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Compactness in metric spaces

Definition. Let (X, d) be a metric space.

e Let A C X. An open cover of A is any collection {G;};cr of open sets such that A C U;c;G;. The open
cover is called finite if [ is finite. Otherwise, the open cover is called infinite.

e A set K C X is called compact if every open cover of K admits a finite subcover, that is, if {G;}ics is an
open cover for K, then 3n > 1 and i1,...,i, € [ : K C szlGij.

Proposition. Let (X,d) be a metric space and let K C X be compact. Then K is closed and bounded.
Proof. We first show K is closed, then we show K is bounded.

e To show K is closed, it suffices to prove °K is open. If °K = (), then K is closed. Thus, we may assume
CK#0. Let z € K. For y € K, let

1
Ty = id(x,y).

Consider the open set
By, (y) ={z € X :d(z,y) <y}

Then K C Uyck B, (y). As K is compact, the open cover {B,, (y)},cx admits a finite subcover. Thus
In>land y1,...,yn € K : K CUY B, (v:),
where we used the shorthand r; = ry,. Let
r=min{r;} V1<i<n.

Then
B.(2) N By, (y;) =0V 1<i<n.

Otherwise we find the contradiction
z € B.(z) N B,,(y;)) = d(z,y;) <d(z,2) +d(z,y;) <r+r; <2r;, =d(z,y).

Thus
B.(z) SNty “Br(yi) = “(UiZ1 B (yi) © °K.

By definition, K is open and so K is closed.

e We show K is bounded. Clearly, {B1(y)}yex is an open cover of K. As K is compact, 3 n > 1 and
Yooy Yn € K0 K C U Bi(y;). Let 7 = maxi<k<n d(y1, yx) + 1. Then K C B, (y1).

O
Theorem. Let (X,d) be a metric space and let K CY C X. Then K is compact in Y <= K is compact in X.
Proof. We prove both ways separately.

e 7 = 7 Let {G,}icr be a collection of sets open in X such that K C U;erG;. Then V; = G; NY is open in
Y Viel Wehave K C (Uie;G;) NY = U;efV;. As K is compact in Y, 3 4q,...,4, € [ : K CUY_,V;, =
K CU_,G;,. Thus K is compact in X.



o7 <« 7 Let {V;};,cr be a collection of sets open in Y such that K C U;e;V;. Then 3 {G;}icr open in
X:V;=G;NnY Viel Thus {G,}ics is an open cover for K. As K is compact in X,3 41,...,i, €I : K C
Up_1G;, = K CU;_,V;,. Thus K is compact in Y.

O

Proposition. Let (X,d) be a metric space and let F C K C X. If F is closed and K 1is compact, then F is
compact.

Proof. Let {G;}ier be an open cover for F. As F C Uje;G; = K C U;e/G; U °F. As K is compact,
Hil,...,iHGIZKguzzlGikU °F = FQU;CL:lGik. O]

Corollary. Let (X,d) be a metric space, F C X be closed and K C X be compact. Then F N K is compact.

Sequential compactness

Definition. Let (X, d) be a metric space. A set K C X is called sequentially compact if every sequence in K
admits a subsequence that converges in K.

Bolzano-Weierstrass

Theorem. Let (X, d) be a metric space. An infinite set K C X is sequentially compact <= every infinite set
A C K admits an accumulation point in K.

Proof. We prove both ways separately.

¢ ” — 7 Let A C K be infinite. Then 3 {an}n>1 € A: ap # am ¥V n # m. As K is sequentially compact,
I {an}n>1 C A:ay, % a€ K. Clearly,a€ A" asVr >0,B.(a) N A\ {a} # 0.

b2

o 7 = 7" Let {an}n>1 C K. If {an}n>1 contains a constant subsequence, then that subsequence converges to
a point in K. Otherwise, the set A = {a, : n > 1} is infinite. By hypothesis, AN K # 0. Let a € A’ N K.

Then 3 {an}tn>1 € A:ay, 2 .
- n— 00

Proposition. Let (X,d) be a metric space. If K C X is compact, then K is sequentially compact.

Proof. If K is finite, then K is necessarily sequentially compact. Assume K is infinite. Let A be infinite. Then
ACK CK = ANK=A" We want to show A/ NK # () < A’ # (). Assume, towards a contradiction,
that A’ = 0. Then

VeeK,3r, >0:B, (x)NA\{z} =0 = B, (x)NAC {z}.

Thus {B,, (%) }sex is an open cover for K compact = I z1,...,2, € K : K C U B,,(x;) where r; = ry,. As
A C K, we get the following contradiction

A=ANUL By, (zi) = U (AN By, (x1)) € U {i}
Thus A’ = A’ N K # (). By Bolzano-Weierstrass, this implies K is sequentially compact. O

Proposition. Let (X,d) be a metric space and let K C X be sequentially compact. Then K is closed and bounded.

Proof. We first show K is closed, then we show K is bounded.

e We show K isclosed < K =K. Fixe € K = 3 {z,}u>1 C K : 1z, %) x. As K is sequentially

compact, 3 {zg, tn>1 C K : ap, L) ye K. As x, L> T = Iy, L> x, the limit of the convergent
- n—o0

n—00 n—oo

subsequence is unique. Thus x =y € K and K C K = K is closed.

e We show K is bounded. Assume, towards a contradiction, that K is unbounded. Let ay € K. Then K
unbounded =



—Jas € K :d(aj,az) > 1
— Jdasz € K :d(a1,a3) > 1,d(az,a3) > 1 otherwise K C By (a1) U By(as).

Proceeding inductively, we construct {a,}n>1 C K : d(an, am) > 1V n # m. This sequence doesn’t admit a
convergent subsequence, contradicting the fact that K is sequentially compact.

O

Total boundedness

Definition. Let (X,d) be a metric space. A set A C X is totally bounded if V € > 0, A can be covered by
finitely many balls of radius e.

Remark. 1. A totally bounded = A bounded
2. A CR bounded = A totally bounded

3. N endowed with the discrete metric :

0 otherwise.

1 ifzx=
d(x,w:{ Y

Then N is bounded, but not totally bounded.

Theorem. Let (X, d) be a metric space and let K C X. The following statements are equivalent.

1. K is sequentially compact.
2. K is complete and totally bounded.

Proof. We show 1 =— 2 and 2 — 1.

e Let’s show K is complete. Let {z,}n,>1 C K be Cauchy. As K is sequentially compact, 3 {zx, }n>1 :
Tk, s eK = Tn —% s 2 € K. Thus K is complete. Let’s show K is totally bounded. Fix e > 0.

n—oo n—oo

— Let a1 € K. If K C B(ay), then K is totally bounded.

— Otherwise, 3 as € K : d(ay,a2) > €. If K C Be(a1) U Bc(az), then K is totally bounded.
— Otherwise, 3 as € K : d(a1,a3) > €,d(az,a3) > €

If this process terminates in finitely many steps, then K is totally bounded. Otherwise, we find {ay}n>1 C

K :d(ap,am) > € V n # m. This sequence doesn’t admit a convergent subsequence, contradicting the fact
that K is sequentially compact.

o Let {an}n21 CK.

— K totally bounded — 3 J; finite and {965-1)}]‘611 CK:KC Uje]lBl(ZL‘g-l)). Thus 3 j; € J; : |{n €
N:a, € Bl(xg))ﬂ = Ng. Let {a%l)}nzl denote the corresponding subsequence.

~ K totally bounded = 3 Jp finite and {2 }jes, C K : K C Ujes, By (2")). Thus 3 j2 € Jo : [{n €
N:a, € By (gcgz))}| = Ng. Let {ag)}nzl denote the corresponding subsequence.

Proceeding inductively, we find finite sets J, {xgk)}jel]k7 {aslk)}nzl : {a,(zk)}nzl € B (a:y;)) Then {a%kﬂ)}nzl
is a subsequence of {aﬁf)}nzl V k > 1. Consider the diagonal subsequence {aﬁ,,")}nzl. Fixk>1landn,m > k.

Then d(ap,a) < d(al, x% )+ d(zh ,am) < 1 + 7 = . This shows {a&")}nzl is Cauchy. As K is complete,
(n)
an

—% 4 € K. This proves K is sequentially compact.
n—oo



O

Proposition. Let (X,d) be a metric space and let K C X be sequentially compact. Let {G;}icr be an open cover
of K. Then 3 € > 0: any ball of radius € contained in K is contained in at least one G;.

Proof. We argue by contradiction. Then Vn > 1,3 a, € K : Bi(a,) C K, but B1(a,) € G; Vi€ Il. As K is
sequentially compact, 3 {ax, }n>1 : ag, 4 L ieK ThusackK CUieiG; = Figel:ae Gy = Geio =
- n—oo
dr>0:B.(a) C G- As ay, — sa3n, €N: d(a,ar,) < 5V n>n,. Let N =max{n,, |[2|}+ 1. Notice
n—oo
x € B (agy) = d(z,a) < d(z,aky) + d(agy,a) < ,% +35 < % + 5 < r. Thus B 1 (ary) C Br(a) C Gy,
kN N N
contradiction. 0

Proposition. Let (X,d) be a metric space and let K C X be sequentially compact. Then K is compact.

Proof. Let {G;}icr be an open cover of K. By the previous proposition, 3 ¢ > 0 : any ball of radius € contained
in K is contained in at least one GG;. As K is totally bounded, 3 z1,...,2, € K : K C U?lee(xj). Then
VISJSH,HZJGIBE((E])QGZJ — KQU?ZlGij. O

Heine-Borel

Collecting everything, we get the Heine-Borel theorem.
Theorem. Let (X, d) be a metric space and let K C X. The following statements are equivalent.
1. K is compact.
2. K 1is sequentially compact.
3. K is complete and totally bounded.
4. Every infinite subset of K has an accumulation point in K.
Corollary. A set K C R is compact iff it’s closed and bounded.
Proof.

Exercise.

Compactness and the finite intersection property

Definition. An infinite family of closed sets {F;};cs is said to have the finite intersection property if for any
finite J C I we have Nje F; # 0.

Theorem. A metric space (X,d) is compact iff for every infinite boundary of closed sets {F;}icr that has the finite
intersection property, we have N;crF; # (.

Proof. We prove both ways separately.

e We argue by contradiction. Assume that {F;};cs is an infinite family of closed sets with the finite intersection
property, but N F; = 0. Then X = U;es °F; compact = 3 J C [ finite : X = Ujecy °F; = 0 = Njecs F;,
which contradicts the finite intersection property.

e We argue by contradiction. If X isn’t compact, then 3 {G;}ic; open cover of X : {G;}icr doesn’t admit
a subcover. In particular, [ is infinite. Consider the family {“G;};cr of closed sets. As X = U;je/G; =
Nicr °G; = 0. Fix J C I finite. As {G,};cr doesn’t admit a finite subcover X # Ujc;G; = Njes °G; # 0.
Thus {°G;}ier has the finite intersection property, contradiction.

O

Corollary. Let (X,d) be a metric space, K C X be compact, and {F;};,cr be a family of closed sets. If K N
(NierF;) =0, then 3 finite J C I : KN (NjesF;) = 0.



Proof.

Exercise.

Continuity

Definition. Let (X,dx), (Y, dy) be metric spaces and let f : X — Y be a function. We say that f is continuous
at xg € X ifVe>0,30>0:dy(f(z), f(zo)) < € whenever dx(z,z0) < §. We say f is continuous on X if f is
continuous at every x € X.

Remark. A function f : X — Y is necessarily continuous at every isolated point in X. Indeed, if o € X is isolated,
36>0:{x € X :dx(z,x9) <} ={x0}. Then dx(x,z0) <§ = dy(f(x), f(z0)) =0<eVe>D0.

Theorem. Let (X,dx),(Y,dy) be metric spaces, let f : X — Y be a function, and vo € X. The following
statements are equivalent.

1. f is continuous at xg.

2. for every {zp}tn>1 C X : —X 2o we have f(zn) o, f(zo)

n

Proof. We show 1 = 2 and 2 = 1.

o Let z, i—x> xo and € > 0. As f is continuous at x¢,3 § > 0: dx(zp,20) < = dy(f(zn), f(z0)) < €.
n (e ]

As z, _ax 20,3 ns EN:dx(zn,x0) <IVn>ns = dy(f(an), f(z0)) < eV n>mns.

n—oo

e We argue by contradiction, then 3¢y > 0:Vn > 1,3z, € X : dx(z,,z0) < % but dy (f(zn), f(zo)) > €0,
contradiction.

O

Proposition. Let (X,dx), (Y,dy) be metric spaces and let f : X — Y be a function. The following statements
are equivalent.

1. f is continuous
2. G open inY = f~YQ) open in X
3. F closed inY = f~1(F) closed in X
4. BCY = f~Y(B)2 f-1(B)
5. ACX = f(4)C f(4)

Proof. We will show’l] — 2 — 3 — 4 — 5 —= 4 = 17.
el = 27 Let G CY be open, z9 € f1(G).

Then f(x9) € G open = Je>0:BY (f(z0)) CG.

X X ~1
As f is continuous at 29,3 6 > 0: f(Bg (z0)) C Bf(f(xo))} (B (0)) € G &= By (w0) € S7(C).
Thus f~1(G) is open.

e "2 = 3" Let F CY be closed => °F openin YV = “(f~YF)) = f1(°F)isopen in X = f~}(F)
is closed in X.

"3 = 4" Let BCY = Bisclosed = f~1(B) closed in X, f~}(B) C f~YB) = f1(B)
f~4(B) = f~1(B).

e 7’4 = 5" Fix A C X, apply 4 to B = f(A), we get f~1(f(4)) C f1(f(A)), fFHf(A) 24 = AC

fHf(A) = AC fH(f(A) = f(A4) C f(A).

N




e ”5 = 4" Fix BCY,apply5to A= f1(B), weget f(f~1(B)) C f(f~1(B) =B = f~1(B)C f1(B).
e”4 = 1" Fix 29 € X, let ¢ > 0. Consider “BY (f(x()) closed in Y. Let A = f~!(°BY (f(0))).
By d A= A= (BY(fw) = £ ((BY(Fz)) 2 F 1B (J@))) — A is closed. Then

CA= cfH(°BY (f(w0))) = f~1 (BY (f(20))) open. We have z € f~! (BY (f(z0))), then 36 > 0: BY (z0) C
f7H(BY (f(w0))) = f(BY (20)) € BY (f(x0)). This shows f is continuous at xo.

O

Proposition. Let (X,dx),(Y,dy),(Z,dz) be metric spaces and f : X — Y,g : Y — Z be functions : f is
continuous at xg € X, g is continuous at f(xg) €Y. Then go f: X — Z is continuous at .

Proof. Let € > 0.

g continuous at f(zg) = 3> 0:dy(y, f(z0)) <0 = dz (9(v),9(f(z0))) < e.
f continuous at g = I n > 0:dx(z,z0) <n = dy(f(x), f(z0)) <.

} dx(z,xz0) <

= dz (9(f(2)), 9(f(20))) < 0

Exercise. Assume f,g: X — R are continuous at o € X. Then f + g, fg are continuous at xy. If in addition,
g(xo) # 0 then 5 is continuous at zg.

Continuity and compactness

Theorem. Let (X,dx),(Y,dy) be metric spaces and let f : X — Y be continuous. If K C X is compact, then
f(K) is compact.

Proof. Let {G;}icr be an open cover of f(K). Then f~(G;) is open in X Vi € I. Moreover, f(K) C U;je;G; =
K C f~YUie1Gi) = Uier f71(G;). As K is compact, 3 J C [ finite : K C Ujes f~HG)) = f71(UjesG)) =

Corollary. 1. Let (X,dx) be a compact metric space and let f : X — R"™ be a continuous function. Then f(X)
1s closed and bounded.

2. Let (X,dx) be a compact metric space and let f : X — R be a continuous function. Then 3 x1,z0 € X :

f(l'l) = SUDPpex f(x)v f(xQ) = infﬂfEX f(l‘)
Proof. f(X) is closed and bounded. As R has the least upper bound property, 3 inf,cx f(z) € R,sup,cx f(z) € R.

Clearly, infoex f(x),sup,cy f(@) € F(@) = f(2). O

Proposition. Let (X,dx),(Y,dy) be metric spaces with X compact and let f : X — Y be a function that is
bijective and continuous. Then the inverse f~1:Y — X is continuous.

Proof. Let F' C X be closed. We want to show f(F) is closed in Y. As F'is closed and X is compact, F' is compact,
f is continuous = f(F) is compact = f(F') is closed. O

Definition. Let (X, dx), (Y,dy) be metric spaces and let f: X — Y be a function. We say that f is uniformly
continuous if Ve > 0,3 § > 0: dx(a,b) < = dy(f(a), f(b)) < e. Compare with f: X — Y continuous on
XiftVaey€eX,e>0,3 0, dx(zr,z0) <06 = dy(f(z), f(z0)) <e.

Remark. 1. Uniform continuity is a property of a function on a set. By comparison, continuity is defined
pointwise.

2. uniform continuity = continuity
3. A continuous function need not be uniformly continuous.
Ezample. f:R =R, f(x) =22 |f(n) — f(n + %)| =2+ %| > 2.

Proposition. Let (X,dx), (Y,dy) be metric spaces with X compact. Let f : X — Y be a continuous function.
Then f is uniformly continuous.



Proof. We want to show
Ve>0,35>0:dy(f(z), f(y) <eVa,yeX:dx(z,y) <.
We argue by contradiction. Assume
Je>0:Vd>0,3z5,y5s € X : dx(ws,ys5) < 9 but dy (f(xs), f(ys)) > €o-
Take 6 = % to get
I {zntnen, {Untnen C X 1 dx(zn,yn) <

but dy (f(xn), f(yn)) > €0. As X is compact, 3 {xk, }nen 94X, 20. Note
n—oo

1 4
dx (xo,yk,) < dx (o, 2k,) + dx (Tk, , Yk, ) < dx(xo,xk,) + -~ ﬁ 0.

Thus {yk, tnen —B 5 2. As f is continuous, f(zg, ) o, f(zo) and f(yg,) o, f(zo). Then we find the
n—o00 n—o0 T—00

contradiction
dy

dy (f(%k, ), f(Yk,)) < dy (f(zk,), f(z0)) + dy (f(z0), f(Yr,)) —— 0.

n— oo

Continuity and connectedness

Theorem. Let (X,dx), (Y,dy) be metric spaces and f : X — 'Y be a continuous function. If A C X is connected,
then f(A) is connected.

Proof. Assume, towards a contradiction, that f(A) is not connected. Then 3 By, By # 0, BN By =B NB; =0 :
f(A) =By UBsy. Let A = fﬁl(Bl) N A7A2 = fﬁl(BQ) N A. Notice

AUAy = (FHB)NAU(fH(B2)NA) = (FH(BOUSH(B2))NA = fH(BiUB2)NA = fH(f(A)NA = ANA = A

and
AiNAy = Y B)NAN(fH(B)NA) C fH BN FH(B2) € f (BN S (B2) = f~H(BiNBy) = f~1(0) = 0.
Similarly, A; N Ay = ). So A, Ay are separated = A is not connected, contradiction. O

Corollary. Let (X,dx) be a connected metric space and f : X — R be continuous. Then f(X) is an interval. In
particular, if X =R and a,b € R:a < b and yo lies in between f(a) and f(b), then 3 zo € (a,b) : f(xo) = yo. We
say that f has the Darbouz (intermediate value) property.

Remark. Functions with the Darboux property need not be continuous.

Ezxample.
sin% if x #0,
0 otherwise.

f:[0,00) = R, f(ﬂf):{ (1)
Let (X,dx) is a metric space and zg € X, then f : © — d(z,z¢) is continuous. Indeed, |f(z) — f(y)| =
|[d(x, zo) — d(y, z0)| < d(z,y). Take d = e.

Proposition. Let (X,dx), (Y,dy) be connected metric spaces. Then X xY endowed with the following metric is
a connected metric space:
p((z1,y1), (T2,y2)) = max {dx (w1, 2), dy (Y1, y2) }-

Proof. It suffices to prove that for any point in X x Y, 3 connected subset of X x Y that contains those points. Let
(z0,90),(a,b) € X xY and f:Y — X xY be a function defined as f(y) = (zo,y). This is continuous. Indeed,
p(f(y1), f(y2)) = dy (y1,y2). Take 6 = e. We get f(Y) is connected. Let g : X — X X Y be a function defined as
g(x) = (x,b). This is continuous. Indeed, p(g(z1),g(x2)) = dx(x1,z2). Take § = e. We get g(X) is connected. Note
FY)Ng(X) # 0. Indeed, (z9,b) € f(Y)Ng(X). Then f(Y)Ng(X) is connected. As {(zo,y0), (a,b)} C f(Y)Ug(X),
we get the claim. O



Remark. Note one may replace the metric p in the proposition above by any of the equivalent metrics p = dx + dy
or p=/d% + d%.
Definition. Let (X, dx) be a metric space.

e A path in X is any continuous function « : [0,1] — X. ~(0) is called the origin of the path, v(1) is called
the end of the path. Note ([0, 1]) is compact and connected.

e Let v:[0,1] — X be a path in (X,d). We define v : [0,1] — X via y~1(¢) = v(1 — ¢). This is a path in X.
For 71,72 paths in X with (1) = 72(0), we define the path 1 V 72 : [0,1] — X via

{71(275) if0<t

1
Vye(t) = 2
VRl =100 ifl<t<t

<
<

Theorem. Let (X,dx) be a metric space and let ) # A C X, then 1 <— 2 = 3.
1. 3a€A:YzreA3apathvyx :[0,1] = A with yx(0) = a and yx(1) = =.
2.V x,ye A3 apath vz, [0,1] = A with v,,(0) =z and v, (1) = y.

3. A is connected.

Proof. 7’1 = 2" Let z,y € A,vx,7vy : [0,1] = A as given by 1. Then yxy = 'y;(l Vay @ [0,1] — A is the
desired path.

e 72 — 1”7 Take a to be any point in A.

"l — 3 Forz € A, let Ax = vx([0,1]) connected. Moreover, {a} € NycaA,. Therefore, Uyca A, is
connected. But Uyca A, = A.
O

Definition. If either 1 or 2 hold, we say A is path connected.
Exercise. Show that R?\ Q? is path connected, and hence connected.

Proof. We will show that any point in R?\ Q? can be joined to (v/2,v/2) via a path in R?\ Q2. Let (z,y) € R?\ Q2.
Then 2 ¢ Qory ¢ Q. Say x ¢ Q. Then ~; : [0,1] — R?\ Q? defined as v, (t) = ((1 —t)v/2 + tz,/2) is a path, and
Yo i [0,1] — R2\ Q2 defined as yo(t) = (v, (1 — t)v/2 + ty) is a path. Then v; V72 : [0,1] — R?\ Q? is a path in
R?\ Q? joining (v/2,v/2) to (x,y). O

Remark. Connected sets are not necessarily path connected.
Example. See equation 1.

e Let Gy = {(x, f(z)) : z € [0,00)}. Then Gy is connected, but not path connected. Let g : [0,00) — R? be a
function defined as g(z) = (z, f(z)). Then g is continuous on [0, c0) because f is, so G\ {(0,0)} = ¢((0,00))

is connected. Consider Gy = {(0,0)} U g((0,00)). Note {(0,0)} C g((0,00)). Indeed, for z, = =, we get
g(xn) = (£,0) — (0,0). Therefore, {(0,0)} = g((0,00)) is connected.

Tn’
e To sce that G isn’t path connected, it suffices to see that there is no path connecting (0,0) to (%, 0). Indeed,
any such path would be discontinuous at ¢ = 0, because (ﬁ, 1) —— (0,1) #(0,0).
2 n—oo
Proposition. Let ) # A C X, then A is connected iff any two points in A can be joined by a polygonal arc lying
in A.
Proof. 7 <= 7 is immediate since path connectedness = connectedness. We show 7 = 7. Fix a € A and let
Ay = {z € A: z can be joined to a by a polygonal arc in A} # (§ because a € A;. We will show that A; is both
opened and closed in A, then A connected — A; = A.

e Let’s show A; is open in A. Pick z € A; C A open, 37 > 0: B.(z) C A. As any point in B,(x) can be
joined by a segment to x lying in the ball and x is joined by a polygonal arc to a, then any point in B,.(z)
can be joined by a polygonal arc to a. Thus B,.(z) C A. This proves A; is open.

e Let’s show A; is closed in A. If A5 = A\ A; = (), then we’re done. So assume 3 y € As C A open
= 3r>0:B.(y) C A If B.(y) C Ag, then we're done. So assume B,(y) C A; # (. Proof by picture,
contradiction.

O



Convergent sequences of functions

Definition. Let (X, dx), (Y,dy) be metric spaces. For n > 1, let f, : X — Y be functions. We say the sequence
{fn}n>1 converges pointwise if V x € X, the sequence {f,(z)}n>1 C Y converges. Thus, we say {fn}n>1
converges pointwise to f if Vz € X, e > 0,3 n(e,x) € N:dy (f(z), fu(z)) < eV n>n(ex).

Remark. For € > 0, the function n(e,z) : X — N can be bounded or unbounded. If it’s bounded, we get the
following definition.

Definition. Let (X,dx), (Y, dy) be metric spaces, f, : X = Y, f : X — Y be functions. We say that {f,}n>1
converges uniformly to f and write f, % fiftVe>0,3n.eN:dy(f(x), ful)) <eVn>ne,zelX.
n (oo}

Remark. e uniform convergence = pointwise convergence
e For (X,dx), (Y,dy) metric spaces, let B(X,Y) = {f : X — Y | f is bounded}. We define d : B(X,Y) x
B(X,Y) = Rvia d(f,g) = sup,cx dv (f(z),9(z)). Then (B(X,Y),d) is a metric space. Moreover,
fn%f < Ve>0,In.eN:dy(f(x), fu(z)) <eVn>n,zreX

<= Ve>0,3n. e N:supdy(f(z), fulz)) <eVn>n,reX
zeX

<~ Ve>0,In.eN:d(f,fn)<eVn>n,zeX
= d(f, fa) == 0

e pointwise convergence =% uniform convergence

Ezample. for n > 1, let f, : [0,1] = R, f,(z) = 2™, then

0 ifzel01)
n e
In(@) 55 {1 o= 1.

Let f:]0,1] — R be a function defined as

o ifxefo)
f(x)_{1 if o =1,

We have {f,}n>1 converges pointwise to f. However, {f,,},>1 doesn’t converge uniformly to f. Indeed,

d(fn, f) = sup |fu(z) — f(z)]| = sup |z"[=1+ 0.

z€[0,1) z€[0,1

Welierstrass

Theorem. Let (X,dx),(Y,dy) be metric spaces. Assume that the sequence of functions f, : X — Y converges
uniformly to the function f: X — Y. If f, is continuous at g € X for allm > 1, then f is continuous at xg. In
particular, a uniform limit of continuous functions is continuous.

Proof. Fix € > 0. Then

fn —>joo f = 3nceN:dy(fola), f(z)) <§Vn2n67$€x

n

Fix ng > n.. As f,, is continuous at g,
€
3 (e, x0) > 0 : dy (fno (), fro (T0)) < 3 Y x € B (x0).
For x € B (xg), we have

dy (F(2). £(20)) < dy (f(2). fg (@) + dy (fag (), Fg(20)) + dy (fay (w0). F(20)) < 5 + 5+ 5 =

O
Remark. The converse isn’t true. 3 a sequence of continuous functions that converges pointwise to a continuous
function, but the convergence isn’t uniform.

Ezample. fn :(0,1) = R, f,(xz) = 2™, {fn}n>1 converges pointwise to f : (0,1) — R, f = 0. But the convergence
is not uniform : d(fy, f) = sup,e1) [z"[ =1/ 0.



Dini

Theorem. Let (X,dx) be a compact metric space, f, : X — R be continuous functions : {fn}n>1 converges
pointwise to a continuous function f: X — R. If {fn}n>1 is monotone, then {fn}n>1 converges uniformly to f.

Proof. Assume, without loss of generality, {f,},>1 is increasing, i.e.
fol@) < fari(@) Vo >1lzeX.
Then {f — f,} is decreasing so
V>0, lim (£(2) — fule)) = inf {(2) — fule)} = 0.
Fix € > 0,29 € X. We have
inf {f(z0) = fa(z0)} =0 < e = I n(e,m0) € N:|f(20) — Fu(e.no)(T0)| < €.
Notice f — fp(e,z0) is continuous at zg. Thus

3 6(e,20) > 01 |(f(2) = fa(ewo) () = (f(20) = fa(eno) (T0))| < €V & € Bs(ea0) (20)-
So for & € Bs(c,zy)(0), we have
f(@) = fatemno) (@) < e+ f(@0) = fa(eno) (o) < 26
Note that {Bs(c z)(x)} form an open cover of X compact, thus
dzq,...,zay X : X C U,IleB(;(e?mk)(xk).
Let ne = maxi<k<n n(€, z;) and n > n.. For z € X,

J1<k<N:zxe€ Bg(€7mk)($k).

Then f(z) — fu(x) < f(2) = fru(e,o)(x) < 2¢. By definition, f, %) I O
n—oo

Remark. The compactness of X is essential. Consider f, : (0,1) — R, f,(z) = m1+1, continuous, f,(x) >

fog1(z) V2 € (0,1),n > 1. Then {f,}n>1 converges pointwise to f : (0,1) — R, f = 0. But the convergence isn’t

uniform: d(f,, f) = SUPze(0,1) |n:1:+1‘ 17 0.

Theorem. Let (X,dx) be a metric space and C(X) = {f : X = R : f is bounded and continuous}. For f,g €
C(X), let d(f,g) = sup,ex | f(x) — g(x)|. Then (C(X),d) is a metric space.

Exercise. (C(X),d) is complete, connected, but not compact because unbounded.
Definition. Let F C C(X).
e We say F' is uniformly bounded if 3 M > 0: |f(z)| <MV fe F,z € X.

e We say F' is equicontinuous if V¢ > 0,36 > 0:d(f(z), f(y)) <eV fe Fz,ye X :d(z,y) < 9.

Arzela-Ascoli

Theorem. Let [a,b] be a compact interval in R. Let F C C([a,b]). The following statements are equivalent.
1. Every sequence in F' admits a (necessarily) uniformly convergent subsequence.
2. F is uniformly bounded and equicontinuous.

Proof. el = 2
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— Let’s show F' is uniformly bounded, that is, F' is bounded with respect to the uniform metric. Indeed,
if F" were not uniformly bounded, then we would be able to construct a sequence

{fatnz1 € Fod(fy, favr) > 1+ d(f1, fn) Vo = 1.

Then d(fn, fm) > |d(f1, fn) — d(f1, fm)| > |n — m|. So {fn}n>1 cannot have a convergent subsequence.
— Let’s show F' is totally bounded. Let € > 0, f; € F.

x If I C B(f1), then F is totally bounded. Otherwise, 3 fo € F : d(fa, f1) > €.
* If FF C Bc(f1)UBc(f2). then F is totally bounded. Otherwise, 3 f5 € F : d(f1, f3) > €,d(f2, f3) > €.

If this process terminates in finitely many steps, then F' is totally bounded. Otherwise, we find a sequence

{fntn>1 CF :d(fn, fm) > €V n#m.

This sequence doesn’t admit a convergent subsequence.

— Let’s show F is equicontinuous. Let € > 0. As F is totally bounded,

3 fireesfu € F: F CUL_ B (fi).

£
1

Fix 1 <k <n. As f} : [a,b] = R is continuous, it is uniformly continuous. So
€
3 5k(€) >0: |fk(x) - fk(y)| < TO v T,y € [avb}, \x,y| < (sk

Let §(€) = miny<k<p 0x(€). Then V z,y € [a,b] with |z —y| < d and all 1 < k < n, we have
€
|fr(@) = fr(y)] < 10

Let f € F, then

For x,y € [a,b] with |z — y| < § we get
[f(@) = F)l < (@) = fu(@)| + [fr(2) = fe@)] + [(y) = ()]

€

< 24(f, fi) + | fel@) = fuly)l <255 + 15 <«

By definition, F' is equicontinuous.

e 2 = 1 Assume F is uniformly bounded and equicontinuous. Let {fn,}n>1 C F. If ¢ € [a,b] N Q, then
{fn(@)}n>1 is a bounded sequence of real numbers. In particular, {f,(q)}»>1 has a convergent subsequence.
Passing to a subsequence for every ¢ € [a,b] N Q (using the fact that [a,b] N Q is countable) and using a
diagonal argument, we find a subsequence { fx, }»>1 that converges at every rational ¢ € [a,b]. Let € > 0. As
F' is equicontinuous,

€
36>0:|f(@) = f)l < 5V FEF|o—y| <.
As [a, b] is compact,
Faq,-an €1a,0] N Qa8 C UL, (g5 — 6,05+ 9)-
Now {fx, (g;)} is convergent so
€

<10

In;(e) € N[ fe, (0) = fr, (a5)
Let z € [a,b], then 31 < j < N : |z — ¢;| < J. Now

|, (2) = fro ()| < [ S (@) = fr, (@) + [ fr, (05) = Frp (@5)] + | fr, (@5) = S (2)] < €Y mym > n(e).

We proved that {fx, }n>1 is Cauchy with respect to the uniform metric. Let f(z) = lim,_ o0 f, (x). We have
by Weierstrass

YV n,m > n;(e).

fin = f € C((a, ).

11



Corollary. Let F C C([a,b]). Then F is compact iff F is closed, uniformly bounded, and equicontinuous.

Remark. e The compactness of [a, b] is essential. Let
F={f:R=R,|f(z) = fW)| < |z —yl.sup |f(x)] <1}
zE
Then F is uniformly bounded and equicontinuous. Consider f : R — R, f(x) = H% Clearly, sup,cp | f(z)| =
SUp,.cr H% = 1. For z,y € R,

L1 [z —yllz +y|
L+a2 1+y2  (1+a?)(1+y?)

|f (@) = fy)l = |

oy M
- 1+ 22|14+ 92| |1+ 22||1 + y?

1 1
<fe-yllg+ ) =le
For n > 1, let f,(z) = f(xr —n) = m For z € R, f,(x) — 0. So {fn}n>1 converges pointwise to

the function g : R — R, g = 0. However, {f,}»>1 doesn’t admit a uniformly convergent subsequence because
sup,cp fn(z) =1V n > 1.

e The uniform boundedness of F is essential. Take F' = {f : [0,1] — R : f is constant}. This is equicontinuous
but not uniformly bounded. Indeed, f,(x) = n doesn’t admit a convergent subsequence.

e The equicontinuity of F' is essential. Consider

F={f:[0,1] = R, f is continuous, sup |f(z)| < 1}.
z€]0,1]

This set is not equicontinuous. For n > 1, let f, : [0,1] — R, f,(z) = sin(nz). Let z, = 3Z,y, = .

Then |z, — yn| = & —— 0. But |fu(zn) — fu(yn)| = 2. The sequence {f,,}n>1 doesn’t admit a uniformly
n—oo =

convergent subsequence. Assume, towards a contradiction, that 3 {f,},>1 that converges uniformly. By

Weierstrass, the limit function f : [0,1] — R is continuous. As f,(0) = 0, we must have f(0) = 0. Then f

continuous at x = 0 yields
= Ve>0,36>0:|f(z)]<eV0<z<d.

Moreover,
fo, —— [LANEN: |fy,| <2eVn>N,0<x <4
n—oo

s

But fr,(57-) = 1. Take n sufficiently large : 57— < § to get a contradiction.

The oscillation of a function

Definition. Let (X, d) be a metric space, § # A C X,f : X — R. The oscillation of a function on A
is w(f,A) = sup,cn f(z) — infrea f(z) = sup, yea (f(z) = f(y)) > 0. The oscillation of f at zop € X is
w(f,z0) = infeso w(f, Be(wo))-

Proposition. Let (X,d) be a metric space, f : X — R. Then f is continuous at xo € X iff w(f,xz¢) =0.
Proof. Let € > 0.

e 7 = 7 As fis continuous at 9,36 > 0: |f(x)— f(z0)| < § Vo € Bs(xo). Then for x € Bs(xo), f(x0)—
f(@) < flwo) +5 = [f(wo) = 5 < infoep,(ng) F(2) < SUPep; () F(2) < fwo) +5 = w(f, Bs(xo)
S+5=€¢ = w(f,z) <e

~— |
IN A

o7 «— 7 We have w(f,z9) = infssow(f,Bs(zg)) = 0 < e = 3I0 > 0: w(f,Bs(mg)) < e =

SUDy e By (o) (f(T) = f(Y)) < € = Supuep; o) If (@) = flw0)| <€ = [f(z) — f(z0)| < €V x € Bs(o).
This shows f is continuous at zg.

O
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Proposition. Let (X,d) be a metric space, f : X — R be a function, and a > 0. Then A={x € X : w(f,z) < a}
1S open.

Proof. Let g € A = w(f,x0) = infssow(f, Bs(z)) <a = 36 >0:w(f,Bs(xg)) < a
Claim. Bs(zg) C A

Let y € Bs(wo). Then Bs_g(z0,y)(y) € Bs(xo) and w(f,y) < w(f, Bs_d(z,y)(¥)) < w(f, Bs(zo)) < a. So
y € A. O

Remark. Let (X, d) is a metric space, f : X — R. Then {z € X : f is continuous at z} = {r € X : w(f,2) =0} =
MNp>1{z € X :w(f,z) < %} = Np>1{Gn} open. Note G,,41 C G, Vn > 1.

Exercise. Show that there are no functions f : R — R such that f is continuous at every rational point and
discontinuous at every irrational point.

Proof. By contradiction. Assume f : R — R is continuous on R and discontinuous on R\ Q. Then Q = N,>1G,,
with G,, = Gn AsQisdensein R, weget G, =RVn>1 = Np>1Grn = R. Let {g, }>1 denote an enumeration
of Q. Forn > 1,let H, =R\ {g,} = (—00,q) U (g, ) open. Moreover, H,, = R. As R is complete, if satisfied the
Baire property, that is, if {4, },>1 is a sequence of open dens sets, then N,>1A4,, = R. Then we must have that
(Mn>1Gy) U (Ny>1H,) = 0, contradiction. O

Lemma. Let (X,d) be a metric space with the Baire property and () # W = W C X. Then W has the Baire
property.
Proof. Let {Dy},>1 be a sequence of open, dense sets in W. As D,, is open in W,3 G, openin X : D,, =G, NW

open in X. Also
D,NW=W = WCD, = WCD,Vn

vV

1.

Forn >1,let B, = D, U ¢(W) open in X. Then B,, = D,, U ¢«(W) =D, UcW)DWU ‘W =X = B, is
dense in X. As X has the Baire property,

X =Np>1Bn = Np>1(Dn U ¢(W)) = (Mp>1Dy) U ¢(W) = Nyp>1 D, US(W) = Ny>1 Dy, U (W)
— W= (mnlen U C(ﬁ)) AW = (Np>1D, NW) U (C(W) N W) )

o

But W =W C W = (W)NW =90. So Ny>1D,, is dense in W. O

Theorem. Let (X,d) be a metric space with the Baire property. If f, : X — R are continuous functions converging
pointwise to f : X — R, then the set of points at which f is continuous is dense in X.

Claim. It suffices to prove the theorem under the additional hypothesis that |f,(z)| <1V n> 1,z € X.

Proof. Indeed, assume that the theorem holds for this restricted set of functions and let {f,},>1 be as in the
theorem. Consider ¢ : R — (—1,1),¢(z) = %\II bijective continuous with inverse ¢=% : (=1,1) = R, ¢(y) = %‘yl
continuous. Then ¢o f,, : X — (—1,1) is continuous, {¢o f,, }n>1 is uniformly bounded by 1, and ¢o f,, —— ¢o f
- n—oo
pointwise. Then {z € X : ¢ o f is continuous at 2} is dense in X. As ¢ o f is continuous at z <= f is continuous
at x, we get the claim. O

Proof. From now on, assume |f,(z)| <1V n > 1,2 € X. We want to show N,>1G,, = X. As X has the Baire
property, it suffices to show that G, =XVn2>1 Fix N> 1. Toshow Gy = X, it suffices to show that Gy "W #
PVO=W=WCX. Fixl =W =W C X. We want to show Gy NW # 0. For n > 1, let u,,(x) = inf,;, >y, fn(x)
and vy, (z) = sup,,>, fm(z). Then {u,},>1 is an increasing sequence of functions, and {v,},>1 is a decreasing

sequence of functions. As f,(r) —— f(x) V z € X, we have lim,_,o up(z) = f(z) = lim, oo vn(x) V 2 € X.
n— 00

Let 1
F, = X: — < —1.
=1z € V() — up(x) < 4N}
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We have X = U, >1F,. Since

VaeeX,In(x) e Nix e Fuy), F, = {zc X :sup fi(z) - inf fi(z) < —}
k>n I>n 4
= {r € X5 swp (@)~ file) < 77}
kl>n
= Npisnfr € X @ fi(z) — fi(z) < %}-
But ) )
lee X (fu = fi)(2) < ;=3 = (fu = -2, o)

is the continuous preimage of a closed set, hence it’s closed. Thus F,, is closed so
X = UnZan = W= UnZl(Fn n W),

which is the union of closed sets in W. By the previous lemma, W has the Baire property, and W # () so
Any >1:F,, NW #0. Let )

o € Fn1 NW — 36>0: B(;(xo) - FnlﬂW~
Since f,, is continuous at zo, shrinking § if necessary, we may assume w(fn,, Bs(zo)) < 5&. We will show zy € Gy.
In particular, zg € Gy NW # 0. Then

w(f;Bs(zo)) = sup |f(z) = f(y)| < sup |vp, (2) — un, (y)|

z,y€Bs(z0) z,y€Bs(z0)
= Sup |vﬂ1 (:17) — Un, (LL') + Un,y (l‘) — Uny (y) + Uny (y) — Uny (y)|
z,y€Bs(x0)
< sup |on (@) —un @)+ sup Jun, (@) — v ()| sup v, (y) — un, (9)]
z,y€Bs(z0) z,y€Bs (o) z,y€Bs(x0)
1 1 1
< — . — fa —_— = n, B <= = Gn.
<IN +x’yesgf(wo)|f (@) = W+ 5 = 5y T Bs(zo)) < zo € GN

Weierstrass approximation

Theorem. Let f : [a,b] — R be continuous. Then there exists polynomials P, : [a,b] — R of degree at most n such

that P, —— f on [a,b].

n— oo

Proof. We may assume [a,b] = [0,1]. Indeed, the function ¢ : [0,1] — [a,b],#(t) = (1 — t)a + tb is bijective and

continuous. Then fo¢ : [0,1] — R is continuous. If we find polynomials P, of degree at most n : P, % fogon

[0, 1], then P06~ —— f on [a,b]. From now on, [a,b] = [0,1]. Forn >0, let P,(z) = > p_, f(£)(})a*(1—z)"*
n—oo

be Bernstein polynomials. We will show P, —~— f on [0,1]. Let ¢ > 0. As f : [0,1] — R is continuous, f is

n—oo
uniformly continuous. Thus 3§ > 0: |f(z) — f(y)| < eV z,y € [0,1],|z — y| < 4. Fix z € [0,1]. Then

P =11 =1 1 (3)at 0y = 02 (§ )k -yt

k=0

< ¥ uG-mi)ta-re 2 - sei(f)sa-ar

0<k<n,|nz—k|>nd

<3 (F)ata—ar 42 swp If(y)lé(W)z (7)aa -

y€[0,1]

1 n
<2 s [F0)l s Dt = 17 )oh1 - o
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Now compute

k=0
= n’az? -~ (" 2F (1 — )" F — 2nx ; k(" aF(1—x)"F ¢ . g2 (" zh (1 — g)nF
> (1) >(0) 24 (i)
2,2 2 2n71 (n—1)! k-1 k| N\ n! k n—k
=n’z —2nxk:1mx (1—-=x) +’;(kz—1+1)mm (1—2x)
sy n —2)! _ e " n—1)! . e
= —n?2? + n(n — 1)2? 2 0 —(2)!(n)— k)!xk 21— )"k +nx; (k:—(l)!(n)—k)!xk (1—az)"F

n
= —n?z? + n%2% —na® + nx = nz(l — ) < T

Thus [P, (z) — f(2)] < €+ 2sup,epo |f(y)| =552 % < 2¢ for n large depending only on § and supyeoq) |f(y)]. This

proves uniform convergence. O

Exercise. Let a > 0. Show that there are polynomials P, : [~a,a] — R of degree < n : P,(0) = 0 and P,, —— |z|
n—oo

on [—a,al.

Proof. Note f : [—a,a] — R, f(x) = |z| is continuous, thus by the Weierstrass approximation theorem, 3 @, :
[—a,a] — R polynomial of degree < n : Q,, —— || on [—a, a]. Note Q,,(0) —— 0. Let P, (z) = Qn(z) — Q,(0)
n— oo n— o0
polynomial of degree < n and P,(0) = 0.
Claim. P, —— |z| on [~a, a].
n—oo

Notice |P,(z) — |z|| < |@Qn(z) — |z|| + |@n(0)|. Given e >0,

Ini(e) €N sup [Qula) —fall < 5V n > mi(e)
]

z€[—a,a
I na(e) € N: [Qn(0)] < % V> na(e)

For n > n(e) = max{ni(e),n2(e)}, we have |P,(z) — |z]| < §+§ =€V 2 € [~a,a]. Thus P, HLOJ |z| on
[—a,al. O
Definition. Let (X, d) be a metric space. A set of real-valued functions A C {f : X — R} is called an algebra if

1. If f,g € A, then f+g € A.

2. If f,g € A, then fg € A.

3. If fe Aand X € R, then \f € A.

Stone-Weierstrass

Theorem. Let (X,d) be a compact metric space and A C C(X) be an algebra. Assume that A satisfies the following
two properties:

1. A separates points in X, that is, if x,y € X with x # y, then 3 f € A: f(x) # f(y).
2. A wvanishes at no point in X, that is, if x € X, then 3 f € A: f(x) #0.
Then A is dense in C(X).
Example. A ={P: X — R polynomials} is an algebra, it separates points, and vanishes at no point.

Definition. Let f : R — R be a function. For a € R, we write lim,_, f(z) = L € R if for any sequence
{zn}n>1 C R\{a} : x,, —— a, we have f(x,) —— L. Equivalently, ifVe > 0,36 >0:z € (a—0d,a+d)\{a} =
- n—oo n—oo

@) - L] <e.
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Exercise. Extend this definition to cover L = +o00,a = £oo.

Remark. f is continuous at a € R iff lim,_,, f(z) = f(a). Similarly, one defines the left-limit f(a™) = lim,_,, f(z)
and the right-limit f(a%) = lim,_,, f(z).

Differentiation

Definition. Let I be an open interval and f : I — R a function. We say f is differentiable at a € I if
lim,_,q f(m) f(a) f@=Fa) 3nd we call it the derivative

exists and is finite. In this case we write f'(a) = lim,_,, =—2=%
of f at a.

Example. Fixn >1,f: R = R, f(z) = 2". Fora € R,z # a, f(xi,:f:(a) —zioa® _ gn-lygn=2p4 . qgqnl

r—a n—00
na" 1. So f'(a) = na" "',

Lemma. Let I be an open interval, f : I — R be a differentiable at a € I. Then f is continuous at a.

Proof. For xz € I\{a} we write f(z) = W(m—a)—&—f(a). Then lim,_,, w = f’(a) and lim,_,,(z—a) = 0.
Thus lim, 4 f(x) = f(a). O

Theorem. Let I be an open interval and f,g: I — R be differentiable at a € 1. Then
1. for any X € R, \f is differentiable at a and (\f)" = \f'.
2. [+ g is differentiable at a and (f + g)'(a) = f'(a) + ¢'(a).
3. fg is differentiable at a and (fg)'(a) = f'(a)g(a) + f(a)g (a).

4. if g(a) # 0 then 5 is differentiable at a then (5)’(@) w.

ANE)-Af)a) _ y f(= f(a)
Proof. 1. For x # a, = = o Af'(a).
9. For = # a, (f+g)(92 t(lf+g)(a) _ f(x) f(a) + g(x) g(a) = f'(a) + ¢'(a).
x a

3. For z # a, Y2 (”2 éfg)(a) = f(mi a(a)g(:z:) f(a )M Then g continuous a = lim,_,, g(z) = g(a) so

+
lim, o LOD=UI — f/(a)g(a) + f(a)g'(a).

x

—a z—a  g(z) T—a z—a  g(z)

£ (L
and g continuous a = lim,_,, ﬁ = ﬁ SO W = f'(a )%

Iy (2)— (LY (a _ 11 _
4. For z # a, (g)(x (@ _ f@)-fa) 1 + flo) TR @0 _ f@fle) 1 fga) s 9(2)=9(0) " Then g(a) # 0
(a L / — f(a)g(a)=f(a)g'(a)
o) g9 (@) = 9(a)? 5

Q
N

.
N

+
+

Theorem. Let I and J be open intervals and assume f : I — R is differentiable at a € I and g : J — R
is differentiable at f(a) € J. Then f o g is well-defined on a neighbourhood of a, is differentiable at a and

(g0 f)(a) =g'(f(a))f'(a).

Proof. As f(a) € J open, 3e>0:(f(a)—¢, f(a)+¢€) C J. Since f is continuous at a,3 § > 0: if |x — a| < § with
x € I then |f(x) — f(a)] < e. As I is open, choosing ¢ even smaller (if necessary), we may ensure (a —d,a+0) C 1.
So g o f is well-defined on (a — d,a + J). Let

) — {g<y;g§f§“>> ye s\ {f()

g (f(a)) y = f(a)

As g is differentiable at f(a), we have lim,_, ) h(y) = lim,_, s, )%((fga)) = ¢'(f(a)) = h(f(a)). So h is
continuous at f(a). So for y € J\ {f(a)}, we write g(y) — g(f(a)) = h(y)(y — f(a)). For x € (a —€,a +€) \ {a}
we have g(f(x)) —g(f(a)) = h(f (@) (f (x) ~ f(a)) &= LD = p(f () LD ——s g/(f(a)) () =
(g0 f)(a) =g'(f(a))f (a). J
Theorem. Let f: (a,b) — R. If f attains its mazimum or minimum at xg € (a,b) and [ is differentiable at xo,
then f'(xo) = 0.
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Proof. Assume f attains its maximum at xo. Otherwise, replace f by —f.

f(zn)=f(z0) > ().

e For z,, € (a,xo) with z,, —— x¢ we have f'(x¢) = lim, ;o =22
n—oo n 0

e For z,, € (xp,b) with z,, —— 2o we have f'(z¢) = lim, 0 W <0.
n—oo n

Combining the two, we get f'(zg) = 0. O

Rolle

Theorem. Assume f : [a,b] = R is continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), then I z¢ €
(a,0) : f'(zo) = 0.
Proof. As f is continuous on the compact interval [a,b], it attains its maximum and minimum on [a,b]. Thus
F w0, 20 € [a,0] : fyo) < f(x) < f(20) V @ € [a,b].

1. Suppose {yo,20} = {a,b}. As f(a) = f(b) we get that f is constant on [a,b]. Then ¥V x € (a,b) we have

2. Suppose either yo ¢ {a,b} or zg ¢ {a,b}. If yo € {a,b}, then by the previous theorem, f'(yo) = 0. Likewise
for zg.

O

Mean value theorem

Theorem. Assume f : [a,b] — R is continuous on [a,b] and differentiable on (a,b). Then 3z € (a,b) : f'(xo) =
f(b)—f(a)
b—a :

Remark. If f(a) = f(b), we recover Rolle’s theorem.

Proof. Let I : [a,b] — R given by l(x) = f(a) + %ﬁ:(a)(x — a). Then [ is continuous on [a,b], differentiable
on (a,b) with I'(z) = LO=1W v 5 ¢ (a,b) and I(a) = f(a),l(b) = f(b). Let g : [a,b] — R, g(x) = f(z) — I(z)
continuous on [a, b], differentiable on (a,b) and g(a) = g(b) = 0. By Rolle’s theorem, 3 zg € (a,b) : ¢'(z9) =0 =
F(xo) — f(bl))_f(a) — f(z0) = f(bz—f(a). ]

a

Corollary. If f : (a,b) — R is differentiable with f'(x9) =0V z € (a,b), then f is constant.

Proof. Assume, towards a contradiction, that 3 a < 1 < 29 < b : f(x1) # f(x2). As f is differentiable on
(a,b), it’s continuous on (a,b). Thus f is continuous on [z1,z9] and differentiable on (z1,z2). By the mean

value theorem, 3 xg € (x1,22) : 0 = f'(xo) = flz2)=f@) By f'(zg) = 0V = € (a,b) by hypothesis, so

ro—T1

f(z2) — f(z1) =0 < f(x1) = f(x2), contradiction. O
Corollary. If f,g: (a,b) — R are differentiable with f'(x) = ¢'(x) V x € (a,b), thenIc € R : f(x) =g(x)+cVz €
(a,b).
Corollary. Let f : (a,b) — R be differentiable.

1. If f'(z9) > 0V z € (a,b), then f is increasing.

2. If f'(x0) >0V x € (a,b), then f is strictly increasing.

3. If f'(x0) <0V z € (a,b), then f is decreasing.

4. If f'(x0) <OV x € (a,b), then [ is strictly decreasing.

Proof. 1. Let a < x1 < x2 < b. Then f is continuous on [z, z2] because it’s continuous on (a,b) and dif-
ferentiable on (x1,z2). By the mean value theorem, 3 zg € (z1,22) : 0 < f'(xg) = L@a)=f(21) -~ Py
0.

f(l‘g) - f(xl) > T2—T1
O

Exercise. Prove the remaining.
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Intermediate value properties for derivatives

Theorem. Let f : (a,b) — R be differentiable. If a < x1 < xo < b and X lies between f'(x1) and f'(x2), then
Jxo € (x1,22) = f'(zg) = A

Proof. Assume WLOG that f/(z1) < A < f/(z2). Let g : (a,b) = R,g(z) = f(z) — Az be differentiable on (a,b).
Then g is continuous on (a, b). We want to find zg € (z1,22) : ¢'(x0) = 0. As g is continuous on [z1, z2] compact, it
attains its maximum at a point xg € [x1,z2]. If we can show that xg ¢ {1, 22}, then z¢ € (z1, z2) and ¢’'(zo) = 0.
Let’s show xg # x1. We have lim,_,,, 9(@)=g(@1) _ g (1) = f'(x1) =A< 0. Thus 3§ >0:if 0 < | — 1| < 4,

r—x1
then % < 0. For 1 —d <z < x1, we get g(z1) < g(x) so g(x1) is not a maximum and z¢ # x;. Similarly,
i) # 9. O]

Theorem. Let I be an open interval and f : I — R be continuous and injective. Then J = f(I) is an interval.
If f is differentiable at xo € I and f'(x) # 0, then the inverse f~' : J — I is differentiable at yo = f(x0) and

(f~1) (%) = f’(lmo)'

Proof. As f is injective and continuous, it’s strictly monotone. Therefore f~! : J — I is strictly monotone. As
fYJ) = I is an interval, we have f~! is continuous. Assume WLOG that f is increasing.

Claim. J is open.

Assume, towards a contradiction, that J is not open. Suppose infJ € J. Then, as J = f(I),3a €I : f(a) =
infJ. As I'isopen, 3 e > 0: (a—¢a+¢€) CI. As f is strictly increasing, we get inf J = f(a) > f(a—5) € J,
contradiction.

Exercise. Consider sup J € J.

This shows J is open. We know limg_,,, %ﬁ“) = fl(zg) #0 = limy_,4, f(g:f((’mo) = f'(];ﬁo)' Let

€>0 Then 30>0:0< |z—29] <J = |f(x:§:§?rg) - f,(lzo)| < €, f71 is continuous at yo € J. Then
Jy>0:0<|y—wyol <n = 0<|fYy)— f1(yo)| <. Putting these together, we get 0 < |y — yo| <n =

1,y g1 . —1,y_ g1 _
|f (yzi—zjjo (yo) f’(lwo)l < ¢. Thus hmy—>yo f (y;_io (yo) _ f’(lo:o) _ (f 1)/(y0) 0

18



