MATH 31A: WEEK 6

RAYMOND CHU

0.1. Linearization. Given a function f(z) that is differentiable at = x( our idea is to try to approx-
imate f(z) by an easier to understand function with a controlled error. We will show that the tangent
line is a good approximation to f(x). Recall that as f(z) is differentiable at 2 = z7 then

" h) — f(x0)
fltii%<f(mo+ ; 0 —f’(x0)> -0

Let £(h) denote the error between the secant line of f(xg) and f(zo + h) and f'(xg) i.e.
f(zo +h) — f(xo)

e(h) == h — f' (o)
Then we have
lime(h) =0
h—0
so for h close to 0 L
E(h) _ f(mO + })L_ f(.’l?o) _ f/($0> ~0

So we have by multiplying both sides by h that
f(zo +h) — f(zo) — hf'(z0) = 0
ie.
f(zo + h) =~ f(zo) + hf'(20)
So we can approximate for h close to 0 f(z¢ + h) by the tangent line of f(xg).

Let us see how much error we get from this approximation. Going back to

f(‘rO +h) *f(.fo) . f/(IO)

e(h) = Y

we get by multiplying both sides by A that
he(h) = f(zo +h) — f(z0) — hf’'(z0)
SO
he(h) + hf'(zo) + f(zo) = f(zo + h)
Recalling we are approximating f(zo + h) by f(zo) + hf’(xo) we get
f@o +h) = (f(z0) + hf'(x0)) = he(h)

where the left hand side is the error in our approximation of f(xzo+h) using the tangent line approximation.
So the error in our approximation is always he(h). It is known that

h2
he(w] < ™
for M := max|f”(x)| where the max occurs is taken on the closed interval [zg,zo + h] (if h > 0) or
[zo + h,zo] (if A < 0). This means
h2
|f(@o +h) = (f(x0) + hf'(x0))| = |he(h)| < M=
i.e. at worst the error in our approximation is M %2
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0.2. Example. Approximate sin(.1) using linearization at zop = 0 and find the maximum between this
approximation and sin(.1).

Solution: As zg = 0 we have
sin(h) = sin(0) 4 cos(0)h

where we used -L sin(z) = cos(z). So we have

sin(.1) = .1
By our previous discussion the maximum error is M h; where M is the max of | — sin(x)| on [0, h] since
f—; sin(z) = —sin(z). We can use |sin(z)| <1 to get
2 2
YL
2 = 2
2
so the error is at worst % = 5i5. For a sharper bound we can use max,[g, 1| | —sin(z)| = .0998.. = .1
so the error is at worst approximately
h? 1 1
d—=11

2~ 7200 2000
and we have

1
in(.1) —.1| = .0001 —
|sin(.1) | = .00016653 < 5000

so we see the approximation is really good.

0.3. Example. Linearize f(z) = v/8 +x at o = 0 and use this to approximate f(.4) and find the
maximum and relative error in this approximation.
Solution The Tangent Line Approximation says

f(h) = £(0) + f'(0)h

Then using

, _ 1

) = 2v8+uw

gives .

f(0) = BV
and f(0) = v/8 so

1

SO

T =84+
10 24/8 5v/8

Again by our discussion we have the error is at worst Mh; for M = max,¢o,.4) | f”()|. Then using

1! ]‘
P& =557
SO 1
o |f7 ()] = |f"(0)] = YW

so the error is at most

]

1 (4
64v2 2

~ .0009

and in fact we have

1
4) — /8 — ——| = .00086... < .0009
| f(4) 5\/gl

so our error bound is correct. The relative error is given by
1
f(4) = V8- 0z

= .0002975...
[F(4)]
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0.4. Max/Min. Extreme Value Theorem: If f(z) is continuous on the closed interval [a,b] then it at-
tains its max and minimum inside the interval.

The hypothesis that the interval is closed is very important because there are continuous functions on
open that do not attain a max or a min inside the open interval. For example f(z) =z + 2 on the open
interval (0, 1) has no max or min inside (0,1). In general, there may be a max or a min of a continuous
function inside an open interval, but we cannot guarantee that a min or max will exist inside an open
interval.

To find the max or min of a continuous function f(x) on [a,b] first differentiate f(x) and find all the
critical points i.e. «* such that f'(z*) = 0 or f/'(z*) Does Not Exist. Then compare f(a), f(b) with f(z*)
for every x* that is a critical point. The maximum and minimum of f(a), f(b) with f(z*) for every z*
that is a critical point is the maximum and minimum of the function.

0.5. Example. Find the maximum and minimum of f(z) = vz2 + 2 — 2z on [0, 2].
0.6. Solution. First we differentiate f(x) and find the critical points.

2z
!
T) = —— —
/@) 2V + 2
Note that this is defined everywhere so we just look for z* such that f’(z*) = 0. Then
2
=2 _9-90
2vVx? +2
implies by subtracting the —2 and multiplying by 2v/z2 + 2 that
2x = 4v/ 2% + 2
SO
x=2Vxz%+2
so squaring both sides gives
2 =42% + 8
ie.
0=32"+38

so there is no #* such that f’(z*) = 0 since there is no real solutions of 0 = 3z + 8. Therefore, as there
is no critical points the maximum and minimum of f(z) are the maximum and minimum of f(0) and
f(2). And we have

f0)=0 f2)=v6—-4<0
so the maximum is f(0) = 0 and the minimum is f(2) = v/6 — 4.

0.7. Increasing/Decreasing. We say that a function is increasing if for any x < y we have

fz) < f(y)
And we say that a function is decreasing if for any x < y we have

fly) < f(=)
Note that if f'(x) > 0 on (a,b) then f is increasing on (a,b) and if f'(z) < 0 on (a,b) then f is decreasing
on (a,b).
0.8. Example. Show that f(z) = 42° + 32% + 20z has no zeros on (0, o).
0.9. Solution. First notice f(0) = 0 and 0 is not in the open interval (0,00). Next by differentiating we
have

f'(z) = 202" + 927 +20 > 0
since 20z* + 922 > 0 and 20 > 0. Therefore, f(z) is increasing on (0,00) i.e. for any x > 0 we have
f(@)> f(0)=0

so for any « > 0 we cannot have f(z) = 0.



