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Functions

• Given two non-empty sets A,B a function f : A→ B is a way of assigning to each element a ∈ A, a unique
element in B, denoted by f(a).

• The set A is called the domain of f , the set B is called the range of f . If A′ ⊆ A then f(A′) = {f(a) : a ∈
A′} ⊆ B is called the image of A′ in B under f and f(A) is called the image of f .

• If f(A) = B, then f is surjective, or onto. If f(a) = f(a′) ⇔ a = a′, then f is injective, or one-to-one. If
f is injective and surjective, then f is bijective.

• Two functions f, g : A→ B are equal iff {(a, f(a)) : a ∈ A} = {(a, g(a)) : a ∈ A}.

Example. f : Z → Z, f(n) = 2n is injective (just divide by 2) but not surjective because it only covers even
integers. However, g : R→ R, g(x) = 2x is bijective (just plug in 2x+1

2 to get odd numbers).

Composition

Let A,B,C 6= ∅ and f : A→ B, g : B → C be functions. The composition of g with f is the function g◦f : A→ C
given by (g ◦ f)(a) = g(f(a)).

Exercise. Let D 6= ∅, h : C → D be a function. Show composition is associative.

Proof.
(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = h(g(f(a))) = (h ◦ g)(f(a)) = ((h ◦ g) ◦ f)(a)

Remark. Composition need not be commutative. For example, let f : Z → Z, f(n) = 2n, g : Z → Z, g(n) = n+ 1,
then

(f ◦ g)(n) = f(g(n)) = f(n+ 1) = 2(n+ 1) 6= (g ◦ f)(n) = g(f(n)) = g(2n) = 2n+ 1

Inverses

Let f : A → B be bijective. The inverse of f is f−1 : B → A, defined as follows: if b ∈ B, then f−1(b) = a ∈ A,
and a is the unique element in A : f(a) = b. In particular, f−1 ◦ f = 1A and f ◦ f−1 = 1B .

Exercise. Let f : A→ B and g : B → C be bijective. Show g ◦ f is also bijective, and (g ◦ f)−1 = f−1 ◦ g−1.

Proof. Assume (g ◦ f)(a) = (g ◦ f)(b), i.e. g(f(a)) = g(f(b)). Since g is injective, we have f(a) = f(b). Since f
is injective, we have a = b. Thus g ◦ f is injective. Since g is surjective, ∀ c ∈ C,∃ b ∈ B : g(b) = c. And since
f is surjective, ∀ b ∈ B, ∃ a ∈ A : f(a) = b. So we have g(b) = g(f(a)) = c, so g ◦ f is surjective. Furthermore,
since (g ◦ f)(a) = c, we have ((g ◦ f)−1)(c) = a. Moreover, (f−1 ◦ g−1)(c) = f−1(g−1(c)) = f−1(b) = a. Thus
(g ◦ f)−1 = f−1 ◦ g−1.
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Proposition on injective functions

Proposition. A function f : B → C is injective iff for any set A 6= ∅ and any two functions g, h : A → B, we
have f ◦ g = f ◦ h =⇒ g = h.

Proof. ” =⇒ ” Let a ∈ A, then f(g(a)) = f(h(a)) =⇒ g(a) = h(a) because f is injective.
”⇐” Suppose f isn’t injective, i.e. ∃ b1, b2 ∈ B : f(b1) = f(b2) but b1 6= b2. Let A = {1, 2} and g, h : A→ B be

functions defined as

g(1) = b1, g(2) = b2

h(1) = h(2) = b1.

Then g 6= h, but notice

f(g(1)) = f(b1) = f(h(1))

f(g(2)) = f(b2) = f(b1) = f(h(2))

so f ◦ g = f ◦ h, contradiction.

Proposition on surjective functions

Proposition. A function f : A → B is surjective iff for any set C 6= ∅ and any two functions g, h : B → C, we
have g ◦ f = h ◦ f =⇒ g = h.

Proof. ” =⇒ ” Let b ∈ B, then ∃ a ∈ A : f(a) = b. Then (g◦f)(a) = (h◦f)(a)⇔ g(f(a)) = h(f(a))⇔ g(b) = h(b),
so g = h.

”⇐” Suppose f isn’t surjective, then ∃ b0 ∈ B : b0 /∈ f(A). Let C = {0, 1} and g, h : B → C be functions
defined as

g(b) = 0 ∀ b ∈ B

h(b) =

{
1 if b = b0

0 otherwise.

Then g 6= h, but notice

(g ◦ f)(a) = g(f(a)) = 0 ∀ a ∈ A
(h ◦ f)(a) = h(f(a)) = 0 ∀ a ∈ A

so g ◦ f = h ◦ f , contradiction.

Definition. Let f : A → B be a function, B′ ⊆ B. The preimage of B′ in A under f is f−1(B′) = {a ∈
A : f(a) ∈ B′}. The preimage of a set exists whether or not f is invertible. In particular, if B′ ∩ f(A) = ∅, then
f−1(B′) = ∅.

Exercise. Let f : A→ B be a function, A1, A2 ⊆ A, and B1, B2 ⊆ B. Then show

1. f(A1 ∪A2) = f(A1) ∪ f(A2)

2. f(A1 ∩A2) ⊆ f(A1) ∩ f(A2) and show f is injective iff the equality holds

3. f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2)

4. f−1(B1 ∩B2) 6⊆ f−1(B1) ∩ f−1(B2)
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Cardinality

Let A,B be two sets. We say that A and B have the same cardinality (or the same cardinal number) if ∃ a
bijection f : A→ B. In this case, we write A ∼ B.

1. We say A is finite if A = ∅ or A ∼ {1, . . . , n} for some n ∈ N. If A = ∅, then the cardinality of A is 0, i.e.
|A| = 0. If A ∼ {1, . . . , n}, then the cardinality of A is n, i.e. |A| = n.

2. An infinite set is a set which is not finite.

3. We say A is countable if A ∼ N. In this case, |A| = ℵ0.

4. We say A is at most countable if A is finite or countable.

5. We say A is uncountable if A isn’t at most countable.

Theorem. If A is a finite set and B ⊆ A, then B is a finite set.

Proof. Assume B 6= ∅ (otherwise it’s finite), then A 6= ∅. As A is finite, ∃ n ∈ N, f : A→ {1, . . . , n} bijective. Let
bi ∈ B : f(bi) = min{f(b) : b ∈ B \ {bj : j < i}}. Let m ∈ N : m ≤ n, g : B → {1, . . . ,m} be a function defined as
g(bi) = i. Then g is bijective and so B is finite.

Remark. Let A be a finite set and B a proper subset of A, then A 6∼ B. Otherwise, there would exist a bijection
between {1, . . . ,m} and {1, . . . , n} with m ≤ n.

Example. 1. N ∪ {0,−1, . . . ,−k} ∼ N for any k ≥ 0

Proof. Take the bijection f : N ∪ {0,−1, . . . ,−k} → N defined as

f(n) = n+ k + 1

2. Z ∼ N

Proof. Take the bijection f : Z→ N defined as

f(n) =

{
2(n+ 1) n ≥ 0

−(2n+ 1) n < 0.

3. N× N ∼ N

Proof. Take the bijection f : N× N→ N defined as

f(n,m) =
(n+m− 2)(n+m− 1)

2
+ n

(a) We show f is surjective.

Proof. For k ≥ 1, let P (k) : ∃ (n,m) ∈ N× N : k = f(n,m).

• Base step: f(1, 1) = 1 =⇒ P (1) holds.

• Inductive step: Let k ≥ 1 : P (k) holds. We want to show P (k + 1) holds. ∀ m ≥ 2, we have

k + 1 =
(n+m− 2)(n+m− 1)

2
+ n+ 1

=
[(n+ 1) + (m− 1)− 2][(n+ 1) + (m− 1)− 1]

2
+ (n+ 1)

= f(n+ 1,m− 1).
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If m = 1, then

k + 1 =
(n+m− 2)(n+m− 1)

2
+ n+ 1 =

(n+ 1− 2)(n+ 1− 1)

2
+ n+ 1 =

(n− 1)n

2
+ n+ 1

=
(n− 1)n+ 2(n+ 1)

2
=
n2 − n+ 2n+ 2

2
=
n2 + n+ 2

2
=
n(n+ 1)

2
+ 1 = f(1, n+ 1).

Thus ∀ m ≥ 1,∃ n ∈ N : f(n,m) = k + 1, i.e. P (k + 1) holds. Thus f is surjective.

(b) We show f is injective.

Proof. Assume f(n,m) = f(a, b), we want to show (n,m) = (a, b). Let r ∈ N such that

(n+m− 2)(n+m− 1)

2
=

(a+ b− 2)(a+ b− 1)

2
+ r.

Suppose r 6= 0. Let g : x 7→ (x−2)(x−1)
2 and t ∈ N. Then

|g(x+ t)− g(x)| = (x+ t− 2)(x+ t− 1)− (x− 2)(x− 1)

2
=

(x+ t)2 − 3(x+ t) + 2− (x− 2)(x− 1)

2

=
x2 + 2tx+ t2 − 3x− 3t+ 2− x2 − 3x+ 2

2
=
t(t+ 2x− 3

2
= tx+

t(t− 3)

2
.

Thus |g(x+ t)− g(x)| ≥ max {t, x} − 1. Notice f(n,m) = f(a, b) =⇒ r = a− n =⇒ a = n+ r. Then

r = g(n+m)− g(a+ b) ≥ max {a+ b, (n+m)− (a+ b)} − 1

≥ a+ b− 1 = (n+ r) + b− 1 = r + (n+ b− 1) ≥ r + 1.

This is a contradiction, thus r = 0. Then

(n+m− 2)(n+m− 1)

2
=

(a+ b− 2)(a+ b− 1)

2
.

Then by hypothesis n = a and we have

a2 + a(2m− 3) + (m− 2)(m− 1) = a2 + a(2b− 3) + (b− 2)(b− 1)

2a(m− b) +m2 − 3m− b2 + 3b = 0

(m− b)(2a+m+ b− 3) = 0

m = b.

Theorem. An infinite subset of a countable set is countable.

Proof. Let A be a countable set, then A ∼ N. In particular, A = {a1, . . . }. Let B ⊆ A : B is infinite. Consider
S1 = {n ∈ N : an ∈ B} 6= ∅. Let k1 ∈ N : k1 = min (S1). Define g(1) = ak1 . Proceed inductively. Let n ∈ N.
Assume we have defined g(1) = ak1 and g(n) = akn : g(i) 6= g(j) ∀ 1 ≤ i 6= j ≤ n. Let Sn+1 = {n ∈ N : an ∈
B \ Sn} 6= ∅. Let kn+1 = min (Sn+1) > kn. Let g(n+ 1) = akn+1 .

Exercise. Prove g is bijective.

Proof. Assume g(n) = g(m), i.e. akn = akm , but since g(i) 6= g(j) ∀ 1 ≤ i 6= j ≤ n, we must have n = m and
thus g is injective. Let akn ∈ A, then kn = minSn where Sn = {m ∈ N : am ∈ B \ Sn−1}. Thus by definition
∃ n ∈ N : g(n) = akn and g is surjective.

Theorem. An infinite set contains a countable subset.
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Proof. Let A be an infinite set, then ∃ a1 ∈ A. Proceed inductively. Assume we found a1, . . . , an ∈ A : ai 6=
aj ∀ 1 ≤ i 6= j ≤ n. Consider A \ {a1, . . . , an} 6= ∅, otherwise A ∼ {1, . . . , n}. Let an+1 ∈ A \ {a1, . . . , an}. Clearly
an+1 6= ai ∀ 1 ≤ i ≤ n. By mathematical induction, A contains a countable set.

Theorem. A set is infinite iff it is equivalent to one of its proper subsets.

Proof. ”⇐= ” Let A be a set : A ∼ B ∀ B ( A. Then A must be infinite.
” =⇒ ” Let A be an infinite subset, B a countable subset of A : B = {a1, a2, . . . }. Consider A \ {a1} ( A. Let

f : A→ A \ {a1} be a function defined as

f(a) =

{
a if a ∈ A \B
aj+1 if a = aj ∈ B

We want to show f is a bijection to show that A is equivalent to its proper subset A \ {a1}.
Claim. f is injective.

Proof. Let a, a′ ∈ A : f(a) = f(a′). We want to show a = a′.
Case 1: If a ∈ A \ B, then f(a) = a but f(a′) = f(a) so f(a′) = a ∈ A \ B =⇒ a′ /∈ B =⇒ f(a′) = a′ but

f(a′) = a so a′ = a.
Case 2: If a = aj ∈ B then f(a) = f(aj) = aj+1 but f(a′) = f(a) so f(a′) = aj+1 ∈ B =⇒ a′ ∈ B =⇒ ∃ i ∈

N : a′ = ai but then f(a) = f(a′) =⇒ aj+1 = ai+1 and B is countable so i = j =⇒ a = ai = aj = a′.

Claim. f is surjective.

Proof. By definition, f(A \ B) = A \ B, f(B) = B \ {a1} =⇒ f(A) = f(A \ B ∪ B) = f(A \ B) ∪ f(B) =
A \B ∪ (B \ {a1}) = A \ {a1}.

Schröder-Bernstein

Theorem. Assume ∃ two injective functions f : A→ B and g : B → A. Then A ∼ B.

Example. Q ∼ N

Proof. Let f : N → Q be a function defined as f(n) = n, then f is injective. Let g : Q → N × N be a function
defined as g(mn ) = (m,n), then g is injective. Since we have proved that ∃ bijection N × N → N, we can find a
bijective composition Q→ N. Using Schröder-Bernstein, this proves Q ∼ N.

Proof. We will decompose A,B into disjoint sets

A = A1 ∪A2 ∪A3 : Ai ∩Aj = ∅ if i 6= j

B = B1 ∪B2 ∪B3 : Bi ∩Bj = ∅ if i 6= j

and we will show Ai ∼ Bj ∀ 1 ≤ i ≤ 3. Let a ∈ A and consider

Sa = {a, g−1(a), (f−1 ◦ g−1)(a), (g−1 ◦ f−1 ◦ g−1)(a), . . . }.

There are three cases. If Sa is finite, let x be its last element.

1. Sa is infinite.

2. Sa terminates in A, i.e. x = a or x = (f−1 ◦ g−1 ◦ · · · ◦ g−1)(a) and g−1(x) = ∅.

3. Sa terminates in B, i.e. x = g−1(a) or x = (g−1 ◦ f−1 ◦ · · · ◦ f−1)(a) and f−1(x) = ∅.
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Let

A1 = {a ∈ A : Sa is infinite}
A2 = {a ∈ A : Sa ends in A}
A3 = {a ∈ A : Sa ends in B}

By construction, A = A1 ∪A2 ∪A3 and Ai ∩Aj = ∅ ∀ i 6= j.
For b ∈ B let Tb = {b, f−1(b), (g−1 ◦ f−1)(b), . . . }. Similarly, let

B1 = {b ∈ B : Tb is infinite}
B2 = {b ∈ B : Tb ends in B}
B3 = {b ∈ B : Tb ends in A}

By construction, B = B1 ∪B2 ∪B3 and Bi ∩Bj = ∅ ∀ i 6= j.
Let f : A1 → B1, f : A2 → B2, g : B3 → A3 be functions defined as bijections. Let h : A → B be a function

defined as

h =

{
f on A1 ∪A2

(g|B3)−1 on A3,

is bijective.

Claim. h is bijective.

Theorem. If A is any set, then A is not equivalent to its power set P (A) = {B : B ⊆ A}.
Proof. If A = {∅} then |A| = 0 but P (A) = {{∅}} so |P (A)| = 1 and so A 6∼ P (A). Assume A 6= ∅. Suppose
towards a contradiction that A ∼ P (A). Then ∃ f : A → P (A) a surjective function. Consider B = {a ∈ A : a /∈
f(a)} ∈ P (A). As f is surjective, ∃ b ∈ A : f(b) = B. If b ∈ f(b), then since f(b) = B, we have b ∈ B and by
definition b /∈ f(b). If b /∈ f(b), then by the definition of B, b ∈ B. But since f(b) = B, we have b ∈ f(b). This is a
circular contradiction, thus A 6∼ P (A).

Remark. b is like the barber who shaved all people who didn’t shave themselves. Who shaved the barber?

Theorem. The interval [0, 1) ⊆ R has cardinality 2ℵ0 .

Proof. Last time we identified [0, 1) with the set of functions

F = {f : N→ {0, 1} : ∀ n ≥ 1,∃ m > n : f(m) = 0}.

We will show F ∼ 2N = {f : N→ {0, 1}}. Let F0 : F → 2N be a function defined as F0(f) = f . Then F0 is injective
but not surjective because the image of F0 doesn’t contain functions with finitely many zeroes.

Define G : 2N → [0, 1) via the following procedure: for f ∈ 2N, define the binary expansion G(f) = 0.0f(1)0 · · · =∑
n≥1 2−2nf(n).

Claim. G is injective.

Proof. Assume G(f) = G(g) for f, g ∈ 2N. We want to show f = g. Consider A = {n ≥ 1 : f(n) 6= g(n)}. If
A = ∅ =⇒ f = g. Assume towards a contradiction that A 6= ∅. Let n0 = minA, we have

0 = G(f)−G(g)

=
∑
n≥1

2−2nf(n)−
∑
n≥1

2−2ng(n)

=
∑
n≥1

2−2n [f(n)− g(n)]

−2−2n0 [f(n0)− g(n0)] =
∑

n≥n0+1

2−2n [f(n)− g(n)]

2−2n0 =
∣∣∣ ∑
n≥n0+1

2−2n [f(n)− g(n)]
∣∣∣ ≤ ∑

n≥n0+1

2−2n [|f(n)|+ |g(n)|]

2−2n0 ≤ 2 · 2−2(n0+1)
∑
k≥0

2−2k ≤ 2 · 2−2(n0+1) 1

1− 1
4

=
2

3
2−2n0 < 2−2n0
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This is a contradiction, proving that G is injective. As [0, 1) ∼ F , G induces an injection from 2N into F . By
Schröder-Bernstein, 2N ∼ F ∼ [0, 1).

Metric spaces

Definition. Let X be a non-empty subset. A metric on X is a map d : X ×X → R that satisfies

1. d(x, y) ≥ 0 ∀ x, y ∈ X

2. d(x, y) = 0 iff x = y

3. d(x, y) = d(y, x) ∀ x, y ∈ X

4. d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X

Then (X, d) is called a metric space.

Example. 1. The discrete metric: if X 6= ∅, let

d(x, y) =

{
0 if x = y

1 otherwise.

2. (Rn, d2) is a metric space with Euclidian metric

d2(x, y) = [

n∑
j=1

|xj − yj |2]
1
2

Definition. A metric space (X, d) is called bounded if ∃ M > 0 : d(x, y) ≤ M ∀ x, y ∈ X. If (X, d) is not
bounded then it is called an unbounded metric space.

Lemma. Let (X, d) be an unbounded metric space. Then d : X ×X → R given by d̃(x, y) = d(x,y)
1+d(x,y) is a bounded

metric on X.

Proof. Clearly d̃(x, y) ≤ 1 ∀ x, y ∈ X. We only need to show d̃ is a metric. Properties 1,2,3 of the metric are easily
verified, we will show property 4. The key observation is that x 7→ x

1+x = 1− 1
1+x is an increasing function. Thus,

since d(x, y) ≤ d(x, z) + d(z, y), we get

d̃(x, y) =
d(x, y)

1 + d(x, y)
≤ d(x, z) + d(z, y)

1 + d(x, z) + d(z, y)
≤ d(x, z)

1 + d(x, z)
+

d(z, y)

1 + d(z, y)
= d̃(x, z) + d̃(z, y).

Definition. Let (X, d) be a metric space and ∅ 6= A ⊆ X. Consider DA = {d(x, y) : x, y ∈ A} ⊆ R. If DA is
bounded, then supDA = δ(A) is called the diameter of A. If DA is unbounded, we define the diameter of A to
be δ(A) =∞.

Example. Let (Rn, d2), BR(0) = {x ∈ Rn : d2(x, 0) < R}. Then δ(BR(0)) = 2R.

Definition. Let (X, d) be a metric space and let ∅ 6= A,B ⊆ X. Then the distance between A and B d(A,B)
is defined as inf {d(a, b) : a ∈ A, b ∈ B}.

Remark. The distance between sets is not a metric, i.e. d(A,B) = 0 6=⇒ A ∩B 6= ∅.

Example. Let A = (−1, 0) and B = (0, 1). Then d(A,B) = 0 but A ∩B = ∅.

Definition. Let (X, d) be a metric space, ∅ 6= A ⊆ X. For all x ∈ X, the distance of x to A is d(x,A) =
inf {d(x, a) : a ∈ A}.

Remark. d(x,A) = 0 6=⇒ x ∈ A

Example. Let A = (0, 1) and x = 0.
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Holder’s inequality

Theorem. Let 1 ≤ p ≤ ∞ and q be its dual, that is 1
p + 1

q = 1. Note that if p = 1 then q =∞ and vice-versa. Let

x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, then

n∑
k=1

|xkyk| ≤

(
n∑
k=1

|xk|p
) 1
p
(

n∑
k=1

|yk|q
) 1
q

with the convention that if r =∞ then (
n∑
k=1

|xk|r
) 1
r

= max
1≤k≤n

|xk|.

If p = q = 2, then this is called the Cauchy-Schwarz inequality.

Proof. Assume p = 1, then
n∑
k=1

|xkyk| ≤
n∑
k=1

|xk|max |yl| = max
1≤l≤n

|yl|
n∑
k=1

|xk|

Equality holds iff |yk| is constant. Similarly, one can prove Holder’s inequality if p = ∞. Let 1 < p < ∞. Recall
f : (0,∞)→ R given by f(x) = log x is concave, that is

f(ta+ (1− t)b) ≥ tf(a) + (1− t)f(b) ∀ a, b > 0, t ∈ (0, 1)

with equality iff a = b. This gives

log (ta+ (1− t)b) ≥ t log a+ (1− t) log b = log atb1−t =⇒ atb1−t ≤ ta+ (1− t)b

Fix k ∈ [1, n] and apply the previous inequality with

a =
|xk|p∑n
k=1 |xk|p

, b =
|yk|q∑n
k=1 |yk|q

, t =
1

p
∈ (0, 1)

Note 1− t = 1
q . We get

a
1
p b

1
q =

|xk|

(
∑n
k=1 |xk|p)

1
p

|yk|q

(
∑n
k=1 |yk|q)

1
q

≤ 1

p
a+

1

q
b =

1

p

|xk|p∑n
k=1 |xk|p

1

q

|yk|q∑n
k=1 |yk|q

.

Sum over 1 ≤ k ≤ n
n∑
k=1

|xk||yk|

(
∑n
k=1 |xk|p)

1
p (
∑n
k=1 |yk|q)

1
q

≤
n∑
k=1

1

p

|xk|p∑n
k=1 |xk|p

1

q

|yk|q∑n
k=1 |yk|q

=
1

p
+

1

q
= 1

=⇒
n∑
k=1

|xkyk| ≤

(
n∑
k=1

|xk|p
) 1
p
(

n∑
k=1

|yk|q
) 1
q

.

We know equality holds iff a = b, i.e. ∀ 1 ≤ k ≤ n

|xk|p∑n
k=1 |xk|p

=
|yk|q∑n
k=1 |yk|q

⇔ |xk|p =

∑n
k=1 |xk|p∑n
k=1 |yk|q

|yk|q ⇔ ∃ c ∈ R : |xk|p = c|yk|q.

Remark. The proof extends to sequences of real numbers. More precisely, if {xn}n≥1, {yn}n≥1 ⊆ R, then

∑
n≥1

|xnyn| ≤

∑
k≥1

|xk|p
 1

p
∑
k≥1

|yk|q
 1

q

∀ 1 ≤ p, q ≤ ∞ :
1

p
+

1

q
= 1.
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Minkowski

Corollary. Let 1 ≤ p ≤ ∞, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Then(
n∑
k=1

|xk + yk|p
) 1
p

≤

(
n∑
k=1

|xk|p
) 1
p

+

(
n∑
k=1

|yk|p
) 1
p

with the convention that for p =∞, (
n∑
k=1

|xk|p
) 1
p

= max {|xk| : 1 ≤ k ≤ n}.

Proof. For all 1 ≤ k ≤ n we have |xk + yk| ≤ |xk|+ |yk|. In particular,

max
1≤k≤n

|xk + yk| ≤ max
1≤k≤n

|xk|+ max
1≤k≤n

|yk| p =∞
n∑
k=1

max |xk + yk| ≤
n∑
k=1

|xk|+
n∑
k=1

|yk| p = 1.

The dual of p is p
p−1 . Then

n∑
k=1

|xk + yk|p−1|xk + yk| ≤
n∑
k=1

|xk||xk + yk|p−1 +

n∑
k=1

|yk||xk + yk|p−1

n∑
k=1

|xk + yk|p ≤

(
n∑
k=1

|xk|p
) 1
p
(

n∑
k=1

|xk + yk|p−1
p
p−1

) p−1
p

+

(
n∑
k=1

|yk|p
) 1
p
(

n∑
k=1

|xk + yk|p−1
p
p−1

) p−1
p

=⇒

(
n∑
k=1

|xk + yk|p
)1− p−1

p

=

(
n∑
k=1

|xk + yk|p
) 1
p

≤

(
n∑
k=1

|xk|p
) 1
p

+

(
n∑
k=1

|yk|p
) 1
p

Remark. Minkowski for sequences of real numbers becomes∑
k≥1

|xk + yk|p
 1

p

≤

∑
k≥1

|xk|p
 1

p

+

∑
k≥1

|yk|p
 1

p

with the obvious modification if p =∞.

Example. Fix 1 ≤ p ≤ ∞ and define dp : Rn×Rn → R via dp(x, y) = (
∑n
k=1 |xk − yk|p)

1
p with the convention that

d∞(x, y) = max1≤k≤n |xk − yk|. Then (Rn, dp) is a metric space, the triangle inequality following from Minkowski.

Topology

Definition. Let (X, d) be a metric space. A neighbourhood of a point a ∈ X is Br(a) = {x ∈ X : d(a, x) < r}
for some r > 0.

Example. 1. (R2, d2), B1(0) = {(x, y) ∈ R2 :
√
x2 + y2 < 1} (circle)

2. (R2, d1), B1(0) = {(x, y) ∈ R2 : |x|+ |y| < 1} (rombus)

3. (R2, d∞), B1(0) = {(x, y) ∈ R2 : max {|x|, |y|} < 1} (square)

Definition. Let (X, d) be a metric space, ∅ 6= A ⊆ X. A point a ∈ A is called an interior point of A if
∃ r > 0 : Br(a) ⊆ A. The set of all interior points of A is called the interior of A and is denoted by Å. A set A
is open iff Å = A.
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Example. 1. ∅

2. X

3. Br(a) ∀ a ∈ X, r > 0

Exercise. Let (X, d) be a metric space, ∅ 6= A,B ⊆ X. Then

1. If A ⊆ B, then Å ⊆ B̊

2. Å ∪ B̊ ⊆ ˚A ∪B

3. Å ∩ B̊ = ˚A ∩B

4.
˚̊
A = Å

5. An infinite union of open sets is open.

Proof. 1. Assume A ⊆ B. Let a ∈ Å, then ∃ r > 0 : Br(a) ⊆ A ⊆ B. By definition, a ∈ B̊ and thus Å ⊆ B̊.

2. Let x ∈ Å ∪ B̊, then exactly one of the following must be true:

• x ∈ Å ∩ B̊, then ∃ ra > 0 : Bra(x) ∈ A and ∃ rb > 0 : Brb(x) ⊆ B. Let r = min {ra, rb}. Then
Br(x) ⊆ A ∩B. But A ∩B ⊆ A ∪B so Br(x) ⊆ A ∪B.

• x /∈ Å ∩ B̊ but x ∈ Å \ B̊, then ∃ ra > 0 : Bra(x) ⊆ A \B. But A \B ⊆ A ∪B so Bra(x) ⊆ A ∪B.

• x /∈ Å ∩ B̊ but x ∈ B̊ \ Å, then ∃ rb > 0 : Brb(x) ∈ B \A. But B \A ⊆ A ∪B so Brb(x) ⊆ A ∪B.

In all cases ∃ r > 0 : Br(x) ⊆ A ∪B ⇐⇒ x ∈ ˚A ∪B.

3. Let x ∈ Å ∩ B̊, then ∃ ra > 0 : Bra(x) ⊆ A and ∃ rb > 0 : Brb(x) ⊆ B. Let r = min {ra, rb}, then

Br(x) ⊆ A ∩B =⇒ x ∈ ˚A ∩B.

4. • ˚̊
A ⊆ Å ⊆ A

• Suppose A 6⊆ ˚̊
A, i.e. ∃ a ∈ A : a /∈ ˚̊

A. Then ∀ ra > 0, we would have Bra(a)∩ Å = ∅. Then ∀ b ∈ Bra(a),
we would also have b /∈ Å. Thus ∀ rb > 0, we would have Brb(b) ∩ A = ∅. And since b ∈ Brb(b), we
would have b /∈ A. But notice a ∈ Bra(a) so we can pick b = a. But we chose a so that a ∈ A, thus we

have a contradiction so A ⊆ ˚̊
A.

So
˚̊
A = A.

5. Let U = ∪n≥1An : An = Ån, then

u ∈ U = ∪n≥1An ⇐⇒ ∃m ≥ 1 : u ∈ Am = Åm ⇐⇒ ∃ r > 0 : u ∈ Br(u) ⊆ ∪n≥1An ⇐⇒ u ∈ ˚∪n≥1An = Ů

Remark. An infinite intersection of open sets needs not be open. Consider the open set An = (− 1
n ,

1
n ) and its

infinite intersection ∩n≥1An = {0} which is not open.

Exercise. Let (X, d) be a metric space and let A ⊆ X. Show that Å is the largest open set contained in A.

Proof. Let S ⊆ A be an open subset of A, i.e. an arbitrary point s ∈ S is an interior point. Since S is a subset
of A, s ∈ A. Since s is an interior point, s ∈ Å, by definition. Since s was arbitrary, S ⊆ Å. But since S was an
arbitrary open set, Å must be the largest open set in A.

Definition. Let (X, d) be a metric space. A set A ⊆ X is closed if cA is open.

Example. ∅, X, cBr(x) = {y ∈ X : d(x, y) ≥ r} are all closed sets.

Proposition. 1. An infinite intersection of closed sets is closed.

2. A finite union of closed sets is closed.

10



Proof. 1. Let I be an infinite set and {Ai}i∈I a collection of closed sets. Then c (∩i∈IAi) = ∪i∈I cAi. Since cAi
is open for all i, we showed that the infinite union is also open.

2. Let A1, . . . , An be closed sets. Then c (∪nk=1Ak) = ∩nk=1
cAk. Since cAk is open for all i, we showed that the

finite intersection is also open.

Definition. Let (X, d) be a metric space, A ⊆ X.

• A point a ∈ X is called an adherent point of A if ∀ r > 0, we have Br(a) ∩A 6= ∅.

• The collection of all adherent points of A is called the closure of A and is denoted by A.

• An adherent point of A is called isolated if ∃ r > 0 : Br(a) ∩A = {a}.

• If every point in A is isolated, then A is called an isolated set.

• An adherent point a of A that is not isolated is called an accumulation point of A.

• The collection of accumulation points of A is denoted by A′ = {a ∈ X : ∀ r > 0, Br(a) ∩ (A \ {a}) 6= ∅}.

Remark. 1. A ⊆ A

2. A = A ∪A′

3. In (R, ||), R \ [−1, 1] = (−∞,−1] ∪ [1,∞)

4. In (R2, d2), R2 \ ([−1, 1]× {0} = R2

Exercise. Make it rigorous.

Proof. 1. Let a ∈ A, then ∀ r > 0, a ∈ Br(a) =⇒ a ∈ Br(a) ∩A so Br(a) ∩A 6= ∅ =⇒ a ∈ A.

2. • Let x ∈ A, then ∀ r > 0, Br(x) ∩ A 6= ∅. Since x ∈ Br(x), either x ∈ A or ∃ x 6= y ∈ Br(x) ∩ A. Then
x ∈ A =⇒ x ∈ A ∪ A′, and if ∃ x 6= y ∈ Br(x) ∩ A, then Br(x) ∩ (A \ {x}) 6= ∅ =⇒ x ∈ A′ =⇒ x ∈
A ∪A′.

• Let x ∈ A ∪ A′, then either x ∈ A ⊆ A or x ∈ A′ ∩ cA =⇒ ∀ r > 0, Br(x) ∩ (A \ {x}) 6= ∅ =⇒
Br(x) ∩A 6= ∅ =⇒ x ∈ A.

3. Incomplete

x ∈ R \ [−1, 1] ⇐⇒ ∀ r > 0, Br(x) ∩ R \ [−1, 1] 6= ∅
⇐⇒ Br(x) ∩ R ∩ c[−1, 1] 6= ∅
⇐⇒ Br(x) ∩ R ∩ ((−∞,−1) ∪ (1,∞)) 6= ∅
⇐⇒ Br(x) ∩ ((−∞,−1) ∪ (1,∞)) 6= ∅
⇐⇒ (Br(x) ∩ (−∞,−1)) ∪ (Br(x) ∩ (1,∞)) 6= ∅

Then either Br(x) ∩ (−∞,−1) 6= ∅ or Br(x) ∩ (1,∞) 6= ∅ or both. Then Br(x) ∩ (−∞,−1) 6= ∅ =⇒ x ∈
(−∞,−1)

Proposition. Let (X, d) be a metric space, A ⊆ X. The following are equivalent:

1. The point a ∈ X is an accumulation point of A.

2. ∃ a sequence {an}n≥1 ⊆ A \ {a} : d(an, a) −−−−→
n→∞

0.

3. Every neighbourhood of A contains infinitely many points from A \ {a}.

Proof. We will show 1 =⇒ 2 =⇒ 3 =⇒ 1.
1 =⇒ 2. Let a ∈ A′ =⇒ B1(a) ∩ (A \ {a}) 6= ∅. Let a1 ∈ B1(a) ∩ (A \ {a}). Let r1 = min { 12 , d(a, a1)}. As

a ∈ A′, Br(a) ∩ (A \ {a} 6= ∅. In particular, a2 6= {a, a1} and d(a, a2) < 1
2 . Proceeding inductively, one constructs

a sequence {an}n≥1 : an+1 /∈ {a, a1, . . . , an and d(an+1, a) < 1
n+1 −−−−→n→∞

0.

2 =⇒ 3. Fix r > 0, then ∃ nr ∈ N : d(an, a) < r ∀ n ≥ nr. Then {an : n ≥ nr} ⊆ Br(a).
3 =⇒ 1. Follows from the definition.
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Proposition. Let (X, d) be a metric space, A,B ⊆ X.

1. c(Å) = cA

2. c̊A = c(A)

3. If A ⊆ B, then A ⊆ B

4. A ∩B ⊆ A ∩B

5. A ∪B = A ∪B

6. A = A

7. A is closed iff A = A

8. A is the smallest closed set that contains A

Proof. 1. Note that inserting cA for A in 1. yields 2. Indeed, c(c̊A) = A =⇒ c̊A =c (A). One shows similarly
that 2. implies 1.

2. x ∈ cA ⇐⇒ x /∈ A ⇐⇒ ∃ rx > 0 : Brx(x) ∩A = ∅ ⇐⇒ ∃ rx > 0 : Brx(x) ⊆ cA ⇐⇒ x ∈ c̊A

3. Let x ∈ A. Fix r > 0. Then Br(x) ∩A 6= ∅. But A ⊆ B so Br(x) ∩B 6= ∅. By definition, x ∈ B.

4. A ∩B ⊆ A =⇒ A ∩B ⊆ A,A ∩B ⊆ B =⇒ A ∩B ⊆ B =⇒ A ∩B ⊆ A ∩B

5. c(A ∪B) = ˚c(A ∪B) = ˚cA ∩c B = c̊A ∩ c̊B = c(A) ∩ c(B) = c(A ∪B)

6. Since A ⊆ A =⇒ A ⊆ A. Let’s prove A ⊆ A. Let x ∈ A. Fix r > 0. Then Br(x)∩A 6= ∅. Let ar ∈ Br(x)∩A
and r1 = d(x, ar). As ar ∈ A, we have Br−r1(ar ∩ A 6= ∅). By the triangle inequality, Br−r1(ar ⊆ Br(x).
Thus Br(x) ∩A 6= ∅. By definition, x ∈ A.

7. A is closed iff cA is open iff cA = c̊A =c (A)⇔ A = A.

8.

Exercise. A is the smallest closed set that contains A.

Proof. Let ∅ 6= D = D : A ⊆ D,A ∩ cD 6= ∅. Then A ∩ c(D) 6= ∅ =⇒ A ∪ cD = A ∪ cD 6= ∅.

Definition. Let (X, d) be a metric space, A ⊆ X. A point a ∈ c̊A is called an exterior point of A. The exterior
of A is Ext(A) = c̊A = c(Ā).

Remark. 1. Ext(A) is an open set

2. Ext(cA) = Å

3. Å ∪ Ext(A) need not be X. Indeed, c(Å ∪ Ext(A)) = c(Å) ∩ cExt(A) = cA ∩A is called the frontier of A
and is denoted by Fr(A).

Example. In R2, d2, let

A = {x, y,∈ R :

{
d2(x, y) ≤ r if y ≥ 0

d2(x, y) < r otherwise.
}

Then

Å = Br(0)

A = {x ∈ R2 : d2(x, 0) ≤ r}
cA = {x ∈ R2 : d2(x, 0) ≥ r}

Fr(A) = {x ∈ R2 : d2(x, 0) = r}
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Definition. The boundary of A is Bd(A) = Fr(A) ∩A. Notice Fr(A) = A ∩ cA = Fr(cA).

Proposition. The boundary of a set A contains no non-empty open sets.

Proof. Assume O = O̊ ⊆ Bd(A), we want to show O = ∅. We have

O ⊆ A ∩ Fr(A) = A ∩ (A ∩ cA = A ∩A ∩ cA = A ∩ cA = A ∩ c(Å).

Then O ⊆ A =⇒ O̊ ⊆ Å but O = O̊ so O ⊆ Å. Since we also have O ⊆ cÅ, we showed O ⊆ Å ∩ cÅ = ∅.

Definition. Let (X, d) be a metric space. A set A ⊆ X is called dense if A = X. A set is called nowhere dense
if Ext(A) = X.

Example. (X, d) = (R, ||), A = Q is dense as we have proved previously.

Remark. A is nowhere dense iff ∅ = c
(
Ext(A)

)
= ˚cExt(A) = A.

Definition. A metric space (X, d) is called separable if it contains a countable dense set.

Example. Rn is separable with Qn being a countable dense set.

Subspaces of metric space

Definition. Let (X, d) be a metric space, Y ⊆ X. In particular, (Y, d|Y×Y ) is a metric space. We say that
a set A ⊆ Y is open in Y if ∃ D = D̊ ⊆ X : A = Y ∩ D. We say that a set A ⊆ Y is closed in Y if
∃ F = F ⊆ X : A = Y ∩ F .

Example. (X, d) = (R, ||), Y = (0, 1]. The open sets in Y are of the form (a, b) with 0 ≤ a, b ≤ 1 and (a, 1] =
Y ∩ (a,∞) with 0 ≤ a < 1. Some closed sets in Y are Y ; {a} ∀ a ∈ Y ; (0, 12 ] = [−1, 12 ] ∩ Y .

Remark. If A ⊆ Y is open in Y , then Y \ A is closed in Y . Indeed, if A is open in Y, ∃ D = D̊ ⊆ X : A = Y ∩D.
Then Y \A = Y ∩ cA = Y ∩ cD and cD is closed.

Lemma. Let (X, d) be a metric space, Y ⊆ X. Then Y is open ⇐⇒ ∀ A ⊆ Y which is open in Y , we have A is
open in X.

Proof. ”⇐= ” take A = Y .
” =⇒ ” let A ⊆ Y be open in Y , then ∃ D = D̊ ⊆ X : A = Y ∩D, both are open so A is open.

Definition. Let (X, d) be a metric space, A ⊆ Y ⊆ X. The closure of A in Y is A
Y

= Y ∩ Y .

Complete metric spaces

Definition. Let (X, d) be a metric space, {xn}n≥1 ⊆ X. We say {xn}n≥1 converges to a point x ∈ X if

∀ ε > 0,∃ nε ∈ N : d(x, xn) < ε ∀ n ≥ nε.

In this case, we say x is the limit of {xn}n≥1 and we write limn→∞ xn = x or xn
d−−−−→

n→∞
x

Exercise. 1. The limit of a convergent sequence {xn}n≥1 in (X, d) is unique.

2. A sequence {xn}n≥1 converges to x ∈ X iff each of its subsequences converge to x.

Lemma. Let (X, d) be a metric space, {xn}n≥1, {yn}n≥1 ⊆ X : xn
d−−−−→

n→∞
x, yn

d−−−−→
n→∞

y. Then d(xn, yn)
(R,||)−−−−→
n→∞

d(x, y).

Proof.

|d(xn, yn)− d(x, y)| ≤ |d(xn, yn)− d(xn, y)|+ |d(xn, y)− d(x, y)| ≤ d(yn, y) + d(xn, x) −−−−→
n→∞

0.
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Definition. Let (X, d) be a metric space. A sequence {xn}n≥1 ⊆ X is called a Cauchy sequence if ∀ ε >
0, ∃ nε ∈ N : d(xn, xm) < ε ∀ n,m ≥ nε.
Remark. A sequence in R converges iff it is Cauchy, but this is not true in a general metric space.

Example. • In (Q, ||), let x1 = 3 and xn+1 = xn
2 + 1

xn
∀ n ≥ 1. We showed {xn}n≥1 converges to

√
2.

Consequently, {xn}n≥1 ⊆ Q is Cauchy in (R, ||). However, it does not converge in (Q, ||).

• In ((0, 1), ||), let xn = 1
n ∀ n ≥ 2. Then {xn}n≥1 is Cauchy but not convergent.

Definition. A metric space (X, d) is called complete if every Cauchy sequence in X converges in (X, d).

Exercise. 1. Convergent sequences are Cauchy.

2. A Cauchy sequence with a convergent subsequence is convergent.

Definition. Let (X, d) be a metric space. A sequence {kn}n≥1 of subsets of X is called a nested sequence of
closed balls if

kn = Krn(xn) = {x ∈ X : d(x, xn) ≤ rn}, kn+1 ⊆ kn ∀ n ≥ 1.

Remark. In a general metric space, it is not true that

Br(x) = {y ∈ X : d(x, y) < r} = Kr(x) = {y ∈ X : d(x, y) ≤ r}

Example. Let X = (−∞, 0] ∪ N and d(x, y) = |x− y|. Then

B1(0) = {x ∈ X : |x| < 1} = (−1, 0] =⇒ B1(0) = [−1, 0]

but
K1(0) = {x ∈ X : |x| ≤ 1} = (−1, 0] ∪ {1}.

Theorem. A metric space (X, d) is complete iff for every nested sequence {kn}n≥1 of closed balls with δ(kn) −−−−→
n→∞

0, we have ⋂
n≥1

kn 6= ∅.

Proof. • ” =⇒ ” Let {kn}n≥1 be a nested sequence of closed balls with δ(kn) −−−−→
n→∞

0. Write kn = krn(xn).

Then
δ(kn) = 2rn =⇒ lim

n→∞
2rn = 0 ⇐⇒ lim

n→∞
rn = 0.

Claim. {xn}n≥1 is a Cauchy sequence.

Let ε > 0, then ∃ nε ∈ N : rn <
ε
2 ∀ n ≥ nε. For n,m ≥ nε we have kn, km ⊆ knε and

d(xn, xm) ≤ d(xn, xnε) + d(xnε , xm) ≤ rnε + rnε < ε.

As (X, d) is complete, ∃ x ∈ X : xn
d−−−−→

n→∞
x. For m ≥ 1, we want to show x ∈ km. Note {xn}n≥m ⊆ km. As

km is closed, x = limn→∞ xn ∈ km. Therefore

x ∈
⋂
m≥1

km.

• ” ⇐= ” Let {xn}n≥1 be a Cauchy sequence in X. For every n ≥ 1,∃ Nn ∈ N : d(xk, xl) <
1

2n+1 ∀ k, l ≥ Nn.
Let k1 = N1 and for n ≥ 1, let kn+1 > max {kn, Nn+1}. In particular, d(xm, xkn) < 1

2n+1 ∀ m ≥ kn. Let
kn = k 1

2n
(xkn).

Claim. kn+1 ⊆ kn
Let y ∈ kn+1 =⇒ d(y, xkn+1

) ≤ 1
2n+1 . By the triangle inequality

d(y, xkn) ≤ d(y, xkn+1
) + d(xkn+1

, xkn) ≤ 1

2n+1
+

1

2n+1
=

1

2n
=⇒ y ∈ kn.

Then ⋂
n≥1

kn 6= ∅ ⇐⇒ ∃ x ∈
⋂
n≥1

kn =⇒ d(x, xkn) ≤ 1

2n
∀ n ≥ 1 =⇒ xkn

d−−−−→
n→∞

x.

We have proved previously that a Cauchy sequence with a convergent subsequence converges.
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Examples of complete metric spaces

1. (R, ||)

2.

Lemma. Let (X, d1), (Y, d2) be complete metric spaces. Then X × Y with the metric

d((x1, y1), (x2, y2)) =
√
d1(x1, x2)2 + d2(y1, y2)2

is a complete metric space.

Proof.

Exercise. Show d is a metric.

We show the metric space is complete. Let {(xn, yn)}n≥1 ⊆ X × Y be Cauchy, then

∀ ε > 0,∃ nε ∈ N : d((xn, yn), (xm, ym)) < ε ∀ n,m ≥ nε
=⇒ d1(xn, xm)2 + d2(yn, ym)2 < ε2

=⇒

{
d1(xn, xm) < ε

d2(yn, ym) < ε

=⇒

{
{xn}n≥1 is Cauchy, let x = limn→∞ xn

{yn}n≥1 is Cauchy, let y = limn→∞ yn.

Claim. (xn, yn)
d−−−−→

n→∞
(x, y)

Let ε > 0, then {
∃ n1(ε) ∈ N : d1(xn, x) < ε

2 ∀ n ≥ n1(ε)

∃ n2(ε) ∈ N : d2(yn, y) < ε
2 ∀ n ≥ n2(ε)

=⇒ for n ≥ max {n1(ε), n2(ε)},

d((xn, yn), (x, y)) =
√
d1(xn, x)2 + d2(yn, y)2 <

√(n
ε

)2
+
(n
ε

)2
< ε.

3.

Corollary. (Rn, d2) is a complete metric space. Recall

d2(x, y) =

(
n∑
i=1

|xi − yi|2
) 1

2

.

Exercise. Fix 1 ≤ p ≤ ∞ and n ∈ N, show that (Rn, dp) is complete.

4. Let
l2 = {{xn}n≥1 ⊆ R :

∑
n≥1

|xn|2 <∞}

and d2 : l2 × l2 → R be defined as

d2(x, y) =
(∑

|xn − yn|2
) 1

2 ∀ x = {xn}n≥1, y = {yn}n≥1.

Claim. (l2, d2) is a complete metric space.
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Proof. We will prove completeness. Let {x(k)} be a Cauchy sequence. Note x(k) = {x(k)n }n≥1 ∈ l2. For ε > 0,

∃ kε ∈ N : d2(xk, xl) < ε ∀ k, l ≥ kε =⇒
∑
n≥1

|x(k)n − x(l)n |2 < ε2 ∀ k, l ≥ kε.

In particular, for all n ≥ 1 we have |x(k)n − x
(l)
n | < ε ∀ k, l ≥ kε. Thus ∀ n ≥ 1, {x(k)n } is Cauchy in R.

Let xn = limk→∞ x
(k)
n , x = {xn}n≥1. We will show x(k)

d2−−−−→
k→∞

x and x ∈ l2 (this follows from the triangle

inequality). For ε > 0,
∃ kε ∈ N : d(x(k), x(l)) < ε ∀ k, l ≥ kε.

Fix N ≥ 1 and let k, l ≥ kε. We have
N∑
n≥1

|x(k)n − x(l)n |2 < ε2

Freeze k and let l→∞ to get
N∑
n≥1

|x(k)n − xn|2 < ε2

Thus σN =
∑N
n≥1 |x

(k)
n − xn|2 is an increasing sequence bounded above by ε2. Then

limσN =
∑
n≥1

|x(k)n − xn|2 ≤ ε2 =⇒ d(x(k), x) ≤ ε ∀ k ≥ kε.

Lemma. Let (X, d) be a metric space. A set A ⊆ X is dense iff ∀ ∅ 6= O = O̊ ⊆ X, we have A ∩O 6= ∅.

Proof. • ” =⇒ ” Assume towards a contradiction that

∃ ∅ 6= O = O̊ ⊆ X : A ∩O = ∅.

Then we reach a contradiction:

O ⊆ cA =⇒ ∅ 6= O = O̊ ⊆ c̊A =c (A) = cX = ∅.

• ”⇐= ” Assume A 6= X. Then c̊A =c (A) 6= ∅ ⇐⇒ ∃ Br(x) ⊆ cA for some r > 0. In particular, ∅ 6= Br(x)
is an open set such that Br(x) ∩A = ∅. This is a contradiction.

Baire property

Definition. We say a metric space (X, d) has the Baire property if for every {An}n≥1 ⊆ P (X) : An = Ån, A = X,
we have ∩n≥1An = X. Namely, for each countable collection of open dense sets, their intersection is dense.

Lemma. Let (X, d) be a metric space, the following are equivalent

1. X has the Baire property

2. If {Fn} ⊆ P (X) : Fn = Fn, F̊n = ∅, then ˚∪n≥1Fn = ∅. Namely, the interior of the union of closed sets with
empty interior is empty.

Proof. • ”1. =⇒ 2.” Let F ⊆ X : F = Fn and F̊n = ∅. Define An = cFn, then An = Ån and An = cFn =
cF̊n = c∅ = X. As X has the Baire property, ∩n≥1An = X. But ∩n≥1An = ∩n≥1 cFn = c ∪n≥1 Fn =
c( ˚∪n≥1Fn) = X =⇒ ˚∪n≥1Fn = ∅.

• ”2. =⇒ 1.” Let An = Ån, An = X, we want to show ∩n≥1An = X. Define Fn = cAn, then Fn = Fn and

F̊n = ˚cAn = cAn = cX = ∅. Therefore, ˚∪n≥1Fn = ∅ =⇒ c ˚∪n≥1Fn = X. But ˚∪n≥1Fn = ˚∪n≥1 cAn =
˚c ∩n≥1 An = c(∩n≥1 An) = ∅ =⇒ ∩n≥1 An = X.
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Baire category theorem 1

Theorem. A complete metric space (X, d) has the Baire property.

Proof. Let An = Ån and An = X, we want to show ∩n≥1An = X. Equivalently, it suffices to show that ∀ ∅ 6=
W = W̊ ⊆ X, we have W ∩ (∩n≥1An) 6= ∅. Fix ∅ 6= W = W̊ ⊆ X.

• As A1 = X, we have the open set W ∩A1 6= ∅ =⇒ ∃ Br1(x1) ⊆W ∩A1 for some r1 > 0. Let ρ1 < min {r1, 1},
then Kρ1(x1) ⊆ Br1(x1) ⊆W ∩A1.

• As A2 = X, we have the open set Bρ1(x1) ∩ A2 6= ∅ =⇒ ∃ Br2(x2) ⊆ Bρ1(x1) ∩ A2 for some r2 > 0. Let
ρ2 < min {r2, 12}, then Kρ2(x2) ⊆ Br2(x2) ⊆ Kρ1(x1) ∩A2.

Proceed inductively to find a sequence of points {xn}n≥1 ⊆ X and a sequence of radii {ρn} ⊆ (0,∞) : ρn <
1
n

and Kρn+1
(xn+1) ⊆ Kρn(xn) ∩ An+1 ∀ n ≥ 1. As (X, d) is complete, we get ∩n≥1Kρn(xn) 6= ∅. Note ∅ 6=

∩n≥1Kρn(xn) ⊆W ∩A1 ∩ (∩n≥2An) = W ∩ (∩n≥1An).

Definition. Let (X, d) be a metric space. A set A ⊆ X is said to be of first (Baire) category if it can be written
as a countable union of closed, nowhere dense sets. If A is not of the first category, then A is said to be of second
(Baire) category.

Remark. A metric space (X, d) is of first category if X = ∪n≥1An with An = An and Ext(An) = X. Recall

Ext(An) = ˚cAn =⇒ X = Ext(An) = ˚cAn = c(An) = c
(
Ån

)
=⇒ Ån = ∅. So X is of first category if

X = ∪n≥1An with An = An and Ån = ∅.

Example. Q is of first category.

Baire category theorem 2

Theorem. A complete metric space (X, d) is of second category.

Proof. We argue by contradiction. Assume X is of first category, i.e. X = ∪n≥1An, An = An, Ån = ∅. By the

previous theorem, X complete =⇒ X has the Baire property =⇒ ˚∪n≥1An = ∅ ⇐⇒ X̊ = ∅ ⇐⇒ X = ∅,
contradiction.

Corollary. R \Q is of second category.

Proof. Assume towards a contradiction that R \ Q is of first category, then we can write R \ Q = ∪n≥1An with

An = An and Ån = ∅. Notice R = (R \ Q) ∪ Q = (∪n≥1An) ∪ (∪q∈Q{q}) with {q} = {q} and {̊q} = ∅ so R is of
first category, contradiction.

Remark. If (X, d) is complete and A ⊆ X is of first category, then X \A is of second category.

The Banach-Mazur game

Imagine we have two players P1, P2 playing the following game. Let I0 be a closed interval.

• P1 gets dealt a subset A ⊆ I0,

• P2 gets dealt a subset B ⊆ I0 \A.

Then

• P1 chooses a closed interval I1 ⊆ I0,

• P2 chooses a closed interval I2 ⊆ I1,

• . . . ,

• P1 chooses a closed interval I2n+1 ⊆ I2n,

• P2 chooses a closed interval I2n+2 ⊆ I2n+1.
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Then P1 wins if (∩In) ∩A 6= ∅, otherwise P2 wins.

Question. Can either player ensure a winning strategy by choosing the intervals wisely, no matter how the
opponent plays?

Answer. If A is of first (Baire) category, then P2 has a winning strategy. Indeed, assume A = ∪n≥1An, with

An = An, Å = ∅. Then P2 needs only choose I2n ⊆ I2n−1 \An ∀ n ≥ 1. Then ∩n≥1In ⊆ I0 \A and so P2 wins.

Conjecture. P2 has a winning strategy ⇐⇒ A is of first category (proved by Banach).

This gives insight into how ”small” a set of first category is, namely, it is a set on which even the first player is
bound to lose, unless his opponent fails to take advantage of the situation.

Theorem. P1 has a winning strategy iff there is an interval I1 ⊆ I0 : I0 ∩B is of first category.

Connected sets

Definition. Let (X, d) be a metric space. We say that two sets A,B ⊆ X are separated if A ∩ B = ∅ and
A ∩B = ∅.

Remark. Any two separated sets are disjoint because A ∩B ⊆ A ∩B = ∅. However, two disjoint sets need not be
separated.

Example. A = (0, 1), A = [0, 1], B = {1}

Lemma. Let (X, d) be a metric space, A,B ⊆ X : d(A,B) > 0. Then A,B are separated.

Proof. We argue by contradiction. Assume A∩B 6= ∅. Let x ∈ A∩B. Since x ∈ A, d(x,A) = inf {d(x, a) : a ∈ A} =
0. But then d(B,A) = inf {d(b, A) : b ∈ B} = 0, contradiction. Similarly, one shows that A ∩B = ∅.

Remark. There are separated sets A,B for which d(A,B) = 0.

Example. A = (0, 1), B = (1, 2) =⇒ A ∩B = [0, 1] ∩ (1, 2) = ∅, A ∩B = (0, 1) ∩ [1, 2] = ∅, d(A,B) = 0

Exercise. Let (X, d) be a metric space, A,B ⊆ X separated. If A1 ⊆ A and B1 ⊆ B, then A1 and B1 are
separated.

Proposition. Let (X, d) be a metric space, then

1. Two closed sets are separated iff they’re disjoint.

2. Two open sets are separated iff they’re disjoint.

Proof. 1. • ” =⇒ ” This is clear.

• ” ⇐= ” Let A = A,B = B,A ∩ B = ∅. Then A ∩ B = A ∩ B = ∅, A ∩ B = A ∩ B = ∅, so A,B are
separated.

2. • ” =⇒ ” This is clear.

• ” ⇐= ” Let Å = A, B̊ = B,A ∩ B = ∅. We want to show A ∩ B = A ∩ B = ∅. Assume towards
a contradiction that A ∩ B 6= ∅. Let x ∈ A ∩ B, since x ∈ B = B̊, ∃ r0 > 0 : Br0(x) ⊆ B. Since
x ∈ A, ∀ r > 0, Br(x) ⊆ A. For any r >≤ r0, ∅ 6= Br(x) ∩ A ⊆ A ∩ B, contradiction. This shows
A ∩B = ∅, one shows similarly that A ∩B = ∅.

Proposition. Let (X, d) be a metric space.

1. If a closed set is the union of two separated sets A,B, then A,B are closed.

2. If an open set is the union of two separated sets A,B, then A,B are open.

Proof. 1. Let F = F : F = A ∪B,A ∩B = A ∩B = ∅. Then

A = A ∩ F = A ∩ F = A ∩ (A ∪B) = (A ∩A) ∪ (A ∩B) = A ∩ ∅ = A.

Similarly, one proves B is closed.
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2. Let D = D̊ : D = A ∪ B,A ∩ B = A ∩ B = ∅. We want to show Å = A, B̊ = B. We know Å ⊆ A.
Let a ∈ A ⊆ D = D̊ =⇒ ∃ r0 > 0 : Br(a) ⊆ D = A ∪ B. As A ∩ B = ∅ and a ∈ A, a /∈ B. Thus
∃ r1 > 0 : Br1(a) ∩B = ∅. Then for r < min {r0, r1}, Br(a) ⊆ D \B = A. So a ∈ Å =⇒ A ⊆ Å.

Exercise. Is it true that in a metric space (X, d), Br(a) cannot be written as the union of separated sets?

Definition. Let (X, d) be a metric space, A ⊆ X.

• We say A is disconnected if it can be written as the union of two non-empty separated sets.

• If A is not disconnected, then we say A is connected.

Theorem. Let (X, d) be a metric space. Then X is connected iff the only subsets of X that are clopen are ∅, X.

Proof. • ” =⇒ ” Assume towards a contradiction that ∃ A ⊆ X : ∅ 6= A 6= X,A clopen. Then X \ A 6= ∅
is both closed and open. As A and X \ A are disjoint, they are separated. Then X = A ∪ (X \ A) and
A,X \A 6= ∅ separated implies that X is disconnected, contradiction.

• ” ⇐= ” Assume towards a contradiction that we can rewrite A = B ∪ C with B 6= ∅, C 6= ∅ and B ∩ C =
B ∩ C = ∅. As X is open, B,C are open. As X is closed, B,C are closed. Then B,C are both open and
closed so B or C = ∅, contradiction.

Theorem. Let (X, d) be a metric space, A ⊆ X. Then A is connected iff the only subsets of A that are both open
and closed in A are ∅, X.

Proof. • ” =⇒ ” We argue by contradiction. Assume that ∃ ∅ 6= B ( A : B is both open and closed. Then
∅ 6= A \B ( A is both open and closed. Thus A = B ∪ (A \B).

Claim. B,A \B are separated.

B is closed in A so B ∩A = B. Then

B ∩ (A \B) = (B ∩A) ∩ cB = B ∩ cB = ∅.

A \B is closed in A so A ∩A \B = A \B. Then

B ∩ (A \B) = B ∩A ∩ (A \B) = B ∩A \B = ∅.

Thus A can be written as the union of two separated sets, contradiction.

• ” ⇐= ” Assume towards a contradiction that A is disconnected. Then ∃ B 6= ∅, C 6= ∅ with B∩C = B∩C =
∅ : A = B ∪ C.

Claim. B is closed in A.

B ∩A = B ∩ (B ∪ C) = (B ∩B) ∪ (B ∩ C) = B ∩ ∅ = B.

Similarly, one shows that if C is closed in A then B = A \C is open in A. Thus ∅ 6= B ( A is both open and
closed in A, contradiction.

Theorem. Let (X, d) be a metric space. The following are equivalent.

1. A is disconnected.

2. There exists open sets D1, D2 : A ⊆ D1 ∪D2, A ∩D1 6= ∅, A ∩D2 6= ∅, A ∩D1 ∩D2 = ∅.

3. There exists closed sets F1, F2 : A ⊆ F1 ∪ F2, A ∩ F1 6= ∅, A ∩ F2 6= ∅, A ∩ F1 ∩ F2 = ∅.

Proof. We show 3 =⇒ 2 =⇒ 1 =⇒ 3.
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• ”3 =⇒ 2” Let D1 = cF1, D2 = cF2. Then D1, D2 are open. Since A ⊆ F1 ∪ F2, we have

A ∩D1 ∩D2 = A ∩ cF1 ∩ cF2 = A ∩ c(F1 ∪ F2) = ∅.

We know A ∩ F1 ∩ F2 = ∅ =⇒ A ⊆ c(F1 ∩ F2) = cF1 ∪ cF2 = D1 ∪D2. Let’s show A ∩D1 6= ∅. Notice
A ∩D1 = ∅ =⇒ A ⊆ D2 =⇒ A ⊆ cF2 =⇒ F2 = ∅, contradiction. Similarly, A ∩D2 6= ∅.

• ”2 =⇒ 1” Let B = A ∩ D1, C = A ∩ D2. Then A = B ∪ C,B 6= ∅, C 6= ∅, B ∩ C = ∅. Note that if B
and C are open in A then B is closed in A. B 6= ∅, B 6= A since A = B ∪ C,C 6= ∅, B ∩ C 6= ∅. Thus A is
disconnected.

• ”1 =⇒ 3” As A is disconnected, ∃ ∅ 6= B ( A : B is both open and closed in A. In particular, C = A \ B
is both open and closed in A and ∅ 6= C ( A. Let F1, F2 be closed sets such that B = A ∩ F1, C = A ∩ F2.
Then A = B ∪ C ⊆ F1 ∪ F2, A ∩ F1 = B 6= ∅, A ∩ F2 = C 6= ∅, A ∩ F1 ∩ F2 = B ∩ C = ∅.

Proposition. Let (X, d) be a metric space, A ⊆ X be disconnected. Let D1, D2 be open sets such that A ⊆
D1 ∪D2, A ∩D1 6= ∅, A ∩D2 6= ∅, A ∩D1 ∩D2 = ∅. If B ⊆ A connected, then B ⊆ D1 or B ⊆ D2.

Proof. Assume towards a contradiction, that B ∩ D1 6= ∅ and B ∩ D2 6= ∅. Then B ⊆ A ⊆ D1 ∪ D2 and
B ∩D1 ∩D2 ⊆ A ∩D1 ∩D2 = ∅ implies that B is disconnected, contradiction.

A similar argument yields

Proposition. Let (X, d) be a metric space, A ⊆ X be disconnected. Let F1, F2 be closed sets such that A ⊆ F1∪F2.
Then A ∩ F1 6= ∅, A ∩ F2 6= ∅, A ∩ F1 ∩ F2 = ∅. If B ⊆ A is connected, then B ⊆ F1 and B ⊆ F2.

Proposition. Let (X, d) be a metric space, A ⊆ X be connected. If A ( B ⊆ A, then B is connected.

Proof. Assume towards a contradiction that B is disconnected. Then ∃ F1, F2 closed subsets of X : B ⊆ F1 ∪
F2, B ∩ F1 6= ∅, B ∩ F2 6= ∅, B ∩ F1 ∩ F2 = ∅. Then A ⊆ B ⊆ F1 ∪ F2 =⇒ either A ⊆ F1 orA ⊆ F2. Without loss
of generality, assume A ⊆ F1. Then B ⊆ A ⊆ F1 = F1 =⇒ ∅ = B ⊆ F1 ∪ F2 = B ∩ F2 6= ∅, contradiction.

Proposition. Let (X, d) be a metric space, {Ai}i∈I be a family of connected subsets of X such that for any i 6= j,
Ai and Aj are not separated. Then ∪i∈IAi is connected.

Proof. Assume towards a contradiction that ∪i∈IAi is disconnected, then ∃ B,C 6= ∅ : B ∩ C = B ∩ C = ∅ and
∪i∈IAi = B∪C. For any i ∈ I, Ai = (B∩Ai)∪(C∩Ai). But Ai is connected while B∩Ai and C∩Ai are separated.
So either B∩Ai = ∅ or C∩Ai = ∅. In particular, if Ai∩B 6= ∅, then A ⊆ B. Then ∪i∈IAi = B∪C =⇒ ∃ i1, i2 ∈ I :

Ai1 ∩B 6= ∅ =⇒ Ai1 ⊆ B
Ai2 ∩ C 6= ∅ =⇒ Ai2 ⊆ C

But B,C separated =⇒ Ai1 , Ai2 separated, contradiction.

Corollary. Let (X, d) be a metric space, {Ai}i∈I be a family of connected subsets of X : ∩i∈IAi 6= ∅. Then ∪i∈IAi
is connected.

Theorem. The only non-empty connected subsets of R are the intervals. In particular, R = (−∞,∞) is connected
so the only subsets of R that are both open and closed are ∅,R.

Proof. Let’s first show that intervals are connected. Let I ⊆ R be an interval. Assume towards a contradiction that
I is disconnected. Then ∃ ∅ 6= A ( I : A is both open and closed in I. Then its complement ∅ 6= B = I \A ( I is
both open and closed in I. Let a1 ∈ A, b1 ∈ B.

• Set c1 = a1+b1
2 . If c1 ∈ A, set a2 = c1, b2 = b1. If c1 ∈ B, set a2 = a1, b2 = c1. In either case, b2− a2 = b1−a1

2 .

• Set c2 = a2+b2
2 . If c2 ∈ A, set a3 = c2, b3 = b2. If c2 ∈ B, set a3 = a2, b3 = c2. In either case, b3− a3 = b1−a1

22 .
Proceeding inductively, we construct {an} ⊆ A, {bn} ⊆ B :

– {an} is non-decreasing and bounded above by b so it converges, let a = limn→∞ an

– {bn} is non-increasing and bounded below by a so it converges, let b = limn→∞ bn
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–

bn − an =
b1 − a1
2n−1

−−−−→
n→∞

0

Thus a = b. But a ∈ A∩ I = A and b ∈ B ∩ I = B so A∩B 6= ∅, contradiction. Finally, show connected sets
are necessarily intervals. Let A ⊆ R be connected. Let a = inf A (possibly −∞). Let b = supA (possibly∞).
We have to show that if a < c < b, then c ∈ A. Assume, towards a contradiction, that ∃ c ∈ (a, b) \ A. Set
D1 = (−∞, c), D2 = (c,∞) open in R. Then A ⊆ D1 ∪D2, A∩D1 ∩D2 = ∅, A∩D1 6= ∅ (because inf A < c),
A ∩D2 6= ∅ (because supA > c). Thus A is disconnected, contradiction.

Lemma. Let (X, d) be a metric space, A ⊆ X. If any pair of points in A is contained in a connected subset of A,
then A is connected.

Proof. Assume towards a contradiction that A is disconnected. Then ∃D1, D2 open : A ⊆ D1 ∪ D2, A ∩ D1 6=
∅, A ∩ D2 6= ∅, A ∩ D1 ∩ D2 = ∅. Let a ∈ A ∩ D1, b ∈ A ∩ D2. Then ∃ B ⊆ A connected : {a, b} ⊆ B. Then
B ⊆ D1 ∪D2, B ∩D1 6= ∅, B ∩D2 6= ∅, B ∩D1 ∩D2 = ∅ =⇒ B is disconnected, contradiction.

Exercise. Let (Rn, d), B1(0) = {x ∈ Rn : d(x, 0) < 1}. Then B1(0) is connected.
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