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Abstract. We first derive from the Cauchy-Riemann equations that the real and imaginary parts of a
holomorphic functions are weak solutions of ∆u = 0. This is a striking difference between holomorphic

functions and real differentiable functions from R2 to R2. This leads us to explore the regularity of

uniformly elliptic PDEs since ∆u = 0 is the prototype of this family. We first prove continuous weak
solutions of ∆u = 0 are smooth then use the spectral theorem to deduce its true for elliptic constant

coefficient PDE. Then we characterize the decay of integrals with Cα regularity and deduce enough

estimates from elliptic constant coefficient PDE to obtain Cα regularity for a large class of uniformly
elliptic PDEs via a perturbation argument known as Schauder’s Estimates.

1. Introduction

A remarkable feature of holomorphic functions is that while the definition only requires that a single
derivative exists, they are actually infinitely differentiable and analytic. The analogous result for real
differentiable functions fails; for instance

´ x
−1
|t|dt is C1 but is not C2. But one naively might expect that

since R2 ∼= C that there might be similar regularity results about real differentiable functions f : R2 → R2.
However, it is not the topology of C that gives holomorphic functions such nice regularity results, but it
is instead due to the Cauchy-Riemann equations. Indeed, recall that if f : Ω → C holomorphic with Ω
being an open and bounded subset of C with ∂Ω ∈ C1 then

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

where u and v are the real ad imaginary parts of f respectively. So if ϕ ∈ C∞c (Ω) is a smooth real-valued
function that is compactly supported in Ω (which will be referred to as a test function from now on) then
we haveˆ

Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dxdy =

ˆ
Ω

(
∂v

∂y

∂ϕ

∂x
− ∂v

∂x

∂ϕ

∂y

)
=

ˆ
Ω

v

(
− ∂2ϕ

∂x∂y
+

∂2ϕ

∂y∂x

)
dxdy = 0

where for the second equality we used the Cauchy-Riemann equations and the third we integrated by
parts using that ϕ|∂Ω = 0 . Note that the condition of smoothness on ∂Ω and Ω being bounded were used
to justify the usage of the divergence theorem to integrate by parts. So in particular we have shown that
from the Cauchy-Riemann equations that

´
Ω
∇u · ∇ϕdxdy = 0 for all test functions ϕ. Now we define

what it means to be weakly harmonic:

Definition 1.1. We say a function u : Ω→ R with u ∈ H1(Ω) is weakly harmonic if for any test function
ϕ ∈ C∞c (Ω) satisfies ˆ

Ω

∇u · ∇ϕdxdy = 0

where H1(Ω) := {u : Ω → R : u ∈ L2(Ω) and ∇u ∈ L2(Ω)} and ∇u is the distributional derivative of u
(and we implicitly require the distributional derivative to be an actual function).

Remark 1.2. For a review of properties of Lp spaces see [4] and for H1 see Chapter 5 of [1]. And note
that the definition of a weakly harmonic function can be also derived formally by multiplying ∆u = 0 with
a test function to see ϕ∆u = 0 and integrating by parts once, which means every harmonic function is
weakly harmonic. However, from just the definition, it is unclear if every weakly harmonic function is
harmonic since u may not even be twice differentiable.
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Remark 1.3. Note that one can enlarge the class of our test functions to H1
0 (Ω) which is defined to be

functions in H1 that have trace zero on the boundary. The trace operator is an operator that assigns H1

functions their boundary value. There is no loss of generality since C∞c (Ω) is dense in H1
0 (Ω). See [1]

for more details about Sobolev Spaces.

So we have shown that the real part of f is weakly harmonic when we only require f is continuously
complex differentiable once. Hence, if we obtain regularity results for weakly harmonic functions then
they also apply to the real and imaginary parts of holomorphic functions. So we are motivated to study
the regularity properties of weak solutions of uniformly elliptic partial differential equations on Rd since
weakly harmonic functions are the prototype of this family. In this exposition we focus on a sub-family of
divergence form elliptic PDE to simplify the proofs. For the remainder of the report assume that Ω ⊂ Rd
is bounded, open, and connected with ∂Ω ∈ C1 .

Definition 1.4. Let L be the operator defined by

Lu := −Dj(aij(x)Diu) = −∇ · (A(x)∇u)

where Diu = ∂u
∂xi

, A is the matrix function with Aij = aij, and we are using Einstein’s summation
convention. Then we say L is uniformly elliptic if there exists a positive constant λ > 0 such that

aij(x)ξiξj ≥ λ|ξ|2 for any x ∈ Ω and any ξ ∈ Rd

Definition 1.5. We say that u ∈ H1(Ω) is a weak solution of the elliptic operator Lu = f where

Lu := −Dj(aij(x)Diu) = −∇ · (A(x)∇u)

if for any ϕ ∈ H1
0 (Ω) we have ˆ

Ω

aij(x)DiuDjϕ =

ˆ
Ω

fϕ

where we assume that f ∈ L
2n
n+2 (Ω).

Remark 1.6. Note by the Sobolev Embedding Theorem (see [1] chapter 5) we have that as ϕ ∈ C1
c (Ω) so

ϕ ∈ L
2n
n−2 (Ω) so we have by Holder’s Inequality that

ˆ
Ω

|fϕ| ≤ ||f ||
L

2n
n+2
||ϕ||

L
2n
n−2

<∞

so that the right hand side is well defined for any ϕ ∈ C1
c (Ω).

Remark 1.7. Note that this does not encompass the entire class of uniformly elliptic PDEs. For instance,
our PDE is linear and is in divergence form. That is we can formally write L as the divergence of another
operator and in our case Lu = −∇ · (A(x)∇u). We choose this subclass to clearly present our ideas and
proofs.

Remark 1.8. We note that the operator −∆u is elliptic since −∆u = −∇ · (∇u) so the matrix A in the
operator is the identity operator which is strictly positive definite with constant λ = 1. And we note that
our definition of weakly harmonic is exactly the same as being a weak solution of −∇u = 0.

In this report we will derive interior regularity results of weak solutions of an elliptic operator L when
we assume additional regularity results such as uniform continuity of A(x) and some regularity on the
inhomogeneous term f(x). First we will derive regularity results of continuous weakly harmonic functions,
which will imply similar results for when A(x) is a constant strictly positive definite matrix with c(x) ≡ 0
thanks to the spectral theorem. Then we derive an integral decay condition that implies Cα regularity and
use this with estimates on solutions to Lu = 0 with A being a constant matrix that smallest eigenvalue
λ > 0. Finally we use these results to derive these regularity results by using a perturbation argument
through estimating the difference between weak solutions of L compared to a constant coefficient (i.e.
A(x) is a constant matrix) elliptic operator to show our weak solutions are sufficiently regular inside Ω.
This method of obtaining regularity of elliptic PDE is known as Schauder’s Estimates.
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2. Regularity of Constant Coefficient Elliptic PDEs

In this section we aim to prove that weakly harmonic functions are in fact harmonic in the usual sense,
then we will prove harmonic functions are smooth. Then we will extend this result to PDEs of the form

(2.1) aij
∂2u

∂xi∂xj
= 0

where aij are constants with [A]ij = aij being a uniformly strictly positive definite matrix i.e. A smallest
eigenvalue is bigger than λ > 0 for some λ. And we call solutions to such PDEs solutions to uniformly
elliptic cosntant coefficient PDEs. We need these results since we are going to show that a general weak
solution of the elliptic operator Lu = 0 can be locally approximated by a constant coefficient PDE of
the form (2.1). Assume we are working on Rn and Ω ⊂ Rn is an open, bounded subset, connected, and
∂Ω ∈ C1.

Now we are going to described a procedure to create smooth approximations of Lp functions known
as mollification. For more details see the appendix of [1]. First we construct a test function η supported
on the unit ball

η: =

{
C exp( 1

|x|2−1 if |x| < 1

0 if |x| ≥ 1

where C is chosen such that
´
Rn ηdx = 1. Then for any ε > 0 we define ηε := 1

εd
η(x/ε) then ηε ∈

C∞c (Bε(0)). Then by [1] we have that if f ∈ L1(Ω) then for

fε := ηε ∗ f :=

ˆ
Ω

ηε(x− y)f(y)dy

we have fε ∈ C∞(Ωε) where Ωe := {x ∈ Ω| dist(x, ∂Ω) > ε}, fε → f a.e., and if f ∈ Lp(Ω) then fε → f
in Lp(Ω). This gives us a method of approximating an arbitrary Lp function by a smooth approximation
of that function as long as we are away from the boundary. We will call ηε the standard mollifier.

Now we have from Chapter 1 of [3] that

Theorem 2.1. Mean Value Property Equivalence A continuous function u : Ω→ R is harmonic if
and only if for all balls Br(x0) such that Br(x0) ⊂ Ω we have

u(x0) =
1

|Br(x0)|

ˆ
Br(x0)

u(x)dx =
1

Hn−1(∂Br(x0))

ˆ
∂Br(x0)

u(x)dS

where |Br(x0)| is the volume of the ball and Hn−1(∂Br(x0)) is the surface area of the sphere.

Now we have enough tools to prove that every continuous weakly harmonic function is actually harmonic.

Theorem 2.2. Weyl’s Lemma Let u be a weakly harmonic function on Ω then after redefinition on a
set of measure zero, we have that ∆u = 0 in Ω.

Proof. Fix an ε > 0 and a test function ψ and the standard mollifier ηε then ηe ∗ψ is also a test function
when ε is small enough. Then we have

0 =

ˆ
Ω

u∆x(ηε ∗ ψ)dx =

ˆ
Ω

∆x(u ∗ ηε)ψdy

where the first equality is since ∆u is the distributional derivative of u so we can integrate by parts. The
second equality is due to Fubinis theorem, the standard mollifier being an even function, and integration
by parts. Therefore, ∆x(u ∗ ηε) = 0 a.e. due to the density of test functions in L1(Ω) (see [4]), but
continuity gives us ∆x(u ∗ ηε) = 0 in Ωε. So u ∗ ηε is a harmonic function which converges a.e. to u, this
means if we define for any x0 ∈ Ω

u(x0) :=
1

|Br(x0)|

ˆ
Br(x0)

u(x)dx

where r is chosen so that the closure of the ball is in Ω then from L2 convergence of u ∗ ηε to u combined
with the mean value property of u ∗ ηε to see u ∗ ηε → u and as u is a continuous function with the mean
value property. Then we apply Theorem 0.1 to conclude u is harmonic and notice u = u a.e. �
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Remark 2.1. This proof highlights how rigid weakly harmonic functions are. Indeed, the proof highlights
how from an arbitrary weakly harmonic function we can find an explicit sequence of harmonic functions
that converge to u in L2 and a.e.. This combined with the stability property of harmonic functions under
L2 convergence showed that u is actually harmonic when we redefine it on a null set.

Now we have the following result

Theorem 2.3. A continuous function u ∈ C(Ω) that satisfies the mean value property is smooth i.e.
u ∈ C∞(Ω)

Proof. For brevity we omit the proof which can be found on [1] chapter 2. The idea of the proof is to fix
an ε > 0 and show by integrating in polar coordinates that if ηε is the standard mollifier then (u∗ηε) = u
on Ωε which is possible since η is a radial function. Then since (u ∗ ηε) is smooth in Ωε, so u is smooth
in Ω since

⋃
ε>0 Ωε = Ω.

�

Notice that this implies if u is weakly harmonic then after a redefinition on a set of measure zero we
have that u is smooth. So in fact this implies that the real parts of a holomorphic functions are smooth.
However, we can do better since by using the Mean Value Property, we are able to deduce estimates
almost identical to the Cauchy’s Estimate for a holomorphic function. These estimates can be used to
justify that in fact harmonic functions are analytic, see chapter 1 of [2] for more details.

Now consider weak solutions of

(2.2)
n∑

i,j=1

aijD
2
iju(x) = 0

where the constant matrix Aij := aij is uniformly positive definite i.e. its smallest eigenvalue λ > 0.
Then by the Spectral Theorem, we can find a unitary change of basis so that A = diag(λ1, ..., λn) with
λi > 0. This implies by integration by subsitution that u is also a weak solution of

n∑
i=1

λiD
2
iiu(x) = 0

in a rotated domain. Then we can scale each coordinate by defining yi := xi/
√
λi then we have

∆u = 0

in this scaled and rotated domain, which implies by Theorem 2.2 and Theorem 2.3 and undoing this
linear transformation that after redefining u on a null set that it is is smooth everywhere. So we have
shown

Theorem 2.4. If u is a weak solution of
n∑

i,j=1

aijD
2
iju(x) = 0

where the matrix Aij := aij with aij constant is uniformly positive definite then u is smooth after a
redefinition on a set of measure zero.

From now on, when we work with solutions to elliptic constant coefficient PDEs, we assume that the
solution is smooth, which thanks to the theorem above implies no loss of generality.

3. Estimates of Constant Coefficient Elliptic PDEs

One of the most remarkable features of Sobolev Spaces is the Sobolev Embedding Theorem. Recall
that u ∈ W 1,p(Ω) means u and its distributional derivative ∇u are in Lp(Ω). One consequence of the
Sobolev Embedding Theorem is that if u ∈ W 1,n+q(Ω) where q > 0 then up to a redefinition in a set of
measure zero then u ∈ Cα(Ω) for α := 1− n

n+q ; while if q = 0 then the Sobolev Embedding Theorem says

that u is of Bounded Mean Oscillation. That is if (ux,r) := 1
|Br(x)|

´
Br(x)

udx then there exists a constant

independent of x and r such that ˆ
Br(x)

|u− (ux,r)|dx ≤ Crn
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(see [1] chapter 5 for more discussions on the Embedding Theorem). So a natural question one may pose
is what happens if we improve the bound on the Bounded Mean Oscillation term to rn+β for some β > 0.
And one might expect that u is actually α-holder continuous for some α > 0 due to how close being in
W 1,n is with being α-holder continuous. We slightly modify this and have the following result:

Theorem 3.1. Integral Decay Characterization of α-Holder continuity Let u ∈ L2(Ω) satisfyˆ
Br(x)

|u− (ux,r)|2 ≤Mrn+2α for any Br(x) ⊂ Ω

then u ∈ Cα(Ω) with the following estimate for any open U ⊂ Ω such that dist(U, ∂Ω) > 0 we have for
some constant C > 0

||u||Cα(U) ≤ C
(
M + ||u||L2(Ω)

)
Proof. For the full proof see [2] Chapter 3. The idea of the proof is to show that the net {(ux,r)}r>0 is
Cauchy via showing that due to the integral decay we have the estimate

|ux0,r1 − ux0,r2 |2 ≤ CM2r−n1 (rn+2α
1 + rn+2α

2 )

for any 0 < r1 < r2 with Br2(x) ⊂ Ω. Then by taking r1 = 2−hR and r2 = 2−kR and iterating the above
inequality to obtain

|ux0,2−hR − ux0,2−kR| ≤ C/2
hαMRα

which implies
|u(x0)− ux0,r| ≤ CMrα

from which it is easy to deduce the α-holder continuity of u along with the desired inequality. But from
Lebesgue differentiation theorem (see [4]) we know that u = u a.e., so by identifying u as u we obtain
the desired result

�

Remark 3.1. Notice a major theme in the proofs of obtaining a Cα or a smooth identification of a Lp

function is that we either derived that the function agrees almost everywhere with an integral represen-
tation (mean value property for weakly harmonic functions) or identified the function as the limit of an
integral process. This is rather natural since we expect integration to be a procedure that increases the
regularity of our functions.

This allows us to characterize Cα functions with a local decay condition on their integrals. This is
incredibly useful for weak solutions since they are defined in terms of integration against test functions.
And we chose to square the integrand since our weak solutions are defined to be in H1(Ω) instead
of W 1,1(Ω). The proof given in [2] also seems with very slight modifications seem to show that if´
Br(x)

|u − (ux,r)| ≤ Mrn+α for some α > 0 and any ball in Ω then u ∈ Cα(Ω). We can also somewhat

weaken the conditions thanks to Poincare’s Lemma.

Theorem 3.2. Poincare Lemma If Ω is bounded, open, connected subset of Rd with ∂Ω ∈ C1 then
there exists a constant C(n,Ω) such that

||u− 1

|Ω|

ˆ
Ω

u||L2(Ω) ≤ C||Du||L2(Ω)

for any u ∈ H1(Ω)

Proof. For a proof see [1] chapter 5. Recall |Ω| is the Lebesgue measure of Ω.
�

Now notice this implies ||u − (ux,r)||L2(Br(x)) ≤ Cr||Du||L2(Br(x)). Indeed, if u ∈ Br(x) then define

v(y) := u(x + ry) where y ∈ B1(0) so v ∈ H1(B1(0)) then we take C from Ω = B1(0) and undo the
scaling to obtain the extra factor of r from differentiating. So now we have the slightly weaker version of
Theorem 3.1

Theorem 3.3. Let u ∈ H1(Ω) satisfy ˆ
Br(x)

|Du|2 ≤Mrn+2α−2

then u ∈ Cα(Ω)
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Proof. By Poincare’s Lemma we have

ˆ
Br(x)

|u− (ux,r)|2 ≤ Cr2

ˆ
Br(x)

|Du|2 ≤ Krn+2α

now we apply theorem 3.1 to conclude. (Note we have an r2 factor since we did not take a square root)
�

Our goal is to show that under some additional regularity hypothesis on the coefficients a, b, c and f
that if L is a general uniformly elliptic PDE operator then weak solutions of Lu = f are actually Cα

continuous, which will be done by showing the hypothesis of theorem 3.3 is satisfied for u. And the idea
of our proof is to write u = w + (u − w) where w is a solution to a constant coefficient elliptic PDE
such that the error u − w is small in a very small ball. This method leads to the famous Schauder’s
Estimates, which is a pertubative method. To begin these estimates we need to derive similar estimates
for a solution to an elliptic constant coefficient PDE.

Theorem 3.4. Cacciopolli’s Inequality Let {aij}ni,j=1 be constants such that the matrix Aij := aij is

postivie definite with smallest eigenvalue λ > 0 and let u ∈ C1(Ω) solve

ˆ
Ω

aijDiuDjϕ = 0 for any ϕ ∈ C1
c (Ω)

then if η ∈ C1
c (Ω) we have

ˆ
Ω

η2|Du|2 ≤ C
ˆ

Ω

|Dη|2|u|2

Proof. Take ϕ = η2u then we have

λ

ˆ
Ω

η2|Du|2dx ≤M
ˆ

Ω

(|Djη||u|) (|Diu||η|) dx

for M := 2 max |aij |. Then the result holds by Cauchy-Schwarz. �

Notice that this implies by taking η to be a cut off function that is if 0 < r < R then η = 1 on Br(0)
and η = 0 on BR(0) with η smooth such that |Dη| ≤ 2(R− r)−1

ˆ
Br(0)

|Du|2 ≤ 4

(R− r)2

ˆ
BR(0)

|u|2

Then notice as due to theorem 2.4 that u is smooth, so that the structure of the constant coefficient PDE
imply any derivatives of u are also weak solutions. Therefore, we also have for any k ∈ N and 0 < r < R
with BR(x0) ⊂ Ω that

||u||Hk(Br(x)) ≤ C(k)

ˆ
BR(x)

|u|2 ≤ C(k)

ˆ
Ω

|u|2

where Hk(Ω) is defined to be the Sobolev Space where u and all of its distributional derivative of order
k are in L2(Ω); see [1] for more details on Hk. Then this with the Sobolev embedding theorem implies
when k is sufficiently large with respect to n then we have u ∈ Cα(Ω) and ||u||Ck,α(Br(x)) ≤ C||u||L2(Ω)

(see [2] chapter 3 for more details) so in particular,

||u||L∞(Br(x) + ||Du||L∞(Br(x) ≤ C||u||L2(Ω)

so observe that if r < ρ/2 then

(3.1)

ˆ
Bρ(x)

|u|2 ≤ Cρn||u||2L∞(Bρ(x) ≤ Kρ
n||u||L2(Ω)

and by Poincare’s Inequalityˆ
Bρ(x)

|u− (ux,ρ)|2 ≤ Cρ2

ˆ
Bρ(0)

|Du|2 ≤ Cρn+2||Du||L∞(Br(x)) ≤ Cρn+2||u||Ω
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then observe that since u is a weak solution so is w := u− (ux,r) then (wx,ρ) = (ux,ρ)− (ux,r) so we have
from plugging in w into the above inequality that

(3.2)

ˆ
Bρ(0)

|u− (ux,ρ)|2 ≤ Cρn+2

ˆ
B1(0)

|u− (ux,r)|2

then notice that if r/2 ≤ ρ < r then the inequalities (3.1) and (3.2) are obvious when C is large.
Indeed observe Cρn+2

´
B1(0)

|u − (u1,ρ)|2 ≥ C(1/2)n+2
´
B1(0)

|u − (u1,ρ)|2 so we choose C so large such

that C(1/2)n+2
´
B1(0)

|u− (u1,ρ)|2 ≥ supr∈[1/2,1]

´
Bρ(0)

|u− (u0,ρ)|p which is a finite value since the map

ρ 7→
´
Bρ(0)

|u − (u0,ρ)|p is continuous and also choose C(1/2)n+2 ≥ 1. Therefore, by a scaling argument

we have shown the following theorem

Theorem 3.5. Let u satisfy the same hypothesis as that in Cacciopolli’s Inequality with Ω = Br(x), then
we have there is a C > 0 such if 0 < ρ < rˆ

Bρ(x)

|u|2 ≤ C
(ρ
r

)n ˆ
Br(x)

|u|2

and ˆ
Bρ(x)

|u− (ux,ρ)|2 ≤ C
(ρ
r

)n+2
ˆ
Br(x)

|u− (ux,1)|2

Now notice that as u is smooth and its derivatives solve the PDE so we have

Theorem 3.6. Let u satisfy the same hypothesis as that in Cacciopolli’s Inequality with Ω = Br(x), then
we have there is a C > 0 such if 0 < ρ < rˆ

Bρ(x)

|Du|2 ≤ C
(ρ
r

)n ˆ
Br(x)

|Du|2

and ˆ
Bρ(x)

|Du− (Dux,ρ)|2 ≤ C
(ρ
r

)n+2
ˆ
Br(x)

|Du− (Dux,1)|2

and the motivation for deriving such an error estimate is that it looks very similar to our integral
characterization of α-Holder continuous functions. Now as our goal is to approximate a solution of
Lu = f where L is a uniformly elliptic operator locally by w where w solves (2.1), we will now derive a
general estimate for v in terms of v − w and w where v ∈ H1(Ω).

Theorem 3.7. Comparison with constant coefficient solutions Let w solve (2.1) in Ω := Br(x0)
where the constant matrix Aij := aij is uniformly positive definite, then for any u ∈ H1(Br(x0)) and
0 < ρ ≤ r we have

ˆ
Bρ(x0)

|Du|2 ≤ C

[(ρ
r

)n ˆ
Br(x0)

|Du|2dx+

ˆ
Br(x0)

|D(u− w)|2
]

and

ˆ
Bρ(x0)

|Du− (Dux0,r)|2 ≤ C

[(ρ
r

)n+2
ˆ
Br(x0)

|Du− (Dux0,r)|2dx+

ˆ
Br(x0)

|D(u− w)|2
]

Proof. We will only prove the first inequality as the second case is an almost identical argument; see [2]
chapter 3 for the full proof. First write u = w + (u− w) then we have from |a− b|2 ≤ 4|a|+ 4|b| thatˆ

Bρ(x0)

|Du|2 ≤ 4

ˆ
Bρ

|Dw|2 + 4

ˆ
Bρ(x0)

|D(u− w)|2 ≤ 4C
(ρ
r

)n ˆ
Br(x0)

|Dw|2 + 4

ˆ
Bρ(x0)

|D(u− w)|2

where we applied Theorem (0.6) for the final inequality. But as w = u− (u− w) we have again that

≤ 16C2
(ρ
r

)n ˆ
Br(x0)

|Du|2 +
(

16C2
(ρ
r

)n
+ 4
)ˆ

Br(x0)

|D(u− w)|2

which implies the claim by taking C large enough since (ρ/r)n ≤ 1
�
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Now we have enough estimates to prove the regularity of solutions of Lu = 0 where L is an elliptic
PDE operator.

4. Schauder Estimates

Now we are almost ready to prove the following result

Theorem 4.1. Schauder’s Estimates Suppose that aij(x) ∈ L∞(Ω) ∩C(Ω) is uniformly elliptic in Ω
that is there exists constants λ > 0 such that

λ|ξ|2 ≤ aij(x)ξiξj for any x ∈ Ω, ξ ∈ Rn

Then if u is an H1(Ω) solves

ˆ
Ω

aij(x)DiuDjϕ =

ˆ
Ω

fϕ for any ϕ ∈ H1
0 (Ω)

where f ∈ Lq where q ∈ (n2 , n) then u ∈ Cα(Ω) for α := 2 − n
q . And we have the following interior

estimate: there exists an R0 > 0 such that if r < R0(x0, λ, τ, q) then Br(x0) ⊂ Ωˆ
Br(x0)

|Du|2 ≤ Crn−2+2α
(
||f ||2Lq(Ω) + ||Du||L2(Ω)

)
where R depends on λ,Λ, and τ only where

|aij(x)− aij(y)| ≤ τ(|x− y|)

i.e. τ is the modulus of continuity of aij

Remark 4.1. Note by the uniform continuity of aij we can assume that its modulus of continuity is

radial, which will be necessary to apply the lemma below, so the assumption aij ∈ C(B1) is crucial for
this proof.

However, first we will need a following technical lemma to help us get the desired inequality.

Theorem 4.2. Let φ(t) be a non-negative and non-decreasing function on [0, R]. Suppose that

φ(ρ) ≤ A
[(ρ
r

)α
+ ε
]
φ(r) +Brβ

for any 0 < ρ ≤ r ≤ R where A,B, α, β > 0 are constants with β < α. Then for any γ ∈ [β, α) there
exists an ε0 > 0 that depends only on A,α, β, γ such that if ε < ε0 then we have for all 0 < ρ ≤ r ≤ R

φ(ρ) ≤ C
[
φ(r)

(ρ
r

)γ
+Bρβ

]
Proof. See [2] chapter 3 for the proof of this lemma. This theorem will be important since we will derive
an estimate that is of the assumption form with φ(r) =

´
Br(x0)

|Du|2dx and ε = τ2(r). Intuitively this

theorem is saying we can remove the ε in our bound by compensating with making the (ρ/r) factor
smaller by raising it to the power of γ instead of α. And this compensation in the power of (ρ/r) also
allows us to replace rβ with ρβ .

�

Now we are ready to prove our main theorem

Proof of Theorem 4.1 Let Br(x0) ⊂ Ω then from the Lax Milgram Lemma (see chapter 6 of [1]) there
exists a unique weak solution of

(4.1)

{
−∇ · (aij(x0)∇w) = 0 in Br(x0)

w = u on ∂Br(x0)

where w = u is understood in the trace sense (see Chapter 5 of [1]) since u is only defined a.e. (the trace
operator gives a way to assign for H1 functions boundary values). Then as for any ϕ ∈ H1

0 (Br(x0)) we
have from definition that
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ˆ
Br(x0)

aij(x0)DiuDjϕ =

ˆ
Br(x0)

fϕ− (aij(x0)− aij(x))DiuDjϕ

so writing u = (u− w) + w and using that w solves (4.1) we obtain for v := u− w ∈ H1
0 (Ω) thatˆ

Br(x0)

aij(x0)DivDjϕ =

ˆ
Br(x0)

fϕ− (aij(x0)− aij(x))DiuDjϕ

Therefore, by the usual trick of taking ϕ = v and the uniform ellipticity condition we obtain that

λ

ˆ
Br(x0)

|Dv|2 ≤
ˆ
Br(x0)

|fv|+ |(aij(x0)− aij(x))DiuDjv|

Now again that from Sobolev Embedding Theorem that v ∈ L
2n
n−2 (Br(x0)) and the Gagliardo–Nirenberg–Sobolev

inequality (which is used to prove the Embedding Theorem) implies ||v||
L

2n
n−2 (Br(x0))

≤ C||Dv||L2(Br(x0))

[see chapter 5 of [1]]. Therefore, by Holder’s Inequality we have

ˆ
Br(x0)

|fv| ≤ C||f ||
L

2n
n+2 (Br(x0))

||Dv||L2(Br(x0))

and Holder also implies combined with τ being a non-increasing and non-negative function thatˆ
Br(x0)

|(aij(x0)− aij(x))DiuDjv| ≤ τ(r)||Du||L2(Br(x0)||Dv||L2(Br(x0)

Therefore, combining these inequalities give(ˆ
Br(x0)

|Dv|2
)1/2

≤ K
(
τ(r)||Du||L2(Br(x0) + ||f ||

L
2n
n+2 (Br(x0))

)
this implies

(4.2)

ˆ
Br(x0)

|Dv|2 ≤ 4K

τ2(r)

ˆ
Br(x0)

|Du|2dx+

(ˆ
Br(x0)

|f |
2n
n+2

)n+2
n


Therefore, applying Theorem 3.7 we see for any 0 < ρ ≤ r
ˆ
Bρ(x0)

|Du|2 ≤ c

[(ρ
r

)n ˆ
Br(x0)

|Du|2 +

ˆ
Br(x0)

|Dv|2
]
≤ C

{τ2(r) +
(ρ
r

)n}ˆ
Br(x0)

|Du|2dx+

(ˆ
Br(x0)

|f |
2n
n+2

)n+2
n


Then by Holder’s Inequality we have(ˆ

Br(x0)

|f |
2n
n+2

)n+2
n

≤

(ˆ
Br(x0)

|f |q
) 2
q

rn−2+2α

where α := 2− n
p . Therefore, we have

ˆ
Bρ(x0)

|Du|2 ≤ C

[{
τ2(r) +

(ρ
r

)n} ˆ
Br(x0)

|Du|2dx+ ||f ||2Lq(Br(x0))r
n−2+2α

]
Now we apply Theorem 4.2 with ε(r) := τ2(r) and φ(r) =

´
Br(x0)

|Du|2 we see that there exists a R > 0

such that if ρ < R then Bρ(x0) ⊂ Ω and we can apply the theorem to see

ˆ
Bρ(x0)

|Du|2 ≤ c

[{( ρ
R

)n−2+2α
}ˆ

BR(x0)

|Du|2dx+ ||f ||2Lq(BR(x0))ρ
n−2+2α

]
and since R is fixed

≤ K

[
ρn−2+2α

ˆ
BR(x0)

|Du|2dx+ ||f ||2Lq(BR(x0))ρ
n−2+2α

]
:= Mρn−2+2α



10 RAYMOND CHU

and now we apply Theorem 3.3 to conclude that u ∈ Cα(BR(x0)) and now by repeating this argument
for any x0 ∈ Ω we conclude u ∈ Cα(Ω). �

Remark 4.2. If we strength the assumptions to aij ∈ Cα(Ω) then we can modify this argument with
using the second inequality on Theorem 3.7 to conclude Du ∈ Cβ(Ω) for some β > 0. And this argument
can also be modified to show that with the same assumptions as above with c ∈ Ln(Ω) then weak solutions
of

−∇ · (aij(x)∇u) + c(x)u = f

are also Cα(Ω) for the same α. See Chapter 3 of [2] for more details.

5. Conclusion

In summary, we first showed the real and imaginary parts of holomorphic functions are weakly har-
monic functions. This is a major difference between holomorphic functions and differentiable functions
f : R2 → R2. Then we explored how their real parts being continuous weakly harmonic actually im-
plies they are smooth, which explains why holomorphic functions are so regular compared to their real
counterpart. And we were able to deduce from the spectral theorem combined with harmonic functions
being smooth that solutions to constant coefficient uniformly elliptic PDEs are also smooth. Then from
the intuition that weak solutions of ∇ · (aij(x)∇u(x)) = f near x0 should behave like solutions with aij
fixed at x0 in a very small neighborhood [in fact in our estimates we instead consider the approximation
∇ · (aij(x)∇u(x)) = 0]. This combined with integral decay conditions for Cα regularity of H1 functions
let us to obtain estimates for solutions of constant coefficient uniformly elliptic PDEs. These estimates
were combined with a technical lemma to prove that under some regularity on aij and f that u is in fact
Cα in the interior.

However, this methods is strongly dependent on the uniform continuity of aij(x), so it does not extend
to the case where aij is say only Lp for some p. To overcome this, one typically uses De Giorgi-Nash-
Moser iteration arguments to obtain regularity results with rough coefficients; see for instance Chapter 4
of [2]. And both of these methods are limited in that they require the operator to be in divergence for;
for otherwise, a notion of a weak solution is hard to define.

Another interesting question is whether or not our α is optimal. Intuitively we might expect if we
instead look at solutions of ∇ · (aij(x0)∇u(x)) = f(x0) as our perturbation we would have a better
approximation, but since in our theorem we did not assume continuity of f then this intuitively should
not lead to a better estimate. However, I conjecture that if f is continuous then we can have even
better regularity of u since intuitively solutions of ∇ · (aij(x0)∇u(x)) = f(x0) should better approximate
∇ · (aij(x)∇u(x)) = f(x) near x0 then our original approximation scheme of ∇ · (aij(x0)∇u(x)) = 0.
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