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Exercise. Let f, g : [a, b]→ R be continuous on [a, b] and differentiable on (a, b). Show that ∃ x0 ∈ (a, b) such that

f ′(x0)(g(b)− g(a)) = g′(x0)(f(b)− f(a)).

Proof. Let h : [a, b] → R, h(x) = f(x)(g(b) − g(a)) − g(x)(f(b) − f(a)). Then h is continuous on [a, b] and
differentiable on (a, b). We have h(a) = f(a)g(b) − g(a)f(b) and h(b) = −f(b)g(a) + g(b)f(a). Thus h(a) = h(b).
Therefore, by Rolle’s Theorem, ∃ x0 ∈ (a, b) : h′(x0) = 0.

L’Hospital’s rule

Theorem. Let −∞ ≤ a < b ≤ ∞ and f, g : (a, b) → R be differentiable. Assume g′(x) 6= 0 ∀ x ∈ (a, b) and

limx→a+
f ′(x)
g′(x) = L ∈ R ∪ {±∞}. Assume additionally that either of the following hold.

1. limx→a+ f(x) = limx→a+ g(x) = 0

2. limx→a+ |g(x)| =∞

Then limx→a+
f(x)
g(x) = L.

Remark. We can replace limx→a+ by limx→x0
where x0 ∈ (a, b).

Proof. We will only prove the theorem for L ∈ R. We will prove the following two claims

Claim. ∀ ε > 0,∃ δ1(ε) > 0 : a < x < a+ δ1(ε) =⇒ f(x)
g(x) < L+ ε.

Claim. ∀ ε > 0,∃ δ2(ε) > 0 : a < x < a+ δ2(ε) =⇒ f(x)
g(x) > L− ε.

Combining the claims and taking δ(ε) = min {δ1(ε), δ2(ε)}, we get ∀ ε > 0,∃ δ(ε) > 0 : a < x < a + δ(ε) then

| f(x)g(x) − L| < ε.

Exercise. If L = −∞, prove the following variants of the first claim. Similarly with L =∞.

Claim. ∀ M > 0,∃ δ(M) > 0 : a < x < a+ δ(M) =⇒ f(x)
g(x) < M .

Let’s prove claim 1. As g′ has the intermediate value property and g′(x) 6= 0 ∀ x ∈ (a, b), we must have that
either g′(x) < 0 ∀ x ∈ (a, b) or g′(x) > 0 ∀ x ∈ (a, b). Assume WLOG that g′(x) < 0 ∀ x ∈ (a, b). This means g is
strictly decreasing on (a, b). In case 1, we must have g(x) < 0 ∀ x ∈ (a, b). In case 2, we must have

lim
x→a+

g(x) =∞ =⇒ ∃ c ∈ (a, b) : g(x) > 0 ∀ x ∈ (a, c)

In both cases,
∃ c ∈ (a, b) : g(x) 6= 0 ∀ x ∈ (a, c).

Fix ε > 0. Then ∃ δ > 0 such that if x ∈ (a, a + δ), then f ′(x)
g′(x) < L + ε. Taking δ even smaller (if necessary), we

have
f(x)− f(y)

g(x)− g(y)
=
f ′(z)

g′(z)

for some z ∈ (x, y). Then
f(x)− f(y)

g(x)− g(y)
=
f ′(z)

g′(z)
< L+ ε.
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• Consider case 1: limx→a+ f(x) = limx→a+ g(x) = 0. Let x→ a+ to get

f(y)

g(y)
= lim
x→a+

f(x)− f(y)

g(x)− g(y)
< L+ ε ∀ a < y < a+ δ,

which is claim 1.

• Consider case 2: limx→a+ g(x) =∞. Because g is decreasing and positive on (a, a+ δ). we have

f(x)

g(x)
=
f(x)− f(y)

g(x)− g(y)

g(x)− g(y)

g(x)
+
f(y)

g(x)
< (L+ ε)

(
1− g(y)

g(x)

)
+
f(y)

g(x)
= L+ ε+

f(y)− (L+ ε)g(y)

g(x)
.

As

lim
x→a+

f(y)− (L+ ε)g(y)

g(x)
= 0,∃ δ̃ > 0 :

f(y)− (L+ ε)g(y)

g(x)
< ε ∀ x ∈ (a, a+ δ̃).

For a < x < a+ min {δ, δ̃}, we get f(x)
g(x) < L+ ε, which is claim 1.

Exercise.

lim
x→0

sinx

x
= lim
x→0

sinx− sin 0

x− 0
= cos 0 = 1.

lim
x→∞

x3

e2x
= lim
x→∞

3x2

2e2x
= lim
x→∞

6x

4e2x
= lim
x→∞

6

8e2x
= 0.

lim
x→0

x3

sinx− x
= lim
x→0

3x2

cosx− 1
= lim
x→0

6x

− sinx
= −6.

lim
x→∞

xsin
1
x = lim

x→∞
esin

1
x ln x = lim

x→∞
e

sin 1
x

1
x

ln x
x

= e
limx→∞

sin 1
x

1
x

limx→∞
ln x
x

= e1·limx→∞
1
x = 1.

lim
x→0

(1 + 2x)
1
x = lim

x→0
e

1
x ln (1+2x) = elimx→0

ln (1+2x)
x = elimx→0

2
1+2x = e2.

Definition. Let f : (a, b)→ R and x0 ∈ (a, b). Assume f admits a derivatives of any order at x0. The series

∑
n≥0

f (n)(x0)

n!
(x− x0)n

is called the Taylor series for f at x0. For n ≥ 1, we define the remainder

Rn(x) = f(x)−
n−1∑
k=0

f (k)(x0)

k!
(x− x0)k.

Taylor

Theorem. Fix n ≥ 1 and let f : (a, b) → R be n times differentiable on (a, b). Fix x0 ∈ (a, b). Then for any
x ∈ (a, b) \ {x0},∃ y between x and x0 such that

Rn(x) =
f (n)(y)

n!
(x− x0)n.

In particular,

f(x) =

n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n)(y)

n!
(x− x0)n.

Proof. Fix x ∈ (a, b) \ {x0}. Let M be the unique solution to

f(x) =

n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

M

n!
(x− x0)n.
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Look at

g(t) = f(t)−
n−1∑
k=0

f (k)(x0)

k!
(t− x0)k − M

n!
(t− x0)n.

We have g(x) = g(x0) = 0 For 1 ≤ l ≤ n− 1,

g(l)(t) = f (l)(t)−
n−1∑
k=l

f (k)(x0)

k!
k(k − 1) . . . (k − l + 1)(t− x0)k−l − M

n!
n(n− 1) . . . (n− l + 1)(t− x0)n−l.

Then g(l)(x0) = f (l)(x0) − f (l)(x0) = 0. By Rolle’s theorem, ∃ x1 between x and x0 such that g′(x1) = 0. As
g′(x0) = g′(x1) = 0,∃ x2 between x0 and x1 such that g′′(x2) = 0. After iterating, we get xn between x and x0
such that g(n)(xn) = 0. But

g(n)(xn) = f (n)(xn)−M.

Corollary. Let a > 0 and assume f : (−a, a) → R is differentiable to any order on (−a, a). Assume also that f
and all its derivatives are uniformly bounded on (−a, a). Then

Rn(x) = f(x)−
n−1∑
k=0

f (k)(0)

k!
xk −−−−→

n→∞
0 ∀ x ∈ (−a, a).

Proof.
∃ M > 0 : |f (n)(x)| ≤M ∀ n ≥ 0, x ∈ (−a, a).

By Taylor’s theorem,

Rn(x) =
f (n)(y)

n!
xn

for some y between 0 and x. Then

|Rn(x)| ≤M |x|
n

n!
≤M an

n!
−−−−→
n→∞

0 ∀ x ∈ (−a, a).

This shows that

f(x) =
∑
n≥0

f (n)(0)

n!
xn ∀ x ∈ (−a, a).

Example. • f : R→ R, f(x) = ex. For |x| ≤M ,

|f (n)(x)| = |ex| ≤ eM .

Thus

ex =
∑
n≥0

xn

n!
.

As M is aribtrary, this holds ∀ x ∈ R.

• f : R→ R, f(x) = cosx, |f (n)(x)| ≤ 1 ∀ n ≥ 0, x ∈ R.

f (n)(x) =


− sinx ∀ n = 4k + 1

− cosx ∀ n = 4k + 2

sinx ∀ n = 4k + 3

cosx ∀ n = 4k

Thus

f (n)(0) =

{
−1 ∀ n = 2(2k + 1)

1 ∀ n = 2(2k)

so f (2n)(0) = (−1)n then

cosx =
∑
n≥0

(−1)n

(2n)!
x2n
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Exercise. Find the Taylor expansion for sinx.

Theorem. For n ≥ 1, let fn : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Assume {f ′n}n≥1
converges uniformly on (a, b) and assume {fn(x0)}n≥1 converges at some x0 ∈ (a, b). Then {fn}n≥1 converges
uniformly on [a, b] to some function f and

f ′(x) = lim
n→∞

f ′n(x).

Remark.

lim
n→∞

f ′n(x) = lim
n→∞

lim
y→x

fn(y)− fn(x)

y − x
, lim

y→x
lim
n→∞

fn(y)− fn(x)

y − x
= lim
y→x

f(y)− f(x)

y − x
= f ′(x).

Proof. Let ε > 0. As {f ′n}n≥1 converges uniformly on (a, b),

∃ n1(ε) ∈ N : |f ′n(x)− f ′m(x)| < ε

2(b− a)
∀ n,m ≥ n1(ε), x ∈ (a, b).

As {fn(x0)}n≥1 converges,

∃ n2(ε) ∈ N : |fn(x0)− fm(x0)| < ε

2
∀ n,m ≥ n2(ε), x ∈ (a, b).

Let n(ε) = max (n1(ε), n2(ε)). By the Mean Value Theorem, for x, y ∈ [a, b], we have

[fn(x)− fm(x)]− [fn(y)− fm(y)] = (x− y)[f ′n(z)− f ′m(z)]

for some z between x, y. In particular, for n,m ≥ n1(ε), we have

[fn(x)− fm(x)]− [fn(y)− fm(y)] < (x− y)
ε

2(b− a)
≤ ε

2
.

For n,m ≥ n(ε), y = x0, x ∈ [a, b],

|fn(x)− fm(x)| ≤ |fn(x0)− fm(x0)|+ | (fn(x)− fm(x))− (fn(x0)− fm(x0)) | < ε

2
+
ε

2
= ε.

This shows {fn}n≥1 converges uniformly on [a, b]. Let f(x) = limn→∞ fn(x). Fix x ∈ (a, b). For y ∈ [a, b] \ {x},
define

gn(y) =
fn(y)− fn(x)

y − x
and g(y) =

f(y)− f(x)

y − x
.

Note
lim
y→x

gn(y) = f ′n(x) and lim
n→∞

gn(y) = g(y).

Recall that for n,m ≥ n1(ε) we have∣∣∣∣fn(x)− fn(y)

x− y
− fm(x)− fm(y)

x− y

∣∣∣∣ < ε

2(b− a)
∀ x, y ∈ [a, b].

Let m→∞ to get

|gn(y)− g(y)| ≤ ε

2(b− a)
∀ y ∈ [a, b] \ {x}.

Let L(x) = limn→∞ f ′n(x). Letting m→∞ in

|f ′n(x)− f ′m(x)| < ε

2(b− a)
,

we get

|f ′n(x)− L(x)| ≤ ε

2(b− a)
∀ n ≥ n1(ε).

As
lim
y→x

gn(y) = f ′n(x) =⇒ ∃ δ > 0 : 0 < |x− y| < δ,
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then
|gn(y)− f ′n(x)| < ε

2
.

For 0 < |y − x| < δ and n ≥ n1(ε) we get

|g(y)− L(x)| ≤ |g(y)− gn(y)|+ |gn(y)− f ′n(x)|+ |f ′n(x)− L(x)| ≤ ε

2(b− a)
+
ε

2
+

ε

2(b− a)
=
ε

2
+

ε

b− a
.

This proves f is differentiable at x and

f ′(x) = L(x) = lim
n→∞

f ′n(x).

Integrability

Definition. 1. Let f : [a, b]→ R be a bounded function. For S ⊆ [a, b] we write

M(f, S) = sup {f(x) : x ∈ S} and m(f, S) = inf {f(x) : x ∈ S}.

2. A partition P of [a, b] is a finite ordered subset of [a, b]. We write

P = {a = t0 < · · · < tn = b}.

3. Given a partition P of [a, b] and f : [a, b]→ R bounded, we define the upper Darboux sum of f associated
to P via

U(f, P ) =

n∑
k=1

M(f, [tk−1, tk])(tk − tk−1)

and the lower Darboux sum of f associated to P via

L(f, P ) =

n∑
k=1

m(f, [tk−1, tk])(tk − tk−1).

4. The upper Darboux integral of f is given by

U(f) = inf {U(f, P ) : P partition on [a, b]}.

The lower Darboux integral of f is given by

L(f) = sup {L(f, P ) : P partition on [a, b]}.

We will show L(f) ≤ U(f).

Remark. Given f : [a, b]→ R bounded and P = {a = t0 < · · · < tn = b} we have

m(f, [a, b])(b− a) =

n∑
k=1

m(f, [a, b])(tk − tk−1) ≤ L(f, P ) =

n∑
k=1

m(f, [tk−1, tk])(tk − tk−1)

≤
n∑
k=1

M(f, [tk−1, tk])(tk − tk−1) = U(f, P ) ≤
n∑
k=1

M(f, [a, b])(tk − tk−1) = M(f, [a, b])(b− a).

This shows L(f) ∈ R, U(f) ∈ R.

Definition. Let f : [a, b]→ R be bounded. If L(f) = U(f), we say that f is (Darboux) integrable and we write

U(f) = L(f) =

∫ b

a

f(x)dx.
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Example. • Let f : [a, b]→ R given by

f(x) =

{
1 if x ∈ R \Q
0 if x ∈ Q.

Let P = {a = t0 < · · · < tn = b}. Then

U(f, P ) =

n∑
k=1

M(f, [tk−1, tk])(tk − tk−1) =

n∑
k=1

(tk − tk−1) = b− a =⇒ U(f) = b− a

but

L(f, P ) =

n∑
k=1

m(f, [tk−1, tk])(tk − tk−1) = 0 =⇒ L(f) = 0.

As 0 6= b− a we see that f is not integrable.

• Let f : [0, b]→ R, f(x) = x3 and P = {a = t0 < · · · < tn = b}. Then

U(f, P ) =
n∑
k=1

M(f, [tk−1, tk])(tk − tk−1) =
n∑
k=1

t3k(tk − tk−1),

L(f, P ) =

n∑
k=1

m(f, [tk−1, tk])(tk − tk−1) =

n∑
k=1

t3k−1(tk − tk−1).

Let tk = k
nb and 0 ≤ k ≤ n. Then

U(f, P ) =

n∑
k=1

k3

n3
b3
b

n
=
b4

n4

n∑
k=1

k3 =
b4

n4

(
n(n+ 1)

2

)2

−−−−→
n→∞

b4

4
=⇒ U(f) ≤ b4

4
,

L(f, P ) =

n∑
k=1

(k − 1)3

n3
b3
b

n
=
b4

n4

n−1∑
l=1

l3 =
b4

n4

(
n(n− 1)

2

)2

−−−−→
n→∞

b4

4
=⇒ L(f) ≥ b4

4
.

Proposition. Let f : [a, b]→ R be bounded and let P,Q be partitions of [a, b] : P ⊆ Q. Then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof. By induction, it suffices to prove the claim when Q contains exactly one more point than P . Say P = {a =
t0 < · · · < tn = b} and Q = {a = t0 < · · · < tk−1 < s < tk < . . . tn = b} for some 1 ≤ k ≤ n. Then

L(f, P )− L(f,Q) = m(f, [tk−1, tk])(tk − tk−1)−
[
m(f, [tk−1, s])(s− tk−1) +m(f, [s, tk])(tk − s)

]
≤ m(f, [tk−1, tk]) ((tk − tk−1)− (s− tk−1)− (tk − s)) = 0.

Corollary. Let f : [a, b]→ R be bounded and let P,Q be partitions of [a, b]. Then L(f, P ) ≤ U(f,Q). In particular,
L(f) = U(f).

Proof. Let R = P ∪Q. Then

L(f, P ) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q)

=⇒ L(f) = sup {L(f, P ) : P partition of [a, b]} ≤ U(f,Q)

=⇒ L(f) ≤ inf {U(f,Q) : Q partition of [a, b]} = U(f).

Theorem. Let f : [a, b]→ R be bounded. Then f is Darboux integrable iff ∀ ε > 0,∃ P partition of [a, b] such that
U(f, P )− L(f, P ) < ε.
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Proof. • ” ⇐= ” Let ε > 0 and P be a partition of [a, b] such that U(f, P )− L(f, P ) < ε. Then

U(f) ≤ U(f, P ) < L(f, P ) + ε ≤ L(f) + ε.

Let ε→ 0 to get U(f) ≤ L(f). As L(f) ≤ U(f) we get L(f) ≤ U(f) =⇒ f is integrable.

• ” =⇒ ” Assume f is integrable, then L(f) = U(f). Let ε > 0.

L(f) = sup {L(f, P ) : P partition of [a, b]} =⇒ ∃ P1 partition of [a, b] : L(f)− ε

2
≤ L(f, P1),

U(f) = inf {U(f, P ) : P partition of [a, b]} =⇒ ∃ P2 partition of [a, b] : U(f) +
ε

2
≥ U(f, P2).

Set P = P1 ∪ P2. Then

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1) ≤ U(f) +
ε

2
−
(
L(f)− ε

2

)
= ε.

Definition. Given a partition P = {a = t0 < · · · < tn = b}, the mesh of P is

mesh(P ) = max
1≤k≤n

(tk − tk−1).

Theorem. Let f : [a, b]→ R be bounded. Then f is Darboux integrable iff ∀ ε > 0,∃ δ > 0 such that

P = {a = t0 < · · · < tn = b} : mesh(P ) < δ =⇒ U(f, P )− L(f, P ) < ε.

Proof. • ” ⇐= ” This follows from the previous theorem plus the observation that for any δ > 0,∃ P partition
of [a, b] with mesh(P ) < δ.

• ” =⇒ ” Assume f is integrable, then

∀ ε > 0,∃ P partition of [a, b] : U(f, P )− L(f, P ) < ε.

Let ε > 0 and let

P0 = {a = s0 < · · · < sm = b} be a partition of [a, b] : U(f, P0)− L(f, P0) < ε.

Let δ > 0 to be chosen shortly and let

P = {a = t0 < · · · < tn = b} : mesh(P ) < δ.

As f is bounded,
∃ M > 0 : |f(x)| < M ∀ x ∈ [a, b].

Consider

U(f, P )− L(f, P ) = U(f, P )− U(f, P0) + U(f, P0)− L(f, P0) + L(f, P0)− L(f, P ).

Notice
L(f, P0)− L(f, P ) ≤ L(f,Q)− L(f, P )

and

|m(f, [tk−1, sl])(sl − tk−1) +m(f, [sl, tk])(tk − sl)−m(f, [tk−1, tk])(tk − tk−1)|
≤M(sl − tk−1) +M(tk − sl) +M(tk − tk−1) ≤2Mmesh(P )

=⇒ L(f,Q)− L(f, P ) ≤ m2Mmesh(P ).

A similar argument gives

U(f, P )− U(f, P0) ≤ U(f, P )− U(f,Q) ≤ m2Mmesh(P ).

Thus
U(f, P )− L(f, P ) <

ε

2
+ 4mMmesh(P ) < ε provided δ <

ε

8mM
.
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Definition. Let f : [a, b]→ R be bounded and let P = {a = t0 < · · · < tn = b}.
A Riemann sum of f associated to P is of the form

S =

n∑
k=1

f(xk)(tk − tk−1)

where x ∈ [tk−1, tk] for 1 ≤ k ≤ n. We say that f is Riemann integrable if ∃ r ∈ R : ∀ ε > 0,∃ δ > 0 :
|S − r| < ε for any Riemann sum S associated to a partition P with mesh(P ) < δ. In this case, r is called the
Riemann integral of f on [a, b] and we write

r = R

∫ b

a

f(x)dx.

Theorem. Let f : [a, b] → R be bounded. Then f is Darboux integrable iff it’s Riemann integrable, in which case
the two integrals agree.

Proof. We prove both ways separately.

• ” =⇒ ” Assume f is Darboux integrable. Let ε > 0. Let δ > 0 such that if P is a partition of [a, b] with
mesh(P ) < δ, then U(f, P )− L(f, P ) < ε. Let P = {a = t0 < · · · < tn = b} with mesh(P ) < δ. Let

S =

n∑
k=1

f(xk)(tk − tk−1)

for x ∈ [tk−1, tk]. Then
L(f, P ) ≤ S ≤ U(f, P ).

But

U(f, P ) < L(f, P ) + ε ≤ L(f) + ε =

∫ b

a

f(x)dx+ ε

and

L(f, P ) > U(f, P )− ε ≥ U(f)− ε =

∫ b

a

f(x)dx− ε.

Thus

|S −
∫ b

a

f(x)dx| < ε =⇒ R

∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

• ” ⇐= ” Assume f is Riemann integrable and let

r = R

∫ b

a

f(x)dx.

Let ε > 0. Then ∃ δ > 0 such that if P is a partition with mesh(P ) < δ, then |S − r| < δ for all Riemann
sums S associated with P . Let P = {a = t0 < · · · < tn = b} : mesh(P ) < δ. We want to show

U(f, P )− L(f, P ) < ε.

Let xk ∈ [tk−1, tk] such that

f(xkn) < m(f, [tk−1, tk]) +
ε

2(b− a)
.

Then

r − ε

2
<

n∑
k=1

f(xk)(tk − tk−1) <

n∑
k=1

m(f, [tk−1, tk])(tk − tk−1) +

n∑
k=1

ε

2(b− a)
(tk − tk−1)

= L(f, P ) +
ε

2
≤ L(f) +

ε

2
=⇒ L(f) > r − ε.

Let yk ∈ [tk−1, tk] such that

f(ykn) > M(f, [tk−1, tk])− ε

2(b− a)
.
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Then

r +
ε

2
>

n∑
k=1

f(yk)(tk − tk−1) > U(f, P )− ε

2
≥ U(f)− ε

2
=⇒ U(f) < r + ε.

Let ε→ 0 to get that L(f) = U(f) = r.

Theorem. Let f : [a, b]→ R be a monotonic function. Then f is integrable.

Proof. Let ε > 0 and let P = {a = t0 < · · · < tn = b} : mesh(P ) < δ for δ to be chosen shortly. We want to show

U(f, P )− L(f, P ) < ε.

Assume, WLOG, that f is increasing. Then

U(f, P )− L(f, P ) =

n∑
k=1

(M(f, [tk−1, tk])−m(f, [tk−1, tk])) (tk − tk−1) =

n∑
k=1

(f(tk)− f(tk−1)) (tk − tk−1)

≤ δ
n∑
k=1

(f(tk)− f(tk−1)) = δ(f(b)− f(a)) < ε,

provided

δ <
ε

f(b)− f(a)
.

Exercise. Treat the case when f is constant.

Theorem. Let f : [a, b]→ R be continuous. Then f is integrable.

Proof. Let ε > 0. Let P = {a = t0 < · · · < tn = b} : mesh(P ) < δ for δ to be chosen shortly.

U(f, P )− L(f, P ) =

n∑
k=1

(M(f, [tk−1, tk])−m(f, [tk−1, tk])) (tk − tk−1).

As f is continuous on [a, b] compact, f is uniformly continuous. So ∃ δ > 0 such that

|f(x)− f(y)| < ε

b− a
∀ x, y ∈ [a, b] : |x− y| < δ.

For this δ and P as above,

U(f, P )− L(f, P ) < ε

n∑
k=1

(tk − tk−1) = ε.

We have a strict inequality because f attains its sup and inf on [tk−1, tk].

Theorem. Let f, g : [a, b]→ R be integrable and let α ∈ R. Then

1. αf is integrable and ∫ b

a

(αf)(x)dx = α

∫ b

a

f(x)dx.

2. f + g is integrable and ∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

9



Proof. 1. If α = 0, this is clear. Assume α > 0. For S ⊆ [a, b], we have M(αf, S) = αM(f, S) and m(αf, S) =
αm(f, S). For a partition P of [a, b], we have U(αf, P ) = αU(f, P ) and L(αf, P ) = αL(f, P ). Then

U(αf) = inf {U(αf, P ) : P partition of [a, b]} = inf {αU(f, P ) : P partition of [a, b]} = αU(f).

Similarly, L(αf) = αL(f). Because f is integrable,

U(f) = L(f) =⇒ U(αf) = L(αf) = α

∫ b

a

f(x)dx

Assume α < 0. Then we have U(αf, P ) = αL(f, P ) and L(αf, P ) = αU(f, P ). Thus U(αf) = αL(f) and
L(αf) = αU(f). We conclude as before; because f is integrable,

U(f) = L(f) =⇒ U(αf) = L(αf) = α

∫ b

a

f(x)dx.

2. Note that for a partition P of [a, b], we have

U(f + g, P ) ≤ U(f, P ) + U(g, P ), L(f + g, P ) ≥ L(f, P ) + L(g, P )

Let ε > 0. As f is integrable,

∃ P1 partition of [a, b] : U(f, P1)− L(f, P1) <
ε

2

∃ P2 partition of [a, b] : U(g, P2)− L(g, P2) <
ε

2
.

Let P = P1 ∪ P2. Then

U(f+g, P )−L(f+g, P ) ≤ U(f, P )−L(f, P )+U(g, P )−L(g, P ) ≤ U(f, P1)−L(f, P1)+U(g, P2)−L(g, P2) < ε.

This shows f + g is integrable. Moreover,

U(f + g) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P ) < L(f, P ) +
ε

2
+ L(g, P ) +

ε

2

≤ L(f) + L(g) + ε =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx+ ε.

Similarly,

L(f + g) ≥ L(f + g, P ) ≥ L(f, P ) + L(g, P ) > U(f, P )− ε

2
+ U(g, P )− ε

2

≥ U(f) + U(g)− ε =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx− ε.

Then ∫ b

a

f(x)dx+

∫ b

a

g(x)dx− ε ≤ L(f + g) ≤ U(f + g) ≤
∫ b

a

f(x)dx+

∫ b

a

g(x)dx+ ε.

Let ε→ 0 to get the result.

Lemma. Let f, g : [a, b]→ R be integrable : f(x) ≤ g(x) ∀ x ∈ [a, b]. Then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

Proof. Let h : [a, b]→ R, h(x) = g(x)− f(x) integrable. Moreover,

L(h) = sup {L(h, P ) : P partition of [a, b]} ≥ 0 =⇒
∫ b

a

(g − f)(x)dx ≥ 0 =⇒
∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.
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Theorem. Let f : [a, b]→ R be integrable. Then |f | is integrable and∣∣∣∣ ∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.

Proof. Let’s show |f | is integrable. For S ⊆ [a, b],

M(|f |, S)−m(|f |, S) = sup
x∈S
|f(x)| − inf

y∈S
|f(y)| = sup

x,y∈S
|f(x)| − |f(y)|

≤ sup
x,y∈S

|f(x)− f(y)| = sup
x,y∈S

(f(x)− f(y)) = sup
x∈S

f(x)− inf
y∈S

f(y)

= M(f, S)−m(f, S).

If P is a partition of [a, b], then

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ).

As f is integrable, given ε > 0,

∃ P partition of [a, b] : U(f, P )− L(f, P ) < ε.

Collecting both, we find that f is integrable. Moreover,

−|f | ≤ f ≤ |f | =⇒
∫ b

a

(−|f |)(x)dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

(|f |)(x)dx

=⇒ −
∫ b

a

|f(x)|dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

|f(x)|dx =⇒
∣∣ ∫ b

a

f(x)dx
∣∣ ≤ ∫ b

a

|f(x)|dx.

Theorem. Assume f : [a, c] → R is a function and a < b < c are such that f is integrable on [a, b] and f is
integrable on [b, c]. Then f is integrable on [a, c] and∫ c

a

f(x)dx =

∫ b

a

f(x)dx+

∫ c

b

f(x)dx.

Proof. Let ε > 0. As f is integrable on [a, b],

∃ P1 partition of [a, b] : U ba(f, P1)− Lba(f, P1) <
ε

2
.

Similarly, as f is integrable on [b, c],

∃ P2 partition of [b, c] : U cb (f, P2)− Lcb(f, P2) <
ε

2
.

Let P = P1 ∪ P2. Then P is a partition of [a, c] and

U ca(f, P ) = U ba(f, P1) + U cb (f, P2), Lca(f, P ) = Lba(f, P1) + Lcb(f, P2).

Thus U ca(f, P )− Lca(f, P ) < ε, so f is integrable on [a, c]. Moreover,∫ c

a

f(x)dx ≤ U ca(f, P ) = U ba(f, P1) + U cb (f, P2) < Lba(f, P1) + Lcb(f, P2) + ε ≤
∫ b

a

f(x)dx+

∫ c

b

f(x)dx+ ε,∫ c

a

f(x)dx ≥ Lca(f, P ) = Lba(f, P1) + Lcb(f, P2) > U ba(f, P1) + U cb (f, P2)− ε ≥
∫ b

a

f(x)dx+

∫ c

b

f(x)dx− ε.

Let ε→ 0 to get the result.

Definition. 1. A function f : [a, b] → R is piecewise continuous if there exists a partition P = {a = t0 <
· · · < tn = b} : f is uniformly continuous on each (tk−1, tk).
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2. A function f : [a, b]→ R is piecewise monotone if there exists a partition P = {a = t0 < · · · < tn = b} : f
is monotone on each (tk−1, tk).

Theorem. Let f : [a, b]→ R be either piecewise continuous or bounded piecewise monotone. Then f is integrable
on [a, b].

Proof. Let P = {a = t0 < · · · < tn = b} : either f is uniformly continuous on (tk−1, tk) or f is monotone on
(tk−1, tk).

• If f is uniformly continuous on (tk−1, tk), then f admits a continuous extension to [tk−1, tk]. Let’s call this
extension fk. Then fk is integrable on [tk−1, tk].

• If f is monotone on (tk−1, tk), say it’s increasing, then extend if to a function fk : [tk−1, tk]→ R via

fk(tk−1) = inf
t↘tk−1

f(t), fk(tk) = sup
t↗tk

f(t).

As fk is monotone on [tk−1, tk], fk is integrable on [tk−1, tk].

In either case, fk is integrable on [tk−1, tk]. As

f |(tk−1,tk) = fk|(tk−1,tk),

f is integrable on [tk−1, tk]. By the previous theorem,∫ b

a

f(x)dx =

n∑
k=1

∫ tk

tk−1

f(x)dx.

Intermediate value theorem for integrals

Theorem. Let f : [a, b]→ R be continuous. Then

∃ x0 ∈ [a, b] : f(x0) =
1

b− a

∫ b

a

f(x)dx.

Proof. As f is continuous on [a, b],

∃ α, β ∈ [a, b] :f(α) = inf
x∈[a,b]

f(x) ≤ f(x) ≤ sup
x∈[a,b]

f(x) = f(β) ∀ x ∈ [a, b]

=⇒ f(α)(b− a) =

∫ b

a

f(α)dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

f(β)dx = f(β)(b− a)

=⇒ f(α) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(β).

As f is continuous, it has the intermediate value property. Thus

∃ x0 ∈ [a, b] : f(x0) =
1

b− a

∫ b

a

f(x)dx.

Definition. We say that a function f : (a, b)→ R is integrable on [a, b] if every extension of f to [a, b] is integrable

on [a, b]. In this case, the value of
∫ b
a
f(x)dx does not depend on the values of the extensions at the points a and b.

Theorem. Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b). If f ′ is integrable on [a, b], then∫ b

a

f ′(x)dx = f(b)− f(a).
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Proof. Let ε > 0. As f ′ is integrable on [a, b],

∃ partition P = {a = t0 < · · · < tn = b} : U(f ′, P )− L(f ′, P ) < ε.

On one hand,

L(f ′, P ) ≤
∫ b

a

f ′(x)dx ≤ U(f ′, P ) < L(f ′, P ) + ε. (1)

On the other hand, we will show that f(b)− f(a) is the value of the Riemann sum S associated to the partition P .
Then

L(f ′, P ) ≤ S = f(b)− f(a) ≤ U(f ′, P ) < L(f ′, P ) + ε. (2)

Collecting (1) and (2), we get ∣∣∣∣ ∫ b

a

f ′(x)dx− (f(b)− f(a))

∣∣∣∣ < 2ε.

Let ε→ 0 to get the claim. Notice

f(b)− f(a) =

n∑
k=1

f(tk)− f(tk−1).

By the Mean Value Theorem,

∀ 1 ≤ k ≤ n,∃ xk ∈ (tk−1, tk) :
f(tk)− f(tk−1)

tk − tk−1
= f ′(xk).

Then

f(b)− f(a) =

n∑
k=1

f ′(xk)(tk − tk−1),

which is a Riemann sum associated to P .

Integration by parts

Theorem. Let f, g : [a, b] → R be continuous on [a, b] and differentiable on (a, b) such that f ′, g′ are Riemann
integrable on [a, b]. Then ∫ b

a

f ′(x)g(x)dx+

∫ b

a

f(x)g′(x)dx = f(b)g(b)− f(a)g(a).

Proof. Let h : [a, b]→ R, h(x) = f(x)g(x). Then h is continuous on [a, b], differentiable on (a, b). For x ∈ (a, b),

h′(x) = f ′(x)g(x) + f(x)g′(x)

is integrable on [a, b] since products and sums of Riemann integrable functions are integrable. Then∫ b

a

f ′(x)g(x)dx+

∫ b

a

f(x)g′(x)dx =

∫ b

a

[f ′(x)g(x) + f(x)g′(x)]dx =

∫ b

a

h′(x)dx = h(b)− h(a) = (fg)(b)− (fg)(a).

Theorem. Let f : [a, b]→ R be Riemann integrable and define F : [a, b]→ R via

F (x) =

∫ x

a

f(t)dt.

Then F is continuous on [a, b]. Moreover, if f is continuous at some x0 ∈ (a, b), then F is differentiable at x0 and

F ′(x0) = f(x0).
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Proof. As f is Riemann integrable,
∃ M > 0 : |f(x)| ≤M ∀ x ∈ [a, b].

Let x, y ∈ [a, b], then

F (x)− F (y) =

∫ x

a

f(t)dt−
∫ y

a

f(t)dt =

∫ x

y

f(t)dt,

with the convention that if x < y, then ∫ x

y

f(t)dt = −
∫ y

x

f(t)dt.

Then on [a, b],

|F (x)− F (y)| ≤ |
∫ x

y

f(t)dt| ≤M |x− y|.

Thus F is uniformly continuous. Assume f is continuous at some x0 ∈ (a, b). For x ∈ [a, b] \ {x0},

F (x)− F (x0)

x− x0
− f(x0) =

1

x− x0

∫ x

x0

f(t)dt− 1

x− x0

∫ x

x0

f(x0)dt =
1

x− x0

∫ x

x0

f(t)− f(x0)dt.

As f is continuous at x0, given ε > 0,

∃ δ > 0 : |f(t)− f(x0)| < ε ∀ t ∈ [a, b] : |t− x0| < δ.

Then for x ∈ [a, b] \ {x0} : |x− x0| < δ, we have∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ 1

x− x0

∫ x

x0

|f(t)− f(x0)|dt ≤ 1

x− x0

∫ x

x0

εdt = ε.

This proves F is differentiable at x0 and F ′(x0) = f(x0).

Change of variables

Theorem. Let J ⊆ R be an open interval and let u : J → R be differentiable with u′ continuous. Let I ⊆ R be an
open interval such that I ⊇ u(J) and let f : I → R be a continuous function. Then f ◦ u : J → R is a continuous
function and ∫ b

a

(f ◦ u)(x)u′(x)dx =

∫ u(b)

u(a)

f(x)dx ∀ a, b ∈ J.

Proof. Pick c ∈ I and define

F (x) =

∫ x

c

f(t)dt.

As f is continuous, F is differentiable and F ′(x) = f(x) ∀ x ∈ I. Let g = F ◦ u : J → R differentiable and

g′(x) = F ′(u(x))u′(x) = (f ◦ u)(x)u′(x)

continuous on J and so integrable on any [a, b] ⊆ J . Then∫ b

a

(f ◦u)(x)u′(x)dx =

∫ b

a

g′(x)dx = g(b)−g(a) = F (u(b))−F (u(a)) =

∫ u(b)

c

f(t)dt−
∫ u(a)

c

f(t)dt =

∫ u(b)

u(a)

f(t)dt.

Theorem. Let fn : [a.b] → R be Riemann integrable functions. Assume {fn}n≥1 converges uniformly on [a, b] to
a function f . Then f is Riemann integrable and∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx.
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Proof. Let dn = supx∈[a,b] |fn(x)− f(x)|, then

fn
u−−−−→

n→∞
f =⇒ dn −−−−→

n→∞
0 =⇒ fn(x)− dn ≤ f(x) ≤ fn(x) + dn ∀ x ∈ [a, b].

If S ⊆ [a, b], then

M(fn, S)− dn ≤M(f, S) ≤M(fn, S) + dn, m(fn, S)− dn ≤ m(f, S) ≤ m(fn, S) + dn.

For P a partition of [a, b], we have

U(fn, P )− dn(b− a) ≤ U(f, P ) ≤ U(fn, P ) + dn(b− a), L(fn, P )− dn(b− a) ≤ L(f, P ) ≤ L(fn, P ) + dn(b− a).

Then
U(f, P )− L(f, P ) ≤ U(fn, P )− L(fn, P ) + 2dn(b− a).

Let ε > 0. Let
nε ∈ N : dn <

ε

4(b− a)
∀ n ≥ nε.

Fix n ≥ nε. Let

P (n, ε) : U(fn, P )− L(fn, P ) <
ε

2
.

Thus
U(f, P )− L(f, P ) < ε

and f is integrable. Then∫ b

a

f(x)dx ≤ U(f, P ) ≤ U(fn, P ) + dn(b− a) ≤ L(fn, P ) +
ε

2
+ dn(b− a) ≤

∫ b

a

f(x)dx+
3ε

4

for n ≥ nε fixed and P as above. Now∫ b

a

f(x)dx ≥ L(f, P ) ≥ L(fn, P )− dn(b− a) ≥ U(fn, P )− ε

2
− dn(b− a) ≥

∫ b

a

f(x)dx− 3ε

4
.

Thus ∣∣∣∣ ∫ b

a

f(x)dx−
∫ b

a

fn(x)dx

∣∣∣∣ ≤ 3ε

4
.

Definition. We say that a set A ⊆ R has zero content if ∀ ε > 0, there exists a sequence of open sets {(an, bn)}n≥1
such that

A ⊆
⋃
n≥1

(an, bn),
∑
n≥1

(bn − an) < ε.

Remark. 1. If A has zero content and B ⊆ A, then B has zero content.

2. If A is at most countable, then A has zero content. Indeed, write A = {a1, . . . } and let ε > 0. Then

A ⊆
⋃
n≥1

(an −
ε

2n+1
, an +

ε

2n+1
),

∑
n≥1

ε

2n
= ε.

3. If we have a sequence of sets {An}n≥1 such that for all n ≥ 1, An has zero content, then ∪n≥1An has zero
content. Let ε > 0. Then ∀ m ≥ 1,

∃ {(amn , bmn )}n≥1 : Am ⊆
⋃
n≥1

(amn , b
m
n ),

∑
n≥1

(bmn − amn ) <
ε

2m
.

Thus ⋃
m≥1

Am ⊆
⋃

m,n≥1

(amn , b
m
n ),

∑
m,n≥1

(bmn − amn ) <
∑
m≥1

ε

2m
= ε.
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Lebesgue criterion of Riemann integrability

Theorem. A function f : [a, b]→ R is Riemann integrable iff it’s bounded and {x ∈ [a, b] : f is discontinuous at x}
has zero content.

Proof. We prove both ways separately.

• ” =⇒ ” It suffices to show

{x ∈ [a, b] : f is discontinuous at x} = {x ∈ [a, b] : w(f, x) > 0} =
⋃
n≥1

{x ∈ [a, b] : w(f, x) ≥ 1

n
}

has zero content. Then it suffices to show that ∀ n ≥ 1,

Fn = {x ∈ [a, b] : w(f, x) ≥ 1

n
}

has zero content. Fix N ≥ 1. As f is Riemann integrable,

∃ P = {a = t0 < · · · < tn = b} : U(f, P )− L(f, P ) <
ε

2N
.

Let
I = {k ∈ (1, . . . , n) : (tk−1, tk) ∩ FN 6= ∅}.

Then
FN ⊆

⋃
k∈I

(tk−1, tk) ∪ P.

As P is finite, it has zero content. Thus it suffices to control
∑
k∈I(tk−1, tk). Note that for k ∈ I,

w(f, [tk−1, tk]) ≥ 1

N
.

Then

ε

2N
> U(f, P )− L(f, P ) =

n∑
k=1

w(f, [tk−1, tk])(tk−1, tk) ≥
∑
k∈I

w(f, [tk−1, tk])(tk−1, tk) ≥ 1

N

∑
k∈I

(tk−1, tk).

Thus ∑
k∈I

(tk−1, tk) <
ε

2
.

• ” ⇐= ”
f bounded =⇒ ∃ M > 0 : |f(x)| ≤M ∀ x ∈ [a, b].

Let ε > 0. Let α > 0, δ > 0 to be chosen shortly. We know

{x ∈ [a, b] : w(f, x) > 0}

has zero content. Thus
Fα = {x ∈ [a, b] : w(f, x) ≥ α}

has zero content and Fα ∪ {a, b} has zero content. Thus ∃ {(an, bn)}n≥1 such that

Fα ∪ {a, b} ⊆
⋃
n≥1

(an, bn),
∑
n≥1

(bn − an) < δ.

Then
w(f, x) < α ∀ x ∈ (a, b) \ Fα =⇒ ∃ cx, dx : w(f, [cx, dx]) < α.

and

[a, b] = (Fα ∪ {a, b}) ∪ ((a, b) \ Fα) ⊆
⋃
n≥1

(an, bn) ∪
⋃

x∈(a,b)\Fα

(cx, dx) open cover of compact [a, b].
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Thus ∃ n0 ≥ 1 and J ⊆ (a, b) \ Fα finite such that

[a, b] ⊆
n0⋃
n=1

(an, bn) ∪
⋃
x∈J

(cx, dx)

Let P be a partition of [a, b] consisting of the points in

n0⋃
n=1

{an, bn} ∪
⋃
x∈J
{cx, dx}

that belong to [a, b]. Write P = {a = t0 < · · · < tn = b}. Note that ∀ 1 ≤ k ≤ n we have either

[tk−1, tk] ⊆ [am, bm] for some 1 ≤ m ≤ n0

or
[tk−1, tk] ⊆ [cx, dx] for some x ∈ J.

Let
I1 = {1 ≤ k ≤ n : [tk−1, tk] ⊆ [am, bm] for some 1 ≤ m ≤ n0}, I2 = {1, . . . , n} \ I1.

Then

U(f, P )− L(f, P ) =
∑
k∈I1

[M(f, [tk−1, tk])−m(f, [tk−1, tk])](tk − tk−1)

+
∑
k∈I2

[M(f, [tk−1, tk])−m(f, [tk−1, tk])](tk − tk−1)

≤ 2M
∑
k∈I1

(tk − tk−1) +
∑
k∈I2

w(f, [tk−1, tk])(tk − tk−1)

≤ 2M
∑
m≥1

(bm − am) + α

n∑
k=1

(tk − tk−1) ≤ 2Mδ + α(b− a) < ε,

provided

δ <
ε

4M + 1
, α <

ε

2(b− a)
.

Multivariable functions

Definition. Let G ∈ Rn be open and let f : G → Rn be a function. Let a ∈ G. Then for a unit vector
u ∈ Rn (||u|| = 1), the function

R 3 t 7→ a+ tu ∈ Rn

is continuous. Then
Au = {t ∈ R : a+ tu ∈ G}

is open. Note 0 ∈ An, thus it contains an open interval centered at t = 0.

• We say the function f is differentiable at a in the direction u if

lim
t→0

f(a+ tu)− f(a)

t

exists. In this case, we denote the derivative of f at a in the direction of u by

(Duf)(a).

If f is differentiable in the direction of u at every point in G, we denote the derivative of f in the direction
of u by

Duf : G→ Rn.
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• LetG open in Rn, a ∈ G, f : G→ Rm. Let {e1, . . . , en} denote the canonical vectors in Rn. If f is differentiable
at a in the direction of ei, then we denote the derivative of f at a in the direction of ei, (Deif)(a), by

∂f

∂xi
(a)

and we call it the partial derivative of f at a with respect to xi.

Remark. • The notation ∂f
∂xi

(a) comes from the following observation.

(Deif)(a) = lim
t→0

f(a+ tei)− f(a)

t
= lim
xi→ai

f(a1, . . . , ai−1, xi, ai+1, . . . , an)− f(a1, . . . , ai−1, ai, ai+1, . . . , an)

xi − ai
So (Deif)(a) exists iff the function

R 3 xi 7→ f(a1, . . . , ai−1, xi, ai+1, . . . , an) ∈ Rn

is differentiable at ai.

• Let G open in Rn, a ∈ G, f : G→ Rm. Write f = (f1, . . . , fm) where each fk : G→ R. Note that (Deif)(a)
exists (||u||2 = 1) iff (Deifk)(a) exist ∀ 1 ≤ k ≤ n. In this case,

(Duf)(a) = ((Duf1)(a), . . . , (Dufm)(a)).

Similarly, f admits partial derivatives at a iff each fk admits partial derivatives at a. We write the matrix of
partial derivatives  ∂f1

∂x1
(a) . . . ∂f1

∂xn
(a)

. . .
∂fm
∂x1

(a) . . . ∂fm
∂xn

(a)


Definition. A transformation T : Rn → Rn is a linear transformation if

T (ax+ by) = aT (x) + bT (y) ∀ a, b ∈ R, x, y ∈ Rn.

Recall T is represented by multiplication by an m× n matrix [T ]. Indeed, the jth column of [T ] is Tej ∈ Rm. For
−→u = (u1, . . . , un) ∈ Rn,

T (−→u ) =

n∑
i=1

uiTei = [T ] · −→u .

Let G ∈ Rn be open and let a ∈ G. A function f : G→ Rn is differentiable at a if there exists a linear transformation
T : Rn → Rm such that

lim
x→a

f(x)− f(a)− T (x− a)

||x− a||
= 0.

Remark. A linear transformation T : Rn → Rm satisfying the previous equation is unique and is denoted by f ′(a).
Let’s assume T, T̃ : Rn → Rm are linear transformations satisfying the previous equation. Then

lim
x→a

T (x− a)− T̃ (x− a)

||x− a||
= 0.

We want to show T = T̃ . Clearly, T (0) = T̃ (0) = 0. Let y ∈ Rn \ {0}. Since a ∈ G open, ∃ r > 0 : Br(a) ⊆ G.
Choose t > 0 : t||y|| < r. Then x = a+ ty ∈ Br(a). Thus

0←−−−
x→a

T (x− a)− T̃ (x− a)

||x− a||
=
T (ty)− T̃ (ty)

t||y||
=

1

||y||
[T (y)− T̃ (y)] =⇒ T (y) = T̃ (y).

Example. Let A = {(x, y) ∈ R2, x ≥ 0, 0 ≤ y ≤ x2}. Let f : A → R2, f ≡ 0. For λ ∈ R, let Ty : R2 →
R, Tλ(x, y) = λy, a linear transformation. For (x, y) ∈ A \ {(0, 0)},∣∣∣∣f(x, y)− f(0, 0)− Tλ((x, y)− (0, 0))

||(x, y)− (0, 0)||

∣∣∣∣ =
| − λy|√
x2 + y2

≤ |λ||y|√
x2 + y2

≤ |λ|x2√
x2 + y2

≤ |λ||x| −−−−−−−→
(x,y)→(0,0)

0.

This example shows that the transformation T is the previous equation need not be unique if the point a doesn’t
belong to the interior of G.
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Definition. Let T : Rn : Rm be a linear transformation. Then the norm of T is given by ||T || = sup||x||=1 ||Tx||.
Note for x ∈ Rn \ {0},

||Tx|| = ||x|| ||T (
x

||x||
)|| ≤ ||x|| ||T ||.

Remark. • Let G open ⊆ Rn, a ∈ G, f : G→ Rn be differentiable at a. Let

εf (x) =

{
f(x)−f(a)−f ′(a)(x−a)

||x−a|| x 6= a

0 x = a.

Note f is differentiable at a iff εf is continuous at a. Write

f(x) = f(a) + f ′(a)(x− a) + εf (x)||x− a||.

Then

||f(x)− f(a)|| ≤ ||f ′(a)(x− a)||+ ||εf (x)|| ||x− a|| ≤ ||f ′(a)|| ||x− a||+ ||εf (x)|| ||x− a|| −−−→
x→a

0.

This shows f is continuous at a.

• Let T : Rn → Rm be a linear transformation. Then ∀ a ∈ Rn, T is differentiable at a and T ′(a) = T . Indeed,

T (x)− T (a)− T (x− a)

||x− a||
≡ 0 ∀ x ∈ Rn.

Theorem. Let G open ⊇ R, a ∈ G, f : G → Rm be differentiable at a. Then for any unit vector u ∈ Rn, f is
differentiable at a in the direction of u and (Duf)(a) = f ′(a)u. In particular, letting u ∈ {e1, . . . , en}, we deduce
that the partial derivative of f exists and

∂f

∂xi
(a) = f ′(a)ei.

This is the ith column in the matrix representing f ′(a). This shows that the matrix representing f ′(a) is the matrix
of partial derivatives wr wrote before. Moreover, if u = (u1, . . . , un) ∈ Rn, then

f ′(a)u = f ′(a)

n∑
i=1

uiei =

n∑
i=1

ui
∂f

∂xi
(a).

Proof. Let u ∈ Rn be a unit vector. Then

(Duf)(a) = lim
t→0

f(a+ tu)− f(a)

t
.

With x = a+ tu, use

lim
x→a

f(x)− f(a)− f ′(a)(x− a)

||x− a||
= 0.

We get

0 = lim
t→0

f(a+ tu)− f(a)− f ′(a)(tu)

|t| ||u||
= lim
t→0

f(a+ tu)− f(a)− tf ′(a)u

|t|
=⇒ (Duf)(a) = f ′(a)u.

Exercise. Assume G ⊆ Rn is open and the functions f, g : G→ Rm, h : G→ R are differentiable at some a ∈ G.
Then

1. f + g is differentiable at a and
(f + g)′(a) = f ′(a) + g′(a).

2. f, g : G→ Rm is differentiable at a and

(fh)′(a)(u) = h(a)f ′(a)u+ f(a)h′(a)u.
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Proposition. Let G open ⊆ Rn, D open ⊆ Rm. Assume f : G → D is differentiable at some a ∈ G and that
g : D → Rk is differentiable at f(a) = b. Then g ◦ f : G→ Rk is differentiable at a and

(g ◦ f)′(a) = g′(f(a)) ◦ f ′(a)

is a linear transformation from Rn to Rk.

Proof. Recall that f is differentiable at a iff

εf (x) =

{
f(x)−f(a)−f ′(a)(x−a)

||x−a|| x 6= a

0 x = a.

is continuous at a and g is differentiable at b = f(a) iff

εg(y) =

{
g(y)−g(b)−g′(b)(y−b)

||y−b|| , y 6= b

0 y = b.

is continuous at b. Write
f(x) = f(a) + f ′(a)(x− a) + εf (x)||x− a||

on Br(a) ⊆ G, and
g(y) = g(b) + g′(b)(y − b) + εg(y)||y − b||

on Bρ(b) ⊆ D. As f is continuous at a, choosing r sufficiently small, we have

f(Br(a)) ⊆ Bρ(b).

Let y = f(x) for x ∈ Br(a) to get

g(f(x)) = g(f(a)) + g′(f(a))[f(x)− f(a)] + εg(f(x)) ·
∣∣∣∣f ′(a)(x− a) + εf (x) · ||x− a||

∣∣∣∣.
For x 6= a,

g(f(x))− g(f(a))− (g′(f(a)) ◦ f ′(a)) (x− a)

||x− a||
= g′(f(a))εf (x) +

εg(f(x)) ·
∣∣∣∣f ′(a)(x− a) + εf (x) · ||x− a||

∣∣∣∣
||x− a||

.

We want to show RHS −−−→
x→a

0. For the first term,

||g′(f(a))εf (x)|| ≤ ||g′(f(a))|| ||εf (x)|| −−−→
x→a

0

by continuity of εf at x = a. For the second term,∣∣∣∣∣∣∣∣εg(f(x))

∣∣∣∣f ′(a)(x− a) + εf (x) · ||x− a||
∣∣∣∣

||x− a||

∣∣∣∣∣∣∣∣ ≤ ||εg(f(x))|| ||f
′(a)|| ||x− a||+ ||εf (x)|| ||x− a||

||x− a||
≤ ||εg(f(x))|| (||f ′(a)||+ ||εf (x)||) .

Notice
||εg(f(x))|| −−−→

x→a
||εg(f(a))|| = 0,

and the other terms are finite.

Remark. There is no mean value theorem in higher dimensions.

Example. Let f : R→ R2 ∼ C, f(x) = eix = cosx+ i sinx. Clearly,

f(0) = f(2π) = 1.

But we have
f ′(x) = − sinx+ i cosx =⇒ ||f ′(x)|| = 1 6= 0 ∀ x ∈ R.
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Lagrange inequality

Proposition. Let G open ⊆ Rn and let a, b ∈ G such that

[a, b] = {(1− t)a+ tb : t ∈ [0, 1]} ⊆ G.

Assume f : G→ Rm is continuous at every point on [a, b] and differentiable at every point on (a, b) = [a, b] \ {a, b}.
Then ∃ x0 ∈ (a, b) such that

||f(b)− f(a)|| ≤ ||f ′(x0)|| ||b− a||

Proof. Let φ : [0, 1]→ R be defined as

φ(t) = 〈f((1− t)a+ tb), f(b)− f(a)〉 = f(a+ t(b− a)) · [f(b)− f(a)] =

m∑
i=1

fi(a+ t(b− a)) · [fi(b)− fi(a)],

where f = (f1, . . . , fm). So φ is continuous on [0, 1] and differentiable on (0, 1). By the mean-value theorem,
∃ t0 ∈ (0, 1) : φ(1)− φ(0) = φ′(t0). Then

φ(1)− φ(0) = 〈f(b), f(b)− f(a)〉 − 〈f(a), f(b)− f(a)〉 = 〈f(b)− f(a), f(b)− f(a)〉 = ||f(b)− f(a)||2.

For t ∈ (0, 1),

|φ′(t)| = |〈f ′(a+ t(b− a))(b− a), f(b)− f(a)〉| ≤ ||f ′(a+ t(b− a))(b− a)|| ||f(b)− f(a)||
≤ ||f ′(a+ t(b− a))|| ||(b− a)|| ||f(b)− f(a)||.

We have

||φ(1)− φ(0)|| = ||φ′(t0)||, ||f(b)− f(a)||2 ≤ ||f ′(a+ t0(b− a))|| ||b− a|| ||f(b)− f(a)||.

Let x0 = a+ t0(b− a) ∈ (a, b).

Corollary. Assume G is open, connected subset of Rn. Assume f : G → Rn is differentiable and f ′ ≡ 0 on G.
Then f is constant on G.

Proof. Let a, x ∈ G and let

La,x =

N⋃
k=1

[xk, xk+1]

be a polygonal path on G connecting a and x. Applying the Lagrange inequality on each [xk, xk+1], we find
ξk ∈ (xk, xk+1) such that

||f(xk+1 − f(xk))|| ≤ ||f ′(ξk)|| ||xk−1 − xk|| = 0.

This shows f(x) = f(a).

Theorem. Let f : [0, 1]→ Rn be continuous and such that there exists a set A ⊆ [0, 1] which is at most countable
such that f is differentiable on (0, 1) \A. Then

||f(1)− f(0)|| < sup
x∈(0,1)\A

||f ′(x)||.

Proof. Let ε > 0 and
M = sup

x∈(0,1)\A
||f ′(x)||.

We want to show
||f(1)− f(0)|| ≤M + 2ε.

Assume A = {a1, . . . } is countable. Let {εn}n≥1 ⊆ (0,∞) such that∑
n≥1

εn < ε.
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Let
B = {t ∈ [0, 1] : ||f(s)− f(0)|| ≤ εs+Ms+

∑
ak≤s

εk ∀ 0 ≤ s ≤ t}.

Clearly,
0 ∈ B, t ∈ B =⇒ [0, t] ⊆ B.

Thus B is an interval and ∃ b ∈ [0, 1] such that

[0, b) ⊆ B ⊆ [0, b].

Claim. b ∈ B, i.e. B is closed in [0, 1].

As f is continuous at b,

||f(b)− f(0)|| = lim
t↗b
||f(t)− f(0)|| ≤ lim

t↗b
(εt+Mt+

∑
ak≤t

εk) ≤ εb+Mb+
∑
ak≤b

εk =⇒ b ∈ B.

Claim. b = 1.

Assume, towards a contradiction, that b < 1.

1. Assume b ∈ A, then
∃ n0 ≥ 1 : b = an0 .

As f is continuous at b,
∃ b < c < 1 : ||f(t)− f(b)|| < εn0

∀ t ∈ [b, c].

By the triangle inequality, for t ∈ [b, c] we have

||f(t)− f(0)|| ≤ ||f(t)− f(b)||+ ||f(b)− f(0)||

< εn0 + εb+
∑
ak<b

εk = εb+Mb+
∑
ak≤b

εk ≤ εt+Mt+
∑
ak≤t

εk.

So [b, c] ⊆ B, contradiction.

2. Assume b /∈ A. As f is differentiable at b,

lim
t→b

f(t)− f(b)− f ′(b)(t− b)
|t− b|

= 0.

Then
∃ b < c < 1 : ||f(t)− f(b)− f ′(b)(t− b)|| < ε(t, b) ∀ t ∈ [b, c]

and
||f(t)− f(b)|| < ε(t− b) + ||f ′(b)||(t− b) ≤ ε(t− b) +M(t− b).

By the triangle inequality, for t ∈ [b, c],

||f(t)− f(0)|| ≤ ||f(t)− f(b)||+ ||f(b)− f(0)||

≤ ε(t− b) +M(t− b) + εb+Mb+
∑
ak<b

εk ≤ εt+Mt+
∑
ak≤t

εk.

So [b, c] ⊆ B, contradiction.

Definition. Let G open ⊇ Rn. Then f : G → Rm is said to be continuously differentiable on G if f is
differentiable on G and the derivative f ′ : G → L(Rn,Rm) (the space of linear transformations) is continuous on
G. In this case, we say f is of class C ′ on G and write f ∈ C ′(G).

Theorem. Let G open ⊇ Rn and let f : G → Rm be a function. Then f ∈ C ′(G) iff the partial derivatives ∂f
∂xj

exist on G for all 1 ≤ j ≤ n and are continuous on G.

Proof. We prove both ways separately.
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• ” =⇒ ” Fix a ∈ G. Let ε > 0. As f ∈ C ′(G),

∃ r > 0 : ||f ′(x)− f ′(a)|| < ε ∀ x ∈ Br(a) ⊆ G.

Recall
∂f

∂xj
(a) = f ′(a)ej ∀ 1 ≤ j ≤ n.

Then ∣∣∣∣∣∣∣∣ ∂f∂xj (x)− ∂f

∂xj
(a)

∣∣∣∣∣∣∣∣ = ||f ′(x)ej − f ′(a)ej || = ||(f ′(x)− f ′(a))ej ||

≤ ||f ′(x)− f ′(a)|| ||ej || < ε ∀ x ∈ Br(a), 1 ≤ j ≤ n.

• ” ⇐= ” Fix a ∈ G. Take ε > 0. For 1 ≤ j ≤ n fixed, as ∂f
∂xj

is continuous at a, we know

∃ rj > 0 :

∣∣∣∣∣∣∣∣ ∂f∂xj (x)− ∂f

∂xj
(a)

∣∣∣∣∣∣∣∣ < ε

n
∀ x ∈ Brj (a) ⊆ G.

Let r = min1≤j≤n rj . Then ∣∣∣∣∣∣∣∣ ∂f∂xj (x)− ∂f

∂xj
(a)

∣∣∣∣∣∣∣∣ < ε

n
∀ x ∈ Br(a), 1 ≤ j ≤ n.

Let
T =

[
∂f
∂x1

(a) . . . ∂f
∂xn

(a).
]

This is an m× n matrix. We want to show f ′(a) = T . Notice

f(x)− f(a)− T (x− a) = f(x)− f(a)−
n∑
j=1

∂f

∂xj
(a)(xj − aj)

= f(x1, . . . , xn)− f(a1, . . . , xn)− ∂f

∂x1
(a)(x1 − a1)

+ f(a1, . . . , xn)− f(a1, a2, . . . , xn)− ∂f

∂x2
(a)(x2 − a2)

+ . . .

+ f(a1, . . . , an−1, xn)− f(a1, . . . , an)− ∂f

∂xn
(a)(xn − an).

For every 1 ≤ i ≤ n, consider the map φi(t) given by

t 7→ f(a1, . . . , ai−1, t, xi+1, . . . , xn)− ∂f

∂xj
t.

φi is continuous on [a, x] and differentiable on (a, x), with derivative

φ′i(t) =
∂f

∂xi
(a1, . . . , ai−1, t, xi+1, . . . , xn)− ∂f

∂xi
(a).

By the Lagrange inequality,

∃ ξi ∈ (ai, xi) : ||φi(xi)− φi(ai)|| ≤ ||φ′i(ξi)|| |xi − ai|.

Then

||f(a1, . . . , ai−1, xi, . . . , xn)− f(a1, . . . , ai, xi+1, . . . , xn)− ∂f

∂xi
(a)(xi − ai)|| <

ε

n
|xi − ai|| ≤

ε

n
||x− a||.

This gives
||f(x)− f(a)− T (x− a)|| ≤ ε||x− a|| ∀ x ∈ Br(a).
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By definition, f is differentiable at a and f ′(a) = T . For x ∈ Br(a) and any n ∈ Rn \ 0,

[f ′(x)− f ′(a)]u = ||
n∑
j=1

[
∂f

∂xj
(x)− ∂f

∂xj
(a)]uj ||

≤
n∑
j=1

|| ∂f
∂xj

(x)− ∂f

∂xj
(a)|| |uj | ≤

ε

n

 n∑
j=1

|uj |2
 1

2
 n∑
j=1

12

 1
2

≤ ε√
n
||u||.

Then
||f ′(x)− f ′(a)|| = sup

||u||=1

||(f ′(x)− f ′(a))u|| ≤ ε√
n
∀ x ∈ Br(a).

Lemma. Assume A is an n× n invertible matrix and assume that B is another n× n matrix such that

α = ||A−B|| ||A−1|| < 1.

Then B is invertible.

Proof. B is invertible iff kerB = 0. By the triangle inequality,

||x|| = ||A−1Ax|| = ||A−1[(A−B)x+Bx]||
≤ ||A−1|| (||(A−B)x||+ ||Bx||) ≤ ||A−1|| (||A−B|| ||x||+ ||Bx||) = α||x||+ ||Bx|| ||A−1||.

Then
(1− α)||x||
||A−1||

≤ ||Bx||.

If x ∈ kerB, then Bx = 0. Then x = 0, so kerB = {0}.

Contraction mapping

Theorem. Assume (X, d) is a complete metric space and that φ : X → X is a contraction, that is,

d(φ(x), φ(y)) ≤ αd(x, y) ∀ x, y ∈ X, and some fixed α ∈ (0, 1).

Then φ admits a unique fixed point, that is,

∃! x0 ∈ X : φ(x0) = x0.

Inverse function

Theorem. Let G be open in Rn and assume f : G→ Rn is differentiable on G with f ′ : G→ L(Rn,Rn) continuous
at a ∈ G and f ′(a) invertible. Then there exists open sets U, V in Rn such that

a ∈ U, f(a) ∈ V, V = f(U), f : U → V is bijective,

and the inverse
g = (f |U )−1 : V → U

is differentiable on V with the derivative continuous at f(a).

Proof. Set
T = (f ′(a))−1.

Since f ′ is continuous at a,

∃ r > 0 : ||f ′(x)− f ′(a)|| ≤ 1

2||T ||
∀ x ∈ Br(a) ⊆ G.
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By the Lemma, this implies that f ′(x) is invertible for all x ∈ Br(a). Let U = Br(a) and V = f(U). Let’s first show
that f : U → V is bijective. As it’s clearly surjective, it suffices to check injectivity. Use the Lagrange inequality
for the map h given by

U 3 x 7→ f(x)− f ′(a)x ∈ Rn.

For x, y ∈ U ,

∃ ξ ∈ (x, y) : ||h(x)− h(y)|| ≤ ||h′(ξ)|| ||x− y|| = ||f ′(ξ)− f ′(a)|| ||x− y|| ≤ 1

2||T ||
||x− y||.

On the other hand,

h(x)− h(y) = [f(x)− f ′(a)x]− [f(y)− f ′(a)y] = f(x)− f(y)− f ′(a)(x− y).

Then

||f(x)− f(y)− f ′(a)(x− y)|| ≤ 1

2||T ||
||x− y||

=⇒ ||T [f(x)− f(y)− f ′(a)(x− y)]|| ≤ ||T || ||f(x)− f(y)− f ′(a)(x− y)|| ≤ 1

2
||x− y||

=⇒ ||T [f(x)− f(y)]− (x− y)]|| ≤ 1

2
||x− y|| ∀ x, y ∈ U.

By the triangle inequality,

||x− y|| ≤ ||T [f(x)− f(y)]||+ ||T [f(x)− f(y)]− (x− y)|| ≤ ||T || ||f(x)− f(y)||+ 1

2
||x− y||

=⇒ ||f(x)− f(y)|| ≥ 1

2||T ||
||x− y|| ∀ x, y ∈ U.

This shows f is injective on U . Next, let’s show V = f(U) is open. Let y0 ∈ V , then

∃ x0 ∈ U : f(x0) = y0.

Let ρ > 0 such that
Bρ(x0) ⊆ U.

Note Bρ(x0) is a complete metric space when endowed with the Euclidean distance on Rn. We will show V is open,
i.e.

B ρ
2||T ||

(y0) ⊆ V.

Let y ∈ B ρ
2||T ||

(y0). We want to find

x1 ∈ U : f(x1) = y1.

Consider the map φ given by
Bρ(x0) 3 x 7→ x+ T (y1 − f(x)).

We want to prove

1. φ : Bρ(x0)→ Bρ(x0),

2. φ is a contraction on Bρ(x0).

If both hold, then φ has a unique fixed point x1 ∈ Bρ(x0) ⊆ U , and

φ(x1) = x1 ⇐⇒ T (y1 − f(x1)) = 0 ⇐⇒ f(x1) = y.

We will check both hold. For x, y ∈ Bρ(x0) ⊆ U ,

||φ(x)− φ(y)|| = ||(x− y)− T (f(x)− f(y))|| ≤ 1

2
||x− y||.

Thus φ is a contraction on Bρ(x0). On the other hand,

||φ(x0)− x0|| = ||T (y1 − f(x0))|| ≤ ||T || ||y1 − y0|| ≤ ||T ||
ρ

2||T ||
≤ ρ

2
.
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By the triangle inequality, for x ∈ Bρ(x0), we have

||φ(x)− x0|| ≤ ||φ(x)− φ(x0)||+ ||φ(x0)− x0|| ≤
1

2
||x− x0||+

ρ

2
≤ ρ

2
+
ρ

2
= ρ =⇒ φ(x) ∈ Bρ(x0).

We are left to show that
g = (f |V )

−1
: V → U

is differentiable on V with g′ continuous at f(a). Let y ∈ V, y + k ∈ V . Then

∃ x ∈ U, x+ h ∈ U : f(x) = y, f(x+ h) = g + k.

Then

g(y + k)− g(y)− [f ′(x)]−1(y + k − y)

||k||
=
x+ h− x− [f ′(x)]−1[f(x+ h)− f(x)]

||k||

= − [f ′(x)]−1[f(x+ h)− f(x)− f ′(x)h]

||h||
||h||
||k||

.

Recall that

||k|| = ||y + k − y|| = ||f(x+ h)f(x)|| ≤ 1

2||T ||
||h|| =⇒ ||h|| ≤ 2||T || ||k||.

So

lim
||k||→0

||g(y + k)− g(y)− [f ′(x)]−1k||
||k||

≤ 2||T || ||[f ′(x)]−1|| lim
||h||→0

||f(x+ h)− f(x)− f ′(x)h||
||h||

= 0.

This shows g is differentiable at y and

g′(y) = [f ′(x)]−1 = [f ′(g(y))]−1.

Continuity at f(a) follows from f ′ continuous at a and g continuous at f(a).

Partial derivatives in higher dimensions

Definition. Let G ⊆ Rn × Rm and let f : G→ Rm be a function. Assume

f(x0, y0) = 0 for some x0, y0 ∈ G.

We want to find

1. open sets U ∈ Rn, V ∈ Rm such that
x0 ∈ U, y0 ∈ V.

2. a unique function φ : U → V such that
(x, y) ∈ U × V.

We know f(x, y) = 0 and y = f(x) are equivalent and define y, respectively, implicitly and explicitly.

• Let
Gx0

= {y ∈ Rm : (x0, y) ∈ G}.
If the function

Gx0 3 y 7→ f(x0, y) ∈ Rm

is differentiable at y0, we denote its derivative by

∂f

∂y
(x0, y0)

and we call it the partial derivative of f with respect to y at (x0, y0). Clearly,

∂f

∂y
(x0, y0) : Rm → Rm

is a linear transformation.
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• Let
Gy0 = {x ∈ Rn : (x, y0) ∈ G}.

If the function
Gy0 3 x 7→ f(x, y0) ∈ Rn

is differentiable at x0, we denote its derivative by

∂f

∂x
(x0, y0)

and we call it the partial derivative of f with respect to x at (x0, y0). Clearly,

∂f

∂x
(x0, y0) : Rn → Rn

is a linear transformation.

Implicit function

Theorem. Let G ⊆ Rn×Rm and let f : G→ Rm be differentiable on G with f continuous at some point (a, b) ∈ G.
Assume f(a, b) = 0 and ∂f

∂y (a, b) is invertible. Then there exists open sets U ∈ Rn, V ∈ Rm such that

a ∈ U, b ∈ V, U × V ⊆ G, ∃! φ : U → V : (x, y) ∈ U × V =⇒ f(x, y) = 0 ⇐⇒ y = φ(x).

Moreover, we can choose U, V such that φ is differentiable on U with φ′ continuous at a and

φ′(x) = −
(
∂f

∂x
(x, φ(x))

)−1
◦ ∂f
∂x

(x, φ(x)).

Proof. Let F : G→ Rn × Rn given by
F (x, y) = (x, f(x, y)).

By hypothesis, F is differentiable on G with F ′ continuous at (a, b). In fact,

F ′(x, y) =

[
1|Rn 0

∂f
∂x (x, y) ∂f

∂y (x, y)

]
.

Note that
F ′(x, y) is invertible ⇐⇒ ker(F ′(x, y)) = {0} ⊆ Rn+m.

Let (u, v) ∈ Rn × Rm such that
F ′(x, y)(u, v) = 0.

Then

F ′(x, y)(u, v) =

[
u

∂f
∂x (x, y)u+ ∂f

∂y (x, y)v

]
= [0] =⇒ u = 0,

∂f

∂y
(x, y)v = 0 =⇒ v = 0

and

F ′(x, y) is invertible ⇐⇒ ker(F ′(x, y)) = {0} ⊆ Rn+m

⇐⇒ ker(
∂f

∂y
(x, y)) = {0} ⊆ Rn ⇐⇒ ∂f

∂y
(x, y) is invertible.

As ∂f
∂y (a, b) is invertible, F ′(a, b) is invertible. By the inverse function theorem, ∃ W0 ⊇ G open such that

(a, b) ∈W0, F (W0) = D0 open ⊆ Rn × Rm.

The function F : W0 → D0 is bijective and its inverse (F |W0
)−1 is differentiable on D0 with continuous derivative

and
F (a, b) = (a, f(a, b)) = (a, 0).
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As (a, b) ⊆W0 is open, there exists open sets a ∈ U0 ⊆ Rn and b ∈ V ⊆ Rm such that

U0 × V ⊆W0.

Let
U = {x ∈ U0 | ∃ y ∈ V : f(x, y) = 0}.

Note x ∈ U ⇐⇒ (x, 0) ∈ F (U0 × V ).

Claim. U is open.

We have the function ψ given by
u0 3 x 7→ (x, 0)

and continuous. Then
F (u0 × v) = [(F |W0

)−1]−1(U0, V )

is open because (U0, V ) is open and (F |W0
)−1 is continuous. Then

U = ψ−1(F (u0 × v))

is open.

Claim.
∀ x ∈ U,∃! y ∈ V : f(x, y) = 0.

The existence of such y is given by the definition of U . Let’s prove uniqueness. Assume y1, y2 ∈ V such that

f(x, y1) = f(x, y2) = 0.

But then
F (x, y1) = (x, f(x, y1) = (x, 0)

F (x, y1) = (x, f(x, y1) = (x, 0)

}
=⇒ F (x, y1) = F (x, y2), F injective =⇒ y1 = y2.

Let φ : U → V : φ(x) = y where y is the unique point in V for which f(x, y) = 0. In particular,

F (x, φ(x)) = (x, f(x, φ(x))) = (x, f(x, y)) = (x, 0).

Let π2 : Rn × Rm → Rm, π2(x, y) = y. Then

U 3 (x, 0)

V 3 φ(x) (x, φ(x))

//
ψ

��

φ

oo π2

OO

F

Thus
φ(x) = (π2 ◦ F−1 ◦ ψ)(x)

is differentiable on U . Moreover, it’s continuous at a. From the inverse function theorem, we know that F ′(x) is
invertible on U × V ⇐⇒ ∂f

∂y (x, φ(x)) is invertible on U . As f(x, φ(x)) = 0, we can use the chain rule to get

∂f

∂x
(x, φ(x)) +

∂f

∂y
(x, φ(x))φ′(y) = 0 =⇒ φ′(x) = −

[
∂f

∂y
(x, φ(x))

]−1
◦ ∂f
∂x

(x, φ(x)).
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