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Exercise. Let f,g : [a,b] — R be continuous on [a, b] and differentiable on (a,b). Show that 3 zg € (a,b) such that

F(z0)(g(b) — g(a)) = g'(z0)(f(b) — f(a)).
Proof. Let h : [a,b] — R, h(z) = f(z)(9(b) — g(a)) — g(z)(f(b) — f(a)). Then h is continuous on [a,b] and
differentiable on (a,b). We have h( )= fla)g ( ) — g(a)f(b) and h(b) = —f(b)g(a) + g(b)f(a). Thus h(a) = h(b).
Therefore, by Rolle’s Theorem, 3 z¢ € (a,b) : h'(z) = 0. O

L’Hospital’s rule

Theorem. Let —o0o < a < b < o0 and f,g : (a,b) — R be differentiable. Assume ¢'(x) # 0V x € (a,b) and
iy o+ 7 Ewg =L € RU{zxo0}. Assume additionally that either of the following hold.

1. lim, o+ f(z) = limg_,q+ g(x) =0
2. lim, - g(x)] = o0
Then lim,,_, .+ Hz)
Remark. We can replace lim,_,,+ by lim,_,,, where zo € (a,b).

Proof. We will only prove the theorem for L € R. We will prove the following two claims
Claim. Y e > 0,3 61(e) >0:a<zx<a+d(e) = % <L+e

Claim. ¥V € > 0,3 d3(e) >0:a <z < a+da(c) = fgg >L—e

Combining the claims and taking d(e) = min {d1(¢€), d2(€)}, we get Ve > 0,3 d(e) > 0:a < x < a+ d(e) then

|£ gi —Ll<e.
Exercise. If L = —o0, prove the following variants of the first claim. Similarly with L = oo.

Claim. ¥V M > 0,36(M)>0:a<zx<a+6(M) = f§§§ <M.

Let’s prove claim 1. As ¢’ has the intermediate value property and ¢'(z) # 0V x € (a,b), we must have that
either ¢'(z) <0V z € (a,b) or ¢’(z) >0V x € (a,b). Assume WLOG that ¢'(z) <0V z € (a,b). This means g is
strictly decreasing on (a,b). In case 1, we must have g(x) <0V x € (a,b). In case 2, we must have

lim g(z) =00 = Fce€(a,b):g(x) >0V x < (a,c)

r—a™t

In both cases,
dce(ab):glx)#0V x € (a,c).

Fix € > 0. Then 3 6 > 0 such that if z € (a,a + §), then {;:Eg < L + ¢. Taking 0 even smaller (if necessary), we

have

for some z € (z,y). Then




e Consider case 1: lim,_,,+ f(z) = lim,_,,+ g(x) = 0. Let z — a™ to get

f(y) flz) = f(y)

o) ~ oo (@) —g(y)

which is claim 1.

<L+eVa<y<a+d,

e Consider case 2: lim,_,,+ g(z) = co. Because g is decreasing and positive on (a,a + §). we have

J@) 1) — £y o) — o) | S (W) NI
0@ @ —gw 9@ e Lt (1 g(x)> T @
As
i LW = EH99W) _ 55, fW =L+ 99W)
r—at g(x) g((E)

For a < z < a+min {4,8}, we get ﬁzg < L + €, which is claim 1.
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. sinxz . sinxz —sin0

lim = lim =cos0=1.
z—0 X z—0 r—0

. x3 . 3z . 6x .

lim — = lim = lim = lim —— =0.
00 2% 00 Q2T z—00 4e2% z—00 Q2%

. x3 . 32 . 6x

lim ——— = lim —— = lim - = —6.
z—=0s8inx —x z—=0cosr—1 z—0 —sinz

i L o 1
ol el g RS mee S im, ol
lim 2= = lim "= = lime = =e @
xTr—r00 xT—r 00 Tr— 00
1 . 1 . In (142x) . 2
hm (1+2x)= = hr% ew n(1422) _ plimeo =7 _ Jlima—o 555 — o2,
Tr—r

=L+e+

=€

fly) -

(L+e)g(y)

g9(z)

<eVze(a,a+i).

1-limg oo % -1

Definition. Let f: (a,b) — R and zg € (a,b). Assume f admits a derivatives of any order at xy. The series

) (g
Z ! n(; *O)(I — )"

n>0

is called the Taylor series for f at xy. For n > 1, we define the remainder

R Z f(k) CEo)k.

Taylor

Theorem. Fizn > 1 and let f : (a,b) = R be n times differentiable on (a,b).
€ (a,b) \ {zo},3 y between x and xq such that

In particular,

k=0
Proof. Fix x € (a,b) \ {zo}. Let M be the unique solution to
(k) M
Z f —z0)* + m(l’ — )"

Fiz x9 € (a,b).

Then fo

r any



Look at

f®) (z
o(t) = (&) 004 gy - My
k=0 ’
We have g(z) = g(xzg) =0For 1 <l <n-1,
f M n—
= O Z 1)...(k—l+1)(t—ac0)kl—Hn(n—l)...(n—l—kl)(t—xo) L

Then ¢®(z) = fO(20) — fP(z0) = 0. By Rolle’s theorem, 3 1 between x and xy such that ¢’(z;) = 0. As

g (o) = ¢'(x1) = O 3 22 between xy and 1 such that ¢’ (z2) = 0. After iterating, we get x,, between = and g

such that ¢(™ (z,,) = 0. But
g™ (x) = f(z,) — M.
O

Corollary. Let a > 0 and assume [ : (—a,a) — R is differentiable to any order on (—a,a). Assume also that f
and all its derivatives are uniformly bounded on (—a,a). Then

— f®(0) )
o m)OVxE( a,a).
k=0
Proof.
IM>0:|fM@)|<MVYn>0z¢e(—a,a).

By Taylor’s theorem,

for some y between 0 and z. Then

|Ry ()] §M% <ML — 0vVze (—a,a).

- n! n—oo

This shows that

(n)
fay =3 0

"V x € (—a,a).
n
n>0

Example. o f[:R—R, f(x)=e¢* For |z| < M,
[f ()] =[] < eM.

Thus

As M is aribtrary, this holds V = € R.
e f:R—=R,f(z)=cosz, |f™(x)] <1V n>0zecR.

—sinx Vn=4k+1
—cosx Vn=4k+2

(n) —
fe) sin x Vn=4k+3
cosx Vn=4k
Thus
-1 Vn=202k+1
7(0) = o2
1 YV n = 2(2k)

so f™)(0) = (—=1)™ then




Exercise. Find the Taylor expansion for sin z.

Theorem. For n > 1, let f, : [a,b] — R be continuous on [a,b] and differentiable on (a,b). Assume {f] }n>1
converges uniformly on (a,b) and assume {fn(x0)}n>1 converges at some xy € (a,b). Then {fn}n>1 converges
uniformly on [a,b] to some function f and

f(z) = lim f](x).

Remark.
i 400) = Jy i POy S0 l) g I g

Proof. Let € > 0. As {f} }n,>1 converges uniformly on (a,b),

/ €

3m(€) € N I3 (0) ~ S@)] < s ¥ mom = ma(e),w € (a.D).
As {fn(x0)}n>1 converges,
I ngle) € Nt [fu(zo) — finl(z0)] < % Y n,m > na(e), x € (a,b).

Let n(e) = max (n1(€), n2(€)). By the Mean Value Theorem, for z,y € [a,b], we have

[fn(@) = fm(@)] = [fn(y) = fm(@)] = (2 = »[f0(2) = £ (2)]

for some z between x,y. In particular, for n,m > nq(€), we have

[fn(@) = fr(2)] = [fu(y) — fm(y)] < (z —y)

2(b—a)

For n,m > n(e),y = o, € [a,b],

Fa(@) = Fun@)| < [Fa(@0) = Fon0)| + | (Fal@) = fn(@)) = (fulwo) = frnl@o)) | < 5+ 5 = €.

This shows {fy, }n>1 converges uniformly on [a,b]. Let f(x) = lim, o fn(z). Fix z € (a,b). For y € [a,b] \ {z},

define

gn(y): y—x y—x

Note
lim g,,(y) = f(x) and  lim g,(y) = g(y).

y—x n— oo

Recall that for n, m > ny(e) we have

fu(®) = fuly) . Jm(®) = fm(y)

Ty Ty <2(b_a)Vx,y€[a7b].
Let m — oo to get .
lgn(y) — g(y)| < 2W—a) Vy € la, b\ {z}.
Let L(x) = lim,,—, o f}, (). Letting m — oo in
! ! €
|fn(‘r) - fm(x)| < Q(b* a)a
we get
1i@) = L@)| £ 55 ¥ n 2 mo).
As

lim g,(y) = fl(x) = 35§>0:0< |z —y| <,

Yy—x



then c
l9n(y) — )] < 5.

For 0 < |y — z| < 6 and n > nq(e) we get

— L(z)| < g w(y) — f '(z) — L(z)| < ¢ . _
90) = L) < 196) =~ 90(w)] + louly) = Fo(@)] + Vo) ~ L@ < 5555 + 5+ 5570 = 5+ 7
This proves f is differentiable at x and

f'(z) = L(z) = lim f(x).

Integrability
Definition. 1. Let f : [a,b] — R be a bounded function. For S C [a, b] we write

M(f,S)=sup{f(z):2€S} and m(f,S)=inf{f(z): 2 € S}.
2. A partition P of [a,b] is a finite ordered subset of [a,b]. We write
P={a=ty<---<t,=0b}.

3. Given a partition P of [a,b] and f : [a,b] — R bounded, we define the upper Darboux sum of f associated
to P via

U(f,P)= En:M(f, [th—1,th]) (L — tr—1)

k=1

and the lower Darboux sum of f associated to P via

n
Zm folte—1,te]) (te — te—1)-
k=1

4. The upper Darboux integral of f is given by
U(f) =inf{U(f, P) : P partition on [a, b]}.
The lower Darboux integral of f is given by
L(f) = sup{L(f, P) : P partition on [a, b]}.
We will show L(f) < U(f).
Remark. Given f : [a,b] — R bounded and P = {a =ty < --- < t, = b} we have

m(f,[a,0])(b—a) Zm fila, o) (tk — ti—1) < L(f, P Zm folte—1, te]) (te — te-1)
k=1 k=1

n

Z (f [tr—1s te]) (b — te1) = Z (fla, b (tk — tr—1) = M(f, [a,b]) (b — a).

This shows L(f) e R,U(f) € R
Definition. Let f : [a,b] — R be bounded. If L(f) = U(f), we say that f is (Darboux) integrable and we write

1 f)=/ubf(w)dw



Example. e Let f:[a,b] = R given by

(1 fzeR\Q
f(x)_{o if 2 € Q.

Let P={a=1ty <--- <ty =>b}. Then
ZM Ifk 1,tk tk_tkl Ztk_tkl —b—azU(f):b—a
k=1

but

L(f, P) = m(f, [tkflatk])(tk — tkfl) =0 = L(f) =0.
k=1

As 0 # b — a we see that f is not integrable.

e Let f:[0,b] >R, f(z)=23and P={a=1ty<---<t, =>b}. Then

M(f, [t—1, t]) (b — thor) = }:%tk—ml

NE

U(f?P):

ol
Il
—

L(f, P) =>_ m(f, [te—1, ta]) (tr — tr—1) Ztk 1(te — te—1)-

Let tkng and 0 < k <n. Then

DK b b s s b (nn+1)) b b
— — —_——= — = — J— < —
v =Y == (M) o = vl
n E n—1 2
(k=13 4b b=, b (nn—1) bt bt
= - = = _ >
L(f, P) ; TIPSl S —— 1 — LH=7

Proposition. Let f : [a,b] = R be bounded and let P,Q be partitions of [a,b] : P C Q. Then

L(f,P) < L(f,Q) <U(f,Q) <U(f. P).

Proof. By induction, it suffices to prove the claim when ) contains exactly one more point than P. Say P = {a =
to< - <tp=bland Q={a=tyg < - <tp_1 <8<ty <...tp=>}for some 1<k <n. Then

L(f, P) = L(f,Q) = m(f, [tx—1, tx]) (tr — ta1) — [m(f, [tx—1,8]) (s — tx—1) + m(f, [s, t]) (tx — 5)]
<m(f, [te—1,te]) (s — to—1) — (s = tk—1) — (tx — 5)) = 0.

O

Corollary. Let f : [a,b] — R be bounded and let P,Q be partitions of [a,b]. Then L(f, P) <U(f,Q). In particular,
L(f)=U(f).
Proof. Let R =P UQ. Then
L(f,P) < L(f,R) <U(f,R) <U(f,Q)
= L(f) =sup{L(f, P) : P partition of [a,b]} < U(f,Q)
= L(f) <inf {U(f, Q) : @ partition of [a,b]} = U(f).

O

Theorem. Let f : [a,b] — R be bounded. Then f is Darboux integrable iff V € > 0,3 P partition of [a,b] such that
U(f,P)—L(f,P) <€



Proof. e 7 < 7" Let € > 0 and P be a partition of [a,b] such that U(f, P) — L(f, P) < €. Then
U(f) SU(f,P) <L(f,P) + e < L(f) +e
Let € = 0 to get U(f) < L(f). As L(f) < U(f) we get L(f) <U(f) = [ is integrable.
e 7 = 7 Assume f is integrable, then L(f) = U(f). Let € > 0.
L(f) = sup{L(f, P) : P partition of [a,b]} = 3 P, partition of [a,b] : L(f) —
U(f) =it {U(f, P) : P partition of [a,b]} = I P, partition of [a,b] : U(f) +
Set P = P, UP,. Then

U(f,P) = L(f, P) S U(S, Pa) = LS, P) S UG + 5 = (L) = 5 ) =«

Definition. Given a partition P = {a = tg < -+ < t,, = b}, the mesh of P is

mesh(P) = max. (tg — tr—1)-

Theorem. Let f : [a,b] = R be bounded. Then f is Darboux integrable iff V e > 0,3 6 > 0 such that
P={a=ty<---<t,=>0}:mesh(P)<dé = U(f,P)—L(f,P) <e.

Proof. e 7 <= 7 This follows from the previous theorem plus the observation that for any é > 0,3 P partition
of [a, b] with mesh(P) < 6.

e 7 — 7 Assume f is integrable, then
V€ > 0,3 P partition of [a,b] : U(f, P) — L(f, P) <e.
Let € > 0 and let
Py={a=s50 <+ < 8y = b} be a partition of [a,b] : U(f, Po) — L(f, Py) < e.
Let 6 > 0 to be chosen shortly and let
P={a=ty<---<t,=>b}:mesh(P) <.

As f is bounded,
IM>0:|f(x)]<MVaxEela,b].

Consider
U(f,P) = L(f,P)=U(f,P)=U(f, Po) + U(f, Po) — L(f, Po) + L(f, Po) — L(f, P).
Notice
L(f,Po) — L(f, P) < L(f,Q) — L(f, P)
and

Im(f, [tk—1, s1]) (st — th—1) + m(f, [s1, te]) (b — s1)—m(f, [tre—1, t]) (tk — tr—1)]
< M(s; — tkfl) + M(tk —s1) + Mt — tg—1) SQMmesh(P)
= L(f,Q)— L(f,P) < m2Mmesh(P).

A similar argument gives

Thus €

SmM’

U(f,P)—L(f,P)< % + 4mMmesh(P) < € provided § <



Definition. Let f : [a,b] = R be bounded and let P ={a =1ty <--- <t, = b}.
A Riemann sum of f associated to P is of the form

S = Zf Ytk — ti—1)

k=1

where x € [tg_1,tx] for 1 < k < n. We say that f is Riemann integrable if 3 r €¢ R : Ve > 0,36 > 0 :
|S —r| < € for any Riemann sum S associated to a partition P with mesh(P) < 6. In this case, r is called the
Riemann integral of f on [a,b] and we write
b
r= R/ f(z)dz

Theorem. Let f : [a,b] — R be bounded. Then f is Darbouz integrable iff it’s Riemann integrable, in which case
the two integrals agree.

Proof. We prove both ways separately.

e 7 — 7 Assume f is Darboux integrable. Let ¢ > 0. Let § > 0 such that if P is a partition of [a, b] with
mesh(P) < §, then U(f,P) — L(f,P) <e. Let P={a=1ty < --- <t, = b} with mesh(P) < 4. Let

S = Zn:f(l‘k)(tk —th—1)

k=1

for « € [tp_1,tx]. Then

L(f,P) < S<U(f,P).

But

U P) < P+ e L) 4e= [ fapda e
and ab

LU.P) > UULP) =2 U(f) —e= [ fa)do -
Thus a

IS — /abf(ﬁc)d;ﬂ <e = R/abf(x)dx = /ab f(x)dx

o 7 <= 7 Assume f is Riemann integrable and let

r:R/abf(:E)dx

Let € > 0. Then 3 § > 0 such that if P is a partition with mesh(P) < 4, then |S — r| < ¢ for all Riemann
sums S associated with P. Let P = {a =1t < --- < t, = b} : mesh(P) < . We want to show

U(f,P)— L(f,P) <e

Let xy € [tx—1,tx] such that
€

2(b—a)’

f(@r,) <m(f, [tk-1,tk]) +

Then

3

T_;<];f(xk)(tk_tk 1 kz:: m(f, [te— 1,tk)(tk—tk—1)+k 12(b_a)(tk—tk—1)
=LA P+ S L +5 = L) >r—e

Let y € [tk—1,tx] such that

f(yr,) > M(f, [tk—1,tx]) —



Then

r+s > ;ﬂykxtk —ti) >U(S,P) =5 2U(f) -5 = Ulf) <r+e

Let € — 0 to get that L(f) =U(f) =r.

Theorem. Let f : [a,b] — R be a monotonic function. Then [ is integrable.

Proof. Let e >0 and let P ={a=1ty <--- <t, =b}: mesh(P) < § for § to be chosen shortly. We want to show

U(f,P)—L(f,P) <e€
Assume, WLOG, that f is increasing. Then

U(f,p Z (f Tto—1, te]) — m(f, [tror, te]) (b — thor) = D (f( fti—1)) (tk — ti—1)
=1 k=1
<0 (f(te) = f(te—1)) = 6(f(b) — f(a)) <e,
k=1
provided
P
f(b) = f(a)
Exercise. Treat the case when f is constant.
Theorem. Let f : [a,b] — R be continuous. Then f is integrable.
Proof. Let € > 0. Let P={a =1ty < -+ <t, =0b}:mesh(P) < ¢ for § to be chosen shortly.
Uu(f,p =Y (M(f [th1st]) = m(f, (b1, te]) (b — tha)-
k=1
As f is continuous on [a,b] compact, f is uniformly continuous. So 3 ¢ > 0 such that
€
7@) ~ F)l < 7= Vay € b e —yl <6
For this 6 and P as above,
U(f,P)— <€Ztk_tk1
k=1
We have a strict inequality because f attains its sup and inf on [t;_1, tx]. O

Theorem. Let f,g: [a,b] — R be integrable and let o« € R. Then

/ (@) @)z = / ' fla)a
/ '+ a)(e)de = / ’ flaydr + / " @)z

1. af is integrable and

2. f+ g is integrable and



Proof. 1. If @ =0, this is clear. Assume o > 0. For S C [a, D], we have M (af,S) = aM(f,S) and m(af,S) =
am(f,S). For a partition P of [a,b], we have U(af, P) = aU(f, P) and L(af, P) = aL(f, P). Then

U(af) =inf {U(af, P) : P partition of [a,b]} = inf {aU(f, P) : P partition of [a,b]} = aU(f).

Similarly, L(af) = aL(f). Because f is integrable,

U(f) = L(f) = Ulaf) = L(af) —a/ fa

Assume o < 0. Then we have U(af, P) = aL(f,P) and L(af, P) = aU(f,P). Thus U(af) = aL(f) and
L(af) = aU(f). We conclude as before; because f is integrable,

U(f) = L(f) = Ulaf) = L(af) —a/ fa

2. Note that for a partition P of [a,b], we have
Ulf+9,P)<U(f,P)+U(g,P), L(f+g,P)=L(f P)+ Ly, P)
Let € > 0. As f is integrable,

3 Py partition of [a,b] : U(f, P1) — L(f, P1) <

[\D\mw‘m

3 P partition of [a,b] : U(g, P2) — L(g, P2) <
Let P = P, UP,. Then

This shows f + g is integrable. Moreover,
U(f+9) U +9.P) SU(S.P) + Ulg.P) < L(f.P) + 5 + L(g, P) +
b b
<L)+ Lo +e= [ fapdo s [ gla)do e
Similarly,
L(f +9) 2 L(f +9.P) 2 L(f. P) + L(9.P) > U(/.P) = 5 + U(g.P) 5
b b
>U(f)+U(g) —e= / f(a:)dx+/ g(x)dx —e.

o /f d:}:—i—/ (x)de —e < L(f+9) <U(f+g) < /f dac—&-/abg(a:)dm—ke.

Let € — 0 to get the result.

O

Lemma. Let f,g: [a,b] = R be integrable : f(x) < g(x) V = € [a,b]. Then

b b
/ fl@)dx < / g(z)dz.
Proof. Let h: [a,b] = R, h(z) = g(x) — f(x) integrable. Moreover,
b b b
L(h) = sup{L(h, P) : P partition of [a,b]} >0 = / (9 — flx)dx >0 = / flz)dr < / g(x)dx.

O

10



Theorem. Let f : [a,b] — R be integrable. Then |f| is integrable and

\ / " flayan] < / ' @)l

Proof. Let’s show |f]| is integrable. For S C [a, b],
M(|f],8) —m(|f],S) = sup [f ()| — inf | f(y)] = sup [f(x)]—|f(y)]
z€S yes z,y€S
< sup |f(z) = f(y)l = sup (f(x) = f(y)) = sup f(z) — inf f(y)
z,y€S z€S yeS

z,yes

:M(f75)—m(f,5)

If P is a partition of [a, b], then

U(lfl,P) = L(f], P) <U(f, P) = L(f, P)-

As f is integrable, given € > 0,
3 P partition of [a,b] : U(f, P) — L(f,P) <

Collecting both, we find that f is integrable. Moreover,

*|f|<f<|f|:>/ (—1f) (e dm</f d:c</(|f|)()

= /\f |dx</f d:r</|f |da::>|/f da:|</|f )|da.

Theorem. Assume f : [a,c] — R is a function and a < b < ¢ are such that f is integrable on [a,b] and f is
integrable on [b,c]. Then f is integrable on [a,c] and

/:f(x)dw _ /abf(x)d:v—&—/bcf(x)dx

Proof. Let € > 0. As f is integrable on [a, b],

O

3 Py partition of [a,b] : Ug(f, P — (f7 P < g
Similarly, as f is integrable on [b, ],
3 P, partition of [b,c] : Ug(f, P2) — Li(f, P2) < %

Let P = P; U P,. Then P is a partition of [a, ¢] and
Ug(f,P) = US(f7P1)+Ul)C(f7P2)u L;(f,P) :LZ(f7P1)+Lg(f7P2)
Thus US(f, P) — LS(f, P) < ¢, so f is integrable on [a, ¢|]. Moreover,

c b c
/ f(@)dz < US(F, P) = US(f, Pr) + US(f, Po) < LL(f, Pr) + LE(f, Py) + € < / f(@)de + /b f(@)da + e,

c b c
/ f(@)dz > LE(f, P) = LY (f. Py) + L{(f. P2) > UP(f, Py) + US(f, Pa) — € > / f(@)dz + / f(@)dz — e.

Let € — 0 to get the result. O

Definition. 1. A function f : [a,b] — R is piecewise continuous if there exists a partition P = {a = ¢y <
-+ <ty =b}: f is uniformly continuous on each (tx_1,tx).
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2. A function f : [a,b] — R is piecewise monotone if there exists a partition P ={a =ty <--- <t, =b}: f
is monotone on each (t;_1,t).

Theorem. Let f : [a,b] = R be either piecewise continuous or bounded piecewise monotone. Then f is integrable
on [a,b].

Proof. Let P = {a =ty < --- = b} : either f is uniformly continuous on (tx_1,tx) or f is monotone on
(tk—1,tk)-

e If f is uniformly continuous on (tx_1,¢x), then f admits a continuous extension to [tx_1,tr]. Let’s call this
extension fr. Then f is integrable on [tr_1, tg].

e If f is monotone on (tx_1,tx), say it’s increasing, then extend if to a function fi : [tx—1,tx] — R via

Jr(th—1) = t\illtlkfil f(t),  fulte) = tb}lf f(@).

As fi is monotone on [tg_1,tk], fi is integrable on [tx_1, tg].

In either case, f is integrable on [tx_1,tx]. As

f|(tk_1,tk) = fk:‘(tk_l,tk)a

f is integrable on [tx_1,tx]. By the previous theorem,

b
/f( dx—zt f(x)dx

O
Intermediate value theorem for integrals
Theorem. Let f : [a,b] — R be continuous. Then
Fag €la,b]: f — a/ flx
Proof. As f is continuous on [a, b],
Ja,B€(ab]:f(a) = inf f(z)<flx)< sup f(z)=f(B)VaElab]
z€[a,b] z€[a,b]
b b b
— j@)b-a) = [ f@tr< [ f@r< [ f@) = 13)0-a)
1 Z a a
— (o) < 7= [ 1@ < 1(5)
As f is continuous, it has the intermediate value property. Thus
b
320 € o8] f(oo) = = [ Sl
O

Definition. We say that a function f : (a,b) — R is integrable on [a, b] if every extension of f to [a,b] is integrable
on [a,b]. In this case, the value of fab f(z)dz does not depend on the values of the extensions at the points a and b.

Theorem. Let f : [a,b] = R be continuous on [a,b] and differentiable on (a,b). If ' is integrable on [a,b], then

b
/ f(2)dz = f(b) - (a).

12



Proof. Let € > 0. As f' is integrable on [a, b],
J partition P ={a =ty < - <t, =b}: U(f',P)— L(f',P) <e.
On one hand,
L(f',P) < / ' @)z < U(F.P) < L(7.P) 4 <. 1)

On the other hand, we will show that f(b) — f(a) is the value of the Riemann sum S associated to the partition P.
Then
L(f',P) < S=f(b) = fla) U(f",P) < L(f, P) + e (2)

Collecting (1) and (2), we get
b
| #@ie = (50) - 1(@) \ < 2.

Let € — 0 to get the claim. Notice

By the Mean Value Theorem,
f(tk) — f(tr—1)

V1<k<n,Ixzp€ (tp_1,tx): = f'(zp)-
e —tp—1
Then .
f(b) = fla) = Zf/(xk)(tk —tk-1),
k=1
which is a Riemann sum associated to P. O

Integration by parts

Theorem. Let f,g : [a,b] — R be continuous on [a,b] and differentiable on (a,b) such that f', g’ are Riemann
integrable on [a,b]. Then

b b
/ f'(@)g(x)da +/ f(@)g (x)dx = f(b)g(b) — f(a)g(a).
Proof. Let h: [a,b] = R, h(z) = f(x)g(x). Then h is continuous on [a, b], differentiable on (a,b). For z € (a,b),
h(z) = f'(z)g(x) + f(x)g'(z)
is integrable on [a, b] since products and sums of Riemann integrable functions are integrable. Then
b b b b
[ @+ [ f@)g@is = [ 17/ @go)+ )y @lde = [ H(@)ds =) - bia) = (F9)(B) - (f9)(a).

O

Theorem. Let f : [a,b] — R be Riemann integrable and define F : [a,b] — R via

F(z) = / f(t)dt.
Then F is continuous on [a,b]. Moreover, if f is continuous at some xg € (a,b), then F is differentiable at xo and

F'(20) = f(w0).

13



Proof. As f is Riemann integrable,
IM>0:|f(zx)| <MV xEla,b]

- [[rwa= [" s [ soan
/yl f(t)dt = —/: f(t)dt

@) - Pl <| [ @l < s~y

Let x,y € [a, b], then
with the convention that if z < y, then
Then on [a, D],

Thus F is uniformly continuous. Assume f is continuous at some zg € (a,b). For = € [a,b] \ {0},

F(z) — F(x0)

1 * 1 ¥ 1 £
g = o [ 2 [ o= 2 g -

As f is continuous at zg, given € > 0,

36>0:|f(t)— flzo)| <eViEe]ab]:|t—xzo| <.

Then for z € [a,b] \ {z0} : |z — 0| < J, we have

F(z) - F 1 ¢
F@) = Fwo) _ 4,0y ‘_ / 1f(£) — flao)ldt < /edt:e.
T — Zo — Zo T =20 Jgq
This proves F is differentiable at 2y and F'(z¢) = f(xo). O

Change of variables

Theorem. Let J C R be an open interval and let u : J — R be differentiable with v’ continuous. Let I C R be an
open interval such that I O u(J) and let f: I — R be a continuous function. Then fowu:J — R is a continuous
function and

b u(b)
/ (f ow)(2)u/ (x)dx = / f(x)dr ¥ a,b € J.
a u(a)

0= [ s

As f is continuous, F is differentiable and F'(z) = f(x) Vx € I. Let g = F ou : J — R differentiable and

g'(x) = F'(u(z)u'(x) = (f o u)(x)u'(x)

continuous on J and so integrable on any [a,b] C J. Then

Proof. Pick ¢ € I and define

b b u(b) u(a) u(b)
/ (f ou) (@) (x)dx = / ¢ (@)dz = g(b) — g(a) = F(u(b)) - F(u(a) = / F(t)dt— / F(t)dt = / f(t)dt.

Theorem. Let f, : [a.b] = R be Riemann integrable functions. Assume {fn,}n>1 converges uniformly on [a,b] to
a function f. Then f is Riemann integrable and

b b
f(x)dr = lim [ fo(z)dx

n—0o0

14



Proof. Let dy, = sup,e (o |fu(@) — f(2)], then

fo —— f = d, ~—+O:>fn()

n—oo

If S C [a,b], then

dp, < f(z) < fulz)+d, ¥V € [a,b].

M(fn,S) —dn < M(f,S) < M(fn,S) +dn, m(fn,S) —dn <m(f,S) <m(fn,S)+dn.
For P a partition of [a, b], we have
U(fn; P) = dn(b—a) SU(f,P) SU(fn, P) + dn(b—a), L(fn, P)—dn(b—a) < L(f,P) < L(fn, P) + dn(b — a).
Then
U(f,P) —L(f,P) < U(fnap) _L(fn,P) +2dn(b_a)

Let € > 0. Let c

neeNdn<mVnZne
Fix n > n.. Let .
Thus

U(f,P)—L(f,P) <€

and f is integrable. Then

/bf(fv)dx SU(SP) S U(fun P+ dnlb = a) < L(fus P) + 5 +du(b—a) < /bf( do+

for n > n. fixed and P as above. Now

b
/ f@)dz > L(f, P) > L(fa, P) -

Thus . .
f(x)dw—/ fn(x)dz

Definition. We say that a set A C R has zero content if V € > 0, there exists a sequence of open sets {(a,

dn(b_ a) > U(fnvp) -

3e

4

n(b—a) /f dac——

3e

< —.

!
O
bn)}nZl

such that
AC [ (@nbn), D (b —an) <e.
n>1 n>1
Remark. 1. If A has zero content and B C A, then B has zero content.

2. If A is at most countable, then A has zero content. Indeed, write A = {a1,...

€
ACU 2n+1’ "+2n+1)

n>1

} and let € > 0. Then

€

on
n>1

= €.

3. If we have a sequence of sets {A,,},>1 such that for all n > 1, 4,, has zero content, then U,>1 4, has zero

content. Let € > 0. Then Vm > 1,

El{(n7n)}n>1 A CU n7n’ Z(bzl_azl)<

n>1

Thus

Janc UG

m>1 m,n>1

PINC

m,n>1
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Lebesgue criterion of Riemann integrability

Theorem. A function f : [a,b] — R is Riemann integrable iff it’s bounded and {x € [a,b] : f is discontinuous at x}
has zero content.
Proof. We prove both ways separately.

7

e 7 — 7 It suffices to show

1
{z € [a,b] : f is discontinuous at z} = {z € [a,b] : w(f,z) >0} = U {z € a,b] : w(f,z) > E}
n>1
has zero content. Then it suffices to show that V n > 1,
1
F, ={x €[a,b]: w(f,x) > ﬁ}
has zero content. Fix N > 1. As f is Riemann integrable,
€
IP={a=ty< - <t,=0b}:U(f, )
fo=to < <ta=b}:U(SP) = L(J,P) < 5oz
Let
I'={ke(l,...,n): (tr—r,tx) N Fy # 0}.
Then
Fy € |Jth-1.tx) UP.
kel
As P is finite, it has zero content. Thus it suffices to control », _;(tx—1,%). Note that for k € I,
1

w(f, [te—1,te]) 2 -

Then
- 1
ﬁ >U(f,P = wf, v, ) (th-1, ) = D> w(f [, ta]) (tro1, te) > NZ(tk—lytk)-
k=1 kel kel
Thus
€
> (tro1,te) < 5
kel
° ” : 2

fbounded = IM >0:|f(z)|]<MVzxEeE]a,b]
Let € > 0. Let > 0,4 > 0 to be chosen shortly. We know

{z € la,b] : w(f,z) >0}
has zero content. Thus
F, = {1’6 [avb] 1’(U(f,’1,’) > a}
has zero content and F,, U {a, b} has zero content. Thus 3 {(ay,,b,)}n>1 such that
FoU{a,b} € | J(an.bn), D (bn —an) <4.

n>1 n>1

Then
w(f,z) <aVaxe(ab)\Fy, = 3¢, dy:w(f,[cz,ds]) <

and

[a,b] = (Fo U{a,b}) U ((a,b) \ Fy) C U (Gn,bn) U U (cz,dy) open cover of compact [a, b].
n>1 z€(a,b)\ Fa
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Thus 3 ng > 1 and J C (a,b) \ F, finite such that

[a,8] € | (an:bn) U | (car do)
n=1 zeJ

Let P be a partition of [a,b] consisting of the points in

U{an,b Hu U{cw,d }

xeJ

that belong to [a,b]. Write P = {a =tg < --- < ¢, = b}. Note that V 1 < k < n we have either

[tk—1,tk] C [@m,bm] for some 1 < m < ng

or
[tk—1,tk] C [cs,dz] for some z € J.
Let
L ={1<k<n:[tg_1,tk] C [am,bn] for some 1 <m <ng}, Io={1,...,n}\ ;.
Then
U(f.P) = L(f.P) = > [M(f, [te—1, tx]) — m(f, [tromr, tx])] (b — ti1)
kel
+ 3 M, [ty ta]) = m(f, [t )] (B — ti-1)
kels
<S2M > (b —tre1) + > wlf, [tror te]) (tr — te1)
kel kely
S2M Y (b — am) + @Y (tk —teo1) < 2M6 + a(b—a) <,
m>1 k=1
provided
< € , a< €
AM +1 2(b — a)

Multivariable functions

Definition. Let G € R™ be open and let f : G — R" be a function. Let a € G. Then for a unit vector
u € R™ (||ul| = 1), the function
Rot—a+tueR?

is continuous. Then
A, ={teR:a+tue G}

is open. Note 0 € A,,, thus it contains an open interval centered at ¢ = 0.

e We say the function f is differentiable at a in the direction u if
o Fat 1) = /(@)
t—0 t

exists. In this case, we denote the derivative of f at a in the direction of u by

(Duf)(a).
If f is differentiable in the direction of u at every point in G, we denote the derivative of f in the direction
of u by
D,f:G—R".

17



e Let GopeninR™,a € G, f: G — R™. Let {ey, ..., e,} denote the canonical vectors in R™. If f is differentiable
at a in the direction of e;, then we denote the derivative of f at a in the direction of e;, (D, f)(a), by

0
L@
and we call it the partial derivative of f at a with respect to x;.
Remark. e The notation a%(a) comes from the following observation.
(Do, f)(a) = }5% fla+ tez) — f(a) _ w}g}l? flat,...,a;—1, T, 0541, - - - 7a;2 : i(al, Qi1 Ay Qg 1y - -+ Oy
So (De, f)(a) exists iff the function
R>ox; = fla,...,¢i-1,%i, i1, ..., 0n) € R”

is differentiable at a;.

e Let G open in R",a € G, f : G — R™. Write f = (f1,..., fm) where each f; : G — R. Note that (D, f)(a)
exists (||ulla = 1) iff (D, fr)(a) exist V 1 < k < n. In this case,

(Duf)(a) = (Dufi)(@), ..., (Dufm)(a)).

Similarly, f admits partial derivatives at a iff each f; admits partial derivatives at a. We write the matrix of
partial derivatives

o o
ani(a) agfi (a)
Ofun ( Ofm
a%(a) %ﬂ(a)

Definition. A transformation 7' : R® — R" is a linear transformation if
T(ax +by) =aT(z) + 0T (y) ¥V a,b € R,z,y € R™.

Recall T is represented by multiplication by an m x n matrix [T]. Indeed, the j** column of [T7] is T., € R™. For
q = (u1,...,u,) € R™,

T(W) = Xn: wT., = [T .
i=1

Let G € R™ be open and let a € G. A function f : G — R™ is differentiable at a if there exists a linear transformation

T :R™ — R™ such that
o £@) = fa) = T —a)

T—a |z — all

=0.

Remark. A linear transformation 7": R™ — R™ satisfying the previous equation is unique and is denoted by f’(a).
Let’s assume T, T : R™ — R™ are linear transformations satisfying the previous equation. Then

lim T(x—a)—T(z—a)

—a ||z — ]

=0.

We want to show 7' = T. Clearly, T(0) = T(0) = 0. Let y € R™\ {0}. Since a € G open, 37 > 0 : B,(a) C G.
Choose t > 0 : t||y|| < r. Then x = a+ ty € B, (a). Thus
T(x—a)—T(x—a) T(ty)—T(ty) 1 - -
0 = =Ty -T(y)] = T(y) =T(y).
e el T T

Example. Let A = {(z,y) € R®,z > 0,0 <y < 2?}. Let f: A = R% f=0. For A € R, let T, : R? —
R, T\ (x,y) = Ay, a linear transformation. For (z,y) € A\ {(0,0)},
f(w,y)—f(O,O)—TA((x,y)—(O,O)) _ |_)‘y| < |>‘||y‘ < ‘)\|£L’2

[I(z,y) = (0,0)]] VB2 T Ry T VP +y

This example shows that the transformation 7T is the previous equation need not be unique if the point a doesn’t
belong to the interior of G.

_ < \llz]
(z,y)—(0,0)
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Definition. Let T : R™ : R™ be a linear transformation. Then the norm of T is given by |[|T'|| = supj =1 ||Tz[|-
Note for z € R™\ {0},
x

Wl = 2l TG < el 1T

||

Remark. e Let G open CR™ a € G, f: G— R" be differentiable at a. Let

f@)—f(a)—f'(a)(z—a)
ef(z) = { [z—all z#a

0 T =a.
Note f is differentiable at a iff € is continuous at a. Write
f@) = fa) + f'(a)(z — a) + ef(2)[|x — al|.
Then
1 (@) = f(@)l] < [1f(a)(@ = a)l| + lles @] |z = al| < |IF' (@)l [l& = all +[lef ()] |z — al| — 0.
This shows f is continuous at a.
e Let T : R™ — R™ be a linear transformation. Then V a € R™, T is differentiable at a and T"(a) = T'. Indeed,

T(x)—T(a) —T(x—
||z =l

9 _0veeRn

Theorem. Let G open O Rya € G, f : G — R™ be differentiable at a. Then for any unit vector u € R", f is
differentiable at a in the direction of u and (D, f)(a) = f'(a)u. In particular, letting u € {e1,...,en}, we deduce
that the partial derivative of f exists and

of

2L (0) = F'(a)e
This is the i'" column in the matriz representing f'(a). This shows that the matriz representing f'(a) is the matriz
of partial derivatives wr wrote before. Moreover, if u = (uy,...,u,) € R™, then

n n 8
fla)u= f(a) Zuiei = Zula%(a)
i=1 i=1 v

Proof. Let u € R™ be a unit vector. Then

With = a + tu, use

lim =0.
iy ol
We get
o flattu) — fla) = fla)(tu) . fla+tu) — fa) —tf'(a)u o
0= fim TN = ] — (Duf)@) = fla)u.

O

Exercise. Assume G C R"™ is open and the functions f,g : G — R™ h : G — R are differentiable at some a € G.
Then

1. f + g is differentiable at a and
(f +9)(a) = f'(a) + g'(a).

2. f,g: G — R™ is differentiable at a and
(f1)'(a)(u) = h(a) f'(a)u + f(a)h'(a)u.
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Proposition. Let G open C R™, D open C R™. Assume f : G — D is differentiable at some a € G and that
g: D — RF is differentiable at f(a) =b. Then go f : G — R¥ is differentiable at a and

(go f)(a) =g'(f(a))o f'(a)
is a linear transformation from R™ to RF.

Proof. Recall that f is differentiable at a iff

F(@)=f(a)=f"(a)(z—a)
ef(r) = {O Te—all zfz

is continuous at a and ¢ is differentiable at b = f(a) iff

9(y)—g(b)—g' (b)(y—b)
. y#Fb
eo(y) = { [ly—0l]

y—

0 y=>b.

is continuous at b. Write
f(@) = fa) + f'(a)(z — a) + €4 (2) ]|z — al|
on B,(a) C G, and
9(y) = g(b) + g'(0)(y — b) + €4 (y)lly — bl

on B,(b) C D. As £ is continuous at a, choosing r sufficiently small, we have
f(Br(a)) € B,(b).
Let y = f(z) for z € By(a) to get
9(f(2)) = 9(f(a)) + ¢'(f(a))[f(z) = f(a)] + &(f(2)) - || f'(a) (@ — a) + s () - ||z — al[|].
For = # a,

9(f(x)) — 9(f(a)) = (¢'(f(a)) o f'(a)) (x — a)

||z — al|

& (f(@)) - ||f'(@) (@ — a) + () - ]z — all||

|lz = all

~ §(f@)es (@) +

We want to show RHS —— 0. For the first term,
r—a

llg'(f(@))es @)l < llg'(f (@Dl lles(@)]] —=0

by continuity of €y at x = a. For the second term,

e, (f()) ||£'(a)(z — a)|;r_€2(|x) o — all]| H < Jle, (F(@))]] " (@] |l — ﬁ!t |C|L|6|f(ir)| |z — ]
< leg (FNIT 1 ()] + [lep(@)I]) -
Notice
lleg (FI| ——= lleg(f(a))]| = O,
and the other terms are finite. O

Remark. There is no mean value theorem in higher dimensions.

Example. Let f: R — R? ~ C, f(x) = ® = cosx + isinxz. Clearly,
f(0)=f(2m) = 1.

But we have
f/(x) = —sinz+icosz = [|f'(2)]|=1#40VxeR.
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Lagrange inequality
Proposition. Let G open C R™ and let a,b € G such that
[a, b)) ={(1 —t)a+tb:t€[0,1]} CG.
Assume f: G — R™ is continuous at every point on [a,b] and differentiable at every point on (a,b) = [a, ]\ {a, b}.
Then 3 xg € (a,b) such that
1£(®) = f(@)l] < |1 (zo)l| ||b— al|
Proof. Let ¢ : [0,1] — R be defined as
o(t) = (f((A = t)a+tb), f(b) — f(a)) = fla+t(b—a))-[f(b) — fla)] = Zfi(a +t(b—a)) - [fi(b) = fi(a)],
where f = (f1,...,fm). So ¢ is continuous on [0,1] and differentiable on (0,1). By the mean-value theorem,
Ftp € (0,1) : ¢(1) — ¢(0) = ¢'(t9). Then
¢(1) = #(0) = (f(b), f(b) = f(a)) = (f(a), f(b) = f(a)) = (f(b) — f(a), f(b) = f(a)) =||f(b) — fla)|*.
For t € (0,1),
6" ()] = [(f(a+t(b—a))(b—a), f(b) = fla))| < [If'(a+t(b—a))b—a)ll|lf()— fla)ll
< |1f (a+t®—a)ll 11— a)ll I£(b) = f(a)ll-
We have

(1) = (O)[| = (16" (to)ll,  1|£ () = (@) < I (a+to(b—a)|| |[b—all [|£(b) = F(a)|l-
Let 9 = a +to(b—a) € (a,b). O

Corollary. Assume G is open, connected subset of R™. Assume f : G — R"™ is differentiable and f' =0 on G.
Then f is constant on G.

Proof. Let a,x € G and let

N
La,w = U [J?k, mk:-‘,—l]
k=1

be a polygonal path on G connecting a and x. Applying the Lagrange inequality on each [xg,2gy1], we find
&k € (vk, Try1) such that

1 @rgr = fle)l] < L EI k-1 — k]| = 0.
This shows f(z) = f(a). O

Theorem. Let f :[0,1] — R™ be continuous and such that there exists a set A C [0, 1] which is at most countable
such that f is differentiable on (0,1) \ A. Then

F @) = fOI < sup |If"(2)]]-

z€(0,1)\A

Proof. Let € > 0 and

M= sup [[f'(z)]
z€(0,1)\ A

We want to show
1£(1) = f(O)]] < M + 2.

Assume A = {ay, ...} is countable. Let {¢,},>1 C (0,00) such that

Zen<e.

n>1
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Let
B={te0,1]:[[f(s) = fO)|| <es+Ms+ Y e VO<s<th

arp<s

Clearly,
0e B,te B = [0,t] C B.

Thus B is an interval and 3 b € [0, 1] such that
[0,b) € B C[0,b].

Claim. b € B, i.e. B is closed in [0,1].

As f is continuous at b,
b) — f(0)|| =1 t)— f0)]| <l t+ Mt + <eb+ Mb+ . =— beB.
170) = SOl = Lim [[£(2) — F(O)]] < limn (e %Z<t€k) <e a;bq

Claim. b= 1.

Assume, towards a contradiction, that b < 1.

1. Assume b € A, then
dng>1:b=ap,.

As f is continuous at b,
Jb<e<1:||f(t) — fB)|] < €ny Yt E[b,C]

By the triangle inequality, for ¢ € [b, ¢] we have

I1f (@) = FO) < [1f() = fFOI + [[£(b) = FO)]]
< €p, +€b+ Z € = eb+ Mb+ Z e < et + Mt + Zek.

ap<b ar<b ar<t
So [b,¢] C B, contradiction.
2. Assume b ¢ A. As f is differentiable at b,
f@) = f(b) = f'(0)(t — b)

i b =0
Then
Ib<c<1:||f(t)— f(b)— f'(b)(t—D)|| <e(t,b) VtelbC]
and

1F (&) — FO)] < et —b) +[If' B —b) < e(t —b) + M(t—b).
By the triangle inequality, for ¢ € [b, c],

LF@) = FO < 1) = fFOI+ [[£(B) — fO)]
Se(t—b)+ME—b)+eb+Mb+ > e <et+ M+ e

ap<b ap <t
So [b, ¢] C B, contradiction.
O

Definition. Let G open O R™. Then f : G — R™ is said to be continuously differentiable on G if f is
differentiable on G and the derivative f’ : G — L(R™,R™) (the space of linear transformations) is continuous on
G. In this case, we say f is of class C’ on G and write f € C'(G).

Theorem. Let G open O R™ and let f : G — R™ be a function. Then f € C'(G) iff the partial derivatives 867’;
exist on G for all 1 < j < n and are continuous on G.

Proof. We prove both ways separately.
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e’ — "Fixae(G. Let e >0. As f € C'(G),
Jr>0:|f(z)— f(a)]| <eVzeB.(a) CG.

Recall 5
i%J;(a) = f'(a)e; V1< j<n.

Then

of
(91']‘

() - gf“H = I (@)e; — F'(@)esll = (£ (x) ~ £/(@))esl]

< |If' (@) = f(@)ll [lejll < €V a € Bya), 1 <j <n.

o7 < 7" Fixa € G. Take ¢ > 0. For 1 < j < n fixed, as % is continuous at a, we know
]

of of €
>0 || =2 (2) — =& = (a) CG.
Jr; >0 ‘8%(36) axj(a)H<an€Brj(a)_G
Let r = minlgjgn Tj. Then
of of € :
_J _ — <7< n.
'axj(a:) amj(a)H<nVJceBr(a),l_j_n
Let
T= [%(a) %(a).]
This is an m X n matrix. We want to show f’(a) = T. Notice
n af
f(@) = fla) = Tz = a) = f(z) = f(a) = >_ "(a)(x; — a;)
j=1 """
0
= f(a1,...,2n) — fla1,...,Tpn) — a—g{l(a)(xl —ay)
of
+ f(ah s ,.’L’n) - f(a17a27 s ,.’L’n) - T(a)(xQ - az)
)
+ ...
0
+ flat, ..y an_1,2n) — flar,...,an) — a—f(a)(xn — an).
T
For every 1 < i < n, consider the map ¢;(t) given by
0
t— f(al, Ce ,ai_l,t,xiﬂ, A ,’I}n) — aq‘:t
¢; is continuous on [a, z] and differentiable on (a, x), with derivative
0 0
¢;(t) = ai (al, SPN ,ai_l,t,xiH, ey Z‘n) — 85; (a)

By the Lagrange inequality,
3& € (ai, @)  [|di(m) — dila)l] < [165(&)]] i — ail.
Then
of

€ €
[f(ar, ... aim1, i an) = flar, .o ai, @i, oo, 20) — 8m»(a)(zi —a;)l < ﬁ|=’ri —ail| < g”ﬂffa”-
7

This gives
1f(z) = fla) = T(z = a)|| < €|l —a]| V = € B,(a).
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By definition, f is differentiable at a and f’(a) = T'. For z € B,(a) and any n € R™\ 0,

1 1
3 3
" Of af € - 9 - 9 €
<Yl @) = g @il < 5 (| [ 0] < ol
Jj=1 Jj=1 Jj=1
Then .
If'(z) = f(@)l| = sup [|[(f'(z) — f'(a))ul]| < —= V = € B,(a).
=1 Vin
O
Lemma. Assume A is an n X n invertible matriz and assume that B is another n X n matriz such that
a=|A-B[ A7 <1.
Then B is invertible.
Proof. B is invertible iff ker B = 0. By the triangle inequality,
|l = [|A~" Az|| = ||A~'[(A — B)z + Bal]|
<A (1A = B)z|| + ||Bxl]) < [|A7Y| (1A = BI| |lz|| + | Bz||) = all|| + || Bx]| [[A"]].
Hhen (1 - )]
—a)llz
1 <||Buz|l.
1A=
If 2 € ker B, then Bz = 0. Then x = 0, so kerB = {0}. O

Contraction mapping

Theorem. Assume (X,d) is a complete metric space and that ¢ : X — X is a contraction, that is,
d(o(z),0(y)) < ad(z,y) ¥V z,y € X, and some fized o € (0, 1).

Then ¢ admits a unique fixed point, that is,

ANz € X : Pp(xg) = xo.

Inverse function

Theorem. Let G be open in R™ and assume f : G — R™ is differentiable on G with f' : G — L(R™,R"™) continuous
at a € G and f'(a) invertible. Then there exists open sets U,V in R™ such that

acU, fla)eV, V=fU), f[f:U=YV isbijective,

and the inverse
g=lv) VU

is differentiable on V' with the derivative continuous at f(a).

Proof. Set
T=(f'(a)"

Since f’ is continuous at a,

Jr>0:||f(x)— fl(a)]] < ﬁVmEBT(a) cG.
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By the Lemma, this implies that f’'(z) is invertible for all z € B,(a). Let U = B,(a) and V = f(U). Let’s first show
that f : U — V is bijective. As it’s clearly surjective, it suffices to check injectivity. Use the Lagrange inequality
for the map h given by

Uszw f(x)— f'(a)z € R™.

For z,y € U,
FEE (z,y) :|[h(x) = R < WO Nz =yl = 1) = f(a)ll [z —yl| < ﬁ\lx—yw

On the other hand,

Then

1 () = f(y) = f(a)(z —y)l| < llz —yl|

L
2(|T|
= ||IT[f(z) = fy) = [ @z =l < |7 [If(x) = f(y) = f'(a)(z = y)|| < %le —yll
= |[T[f(z) = fW)] = (z = ]ll < lllx —yl|[Va,yel.
By the triangle inequality,

llz = yll < [ITLf (x) = S + T () = fFW)] = (@ =)l < T [ (=) = f(»)ll + %le*yll
= [[f(z) = f)ll =

1
|z —yll V 2,y € U.
2|/l

This shows f is injective on U. Next, let’s show V = f(U) is open. Let yo € V, then
Jao€U: f(zo) = yo-

Let p > 0 such that
Bp(xo) Q U.

Note B,(x¢) is a complete metric space when endowed with the Euclidean distance on R™. We will show V' is open,
ie.
B_»_(yo) CV.

21T

Let ye B - (yo). We want to find

2[]

xr1 € U : f(:L'l) =Y1.
Consider the map ¢ given by

By(zo) 2z x4+ T(y1 — f(x)).

We want to prove

1. gb : BP(LC()) — BP(LEQ),

2. ¢ is a contraction on B,(x).

If both hold, then ¢ has a unique fixed point z; € B,(x¢) C U, and

d(x1) =21 <= T(y1 — f(21)) =0 <= f(x1) =v.

We will check both hold. For z,y € B,(x¢) C U,

16(2) = 6(w)1| = ll(w = 9) = T(f(@) = S| < 21l — ]l

Thus ¢ is a contraction on B,(zo). On the other hand,

(o) — oll = IT3n — Fo)I| < I lys —voll < I1TlI gy <

(VS
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By the triangle inequality, for = € B,(z(), we have

162) = 2ol < l19(2) — $(zo)ll +116(z0) — woll < 5lle —zoll +5 < 2+ £=p = () € By(aw).

NI

We are left to show that .
g=(flv) :V=U

is differentiable on V' with ¢’ continuous at f(a). Let y € V,y + k € V. Then

JzeUaxz+helU: fx)=y,flx+h)=9g+k.

Then
gy +k) —gy) —[f' @] y+k—y) a+h—a—[f@)  fl@+h) - flz)
||I] 1|
_ @I f @+ h) = f(@) = f'(@)h] [IR]]
||A]] |I%Il
Recall that
1

K[ = lly + & = yll = [|If(z +h) f(2)]| < Al == [IAll < 2T [IF]-

2||T|
So
0.

llg(y + &) — g(y) = [f'(=)] k| =1y e W@ R) — f@) = f@)hl]

This shows ¢ is differentiable at y and
g =@ =gy~

Continuity at f(a) follows from f’ continuous at a and g continuous at f(a).

Partial derivatives in higher dimensions
Definition. Let G C R™ x R™ and let f : G — R™ be a function. Assume
f(zo,y0) = 0 for some xg,yo € G.

We want to find

1. open sets U € R™, V € R™ such that
xg € U,yo € V.

2. a unique function ¢ : U — V such that
(x,y) €U x V.
We know f(x,y) =0 and y = f(z) are equivalent and define y, respectively, implicitly and explicitly.

o Let
Ggy ={y € R™: (x0,y) € G}.

If the function
Gz 2y f(wo,y) €R™

is differentiable at yy, we denote its derivative by

0
%(any0>

and we call it the partial derivative of f with respect to y at (z¢,yo). Clearly,

0
aiz(z(by()) :R™ = R™

is a linear transformation.
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o Let
Gy, = {x € R" : (z,9) € G}.

If the function
Gy, > x — f(z,y0) € R"

is differentiable at zy, we denote its derivative by

0
87;];(1‘07 yo)

and we call it the partial derivative of f with respect to x at (xg,y). Clearly,

0
%(Qio,yo) :R" - R"

is a linear transformation.

Implicit function

Theorem. Let G C R"XR™ and let f : G — R™ be differentiable on G with f continuous at some point (a,b) € G.
Assume f(a,b) =0 and g—i(a, b) is invertible. Then there exists open sets U € R™,V € R™ such that

acUbeV, UxVCG WN¢p:U—=V:(r,y) eUxV = f(z,y) =0 < y=¢(x).
Moreover, we can choose U,V such that ¢ is differentiable on U with ¢' continuous at a and

o) =~ (o)) o L@ ot)

Proof. Let F': G — R™ x R™ given by
F(z,y) = (z, f(z,y)).

By hypothesis, F is differentiable on G with F’ continuous at (a,b). In fact,

/ = 1|Rn !
F'(x,y) = {gi(x,y) ggu,y)} '

Note that
F'(z,y) is invertible <= ker(F'(x,y)) = {0} C R™*"™.
Let (u,v) € R™ x R™ such that
F'(z,y)(u,v) = 0.
Then
u of

F'(z,y)(u,v) = | of of =[0] = u=0, om

ax (@ y)u+ 55 (@, y)v (r,y)v=0 = v=0

and
F'(z,y) is invertible <= ker(F'(z,y)) = {0} C R"*™

(z,y)) ={0} CR" «—= g(x,y) is invertible.

< ker( of By

dy
As g—i(m b) is invertible, F’(a,b) is invertible. By the inverse function theorem, 3 Wy O G open such that
(a,b) € Wy, F(Wy) =Dy open CR" x R™.

The function F' : Wy — Dy is bijective and its inverse (F \WO)*1 is differentiable on Dy with continuous derivative
and

F(a,b) = (a, f(a,b)) = (a,0).
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As (a,b) C Wy is open, there exists open sets a € Uy C R™ and b € V C R™ such that
Uo xV - W().
Let
U={zelUy|TyeV: f(z,y) =0}
Note z € U <= (=,0) € F(Uy x V).
Claim. U is open.

We have the function ¢ given by
ug 3z — (z,0)

and continuous. Then
F(ug x v) = [(Flw,) """ (Us, V)

1

is open because (Up, V') is open and (F|w,) ' is continuous. Then

U =14 (F(ug X v))

is open.

Claim.
VeeUyeV: f(x,y) =0.

The existence of such y is given by the definition of U. Let’s prove uniqueness. Assume yp,y2 € V such that
f(@,y1) = f(z,92) = 0.

But then
F(z,y1) = (2, f(z,51) = (2,0)
F(I7y1) = (I’f(z7yl) = (13,0)

Let ¢ : U — V : ¢(x) = y where y is the unique point in V for which f(z,y) = 0. In particular,
F(z,¢(z)) = (z, f(z, ¢(2))) = (@, f(z,y)) = (2,0).

Let mg : R™ x R™ — R™, mo(x,y) = y. Then

} = F(x,y1) = F(z,y2), F injective = y1 = yo.

U94>(I,O)

¢ F

V3 d(a) <2 (2, (x))

Thus

¢(x) = (ma 0 F~1 o )(x)
is differentiable on U. Moreover, it’s continuous at a. From the inverse function theorem, we know that F'(x) is
invertible on U x V <= g—g(x, ¢(x)) is invertible on U. As f(z, ¢(z)) = 0, we can use the chain rule to get

of

0o
ox

af of af

S 0lo) + L (wo@)0 ) =0 = 00 = - | G woten| o iz ot
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