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Compactness in metric spaces

Definition. Let (X, d) be a metric space.

• Let A ⊆ X. An open cover of A is any collection {Gi}i∈I of open sets such that A ⊆ ∪i∈IGi. The open
cover is called finite if I is finite. Otherwise, the open cover is called infinite.

• A set K ⊆ X is called compact if every open cover of K admits a finite subcover, that is, if {Gi}i∈I is an
open cover for K, then ∃ n ≥ 1 and i1, . . . , in ∈ I : K ⊆ ∪nj=1Gij .

Proposition. Let (X, d) be a metric space and let K ⊆ X be compact. Then K is closed and bounded.

Proof. We first show K is closed, then we show K is bounded.

• To show K is closed, it suffices to prove cK is open. If cK = ∅, then K is closed. Thus, we may assume
cK 6= ∅. Let x ∈ cK. For y ∈ K, let

ry =
1

2
d(x, y).

Consider the open set
Bry (y) = {z ∈ X : d(z, y) < ry}.

Then K ⊆ ∪y∈KBry (y). As K is compact, the open cover {Bry (y)}y∈K admits a finite subcover. Thus

∃ n ≥ 1 and y1, . . . , yn ∈ K : K ⊆ ∪ni=1Bri(yi),

where we used the shorthand ri = ryi . Let

r = min {ri} ∀ 1 ≤ i ≤ n.

Then
Br(x) ∩Bri(yi) = ∅ ∀ 1 ≤ i ≤ n.

Otherwise we find the contradiction

z ∈ Br(x) ∩Bri(yi) =⇒ d(x, yi) ≤ d(x, z) + d(z, yi) < r + ri ≤ 2ri = d(x, yi).

Thus
Br(x) ⊆ ∩ni=1

cBri(yi) = c (∪ni=1Bri(yi)) ⊆ cK.

By definition, cK is open and so K is closed.

• We show K is bounded. Clearly, {B1(y)}y∈K is an open cover of K. As K is compact, ∃ n ≥ 1 and
y1, . . . , yn ∈ K : K ⊆ ∪ni=1B1(yi). Let r = max1≤k≤n d(y1, yk) + 1. Then K ⊆ Br(y1).

Theorem. Let (X, d) be a metric space and let K ⊆ Y ⊆ X. Then K is compact in Y ⇐⇒ K is compact in X.

Proof. We prove both ways separately.

• ” =⇒ ” Let {Gi}i∈I be a collection of sets open in X such that K ⊆ ∪i∈IGi. Then Vi = Gi ∩ Y is open in
Y ∀ i ∈ I. We have K ⊆ (∪i∈IGi) ∩ Y = ∪i∈IVi. As K is compact in Y,∃ i1, . . . , in ∈ I : K ⊆ ∪nk=1Vik =⇒
K ⊆ ∪nk=1Gik . Thus K is compact in X.
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• ” ⇐= ” Let {Vi}i∈I be a collection of sets open in Y such that K ⊆ ∪i∈IVi. Then ∃ {Gi}i∈I open in
X : Vi = Gi ∩ Y ∀ i ∈ I. Thus {Gi}i∈I is an open cover for K. As K is compact in X,∃ i1, . . . , in ∈ I : K ⊆
∪nk=1Gik =⇒ K ⊆ ∪nk=1Vik . Thus K is compact in Y .

Proposition. Let (X, d) be a metric space and let F ⊆ K ⊆ X. If F is closed and K is compact, then F is
compact.

Proof. Let {Gi}i∈I be an open cover for F . As F ⊆ ∪i∈IGi =⇒ K ⊆ ∪i∈IGi ∪ cF . As K is compact,
∃ i1, . . . , in ∈ I : K ⊆ ∪nk=1Gik ∪ cF =⇒ F ⊆ ∪nk=1Gik .

Corollary. Let (X, d) be a metric space, F ⊆ X be closed and K ⊆ X be compact. Then F ∩K is compact.

Sequential compactness

Definition. Let (X, d) be a metric space. A set K ⊆ X is called sequentially compact if every sequence in K
admits a subsequence that converges in K.

Bolzano-Weierstrass

Theorem. Let (X, d) be a metric space. An infinite set K ⊆ X is sequentially compact ⇐⇒ every infinite set
A ⊆ K admits an accumulation point in K.

Proof. We prove both ways separately.

• ” =⇒ ” Let A ⊆ K be infinite. Then ∃ {an}n≥1 ⊆ A : an 6= am ∀ n 6= m. As K is sequentially compact,

∃ {an}n≥1 ⊆ A : akn
d−−−−→

n→∞
a ∈ K. Clearly, a ∈ A′ as ∀ r > 0, Br(a) ∩A \ {a} 6= ∅.

• ” ⇐= ” Let {an}n≥1 ⊆ K. If {an}n≥1 contains a constant subsequence, then that subsequence converges to
a point in K. Otherwise, the set A = {an : n ≥ 1} is infinite. By hypothesis, A′ ∩K 6= ∅. Let a ∈ A′ ∩K.

Then ∃ {an}n≥1 ⊆ A : akn
d−−−−→

n→∞
a.

Proposition. Let (X, d) be a metric space. If K ⊆ X is compact, then K is sequentially compact.

Proof. If K is finite, then K is necessarily sequentially compact. Assume K is infinite. Let A be infinite. Then
A′ ⊆ K ′ ⊆ K =⇒ A′ ∩K = A′. We want to show A′ ∩K 6= ∅ ⇐⇒ A′ 6= ∅. Assume, towards a contradiction,
that A′ = ∅. Then

∀ x ∈ K, ∃ rx > 0 : Brx(x) ∩A \ {x} = ∅ =⇒ Brx(x) ∩A ⊆ {x}.

Thus {Brx(x)}x∈K is an open cover for K compact =⇒ ∃ x1, . . . , xn ∈ K : K ⊆ ∪ni=1Bri(xi) where ri = rxi . As
A ⊆ K, we get the following contradiction

A = A ∩ ∪ni=1Bri(xi) = ∪ni=1(A ∩Bri(xi)) ⊆ ∪ni=1{xi}.

Thus A′ = A′ ∩K 6= ∅. By Bolzano-Weierstrass, this implies K is sequentially compact.

Proposition. Let (X, d) be a metric space and let K ⊆ X be sequentially compact. Then K is closed and bounded.

Proof. We first show K is closed, then we show K is bounded.

• We show K is closed ⇐⇒ K = K. Fix x ∈ K =⇒ ∃ {xn}n≥1 ⊆ K : xn
d−−−−→

n→∞
x. As K is sequentially

compact, ∃ {xkn}n≥1 ⊆ K : xkn
d−−−−→

n→∞
y ∈ K. As xn

d−−−−→
n→∞

x =⇒ xkn
d−−−−→

n→∞
x, the limit of the convergent

subsequence is unique. Thus x = y ∈ K and K ⊆ K =⇒ K is closed.

• We show K is bounded. Assume, towards a contradiction, that K is unbounded. Let a1 ∈ K. Then K
unbounded =⇒
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– ∃ a2 ∈ K : d(a1, a2) ≥ 1

– ∃ a3 ∈ K : d(a1, a3) ≥ 1, d(a2, a3) ≥ 1 otherwise K ⊆ B1(a1) ∪B1(a2).

– . . .

Proceeding inductively, we construct {an}n≥1 ⊆ K : d(an, am) ≥ 1 ∀ n 6= m. This sequence doesn’t admit a
convergent subsequence, contradicting the fact that K is sequentially compact.

Total boundedness

Definition. Let (X, d) be a metric space. A set A ⊆ X is totally bounded if ∀ ε > 0, A can be covered by
finitely many balls of radius ε.

Remark. 1. A totally bounded =⇒ A bounded

2. A ⊆ R bounded =⇒ A totally bounded

3. N endowed with the discrete metric :

d(x, y) =

{
1 if x = y

0 otherwise.

Then N is bounded, but not totally bounded.

Theorem. Let (X, d) be a metric space and let K ⊆ X. The following statements are equivalent.

1. K is sequentially compact.

2. K is complete and totally bounded.

Proof. We show 1 =⇒ 2 and 2 =⇒ 1.

• Let’s show K is complete. Let {xn}n≥1 ⊆ K be Cauchy. As K is sequentially compact, ∃ {xkn}n≥1 :

xkn
d−−−−→

n→∞
x ∈ K =⇒ xn

d−−−−→
n→∞

x ∈ K. Thus K is complete. Let’s show K is totally bounded. Fix ε > 0.

– Let a1 ∈ K. If K ⊆ Bε(a1), then K is totally bounded.

– Otherwise, ∃ a2 ∈ K : d(a1, a2) ≥ ε. If K ⊆ Bε(a1) ∪Bε(a2), then K is totally bounded.

– Otherwise, ∃ a3 ∈ K : d(a1, a3) ≥ ε, d(a2, a3) ≥ ε
– . . .

If this process terminates in finitely many steps, then K is totally bounded. Otherwise, we find {an}n≥1 ⊆
K : d(an, am) ≥ ε ∀ n 6= m. This sequence doesn’t admit a convergent subsequence, contradicting the fact
that K is sequentially compact.

• Let {an}n≥1 ⊆ K.

– K totally bounded =⇒ ∃ J1 finite and {x(1)j }j∈J1 ⊆ K : K ⊆ ∪j∈J1B1(x
(1)
j ). Thus ∃ j1 ∈ J1 : |{n ∈

N : an ∈ B1(x
(1)
j1

)}| = ℵ0. Let {a(1)n }n≥1 denote the corresponding subsequence.

– K totally bounded =⇒ ∃ J2 finite and {x(2)j }j∈J2 ⊆ K : K ⊆ ∪j∈J2B 1
2
(x

(2)
j ). Thus ∃ j2 ∈ J2 : |{n ∈

N : an ∈ B 1
2
(x

(2)
j2

)}| = ℵ0. Let {a(2)n }n≥1 denote the corresponding subsequence.

– . . .

Proceeding inductively, we find finite sets Jk, {x(k)j }j∈Jk , {a
(k)
n }n≥1 : {a(k)n }n≥1 ⊆ B 1

k
(x

(k)
jk

). Then {a(k+1)
n }n≥1

is a subsequence of {a(k)n }n≥1 ∀ k ≥ 1. Consider the diagonal subsequence {a(n)n }n≥1. Fix k ≥ 1 and n,m ≥ k.

Then d(ann, a
m
m) ≤ d(ann, x

k
jk

) + d(xkjk , a
m
m) ≤ 1

k + 1
k = 2

k . This shows {a(n)n }n≥1 is Cauchy. As K is complete,

a
(n)
n

d−−−−→
n→∞

a ∈ K. This proves K is sequentially compact.
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Proposition. Let (X, d) be a metric space and let K ⊆ X be sequentially compact. Let {Gi}i∈I be an open cover
of K. Then ∃ ε > 0 : any ball of radius ε contained in K is contained in at least one Gi.

Proof. We argue by contradiction. Then ∀ n ≥ 1,∃ an ∈ K : B 1
n

(an) ⊆ K, but B 1
n

(an) 6⊆ Gi ∀ i ∈ I. As K is

sequentially compact, ∃ {akn}n≥1 : akn
d−−−−→

n→∞
a ∈ K. Thus a ∈ K ⊆ ∪i∈IGi =⇒ ∃ i0 ∈ I : a ∈ Gi0 = G̊i0 =⇒

∃ r > 0 : Br(a) ⊆ Gi0 . As akn
d−−−−→

n→∞
a,∃ nr ∈ N : d(a, akn) < r

2 ∀ n ≥ nr. Let N = max {nr, b 2r c} + 1. Notice

x ∈ B 1
kN

(akN ) =⇒ d(x, a) ≤ d(x, akN ) + d(akN , a) < 1
kN

+ r
2 ≤

1
N + r

2 ≤ r. Thus B 1
kN

(akN ) ⊆ Br(a) ⊆ Gi0 ,

contradiction.

Proposition. Let (X, d) be a metric space and let K ⊆ X be sequentially compact. Then K is compact.

Proof. Let {Gi}i∈I be an open cover of K. By the previous proposition, ∃ ε > 0 : any ball of radius ε contained
in K is contained in at least one Gi. As K is totally bounded, ∃ x1, . . . , xn ∈ K : K ⊆ ∪nj=1Bε(xj). Then
∀ 1 ≤ j ≤ n, ∃ ij ∈ I : Bε(xj) ⊆ Gij =⇒ K ⊆ ∪nj=1Gij .

Heine-Borel

Collecting everything, we get the Heine-Borel theorem.

Theorem. Let (X, d) be a metric space and let K ⊆ X. The following statements are equivalent.

1. K is compact.

2. K is sequentially compact.

3. K is complete and totally bounded.

4. Every infinite subset of K has an accumulation point in K.

Corollary. A set K ⊆ R is compact iff it’s closed and bounded.

Proof.

Exercise.

Compactness and the finite intersection property

Definition. An infinite family of closed sets {Fi}i∈I is said to have the finite intersection property if for any
finite J ⊆ I we have ∩j∈JFj 6= ∅.

Theorem. A metric space (X, d) is compact iff for every infinite boundary of closed sets {Fi}i∈I that has the finite
intersection property, we have ∩i∈IFi 6= ∅.

Proof. We prove both ways separately.

• We argue by contradiction. Assume that {Fi}i∈I is an infinite family of closed sets with the finite intersection
property, but ∩i∈IFi = ∅. Then X = ∪i∈I cFi compact =⇒ ∃ J ⊆ I finite : X = ∪j∈J cFj =⇒ ∅ = ∩j∈JFj ,
which contradicts the finite intersection property.

• We argue by contradiction. If X isn’t compact, then ∃ {Gi}i∈I open cover of X : {Gi}i∈I doesn’t admit
a subcover. In particular, I is infinite. Consider the family {cGi}i∈I of closed sets. As X = ∪i∈IGi =⇒
∩i∈I cGi = ∅. Fix J ⊆ I finite. As {Gi}i∈I doesn’t admit a finite subcover X 6= ∪j∈JGj =⇒ ∩j∈J cGj 6= ∅.
Thus {cGi}i∈I has the finite intersection property, contradiction.

Corollary. Let (X, d) be a metric space, K ⊆ X be compact, and {Fi}i∈I be a family of closed sets. If K ∩
(∩i∈IFi) = ∅, then ∃ finite J ⊆ I : K ∩ (∩j∈JFj) = ∅.
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Proof.

Exercise.

Continuity

Definition. Let (X, dX), (Y, dY ) be metric spaces and let f : X → Y be a function. We say that f is continuous
at x0 ∈ X if ∀ ε > 0,∃ δ > 0 : dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ. We say f is continuous on X if f is
continuous at every x ∈ X.

Remark. A function f : X → Y is necessarily continuous at every isolated point in X. Indeed, if x0 ∈ X is isolated,
∃ δ > 0 : {x ∈ X : dX(x, x0) < δ} = {x0}. Then dX(x, x0) < δ =⇒ dY (f(x), f(x0)) = 0 < ε ∀ ε > 0.

Theorem. Let (X, dX), (Y, dY ) be metric spaces, let f : X → Y be a function, and x0 ∈ X. The following
statements are equivalent.

1. f is continuous at x0.

2. for every {xn}n≥1 ⊆ X : xn
dX−−−−→
n→∞

x0 we have f(xn)
dY−−−−→

n→∞
f(x0)

Proof. We show 1 =⇒ 2 and 2 =⇒ 1.

• Let xn
dX−−−−→
n→∞

x0 and ε > 0. As f is continuous at x0,∃ δ > 0 : dX(xn, x0) < δ =⇒ dY (f(xn), f(x0)) < ε.

As xn
dX−−−−→
n→∞

x0,∃ nδ ∈ N : dX(xn, x0) < δ ∀ n ≥ nδ =⇒ dY (f(xn), f(x0)) < ε ∀ n ≥ nδ.

• We argue by contradiction, then ∃ ε0 > 0 : ∀ n ≥ 1,∃ xn ∈ X : dX(xn, x0) < 1
n but dY (f(xn), f(x0)) ≥ ε0,

contradiction.

Proposition. Let (X, dX), (Y, dY ) be metric spaces and let f : X → Y be a function. The following statements
are equivalent.

1. f is continuous

2. G open in Y =⇒ f−1(G) open in X

3. F closed in Y =⇒ f−1(F ) closed in X

4. B ⊆ Y =⇒ f−1(B) ⊇ f−1(B)

5. A ⊆ X =⇒ f(A) ⊆ f(A)

Proof. We will show ”1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 5 =⇒ 4 =⇒ 1”.

• ”1 =⇒ 2” Let G ⊆ Y be open, x0 ∈ f−1(G).

Then f(x0) ∈ G open =⇒ ∃ ε > 0 : BYε (f(x0)) ⊆ G.

As f is continuous at x0,∃ δ > 0 : f(BXδ (x0)) ⊆ BYε (f(x0)).

}
f(BXδ (x0)) ⊆ G ⇐⇒ BXδ (x0) ⊆ f−1(G).

Thus f−1(G) is open.

• ”2 =⇒ 3” Let F ⊆ Y be closed =⇒ cF open in Y
2

=⇒ c(f−1(F )) = f−1(cF ) is open in X =⇒ f−1(F )
is closed in X.

• ”3 =⇒ 4” Let B ⊆ Y =⇒ B is closed
3

=⇒ f−1(B) closed in X, f−1(B) ⊆ f−1(B) =⇒ f−1(B) ⊆
f−1(B) = f−1(B).

• ”4 =⇒ 5” Fix A ⊆ X, apply 4 to B = f(A), we get f−1(f(A)) ⊆ f−1(f(A)), f−1(f(A)) ⊇ A =⇒ A ⊆
f−1(f(A)) =⇒ A ⊆ f−1(f(A)) =⇒ f(A) ⊆ f(A).
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• ”5 =⇒ 4” Fix B ⊆ Y , apply 5 to A = f−1(B), we get f(f−1(B)) ⊆ f(f−1(B)) = B =⇒ f−1(B) ⊆ f−1(B).

• ”4 =⇒ 1” Fix x0 ∈ X, let ε > 0. Consider cBYε (f(x0)) closed in Y . Let A = f−1
(
cBYε (f(x0))

)
.

By 4, A = A = f−1
(
cBYε (f(x0))

)
= f−1

(
cBYε (f(x0))

)
⊇ f−1 (cBYε (f(x0))) =⇒ A is closed. Then

cA = cf−1
(
cBYε (f(x0))

)
= f−1

(
BYε (f(x0))

)
open. We have x ∈ f−1

(
BYε (f(x0))

)
, then ∃ δ > 0 : BYε (x0) ⊆

f−1
(
BYε (f(x0))

)
=⇒ f(BYε (x0)) ⊆ BYε (f(x0)). This shows f is continuous at x0.

Proposition. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces and f : X → Y, g : Y → Z be functions : f is
continuous at x0 ∈ X, g is continuous at f(x0) ∈ Y . Then g ◦ f : X → Z is continuous at x0.

Proof. Let ε > 0.

g continuous at f(x0) =⇒ ∃ δ > 0 : dY (y, f(x0)) < δ =⇒ dZ (g(y), g(f(x0))) < ε.

f continuous at x0 =⇒ ∃ η > 0 : dX(x, x0) < η =⇒ dY (f(x), f(x0)) < δ.

}
dX(x, x0) < η

=⇒ dZ (g(f(x)), g(f(x0))) < ε.

Exercise. Assume f, g : X → R are continuous at x0 ∈ X. Then f ± g, fg are continuous at x0. If in addition,
g(x0) 6= 0 then f

g is continuous at x0.

Continuity and compactness

Theorem. Let (X, dX), (Y, dY ) be metric spaces and let f : X → Y be continuous. If K ⊆ X is compact, then
f(K) is compact.

Proof. Let {Gi}i∈I be an open cover of f(K). Then f−1(Gi) is open in X ∀ i ∈ I. Moreover, f(K) ⊆ ∪i∈IGi =⇒
K ⊆ f−1(∪i∈IGi) = ∪i∈If−1(Gi). As K is compact, ∃ J ⊆ I finite : K ⊆ ∪j∈Jf−1(Gj) = f−1(∪j∈JGj) =⇒
f(K) ⊆ ∪j∈JGj .

Corollary. 1. Let (X, dX) be a compact metric space and let f : X → Rn be a continuous function. Then f(X)
is closed and bounded.

2. Let (X, dX) be a compact metric space and let f : X → R be a continuous function. Then ∃ x1, x2 ∈ X :
f(x1) = supx∈X f(x), f(x2) = infx∈X f(x).

Proof. f(X) is closed and bounded. As R has the least upper bound property, ∃ infx∈X f(x) ∈ R, supx∈X f(x) ∈ R.

Clearly, infx∈X f(x), supx∈X f(x) ∈ f(x) = f(x).

Proposition. Let (X, dX), (Y, dY ) be metric spaces with X compact and let f : X → Y be a function that is
bijective and continuous. Then the inverse f−1 : Y → X is continuous.

Proof. Let F ⊆ X be closed. We want to show f(F ) is closed in Y . As F is closed and X is compact, F is compact,
f is continuous =⇒ f(F ) is compact =⇒ f(F ) is closed.

Definition. Let (X, dX), (Y, dY ) be metric spaces and let f : X → Y be a function. We say that f is uniformly
continuous if ∀ ε > 0,∃ δε > 0 : dX(a, b) < δ =⇒ dY (f(a), f(b)) < ε. Compare with f : X → Y continuous on
X if ∀ x0 ∈ X, ε > 0,∃ δε,x0

: dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε.

Remark. 1. Uniform continuity is a property of a function on a set. By comparison, continuity is defined
pointwise.

2. uniform continuity =⇒ continuity

3. A continuous function need not be uniformly continuous.

Example. f : R→ R, f(x) = x2, |f(n)− f(n+ 1
n )| = |2 + 1

n2 | ≥ 2.

Proposition. Let (X, dX), (Y, dY ) be metric spaces with X compact. Let f : X → Y be a continuous function.
Then f is uniformly continuous.
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Proof. We want to show

∀ ε > 0,∃ δ > 0 : dY (f(x), f(y)) < ε ∀ x, y ∈ X : dX(x, y) < δ.

We argue by contradiction. Assume

∃ ε0 > 0 : ∀ δ > 0,∃ xδ, yδ ∈ X : dX(xδ, yδ) < δ but dY (f(xδ), f(yδ)) ≥ ε0.

Take δ = 1
n to get

∃ {xn}n∈N, {yn}n∈N ⊆ X : dX(xn, yn) <
1

n

but dY (f(xn), f(yn)) ≥ ε0. As X is compact, ∃ {xkn}n∈N
dX−−−−→
n→∞

x0. Note

dX(x0, ykn) ≤ dX(x0, xkn) + dX(xkn , ykn) < dX(x0, xkn) +
1

n

dX−−−−→
n→∞

0.

Thus {ykn}n∈N
dX−−−−→
n→∞

x0. As f is continuous, f(xkn)
dY−−−−→

n→∞
f(x0) and f(ykn)

dY−−−−→
n→∞

f(x0). Then we find the

contradiction
dY (f(xkn), f(ykn)) ≤ dY (f(xkn), f(x0)) + dY (f(x0), f(ykn))

dY−−−−→
n→∞

0.

Continuity and connectedness

Theorem. Let (X, dX), (Y, dY ) be metric spaces and f : X → Y be a continuous function. If A ⊆ X is connected,
then f(A) is connected.

Proof. Assume, towards a contradiction, that f(A) is not connected. Then ∃ B1, B2 6= ∅, B1 ∩B2 = B1 ∩B1 = ∅ :
f(A) = B1 ∪B2. Let A1 = f−1(B1) ∩A,A2 = f−1(B2) ∩A. Notice

A1∪A2 = (f−1(B1)∩A)∪(f−1(B2)∩A) = (f−1(B1)∪f−1(B2))∩A = f−1(B1∪B2)∩A = f−1(f(A))∩A = A∩A = A

and

A1∩A2 = f−1(B1) ∩A∩ (f−1(B2)∩A) ⊆ f−1(B1)∩f−1(B2) ⊆ f−1(B1)∩f−1(B2) = f−1(B1∩B2) = f−1(∅) = ∅.

Similarly, A1 ∩A2 = ∅. So A1, A2 are separated =⇒ A is not connected, contradiction.

Corollary. Let (X, dX) be a connected metric space and f : X → R be continuous. Then f(X) is an interval. In
particular, if X = R and a, b ∈ R : a < b and y0 lies in between f(a) and f(b), then ∃ x0 ∈ (a, b) : f(x0) = y0. We
say that f has the Darboux (intermediate value) property.

Remark. Functions with the Darboux property need not be continuous.

Example.

f : [0,∞)→ R, f(x) =

{
sin 1

x if x 6= 0,

0 otherwise.
(1)

Let (X, dX) is a metric space and x0 ∈ X, then f : x → d(x, x0) is continuous. Indeed, |f(x) − f(y)| =
|d(x, x0)− d(y, x0)| ≤ d(x, y). Take δ = ε.

Proposition. Let (X, dX), (Y, dY ) be connected metric spaces. Then X × Y endowed with the following metric is
a connected metric space:

ρ((x1, y1), (x2, y2)) = max {dX(x1, x2), dY (y1, y2)}.

Proof. It suffices to prove that for any point in X ×Y,∃ connected subset of X ×Y that contains those points. Let
(x0, y0), (a, b) ∈ X × Y and f : Y → X × Y be a function defined as f(y) = (x0, y). This is continuous. Indeed,
ρ(f(y1), f(y2)) = dY (y1, y2). Take δ = ε. We get f(Y ) is connected. Let g : X → X × Y be a function defined as
g(x) = (x, b). This is continuous. Indeed, ρ(g(x1), g(x2)) = dX(x1, x2). Take δ = ε. We get g(X) is connected. Note
f(Y )∩g(X) 6= ∅. Indeed, (x0, b) ∈ f(Y )∩g(X). Then f(Y )∩g(X) is connected. As {(x0, y0), (a, b)} ⊆ f(Y )∪g(X),
we get the claim.
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Remark. Note one may replace the metric ρ in the proposition above by any of the equivalent metrics ρ = dX +dY
or ρ =

√
d2X + d2Y .

Definition. Let (X, dX) be a metric space.

• A path in X is any continuous function γ : [0, 1] → X. γ(0) is called the origin of the path, γ(1) is called
the end of the path. Note γ([0, 1]) is compact and connected.

• Let γ : [0, 1] → X be a path in (X, d). We define γ : [0, 1] → X via γ−1(t) = γ(1 − t). This is a path in X.
For γ1, γ2 paths in X with γ1(1) = γ2(0), we define the path γ1 ∨ γ2 : [0, 1]→ X via

γ1 ∨ γ2(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2

γ2(2t− 1) if 1
2 ≤ t ≤ 1

Theorem. Let (X, dX) be a metric space and let ∅ 6= A ⊆ X, then 1 ⇐⇒ 2 =⇒ 3.

1. ∃ a ∈ A : ∀ x ∈ A,∃ a path γX : [0, 1]→ A with γX(0) = a and γX(1) = x.

2. ∀ x, y ∈ A,∃ a path γx,y : [0, 1]→ A with γx,y(0) = x and γx,y(1) = y.

3. A is connected.

Proof. • ”1 =⇒ 2” Let x, y ∈ A, γX , γY : [0, 1] → A as given by 1. Then γX,Y = γ−1X ∨ γY : [0, 1] → A is the
desired path.

• ”2 =⇒ 1” Take a to be any point in A.

• ”1 =⇒ 3” For x ∈ A, let AX = γX([0, 1]) connected. Moreover, {a} ∈ ∩x∈AAx. Therefore, ∪x∈AAx is
connected. But ∪x∈AAx = A.

Definition. If either 1 or 2 hold, we say A is path connected.

Exercise. Show that R2 \Q2 is path connected, and hence connected.

Proof. We will show that any point in R2 \Q2 can be joined to (
√

2,
√

2) via a path in R2 \Q2. Let (x, y) ∈ R2 \Q2.
Then x /∈ Q or y /∈ Q. Say x /∈ Q. Then γ1 : [0, 1]→ R2 \Q2 defined as γ1(t) = ((1− t)

√
2 + tx,

√
2) is a path, and

γ2 : [0, 1] → R2 \ Q2 defined as γ2(t) = (x, (1 − t)
√

2 + ty) is a path. Then γ1 ∨ γ2 : [0, 1] → R2 \ Q2 is a path in
R2 \Q2 joining (

√
2,
√

2) to (x, y).

Remark. Connected sets are not necessarily path connected.

Example. See equation 1.

• Let Gf = {(x, f(x)) : x ∈ [0,∞)}. Then Gf is connected, but not path connected. Let g : [0,∞)→ R2 be a
function defined as g(x) = (x, f(x)). Then g is continuous on [0,∞) because f is, so Gf \{(0, 0)} = g((0,∞))

is connected. Consider Gf = {(0, 0)} ∪ g((0,∞)). Note {(0, 0)} ⊆ g((0,∞)). Indeed, for xn = 1
πn , we get

g(xn) = ( 1
πn , 0)→ (0, 0). Therefore, {(0, 0)} = g((0,∞)) is connected.

• To see that Gf isn’t path connected, it suffices to see that there is no path connecting (0, 0) to ( 1
π , 0). Indeed,

any such path would be discontinuous at t = 0, because ( 1
2nπ+π

2
, 1) −−−−→

n→∞
(0, 1) 6= (0, 0).

Proposition. Let ∅ 6= A ⊆ X, then A is connected iff any two points in A can be joined by a polygonal arc lying
in A.

Proof. ” ⇐= ” is immediate since path connectedness =⇒ connectedness. We show ” =⇒ ”. Fix a ∈ A and let
A1 = {x ∈ A : x can be joined to a by a polygonal arc in A} 6= ∅ because a ∈ A1. We will show that A1 is both
opened and closed in A, then A connected =⇒ A1 = A.

• Let’s show A1 is open in A. Pick x ∈ A1 ⊆ A open, ∃ r > 0 : Br(x) ⊆ A. As any point in Br(x) can be
joined by a segment to x lying in the ball and x is joined by a polygonal arc to a, then any point in Br(x)
can be joined by a polygonal arc to a. Thus Br(x) ⊆ A. This proves A1 is open.

• Let’s show A1 is closed in A. If A2 = A \ A1 = ∅, then we’re done. So assume ∃ y ∈ A2 ⊆ A open
=⇒ ∃ r > 0 : Br(y) ⊆ A. If Br(y) ⊆ A2, then we’re done. So assume Br(y) ⊆ A1 6= ∅. Proof by picture,
contradiction.

8



Convergent sequences of functions

Definition. Let (X, dX), (Y, dY ) be metric spaces. For n ≥ 1, let fn : X → Y be functions. We say the sequence
{fn}n≥1 converges pointwise if ∀ x ∈ X, the sequence {fn(x)}n≥1 ⊆ Y converges. Thus, we say {fn}n≥1
converges pointwise to f if ∀ x ∈ X, ε > 0,∃ n(ε, x) ∈ N : dY (f(x), fn(x)) < ε ∀ n ≥ n(ε, x).

Remark. For ε > 0, the function n(ε, x) : X → N can be bounded or unbounded. If it’s bounded, we get the
following definition.

Definition. Let (X, dX), (Y, dY ) be metric spaces, fn : X → Y, f : X → Y be functions. We say that {fn}n≥1
converges uniformly to f and write fn

u−−−−→
n→∞

f if ∀ ε > 0,∃ nε ∈ N : dY (f(x), fn(x)) < ε ∀ n ≥ nε, x ∈ X.

Remark. • uniform convergence =⇒ pointwise convergence

• For (X, dX), (Y, dY ) metric spaces, let B(X,Y ) = {f : X → Y | f is bounded}. We define d : B(X,Y ) ×
B(X,Y )→ R via d(f, g) = supx∈X dY (f(x), g(x)). Then (B(X,Y ), d) is a metric space. Moreover,

fn
u−−−−→

n→∞
f ⇐⇒ ∀ ε > 0,∃ nε ∈ N : dY (f(x), fn(x)) < ε ∀ n ≥ nε, x ∈ X

⇐⇒ ∀ ε > 0,∃ nε ∈ N : sup
x∈X

dY (f(x), fn(x)) ≤ ε ∀ n ≥ nε, x ∈ X

⇐⇒ ∀ ε > 0,∃ nε ∈ N : d(f, fn) ≤ ε ∀ n ≥ nε, x ∈ X
⇐⇒ d(f, fn) −−−−→

n→∞
0

• pointwise convergence 6=⇒ uniform convergence

Example. for n ≥ 1, let fn : [0, 1]→ R, fn(x) = xn, then

fn(x) −−−−→
n→∞

{
0 if x ∈ [0, 1)

1 if x = 1.

Let f : [0, 1]→ R be a function defined as

f(x) =

{
0 if x ∈ [0, 1)

1 if x = 1.

We have {fn}n≥1 converges pointwise to f . However, {fn}n≥1 doesn’t converge uniformly to f . Indeed,

d(fn, f) = sup
x∈[0,1)

|fn(x)− f(x)| = sup
x∈[0,1)

|xn| = 1 6→ 0.

Weierstrass

Theorem. Let (X, dX), (Y, dY ) be metric spaces. Assume that the sequence of functions fn : X → Y converges
uniformly to the function f : X → Y . If fn is continuous at x0 ∈ X for all n ≥ 1, then f is continuous at x0. In
particular, a uniform limit of continuous functions is continuous.

Proof. Fix ε > 0. Then

fn
u−−−−→

n→∞
f =⇒ ∃ nε ∈ N : dY (fn(x), f(x)) <

ε

3
∀ n ≥ nε, x ∈ X.

Fix n0 ≥ nε. As fn0 is continuous at x0,

∃ δ(ε, x0) > 0 : dY (fn0(x), fn0(x0)) <
ε

3
∀ x ∈ BXδ (x0).

For x ∈ BXδ (x0), we have

dY (f(x), f(x0)) ≤ dY (f(x), fn0(x)) + dY (fn0(x), fn0(x0)) + dY (fn0(x0), f(x0)) <
ε

3
+
ε

3
+
ε

3
= ε.

Remark. The converse isn’t true. ∃ a sequence of continuous functions that converges pointwise to a continuous
function, but the convergence isn’t uniform.

Example. fn : (0, 1) → R, fn(x) = xn, {fn}n≥1 converges pointwise to f : (0, 1) → R, f ≡ 0. But the convergence
is not uniform : d(fn, f) = supx∈(0,1) |xn| = 1 6→ 0.
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Dini

Theorem. Let (X, dX) be a compact metric space, fn : X → R be continuous functions : {fn}n≥1 converges
pointwise to a continuous function f : X → R. If {fn}n≥1 is monotone, then {fn}n≥1 converges uniformly to f .

Proof. Assume, without loss of generality, {fn}n≥1 is increasing, i.e.

fn(x) ≤ fn+1(x) ∀ n ≥ 1, x ∈ X.

Then {f − fn} is decreasing so

∀ x > 0, lim
n→∞

(f(x)− fn(x)) = inf
n≥1
{f(x)− fn(x)} = 0.

Fix ε > 0, x0 ∈ X. We have

inf
n≥1
{f(x0)− fn(x0)} = 0 < ε =⇒ ∃ n(ε, x0) ∈ N : |f(x0)− fn(ε,x0)(x0)| < ε.

Notice f − fn(ε,x0) is continuous at x0. Thus

∃ δ(ε, x0) > 0 : |(f(x)− fn(ε,x0)(x))− (f(x0)− fn(ε,x0)(x0))| < ε ∀ x ∈ Bδ(ε,x0)(x0).

So for x ∈ Bδ(ε,x0)(x0), we have

f(x)− fn(ε,n0)(x) < ε+ f(x0)− fn(ε,n0)(x0) < 2ε.

Note that {Bδ(ε,x)(x)} form an open cover of X compact, thus

∃ x1, . . . , xN ∈ X : X ⊆ ∪Nk=1Bδ(ε,xk)(xk).

Let nε = max1≤k≤N n(ε, xk) and n ≥ nε. For x ∈ X,

∃ 1 ≤ k ≤ N : x ∈ Bδ(ε,xk)(xk).

Then f(x)− fn(x) ≤ f(x)− fn(ε,x0)(x) < 2ε. By definition, fn
u−−−−→

n→∞
f .

Remark. The compactness of X is essential. Consider fn : (0, 1) → R, fn(x) = 1
nx+1 , continuous, fn(x) ≥

fn+1(x) ∀ x ∈ (0, 1), n ≥ 1. Then {fn}n≥1 converges pointwise to f : (0, 1)→ R, f ≡ 0. But the convergence isn’t
uniform: d(fn, f) = supx∈(0,1) | 1

nx+1 | = 1 6→ 0.

Theorem. Let (X, dX) be a metric space and C(X) = {f : X → R : f is bounded and continuous}. For f, g ∈
C(X), let d(f, g) = supx∈X |f(x)− g(x)|. Then (C(X), d) is a metric space.

Exercise. (C(X), d) is complete, connected, but not compact because unbounded.

Definition. Let F ⊆ C(X).

• We say F is uniformly bounded if ∃ M > 0 : |f(x)| ≤M ∀ f ∈ F, x ∈ X.

• We say F is equicontinuous if ∀ ε > 0,∃ δ > 0 : d(f(x), f(y)) < ε ∀ f ∈ F, x, y ∈ X : d(x, y) < δ.

Arzela-Ascoli

Theorem. Let [a, b] be a compact interval in R. Let F ⊆ C([a, b]). The following statements are equivalent.

1. Every sequence in F admits a (necessarily) uniformly convergent subsequence.

2. F is uniformly bounded and equicontinuous.

Proof. • 1 =⇒ 2
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– Let’s show F is uniformly bounded, that is, F is bounded with respect to the uniform metric. Indeed,
if F were not uniformly bounded, then we would be able to construct a sequence

{fn}n≥1 ⊆ F : d(f1, fn+1) > 1 + d(f1, fn) ∀ n ≥ 1.

Then d(fn, fm) ≥ |d(f1, fn)− d(f1, fm)| > |n−m|. So {fn}n≥1 cannot have a convergent subsequence.

– Let’s show F is totally bounded. Let ε > 0, f1 ∈ F .

∗ If F ⊆ Bε(f1), then F is totally bounded. Otherwise, ∃ f2 ∈ F : d(f2, f1) ≥ ε.
∗ If F ⊆ Bε(f1)∪Bε(f2). then F is totally bounded. Otherwise, ∃ f3 ∈ F : d(f1, f3) ≥ ε, d(f2, f3) ≥ ε.
∗ . . .

If this process terminates in finitely many steps, then F is totally bounded. Otherwise, we find a sequence

{fn}n≥1 ⊆ F : d(fn, fm) ≥ ε ∀ n 6= m.

This sequence doesn’t admit a convergent subsequence.

– Let’s show F is equicontinuous. Let ε > 0. As F is totally bounded,

∃ f1, . . . , fn ∈ F : F ⊆ ∪nk=1B ε
10

(fk).

Fix 1 ≤ k ≤ n. As fk : [a, b]→ R is continuous, it is uniformly continuous. So

∃ δk(ε) > 0 : |fk(x)− fk(y)| < ε

10
∀ x, y ∈ [a, b], |x, y| < δk.

Let δ(ε) = min1≤k≤n δk(ε). Then ∀ x, y ∈ [a, b] with |x− y| < δ and all 1 ≤ k ≤ n, we have

|fk(x)− fk(y)| < ε

10
.

Let f ∈ F , then
∃ 1 ≤ k ≤ n : f ∈ B ε

10
(fk).

For x, y ∈ [a, b] with |x− y| < δ we get

|f(x)− f(y)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(y)|+ |fk(y)− f(y)|

≤ 2d(f, fk) + |fk(x)− fk(y)| < 2
ε

10
+

ε

10
< ε.

By definition, F is equicontinuous.

• 2 =⇒ 1 Assume F is uniformly bounded and equicontinuous. Let {fn}n≥1 ⊆ F . If q ∈ [a, b] ∩ Q, then
{fn(q)}n≥1 is a bounded sequence of real numbers. In particular, {fn(q)}n≥1 has a convergent subsequence.
Passing to a subsequence for every q ∈ [a, b] ∩ Q (using the fact that [a, b] ∩ Q is countable) and using a
diagonal argument, we find a subsequence {fkn}n≥1 that converges at every rational q ∈ [a, b]. Let ε > 0. As
F is equicontinuous,

∃ δ > 0 : |f(x)− f(y)| < ε

10
∀ f ∈ F, |x− y| < δ.

As [a, b] is compact,
∃ q1, . . . , qN ∈ [a, b] ∩Q : [a, b] ⊆ ∪Nj=1(qj − δ, qj + δ).

Now {fkn(qj)} is convergent so

∃ nj(ε) ∈ N : |fkn(qj)− fkm(qj)| <
ε

10
∀ n,m ≥ nj(ε).

Let x ∈ [a, b], then ∃ 1 ≤ j ≤ N : |x− qj | < δ. Now

|fkn(x)− fkm(x)| < |fkn(x)− fkn(qj)|+ |fkn(qj)− fkm(qj)|+ |fkm(qj)− fkm(x)| < ε ∀ n,m ≥ n(ε).

We proved that {fkn}n≥1 is Cauchy with respect to the uniform metric. Let f(x) = limn→∞ fkn(x). We have
by Weierstrass

fkn
u−−−−→

n→∞
f ∈ C([a, b]).
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Corollary. Let F ⊆ C([a, b]). Then F is compact iff F is closed, uniformly bounded, and equicontinuous.

Remark. • The compactness of [a, b] is essential. Let

F = {f : R→ R, |f(x)− f(y)| ≤ |x− y|, sup
x∈R
|f(x)| ≤ 1}.

Then F is uniformly bounded and equicontinuous. Consider f : R→ R, f(x) = 1
1+x2 . Clearly, supx∈R |f(x)| =

supx∈R
1

1+x2 = 1. For x, y ∈ R,

|f(x)− f(y)| = | 1

1 + x2
− 1

1 + y2
| = |x− y||x+ y|

(1 + x2)(1 + y2)

≤ |x− y|
(

|x|
|1 + x2||1 + y2|

+
|y|

|1 + x2||1 + y2|

)
≤ |x− y|(1

2
+

1

2
) = |x− y|.

For n ≥ 1, let fn(x) = f(x − n) = 1
1+(x−n)2 . For x ∈ R, fn(x) −−−−→

n→∞
0. So {fn}n≥1 converges pointwise to

the function g : R→ R, g ≡ 0. However, {fn}n≥1 doesn’t admit a uniformly convergent subsequence because
supx∈R fn(x) = 1 ∀ n ≥ 1.

• The uniform boundedness of F is essential. Take F = {f : [0, 1]→ R : f is constant}. This is equicontinuous
but not uniformly bounded. Indeed, fn(x) ≡ n doesn’t admit a convergent subsequence.

• The equicontinuity of F is essential. Consider

F = {f : [0, 1]→ R, f is continuous, sup
x∈[0,1]

|f(x)| ≤ 1}.

This set is not equicontinuous. For n ≥ 1, let fn : [0, 1] → R, fn(x) = sin (nx). Let xn = 3π
2n , yn = π

2n .
Then |xn − yn| = π

n −−−−→n→∞
0. But |fn(xn) − fn(yn)| = 2. The sequence {fn}n≥1 doesn’t admit a uniformly

convergent subsequence. Assume, towards a contradiction, that ∃ {fn}n≥1 that converges uniformly. By
Weierstrass, the limit function f : [0, 1] → R is continuous. As fn(0) = 0, we must have f(0) = 0. Then f
continuous at x = 0 yields

=⇒ ∀ ε > 0,∃ δ > 0 : |f(x)| < ε ∀ 0 ≤ x < δ.

Moreover,
fkn

u−−−−→
n→∞

f, ∃ N ∈ N : |fkn | < 2ε ∀ n ≥ N, 0 ≤ x < δ.

But fkn( π
2kn

) = 1. Take n sufficiently large : π
2kn

< δ to get a contradiction.

The oscillation of a function

Definition. Let (X, d) be a metric space, ∅ 6= A ⊆ X, f : X → R. The oscillation of a function on A
is ω(f,A) = supx∈A f(x) − infx∈A f(x) = supx,y∈A (f(x)− f(y)) ≥ 0. The oscillation of f at x0 ∈ X is
ω(f, x0) = infε>0 ω(f,Bε(x0)).

Proposition. Let (X, d) be a metric space, f : X → R. Then f is continuous at x0 ∈ X iff ω(f, x0) = 0.

Proof. Let ε > 0.

• ” =⇒ ” As f is continuous at x0,∃ δ > 0 : |f(x)−f(x0)| < ε
2 ∀ x ∈ Bδ(x0). Then for x ∈ Bδ(x0), f(x0)− ε

2 <
f(x) < f(x0) + ε

2 =⇒ f(x0) − ε
2 ≤ infx∈Bδ(x0) f(x) ≤ supx∈Bδ(x0) f(x) ≤ f(x0) + ε

2 =⇒ ω(f,Bδ(x0)) ≤
ε
2 + ε

2 = ε =⇒ ω(f, x0) ≤ ε.

• ” ⇐= ” We have ω(f, x0) = infδ>0 ω(f,Bδ(x0)) = 0 < ε =⇒ ∃ δ > 0 : ω(f,Bδ(x0)) < ε =⇒
supx,y∈Bδ(x0) (f(x)− f(y)) < ε =⇒ supx∈Bδ(x0) |f(x)− f(x0)| < ε =⇒ |f(x) − f(x0)| < ε ∀ x ∈ Bδ(x0).
This shows f is continuous at x0.
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Proposition. Let (X, d) be a metric space, f : X → R be a function, and α > 0. Then A = {x ∈ X : ω(f, x) < α}
is open.

Proof. Let x0 ∈ A =⇒ ω(f, x0) = infδ>0 ω(f,Bδ(x0)) < α =⇒ ∃ δ > 0 : ω(f,Bδ(x0)) < α.

Claim. Bδ(x0) ⊆ A
Let y ∈ Bδ(x0). Then Bδ−d(x0,y)(y) ⊆ Bδ(x0) and ω(f, y) ≤ ω(f,Bδ−d(x0,y)(y)) ≤ ω(f,Bδ(x0)) < α. So

y ∈ A.

Remark. Let (X, d) is a metric space, f : X → R. Then {x ∈ X : f is continuous at x} = {x ∈ X : ω(f, x) = 0} =
∩n≥1{x ∈ X : ω(f, x) < 1

n} = ∩n≥1{Gn} open. Note Gn+1 ⊆ Gn ∀ n ≥ 1.

Exercise. Show that there are no functions f : R → R such that f is continuous at every rational point and
discontinuous at every irrational point.

Proof. By contradiction. Assume f : R → R is continuous on R and discontinuous on R \ Q. Then Q = ∩n≥1Gn
with Gn = G̊n. As Q is dense in R, we get Gn = R ∀ n ≥ 1 =⇒ ∩n≥1Gn = R. Let {qn}n≥1 denote an enumeration
of Q. For n ≥ 1, let Hn = R \ {qn} = (−∞, q) ∪ (q,∞) open. Moreover, Hn = R. As R is complete, if satisfied the
Baire property, that is, if {An}n≥1 is a sequence of open dens sets, then ∩n≥1An = R. Then we must have that
(∩n≥1Gn) ∪ (∩n≥1Hn) = ∅, contradiction.

Lemma. Let (X, d) be a metric space with the Baire property and ∅ 6= W = W̊ ⊆ X. Then W has the Baire
property.

Proof. Let {Dn}n≥1 be a sequence of open, dense sets in W . As Dn is open in W, ∃ Gn open in X : Dn = Gn ∩W
open in X. Also

Dn ∩W = W =⇒ W ⊆ Dn =⇒ W ⊆ Dn ∀ n ≥ 1.

For n ≥ 1, let Bn = Dn ∪ c(W ) open in X. Then Bn = Dn ∪ c(W ) = Dn ∪ c(W ) ⊇ W ∪ cW = X =⇒ Bn is
dense in X. As X has the Baire property,

X = ∩n≥1Bn = ∩n≥1(Dn ∪ c(W )) = (∩n≥1Dn) ∪ c(W ) = ∩n≥1Dn ∪ c(W ) = ∩n≥1Dn ∪ c(W̊ )

=⇒ W =
(
∩n≥1Dn ∪ c(W̊ )

)
∩W =

(
∩n≥1Dn ∩W

)
∪
(
c(W̊ ) ∩W

)
.

But W = W̊ ⊆ W̊ =⇒ c(W̊ ) ∩W = ∅. So ∩n≥1Dn is dense in W .

Theorem. Let (X, d) be a metric space with the Baire property. If fn : X → R are continuous functions converging
pointwise to f : X → R, then the set of points at which f is continuous is dense in X.

Claim. It suffices to prove the theorem under the additional hypothesis that |fn(x)| ≤ 1 ∀ n ≥ 1, x ∈ X.

Proof. Indeed, assume that the theorem holds for this restricted set of functions and let {fn}n≥1 be as in the
theorem. Consider φ : R→ (−1, 1), φ(x) = x

1+|x| bijective continuous with inverse φ−1 : (−1, 1)→ R, φ(y) = y
1−|y|

continuous. Then φ◦fn : X → (−1, 1) is continuous, {φ◦fn}n≥1 is uniformly bounded by 1, and φ◦fn −−−−→
n→∞

φ◦f
pointwise. Then {x ∈ X : φ ◦ f is continuous at x} is dense in X. As φ ◦ f is continuous at x ⇐⇒ f is continuous
at x, we get the claim.

Proof. From now on, assume |fn(x)| ≤ 1 ∀ n ≥ 1, x ∈ X. We want to show ∩n≥1Gn = X. As X has the Baire
property, it suffices to show that Gn = X ∀ n ≥ 1. Fix N ≥ 1. To show GN = X, it suffices to show that GN ∩W 6=
∅ ∀ ∅ = W = W̊ ⊆ X. Fix ∅ = W = W̊ ⊆ X. We want to show GN ∩W 6= ∅. For n ≥ 1, let un(x) = infm≥n fm(x)
and vn(x) = supm≥n fm(x). Then {un}n≥1 is an increasing sequence of functions, and {vn}n≥1 is a decreasing
sequence of functions. As fn(x) −−−−→

n→∞
f(x) ∀ x ∈ X, we have limn→∞ un(x) = f(x) = limn→∞ vn(x) ∀ x ∈ X.

Let

Fn = {x ∈ X : vn(x)− un(x) ≤ 1

4N
}.
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We have X = ∪n≥1Fn. Since

∀ x ∈ X,∃ n(x) ∈ N : x ∈ Fn(x), Fn = {x ∈ X : sup
k≥n

fk(x)− inf
l≥n

fl(x) ≤ 1

4N
}

= {x ∈ X : sup
k,l≥n

(fk(x)− fl(x)) ≤ 1

4N
}

= ∩k,l≥n{x ∈ X : fk(x)− fl(x) ≤ 1

4N
}.

But

{x ∈ X : (fk − fl)(x) ≤ 1

4N
} = (fk − fl)−1([−2,

1

4N
])

is the continuous preimage of a closed set, hence it’s closed. Thus Fn is closed so

X = ∪n≥1Fn =⇒ W = ∪n≥1(Fn ∩W ),

which is the union of closed sets in W . By the previous lemma, W has the Baire property, and W̊ 6= ∅ so
∃ n1 ≥ 1 : ˚Fn1 ∩W 6= ∅. Let

x0 ∈ ˚Fn1 ∩W =⇒ ∃ δ > 0 : Bδ(x0) ⊆ Fn1∩W .

Since fn1 is continuous at x0, shrinking δ if necessary, we may assume ω(fn1 , Bδ(x0)) < 1
2N . We will show x0 ∈ GN .

In particular, x0 ∈ GN ∩W 6= ∅. Then

ω(f,Bδ(x0)) = sup
x,y∈Bδ(x0)

|f(x)− f(y)| ≤ sup
x,y∈Bδ(x0)

|vn1
(x)− un1

(y)|

= sup
x,y∈Bδ(x0)

|vn1(x)− un1(x) + un1(x)− vn1(y) + vn1(y)− un1(y)|

≤ sup
x,y∈Bδ(x0)

|vn1
(x)− un1

(x)|+ sup
x,y∈Bδ(x0)

|un1
(x)− vn1

(y)|+ sup
x,y∈Bδ(x0)

|vn1
(y)− un1

(y)|

≤ 1

4N
+ sup
x,y∈Bδ(x0)

|fn1
(x)− fn1

(y)|+ 1

4N
=

1

2N
+ ω(fn, Bδ(x0)) <

1

N
=⇒ x0 ∈ GN .

Weierstrass approximation

Theorem. Let f : [a, b]→ R be continuous. Then there exists polynomials Pn : [a, b]→ R of degree at most n such

that Pn
u−−−−→

n→∞
f on [a, b].

Proof. We may assume [a, b] = [0, 1]. Indeed, the function φ : [0, 1] → [a, b], φ(t) = (1 − t)a + tb is bijective and

continuous. Then f ◦φ : [0, 1]→ R is continuous. If we find polynomials Pn of degree at most n : Pn
u−−−−→

n→∞
f ◦φ on

[0, 1], then Pn◦φ−1
u−−−−→

n→∞
f on [a, b]. From now on, [a, b] = [0, 1]. For n ≥ 0, let Pn(x) =

∑n
k=0 f( kn )

(
n
k

)
xk(1−x)n−k

be Bernstein polynomials. We will show Pn
u−−−−→

n→∞
f on [0, 1]. Let ε > 0. As f : [0, 1] → R is continuous, f is

uniformly continuous. Thus ∃ δ > 0 : |f(x)− f(y)| < ε ∀ x, y ∈ [0, 1], |x− y| < δ. Fix x ∈ [0, 1]. Then

|Pn(x)− f(x)| = |
n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k − f(x)

n∑
k=0

(
n

k

)
xk(1− x)n−k|

≤
n∑
k=0

|f(
k

n
)− f(x)|

(
n

k

)
xk(1− x)n−k

≤
∑

0≤k≤n,|x− kn |<δ

|f(
k

n
)− f(x)|

(
n

k

)
xk(1− x)n−k +

∑
0≤k≤n,|nx−k|≥nδ

|f(
k

n
)− f(x)|

(
n

k

)
xk(1− x)n−k

≤ ε
n∑
k=0

(
n

k

)
xk(1− x)n−k + 2 sup

y∈[0,1]
|f(y)|

n∑
k=0

(
nx− k
nδ

)2(
n

k

)
xk(1− x)n−k

≤ ε+ 2 sup
y∈[0,1]

|f(y)| 1

n2δ2

n∑
k=0

(nx− k)2
(
n

k

)
xk(1− x)n−k.
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Now compute

n∑
k=0

(nx− k)2
(
n

k

)
xk(1− x)n−k

= n2x2
n∑
k=0

(
n

k

)
xk(1− x)n−k − 2nx

n∑
k=0

k

(
n

k

)
xk(1− x)n−k +

n∑
k=0

k2
(
n

k

)
xk(1− x)n−k

= n2x2 − 2n2x2
n−1∑
k=1

(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k +

n∑
k=1

(k − 1 + 1)
n!

(k − 1)!(n− k)!
xk(1− x)n−k

= −n2x2 + n(n− 1)x2
n−1∑
k=2

(n− 2)!

(k − 2)!(n− k)!
xk−2(1− x)n−k + nx

n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= −n2x2 + n2x2 − nx2 + nx = nx(1− x) ≤ n

4
.

Thus |Pn(x)− f(x)| ≤ ε+ 2 supy∈[0,1] |f(y)| 1
n2δ2

n
4 < 2ε for n large depending only on δ and supy∈[0,1] |f(y)|. This

proves uniform convergence.

Exercise. Let a > 0. Show that there are polynomials Pn : [−a, a]→ R of degree ≤ n : Pn(0) = 0 and Pn
u−−−−→

n→∞
|x|

on [−a, a].

Proof. Note f : [−a, a] → R, f(x) = |x| is continuous, thus by the Weierstrass approximation theorem, ∃ Qn :

[−a, a]→ R polynomial of degree ≤ n : Qn
u−−−−→

n→∞
|x| on [−a, a]. Note Qn(0) −−−−→

n→∞
0. Let Pn(x) = Qn(x)−Qn(0)

polynomial of degree ≤ n and Pn(0) = 0.

Claim. Pn
u−−−−→

n→∞
|x| on [−a, a].

Notice |Pn(x)− |x|| ≤ |Qn(x)− |x||+ |Qn(0)|. Given ε > 0,

∃ n1(ε) ∈ N : sup
x∈[−a,a]

|Qn(x)− |x|| < ε

2
∀ n ≥ n1(ε)

∃ n2(ε) ∈ N : |Qn(0)| < ε

2
∀ n ≥ n2(ε)

For n ≥ n(ε) = max {n1(ε), n2(ε)}, we have |Pn(x) − |x|| < ε
2 + ε

2 = ε ∀ x ∈ [−a, a]. Thus Pn
u−−−−→

n→∞
|x| on

[−a, a].

Definition. Let (X, d) be a metric space. A set of real-valued functions A ⊆ {f : X → R} is called an algebra if

1. If f, g ∈ A, then f + g ∈ A.

2. If f, g ∈ A, then fg ∈ A.

3. If f ∈ A and λ ∈ R, then λf ∈ A.

Stone-Weierstrass

Theorem. Let (X, d) be a compact metric space and A ⊆ C(X) be an algebra. Assume that A satisfies the following
two properties:

1. A separates points in X, that is, if x, y ∈ X with x 6= y, then ∃ f ∈ A : f(x) 6= f(y).

2. A vanishes at no point in X, that is, if x ∈ X, then ∃ f ∈ A : f(x) 6= 0.

Then A is dense in C(X).

Example. A = {P : X → R polynomials} is an algebra, it separates points, and vanishes at no point.

Definition. Let f : R → R be a function. For a ∈ R, we write limx→a f(x) = L ∈ R if for any sequence
{xn}n≥1 ⊆ R\{a} : xn −−−−→

n→∞
a, we have f(xn) −−−−→

n→∞
L. Equivalently, if ∀ ε > 0,∃ δ > 0 : x ∈ (a−δ, a+δ)\{a} =⇒

|f(x)− L| < ε.
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Exercise. Extend this definition to cover L = ±∞, a = ±∞.

Remark. f is continuous at a ∈ R iff limx→a f(x) = f(a). Similarly, one defines the left-limit f(a−) = limx→a f(x)
and the right-limit f(a+) = limx→a f(x).

Differentiation

Definition. Let I be an open interval and f : I → R a function. We say f is differentiable at a ∈ I if

limx→a
f(x)−f(a)

x−a exists and is finite. In this case we write f ′(a) = limx→a
f(x)−f(a)

x−a and we call it the derivative
of f at a.

Example. Fix n ≥ 1, f : R→ R, f(x) = xn. For a ∈ R, x 6= a, f(x)−f(a)x−a = xn−an
x−a = xn−1+xn−2a+· · ·+an−1 −−−−→

n→∞
nan−1. So f ′(a) = nan−1.

Lemma. Let I be an open interval, f : I → R be a differentiable at a ∈ I. Then f is continuous at a.

Proof. For x ∈ I\{a} we write f(x) = f(x)−f(a)
x−a (x−a)+f(a). Then limx→a

f(x)−f(a)
x−a = f ′(a) and limx→a(x−a) = 0.

Thus limx→a f(x) = f(a).

Theorem. Let I be an open interval and f, g : I → R be differentiable at a ∈ I. Then

1. for any λ ∈ R, λf is differentiable at a and (λf)′ = λf ′.

2. f + g is differentiable at a and (f + g)′(a) = f ′(a) + g′(a).

3. fg is differentiable at a and (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

4. if g(a) 6= 0 then f
g is differentiable at a then ( fg )′(a) = f ′(a)g(a)−f(a)g′(a)

g(a)2 .

Proof. 1. For x 6= a, (λf)(x)−(λf)(a)x−a = λ f(x)−f(a)x−a −−−→
x→a

λf ′(a).

2. For x 6= a, (f+g)(x)−(f+g)(a)x−a = f(x)−f(a)
x−a + g(x)−g(a)

x−a −−−→
x→a

f ′(a) + g′(a).

3. For x 6= a, (fg)(x)−(fg)(a)x−a = f(x)−f(a)
x−a g(x) + f(a) g(x)−g(a)x−a . Then g continuous a =⇒ limx→a g(x) = g(a) so

limx→a
(fg)(x)−(fg)(a)

x−a = f ′(a)g(a) + f(a)g′(a).

4. For x 6= a,
( fg )(x)−(

f
g )(a)

x−a = f(x)−f(a)
x−a

1
g(x) + f(a)

1
g(x)
− 1
g(a)

x−a = f(x)−f(a)
x−a

1
g(x) + f(a)

g(a)
1

g(x)
g(x)−g(a)
x−a . Then g(a) 6= 0

and g continuous a =⇒ limx→a
1

g(x) = 1
g(a) so

( fg )(x)−(
f
g )(a)

x−a = f ′(a) 1
g(a) + f(a)

g(a)
1

g(a)g
′(a) = f ′(a)g(a)−f(a)g′(a)

g(a)2 .

Theorem. Let I and J be open intervals and assume f : I → R is differentiable at a ∈ I and g : J → R
is differentiable at f(a) ∈ J . Then f ◦ g is well-defined on a neighbourhood of a, is differentiable at a and
(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. As f(a) ∈ J open, ∃ ε > 0 : (f(a)− ε, f(a) + ε) ⊆ J . Since f is continuous at a,∃ δ > 0 : if |x− a| < δ with
x ∈ I then |f(x)− f(a)| < ε. As I is open, choosing δ even smaller (if necessary), we may ensure (a− δ, a+ δ) ⊆ I.
So g ◦ f is well-defined on (a− δ, a+ δ). Let

h(y) =

{
g(y)−g(f(a))
y−f(a) y ∈ J \ {f(a)}

g′(f(a)) y = f(a)

As g is differentiable at f(a), we have limy→f(a) h(y) = limy→f(a)
g(y)−g(f(a))
y−f(a) = g′(f(a)) = h(f(a)). So h is

continuous at f(a). So for y ∈ J \ {f(a)}, we write g(y) − g(f(a)) = h(y)(y − f(a)). For x ∈ (a − ε, a + ε) \ {a}
we have g(f(x))− g(f(a)) = h(f(x))(f(x)− f(a)) ⇐⇒ g(f(x))−g(f(a))

x−a = h(f(x)) f(x)−f(a)x−a −−−→
x→a

g′(f(a))f ′(a) =⇒
(g ◦ f)′(a) = g′(f(a))f ′(a).

Theorem. Let f : (a, b) → R. If f attains its maximum or minimum at x0 ∈ (a, b) and f is differentiable at x0,
then f ′(x0) = 0.
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Proof. Assume f attains its maximum at x0. Otherwise, replace f by −f .

• For xn ∈ (a, x0) with xn −−−−→
n→∞

x0 we have f ′(x0) = limn→∞
f(xn)−f(x0)

xn−x0
≥ 0.

• For xn ∈ (x0, b) with xn −−−−→
n→∞

x0 we have f ′(x0) = limn→∞
f(xn)−f(x0)

xn−x0
≤ 0.

Combining the two, we get f ′(x0) = 0.

Rolle

Theorem. Assume f : [a, b] → R is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then ∃ x0 ∈
(a, b) : f ′(x0) = 0.

Proof. As f is continuous on the compact interval [a, b], it attains its maximum and minimum on [a, b]. Thus
∃ y0, z0 ∈ [a, b] : f(y0) ≤ f(x) ≤ f(z0) ∀ x ∈ [a, b].

1. Suppose {y0, z0} = {a, b}. As f(a) = f(b) we get that f is constant on [a, b]. Then ∀ x ∈ (a, b) we have

f ′(x) = limy→x
f(y)−f(x)

y−x = 0.

2. Suppose either y0 /∈ {a, b} or z0 /∈ {a, b}. If y0 ∈ {a, b}, then by the previous theorem, f ′(y0) = 0. Likewise
for z0.

Mean value theorem

Theorem. Assume f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b). Then ∃ x0 ∈ (a, b) : f ′(x0) =
f(b)−f(a)

b−a .

Remark. If f(a) = f(b), we recover Rolle’s theorem.

Proof. Let l : [a, b] → R given by l(x) = f(a) + f(b)−f(a)
b−a (x − a). Then l is continuous on [a, b], differentiable

on (a, b) with l′(x) = f(b)−f(a)
b−a ∀ x ∈ (a, b) and l(a) = f(a), l(b) = f(b). Let g : [a, b] → R, g(x) = f(x) − l(x)

continuous on [a, b], differentiable on (a, b) and g(a) = g(b) = 0. By Rolle’s theorem, ∃ x0 ∈ (a, b) : g′(x0) = 0 =

f ′(x0)− f(b)−f(a)
b−a =⇒ f ′(x0) = f(b)−f(a)

b−a .

Corollary. If f : (a, b)→ R is differentiable with f ′(x0) = 0 ∀ x ∈ (a, b), then f is constant.

Proof. Assume, towards a contradiction, that ∃ a < x1 < x2 < b : f(x1) 6= f(x2). As f is differentiable on
(a, b), it’s continuous on (a, b). Thus f is continuous on [x1, x2] and differentiable on (x1, x2). By the mean

value theorem, ∃ x0 ∈ (x1, x2) : 0 = f ′(x0) = f(x2)−f(x1)
x2−x1

. But f ′(x0) = 0 ∀ x ∈ (a, b) by hypothesis, so
f(x2)− f(x1) = 0 ⇐⇒ f(x1) = f(x2), contradiction.

Corollary. If f, g : (a, b)→ R are differentiable with f ′(x) = g′(x) ∀ x ∈ (a, b), then ∃ c ∈ R : f(x) = g(x)+c ∀ x ∈
(a, b).

Corollary. Let f : (a, b)→ R be differentiable.

1. If f ′(x0) ≥ 0 ∀ x ∈ (a, b), then f is increasing.

2. If f ′(x0) > 0 ∀ x ∈ (a, b), then f is strictly increasing.

3. If f ′(x0) ≤ 0 ∀ x ∈ (a, b), then f is decreasing.

4. If f ′(x0) < 0 ∀ x ∈ (a, b), then f is strictly decreasing.

Proof. 1. Let a < x1 < x2 < b. Then f is continuous on [x1, x2] because it’s continuous on (a, b) and dif-

ferentiable on (x1, x2). By the mean value theorem, ∃ x0 ∈ (x1, x2) : 0 ≤ f ′(x0) = f(x2)−f(x1)
x2−x1

. Thus
f(x2)− f(x1) ≥ 0.

Exercise. Prove the remaining.
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Intermediate value properties for derivatives

Theorem. Let f : (a, b) → R be differentiable. If a < x1 < x2 < b and λ lies between f ′(x1) and f ′(x2), then
∃ x0 ∈ (x1, x2) : f ′(x0) = λ.

Proof. Assume WLOG that f ′(x1) < λ < f ′(x2). Let g : (a, b) → R, g(x) = f(x) − λx be differentiable on (a, b).
Then g is continuous on (a, b). We want to find x0 ∈ (x1, x2) : g′(x0) = 0. As g is continuous on [x1, x2] compact, it
attains its maximum at a point x0 ∈ [x1, x2]. If we can show that x0 /∈ {x1, x2}, then x0 ∈ (x1, x2) and g′(x0) = 0.

Let’s show x0 6= x1. We have limx→x1

g(x)−g(x1)
x−x1

= g′(x1) = f ′(x1) − λ < 0. Thus ∃ δ > 0 : if 0 < |x − x1| < δ,

then g(x)−g(x1)
x−x1

< 0. For x1 − δ < x < x1, we get g(x1) < g(x) so g(x1) is not a maximum and x0 6= x1. Similarly,
x0 6= x2.

Theorem. Let I be an open interval and f : I → R be continuous and injective. Then J = f(I) is an interval.
If f is differentiable at x0 ∈ I and f ′(x0) 6= 0, then the inverse f−1 : J → I is differentiable at y0 = f(x0) and
(f−1)′(y0) = 1

f ′(x0)
.

Proof. As f is injective and continuous, it’s strictly monotone. Therefore f−1 : J → I is strictly monotone. As
f−1(J) = I is an interval, we have f−1 is continuous. Assume WLOG that f is increasing.

Claim. J is open.

Assume, towards a contradiction, that J is not open. Suppose inf J ∈ J . Then, as J = f(I),∃ a ∈ I : f(a) =
inf J . As I is open, ∃ ε > 0 : (a − ε, a + ε) ⊆ I. As f is strictly increasing, we get inf J = f(a) > f(a − ε

2 ) ∈ J ,
contradiction.

Exercise. Consider sup J ∈ J .

This shows J is open. We know limx→x0

f(x)−f(x0)
x−x0

= f ′(x0) 6= 0 =⇒ limx→x0

x−x0

f(x)−f(x0)
= 1

f ′(x0)
. Let

ε > 0. Then ∃ δ > 0 : 0 < |x − x0| < δ =⇒ | x−x0

f(x)−f(x0)
− 1

f ′(x0)
| < ε, f−1 is continuous at y0 ∈ J . Then

∃ y > 0 : 0 < |y − y0| < η =⇒ 0 < |f−1(y) − f−1(y0)| < δ. Putting these together, we get 0 < |y − y0| < η =⇒
| f
−1(y)−f−1(y0)

y−y0 − 1
f ′(x0)

| < ε. Thus limy→y0
f−1(y)−f−1(y0)

y−y0 = 1
f ′(x0)

= (f−1)′(y0)
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