous on the closed interval [a, b] then it at-
tains its max and minimum inside the interval.

The hypothesis that the interval is closed is very important because there are continuous functions on
open that do not attain a max or a min inside the open interval. For example f(x) = x+ 2 on the open
interval (0, 1) has no max or min inside (0, 1). In general, there may be a max or a min of a continuous
function inside an open interval, but we cannot guarantee that a min or max will exist inside an open
interval.

To find the max or min of a continuous function f(x) on [a, b] first differentiate f(x) and find all the
critical points i.e. x∗ such that f ′(x∗) = 0 or f ′(x∗) Does Not Exist. Then compare f(a), f(b) with f(x∗)
for every x∗ that is a critical point. The maximum and minimum of f(a), f(b) with f(x∗) for every x∗

that is a critical point is the maximum and minimum of the function.

0.5. Example. Find the maximum and minimum of f(x) =
√
x2 + 2− 2x on [0, 2].

0.6. Solution. First we differentiate f(x) and find the critical points.

f ′(x) =
2x

2
√
x2 + 2

− 2

Note that this is defined everywhere so we just look for x∗ such that f ′(x∗) = 0. Then

2x

2
√
x2 + 2

− 2 = 0

implies by subtracting the −2 and multiplying by 2
√
x2 + 2 that

2x = 4
#
x2 + 2

so
x = 2

#
x2 + 2

so squaring both sides gives
x2 = 4x2 + 8

i.e.
0 = 3x2 + 8

so there is no x∗ such that f ′(x∗) = 0 since there is no real solutions of 0 = 3x2 + 8. Therefore, as there
is no critical points the maximum and minimum of f(x) are the maximum and minimum of f(0) and
f(2). And we have

f(0) = 0 f(2) =
√
6− 4 < 0

so the maximum is f(0) = 0 and the minimum is f(2) =
√
6− 4.

0.7. Increasing/Decreasing. We say that a function is increasing if for any x < y we have

f(x) < f(y)

And we say that a function is decreasing if for any x < y we have

f(y) < f(x)

Note that if f ′(x) > 0 on (a, b) then f is increasing on (a, b) and if f ′(x) < 0 on (a, b) then f is decreasing
on (a, b).

0.8. Example. Show that f(x) = 4x5 + 3x3 + 20x has no zeros on (0,∞).

0.9. Solution. First notice f(0) = 0 and 0 is not in the open interval (0,∞). Next by differentiating we
have

f ′(x) = 20x4 + 9x2 + 20 > 0

since 20x4 + 9x2 ≥ 0 and 20 > 0. Therefore, f(x) is increasing on (0,∞) i.e. for any x > 0 we have

f(x) > f(0) = 0

so for any x > 0 we cannot have f(x) = 0.


