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Functions

e Given two non-empty sets A,B a function f: A — B is a way of assigning to each element a € A, a unique
element in B, denoted by f(a).

e The set A is called the domain of f, the set B is called the range of f. If A’ C A then f(A") ={f(a):a €
A’} C B is called the image of A’ in B under f and f(A) is called the image of f.

o If f(A) = B, then f is surjective, or onto. If f(a) = f(a’) & a = d/, then f is injective, or one-to-one. If
f is injective and surjective, then f is bijective.

e Two functions f,g: A — B are equal iff {(a, f(a)) : a € A} ={(a,g(a)) : a € A}.

Example. f : Z — Z, f(n) = 2n is injective (just divide by 2) but not surjective because it only covers even
integers. However, g : R — R, g(z) = 2z is bijective (just plug in 2””2—“ to get odd numbers).

Composition

Let A,B,C #(and f: A— B, g: B — C be functions. The composition of g with f is the function gof : A — C
given by (g f)(a) = g(f(a)).

Exercise. Let D # (0, h : C — D be a function. Show composition is associative.

Proof.
(ho(go f))(a) =h((go f)a)) =h(g(f(a))) = (hog)(f(a)) = ((hog)o f)(a)
O

Remark. Composition need not be commutative. For example, let f : Z — Z, f(n) = 2n,9:Z — Z,g(n) = n + 1,
then

(fog)(n) = flg(n)) = f(n+1) =2(n+1) # (9o f)(n) = g(f(n)) = g(2n) = 2n +1

Inverses

Let f: A — B be bijective. The inverse of f is f=! : B — A, defined as follows: if b € B, then f~1(b) = a € A,
and a is the unique element in A : f(a) = b. In particular, f~lof =14 and fo f~! =13.

Exercise. Let f: A — B and g : B — C be bijective. Show g o f is also bijective, and (go f)~* = f~tog L

Proof. Assume (go f)(a) = (go f)(b), i.e. g(f(a)) = g(f(b)). Since g is injective, we have f(a) = f(b). Since f
is injective, we have a = b. Thus g o f is injective. Since g is surjective, V ¢ € C,3 b € B : g(b) = ¢. And since
f is surjective, Vb € B,3a € A: f(a) =b. So we have g(b) = g(f(a)) = ¢, so go f is surjective. Furthermore,
since (g o f)(a) = ¢, we have ((go f)~!)(c) = a. Moreover, (f~*og 1) (c) = f~1 (g7 (c)) = f~1(b) = a. Thus
(gof)t=f"log™" O



Proposition on injective functions

Proposition. A function f : B — C 1is injective iff for any set A # 0 and any two functions g,h : A — B, we
have fog= foh = g=h.

Proof. 7 =7 Let a € A, then f(g(a)) = f(h(a))
7<” Suppose [ isn’t injective, i.e. by, by € B: f(b1) = f(b2) but by # be. Let A ={1,2} and g,h: A — B be
functions defined as

Then g # h, but notice

so fog= foh, contradiction. O

Proposition on surjective functions

Proposition. A function f : A — B is surjective iff for any set C # 0 and any two functions g,h : B — C, we
have go f =ho f = g=h.

Proof. * =" Let b€ B, then Ja € A : f(a) = b. Then (go f)(a) = (ho f)(a) & g(f(a)) = h(f(a)) & g(b) = h(D),
so g = h.

7<” Suppose f isn’t surjective, then 3 by € B : by ¢ f(A). Let C = {0,1} and g,h : B — C be functions
defined as

g(b)=0vbe B
1 ifb=
h(b)z{ L

0 otherwise.

Then g # h, but notice

so go f = ho f, contradiction. O
Definition. Let f : A — B be a function, B C B. The preimage of B’ in A under f is f~}(B') = {a €
A: f(a) € B'}. The preimage of a set exists whether or not f is invertible. In particular, if B’ N f(A4) = (), then

fH(B) =0.
Exercise. Let f: A — B be a function, Ay, As C A, and By, Bo C B. Then show

L f(A1UAz) = f(A1) U f(A2)

2. f(A1N As) C f(A1) N f(As) and show f is injective iff the equality holds
3. [THB1UBy) = f~H(B1) U f~1(B)

4. f7H(BiNB) € f~H(B1) N f~(B2)



Cardinality

Let A, B be two sets. We say that A and B have the same cardinality (or the same cardinal number) if 3 a
bijection f: A — B. In this case, we write A ~ B.

1. We say A is finite if A=0 or A~ {1,...,n} for some n € N. If A = (), then the cardinality of A is 0, i.e.
|A] =0. If A~ {1,...,n}, then the cardinality of A is n, i.e. |A| =n.

2. An infinite set is a set which is not finite.
3. We say A is countable if A ~ N. In this case, |A| = No.
4. We say A is at most countable if A is finite or countable.
5. We say A is uncountable if A isn’t at most countable.

Theorem. If A is a finite set and B C A, then B is a finite set.

Proof. Assume B # () (otherwise it’s finite), then A # (). As A is finite, 3n € N, f : A — {1,...,n} bijective. Let
b € B: f(b;)) =min{f(b):be B\ {b; :j <i}}. Lt me N:m <n,g: B—{1,...,m} be a function defined as
g(b;) = i. Then g is bijective and so B is finite. O

Remark. Let A be a finite set and B a proper subset of A, then A ¢ B. Otherwise, there would exist a bijection
between {1,...,m} and {1,...,n} with m <n.

Example. 1. NU{0,-1,...,—k} ~Nfor any k >0
Proof. Take the bijection f: NU{0,—1,...,—k} — N defined as

fn)=n+k+1

2. Z~N

Proof. Take the bijection f :7Z — N defined as

3. NxN~N

Proof. Take the bijection f: N x N — N defined as

Fn,m) = (n+m—2)2(n+m—1) .

(a) We show f is surjective.

Proof. For k> 1,1let P(k):3 (n,m) e NxN: k= f(n,m).
e Base step: f(1,1) =1 = P(1) holds.

e Inductive step: Let k > 1: P(k) holds. We want to show P(k + 1) holds. ¥ m > 2, we have
(n+m—-2)(n+m—1)
2

1 —-1)-2 1 -1)—-1
IR NG (C ) E s V| PR

2
=f(n+1,m-1).

k1= +n+1




If m =1, then

-2 -1 1-2 1-1 -1
1= 0E™ )2(”+m ) fpy1=F )2("+ )+n+1:7("2)”+n+1
(n—1n+2n+1) n*—n+2n+2 n*+n+2 n(n+1)

5 = 5 5 5 +1=f(1,n+1).

Thus Vm >1,3neN: f(n,m)=k+1,i.e. P(k+1) holds. Thus f is surjective.

(b) We show f is injective.
Proof. Assume f(n,m) = f(a,b), we want to show (n,m) = (a,b). Let r € N such that

(n+m-2)(n+m—-1) (a+b—-2)(a+b—1)
9 = 9 + .

Suppose r # 0. Let g : © % and t € N. Then

\g(x+t>—g<z>|:(““2“““21)*@*2)(%1):<fv+t> f3(x+t>;2f<x72><xf1>
22+ 2 +t2 - 30 -3t +2—22—-32+2 :t(t+2x73 _y +t(t73)

z
2 2 2

Thus |g(x + t) — g(x)| > max {t,z} — 1. Notice f(n,m) = f(a,b) = r=a—-n = a=n+7r. Then
r=gn+m)—gla+b) >max{a+b(n+m)—(a+b)}—1
>a+b—1=Mn+r)+b—1=r+n+b-1)>r+1.
This is a contradiction, thus » = 0. Then

(n+m—-2)n+m—-1) (a+b—2)(a+b—-1)

2 2

Then by hypothesis n = a and we have

a®+a@2m—-3)+m—-2)(m—-1)=a®>+a(20—3)+(b—2)(b—1)
2a(m —b) + m? —3m — b* +3b=0
(m—=0)2a+m+b—-3)=0

m = b.

Theorem. An infinite subset of a countable set is countable.

Proof. Let A be a countable set, then A ~ N. In particular, A = {a1,...}. Let B C A : B is infinite. Consider
S ={neN:a, € B} #0. Let ky € N: k; = min(S;). Define g(1) = ax,. Proceed inductively. Let n € N.
Assume we have defined ¢g(1) = ag, and g(n) = ag, : g(i) #9(j) V1 <i# j <n. Let Spy1 ={n €N:aq, €
B\ Sy} # 0. Let kypyq = min (Sp41) > kp. Let g(n+1) = a,, ., -
Exercise. Prove g is bijective.

Proof. Assume g(n) = g(m), i.e. a, = ay,,, but since g(i) # g(j) V1 < i # j < n, we must have n = m and
thus ¢ is injective. Let ap, € A, then k, = minS,, where S,, = {m € N: a,, € B\ S,_1}. Thus by definition
dn eN:g(n)=ayg, and g is surjective. O

O

Theorem. An infinite set contains a countable subset.



Proof. Let A be an infinite set, then 3 a; € A. Proceed inductively. Assume we found ai,...,a, € A : a; #
aj V1<i%#j<n. Consider A\ {as,...,a,} # 0, otherwise A ~ {1,...,n}. Let ap41 € A\ {a1,...,a,}. Clearly
ant1 # a; V1 < i <n. By mathematical induction, A contains a countable set. O

Theorem. A set is infinite iff it is equivalent to one of its proper subsets.

Proof. 7 <=7 Let Abeaset: A~ BY B C A. Then A must be infinite.
7 =7 Let A be an infinite subset, B a countable subset of A : B = {a1,az,...}. Consider A\ {a1} C A. Let
f:A— A\ {a1} be a function defined as

f(a):{a ifaec A\ B

aj+1 ifa:ajEB

We want to show f is a bijection to show that A is equivalent to its proper subset A\ {a1}.
Claim. f is injective.
Proof. Let a,a’ € A: f(a) = f(a’). We want to show a = a’.

Case 1: If a € A\ B, then f(a) = a but f(a’) = f(a) so f(a') =a€ A\B = d ¢ B = f(d) =d but
fld)=asod =a.

Case 2: If a = a; € B then f(a) = f(a;) = a;11 but f(a') = f(a) so f(d/) =aj41 € B = d € B = 3Jic
N:a' = a; but then f(a) = f(a’) = aj11 = a;41 and B is countable so i = j = a=a; =a; =d’. O

Claim. f is surjective.

Proof. By definition, f(A\ B) = A\ B, f(B) = B\{m1} = f(4) = f(A\BUB) = f(A\ B)U f(B)
A\BU(B\{a1}) = A\ {a1}.

o di

Schroder-Bernstein

Theorem. Assume 3 two injective functions f : A— B and g: B — A. Then A ~ B.
Example. Q ~ N

Proof. Let f : N — Q be a function defined as f(n) = n, then f is injective. Let g : Q@ — N x N be a function
defined as g(™) = (m,n), then g is injective. Since we have proved that 3 bijection N x N — N, we can find a
bijective composition Q — N. Using Schroder-Bernstein, this proves Q ~ N. O

Proof. We will decompose A, B into disjoint sets

A:AluAQUAgAzﬂAJZQIfZ#‘]
B:BluBQUBSBZﬁB]:(DIfZ#j

and we will show A; ~ B; V1 <4 <3. Let a € A and consider
Sa={a,g7"(a), (f " og™)(a), (g7 o f T o g )(a), .. )
There are three cases. If S, is finite, let x be its last element.
1. S, is infinite.
2. S, terminates in A, i.e. z=aorx = (f"toglto---0g71)(a) and g~} (z) = 0.

3. S, terminates in B, i.e. z =g (a)orx = (g to fto-- 0 f1)(a) and f~i(z) = 0.



Let
Ay ={a€ A:S, is infinite}
As ={a€ A: S, ends in A}
A3 ={a€ A:S, ends in B}

By construction, A = A; UA; UAs and A, NA; =0V i#j.

For b€ Blet Ty, = {b, f~1(b), (g7 o f~1)(b),...}. Similarly, let

B, = {b € B: Ty, is infinite}
By ={be B: Ty, ends in B}
B;={be€ B:T,endsin A}

By construction, B = By UBy;UB3 and B;NB; =0 Y i # j.
Let f: Ay — By, f: Ay — Bs,g: B3 — Az be functions defined as bijections. Let h : A — B be a function

defined as
h— f on A1 U A2
(9lB;)™" on As,

is bijective.

Claim. h is bijective.

Theorem. If A is any set, then A is not equivalent to its power set P(A) = {B: B C A}.
Proof. It A = {0} then |A] = 0 but P(A) = {{0}} so |[P(A)] = 1 and so A % P(A). Assume A # (). Suppose
towards a contradiction that A ~ P(A). Then 3 f : A — P(A) a surjective function. Consider B = {a € A:a ¢
fla)} € P(A). As f is surjective, 3b € A : f(b) = B. If b € f(b), then since f(b) = B, we have b € B and by
definition b ¢ f(b). If b ¢ f(b), then by the definition of B, b € B. But since f(b) = B, we have b € f(b). This is a
circular contradiction, thus A ¢ P(A). O
Remark. b is like the barber who shaved all people who didn’t shave themselves. Who shaved the barber?
Theorem. The interval [0,1) C R has cardinality 2%0.
Proof. Last time we identified [0,1) with the set of functions

F={f:N={0,1}: Vn>1,3m>n: f(m)=0}.
We will show F ~ 28 = {f : N — {0,1}}. Let Fy : F — 2" be a function defined as Fy(f) = f. Then F, is injective

but not surjective because the image of Fy doesn’t contain functions with finitely many zeroes. O

Define G : 2V — [0, 1) via the following procedure: for f € 2%, define the binary expansion G(f) = 0.0f(1)0--- =
Ynz1 272 f ().

Claim. G is injective.

Proof. Assume G(f) = G(g) for f,g € 2. We want to show f = g. Consider A = {n > 1: f(n) # g(n)}. If
A=0 = f=g. Assume towards a contradiction that A # ). Let ny = min A, we have

0=_G(f) - G(9)
=Y 27" f(n) = > 27"g(n)
=Y 27" [f(n) — g(n)]
n>1
—272 [f(ng) — g(no)l = Y. 272" [f(n) — g(n)]
n>no+1
22— | S 27 fm) —g(m)] [ < YD 27 IS+ lg(n)]
n>ng+1 n>no+1
9-2n0 < 9. 9=2(no+1) gor% <2. 2‘2("0“)1_1411 = %2‘2"0 < 2720



This is a contradiction, proving that G is injective. As [0,1) ~ F, G induces an injection from 2V into F. By
Schréder-Bernstein, 28 ~ F ~ [0, 1). O

Metric spaces

Definition. Let X be a non-empty subset. A metric on X is a map d : X x X — R that satisfies
1. d(z,y) >0V z,ye X
2. d(z,y)=0if z =y
3. d(z,y) =d(y,x) Ve,ye X
4. d(z,y) < d(z,z) +d(z,y) Vz,y,z € X
Then (X, d) is called a metric space.

Example. 1. The discrete metric: if X # 0, let

0 ifx=
d(z,w:{ Y

1 otherwise.

2. (R™,ds) is a metric space with Euclidian metric

n

do(z,y) =Y |2; — ;%)

j=1

Definition. A metric space (X,d) is called bounded if 3 M > 0 : d(z,y) < M V z,y € X. If (X,d) is not
bounded then it is called an unbounded metric space.

d(z,y)

Fd(ey) is a bounded

Lemma. Let (X,d) be an unbounded metric space. Then d: X x X — R given by d(x,y) =1
metric on X.

Proof. Clearly J(m, y) <1Va,y € X. We only need to show d is a metric. Properties 1,2,3 of the metric are easily

verified, we will show property 4. The key observation is that z — - =1— H% is an increasing function. Thus,
since d(z,y) < d(z, z) + d(z,y), we get

= d d d d d - -

d(e,y) = 20 A2 vdey) o A2 AED ) 4 dzy).

Tt dw,y) ~14dm o) +dzy) ~1+dw2) | 1+dy)
O

Definition. Let (X,d) be a metric space and ) # A C X. Consider Dy = {d(z,y) : x,y € A} CR. If D4 is
bounded, then sup D4 = §(A) is called the diameter of A. If D4 is unbounded, we define the diameter of A to
be 0(A) = oc.

Example. Let (R",ds), Br(0) = {z € R™ : d2(z,0) < R}. Then §(Br(0)) = 2R.

Definition. Let (X, d) be a metric space and let () # A, B C X. Then the distance between A and B d(A, B)
is defined as inf{d(a,b) : a € A,b € B}.

Remark. The distance between sets is not a metric, i.e. d(A,B) =0 =5 AN DB # 0.
Example. Let A = (—1,0) and B = (0,1). Then d(A4,B) =0 but AN B = 0.

Definition. Let (X,d) be a metric space, § # A C X. For all x € X, the distance of z to A is d(z,A) =
inf {d(z,a) : a € A}.

Remark. d(x,A) =0 = z€ A
Example. Let A= (0,1) and z = 0.



Holder’s inequality

Theorem. Let 1 < p < oo and q be its dual, that is % + % = 1. Note that if p =1 then ¢ = co and vice-versa. Let
z=(x1,...,2n) ER" and y = (y1,...,yn) € R", then

n n % n %
Z|$kyk\ < (Z $k|p> <Z|ykq>
k=1 k=1 k=1
with the convention that if r = oo then

1
n ™
r _
(i) = ol

If p=q =2, then this is called the Cauchy-Schwarz inequality.

Proof. Assume p = 1, then
n n n
]; lzkyk| < ; |2k | max [y gﬁgxnlyzl ; ||

Equality holds iff |yx| is constant. Similarly, one can prove Holder’s inequality if p = co. Let 1 < p < oco. Recall
f:(0,00) = R given by f(z) =logz is concave, that is

flta+ 1 —=8)b) >tf(a)+ (1 —1¢t)f(b) Va,b>0,te(0,1)
with equality iff a = b. This gives
log (ta + (1 — t)b) > tloga + (1 —t)logh =loga'db' ™" = a'b' ™' <ta+ (1 —1t)b

Fix k € [1,n] and apply the previous inequality with

|z |” |y |? 1
aQa= =5, [ L t:7€(071)
ZZ:1 |z1|P ZZ:1 |yk‘q7 p
Note 1 —t = %. We get
abpt = 17l (73NN NS PR S 7Y S 71
(S0 Jeel?)? (0 )T~ P 4 P g lekl? @ 30k [yl

Sum over 1 <k <n

n n p q

5 2l oyl Janl 1wl 11
n = n = - P q

el O S P D N 6 SN ) e DIy S 2D DR L

= élxkyk < (i |xk|p>’l’ <§”’:|yk|q>q'

We know equality holds iff a = b,i.e. V1 <k <n

n
_ thp

& |ag|P = E:Ifl1||yk||q|yk|q S JceR:|zglP = cye]?
k=1

) O /1
dohe lzlP 300 lykl?

Remark. The proof extends to sequences of real numbers. More precisely, if {z, }n>1,{yn}n>1 C R, then

1

1
a

P
1 1
Z\l‘nyﬂﬁ Z'xk|p Z\yqu VlSPJISOOZ;)‘Fg:l-

n>1 k>1 k>1



Minkowski

Corollary. Let 1 <p<oo, = (z1,.-.,%n), Y= (Y1,.--,Yn) € R™. Then

1 1 1
<Z$k+yk|p> < <Z|$k|p> + (Z |yk|p>
k=1 k=1 k=1

with the convention that for p = oo,

(Z |:vk|p> =max{|zg|: 1 <k <n}.
k=1

Proof. For all 1 <k <n we have |z + yr| < |zr| + |yr|- In particular,

< =
(B, b o] s bkl Il = o0

n n n
Zmax|xk + oyl < Z|$k| —|—Z lye| p=1.
k=1 k=1 k=1

The dual of p is —2=. Then

p—1°
n n n
S ek el e vkl < lkllze vl D unllze + yelP
n n % n pT?l n % n pT_l
—_1-P_ —1-P_
St < (o) (Siwenr) T (Smr) (et
k=1 k=1 k=1 k=1 k=1

p—1

p

n 1 n ] n v n »
= (Z |$k+yk|p> = (Z |$k+yk|p> < <Z $k|p> + (Z |yk|p>
k=1 h=1 k=1 k=1

Remark. Minkowski for sequences of real numbers becomes

p

Z\xk—i—yﬂp < Z\xﬂp + Z\Z/Hp

k>1 k>1 k>1

b
o =

with the obvious modification if p = oco.

1
Example. Fix 1 < p < oo and define dj, : R* xR™ — R via dp(x,y) = (3 p_; |2k — yx|P)? with the convention that
doo(x,y) = maxi<g<n |2k — Yx|- Then (R™,d,) is a metric space, the triangle inequality following from Minkowski.

Topology

Definition. Let (X, d) be a metric space. A neighbourhood of a point a € X is B.(a) = {z € X : d(a,2) < r}
for some r > 0.

Example. 1. (R?,dy), B1(0) = {(x,y) € R? : /22 + y2 < 1} (circle)
2. (R?,dy), B1(0) = {(z,y) € R? : || + |y| < 1} (rombus)
3. (R%,dy), B1(0) = {(z,y) € R? : max {|z], |y|} < 1} (square)

Definition. Let (X,d) be a metric space, # # A C X. A point a € A is called an interior point of A if
37> 0: B,(a) C A. The set of all interior points of A is called the interior of A and is denoted by A. A set A
is open iff A = A.



Example. 1. ()
2. X
3. Br(a)Vae X,r>0
Exercise. Let (X, d) be a metric space, } # A, B C X. Then
1. IfACB, then ACB
2. AUBCAUB
3. ANB=ANB
4 A=A
5. An infinite union of open sets is open.
Proof. 1. Assume A C B. Let a € fi, then 37 > 0: B.(a) C A C B. By definition, a € B and thus A - B.
2. Let z € AU é, then exactly one of the following must be true:

ez e ANB, then 37, >0: B, (z) € Aand I, > 0: By, (z) C B. Let r = min{r,,r}. Then
B.(z) CANB. But ANBC AUB so By(z) C AUB.

ez ¢ ANBbutze A\ B, then3r, >0:B,, () CA\B. But A\BC AUB so B,,(z) C AUB.
ex¢ ANBbutz e B\ A, then3r, >0:B,,(z) € B\ A. But B\AC AUB so B,,(z) C AUB.

In all cases 3r >0: B.(zr) CAUB «— rc AUB.

3. Let 2 € ANB, then 37, > 0: By () C Aand 37, > 0 : B, (¥) € B. Let r = min{r,,r}, then
B, (zx) CANB = z€ ANB.

4. o,flgflgA

e Suppose AZ A, ie. Fa €A:a¢ A. ThenV 7, > 0, we would have B,, (a)NA = (. ThenV b € B, (a),
we would also have b ¢ A. Thus V r, > 0, we would have B, (b) N A = 0. And since b € B,,(b), we
would have b ¢ A. But notice a € B,_(a) so we can pick b = a. But we chose a so that a € A, thus we

have a contradiction so A C A.
So A =A.
5. Let U = Up>1 4, : Ay = Ay, then
u€elU=Up>14, = Im>1:u€ A, =A4,, = Ir>0:u€ By (u) CUp>14, <= uEUnzﬂlAn:(?
O

Remark. An infinite intersection of open sets needs not be open. Consider the open set A, = (—%, %) and its
infinite intersection N,>1 A4, = {0} which is not open.

Exercise. Let (X,d) be a metric space and let A C X. Show that A is the largest open set contained in A.

Proof. Let S C A be an open subset of A, i.e. an arbitrary point s € S is an interior point. Since S is a subset
of A, s € A. Since s is an interior point, s € A, by definition. Since s was arbitrary, S C A. But since S was an
arbitrary open set, A must be the largest open set in A. O

Definition. Let (X, d) be a metric space. A set A C X is closed if ¢4 is open.
Example. 0, X, °B,.(z) = {y € X : d(z,y) > r} are all closed sets.
Proposition. 1. An infinite intersection of closed sets is closed.

2. A finite union of closed sets is closed.

10



Proof. 1. Let I be an infinite set and {A; };er a collection of closed sets. Then © (N;crA;) = Ujer ©A;. Since ©A;
is open for all i, we showed that the infinite union is also open.

2. Let Ay,..., A, be closed sets. Then ¢ (Up_; Ax) = N7_, “Ag. Since Ay is open for all i, we showed that the
finite intersection is also open.
O

Definition. Let (X, d) be a metric space, A C X.
e A point a € X is called an adherent point of A if V r > 0, we have B.(a) N A # (.
e The collection of all adherent points of A is called the closure of A and is denoted by A.
e An adherent point of A is called isolated if 37 > 0: B,.(a) N A = {a}.

If every point in A is isolated, then A is called an isolated set.
e An adherent point a of A that is not isolated is called an accumulation point of A.
e The collection of accumulation points of A is denoted by A’ ={a € X :Vr > 0,B.(a) N (A\ {a}) # 0}.
Remark. 1. ACA
2. A=AUA
3. In (R,]]), RN\ [-1,1] = (—o00, ~1] U1, 00)
4. In (R?,ds), R2\ ([-1,1] x {0} = R?
Exercise. Make it rigorous.
Proof. 1. Leta€ A, thenV r >0,a € B.(a) = a€ B.(aA)NAsoB.(a)NA#) = a€ A

2. e Letze€ A thenVr>0,B.(z)NA#(. Since x € B,(x), either z € Aor I x # y € B,.(z) N A. Then
r€A = zeAUA  andif 3z #y€ B.(x)NA, then B.(z) N(A\{z}) #0) = z€ A = z€
AUA.

e Let z € AUA', then either z € AC Aorz e AN A = Vr>0,B.(x)N(A\{z}) #0 =
B (z)NA#0) = z € A

3. Incomplete

zeR\[-1,1] < Vr>0,B.(x)NR\[-1,1] #0
< Br(z)NRN °[-1,1] #0
< B,(x) NRN((—00,~1) U (1,00)) # 0
> B(x) N ((—o0,—1) U (1,00)) #0
> (Br(x) N (=00, 1)) U (Bp(x) N (1,00)) # 0
Then either B,(x) N (—o00,—1) # 0 or B,(z) N (1,00) # @ or both. Then B,(x) N (—o00,—1) #0 — z €
(o0, —1)
O

Proposition. Let (X,d) be a metric space, A C X. The following are equivalent:
1. The point a € X is an accumulation point of A.

2. 3 a sequence {an}tn>1 C A\ {a} : d(ap,a) —— 0.
- n— oo

3. Every neighbourhood of A contains infinitely many points from A\ {a}.

Proof. We will show 1 —= 2 — 3 = 1.

1 = 2. Letae A = Bi(a)N(A\{a}) #0. Let a1 € Bi(a) N (A\ {a}). Let r; = min{},d(a,a1)}. As
a€ A, B.(a)N(A\{a} # 0. In particular, ay # {a,a1} and d(a as) < 3. Proceeding inductively, one constructs
a sequence {aptn>1: Gnt1 € {a,a1,...,a, and d(any1,a) < n+1 — O

2 = 3. Fixr > 0, then 3 n, € N:d(ay,a) <rVn>n,. Then {an :n >n.}t C Br(a).

3 = 1. Follows from the definition. O

11



Proposition. Let (X,d) be a metric space, A,B C X.

1.

2

3

4 N
5. AUB=AUB
6

7

. A s closed iff A=A

8. A is the smallest closed set that contains A

Proof. 1. Note that inserting “A for A in 1. yields 2. Indeed, C(Cjﬁl) =4 = cA=¢ (A). One shows similarly

that 2. implies 1.

t€ A= 2¢Ad <= Ir,>0:B, (2)NA=0 < I7r,>0:B, (2) C ‘A — zeccA
Let z € A. Fix r > 0. Then B,(z)N A # (. But A C B so B.(z) N B # (. By definition, z € B.
ANBCA = ANBCAANBCB = ANBCB = ANBCANB

C(AUB) =¢(AUB)=cAncB=cAn <B= ¢(A)n ¢B) = <(AUB)

Since ACA = AC A Let’s prove A CA Letzxe A. Fixr > 0. Then B, (x)NA#(. Let a, € B.(z)NA
and r; = d(z,a,). As a, € A, we have B, . (a, N A # ). By the triangle inequality, B, (a, C By(x).
Thus B,(z) N A # (). By definition, z € A.

A'is closed iff ©A is open iff A = ¢A =¢ (A) & A =A.

Exercise. A is the smallest closed set that contains A.

Proof. Let 0 # D=D:ACD,AN D #(. Then AN ¢(D)#() = AU <D= AU °D # (). O
O

Definition. Let (X, d) be a metric space, A C X. A point a € cA is called an exterior point of A. The exterior
of Ais Ext(A) =<A= ¢(A).

Remark. 1. Ext(A) is an open set

2. Ext(A)=A

3. AUExt(A) need not be X. Indeed, “(AUExt(A)) = (A) N “Ext(A) = AN A is called the frontier of A

and is denoted by Fr(A).

Example. In R?,d,, let

d < ify>0
A={zycR: @@y < ify>0
do(x,y) <r otherwise.

Then

A= B,(0)
A={z cR?:dy(z,0) <r}
cA={x € R?:dy(x,0) >r}
Fr(A) = {z € R? : dy(z,0) = r}

12



Definition. The boundary of A is Bd(A) = Fr(A) N A. Notice Fr(A) = An ¢A = Fr(¢A).
Proposition. The boundary of a set A contains no non-empty open sets.
Proof. Assume O = O C Bd(A), we want to show O = . We have
OCANFr(A)=An(An *A=ANAN cA=An “A=An °(A).
Then O C A — OogfolbutO:Co)songol. Since we also have O C c/i, we showed O C An 0/01:(2). O

Definition. Let (X, d) be a metric space. A set A C X is called dense if A = X. A set is called nowhere dense
if Ext(A) = X.

Example. (X,d) = (R,]||), A = Q is dense as we have proved previously.
Remark. A is nowhere dense iff ) = ¢ (Ea:t(A)) = CEa:Qt(A) = A

Definition. A metric space (X, d) is called separable if it contains a countable dense set.

Example. R" is separable with Q™ being a countable dense set.

Subspaces of metric space

Definition. Let (X,d) be a metric space, Y C X. In particular, (Y,d|yxy) is a metric space. We say that
aset/LQYisopeninYifﬂD:DQX:A:YﬁD. We say that a set A C Y is closed in Y if
IF=FCX:A=YnNF.

Example. (X,d) = (R,]|),Y = (0,1]. The open sets in Y are of the form (a,b) with 0 < a,b < 1 and (a,1] =
Y N (a,00) with 0 < a < 1. Some closed sets in Y are Y;{a} Va € Y;(0,3] = [-1,1]NY.

Remark. If ACY isopenin Y, then Y \ A is closed in Y. Indeed, if A is open in Y,3 D = DCX:A=YND.
ThenY\A=YN A=Y N “D and °D is closed.

Lemma. Let (X,d) be a metric space, Y C X. Then'Y is open <= Y A CY which is open inY, we have A is
open in X.

Proof. 7 <" take A=Y. )
"=—="1let ACY beopeninY,then 3D =D C X : A=Y ND, both are open so A is open. O

Definition. Let (X, d) be a metric space, A CY C X. The closure of A in Y is A =vny.

Complete metric spaces
Definition. Let (X, d) be a metric space, {x,}n>1 € X. We say {z,},>1 converges to a point x € X if

Ve>0,3n.eN:d(z,z,) <eVn>ne.

. . . o d
In this case, we say « is the limit of {x,},>1 and we write lim,_,oo , = z or T, —— =
- n— oo

Exercise. 1. The limit of a convergent sequence {z,},>1 in (X,d) is unique.

2. A sequence {x,},>1 converges to x € X iff each of its subsequences converge to x.
R
Lemma. Let (X,d) be a metric space, {n}n>1, {Un}n>1 € X : LN T, Yn LN y. Then d(xy,yn) (BRI,
= = n—oo n—o0 n—oo
d(z,y).
Proof.

|d($nayn) - d(az,y)| < ‘d(xmyn) - d(znay” + |d(xn7y) - d(xay” < d(ynay) + d(l‘n,df) —0.

n— oo
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Definition. Let (X,d) be a metric space. A sequence {x,},>1 C X is called a Cauchy sequence if V ¢ >
0, In. e N:d(xn,zm) <eVn,m>ne.

Remark. A sequence in R converges iff it is Cauchy, but this is not true in a general metric space.

Example. e In (Q), let z; = 3 and 41 = B+ -~ Vn > 1. We showed {z,},>1 converges to V2.
Consequently, {x,,},>1 € Q is Cauchy in (R, ||). However it does not converge in (Q, ).

e In ((0,1),]]), let ,, = 2 Vn > 2. Then {2, },>1 is Cauchy but not convergent.
Definition. A metric space (X, d) is called complete if every Cauchy sequence in X converges in (X, d).
Exercise. 1. Convergent sequences are Cauchy.

2. A Cauchy sequence with a convergent subsequence is convergent.

Definition. Let (X,d) be a metric space. A sequence {k,},>1 of subsets of X is called a nested sequence of
closed balls if
kn =K, (x,)={z € X :d(z,z,) <rn}, knt1 Ck,Vn>1

Remark. In a general metric space, it is not true that
By(z) ={y € X :d(z,y) <r} = Ko(z) ={y € X : d(z,y) <7}
Example. Let X = (—00,0]UN and d(z,y) = | — y|. Then
Bi(0)={r € X :|z| <1} =(-1,0] = B1(0) = [-1,0]

but
Ki(0)={ze X :|z| <1} =(-1,00U{1}.

Theorem. A metric space (X,d) is complete iff for every nested sequence {ky}n>1 of closed balls with §(k,) ——

() kn # 0.

n>1

0, we have

Proof. o 7 =" Let {k,}n>1 be a nested sequence of closed balls with §(k,) —— 0. Write k, = k,, (xn).

Then o
6(kn) =2r, = lim 2r, =0 <= lim r, =0.

n—r oo n— oo

Claim. {z,}n>1 is a Cauchy sequence.
Let € >0, then dn. eN:r, < % VY n > n.. For n,m > n, we have k,, k,, C k,,, and

A Xpy ) < d(Xp, Tpn,) +d(Tn,, Tm) < Th, + 10, <€

As (X,d) is complete, 3z € X : z,, 4 Form > 1, we want to show x € k,,. Note {z,,}n>m C k. As

n—oo
ko, is closed, x = lim,, oo ,, € k;,. Therefore

xeﬂk

o 7 <" Let {x,}n>1 be a Cauchy sequence in X. For every n > 1,3 N,, € N: d(xp,x;) < 27% Y k,l > N,.
Let k; = Ny and for n > 1, let ky 1 > max{k,, Nyy1}. In particular, d(z,, 2z, ) < 2,1% VY m > k,. Let
k‘n = ]fi(l‘k“).

XL
Claim. kn41 C ky

Let y € kny1 = d(y,2k,,,) < 3. By the triangle inequality

1 1
d(y,.l?kn) < d(yaxkn+1) + d(xkn+1’xkn) < W + W =;- = Y& kp.
Then
ﬂk #0) < Jz e ﬂk :>d(xxk)<2—Vn>1 = T, —

n— 00
n>1 n>1

We have proved previously that a Cauchy sequence with a convergent subsequence converges.
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Examples of complete metric spaces

L (R, )
2.
Lemma. Let (X,dy),(Y,d2) be complete metric spaces. Then X XY with the metric

d((z1,31), (w2, 92)) = VVd1 (21, 22)? + d2(y1, y2)?

is a complete metric space.

Proof.
Exercise. Show d is a metric.
We show the metric space is complete. Let {(zn, ¥n)tn>1 € X x Y be Cauchy, then

Ve>0,3n. € N:id((n,Yn)s (Tm,ym)) < €V n,m>n,

— dl(xnaxm)Q + d2(yn7ym)2 < 62

{dl (xru xm) <e€

ds (yn7 ym) <e
. {Zn}n>1 is Cauchy, let z = lim,,_,o
{Yn}n>1 is Cauchy, let y = lim,, 00 Yn.

Claim. (zy,yn) —<, (z,y)

n—oo

Let € > 0, then

Ini(e) e N:di(zp,z) < §Vn>ni(e)
I nz(e) € N:da(yn,y) < §Vn>nae)

= for n > max {ni(€),na2(e)},

(@), (0,)) = Vo2 + ol < (2) + (2) <

3.
Corollary. (R" ds) is a complete metric space. Recall
1
n 2
i=1
Exercise. Fix 1 < p < oo and n € N, show that (R”,d,) is complete.
4. Let

12 = {{xn}n21 - R : Z |$n|2 < OO}
n>1

and ds : 12 x [> = R be defined as

daw.9) = (X b = wl?) Vo = (@ahozty = (yndz

Claim. (I%,dz) is a complete metric space.
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Proof. We will prove completeness. Let {(*)} be a Cauchy sequence. Note z(*) = {x%k)}nzl € [?. For € > 0,

Jke € Nidy(ah,a) <eVhiI>ke = Y [aF) —al))P <V k1> ke

n>1

In particular, for all n > 1 we have |ac£,k) - xg)\ <eVkl>k. ThusV n > 1,{x$lk)} is Cauchy in R.

Let z, = limy_,o0 m%k),x = {zp}n>1. We will show z() kd—2> x and x € [? (this follows from the triangle
—o0

inequality). For € > 0,
JkeeN:dz® z2W) < eV k1> k.

Fix N > 1 and let k,I > k.. We have

Freeze k and let | — oo to get

N
Z lz®) — 2,|2 < €2
n>1

N k . . .
Thus on =Y .,5, |2 — 2,|? is an increasing sequence bounded above by €2. Then

limoy = Z |a:§f) —r,r < = d(m(k),x) <eVk>k.
n>1

Lemma. Let (X,d) be a metric space. A set A C X is dense iff V) #£ O = OcC X, we have ANO # 0.
Proof. e 7 —> 7 Assume towards a contradiction that
F30£0=0CX:ANO0=0.
Then we reach a contradiction:

OC ‘A= 0#£0=0C°A="(A) = °X =0.

o ” " Assume A # X. Then A =¢ (A) # (0 < 3 B,(x) C °A for some r > 0. In particular, § # B,(z)
is an open set such that B,(z) N A = . This is a contradiction.
O

Baire property
Definition. We say a metric space (X, d) has the Baire property if for every {4, },>1 C P(X) : 4, = Ap, A= X,
we have Np>14, = X. Namely, for each countable collection of open dense sets, their intersection is dense.
Lemma. Let (X, d) be a metric space, the following are equivalent

1. X has the Baire property

2. If {F,} C P(X): F, =F,, F, = (0, then Unzoan = (). Namely, the interior of the union of closed sets with

empty interior 1s empty.

Proof. e 71. — 27 Let F C X : F'= F, and F, = 0. Define A4, = ¢F,, then A, = A, and 4, = °F, =
°F, = °D = X. As X has the Baire property, N,>14, = X. But Ny>14, = Np>1 °F, = Up>1 B, =
C(Un21Fn) =X = UnZan = 0.

e "2, — 1.” Let A,, = An,/Tn = X, we want to show N,>14, = X. Define F,, = “A,, then F, = F,, and
F, = <A, = CA7n = X = (. Therefore, Unlen =) = Cunlen = X. But Unlen = Un>1 €A, =

¢ m’nZl An = C(mnzl An) =) = mnzl An = X.
O
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Baire category theorem 1
Theorem. A complete metric space (X, d) has the Baire property.

Proof. Let A, = /fn and A4, = X, we want to show Nn>14, = X. Equivalently, it suffices to show that V () #
W =W C X, we have WN (Ny>14,) #0. Fix 0 #W =W C X.

e As A; = X, we have the open set WNA; # ) = 3 B, (z1) € WNA, for some r; > 0. Let p; < min {ry,1},
then K, (1) C By, (1) CW N Az

e As Ay = X, we have the open set B,,(z1) N Az #0 = 3 B,,(z2) C B,, (x1) N Ay for some 72 > 0. Let
p2 <min{ra, 1}, then K,,(z2) C By, (z2) C K,, (z1) N As.

Proceed inductively to find a sequence of points {x,},>1 C X and a sequence of radii {p,} C (0,00) : p, <
and K, . (Tn41) € K, (xn) N App1 V' n > 1. As (X,d) is complete, we get Np>1K,, (z,) # 0. Note ()
ﬂnle n (l‘n) Q wWn Al n (ﬂnngn) =Wn (ﬂnzlAn).

==

Definition. Let (X, d) be a metric space. A set A C X is said to be of first (Baire) category if it can be written
as a countable union of closed, nowhere dense sets. If A is not of the first category, then A is said to be of second
(Baire) category.

Remark. A metric space (X,d) is of first category if X = U,>1A4, with A, = A, and Ext(A,) = X. Recall
Bxt(A,) = °A, = X = Eat(A,) = A, = °(A,) = © (AT) — A, =0.

X = Ups1 A, with A, = A, and A, = 0.

So X is of first category if

Example. Q is of first category.

Baire category theorem 2

Theorem. A complete metric space (X, d) is of second category.

Proof. We argue by contradiction. Assume X is of first category, i.e. X = Up,>14,,4, = A,, A, = 0. By the
previous theorem, X complete = X has the Baire property = U,>14, =0 <= X =0 < X =10
contradiction. O

Corollary. R\ Q is of second category.

Proof. Assume towards a contradiction that R\ Q is of first category, then we can write R\ Q = U,>1 4, with
A, = A4, and A, = . Notice R = (R\ Q) UQ = (Up>14,) U (Ugeo{q}) with {¢} = {¢} and {q} = 0 so R is of
first category, contradiction. O

Remark. If (X,d) is complete and A C X is of first category, then X \ A is of second category.

The Banach-Mazur game

Imagine we have two players Py, P playing the following game. Let Iy be a closed interval.
e P gets dealt a subset A C I,
e P, gets dealt a subset B C I\ A.
Then
e P; chooses a closed interval I; C I,
e P chooses a closed interval Iy C I,

o ...,

P, chooses a closed interval I5, 11 C oy,

P chooses a closed interval I, 1o C Iopn41.
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Then P, wins if (NI,) N A # (), otherwise P5 wins.

Question. Can either player ensure a winning strategy by choosing the intervals wisely, no matter how the
opponent plays?

Answer. If A is of first (Baire) category, then P, has a winning strategy. Indeed, assume A = U,>14,, with
A, =A,, A=0. Then P, needs only choose Iz, C I5,_1 \ A, ¥ n > 1. Then Nn>11, € Iy \ A and so P, wins.

Conjecture. P, has a winning strateqgy <= A is of first category (proved by Banach).

This gives insight into how ”small” a set of first category is, namely, it is a set on which even the first player is
bound to lose, unless his opponent fails to take advantage of the situation.

Theorem. P; has a winning strategy iff there is an interval I C Iy : Iy N B is of first category.

Connected sets

Definition. Let (X,d) be a metric space. We say that two sets A, B C X are separated if AN B = () and
ANB=1.

Remark. Any two separated sets are disjoint because AN B C AN B = (). However, two disjoint sets need not be
separated.

Example. A = (0,1),A=1[0,1], B = {1}
Lemma. Let (X,d) be a metric space, A,B C X : d(A,B) > 0. Then A, B are separated.

Proof. We argue by contradiction. Assume ANB # . Let x € ANB. Since z € A, d(x, A) = inf {d(7,a) :a € A} =
0. But then d(B, A) = inf {d(b, A) : b € B} = 0, contradiction. Similarly, one shows that AN B = {. O

Remark. There are separated sets A, B for which d(4, B) = 0.
Example. A= (0,1),B=(1,2) = AnNB=[0,1]N(1,2)=0,ANB=(0,1)N[1,2] =0,d(A,B) =0

Exercise. Let (X,d) be a metric space, A, B C X separated. If A1 C A and B; C B, then A; and B; are
separated.

Proposition. Let (X,d) be a metric space, then
1. Two closed sets are separated iff they’re disjoint.
2. Two open sets are separated iff they’re disjoint.

Proof. 1. e 7 = 7 This is clear.

o’ «— "Let A=A B=B,ANB=0. Then ANB=ANB=0,ANB=ANB=10,s0 A,B are
separated.
2. e 7 — 7 This is clear.
o7 «— " Let A= ALBe = B,ANB = 0. We want to show AN B = AN B = (). Assume towards
a contradiction that AN B # (. Let x € AN B, since x € B = B,3 19 > 0: By, (zr) C B. Since
r €A Vr>0,B.(r) CA Forany r >< rp,0 # B.(x) N A C AN B, contradiction. This shows
AN B = (), one shows similarly that AN B = 0.
O

Proposition. Let (X,d) be a metric space.
1. If a closed set is the union of two separated sets A, B, then A, B are closed.
2. If an open set is the union of two separated sets A, B, then A, B are open.
Proof. 1. Let F=F:F=AUB,ANB=ANB={. Then
A=ANF=ANF=ANn(AUB)=(ANA)U(ANB)=A4N0=A.

Similarly, one proves B is closed.
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2. LetD:ﬁ:szluB7ZﬂB:Aﬂ§=®. WewanttoshowAiA,ézB. We know A C A.
Leta € ACD=D = 37r90>0:B.(a) CD=AUB AsANB =0 and a € A,a ¢ B. Thus
371 >0: B, (a)NB=0. Then for r < min{rg,r1},B.(a) CD\B=A. Soae A = ACA.

O

Exercise. Is it true that in a metric space (X, d), B,-(a) cannot be written as the union of separated sets?
Definition. Let (X, d) be a metric space, A C X.

e We say A is disconnected if it can be written as the union of two non-empty separated sets.

e If A is not disconnected, then we say A is connected.
Theorem. Let (X,d) be a metric space. Then X is connected iff the only subsets of X that are clopen are (), X .

Proof. e ” =—> 7 Assume towards a contradiction that 3 A C X : ) # A # X, A clopen. Then X \ A # (
is both closed and open. As A and X \ A are disjoint, they are separated. Then X = AU (X \ A) and
A, X \ A # (0 separated implies that X is disconnected, contradiction.

e 7 <= 7 Assume towards a contradiction that we can rewrite A = BUC with B # ,C # () and BNC =
BNC =0. As X is open, B,C are open. As X is closed, B,C are closed. Then B,C are both open and
closed so B or C = (), contradiction.

O

Theorem. Let (X,d) be a metric space, A C X. Then A is connected iff the only subsets of A that are both open
and closed in A are (), X.

Proof. e 7 = ” We argue by contradiction. Assume that 3 0 # B C A : B is both open and closed. Then
) # A\ B C A is both open and closed. Thus A =B U (4 \ B).

Claim. B, A\ B are separated.

Bis closed in A so BN A= B. Then
BN(A\B)=(BNnA)N “B=BnN “B=1.

A\ Bisclosed in Aso ANA\ B=A\B. Then

BN(A\B)=BNAN(A\B)=BnA\B=0.
Thus A can be written as the union of two separated sets, contradiction.

e 7 <= 7 Assume towards a contradiction that A is disconnected. Then 3 B # 0, C' # () with BNC = BNC =
p:A=BUC.

Claim. B is closed in A.

BNA=BnN(BUC)=(BNB)U(BNC)=Bn0=B.

Similarly, one shows that if C is closed in A then B = A\ C is open in A. Thus §) # B C A is both open and
closed in A, contradiction.

O
Theorem. Let (X,d) be a metric space. The following are equivalent.
1. A is disconnected.
2. There exists open sets D1,Dy: AC Dy UDg, ANDy #0,ANDy# 0, AN Dy N Dy =0.
3. There exists closed sets F1,Fo : ACFLUFy, ANFL #0, AN, 0, ANFNFy = 0.

Proof. We show 3 — 2 —= 1 = 3.

19



e "3 = 27 Let D1 = “Fy,Ds = “F5. Then Dy, D5 are open. Since A C F; U F5, we have
ANDiNDy=AN °FiN °Fy=AN *(FLUF)=10.

We know AN F1 N F2 = @ = A g C(Fl n Fg) = CFl U CFQ = D1 U Dg. Let’s show AN D1 # @ Notice
AND; =0 = AC Dy = AC °F, = Fy =0, contradiction. Similarly, A N Dy # (.

72 = 1" Let B=AND;,C =AND,. Then A= BUC,B # (,C # 0,BNC = (. Note that if B
and C are open in A then B is closed in A. B # (,B # Asince A= BUC,C # (,BNC # (). Thus A is
disconnected.

e ”1 = 3” As A is disconnected, 3 () # B C A : B is both open and closed in A. In particular, C = A\ B
is both open and closed in A and ) # C C A. Let Fy, F5 be closed sets such that B=ANF;,C = AN F>.
Then A=BUCCFRURANF =B#40,ANFK=C#0,AnFNF=BNC=40.

O

Proposition. Let (X,d) be a metric space, A C X be disconnected. Let Dy, Dy be open sets such that A C
DiUDy, ANDy #0,ANDy# D, ANDyNDy=0. If BC A connected, then B C Dy or B C Ds.

Proof. Assume towards a contradiction, that BN Dy # @ and BN Dy # (). Then B € A C D; U Dy and
BNDiNDy CAND;N Dy, =0 implies that B is disconnected, contradiction. O

A similar argument yields

Proposition. Let (X,d) be a metric space, A C X be disconnected. Let Fy, Fy be closed sets such that A C Fy UF;.
Then ANFL 0, ANFy A0, ANFiNEF,=0. If BC A is connected, then B C Fy and B C F5.

Proposition. Let (X, d) be a metric space, A C X be connected. If AC B C A, then B is connected.

Proof. Assume towards a contradiction that B is disconnected. Then 3 Fj, Iy closed subsets of X : B C F; U
B BNEFL#0,BNF, #0,BNF N i@' Then AC BC FyUF, = either A C F} orA C F,. Without loss
of generality, assume A C F;. Then BCACF, =F = (=B CF,UF, =BnNF, # (), contradiction. O

Proposition. Let (X,d) be a metric space, {A;}icr be a family of connected subsets of X such that for any i # j,
A; and A; are not separated. Then U;erA; is connected.

Proof. Assume towards a contradiction that U;e;A; is disconnected, then 3 B,C # 0 : BNC = BNC = ) and
UierA; = BUC. Forany i € I, A; = (BNA;)U(CNA;). But A; is connected while BNA; and C'NA; are separated.
So either BNA; = () or CNA; = 0. In particular, if A;NB # @, then A C B. Then U;e;A; = BUC = Jiy,ip € 1 :

A,NB#0 = A;,, CB
A, NC#0) = A;, CC

But B, C separated = A,,, A;, separated, contradiction. O

Corollary. Let (X,d) be a metric space, {A;}ier be a family of connected subsets of X : NierAi # 0. Then Uier A;
is connected.

Theorem. The only non-empty connected subsets of R are the intervals. In particular, R = (=00, 00) is connected
so the only subsets of R that are both open and closed are (), R.

Proof. Let’s first show that intervals are connected. Let I C R be an interval. Assume towards a contradiction that
I is disconnected. Then 3 ) # A C I : A is both open and closed in I. Then its complement ) # B=T\AC I is
both open and closed in I. Let aq € A,b; € B.

bi—ax

— a1tb
2 2

e Set ¢y .Ifep € A, set ap = c1,b0 = by. If ¢ € B, set as = a1,by = ¢1. In either case, by —as =

e Set ¢y = “2+b2 .If ey € A, set ag = co,b3 = by. If o € B, set ag = ag, bs = co. In either case, bs —az = b12_2‘“.

Proceeding 1nduct1vely, we construct {a,} C A,{b,} C B :

— {a,} is non-decreasing and bounded above by b so it converges, let a = lim,_, o ay

— {bn} is non-increasing and bounded below by a so it converges, let b = lim,,_, by,
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Thus a =b. Buta € ANI=Aand b€ BNI = B so AN B # (), contradiction. Finally, show connected sets
are necessarily intervals. Let A C R be connected. Let a = inf A (possibly —o0). Let b = sup A (possibly o).
We have to show that if a < ¢ < b, then ¢ € A. Assume, towards a contradiction, that 3 ¢ € (a,b) \ A. Set
Dy = (—00,c¢), Dy = (¢,0) open in R. Then A C D1 UDy, ANDyN Dy =0, AN D1 # § (because inf A < ¢),
AN Dy # 0 (because sup A > ¢). Thus A is disconnected, contradiction.

O

Lemma. Let (X,d) be a metric space, A C X. If any pair of points in A is contained in a connected subset of A,
then A is connected.

Proof. Assume towards a contradiction that A is disconnected. Then 3D, D5 open : A C Dy U Dy, AN Dy #
0,ANDy #0,AND;NDy =0. Let a € ANDy,b € AN Dy. Then 3 B C A connected : {a,b} C B. Then
BC D UDy,BNDy#0,BNDy#0,BND;NDy=0 = B is disconnected, contradiction. O]

Exercise. Let (R™,d), B1(0) = {z € R" : d(x,0) < 1}. Then B;(0) is connected.
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