Compactness in metric spaces

Definition. Let (X, d) be a metric space.

- Let $A \subseteq X$. An open cover of A is any collection $\{G_i\}_{i \in I}$ of open sets such that $A \subseteq \bigcup_{i \in I} G_i$. The open cover is called finite if I is finite. Otherwise, the open cover is called infinite.

- A set $K \subseteq X$ is called compact if every open cover of K admits a finite subcover, that is, if $\{G_i\}_{i \in I}$ is an open cover for K, then $\exists \ n \geq 1$ and $i_1, \ldots, i_n \in I : K \subseteq \bigcup_{j=1}^{n} G_{i_j}$.

Proposition. Let (X, d) be a metric space and let $K \subseteq X$ be compact. Then K is closed and bounded.

Proof. We first show K is closed, then we show K is bounded.

- To show K is closed, it suffices to prove $^c K$ is open. If $^c K = \emptyset$, then K is closed. Thus, we may assume $^c K \neq \emptyset$. Let $x \in ^c K$. For $y \in K$, let
 $$r_y = \frac{1}{2} d(x, y).$$
 Consider the open set
 $$B_{r_y}(y) = \{z \in X : d(z, y) < r_y\}.$$
 Then $K \subseteq \bigcup_{y \in K} B_{r_y}(y)$. As K is compact, the open cover $\{B_{r_y}(y)\}_{y \in K}$ admits a finite subcover. Thus
 $$\exists \ n \geq 1 \text{ and } y_1, \ldots, y_n \in K : K \subseteq \bigcup_{i=1}^{n} B_{r_i}(y_i),$$
 where we used the shorthand $r_i = r_{y_i}$. Let
 $$r = \min \{r_i\} \ \forall \ 1 \leq i \leq n.$$
 Then
 $$B_r(x) \cap B_{r_i}(y_i) = \emptyset \ \forall \ 1 \leq i \leq n.$$

 Otherwise we find the contradiction
 $$z \in B_r(x) \cap B_{r_i}(y_i) \implies d(x, y_i) \leq d(x, z) + d(z, y_i) < r + r_i \leq 2r_i = d(x, y_i).$$
 Thus
 $$B_r(x) \subseteq \bigcap_{i=1}^{n} B_{r_i}(y_i) = \bigcap_{i=1}^{n} B_{r_i}(y_i) \subseteq ^c K.$$
 By definition, $^c K$ is open and so K is closed.

- We show K is bounded. Clearly, $\{B_1(y)\}_{y \in K}$ is an open cover of K. As K is compact, $\exists \ n \geq 1$ and $y_1, \ldots, y_n \in K : K \subseteq \bigcup_{i=1}^{n} B_1(y_i)$. Let $r = \max_{1 \leq k \leq n} d(y_1, y_k) + 1$. Then $K \subseteq B_r(y_1)$.

\[\square \]

Theorem. Let (X, d) be a metric space and let $K \subseteq Y \subseteq X$. Then K is compact in $Y \iff K$ is compact in X.

Proof. We prove both ways separately.

- "$\implies"$ Let $\{G_i\}_{i \in I}$ be a collection of sets open in X such that $K \subseteq \bigcup_{i \in I} G_i$. Then $V_i = G_i \cap Y$ is open in $Y \ \forall \ i \in I$. We have $K \subseteq (\bigcup_{i \in I} G_i) \cap Y = \bigcup_{i \in I} V_i$. As K is compact in Y, $\exists \ i_1, \ldots, i_n \in I : K \subseteq \bigcup_{k=1}^{n} V_{i_k} \implies K \subseteq \bigcup_{k=1}^{n} G_{i_k}$. Thus K is compact in X.

- "$\impliedby"$ Let $\{V_i\}_{i \in I}$ be a collection of sets open in X such that $K \subseteq \bigcup_{i \in I} V_i$. Then $G_i = V_i \cap X$ is open in $X \ \forall \ i \in I$. We have $K \subseteq (\bigcup_{i \in I} V_i) \cap X = \bigcup_{i \in I} G_i$. As K is compact in X, $\exists \ i_1, \ldots, i_n \in I : K \subseteq \bigcup_{k=1}^{n} G_{i_k} \implies K \subseteq \bigcup_{k=1}^{n} V_{i_k}$. Thus K is compact in Y.
• "\[\iff\]" Let \(\{V_i\}_{i \in I} \) be a collection of sets open in \(Y \) such that \(K \subseteq \bigcup_{i \in I} V_i \). Then \(\exists \{G_i\}_{i \in I} \) open in \(X : V_i = G_i \cap Y \forall i \in I \). Thus \(\{G_i\}_{i \in I} \) is an open cover for \(K \). As \(K \) is compact in \(X \), \(\exists \ i_1, \ldots, i_n \in I : K \subseteq \bigcup_{k=1}^{n} G_{i_k} \iff K \subseteq \bigcup_{k=1}^{n} V_{i_k} \). Thus \(K \) is compact in \(Y \).

\[\square\]

Proposition. Let \((X,d)\) be a metric space and let \(F \subseteq K \subseteq X \). If \(F \) is closed and \(K \) is compact, then \(F \) is compact.

Proof. Let \(\{G_i\}_{i \in I} \) be an open cover for \(F \). As \(F \subseteq \bigcup_{i \in I} G_i \implies K \subseteq \bigcup_{i \in I} G_i \cup \{F\} \implies F \subseteq \bigcup_{k=1}^{n} G_{i_k} \).

\[\square\]

Corollary. Let \((X,d)\) be a metric space, \(F \subseteq X \) be closed and \(K \subseteq X \) be compact. Then \(F \cap K \) is compact.

Sequential compactness

Definition. Let \((X,d)\) be a metric space. A set \(K \subseteq X \) is called **sequentially compact** if every sequence in \(K \) admits a subsequence that converges in \(K \).

Bolzano-Weierstrass

Theorem. Let \((X,d)\) be a metric space. An infinite set \(K \subseteq X \) is sequentially compact \(\iff\) every infinite set \(A \subseteq K \) admits an accumulation point in \(K \).

Proof. We prove both ways separately.

- \(\implies\) Let \(A \subseteq K \) be infinite. Then \(\exists \{a_n\}_{n \geq 1} \subseteq A : a_n \neq a_m \forall n \neq m \). As \(K \) is sequentially compact, \(\exists \{a_n\}_{n \geq 1} \subseteq A : a_n \xrightarrow{d} n \to \infty a \in K \). Clearly, \(a \in A' \) as \(\forall r > 0, B_r(a) \cap A \\setminus \{a\} \neq \emptyset \).

- \(\impliedby\) Let \(\{a_n\}_{n \geq 1} \subseteq K \). If \(\{a_n\}_{n \geq 1} \) contains a constant subsequence, then that subsequence converges to a point in \(K \). Otherwise, the set \(A = \{a_n : n \geq 1\} \) is infinite. By hypothesis, \(A' \cap K \neq \emptyset \). Let \(a \in A' \cap K \). Then \(\exists \{a_n\}_{n \geq 1} \subseteq A : a_k \xrightarrow{d} n \to \infty a \).

\[\square\]

Proposition. Let \((X,d)\) be a metric space. If \(K \subseteq X \) is compact, then \(K \) is sequentially compact.

Proof. If \(K \) is finite, then \(K \) is necessarily sequentially compact. Assume \(K \) is infinite. Let \(A \) be infinite. Then \(A' \subseteq K' \subseteq K \implies A' \cap K = A' \). We want to show \(A' \cap K \neq \emptyset \iff A' \neq \emptyset \). Assume, towards a contradiction, that \(A' = \emptyset \). Then \(\forall x \in K, \exists r_x > 0 : B_{r_x}(x) \cap A \setminus \{x\} = \emptyset \implies B_{r_x}(x) \cap A \subseteq \{x\} \).

Thus \(\{B_{r_x}(x)\}_{x \in K} \) is an open cover for \(K \) compact \(\implies\) \(\exists x_1, \ldots, x_n \in K : K \subseteq \bigcup_{i=1}^{n} B_{r_i}(x_i) \) where \(r_i = r_{x_i} \). As \(A \subseteq K \), we get the following contradiction

\[A = A \cap \bigcup_{i=1}^{n} B_{r_i}(x_i) = \bigcup_{i=1}^{n} (A \cap B_{r_i}(x_i)) \subseteq \bigcup_{i=1}^{n} \{x_i\}. \]

Thus \(A' = A' \cap K \neq \emptyset \). By Bolzano-Weierstrass, this implies \(K \) is sequentially compact.

\[\square\]

Proposition. Let \((X,d)\) be a metric space and let \(K \subseteq X \) be sequentially compact. Then \(K \) is closed and bounded.

Proof. We first show \(K \) is closed, then we show \(K \) is bounded.

- We show \(K \) is closed \(\iff\) \(K = \overline{K} \). Fix \(x \in \overline{K} \implies \exists \{x_n\}_{n \geq 1} \subseteq K : x_n \xrightarrow{d} n \to \infty x \). As \(K \) is sequentially compact, \(\exists \{x_k\}_{n \geq 1} \subseteq K : x_k \xrightarrow{d} n \to \infty y \in K \). As \(x_n \xrightarrow{d} n \to \infty x \implies x_k \xrightarrow{d} n \to \infty x \), the limit of the convergent subsequence is unique. Thus \(x = y \in K \) and \(\overline{K} \subseteq K \implies K \) is closed.

- We show \(K \) is bounded. Assume, towards a contradiction, that \(K \) is unbounded. Let \(a_1 \in K \). Then \(K \) unbounded \(\implies\)
1. \(\exists a_2 \in K : d(a_1, a_2) \geq 1 \)
2. \(\exists a_3 \in K : d(a_1, a_3) \geq 1, d(a_2, a_3) \geq 1 \) otherwise \(K \subseteq B_1(a_1) \cup B_1(a_2) \).
3. \(\ldots \)

Proceeding inductively, we construct \(\{a_n\}_{n \geq 1} \subseteq K : d(a_n, a_m) \geq 1 \forall n \neq m \). This sequence doesn’t admit a convergent subsequence, contradicting the fact that \(K \) is sequentially compact.

\[\square \]

Total boundedness

Definition. Let \((X, d)\) be a metric space. A set \(A \subseteq X \) is **totally bounded** if \(\forall \epsilon > 0, A \) can be covered by finitely many balls of radius \(\epsilon \).

Remark. 1. A totally bounded \(\implies \) \(A \) bounded
2. \(A \subseteq \mathbb{R} \) bounded \(\implies \) \(A \) totally bounded
3. \(\mathbb{N} \) endowed with the discrete metric:

\[
d(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise.} \end{cases}
\]

Then \(\mathbb{N} \) is bounded, but not totally bounded.

Theorem. Let \((X, d)\) be a metric space and let \(K \subseteq X \). The following statements are equivalent.

1. \(K \) is sequentially compact.
2. \(K \) is complete and totally bounded.

Proof. We show 1 \(\implies \) 2 and 2 \(\implies \) 1.

- Let’s show \(K \) is complete. Let \(\{x_n\}_{n \geq 1} \subseteq K \) be Cauchy. As \(K \) is sequentially compact, \(\exists \{x_{n_k}\}_{n \geq 1} : x_{n_k} \xrightarrow{d} n \to \infty x \in K \implies x_n \xrightarrow{d} n \to \infty x \in K \). Thus \(K \) is complete. Let’s show \(K \) is totally bounded. Fix \(\epsilon > 0 \).
 - Let \(a_1 \in K \). If \(K \subseteq B_\epsilon(a_1) \), then \(K \) is totally bounded.
 - Otherwise, \(\exists a_2 \in K : d(a_1, a_2) \geq \epsilon \). If \(K \subseteq B_\epsilon(a_1) \cup B_\epsilon(a_2) \), then \(K \) is totally bounded.
 - Otherwise, \(\exists a_3 \in K : d(a_1, a_3) \geq \epsilon, d(a_2, a_3) \geq \epsilon \)
 - \(\ldots \)

If this process terminates in finitely many steps, then \(K \) is totally bounded. Otherwise, we find \(\{a_n\}_{n \geq 1} \subseteq K : d(a_n, a_m) \geq \epsilon \forall n \neq m \). This sequence doesn’t admit a convergent subsequence, contradicting the fact that \(K \) is sequentially compact.

- Let \(\{a_n\}_{n \geq 1} \subseteq K \).
 - \(K \) totally bounded \(\implies \exists J_1 \) finite and \(\{x_{j_1}^{(1)}\}_{j \in J_1} \subseteq K : K \subseteq \cup_{j \in J_1} B_1(x_{j_1}^{(1)}) \). Thus \(\exists j_1 \in J_1 : \{n \in \mathbb{N} : a_n \in B_1(x_{j_1}^{(1)})\} = \emptyset \). Let \(\{a_{n_1}^{(1)}\}_{n \geq 1} \) denote the corresponding subsequence.
 - \(K \) totally bounded \(\implies \exists J_2 \) finite and \(\{x_{j_2}^{(2)}\}_{j \in J_2} \subseteq K : K \subseteq \cup_{j \in J_2} B_2(x_{j_2}^{(2)}) \). Thus \(\exists j_2 \in J_2 : \{n \in \mathbb{N} : a_n \in B_2(x_{j_2}^{(2)})\} = \emptyset \). Let \(\{a_{n_2}^{(2)}\}_{n \geq 1} \) denote the corresponding subsequence.
 - \(\ldots \)

Proceeding inductively, we find finite sets \(J_k, \{x_{j_k}^{(k)}\}_{j \in J_k}, \{a_{n_k}^{(k)}\}_{n \geq 1} : \{a_{n_k}^{(k)}\}_{n \geq 1} \subseteq B_1(x_{j_k}^{(k)}) \). Then \(\{a_{n_k}^{(k+1)}\}_{n \geq 1} \) is a subsequence of \(\{a_{n_k}^{(k)}\}_{n \geq 1} \forall k \geq 1 \). Consider the diagonal subsequence \(\{a_{n_k}^{(k)}\}_{n \geq 1} \). Fix \(k \geq 1 \) and \(n, m \geq k \).

Then \(d(a_{n_k}^{(k)}, a_{n_k}^{(k)}) \leq d(a_{n_k}^{(k)}, x_{j_k}^{(k)}) + d(x_{j_k}^{(k)}, a_{n_k}^{(k)}) \leq \frac{1}{k} + \frac{1}{k} = \frac{2}{k} \). This shows \(\{a_{n_k}^{(k)}\}_{n \geq 1} \) is Cauchy. As \(K \) is complete, \(a_{n_k}^{(k)} \xrightarrow{d} a \in K \). This proves \(K \) is sequentially compact.

3
Proof. Let (X,d) be a metric space and let $K \subseteq X$ be sequentially compact. Let $\{G_i\}_{i \in I}$ be an open cover of K. Then $\exists \epsilon > 0$: any ball of radius ϵ contained in K is contained in at least one G_i.

Proof. We argue by contradiction. Then $\forall n \geq 1, \exists a_n \in K : B_{\frac{1}{n}}(a_n) \subseteq K$, but $B_{\frac{1}{n}}(a_n) \not\subseteq G_i \forall i \in I$. As K is sequentially compact, $\exists \{a_{k_n}\}_{n \geq 1} : a_{k_n} \xrightarrow[n \to \infty]{} a \in K$. Thus $a \in K \subseteq \cup_{i \in I}G_i \implies \exists i_0 \in I : a \in G_{i_0} = G_{i_0} \implies \exists r > 0 : B_r(a) \subseteq G_{i_0}$. As $a_{k_n} \xrightarrow[n \to \infty]{} a$, $\exists n_r \in \mathbb{N} : d(a,a_{k_n}) < \frac{r}{2} \forall n \geq n_r$. Let $N = \max \{n_r, \lceil \frac{r}{\epsilon} \rceil \} + 1$. Notice $x \in B_{\frac{1}{N}}(a_{k_N}) \implies d(x,a) \leq d(x,a_{k_N}) + d(a_{k_N},a) < \frac{1}{N} + \frac{r}{2} \leq \frac{1}{N} + \frac{r}{2} \leq r$. Thus $B_{\frac{1}{N}}(a_{k_N}) \subseteq B_r(a) \subseteq G_{i_0}$, contradiction.

Proposition. Let (X,d) be a metric space and let $K \subseteq X$ be sequentially compact. Then K is compact.

Proof. Let $\{G_i\}_{i \in I}$ be an open cover of K. By the previous proposition, $\exists \epsilon > 0$: any ball of radius ϵ contained in K is contained in at least one G_i. As K is totally bounded, $\exists x_1, \ldots, x_n \in K : K \subseteq \cup_{i=1}^n B_\epsilon(x_i)$. Then $\forall 1 \leq j \leq n, \exists i_j \in I : B_\epsilon(x_j) \subseteq G_{i_j} \implies K \subseteq \cup_{j=1}^n G_{i_j}$.

Heine-Borel

Collecting everything, we get the Heine-Borel theorem.

Theorem. Let (X,d) be a metric space and let $K \subseteq X$. The following statements are equivalent.

1. K is compact.
2. K is sequentially compact.
3. K is complete and totally bounded.
4. Every infinite subset of K has an accumulation point in K.

Corollary. A set $K \subseteq \mathbb{R}$ is compact iff it’s closed and bounded.

Proof.

Exercise.

Compactness and the finite intersection property

Definition. An infinite family of closed sets $\{F_i\}_{i \in I}$ is said to have the finite intersection property if for any finite $J \subseteq I$ we have $\cap_{j \in J} F_j \neq \emptyset$.

Theorem. A metric space (X,d) is compact iff for every infinite boundary of closed sets $\{F_i\}_{i \in I}$ that has the finite intersection property, we have $\cap_{i \in I} F_i \neq \emptyset$.

Proof. We prove both ways separately.

- We argue by contradiction. Assume that $\{F_i\}_{i \in I}$ is an infinite family of closed sets with the finite intersection property, but $\cap_{i \in I} F_i = \emptyset$. Then $X = \cup_{i \in I} ^c F_i$ compact $\implies \exists J \subseteq I$ finite : $X = \cup_{j \in J} ^c F_j \implies \emptyset = J \cap_{j \in J} F_j$, which contradicts the finite intersection property.

- We argue by contradiction. If X isn’t compact, then $\exists \{G_i\}_{i \in I}$ open cover of $X : \{G_i\}_{i \in I}$ doesn’t admit a subcover. In particular, I is infinite. Consider the family $\{^c G_i\}_{i \in I}$ of closed sets. As $X = \cup_{i \in I} G_i \implies \cap_{i \in I} ^c G_i = \emptyset$. Fix $J \subseteq I$ finite. As $\{G_i\}_{i \in I}$ doesn’t admit a finite subcover $X \neq \cup_{j \in J} G_j \implies \cap_{j \in J} ^c G_j \neq \emptyset$. Thus $\{^c G_i\}_{i \in I}$ has the finite intersection property, contradiction.

Corollary. Let (X,d) be a metric space, $K \subseteq X$ be compact, and $\{F_i\}_{i \in I}$ be a family of closed sets. If $K \cap (\cap_{j \in J} F_j) = \emptyset$, then \exists finite $J \subseteq I : K \cap (\cap_{j \in J} F_j) = \emptyset$.

Proof.

Exercise.

Continuity

Definition. Let \((X, d_X), (Y, d_Y)\) be metric spaces and let \(f : X \to Y\) be a function. We say that \(f\) is continuous at \(x_0 \in X\) if for every \(\varepsilon > 0\), there exists \(\delta > 0\) such that \(d_X(x, x_0) < \delta\) implies \(d_Y(f(x), f(x_0)) < \varepsilon\). We say \(f\) is continuous on \(X\) if \(f\) is continuous at every \(x \in X\).

Remark. A function \(f : X \to Y\) is necessarily continuous at every isolated point in \(X\). Indeed, if \(x_0 \in X\) is isolated, \(\exists \delta > 0 : \{x \in X : d_X(x, x_0) < \delta\} = \{x_0\}\). Then \(d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) = 0 < \varepsilon \forall \varepsilon > 0\).

Theorem. Let \((X, d_X), (Y, d_Y)\) be metric spaces, let \(f : X \to Y\) be a function, and \(x_0 \in X\). The following statements are equivalent.

1. \(f\) is continuous at \(x_0\).
2. For every \(\{x_n\}_{n \geq 1} \subseteq X : x_n \xrightarrow[n \to \infty]{} x_0\) we have \(f(x_n) \xrightarrow[n \to \infty]{} f(x_0)\)

Proof. We show \(1 \implies 2 \text{ and } 2 \implies 1\).

- Let \(x_n \xrightarrow[n \to \infty]{} x_0\) and \(\varepsilon > 0\). As \(f\) is continuous at \(x_0\), \(\exists \delta > 0 : d_X(x_n, x_0) < \delta \implies d_Y(f(x_n), f(x_0)) < \varepsilon\).

- As \(x_n \xrightarrow[n \to \infty]{} x_0\), \(\exists n_0 \in \mathbb{N} : d_X(x_n, x_0) < \delta \forall n \geq n_0 \implies d_Y(f(x_n), f(x_0)) < \varepsilon \forall n \geq n_0\).

- We argue by contradiction, then \(\exists \varepsilon_0 > 0 : \forall n \geq 1, \exists x_n \in X : d_X(x_n, x_0) \leq \frac{1}{n}\) but \(d_Y(f(x_n), f(x_0)) \geq \varepsilon_0\), contradiction.

Proposition. Let \((X, d_X), (Y, d_Y)\) be metric spaces and let \(f : X \to Y\) be a function. The following statements are equivalent.

1. \(f\) is continuous
2. \(G\) open in \(Y\) \(\implies f^{-1}(G)\) open in \(X\)
3. \(F\) closed in \(Y\) \(\implies f^{-1}(F)\) closed in \(X\)
4. \(B \subseteq Y\) \(\implies f^{-1}(\overline{B}) \supseteq \overline{f^{-1}(B)}\)
5. \(A \subseteq X\) \(\implies f(A) \subseteq \overline{f(A)}\)

Proof. We will show ".1 \implies 2 \implies 3 \implies 4 \implies 5 \implies 4 \implies 1".

- "1 \implies 2" Let \(G \subseteq Y\) be open, \(x_0 \in f^{-1}(G)\).

 Then \(f(x_0) \in G\) open \(\implies \exists \varepsilon > 0 : B_Y^\varepsilon(f(x_0)) \subseteq G\).

 As \(f\) is continuous at \(x_0\), \(\exists \delta > 0 : f(B_X^\delta(x_0)) \subseteq B_Y^\varepsilon(f(x_0))\).

 Thus \(f^{-1}(G)\) is open.

- "2 \implies 3" Let \(F \subseteq Y\) be closed \(\implies \complement F\) open in \(Y\) \(\implies \complement(f^{-1}(F)) = f^{-1}(\complement F)\) is open in \(X\) \(\implies f^{-1}(F)\) is closed in \(X\).

- "3 \implies 4" Let \(B \subseteq Y\) \(\implies \overline{B}\) is closed \(\implies f^{-1}(\overline{B})\) closed in \(X\), \(f^{-1}(B) \subseteq f^{-1}(\overline{B})\) \(\implies \overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})\).

- "4 \implies 5" Fix \(A \subseteq X\), apply 4 to \(B = f(A)\), we get \(f^{-1}(\overline{f(A)}) \subseteq \overline{f^{-1}(f(A))}\), \(f^{-1}(f(A)) \supseteq A \implies \complement A \subseteq \overline{f^{-1}(f(A))} \implies \complement A \subseteq f^{-1}(f(A)) \implies f(\complement A) \subseteq f(A)\).
* "5 \implies 4" Fix \(B \subseteq Y \), apply 5 to \(A = f^{-1}(B) \), we get \(f(f^{-1}(B)) \subseteq f(f^{-1}(B)) = \overline{B} \implies f(f^{-1}(B)) \subseteq f^{-1}(B) \).

* "4 \implies 1" Fix \(x_0 \in X \), let \(\epsilon > 0 \). Consider \(cB_e^Y(f(x_0)) \) closed in \(Y \). Let \(A = f^{-1}(cB_e^Y(f(x_0))) \). By 4, \(\overline{A} = A = f^{-1}(cB_e^Y(f(x_0))) = f^{-1}\left(\overline{cB_e^Y(f(x_0))}\right) \supseteq f^{-1}(cB_e^Y(f(x_0))) \implies A \text{ is closed. Then } cA = c(f^{-1}(cB_e^Y(f(x_0)))) = f^{-1}(B_e^Y(f(x_0))) \text{ open. We have } x \in f^{-1}(B_e^Y(f(x_0))), \text{ then } \exists \delta > 0 : B_e^Y(x_0) \subseteq f^{-1}(B_e^Y(f(x_0))) \implies f(B_e^Y(x_0)) \subseteq B_e^Y(f(x_0)). \) This shows \(f \) is continuous at \(x_0 \).

\[\square \]

Proposition. Let \((X,d_X),(Y,d_Y),(Z,d_Z) \) be metric spaces and \(f : X \to Y, g : Y \to Z \) be functions : \(f \) is continuous at \(x_0 \in X \), \(g \) is continuous at \(f(x_0) \in Y \). Then \(g \circ f : X \to Z \) is continuous at \(x_0 \).

Proof. Let \(\epsilon > 0 \).

\[
\begin{align*}
g \text{ continuous at } f(x_0) & \implies \exists \delta > 0 : d_Y(y, f(x_0)) < \delta \implies d_Z(g(y), g(f(x_0))) < \epsilon, \\
g \text{ continuous at } x_0 & \implies \exists \eta > 0 : d_X(x, x_0) < \eta \implies d_Y(f(x), f(x_0)) < \delta.
\end{align*}
\]

\[
\begin{align*}
d_X(x, x_0) < \eta & \implies d_Z(g(f(x)), g(f(x_0))) < \epsilon.
\end{align*}
\]

\[\square \]

Exercise. Assume \(f, g : X \to \mathbb{R} \) are continuous at \(x_0 \in X \). Then \(f \pm g, fg \) are continuous at \(x_0 \). If in addition, \(g(x_0) \neq 0 \) then \(\frac{f}{g} \) is continuous at \(x_0 \).

Continuity and compactness

Theorem. Let \((X,d_X),(Y,d_Y) \) be metric spaces and let \(f : X \to Y \) be continuous. If \(K \subseteq X \) is compact, then \(f(K) \) is compact.

Proof. Let \(\{G_i\}_{i \in I} \) be an open cover of \(f(K) \). Then \(f^{-1}(G_i) \) is open in \(X \) \(\forall i \in I \). Moreover, \(f(K) \subseteq \bigcup_{i \in I} G_i \implies K \subseteq f^{-1}\left(\bigcup_{i \in I} G_i\right) = \bigcup_{i \in I} f^{-1}(G_i) \). As \(K \) is compact, \(\exists J \subseteq I \) finite : \(K \subseteq \bigcup_{j \in J} f^{-1}(G_j) = f^{-1}\left(\bigcup_{j \in J} G_j\right) \implies f(K) \subseteq \bigcup_{j \in J} G_j \).

\[\square \]

Corollary.

1. Let \((X,d_X) \) be a compact metric space and let \(f : X \to \mathbb{R}^n \) be a continuous function. Then \(f(X) \) is closed and bounded.

2. Let \((X,d_X) \) be a compact metric space and let \(f : X \to \mathbb{R} \) be a continuous function. Then \(\exists x_1, x_2 \in X : f(x_1) = \sup_{x \in X} f(x), f(x_2) = \inf_{x \in X} f(x) \).

Proof. \(f(X) \) is closed and bounded. As \(\mathbb{R} \) has the least upper bound property, \(\exists \inf_{x \in X} f(x) \in \mathbb{R}, \sup_{x \in X} f(x) \in \mathbb{R} \).

Clearly, \(\inf_{x \in X} f(x), \sup_{x \in X} f(x) \in f(X) \).

\[\square \]

Proposition. Let \((X,d_X),(Y,d_Y) \) be metric spaces with \(X \) compact and let \(f : X \to Y \) be a function that is bijective and continuous. Then the inverse \(f^{-1} : Y \to X \) is continuous.

Proof. Let \(F \subseteq X \) be closed. We want to show \(f(F) \) is closed in \(Y \). As \(F \) is closed and \(X \) is compact, \(f \) is continuous \(\implies f(F) \) is compact \(\implies f(F) \) is closed.

\[\square \]

Definition. Let \((X,d_X),(Y,d_Y) \) be metric spaces and let \(f : X \to Y \) be a function. We say that \(f \) is uniformly continuous if \(\forall \epsilon > 0, \exists \delta > 0 : d_X(a,b) < \delta \implies d_Y(f(a), f(b)) < \epsilon \). Compare with \(f : X \to Y \) continuous on \(X \) if \(\forall x_0 \in X, \epsilon > 0, \exists \delta_{\epsilon,x_0} : d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \epsilon \).

Remark.

1. Uniform continuity is a property of a function on a set. By comparison, continuity is defined pointwise.

2. Uniform continuity \(\implies \) continuity

3. A continuous function need not be uniformly continuous.

Example. \(f : \mathbb{R} \to \mathbb{R}, f(x) = x^2, |f(n) - f(n + \frac{1}{m})| = |2 + \frac{1}{m}| \geq 2 \).

Proposition. Let \((X,d_X),(Y,d_Y) \) be metric spaces with \(X \) compact. Let \(f : X \to Y \) be a continuous function. Then \(f \) is uniformly continuous.
Proof. We want to show
\[\forall \epsilon > 0, \exists \delta > 0 : d_Y(f(x), f(y)) < \epsilon \ \forall \ x, y \in X : d_X(x, y) < \delta. \]
We argue by contradiction. Assume
\[\exists \epsilon_0 > 0 : \forall \delta > 0, \exists x, y \in X : d_X(x, y) < \delta \text{ but } d_Y(f(x), f(y)) \geq \epsilon_0. \]
Take \(\delta = \frac{1}{n} \) to get
\[\exists \{x_n\}_{n \in \mathbb{N}}, \{y_n\}_{n \in \mathbb{N}} \subseteq X : d_X(x_n, y_n) < \frac{1}{n} \]
but \(d_Y(f(x_n), f(y_n)) \geq \epsilon_0. \) As \(X \) is compact, \(\exists \{x_{k_n}\}_{n \in \mathbb{N}} \xrightarrow{n \to \infty} x_0. \) Note
\[d_X(x_0, x_{k_n}) \leq d_X(x_0, x_{k_n}) + d_X(x_{k_n}, y_{k_n}) < d_X(x_0, x_{k_n}) + \frac{1}{n} \xrightarrow{n \to \infty} 0. \]
Thus \(\{y_{k_n}\}_{n \in \mathbb{N}} \xrightarrow{n \to \infty} x_0. \) As \(f \) is continuous, \(f(x_{k_n}) \xrightarrow{n \to \infty} f(x_0) \) and \(f(y_{k_n}) \xrightarrow{n \to \infty} f(x_0). \) Then we find the contradiction
\[d_Y(f(x_{k_n}), f(y_{k_n})) \leq d_Y(f(x_{k_n}), f(x_0)) + d_Y(f(x_0), f(y_{k_n})) \xrightarrow{n \to \infty} 0. \]
\[\square \]

Continuity and connectedness

Theorem. Let \((X, d_X), (Y, d_Y)\) be metric spaces and \(f : X \to Y \) be a continuous function. If \(A \subseteq X \) is connected, then \(f(A) \) is connected.

Proof. Assume, towards a contradiction, that \(f(A) \) is not connected. Then \(\exists B_1, B_2 \neq \emptyset, \overline{B_1} \cap B_2 = B_1 \cap \overline{B_1} = \emptyset : f(A) = B_1 \cup B_2. \) Let \(A_1 = f^{-1}(B_1) \cap A, A_2 = f^{-1}(B_2) \cap A. \) Notice
\[A_1 \cup A_2 = (f^{-1}(B_1) \cap A) \cup (f^{-1}(B_2) \cap A) = (f^{-1}(B_1) \cup f^{-1}(B_2)) \cap A = f^{-1}(B_1 \cup B_2) \cap A = f^{-1}(f(A)) \cap A = A \cap A = A \text{ and} \]
\[A_1 \cap A_2 = f^{-1}(B_1) \cap A \cap (f^{-1}(B_2) \cap A) \subseteq f^{-1}(B_1) \cap f^{-1}(B_2) \subseteq f^{-1}(B_1) \cap f^{-1}(B_2) = f^{-1} \left(\overline{B_1} \cap B_2 \right) = f^{-1}(\emptyset) = \emptyset. \]
Similarly, \(A_1 \cap A_2 = \emptyset. \) So \(A_1, A_2 \) are separated \(\implies \) \(A \) is not connected, contradiction. \(\square \)

Corollary. Let \((X, d_X)\) be a connected metric space and \(f : X \to \mathbb{R} \) be continuous. Then \(f(X) \) is an interval. In particular, if \(X = \mathbb{R} \) and \(a, b \in \mathbb{R} : a < b \) and \(y_0 \) lies in between \(f(a) \) and \(f(b) \), then \(\exists x_0 \in (a, b) : f(x_0) = y_0. \) We say that \(f \) has the Darboux (intermediate value) property.

Remark. Functions with the Darboux property need not be continuous.

Example.
\[
 f : [0, \infty) \to \mathbb{R}, \quad f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{otherwise}. \end{cases} \tag{1}
\]

Let \((X, d_X)\) is a metric space and \(x_0 \in X \), then \(f : x \to d(x, x_0) \) is continuous. Indeed, \(|f(x) - f(y)| = |d(x, x_0) - d(y, x_0)| \leq d(x, y) \). Take \(\delta = \epsilon. \)

Proposition. Let \((X, d_X), (Y, d_Y)\) be connected metric spaces. Then \(X \times Y \) endowed with the following metric is a connected metric space:
\[
 \rho((x_1, y_1), (x_2, y_2)) = \max \{d_X(x_1, x_2), d_Y(y_1, y_2)\}
\]

Proof. It suffices to prove that for any point in \(X \times Y, \exists \) connected subset of \(X \times Y \) that contains those points. Let \((x_0, y_0), (a, b) \in X \times Y \) and \(f : Y \to X \times Y \) be a function defined as \(f(y) = (x_0, y). \) This is continuous. Indeed, \(\rho(f(y_1), f(y_2)) = d_Y(y_1, y_2). \) Take \(\delta = \epsilon. \) We get \(f(Y) \) is connected. Let \(g : X \to X \times Y \) be a function defined as \(g(x) = (x, b). \) This is continuous. Indeed, \(\rho(g(x_1), g(x_2)) = d_X(x_1, x_2). \) Take \(\delta = \epsilon. \) We get \(g(X) \) is connected. Note \(f(Y) \cap g(X) \neq \emptyset. \) Indeed, \((x_0, b) \in f(Y) \cap g(X). \) Then \(f(Y) \cap g(X) \) is connected. As \(\{(x_0, y_0), (a, b)\} \subseteq f(Y) \cup g(X), \) we get the claim. \(\square \)
Remark. Note one may replace the metric ρ in the proposition above by any of the equivalent metrics $\rho = d_X + d_Y$ or $\rho = \sqrt{d_X^2 + d_Y^2}$.

Definition. Let (X, d_X) be a metric space.

- A **path** in X is any continuous function $\gamma : [0, 1] \to X$. $\gamma(0)$ is called the **origin** of the path, $\gamma(1)$ is called the **end** of the path. Note $\gamma([0, 1])$ is compact and connected.

- Let $\gamma : [0, 1] \to X$ be a path in (X, d). We define $\gamma : [0, 1] \to X$ via $\gamma(t) = \gamma^{-1}(t) = \gamma(1 - t)$. This is a path in X. For γ_1, γ_2 paths in X with $\gamma_1(1) = \gamma_2(0)$, we define the path $\gamma_1 \vee \gamma_2 : [0, 1] \to X$ via
 $$\gamma_1 \vee \gamma_2(t) = \begin{cases} \gamma_1(2t) & \text{if } 0 \leq t \leq \frac{1}{2} \\ \gamma_2(2t - 1) & \text{if } \frac{1}{2} \leq t \leq 1 \end{cases}$$

Theorem. Let (X, d_X) be a metric space and let $\emptyset \neq A \subseteq X$, then $1 \iff 2 \iff 3$.

1. $\exists a \in A : \forall x \in A, \exists a$ path $\gamma_X : [0, 1] \to A$ with $\gamma_X(0) = a$ and $\gamma_X(1) = x$.

2. $\forall x, y \in A, \exists a$ path $\gamma_{x,y} : [0, 1] \to A$ with $\gamma_{x,y}(0) = x$ and $\gamma_{x,y}(1) = y$.

3. A is connected.

Proof. "1 \implies 2" Let $x, y \in A, \gamma_X, \gamma_Y : [0, 1] \to A$ as given by 1. Then $\gamma_X, \gamma_Y : [0, 1] \to A$ is the desired path.

- "2 \implies 1" Take a to be any point in A.

- "1 \implies 3" For $x \in A$, let $A_x = \gamma_X([0, 1])$ connected. Moreover, $\{a\} \in \cap_{x \in A} A_x$. Therefore, $\cup_{x \in A} A_x$ is connected. But $\cup_{x \in A} A_x = A$.

Definition. If either 1 or 2 hold, we say A is **path connected**.

Exercise. Show that $\mathbb{R}^2 \setminus \mathbb{Q}^2$ is path connected, and hence connected.

Proof. We will show that any point in $\mathbb{R}^2 \setminus \mathbb{Q}^2$ can be joined to $(\sqrt{2}, \sqrt{2})$ via a path in $\mathbb{R}^2 \setminus \mathbb{Q}^2$. Let $(x, y) \in \mathbb{R}^2 \setminus \mathbb{Q}^2$. Then $x \notin \mathbb{Q}$ or $y \notin \mathbb{Q}$. Say $x \notin \mathbb{Q}$. Then $\gamma_1 : [0, 1] \to \mathbb{R}^2 \setminus \mathbb{Q}^2$ defined as $\gamma_1(t) = ((1 - t)\sqrt{2} + tx, \sqrt{2})$ is a path, and $\gamma_2 : [0, 1] \to \mathbb{R}^2 \setminus \mathbb{Q}^2$ defined as $\gamma_2(t) = (x, (1 - t)\sqrt{2} + ty)$ is a path. Then $\gamma_1 \vee \gamma_2 : [0, 1] \to \mathbb{R}^2 \setminus \mathbb{Q}^2$ is a path in $\mathbb{R}^2 \setminus \mathbb{Q}^2$ joining $(\sqrt{2}, \sqrt{2})$ to (x, y).

Remark. Connected sets are not necessarily path connected.

Example. See equation 1.

- Let $G_f = \{(x, f(x)) : x \in [0, \infty)\}$. Then G_f is connected, but not path connected. Let $g : [0, \infty) \to \mathbb{R}^2$ be a function defined as $g(x) = (x, f(x))$. Then g is continuous on $[0, \infty)$ because f is, so $G_f \setminus \{(0, 0)\} = g([0, \infty))$ is connected. Consider $G_f = \{(0, 0)\} \cup g([0, \infty))$. Note $\{(0, 0)\} \subseteq \overline{g([0, \infty))}$. Indeed, for $x_n = \frac{1}{n\pi}$, we get $g(x_n) = (\frac{1}{n\pi}, 0) \to (0, 0)$. Therefore, $\overline{\{(0, 0)\}} = \overline{g([0, \infty))}$ is connected.

- To see that G_f isn’t path connected, it suffices to see that there is no path connecting $(0, 0)$ to $\left(\frac{1}{\pi}, 0\right)$. Indeed, any such path would be discontinuous at $t = 0$, because $\lim_{n \to \infty} \frac{1}{\pi n} = 0 \not\in (0, 1)$.

Proposition. Let $\emptyset \neq A \subseteq X$, then A is connected iff any two points in A can be joined by a polygonal arc lying in A.

Proof. " \iff " is immediate since path connectedness \implies connectedness. We show " \implies " . Fix $a \in A$ and let $A_1 = \{x \in A : x$ can be joined to a by a polygonal arc in $A\} \neq \emptyset$ because $a \in A_1$. We will show that A_1 is both open and closed in A, then A connected $\implies A_1 = A$.

- Let’s show A_1 is open in A. Pick $x \in A_1 \subseteq A$ open, $\exists r > 0 : B_r(x) \subseteq A$. As any point in $B_r(x)$ can be joined by a segment to x lying in the ball and x is joined by a polygonal arc to a, any point in $B_r(x)$ can be joined by a polygonal arc to a. Thus $B_r(x) \subseteq A$. This proves A_1 is open.

- Let’s show A_1 is closed in A. If $A_2 = A \setminus A_1 = \emptyset$, then we’re done. So assume $\exists y \in A_2 \subseteq A$ open $\implies \exists r > 0 : B_r(y) \subseteq A$. If $B_r(y) \subseteq A_2$, then we’re done. So assume $B_r(y) \subseteq A_1 \neq \emptyset$. Proof by picture, contradiction.
Convergent sequences of functions

Definition. Let \((X, d_X), (Y, d_Y)\) be metric spaces. For \(n \geq 1\), let \(f_n : X \to Y\) be functions. We say the sequence \(\{f_n\}_{n \geq 1}\) converges pointwise if \(\forall x \in X\), the sequence \(\{f_n(x)\}_{n \geq 1} \subseteq Y\) converges. Thus, we say \(\{f_n\}_{n \geq 1}\) converges pointwise to \(f\) if \(\forall x \in X, \epsilon > 0, \exists n(\epsilon, x) \in \mathbb{N} : d_Y(f(x), f_n(x)) < \epsilon \forall n \geq n(\epsilon, x)\).

Remark. For \(\epsilon > 0\), the function \(n(\epsilon, x) : X \to \mathbb{N}\) can be bounded or unbounded. If it’s bounded, we get the following definition.

Definition. Let \((X, d_X), (Y, d_Y)\) be metric spaces, \(f_n : X \to Y, f : X \to Y\) be functions. We say that \(\{f_n\}_{n \geq 1}\) converges uniformly to \(f\) and write \(f_n \xrightarrow{u} f\) if \(\forall \epsilon > 0, \exists n_\epsilon \in \mathbb{N} : d_Y(f(x), f_n(x)) < \epsilon \forall n \geq n_\epsilon, x \in X\).

Remark. • uniform convergence \(\iff\) pointwise convergence
 - For \((X, d_X), (Y, d_Y)\) metric spaces, let \(B(X, Y) = \{f : X \to Y \mid f\text{ is bounded}\}\). We define \(d : B(X, Y) \times B(X, Y) \to \mathbb{R}\) via \(d(f, g) = \sup_{x \in X} d_Y(f(x), g(x))\). Then \((B(X, Y), d)\) is a metric space. Moreover, \(f_n \xrightarrow{u} f\) \iff \(\forall \epsilon > 0, \exists n_\epsilon \in \mathbb{N} : d_Y(f(x), f_n(x)) < \epsilon \forall n \geq n_\epsilon, x \in X\).
 - \(\forall \epsilon > 0, \exists n_\epsilon \in \mathbb{N} : \sup_{x \in X} d_Y(f(x), f_n(x)) \leq \epsilon \forall n \geq n_\epsilon, x \in X\).
 - \(\forall \epsilon > 0, \exists n_\epsilon \in \mathbb{N} : d(f, f_n) \leq \epsilon \forall n \geq n_\epsilon, x \in X\).
 - \(d(f, f_n) \xrightarrow{n \to \infty} 0\).

• pointwise convergence \(\not\iff\) uniform convergence

Example. for \(n \geq 1\), let \(f_n : [0, 1] \to \mathbb{R}, f_n(x) = x^n\), then

\[
\lim_{n \to \infty} f_n(x) = \begin{cases}
0 & \text{if } x \in [0, 1) \\
1 & \text{if } x = 1.
\end{cases}
\]

Let \(f : [0, 1] \to \mathbb{R}\) be a function defined as

\[
f(x) = \begin{cases}
0 & \text{if } x \in [0, 1) \\
1 & \text{if } x = 1.
\end{cases}
\]

We have \(\{f_n\}_{n \geq 1}\) converges pointwise to \(f\). However, \(\{f_n\}_{n \geq 1}\) doesn’t converge uniformly to \(f\). Indeed,

\[d(f_n, f) = \sup_{x \in [0, 1]} |f_n(x) - f(x)| = \sup_{x \in [0, 1]} |x^n| = 1 \not\to 0.\]

Weierstrass

Theorem. Let \((X, d_X), (Y, d_Y)\) be metric spaces. Assume that the sequence of functions \(f_n : X \to Y\) converges uniformly to the function \(f : X \to Y\). If \(f_n\) is continuous at \(x_0 \in X\) for all \(n \geq 1\), then \(f\) is continuous at \(x_0\). In particular, a uniform limit of continuous functions is continuous.

Proof. Fix \(\epsilon > 0\). Then

\[f_n \xrightarrow{u} f \implies \exists n_\epsilon \in \mathbb{N} : d_Y(f_n(x), f(x)) < \frac{\epsilon}{3} \forall n \geq n_\epsilon, x \in X.\]

Fix \(n_0 \geq n_\epsilon\). As \(f_{n_0}\) is continuous at \(x_0\),

\[\exists \delta(\epsilon, x_0) > 0 : d_X(f_{n_0}(x), f_{n_0}(x_0)) < \frac{\epsilon}{3} \forall x \in B_\delta^X(x_0).\]

For \(x \in B_\delta^X(x_0)\), we have

\[d_Y(f(x), f(x_0)) \leq d_Y(f(x), f_{n_0}(x)) + d_Y(f_{n_0}(x), f_{n_0}(x_0)) + d_Y(f_{n_0}(x_0), f(x_0)) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.\]

Remark. The converse isn’t true. \(\exists\) a sequence of continuous functions that converges pointwise to a continuous function, but the convergence isn’t uniform.

Example. \(f_n : (0, 1) \to \mathbb{R}, f_n(x) = x^n\), \(\{f_n\}_{n \geq 1}\) converges pointwise to \(f : (0, 1) \to \mathbb{R}, f \equiv 0\). But the convergence is not uniform : \(d(f_n, f) = \sup_{x \in (0, 1)} |x^n| = 1 \not\to 0.\)
Dini

Theorem. Let \((X,d_X)\) be a compact metric space, \(f_n : X \to \mathbb{R}\) be continuous functions : \(\{f_n\}_{n \geq 1}\) converges pointwise to a continuous function \(f : X \to \mathbb{R}\). If \(\{f_n\}_{n \geq 1}\) is monotone, then \(\{f_n\}_{n \geq 1}\) converges uniformly to \(f\).

Proof. Assume, without loss of generality, \(\{f_n\}_{n \geq 1}\) is increasing, i.e.

\[
 f_n(x) \leq f_{n+1}(x) \quad \forall \ n \geq 1, x \in X.
\]

Then \(\{f - f_n\}\) is decreasing so

\[
 \forall \ x > 0, \lim_{n \to \infty} (f(x) - f_n(x)) = \inf_{n \geq 1} \{f(x) - f_n(x)\} = 0.
\]

Fix \(\epsilon > 0, x_0 \in X\). We have

\[
 \inf_{n \geq 1} \{f(x_0) - f_n(x_0)\} = 0 < \epsilon \implies \exists n(\epsilon, x_0) \in \mathbb{N} : |f(x_0) - f_n(\epsilon, x_0)(x_0)| < \epsilon.
\]

Notice \(f - f_{n(\epsilon, x_0)}\) is continuous at \(x_0\). Thus

\[
 \exists \delta(\epsilon, x_0) > 0 : |(f(x) - f_n(\epsilon, x_0)(x)) - (f(x_0) - f_n(\epsilon, x_0)(x_0))| < \epsilon \quad \forall \ x \in B_\delta(\epsilon, x_0)(x_0).
\]

So for \(x \in B_\delta(\epsilon, x_0)(x_0)\), we have

\[
 f(x) - f_n(\epsilon, x_0)(x) < \epsilon + f(x_0) - f_n(\epsilon, x_0)(x_0) < 2\epsilon.
\]

Note that \(\{B_\delta(\epsilon, x)(x)\}\) form an open cover of \(X\) compact, thus

\[
 \exists x_1, \ldots, x_N \in X : X \subseteq \bigcup_{k=1}^N B_\delta(\epsilon, x_k(x_k))
\]

Let \(n_\epsilon = \max_{1 \leq k \leq N} n(\epsilon, x_k)\) and \(n \geq n_\epsilon\). For \(x \in X\),

\[
 \exists 1 \leq k \leq N : x \in B_\delta(\epsilon, x_k(x_k))
\]

Then \(f(x) - f_n(x) \leq f(x) - f_n(\epsilon, x_0)(x) < 2\epsilon\). By definition, \(f_n \xrightarrow{n \to \infty} f\).

Remark. The compactness of \(X\) is essential. Consider \(f_n : (0,1) \to \mathbb{R}, f_n(x) = \frac{1}{n+x^2}\), continuous, \(f_n(x) \geq f_{n+1}(x) \forall x \in (0,1), n \geq 1\). Then \(\{f_n\}_{n \geq 1}\) converges pointwise to \(f : (0,1) \to \mathbb{R}, f \equiv 0\). But the convergence isn’t uniform: \(d(f_n, f) = \sup_{x \in (0,1)} \frac{1}{n+x^2} = 1 \neq 0\).

Theorem. Let \((X,d_X)\) be a metric space and \(C(X) = \{f : X \to \mathbb{R} : f \text{ is bounded and continuous}\}\). For \(f, g \in C(X)\), let \(d(f, g) = \sup_{x \in X} |f(x) - g(x)|\). Then \((C(X), d)\) is a metric space.

Exercise. \((C(X), d)\) is complete, connected, but not compact because unbounded.

Definition. Let \(F \subseteq C(X)\).

- We say \(F\) is **uniformly bounded** if \(\exists M > 0 : |f(x)| \leq M \forall f \in F, x \in X\).
- We say \(F\) is **equicontinuous** if \(\forall \epsilon > 0, \exists \delta > 0 : d(f(x), f(y)) < \epsilon \forall f \in F, x, y \in X : d(x, y) < \delta\).

Arzela-Ascoli

Theorem. Let \([a, b]\) be a compact interval in \(\mathbb{R}\). Let \(F \subseteq C([a, b])\). The following statements are equivalent.

1. Every sequence in \(F\) admits a (necessarily) uniformly convergent subsequence.
2. \(F\) is uniformly bounded and equicontinuous.

Proof. \(1 \implies 2\)
Let’s show F is uniformly bounded, that is, F is bounded with respect to the uniform metric. Indeed, if F were not uniformly bounded, then we would be able to construct a sequence

$$\{f_n\}_{n \geq 1} \subseteq F : d(f_1, f_{n+1}) > 1 + d(f_1, f_n) \forall n \geq 1.$$

Then $d(f_n, f_m) \geq |d(f_1, f_n) - d(f_1, f_m)| > |n - m|$. So $\{f_n\}_{n \geq 1}$ cannot have a convergent subsequence.

Let’s show F is totally bounded. Let $\varepsilon > 0, f_1 \in F$.

* If $F \subseteq B_\varepsilon(f_1)$, then F is totally bounded. Otherwise, $\exists f_2 \in F : d(f_2, f_1) \geq \varepsilon$.
* If $F \subseteq B_\varepsilon(f_1) \cup B_\varepsilon(f_2)$, then F is totally bounded. Otherwise, $\exists f_3 \in F : d(f_1, f_3) \geq \varepsilon, d(f_2, f_3) \geq \varepsilon$.
* ... If this process terminates in finitely many steps, then F is totally bounded. Otherwise, we find a sequence

$$\{f_n\}_{n \geq 1} \subseteq F : d(f_n, f_m) \geq \varepsilon \forall n \neq m.$$

This sequence doesn’t admit a convergent subsequence.

Let’s show F is equicontinuous. Let $\varepsilon > 0$. As F is totally bounded,

$$\exists f_1, \ldots, f_n \in F : F \subseteq \bigcup_{k=1}^n B_{\varepsilon/10}(f_k).$$

Fix $1 \leq k \leq n$. As $f_k : [a, b] \rightarrow \mathbb{R}$ is continuous, it is uniformly continuous. So

$$\exists \delta_k(\varepsilon) > 0 : |f_k(x) - f_k(y)| < \frac{\varepsilon}{10} \forall x, y \in [a, b], |x - y| < \delta_k.$$

Let $\delta(\varepsilon) = \min_{1 \leq k \leq n} \delta_k(\varepsilon)$. Then $\forall x, y \in [a, b]$ with $|x - y| < \delta$ and all $1 \leq k \leq n$, we have

$$|f_k(x) - f_k(y)| < \frac{\varepsilon}{10}.$$

Let $f \in F$, then

$$\exists 1 \leq k \leq n : f \in B_{\varepsilon/10}(f_k).$$

For $x, y \in [a, b]$ with $|x - y| < \delta$ we get

$$|f(x) - f(y)| \leq |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)|$$

$$\leq 2d(f, f_k) + |f_k(x) - f_k(y)| < 2\frac{\varepsilon}{10} + \frac{\varepsilon}{10} < \varepsilon.$$

By definition, F is equicontinuous.

2 \implies 1 Assume F is uniformly bounded and equicontinuous. Let $\{f_n\}_{n \geq 1} \subseteq F$. If $q \in [a, b] \cap \mathbb{Q}$, then $\{f_n(q)\}_{n \geq 1}$ is a bounded sequence of real numbers. In particular, $\{f_n(q)\}_{n \geq 1}$ has a convergent subsequence. Passing to a subsequence for every $q \in [a, b] \cap \mathbb{Q}$ (using the fact that $[a, b] \cap \mathbb{Q}$ is countable) and using a diagonal argument, we find a subsequence $\{f_{k_n}(j_q)\}_{n \geq 1}$ that converges at every rational $q \in [a, b]$. Let $\varepsilon > 0$. As F is equicontinuous,

$$\exists \delta > 0 : |f(x) - f(y)| < \frac{\varepsilon}{10} \forall f \in F, |x - y| < \delta.$$

As $[a, b]$ is compact,

$$\exists q_1, \ldots, q_N \in [a, b] \cap \mathbb{Q} : [a, b] \subseteq \bigcup_{j=1}^N (q_j - \delta, q_j + \delta).$$

Now $\{f_{k_n}(q_j)\}$ is convergent so

$$\exists n_j(\varepsilon) \in \mathbb{N} : |f_{k_n}(q_j) - f_{k_m}(q_j)| < \frac{\varepsilon}{10} \forall n, m \geq n_j(\varepsilon).$$

Let $x \in [a, b]$, then $\exists 1 \leq j \leq N : |x - q_j| < \delta$. Now

$$|f_{k_n}(x) - f_{k_m}(x)| < |f_{k_n}(x) - f_{k_n}(q_j)| + |f_{k_n}(q_j) - f_{k_m}(q_j)| + |f_{k_m}(q_j) - f_{k_m}(x)| < \varepsilon \forall n, m \geq n(\varepsilon).$$

We proved that $\{f_{k_n}\}_{n \geq 1}$ is Cauchy with respect to the uniform metric. Let $f(x) = \lim_{n \to \infty} f_{k_n}(x)$. We have by Weierstrass

$$f_{k_n} \xrightarrow{n \to \infty} f \in C([a, b]).$$
Corollary. Let $F \subseteq C([a,b])$. Then F is compact iff F is closed, uniformly bounded, and equicontinuous.

Remark.
- The compactness of $[a, b]$ is essential. Let

 \[
 F = \{ f : \mathbb{R} \to \mathbb{R}, |f(x) - f(y)| \leq |x - y|, \sup_{x \in \mathbb{R}} |f(x)| \leq 1 \}.
 \]

 Then F is uniformly bounded and equicontinuous. Consider $f : \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{1+|x|^2}$. Clearly, $\sup_{x \in \mathbb{R}} |f(x)| = \sup_{x \in \mathbb{R}} \frac{1}{1+|x|^2} = 1$. For $x, y \in \mathbb{R}$,

 \[
 |f(x) - f(y)| = \frac{1}{1+x^2} - \frac{1}{1+y^2} = \frac{|x - y||x + y|}{(1+x^2)(1+y^2)} \leq |x - y| \left(\frac{|x|}{1 + x^2} + \frac{|y|}{1 + y^2} \right) \leq |x - y| \left(\frac{1}{2} + \frac{1}{2} \right) = |x - y|.
 \]

 For $n \geq 1$, let $f_n(x) = f(x - n) = \frac{1}{1+(x-n)^2}$. For $x \in \mathbb{R}, f_n(x) \xrightarrow{n \to \infty} 0$. So $\{f_n\}_{n \geq 1}$ converges pointwise to the function $g : \mathbb{R} \to \mathbb{R}, g \equiv 0$. However, $\{f_n\}_{n \geq 1}$ doesn’t admit a uniformly convergent subsequence because $\sup_{x \in \mathbb{R}} f_n(x) = 1 \forall n \geq 1$.

- The uniform boundedness of F is essential. Take $F = \{ f : [0,1] \to \mathbb{R} : f$ is constant $\}$. This is equicontinuous but not uniformly bounded. Indeed, $f_n(x) \equiv n$ doesn’t admit a convergent subsequence.

- The equicontinuity of F is essential. Consider

 \[
 F = \{ f : [0,1] \to \mathbb{R}, f$ is continuous, $\sup_{x \in [0,1]} |f(x)| \leq 1 \}.
 \]

 This set is not equicontinuous. For $n \geq 1$, let $f_n : [0,1] \to \mathbb{R}, f_n(x) = \sin(nx)$. Let $x_n = \frac{\pi}{2n}, y_n = \frac{\pi}{2n}$. Then $|x_n - y_n| = \frac{\pi}{n} \xrightarrow{n \to \infty} 0$. But $|f_n(x_n) - f_n(y_n)| = 2$. The sequence $\{f_n\}_{n \geq 1}$ doesn’t admit a uniformly convergent subsequence. Assume, towards a contradiction, that $\exists \{f_n\}_{n \geq 1}$ that converges uniformly. By Weierstrass, the limit function $f : [0,1] \to \mathbb{R}$ is continuous. As $f_n(0) = 0$, we must have $f(0) = 0$. Then f continuous at $x = 0$ yields

 \[
 \implies \forall \epsilon > 0, \exists \delta > 0 : |f(x)| < \epsilon \forall 0 \leq x < \delta.
 \]

 Moreover,

 \[
 f_{k_n} \xrightarrow{u}{\sup}_{n \to \infty} f, \exists N \in \mathbb{N} : |f_{k_n}| < 2\epsilon \forall n \geq N, 0 \leq x < \delta.
 \]

 But $f_{k_n}(\frac{x}{2\pi k_n}) = 1$. Take n sufficiently large: $\frac{x}{2\pi k_n} < \delta$ to get a contradiction.

The oscillation of a function

Definition. Let (X,d) be a metric space, $\emptyset \neq A \subseteq X, f : X \to \mathbb{R}$. The oscillation of a function on A is $\omega(f,A) = \sup_{x \in A} f(x) - \inf_{x \in A} f(x) = \sup_{x,y \in A} (f(x) - f(y)) \geq 0$. The oscillation of f at $x_0 \in X$ is $\omega(f,x_0) = \inf_{r>0} \omega(f,B_r(x_0))$.

Proposition. Let (X,d) be a metric space, $f : X \to \mathbb{R}$. Then f is continuous at $x_0 \in X$ iff $\omega(f,x_0) = 0$.

Proof. Let $\epsilon > 0$.

\[\implies \quad \text{As } f \text{ is continuous at } x_0, \exists \delta > 0 : |f(x) - f(y)| < \frac{\epsilon}{2} \forall x \in B_\delta(x_0). \text{ Then for } x \in B_\delta(x_0), f(x) - \frac{\epsilon}{2} < f(x) < f(x_0) + \frac{\epsilon}{2} \implies f(x_0) - \frac{\epsilon}{2} \leq \inf_{x \in B_\delta(x_0)} f(x) \leq \sup_{x \in B_\delta(x_0)} f(x) \leq f(x) + \frac{\epsilon}{2} \implies \omega(f,B_\delta(x_0)) \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \implies \omega(f,x_0) \leq \epsilon. \]

\[\iff \quad \text{We have } \omega(f,x_0) = \inf_{\delta>0} \omega(f,B_\delta(x_0)) = 0 < \epsilon \implies \exists \delta > 0 : \omega(f,B_\delta(x_0)) < \epsilon \implies \sup_{x,y \in B_\delta(x_0)} (f(x) - f(y)) < \epsilon \implies \sup_{x \in B_\delta(x_0)} |f(x) - f(x_0)| < \epsilon \implies |f(x) - f(x_0)| < \epsilon \forall x \in B_\delta(x_0). \]

This shows f is continuous at x_0.

\[\Box \]
Proposition. Let \((X, d)\) be a metric space, \(f : X \to \mathbb{R}\) be a function, and \(\alpha > 0\). Then \(A = \{x \in X : \omega(f, x) < \alpha\}\) is open.

Proof. Let \(x_0 \in A \implies \omega(f, x_0) = \inf_{\delta > 0} \omega(f, B_\delta(x_0)) < \alpha \implies \exists \delta > 0 : \omega(f, B_\delta(x_0)) < \alpha.

Claim. \(B_\delta(x_0) \subseteq A\)

Let \(y \in B_\delta(x_0)\). Then \(B_{\delta - d(x_0, y)}(y) \subseteq B_\delta(x_0)\) and \(\omega(f, y) \leq \omega(f, B_{\delta - d(x_0, y)}(y)) \leq \omega(f, B_\delta(x_0)) < \alpha\). So \(y \in A\).

Remark. Let \((X, d)\) is a metric space, \(f : X \to \mathbb{R}\). Then \(\{x \in X : f\text{ is continuous at }x\} = \{x \in X : \omega(f, x) = 0\} = \bigcap_{n \geq 1} \{x \in X : \omega(f, x) < \frac{1}{n}\} = \bigcap_{n \geq 1} \{G_n\} \text{ open.}\) Note \(G_{n+1} \subseteq G_n \forall n \geq 1\).

Exercise. Show that there are no functions \(f : \mathbb{R} \to \mathbb{R}\) such that \(f\) is continuous at every rational point and discontinuous at every irrational point.

Proof. By contradiction. Assume \(f : \mathbb{R} \to \mathbb{R}\) is continuous on \(\mathbb{R}\) and discontinuous on \(\mathbb{R} \setminus \mathbb{Q}\). Then \(Q = \bigcap_{n \geq 1} G_n\) with \(G_n = \bar{G}_n\). As \(Q\) is dense in \(\mathbb{R}\), we get \(\bar{G}_n = \mathbb{R} \forall n \geq 1 \implies \bigcap_{n \geq 1} \bar{G}_n = \mathbb{R}\). Let \(\{q_n\}_{n \geq 1}\) denote an enumeration of \(Q\). For \(n \geq 1\), let \(H_n = \mathbb{R} \setminus \{q_n\} = (-\infty, q_n) \cup (q_n, \infty)\) open. Moreover, \(\overline{H_n} = \mathbb{R}\). As \(\mathbb{R}\) is complete, if satisfied the Baire property, that is, if \(\{A_n\}_{n \geq 1}\) is a sequence of open dens sets, then \(\bigcap_{n \geq 1} A_n = \mathbb{R}\). Then we must have that \((\bigcap_{n \geq 1} G_n) \cup (\bigcap_{n \geq 1} H_n) = \emptyset\), contradiction.

Lemma. Let \((X, d)\) be a metric space with the Baire property and \(\emptyset \neq W = \overline{W} \subseteq X\). Then \(W\) has the Baire property.

Proof. Let \(\{D_n\}_{n \geq 1}\) be a sequence of open, dense sets in \(W\). As \(D_n\) is open in \(W\), \(\exists G_n\) open in \(X\) : \(D_n = G_n \cap W\) open in \(X\). Also \(\overline{D_n} \cap W = W \implies W \subseteq \overline{D_n} \implies W \subseteq \overline{D_n} \forall n \geq 1\).

For \(n \geq 1\), let \(B_n = D_n \cup \omega(W)\) open in \(X\). Then \(\overline{B_n} = D_n \cup \omega(W) \supseteq W \cup \omega(W) = X \implies B_n\) is dense in \(X\). As \(X\) has the Baire property,

\[
X = \bigcap_{n \geq 1} B_n = \bigcap_{n \geq 1} (D_n \cup \omega(W)) = (\bigcap_{n \geq 1} D_n) \cup \omega(W) = \bigcap_{n \geq 1} D_n \cup \omega(W) = \bigcap_{n \geq 1} D_n \cup \omega(W) \cap W = \left(\bigcap_{n \geq 1} D_n \cap W\right) \cup (\omega(W) \cap W).
\]

But \(W = \overline{W} \subseteq \overline{W} \implies \omega(W) \cap W = \emptyset\). So \(\bigcap_{n \geq 1} D_n\) is dense in \(W\).

Theorem. Let \((X, d)\) be a metric space with the Baire property. If \(f_n : X \to \mathbb{R}\) are continuous functions converging pointwise to \(f : X \to \mathbb{R}\), then the set of points at which \(f\) is continuous is dense in \(X\).

Claim. It suffices to prove the theorem under the additional hypothesis that \(|f_n(x)| \leq 1 \forall n \geq 1, x \in X\).

Proof. Indeed, assume that the theorem holds for this restricted set of functions and let \(\{f_n\}_{n \geq 1}\) be as in the theorem. Consider \(\phi : \mathbb{R} \to (-1, 1), \phi(x) = \frac{x}{1 + |x|}\) bijective continuous with inverse \(\phi^{-1} : (-1, 1) \to \mathbb{R}, \phi(y) = \frac{y}{1 - |y|}\) continuous. Then \(\phi \circ f_n : X \to (-1, 1)\) is continuous, \(\{\phi \circ f_n\}_{n \geq 1}\) is uniformly bounded by 1, and \(\phi \circ f_n \xrightarrow{n \to \infty} \phi \circ f\) pointwise. Then \(\{x \in X : \phi \circ f \text{ is continuous at }x\}\) is dense in \(X\). As \(\phi \circ f\) is continuous at \(x \iff f\) is continuous at \(x\), we get the claim.
We have $X = \cup_{n\geq 1} F_n$. Since
\[
\forall x \in X, \exists n(x) \in \mathbb{N} : x \in F_{n(x)}, F_n = \{ x \in X : \sup_{k \geq n} f_k(x) - \inf_{l \geq n} f_l(x) \leq \frac{1}{4N} \} = \{ x \in X : \sup_{k,l \geq n} (f_k(x) - f_l(x)) \leq \frac{1}{4N} \} = \cap_{k,l \geq n} \{ x \in X : f_k(x) - f_l(x) \leq \frac{1}{4N} \}.
\]

But
\[
\{ x \in X : (f_k - f_l)(x) \leq \frac{1}{4N} \} = (f_k - f_l)^{-1}([-2, \frac{1}{4N}])
\]
is the continuous preimage of a closed set, hence it’s closed. Thus F_n is closed so
\[
X = \cup_{n\geq 1} F_n \implies W = \cup_{n\geq 1} (F_n \cap W),
\]
which is the union of closed sets in W. By the previous lemma, W has the Baire property, and $\hat{W} \neq \emptyset$ so $\exists n_1 \geq 1 : F_{n_1} \cap W \neq \emptyset$. Let
\[
x_0 \in F_{n_1} \cap W \implies \exists \delta > 0 : B_\delta(x_0) \subseteq F_{n_1} \cap \hat{W}.
\]
Since f_{n_1} is continuous at x_0, shrinking δ if necessary, we may assume $\omega(f_{n_1}, B_\delta(x_0)) < \frac{1}{2N}$. We will show $x_0 \in G_N$. In particular, $x_0 \in G_N \cap W \neq \emptyset$. Then
\[
\omega(f, B_\delta(x_0)) = \sup_{x \in \overline{B}_\delta(x_0)} |f(x) - f(y)| \leq \sup_{x \in \overline{B}_\delta(x_0)} |v_n(x) - u_n(y)|
\]
\[
= \sup_{x \in \overline{B}_\delta(x_0)} |v_n(x) - u_n(x) + u_n(x) - v_n(y) + v_n(y) - u_n(y)|
\]
\[
\leq \sup_{x \in \overline{B}_\delta(x_0)} |v_n(x) - u_n(x)| + \sup_{x \in \overline{B}_\delta(x_0)} |u_n(x) - v_n(y)| + \sup_{x \in \overline{B}_\delta(x_0)} |v_n(y) - u_n(y)|
\]
\[
\leq \frac{1}{4N} + \sup_{x \in \overline{B}_\delta(x_0)} |f_n(x) - f_n(y)| + \frac{1}{4N} < \frac{1}{2N} \implies x_0 \in G_N.
\]

\[\Box\]

Weierstrass approximation

Theorem. Let $f : [a, b] \to \mathbb{R}$ be continuous. Then there exists polynomials $P_n : [a, b] \to \mathbb{R}$ of degree at most n such that $P_n \xrightarrow{n \to \infty} f$ on $[a, b]$.

Proof. We may assume $[a, b] = [0, 1]$. Indeed, the function $\phi : [0, 1] \to [a, b], \phi(t) = (1-t)a + tb$ is bijective and continuous. Then $f \circ \phi : [0, 1] \to \mathbb{R}$ is continuous. If we find polynomials P_n of degree at most $n : P_n \xrightarrow{n \to \infty} f \circ \phi$ on $[0, 1]$, then $P_n \circ \phi^{-1} \xrightarrow{n \to \infty} f$ on $[a, b]$. From now on, $[a, b] = [0, 1]$. For $n \geq 0$, let $P_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k}$ be Bernstein polynomials. We will show $P_n \xrightarrow{n \to \infty} f$ on $[0, 1]$. Let $\epsilon > 0$. As $f : [0, 1] \to \mathbb{R}$ is continuous, f is uniformly continuous. Thus $\exists \delta > 0 : |f(x) - f(y)| < \epsilon \forall x, y \in [0, 1], |x - y| < \delta$. Fix $x \in [0, 1]$. Then
\[
|P_n(x) - f(x)| = \left| \sum_{k=0}^n \binom{n}{k} \frac{f_k}{n} x^k (1-x)^{n-k} - f(x) \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \right|
\]
\[
\leq \sum_{k=0}^n |f_k - f(x)| \binom{n}{k} x^k (1-x)^{n-k}
\]
\[
\leq \sum_{0 \leq k \leq n, |x - \frac{k}{n}| < \delta} |f_k - f(x)| \binom{n}{k} x^k (1-x)^{n-k} + \sum_{0 \leq k \leq n, |nx - k| \geq \delta} |f_k - f(x)| \binom{n}{k} x^k (1-x)^{n-k}
\]
\[
\leq \epsilon \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} + 2 \sup_{y \in [0,1]} |f(y)| \sum_{k=0}^n \binom{n}{k} \frac{(nx - k)^2}{n^2 \delta^2} \binom{n}{k} x^k (1-x)^{n-k}
\]
\[
\leq \epsilon + 2 \sup_{y \in [0,1]} |f(y)| \frac{1}{n^2 \delta^2} \sum_{k=0}^n (nx - k)^2 \binom{n}{k} x^k (1-x)^{n-k}.
\]
Now compute
\[\sum_{k=0}^{n} (nx - k)^2 \binom{n}{k} x^k (1-x)^{n-k}\]
\[= n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} - 2n x \sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} + \sum_{k=0}^{n} k^2 \binom{n}{k} x^k (1-x)^{n-k}\]
\[= n^2 x^2 - 2n^2 x^2 \sum_{k=1}^{n-1} \frac{(n-1)!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k} + \sum_{k=1}^{n} k(n-1) \frac{n!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k}\]
\[= -n^2 x^2 + n(n-1)x^2 \sum_{k=1}^{n-1} \frac{(n-2)!}{(k-2)!(n-k)!} x^{k-2} (1-x)^{n-k} + n x \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k}\]
\[= -n^2 x^2 + n^2 x^2 - n x^2 + nx = nx(1-x) \leq \frac{n}{4}.
\]
Thus \(|P_n(x) - f(x)| \leq \epsilon + 2 \sup_{y \in [0,1]} |f(y)| \frac{1}{\pi^2} \frac{\pi^2}{2} < 2\epsilon\) for \(n\) large depending only on \(\delta\) and \(\sup_{y \in [0,1]} |f(y)|\). This proves uniform convergence. \(\square\)

Exercise. Let \(a > 0\). Show that there are polynomials \(P_n : [-a, a] \to \mathbb{R}\) of degree \(\leq n\) such that \(P_n(0) = 0\) and \(P_n \xrightarrow{n \to \infty} |x|\) on \([-a, a]\).

Proof. Note \(f : [-a, a] \to \mathbb{R}, f(x) = |x|\) is continuous, thus by the Weierstrass approximation theorem, \(\exists Q_n : [-a, a] \to \mathbb{R}\) polynomial of degree \(\leq n\) such that \(Q_n \xrightarrow{n \to \infty} |x|\) on \([-a, a]\). Note \(Q_n(0) \xrightarrow{n \to \infty} 0\). Let \(P_n(x) = Q_n(x) - Q_n(0)\) polynomial of degree \(\leq n\) and \(P_n(0) = 0\).

Claim. \(P_n \xrightarrow{n \to \infty} |x|\) on \([-a, a]\).

Notice \(|P_n(x) - |x|| \leq |Q_n(x) - |x|| + |Q_n(0)|\). Given \(\epsilon > 0\),
\[\exists n_1(\epsilon) \in \mathbb{N} : \sup_{x \in [-a, a]} |Q_n(x) - |x|| < \frac{\epsilon}{2} \quad \forall \ n \geq n_1(\epsilon)\]
\[\exists n_2(\epsilon) \in \mathbb{N} : |Q_n(0)| < \frac{\epsilon}{2} \quad \forall \ n \geq n_2(\epsilon)\]
For \(n \geq n(\epsilon) = \max\{n_1(\epsilon), n_2(\epsilon)\}\), we have \(|P_n(x) - |x|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall \ x \in [-a, a]\). Thus \(P_n \xrightarrow{n \to \infty} |x|\) on \([-a, a]\). \(\square\)

Definition. Let \((X, d)\) be a metric space. A set of real-valued functions \(A \subseteq \{f : X \to \mathbb{R}\}\) is called an **algebra** if
1. If \(f, g \in A\), then \(f + g \in A\).
2. If \(f, g \in A\), then \(fg \in A\).
3. If \(f \in A\) and \(\lambda \in \mathbb{R}\), then \(\lambda f \in A\).

Stone-Weierstrass

Theorem. Let \((X, d)\) be a compact metric space and \(A \subseteq C(X)\) be an algebra. Assume that \(A\) satisfies the following two properties:
1. \(A\) separates points in \(X\), that is, if \(x, y \in X\) with \(x \neq y\), then \(\exists f \in A : f(x) \neq f(y)\).
2. \(A\) vanishes at no point in \(X\), that is, if \(x \in X\), then \(\exists f \in A : f(x) \neq 0\).

Then \(A\) is dense in \(C(X)\).

Example. \(A = \{P : X \to \mathbb{R}\text{ polynomials}\}\) is an algebra, it separates points, and vanishes at no point.

Definition. Let \(f : \mathbb{R} \to \mathbb{R}\) be a function. For \(a \in \mathbb{R}\), we write \(\lim_{x \to a} f(x) = L \in \mathbb{R}\) if for any sequence \(\{x_n\}_{n \geq 1} \subseteq \mathbb{R} \setminus \{a\} : x_n \xrightarrow{n \to \infty} a\), we have \(f(x_n) \xrightarrow{n \to \infty} L\). Equivalently, if \(\forall \epsilon > 0, \exists \delta > 0 : x \in (a - \delta, a + \delta) \setminus \{a\} \implies |f(x) - L| < \epsilon\).
Exercise. Extend this definition to cover $L = \pm \infty, a = \pm \infty$.

Remark. f is continuous at $a \in \mathbb{R}$ iff $\lim_{x \to a} f(x) = f(a)$. Similarly, one defines the left-limit $f(a^-) = \lim_{x \to a^-} f(x)$ and the right-limit $f(a^+) = \lim_{x \to a^+} f(x)$.

Differentiation

Definition. Let I be an open interval and $f : I \to \mathbb{R}$ a function. We say f is differentiable at $a \in I$ if $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists and is finite. In this case we write $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ and we call it the derivative of f at a.

Example. Fix $n \geq 1, f : \mathbb{R} \to \mathbb{R}, f(x) = x^n$. For $a \in \mathbb{R}, x \neq a, \frac{f(x) - f(a)}{x - a} = x^n - a^n = x^{n-1} + x^{n-2}a + \ldots + a^{n-1} \xrightarrow{n \to \infty} na^{n-1}$. So $f'(a) = na^{n-1}$.

Lemma. Let I be an open interval, $f : I \to \mathbb{R}$ be a differentiable at $a \in I$. Then f is continuous at a.

Proof. For $x \in I \setminus \{a\}$ we write $f(x) = \frac{f(x) - f(a)}{x - a}(x-a) + f(a)$. Then $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$ and $\lim_{x \to a} (x-a) = 0$. Thus $\lim_{x \to a} f(x) = f(a)$.

Theorem. Let I be an open interval and $f, g : I \to \mathbb{R}$ be differentiable at $a \in I$. Then g is differentiable at $g(a)$ for

1. for any $\lambda \in \mathbb{R}, \lambda f$ is differentiable at a and $(\lambda f)' = \lambda f'$.
2. $f + g$ is differentiable at a and $(f + g)'(a) = f'(a) + g'(a)$.
3. fg is differentiable at a and $(fg)'(a) = f'(a)g(a) + f(a)g'(a)$.
4. if $g(a) \neq 0$ then $\frac{f}{g}$ is differentiable at a then $(\frac{f}{g})'(a) = \frac{f(a)g(a) - f(a)g'(a)}{g(a)^2}$.

Proof. 1. For $x \neq a$, $(\frac{\lambda f(x) - \lambda f(a)}{x - a}) = \frac{\lambda(f(x) - f(a))}{x - a} \xrightarrow{x \to a} \lambda f'(a).

2. For $x \neq a$, $(\frac{f(x) + g(x) - f(a) - g(a)}{x - a}) = \frac{(f(x) - f(a))}{x - a} + \frac{(g(x) - g(a))}{x - a} \xrightarrow{x \to a} f'(a) + g'(a).

3. For $x \neq a$, $(\frac{f(a)g(x) - f(x)g(a)}{x - a}) = \frac{(f(x) - f(a))g(x)}{x - a} \xrightarrow{x \to a} f'(a)g(a) + f(a)g'(a).

4. For $x \neq a$, $(\frac{f(x) - f(a)}{x - a}g(x) - f(a)\frac{g(x)}{x - a}) = \frac{f(x) - f(a)}{g(x)} + \frac{f(a)}{g(x)}\frac{g(x) - g(a)}{x - a} \xrightarrow{x \to a} f'(a)\frac{1}{g(a)} + f(a)\frac{1}{g(a)}g'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$.

Theorem. Let I and J be open intervals and assume $f : I \to \mathbb{R}$ is differentiable at $a \in I$ and $g : J \to \mathbb{R}$ is differentiable at $f(a) \in J$. Then $g \circ f$ is well-defined on a neighbourhood of a, is differentiable at a and $(g \circ f)'(a) = g'(f(a))f'(a)$.

Proof. As $f(a) \in J$ open, $\exists \epsilon > 0 : (f(a) - \epsilon, f(a) + \epsilon) \subseteq J$. Since f is continuous at $a, \exists \delta > 0 : \forall x \in I$ then $|f(x) - f(a)| < \epsilon$. As I is open, choosing δ even smaller (if necessary), we may ensure $(a - \delta, a + \delta) \subseteq I$. So $g \circ f$ is well-defined on $(a - \delta, a + \delta)$. Let

$$h(y) = \begin{cases} \frac{g(y) - g(f(a))}{y - f(a)} & y \in J \setminus \{f(a)\} \\ \frac{g'(f(a))}{y - f(a)} & y = f(a) \end{cases}$$

As g is differentiable at $f(a)$, we have $\lim_{y \to f(a)} h(y) = \lim_{y \to f(a)} \frac{g(y) - g(f(a))}{y - f(a)} = g'(f(a)) = h(f(a))$. So h is continuous at $f(a)$. So for $y \in J \setminus \{f(a)\}$, we write $g(y) - g(f(a)) = h(y)(y - f(a))$. For $x \in (a - \epsilon, a + \epsilon) \setminus \{a\}$ we have $g(f(x)) - g(f(a)) = h(f(x))(f(x) - f(a)) \iff \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} = h(f(x)) \xrightarrow{x \to a} g'(f(a))f'(a) \iff (g \circ f)'(a) = g'(f(a))f'(a)$.
Proof. Assume \(f \) attains its maximum at \(x_0 \). Otherwise, replace \(f \) by \(-f \).

- For \(x_n \in (a, x_0) \) with \(x_n \xrightarrow{n \to \infty} x_0 \) we have \(f'(x_0) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \geq 0 \).
- For \(x_n \in (x_0, b) \) with \(x_n \xrightarrow{n \to \infty} x_0 \) we have \(f'(x_0) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \leq 0 \).

Combining the two, we get \(f'(x_0) = 0 \). \(\square \)

Rolle

Theorem. Assume \(f : [a, b] \to \mathbb{R} \) is continuous on \([a, b]\) and differentiable on \((a, b)\). If \(f(a) = f(b) \), then \(\exists \ x_0 \in (a, b) : f'(x_0) = 0 \).

Proof. As \(f \) is continuous on the compact interval \([a, b]\), it attains its maximum and minimum on \([a, b]\). Thus \(\exists \ y_0, z_0 \in [a, b] : f(y_0) \leq f(x) \leq f(z_0) \ \forall \ x \in [a, b]. \)

1. Suppose \(\{y_0, z_0\} = \{a, b\}. \) As \(f(a) = f(b) \) we get that \(f \) is constant on \([a, b]\). Then \(\forall \ x \in (a, b) \) we have

\[
\frac{f'(x)}{f(y)-f(x)} = 0.
\]

2. Suppose either \(y_0 \notin \{a, b\} \) or \(z_0 \notin \{a, b\} \). If \(y_0 \in \{a, b\} \), then by the previous theorem, \(f'(y_0) = 0 \). Likewise for \(z_0 \).

\(\square \)

Mean value theorem

Theorem. Assume \(f : [a, b] \to \mathbb{R} \) is continuous on \([a, b]\) and differentiable on \((a, b)\). Then \(\exists \ x_0 \in (a, b) : f'(x_0) = \frac{f(b)-f(a)}{b-a} \).

Remark. If \(f(a) = f(b) \), we recover Rolle’s theorem.

Proof. Let \(l : [a, b] \to \mathbb{R} \) given by \(l(x) = f(a) + \frac{l(b)-f(a)}{b-a} (x-a) \). Then \(l \) is continuous on \([a, b]\), differentiable on \((a, b)\) with \(l'(x) = \frac{l(b)-f(a)}{b-a} \ \forall \ x \in (a, b) \) and \(l(a) = f(a), l(b) = f(b) \). Let \(g : [a, b] \to \mathbb{R}, g(x) = f(x) - l(x) \) continuous on \([a, b]\), differentiable on \((a, b)\) and \(g(a) = g(b) = 0 \). By Rolle’s theorem, \(\exists \ x_0 \in (a, b) : g'(x_0) = 0 = f'(x_0) - \frac{l(b)-f(a)}{b-a} \iff f'(x_0) = \frac{l(b)-f(a)}{b-a}. \)

Corollary. If \(f : (a, b) \to \mathbb{R} \) is differentiable with \(f'(x_0) = 0 \ \forall \ x \in (a, b) \), then \(f \) is constant.

Proof. Assume, towards a contradiction, that \(\exists \ a < x_1 < x_2 < b : f(x_1) \neq f(x_2). \) As \(f \) is differentiable on \((a, b)\), it’s continuous on \([a, b]\). Thus \(f \) is continuous on \([x_1, x_2]\) and differentiable on \((x_1, x_2)\). By the mean value theorem, \(\exists \ x_0 \in (x_1, x_2) : 0 = f'(x_0) = \frac{f(x_2)-f(x_1)}{x_2-x_1}. \) But \(f'(x_0) = 0 \ \forall \ x \in (a, b) \) by hypothesis, so \(f(x_2) - f(x_1) = 0 \iff f(x) = f(x_2) \), contradiction.

Corollary. If \(f, g : (a, b) \to \mathbb{R} \) are differentiable with \(f'(x) = g'(x) \ \forall \ x \in (a, b) \), then \(\exists \ c \in \mathbb{R} : f(x) = g(x) + c \ \forall \ x \in (a, b) \).

Corollary. Let \(f : (a, b) \to \mathbb{R} \) be differentiable.

1. If \(f'(x_0) \geq 0 \ \forall \ x \in (a, b) \), then \(f \) is increasing.
2. If \(f'(x_0) > 0 \ \forall \ x \in (a, b) \), then \(f \) is strictly increasing.
3. If \(f'(x_0) \leq 0 \ \forall \ x \in (a, b) \), then \(f \) is decreasing.
4. If \(f'(x_0) < 0 \ \forall \ x \in (a, b) \), then \(f \) is strictly decreasing.

Proof. 1. Let \(a < x_1 < x_2 < b \). Then \(f \) is continuous on \([x_1, x_2]\) because it’s continuous on \((a, b)\) and differentiable on \((x_1, x_2)\). By the mean value theorem, \(\exists \ x_0 \in (x_1, x_2) : 0 \leq f'(x_0) = \frac{f(x_2)-f(x_1)}{x_2-x_1}. \) Thus \(f(x_2) - f(x_1) \geq 0 \).

Exercise. Prove the remaining.
Intermediate value properties for derivatives

Theorem. Let \(f : (a, b) \to \mathbb{R} \) be differentiable. If \(a < x_1 < x_2 < b \) and \(\lambda \) lies between \(f'(x_1) \) and \(f'(x_2) \), then \(\exists \, x_0 \in (x_1, x_2) : f'(x_0) = \lambda \).

Proof. Assume WLOG that \(f'(x_1) < \lambda < f'(x_2) \). Let \(g : (a, b) \to \mathbb{R}, g(x) = f(x) - \lambda x \) be differentiable on \((a, b)\). Then \(g \) is continuous on \((a, b)\). We want to find \(x_0 \in (x_1, x_2) : g'(x_0) = 0 \). As \(g \) is continuous on \([x_1, x_2]\) compact, it attains its maximum at a point \(x_0 \in [x_1, x_2] \). If we can show that \(x_0 \notin \{x_1, x_2\} \), then \(x_0 \in (x_1, x_2) \) and \(g'(x_0) = 0 \). Let’s show \(x_0 \neq x_1 \). We have \(\lim_{x \to x_1} \frac{g(x) - g(x_1)}{x - x_1} = g'(x_1) = f'(x_1) - \lambda < 0 \). Thus \(\exists \, \delta > 0 : 0 < |x - x_1| < \delta \), then \(\frac{g(x) - g(x_1)}{x - x_1} < 0 \). For \(x_1 - \delta < x < x_1 \), we get \(g(x_1) < g(x) \) so \(g(x_1) \) is not a maximum and \(x_0 \neq x_1 \). Similarly, \(x_0 \neq x_2 \). \(\square \)

Theorem. Let \(I \) be an open interval and \(f : I \to \mathbb{R} \) be continuous and injective. Then \(J = f(I) \) is an interval. If \(f \) is differentiable at \(x_0 \in I \) and \(f'(x_0) \neq 0 \), then the inverse \(f^{-1} : J \to I \) is differentiable at \(y_0 = f(x_0) \) and \((f^{-1})'(y_0) = \frac{1}{f'(x_0)} \).

Proof. As \(f \) is injective and continuous, it’s strictly monotone. Therefore \(f^{-1} : J \to I \) is strictly monotone. As \(f^{-1}(J) = I \) is an interval, we have \(f^{-1} \) is continuous. Assume WLOG that \(f \) is increasing.

Claim. \(J \) is open.

Assume, towards a contradiction, that \(J \) is not open. Suppose \(\inf J \in J \). Then, as \(J = f(I), \exists \, a \in I : f(a) = \inf J \). As \(I \) is open, \(\exists \, \varepsilon > 0 : (a - \varepsilon, a + \varepsilon) \subseteq I \). As \(f \) is strictly increasing, we get \(\inf J = f(a) > f\left(\frac{a}{2}\right) \in J \), contradiction.

Exercise. Consider \(\sup J \in J \).

This shows \(J \) is open. We know \(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \neq 0 \implies \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)} \). Let \(\epsilon > 0 \). Then \(\exists \, \delta > 0 : 0 < |x - x_0| < \delta \implies |\frac{x - x_0}{f(x) - f(x_0)} - \frac{1}{f'(x_0)}| < \varepsilon, f^{-1} \) is continuous at \(y_0 \in J \). Then \(\exists \, \eta > 0 : 0 < |y - y_0| < \eta \implies 0 < |f^{-1}(y) - f^{-1}(y_0)| < \delta \). Putting these together, we get \(0 < |y - y_0| < \eta \implies |\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} - \frac{1}{f'(x_0)}| < \varepsilon \). Thus \(\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{1}{f'(x_0)} = (f^{-1})'(y_0) \). \(\square \)