Mathematics 131AH Lecture

Damien Lefebvre

Friday 20th March, 2020

Functions

- Given two non-empty sets A, B a function $f : A \to B$ is a way of assigning to each element $a \in A$, a unique element in B, denoted by f(a).
- The set A is called the **domain** of f, the set B is called the **range** of f. If $A' \subseteq A$ then $f(A') = \{f(a) : a \in A'\} \subseteq B$ is called the **image of** A' in B **under** f and f(A) is called the **image of** f.
- If f(A) = B, then f is surjective, or onto. If $f(a) = f(a') \Leftrightarrow a = a'$, then f is injective, or one-to-one. If f is injective and surjective, then f is bijective.
- Two functions $f, g: A \to B$ are equal iff $\{(a, f(a)): a \in A\} = \{(a, g(a)): a \in A\}$.

Example. $f : \mathbb{Z} \to \mathbb{Z}, f(n) = 2n$ is injective (just divide by 2) but not surjective because it only covers even integers. However, $g : \mathbb{R} \to \mathbb{R}, g(x) = 2x$ is bijective (just plug in $\frac{2x+1}{2}$ to get odd numbers).

Composition

Let $A, B, C \neq \emptyset$ and $f : A \to B, g : B \to C$ be functions. The **composition** of g with f is the function $g \circ f : A \to C$ given by $(g \circ f)(a) = g(f(a))$.

Exercise. Let $D \neq \emptyset$, $h: C \to D$ be a function. Show composition is associative.

Proof.

$$(h \circ (g \circ f))(a) = h((g \circ f)(a)) = h(g(f(a))) = (h \circ g)(f(a)) = ((h \circ g) \circ f)(a)$$

Remark. Composition need not be commutative. For example, let $f : \mathbb{Z} \to \mathbb{Z}$, $f(n) = 2n, g : \mathbb{Z} \to \mathbb{Z}$, g(n) = n + 1, then

$$(f \circ g)(n) = f(g(n)) = f(n+1) = 2(n+1) \neq (g \circ f)(n) = g(f(n)) = g(2n) = 2n+1$$

Inverses

Let $f : A \to B$ be bijective. The **inverse** of f is $f^{-1} : B \to A$, defined as follows: if $b \in B$, then $f^{-1}(b) = a \in A$, and a is the unique element in A : f(a) = b. In particular, $f^{-1} \circ f = 1_A$ and $f \circ f^{-1} = 1_B$.

Exercise. Let $f: A \to B$ and $g: B \to C$ be bijective. Show $g \circ f$ is also bijective, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Assume $(g \circ f)(a) = (g \circ f)(b)$, i.e. g(f(a)) = g(f(b)). Since g is injective, we have f(a) = f(b). Since f is injective, we have a = b. Thus $g \circ f$ is injective. Since g is surjective, $\forall c \in C, \exists b \in B : g(b) = c$. And since f is surjective, $\forall b \in B, \exists a \in A : f(a) = b$. So we have g(b) = g(f(a)) = c, so $g \circ f$ is surjective. Furthermore, since $(g \circ f)(a) = c$, we have $((g \circ f)^{-1})(c) = a$. Moreover, $(f^{-1} \circ g^{-1})(c) = f^{-1}(g^{-1}(c)) = f^{-1}(b) = a$. Thus $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proposition on injective functions

Proposition. A function $f : B \to C$ is injective iff for any set $A \neq \emptyset$ and any two functions $g, h : A \to B$, we have $f \circ g = f \circ h \implies g = h$.

Proof. " \implies " Let $a \in A$, then $f(g(a)) = f(h(a)) \implies g(a) = h(a)$ because f is injective.

" \Leftarrow " Suppose f isn't injective, i.e. $\exists b_1, b_2 \in B : f(b_1) = f(b_2)$ but $b_1 \neq b_2$. Let $A = \{1, 2\}$ and $g, h : A \to B$ be functions defined as

$$g(1) = b_1, \quad g(2) = b_2$$

 $h(1) = h(2) = b_1.$

Then $g \neq h$, but notice

$$f(g(1)) = f(b_1) = f(h(1))$$

$$f(g(2)) = f(b_2) = f(b_1) = f(h(2))$$

so $f \circ g = f \circ h$, contradiction.

Proposition on surjective functions

Proposition. A function $f : A \to B$ is surjective iff for any set $C \neq \emptyset$ and any two functions $g, h : B \to C$, we have $g \circ f = h \circ f \implies g = h$.

Proof. " \implies " Let $b \in B$, then $\exists a \in A : f(a) = b$. Then $(g \circ f)(a) = (h \circ f)(a) \Leftrightarrow g(f(a)) = h(f(a)) \Leftrightarrow g(b) = h(b)$, so g = h.

" \Leftarrow " Suppose f isn't surjective, then $\exists b_0 \in B : b_0 \notin f(A)$. Let $C = \{0,1\}$ and $g,h : B \to C$ be functions defined as

$$g(b) = 0 \ \forall \ b \in B$$
$$h(b) = \begin{cases} 1 & \text{if } b = b_0 \\ 0 & \text{otherwise.} \end{cases}$$

Then $g \neq h$, but notice

$$(g \circ f)(a) = g(f(a)) = 0 \ \forall \ a \in A$$
$$(h \circ f)(a) = h(f(a)) = 0 \ \forall \ a \in A$$

so $g \circ f = h \circ f$, contradiction.

Definition. Let $f : A \to B$ be a function, $B' \subseteq B$. The **preimage of** B' in A under f is $f^{-1}(B') = \{a \in A : f(a) \in B'\}$. The preimage of a set exists whether or not f is invertible. In particular, if $B' \cap f(A) = \emptyset$, then $f^{-1}(B') = \emptyset$.

Exercise. Let $f: A \to B$ be a function, $A_1, A_2 \subseteq A$, and $B_1, B_2 \subseteq B$. Then show

- 1. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- 2. $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ and show f is injective iff the equality holds
- 3. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- 4. $f^{-1}(B_1 \cap B_2) \not\subseteq f^{-1}(B_1) \cap f^{-1}(B_2)$

Cardinality

Let A, B be two sets. We say that A and B have the same **cardinality** (or the same cardinal number) if \exists a bijection $f : A \to B$. In this case, we write $A \sim B$.

- 1. We say A is finite if $A = \emptyset$ or $A \sim \{1, ..., n\}$ for some $n \in \mathbb{N}$. If $A = \emptyset$, then the cardinality of A is 0, i.e. |A| = 0. If $A \sim \{1, ..., n\}$, then the cardinality of A is n, i.e. |A| = n.
- 2. An **infinite** set is a set which is not finite.
- 3. We say A is **countable** if $A \sim \mathbb{N}$. In this case, $|A| = \aleph_0$.
- 4. We say A is **at most countable** if A is finite or countable.
- 5. We say A is **uncountable** if A isn't at most countable.

Theorem. If A is a finite set and $B \subseteq A$, then B is a finite set.

Proof. Assume $B \neq \emptyset$ (otherwise it's finite), then $A \neq \emptyset$. As A is finite, $\exists n \in \mathbb{N}, f : A \to \{1, \ldots, n\}$ bijective. Let $b_i \in B : f(b_i) = min\{f(b) : b \in B \setminus \{b_j : j < i\}\}$. Let $m \in \mathbb{N} : m \leq n, g : B \to \{1, \ldots, m\}$ be a function defined as $g(b_i) = i$. Then g is bijective and so B is finite.

Remark. Let A be a finite set and B a proper subset of A, then $A \not\sim B$. Otherwise, there would exist a bijection between $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$ with $m \leq n$.

Example. 1. $\mathbb{N} \cup \{0, -1, \dots, -k\} \sim \mathbb{N}$ for any $k \ge 0$

Proof. Take the bijection $f : \mathbb{N} \cup \{0, -1, \dots, -k\} \to \mathbb{N}$ defined as

$$f(n) = n + k + 1$$

2. $\mathbb{Z} \sim \mathbb{N}$

Proof. Take the bijection $f : \mathbb{Z} \to \mathbb{N}$ defined as

$$f(n) = \begin{cases} 2(n+1) & n \ge 0\\ -(2n+1) & n < 0. \end{cases}$$

0. 1/ // 1/ . 1/	3.	\mathbb{N}	Х	\mathbb{N}	\sim	\mathbb{N}
------------------	----	--------------	---	--------------	--------	--------------

Proof. Take the bijection $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined as

$$f(n,m) = \frac{(n+m-2)(n+m-1)}{2} + n$$

(a) We show f is surjective.

Proof. For $k \ge 1$, let $P(k) : \exists (n,m) \in \mathbb{N} \times \mathbb{N} : k = f(n,m)$.

- Base step: $f(1,1) = 1 \implies P(1)$ holds.
- Inductive step: Let $k \ge 1$: P(k) holds. We want to show P(k+1) holds. $\forall m \ge 2$, we have

$$k+1 = \frac{(n+m-2)(n+m-1)}{2} + n + 1$$

= $\frac{[(n+1) + (m-1) - 2][(n+1) + (m-1) - 1]}{2} + (n+1)$
= $f(n+1, m-1).$

If m = 1, then

$$k+1 = \frac{(n+m-2)(n+m-1)}{2} + n + 1 = \frac{(n+1-2)(n+1-1)}{2} + n + 1 = \frac{(n-1)n}{2} + n + 1$$
$$= \frac{(n-1)n+2(n+1)}{2} = \frac{n^2 - n + 2n + 2}{2} = \frac{n^2 + n + 2}{2} = \frac{n(n+1)}{2} + 1 = f(1, n+1).$$

Thus $\forall m \ge 1, \exists n \in \mathbb{N} : f(n,m) = k+1$, i.e. P(k+1) holds. Thus f is surjective.

(b) We show f is injective.

Proof. Assume f(n,m) = f(a,b), we want to show (n,m) = (a,b). Let $r \in \mathbb{N}$ such that

$$\frac{(n+m-2)(n+m-1)}{2} = \frac{(a+b-2)(a+b-1)}{2} + r.$$

Suppose $r \neq 0$. Let $g: x \mapsto \frac{(x-2)(x-1)}{2}$ and $t \in \mathbb{N}$. Then

$$\begin{aligned} |g(x+t) - g(x)| &= \frac{(x+t-2)(x+t-1) - (x-2)(x-1)}{2} = \frac{(x+t)^2 - 3(x+t) + 2 - (x-2)(x-1)}{2} \\ &= \frac{x^2 + 2tx + t^2 - 3x - 3t + 2 - x^2 - 3x + 2}{2} = \frac{t(t+2x-3)}{2} = tx + \frac{t(t-3)}{2}. \end{aligned}$$

Thus $|g(x+t) - g(x)| \ge \max\{t, x\} - 1$. Notice $f(n, m) = f(a, b) \implies r = a - n \implies a = n + r$. Then

$$r = g(n+m) - g(a+b) \ge \max \{a+b, (n+m) - (a+b)\} - 1$$
$$\ge a+b-1 = (n+r) + b - 1 = r + (n+b-1) \ge r+1.$$

This is a contradiction, thus r = 0. Then

$$\frac{(n+m-2)(n+m-1)}{2} = \frac{(a+b-2)(a+b-1)}{2}.$$

Then by hypothesis n = a and we have

$$a^{2} + a(2m - 3) + (m - 2)(m - 1) = a^{2} + a(2b - 3) + (b - 2)(b - 1)$$

$$2a(m - b) + m^{2} - 3m - b^{2} + 3b = 0$$

$$(m - b)(2a + m + b - 3) = 0$$

$$m = b.$$

Theorem. An infinite subset of a countable set is countable.

Proof. Let A be a countable set, then $A \sim \mathbb{N}$. In particular, $A = \{a_1, \ldots\}$. Let $B \subseteq A : B$ is infinite. Consider $S_1 = \{n \in \mathbb{N} : a_n \in B\} \neq \emptyset$. Let $k_1 \in \mathbb{N} : k_1 = \min(S_1)$. Define $g(1) = a_{k_1}$. Proceed inductively. Let $n \in \mathbb{N}$. Assume we have defined $g(1) = a_{k_1}$ and $g(n) = a_{k_n} : g(i) \neq g(j) \forall 1 \le i \ne j \le n$. Let $S_{n+1} = \{n \in \mathbb{N} : a_n \in B \setminus S_n\} \neq \emptyset$. Let $k_{n+1} = \min(S_{n+1}) > k_n$. Let $g(n+1) = a_{k_{n+1}}$.

Exercise. Prove g is bijective.

Proof. Assume g(n) = g(m), i.e. $a_{k_n} = a_{k_m}$, but since $g(i) \neq g(j) \forall 1 \leq i \neq j \leq n$, we must have n = m and thus g is injective. Let $a_{k_n} \in A$, then $k_n = \min S_n$ where $S_n = \{m \in \mathbb{N} : a_m \in B \setminus S_{n-1}\}$. Thus by definition $\exists n \in \mathbb{N} : g(n) = a_{k_n}$ and g is surjective.

Theorem. An infinite set contains a countable subset.

Proof. Let A be an infinite set, then $\exists a_1 \in A$. Proceed inductively. Assume we found $a_1, \ldots, a_n \in A : a_i \neq a_j \forall 1 \leq i \neq j \leq n$. Consider $A \setminus \{a_1, \ldots, a_n\} \neq \emptyset$, otherwise $A \sim \{1, \ldots, n\}$. Let $a_{n+1} \in A \setminus \{a_1, \ldots, a_n\}$. Clearly $a_{n+1} \neq a_i \forall 1 \leq i \leq n$. By mathematical induction, A contains a countable set.

Theorem. A set is infinite iff it is equivalent to one of its proper subsets.

Proof. " \Leftarrow " Let A be a set : $A \sim B \forall B \subsetneq A$. Then A must be infinite.

" \implies " Let A be an infinite subset, B a countable subset of $A : B = \{a_1, a_2, \dots\}$. Consider $A \setminus \{a_1\} \subseteq A$. Let $f : A \to A \setminus \{a_1\}$ be a function defined as

$$f(a) = \begin{cases} a & \text{if } a \in A \setminus B \\ a_{j+1} & \text{if } a = a_j \in B \end{cases}$$

We want to show f is a bijection to show that A is equivalent to its proper subset $A \setminus \{a_1\}$. Claim. f is injective.

Proof. Let $a, a' \in A : f(a) = f(a')$. We want to show a = a'.

Case 1: If $a \in A \setminus B$, then f(a) = a but f(a') = f(a) so $f(a') = a \in A \setminus B \implies a' \notin B \implies f(a') = a'$ but f(a') = a so a' = a.

Case 2: If $a = a_j \in B$ then $f(a) = f(a_j) = a_{j+1}$ but f(a') = f(a) so $f(a') = a_{j+1} \in B \implies a' \in B \implies \exists i \in \mathbb{N} : a' = a_i$ but then $f(a) = f(a') \implies a_{j+1} = a_{i+1}$ and B is countable so $i = j \implies a = a_i = a_j = a'$.

Claim. f is surjective.

Proof. By definition, $f(A \setminus B) = A \setminus B$, $f(B) = B \setminus \{a_1\} \implies f(A) = f(A \setminus B \cup B) = f(A \setminus B) \cup f(B) = A \setminus B \cup (B \setminus \{a_1\}) = A \setminus \{a_1\}.$

Schröder-Bernstein

Theorem. Assume \exists two injective functions $f : A \to B$ and $g : B \to A$. Then $A \sim B$.

Example. $\mathbb{Q} \sim \mathbb{N}$

Proof. Let $f : \mathbb{N} \to \mathbb{Q}$ be a function defined as f(n) = n, then f is injective. Let $g : \mathbb{Q} \to \mathbb{N} \times \mathbb{N}$ be a function defined as $g(\frac{m}{n}) = (m, n)$, then g is injective. Since we have proved that \exists bijection $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, we can find a bijective composition $\mathbb{Q} \to \mathbb{N}$. Using Schröder-Bernstein, this proves $\mathbb{Q} \sim \mathbb{N}$.

Proof. We will decompose A, B into disjoint sets

$$A = A_1 \cup A_2 \cup A_3 : A_i \cap A_j = \emptyset \text{ if } i \neq j$$
$$B = B_1 \cup B_2 \cup B_3 : B_i \cap B_i = \emptyset \text{ if } i \neq j$$

and we will show $A_i \sim B_j \forall 1 \leq i \leq 3$. Let $a \in A$ and consider

$$S_a = \{a, g^{-1}(a), (f^{-1} \circ g^{-1})(a), (g^{-1} \circ f^{-1} \circ g^{-1})(a), \dots \}.$$

There are three cases. If S_a is finite, let x be its last element.

- 1. S_a is infinite.
- 2. S_a terminates in A, i.e. x = a or $x = (f^{-1} \circ g^{-1} \circ \cdots \circ g^{-1})(a)$ and $g^{-1}(x) = \emptyset$.
- 3. S_a terminates in *B*, i.e. $x = g^{-1}(a)$ or $x = (g^{-1} \circ f^{-1} \circ \cdots \circ f^{-1})(a)$ and $f^{-1}(x) = \emptyset$.

Let

$$A_1 = \{a \in A : S_a \text{ is infinite}\}$$
$$A_2 = \{a \in A : S_a \text{ ends in } A\}$$
$$A_3 = \{a \in A : S_a \text{ ends in } B\}$$

By construction, $A = A_1 \cup A_2 \cup A_3$ and $A_i \cap A_j = \emptyset \ \forall \ i \neq j$.

For $b \in B$ let $T_b = \{b, f^{-1}(b), (g^{-1} \circ f^{-1})(b), \dots\}$. Similarly, let

 $B_1 = \{b \in B : T_b \text{ is infinite}\}$ $B_2 = \{b \in B : T_b \text{ ends in } B\}$ $B_3 = \{b \in B : T_b \text{ ends in } A\}$

By construction, $B = B_1 \cup B_2 \cup B_3$ and $B_i \cap B_j = \emptyset \ \forall i \neq j$.

Let $f: A_1 \to B_1, f: A_2 \to B_2, g: B_3 \to A_3$ be functions defined as bijections. Let $h: A \to B$ be a function defined as

$$h = \begin{cases} f & \text{on } A_1 \cup A_2 \\ (g|_{B_3})^{-1} & \text{on } A_3, \end{cases}$$

is bijective.

Claim. h is bijective.

Theorem. If A is any set, then A is not equivalent to its power set $P(A) = \{B : B \subseteq A\}$.

Proof. If $A = \{\emptyset\}$ then |A| = 0 but $P(A) = \{\{\emptyset\}\}$ so |P(A)| = 1 and so $A \not\sim P(A)$. Assume $A \neq \emptyset$. Suppose towards a contradiction that $A \sim P(A)$. Then $\exists f : A \to P(A)$ a surjective function. Consider $B = \{a \in A : a \notin f(a)\} \in P(A)$. As f is surjective, $\exists b \in A : f(b) = B$. If $b \in f(b)$, then since f(b) = B, we have $b \in B$ and by definition $b \notin f(b)$. If $b \notin f(b)$, then by the definition of $B, b \in B$. But since f(b) = B, we have $b \in f(b)$. This is a circular contradiction, thus $A \not\sim P(A)$.

Remark. b is like the barber who shaved all people who didn't shave themselves. Who shaved the barber?

Theorem. The interval $[0,1) \subseteq \mathbb{R}$ has cardinality 2^{\aleph_0} .

Proof. Last time we identified [0, 1) with the set of functions

 $F = \{f: \mathbb{N} \to \{0,1\}: \ \forall \ n \ge 1, \exists \ m > n: f(m) = 0\}.$

We will show $F \sim 2^{\mathbb{N}} = \{f : \mathbb{N} \to \{0, 1\}\}$. Let $F_0 : F \to 2^{\mathbb{N}}$ be a function defined as $F_0(f) = f$. Then F_0 is injective but not surjective because the image of F_0 doesn't contain functions with finitely many zeroes.

Define $G: 2^{\mathbb{N}} \to [0, 1)$ via the following procedure: for $f \in 2^{\mathbb{N}}$, define the binary expansion $G(f) = 0.0f(1)0 \cdots = \sum_{n \ge 1} 2^{-2n} f(n)$.

Claim. G is injective.

Proof. Assume G(f) = G(g) for $f, g \in 2^{\mathbb{N}}$. We want to show f = g. Consider $A = \{n \ge 1 : f(n) \ne g(n)\}$. If $A = \emptyset \implies f = g$. Assume towards a contradiction that $A \ne \emptyset$. Let $n_0 = \min A$, we have

$$\begin{split} 0 &= G(f) - G(g) \\ &= \sum_{n \ge 1} 2^{-2n} f(n) - \sum_{n \ge 1} 2^{-2n} g(n) \\ &= \sum_{n \ge 1} 2^{-2n} \left[f(n) - g(n) \right] \\ -2^{-2n_0} \left[f(n_0) - g(n_0) \right] &= \sum_{n \ge n_0 + 1} 2^{-2n} \left[f(n) - g(n) \right] \\ 2^{-2n_0} &= \Big| \sum_{n \ge n_0 + 1} 2^{-2n} \left[f(n) - g(n) \right] \Big| \le \sum_{n \ge n_0 + 1} 2^{-2n} \left[|f(n)| + |g(n)| \right] \\ 2^{-2n_0} &\le 2 \cdot 2^{-2(n_0 + 1)} \sum_{k \ge 0} 2^{-2k} \le 2 \cdot 2^{-2(n_0 + 1)} \frac{1}{1 - \frac{1}{4}} = \frac{2}{3} 2^{-2n_0} < 2^{-2n_0} \end{split}$$

This is a contradiction, proving that G is injective. As $[0,1) \sim F$, G induces an injection from $2^{\mathbb{N}}$ into F. By Schröder-Bernstein, $2^{\mathbb{N}} \sim F \sim [0,1)$.

Metric spaces

Definition. Let X be a non-empty subset. A **metric** on X is a map $d: X \times X \to \mathbb{R}$ that satisfies

- 1. $d(x,y) \ge 0 \ \forall \ x,y \in X$
- 2. d(x, y) = 0 iff x = y
- 3. $d(x,y) = d(y,x) \ \forall \ x,y \in X$
- 4. $d(x,y) \leq d(x,z) + d(z,y) \ \forall \ x,y,z \in X$

Then (X, d) is called a **metric space**.

Example. 1. The discrete metric: if $X \neq \emptyset$, let

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise.} \end{cases}$$

2. (\mathbb{R}^n, d_2) is a metric space with Euclidian metric

$$d_2(x,y) = \left[\sum_{j=1}^n |x_j - y_j|^2\right]^{\frac{1}{2}}$$

Definition. A metric space (X, d) is called **bounded** if $\exists M > 0 : d(x, y) \leq M \forall x, y \in X$. If (X, d) is not bounded then it is called an **unbounded** metric space.

Lemma. Let (X, d) be an unbounded metric space. Then $d: X \times X \to \mathbb{R}$ given by $\tilde{d}(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ is a bounded metric on X.

Proof. Clearly $\tilde{d}(x, y) \leq 1 \forall x, y \in X$. We only need to show \tilde{d} is a metric. Properties 1,2,3 of the metric are easily verified, we will show property 4. The key observation is that $x \mapsto \frac{x}{1+x} = 1 - \frac{1}{1+x}$ is an increasing function. Thus, since $d(x, y) \leq d(x, z) + d(z, y)$, we get

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)} \le \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)} \le \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)} = \tilde{d}(x,z) + \tilde{d}(z,y).$$

Definition. Let (X, d) be a metric space and $\emptyset \neq A \subseteq X$. Consider $D_A = \{d(x, y) : x, y \in A\} \subseteq \mathbb{R}$. If D_A is bounded, then $\sup D_A = \delta(A)$ is called the **diameter of** A. If D_A is unbounded, we define the diameter of A to be $\delta(A) = \infty$.

Example. Let $(\mathbb{R}^n, d_2), B_R(0) = \{x \in \mathbb{R}^n : d_2(x, 0) < R\}$. Then $\delta(B_R(0)) = 2R$.

Definition. Let (X, d) be a metric space and let $\emptyset \neq A, B \subseteq X$. Then the **distance between** A and B d(A, B) is defined as $\inf \{d(a, b) : a \in A, b \in B\}$.

Remark. The distance between sets is not a metric, i.e. $d(A, B) = 0 \implies A \cap B \neq \emptyset$.

Example. Let A = (-1, 0) and B = (0, 1). Then d(A, B) = 0 but $A \cap B = \emptyset$.

Definition. Let (X, d) be a metric space, $\emptyset \neq A \subseteq X$. For all $x \in X$, the **distance of** x **to** \mathbf{A} is $d(x, A) = \inf \{d(x, a) : a \in A\}$.

Remark. $d(x, A) = 0 \implies x \in A$

Example. Let A = (0, 1) and x = 0.

Holder's inequality

Theorem. Let $1 \le p \le \infty$ and q be its dual, that is $\frac{1}{p} + \frac{1}{q} = 1$. Note that if p = 1 then $q = \infty$ and vice-versa. Let $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, then

$$\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |y_k|^q\right)^{\frac{1}{q}}$$

with the convention that if $r = \infty$ then

$$\left(\sum_{k=1}^{n} |x_k|^r\right)^{\frac{1}{r}} = \max_{1 \le k \le n} |x_k|.$$

If p = q = 2, then this is called the Cauchy-Schwarz inequality.

Proof. Assume p = 1, then

$$\sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} |x_k| \max |y_l| = \max_{1 \le l \le n} |y_l| \sum_{k=1}^{n} |x_k|$$

Equality holds iff $|y_k|$ is constant. Similarly, one can prove Holder's inequality if $p = \infty$. Let $1 . Recall <math>f: (0, \infty) \to \mathbb{R}$ given by $f(x) = \log x$ is concave, that is

$$f(ta + (1 - t)b) \ge tf(a) + (1 - t)f(b) \ \forall \ a, b > 0, t \in (0, 1)$$

with equality iff a = b. This gives

$$\log(ta + (1-t)b) \ge t\log a + (1-t)\log b = \log a^t b^{1-t} \implies a^t b^{1-t} \le ta + (1-t)b^{1-t} \le$$

Fix $k \in [1, n]$ and apply the previous inequality with

$$a = \frac{|x_k|^p}{\sum_{k=1}^n |x_k|^p}, \quad b = \frac{|y_k|^q}{\sum_{k=1}^n |y_k|^q}, \quad t = \frac{1}{p} \in (0, 1)$$

Note $1 - t = \frac{1}{q}$. We get

$$a^{\frac{1}{p}}b^{\frac{1}{q}} = \frac{|x_k|}{\left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}} \frac{|y_k|^q}{\left(\sum_{k=1}^n |y_k|^q\right)^{\frac{1}{q}}} \le \frac{1}{p}a + \frac{1}{q}b = \frac{1}{p}\frac{|x_k|^p}{\sum_{k=1}^n |x_k|^p} \frac{1}{q}\frac{|y_k|^q}{\sum_{k=1}^n |y_k|^q}.$$

Sum over $1 \leq k \leq n$

$$\sum_{k=1}^{n} \frac{|x_{k}||y_{k}|}{\left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |y_{k}|^{q}\right)^{\frac{1}{q}}} \leq \sum_{k=1}^{n} \frac{1}{p} \frac{|x_{k}|^{p}}{\sum_{k=1}^{n} |x_{k}|^{p}} \frac{1}{q} \frac{|y_{k}|^{q}}{\sum_{k=1}^{n} |y_{k}|^{q}} = \frac{1}{p} + \frac{1}{q} = 1$$
$$\implies \sum_{k=1}^{n} |x_{k}y_{k}| \leq \left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |y_{k}|^{q}\right)^{\frac{1}{q}}.$$

We know equality holds iff a = b, i.e. $\forall \ 1 \le k \le n$

$$\frac{|x_k|^p}{\sum_{k=1}^n |x_k|^p} = \frac{|y_k|^q}{\sum_{k=1}^n |y_k|^q} \Leftrightarrow |x_k|^p = \frac{\sum_{k=1}^n |x_k|^p}{\sum_{k=1}^n |y_k|^q} |y_k|^q \Leftrightarrow \exists \ c \in \mathbb{R} : |x_k|^p = c|y_k|^q.$$

Remark. The proof extends to sequences of real numbers. More precisely, if $\{x_n\}_{n\geq 1}, \{y_n\}_{n\geq 1} \subseteq \mathbb{R}$, then

$$\sum_{n \ge 1} |x_n y_n| \le \left(\sum_{k \ge 1} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k \ge 1} |y_k|^q\right)^{\frac{1}{q}} \quad \forall \ 1 \le p, q \le \infty : \frac{1}{p} + \frac{1}{q} = 1.$$

Minkowski

Corollary. Let $1 \leq p \leq \infty$, $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. Then

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}}$$

with the convention that for $p = \infty$,

$$\left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} = \max\{|x_k| : 1 \le k \le n\}.$$

Proof. For all $1 \le k \le n$ we have $|x_k + y_k| \le |x_k| + |y_k|$. In particular,

$$\max_{1 \le k \le n} |x_k + y_k| \le \max_{1 \le k \le n} |x_k| + \max_{1 \le k \le n} |y_k| \quad p = \infty$$
$$\sum_{k=1}^n \max |x_k + y_k| \le \sum_{k=1}^n |x_k| + \sum_{k=1}^n |y_k| \quad p = 1.$$

The dual of p is $\frac{p}{p-1}$. Then

$$\sum_{k=1}^{n} |x_k + y_k|^{p-1} |x_k + y_k| \le \sum_{k=1}^{n} |x_k| |x_k + y_k|^{p-1} + \sum_{k=1}^{n} |y_k| |x_k + y_k|^{p-1}$$

$$\sum_{k=1}^{n} |x_k + y_k|^p \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |x_k + y_k|^{p-1\frac{p}{p-1}}\right)^{\frac{p-1}{p}} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |x_k + y_k|^{p-1\frac{p}{p-1}}\right)^{\frac{p-1}{p}}$$

$$\implies \left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{1-\frac{p-1}{p}} = \left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}}$$

Remark. Minkowski for sequences of real numbers becomes

$$\left(\sum_{k\geq 1} |x_k + y_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k\geq 1} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k\geq 1} |y_k|^p\right)^{\frac{1}{p}}$$

with the obvious modification if $p = \infty$.

Example. Fix $1 \le p \le \infty$ and define $d_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ via $d_p(x, y) = (\sum_{k=1}^n |x_k - y_k|^p)^{\frac{1}{p}}$ with the convention that $d_{\infty}(x, y) = \max_{1 \le k \le n} |x_k - y_k|$. Then (\mathbb{R}^n, d_p) is a metric space, the triangle inequality following from Minkowski.

Topology

Definition. Let (X, d) be a metric space. A **neighbourhood of a point** $a \in X$ is $B_r(a) = \{x \in X : d(a, x) < r\}$ for some r > 0.

Example. 1. $(\mathbb{R}^2, d_2), B_1(0) = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 1\}$ (circle)

- 2. $(\mathbb{R}^2, d_1), B_1(0) = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}$ (rombus)
- 3. $(\mathbb{R}^2, d_\infty), B_1(0) = \{(x, y) \in \mathbb{R}^2 : \max\{|x|, |y|\} < 1\}$ (square)

Definition. Let (X, d) be a metric space, $\emptyset \neq A \subseteq X$. A point $a \in A$ is called an **interior point of** A if $\exists r > 0 : B_r(a) \subseteq A$. The set of all interior points of A is called the **interior of** A and is denoted by \mathring{A} . A set A is **open** iff $\mathring{A} = A$.

Example. 1. \emptyset

 $2. \ X$

3. $B_r(a) \forall a \in X, r > 0$

Exercise. Let (X, d) be a metric space, $\emptyset \neq A, B \subseteq X$. Then

- 1. If $A \subseteq B$, then $\mathring{A} \subseteq \mathring{B}$
- 2. $\mathring{A} \cup \mathring{B} \subseteq A \overset{\circ}{\cup} B$

3.
$$\mathring{A} \cap \mathring{B} = A \cap \mathring{B}$$

4.
$$\mathring{A} = \mathring{A}$$

5. An infinite union of open sets is open.

Proof. 1. Assume $A \subseteq B$. Let $a \in \mathring{A}$, then $\exists r > 0 : B_r(a) \subseteq A \subseteq B$. By definition, $a \in \mathring{B}$ and thus $\mathring{A} \subseteq \mathring{B}$.

2. Let $x \in A \cup B$, then exactly one of the following must be true:

- $x \in \mathring{A} \cap \mathring{B}$, then $\exists r_a > 0 : B_{r_a}(x) \in A$ and $\exists r_b > 0 : B_{r_b}(x) \subseteq B$. Let $r = \min\{r_a, r_b\}$. Then $B_r(x) \subseteq A \cap B$. But $A \cap B \subseteq A \cup B$ so $B_r(x) \subseteq A \cup B$.
- $x \notin \mathring{A} \cap \mathring{B}$ but $x \in \mathring{A} \setminus \mathring{B}$, then $\exists r_a > 0 : B_{r_a}(x) \subseteq A \setminus B$. But $A \setminus B \subseteq A \cup B$ so $B_{r_a}(x) \subseteq A \cup B$.
- $x \notin \mathring{A} \cap \mathring{B}$ but $x \in \mathring{B} \setminus \mathring{A}$, then $\exists r_b > 0 : B_{r_b}(x) \in B \setminus A$. But $B \setminus A \subseteq A \cup B$ so $B_{r_b}(x) \subseteq A \cup B$.

In all cases $\exists r > 0 : B_r(x) \subseteq A \cup B \iff x \in A \overset{\circ}{\cup} B$.

- 3. Let $x \in \mathring{A} \cap \mathring{B}$, then $\exists r_a > 0 : B_{r_a}(x) \subseteq A$ and $\exists r_b > 0 : B_{r_b}(x) \subseteq B$. Let $r = \min\{r_a, r_b\}$, then $B_r(x) \subseteq A \cap B \implies x \in A \cap B$.
- 4. $\mathring{A} \subseteq \mathring{A} \subseteq A$
 - Suppose $A \not\subseteq \mathring{A}$, i.e. $\exists a \in A : a \notin \mathring{A}$. Then $\forall r_a > 0$, we would have $B_{r_a}(a) \cap \mathring{A} = \emptyset$. Then $\forall b \in B_{r_a}(a)$, we would also have $b \notin \mathring{A}$. Thus $\forall r_b > 0$, we would have $B_{r_b}(b) \cap A = \emptyset$. And since $b \in B_{r_b}(b)$, we would have $b \notin A$. But notice $a \in B_{r_a}(a)$ so we can pick b = a. But we chose a so that $a \in A$, thus we have a contradiction so $A \subseteq \mathring{A}$.

So
$$\mathring{A} = A$$
.

5. Let $U = \bigcup_{n \ge 1} A_n : A_n = \mathring{A_n}$, then

$$u \in U = \bigcup_{n \ge 1} A_n \iff \exists \ m \ge 1 : u \in A_m = \mathring{A_m} \iff \exists \ r > 0 : u \in B_r(u) \subseteq \bigcup_{n \ge 1} A_n \iff u \in \bigcup_{n \ge 1} A_n = \mathring{U}$$

Remark. An infinite intersection of open sets needs not be open. Consider the open set $A_n = (-\frac{1}{n}, \frac{1}{n})$ and its infinite intersection $\bigcap_{n\geq 1}A_n = \{0\}$ which is not open.

Exercise. Let (X, d) be a metric space and let $A \subseteq X$. Show that \mathring{A} is the largest open set contained in A.

Proof. Let $S \subseteq A$ be an open subset of A, i.e. an arbitrary point $s \in S$ is an interior point. Since S is a subset of $A, s \in A$. Since s is an interior point, $s \in \mathring{A}$, by definition. Since s was arbitrary, $S \subseteq \mathring{A}$. But since S was an arbitrary open set, \mathring{A} must be the largest open set in A.

Definition. Let (X, d) be a metric space. A set $A \subseteq X$ is closed if ^cA is open.

Example. \emptyset , X, ${}^{c}B_{r}(x) = \{y \in X : d(x, y) \ge r\}$ are all closed sets.

Proposition. 1. An infinite intersection of closed sets is closed.

2. A finite union of closed sets is closed.

- *Proof.* 1. Let I be an infinite set and $\{A_i\}_{i \in I}$ a collection of closed sets. Then $^c(\cap_{i \in I} A_i) = \bigcup_{i \in I} {^cA_i}$. Since cA_i is open for all i, we showed that the infinite union is also open.
 - 2. Let A_1, \ldots, A_n be closed sets. Then $^c (\bigcup_{k=1}^n A_k) = \bigcap_{k=1}^n {^cA_k}$. Since cA_k is open for all i, we showed that the finite intersection is also open.

Definition. Let (X, d) be a metric space, $A \subseteq X$.

- A point $a \in X$ is called an **adherent point of** A if $\forall r > 0$, we have $B_r(a) \cap A \neq \emptyset$.
- The collection of all adherent points of A is called the closure of A and is denoted by \overline{A} .
- An adherent point of A is called **isolated** if $\exists r > 0 : B_r(a) \cap A = \{a\}$.
- If every point in A is isolated, then A is called an **isolated set**.
- An adherent point a of A that is not isolated is called an **accumulation point of** A.
- The collection of accumulation points of A is denoted by $A' = \{a \in X : \forall r > 0, B_r(a) \cap (A \setminus \{a\}) \neq \emptyset\}.$

Remark. 1. $A \subseteq \overline{A}$

- 2. $\overline{A} = A \cup A'$
- 3. In $(\mathbb{R}, ||), \overline{\mathbb{R} \setminus [-1, 1]} = (-\infty, -1] \cup [1, \infty)$

4. In
$$(\mathbb{R}^2, d_2), \overline{\mathbb{R}^2 \setminus ([-1, 1] \times \{0\})} = \mathbb{R}^2$$

Exercise. Make it rigorous.

Proof. 1. Let $a \in A$, then $\forall r > 0, a \in B_r(a) \implies a \in B_r(a) \cap A$ so $B_r(a) \cap A \neq \emptyset \implies a \in \overline{A}$.

- 2. Let $x \in \overline{A}$, then $\forall r > 0, B_r(x) \cap A \neq \emptyset$. Since $x \in B_r(x)$, either $x \in A$ or $\exists x \neq y \in B_r(x) \cap A$. Then $x \in A \implies x \in A \cup A'$, and if $\exists x \neq y \in B_r(x) \cap A$, then $B_r(x) \cap (A \setminus \{x\}) \neq \emptyset \implies x \in A' \implies x \in A \cup A'$.
 - Let $x \in A \cup A'$, then either $x \in A \subseteq \overline{A}$ or $x \in A' \cap {}^{c}A \implies \forall r > 0, B_{r}(x) \cap (A \setminus \{x\}) \neq \emptyset \implies B_{r}(x) \cap A \neq \emptyset \implies x \in \overline{A}.$

3. Incomplete

$$\begin{aligned} x \in \mathbb{R} \setminus [-1,1] \iff \forall r > 0, B_r(x) \cap \mathbb{R} \setminus [-1,1] \neq \emptyset \\ \iff B_r(x) \cap \mathbb{R} \cap {}^c[-1,1] \neq \emptyset \\ \iff B_r(x) \cap \mathbb{R} \cap ((-\infty,-1) \cup (1,\infty)) \neq \emptyset \\ \iff B_r(x) \cap ((-\infty,-1) \cup (1,\infty)) \neq \emptyset \\ \iff (B_r(x) \cap (-\infty,-1)) \cup (B_r(x) \cap (1,\infty)) \neq \emptyset \end{aligned}$$

Then either $B_r(x) \cap (-\infty, -1) \neq \emptyset$ or $B_r(x) \cap (1, \infty) \neq \emptyset$ or both. Then $B_r(x) \cap (-\infty, -1) \neq \emptyset \implies x \in (-\infty, -1)$

Proposition. Let (X, d) be a metric space, $A \subseteq X$. The following are equivalent:

- 1. The point $a \in X$ is an accumulation point of A.
- 2. $\exists a \ sequence \ \{a_n\}_{n \ge 1} \subseteq A \setminus \{a\} : d(a_n, a) \xrightarrow[n \to \infty]{} 0.$

3. Every neighbourhood of A contains infinitely many points from $A \setminus \{a\}$.

Proof. We will show $1 \implies 2 \implies 3 \implies 1$.

 $1 \implies 2. \text{ Let } a \in A' \implies B_1(a) \cap (A \setminus \{a\}) \neq \emptyset. \text{ Let } a_1 \in B_1(a) \cap (A \setminus \{a\}). \text{ Let } r_1 = \min\{\frac{1}{2}, d(a, a_1)\}. \text{ As } a \in A', B_r(a) \cap (A \setminus \{a\} \neq \emptyset. \text{ In particular, } a_2 \neq \{a, a_1\} \text{ and } d(a, a_2) < \frac{1}{2}. \text{ Proceeding inductively, one constructs } a \text{ sequence } \{a_n\}_{n \ge 1} : a_{n+1} \notin \{a, a_1, \dots, a_n \text{ and } d(a_{n+1}, a) < \frac{1}{n+1} \xrightarrow[n \to \infty]{} 0.$

 $2 \implies 3$. Fix r > 0, then $\exists n_r \in \mathbb{N} : d(a_n, a) < r \ \forall \ n \ge n_r$. Then $\{a_n : n \ge n_r\} \subseteq B_r(a)$.

 $3 \implies 1$. Follows from the definition.

Proposition. Let (X, d) be a metric space, $A, B \subseteq X$.

- 1. ${}^{c}(\mathring{A}) = \overline{{}^{c}A}$ 2. ${}^{c}\mathring{A} = {}^{c}(\overline{A})$
- 3. If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$
- $4. \ \overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
- 5. $\overline{A \cup B} = \overline{A} \cup \overline{B}$

6.
$$\overline{A} = \overline{A}$$

- 7. A is closed iff $A = \overline{A}$
- 8. \overline{A} is the smallest closed set that contains A
- *Proof.* 1. Note that inserting ${}^{c}A$ for A in 1. yields 2. Indeed, ${}^{c}({}^{c}A) = \overline{A} \implies {}^{c}A = {}^{c}(\overline{A})$. One shows similarly that 2. implies 1.

$$2. \ x \in \ ^{c}\overline{A} \iff x \notin \overline{A} \iff \exists \ r_{x} > 0 : B_{r_{x}}(x) \cap A = \emptyset \iff \exists \ r_{x} > 0 : B_{r_{x}}(x) \subseteq \ ^{c}A \iff x \in {^{c}}\overset{\circ}{A}$$

- 3. Let $x \in \overline{A}$. Fix r > 0. Then $B_r(x) \cap A \neq \emptyset$. But $A \subseteq B$ so $B_r(x) \cap B \neq \emptyset$. By definition, $x \in \overline{B}$.
- $4. \ A \cap B \subseteq A \implies \overline{A \cap B} \subseteq \overline{A}, A \cap B \subseteq B \implies \overline{A \cap B} \subseteq \overline{B} \implies \overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
- 5. ${}^{c}(\overline{A\cup B}) = {}^{c}(A \overset{\circ}{\cup} B) = {}^{c}A \overset{\circ}{\cap} {}^{c}B = {}^{c}A \cap {}^{c}B = {}^{c}(\overline{A}) \cap {}^{c}(\overline{B}) = {}^{c}(\overline{A} \cup \overline{B})$
- 6. Since $A \subseteq \overline{A} \implies \overline{A} \subseteq \overline{\overline{A}}$. Let's prove $\overline{\overline{A}} \subseteq \overline{A}$. Let $x \in \overline{\overline{A}}$. Fix r > 0. Then $B_r(x) \cap \overline{A} \neq \emptyset$. Let $a_r \in B_r(x) \cap \overline{A}$ and $r_1 = d(x, a_r)$. As $a_r \in \overline{A}$, we have $B_{r-r_1}(a_r \cap A \neq \emptyset)$. By the triangle inequality, $B_{r-r_1}(a_r \subseteq B_r(x))$. Thus $B_r(x) \cap A \neq \emptyset$. By definition, $x \in \overline{A}$.
- 7. A is closed iff ${}^{c}A$ is open iff ${}^{c}A = {}^{c}A = {}^{c}(\overline{A}) \Leftrightarrow A = \overline{A}$.
- 8.

Exercise. \overline{A} is the smallest closed set that contains A.

Proof. Let
$$\emptyset \neq D = \overline{D} : A \subseteq D, \overline{A} \cap {}^{c}D \neq \emptyset$$
. Then $\overline{A} \cap {}^{c}(\overline{D}) \neq \emptyset \implies \overline{A \cup {}^{c}D} = \overline{A} \cup {}^{c}\overline{D} \neq \emptyset$.

Definition. Let (X, d) be a metric space, $A \subseteq X$. A point $a \in {}^{c}A$ is called an **exterior point of** A. The **exterior of** A is $\text{Ext}(A) = {}^{c}A = {}^{c}(\bar{A})$.

Remark. 1. Ext(A) is an open set

2. $\operatorname{Ext}(^{c}A) = \mathring{A}$

3. $\mathring{A} \cup \text{Ext}(A)$ need not be X. Indeed, $c(\mathring{A} \cup \text{Ext}(A)) = c(\mathring{A}) \cap c\text{Ext}(A) = \overline{cA} \cap \overline{A}$ is called the **frontier of** A and is denoted by Fr(A).

Example. In \mathbb{R}^2 , d_2 , let

$$A = \{x, y, \in \mathbb{R} : \begin{cases} d_2(x, y) \le r & \text{if } y \ge 0\\ d_2(x, y) < r & \text{otherwise.} \end{cases} \}$$

Then

$$A = B_r(0)$$

$$\overline{A} = \{x \in \mathbb{R}^2 : d_2(x,0) \le r\}$$

$$\overline{c}A = \{x \in \mathbb{R}^2 : d_2(x,0) \ge r\}$$

$$Fr(A) = \{x \in \mathbb{R}^2 : d_2(x,0) = r\}$$

Definition. The boundary of A is $Bd(A) = Fr(A) \cap A$. Notice $Fr(A) = \overline{A} \cap \overline{cA} = Fr(cA)$.

Proposition. The boundary of a set A contains no non-empty open sets.

Proof. Assume $O = O \subseteq Bd(A)$, we want to show $O = \emptyset$. We have

$$D \subseteq A \cap Fr(A) = A \cap (\overline{A} \cap \overline{^cA} = A \cap \overline{A} \cap \overline{^cA} = A \cap \overline{^cA} = A \cap \overline{^cA} = A \cap \overline{^c(A)}.$$

Then $O \subseteq A \implies \mathring{O} \subseteq \mathring{A}$ but $O = \mathring{O}$ so $O \subseteq \mathring{A}$. Since we also have $O \subseteq {}^c\mathring{A}$, we showed $O \subseteq {}^d\mathring{A} \cap {}^c\mathring{A} = \emptyset$. \Box

Definition. Let (X, d) be a metric space. A set $A \subseteq X$ is called **dense** if $\overline{A} = X$. A set is called **nowhere dense** if $\overline{Ext(A)} = X$.

Example. $(X, d) = (\mathbb{R}, ||), A = \mathbb{Q}$ is dense as we have proved previously.

Remark. A is nowhere dense iff $\emptyset = {}^{c}\left(\overline{Ext(A)}\right) = {}^{c}Ext(A) = \overline{A}.$

Definition. A metric space (X, d) is called **separable** if it contains a countable dense set.

Example. \mathbb{R}^n is separable with \mathbb{Q}^n being a countable dense set.

Subspaces of metric space

Definition. Let (X, d) be a metric space, $Y \subseteq X$. In particular, $(Y, d|_{Y \times Y})$ is a metric space. We say that a set $A \subseteq Y$ is **open in Y** if $\exists D = \mathring{D} \subseteq X : A = Y \cap D$. We say that a set $A \subseteq Y$ is **closed in Y** if $\exists F = \overline{F} \subseteq X : A = Y \cap F$.

Example. $(X,d) = (\mathbb{R},||), Y = (0,1]$. The open sets in Y are of the form (a,b) with $0 \le a, b \le 1$ and $(a,1] = Y \cap (a,\infty)$ with $0 \le a < 1$. Some closed sets in Y are $Y; \{a\} \forall a \in Y; (0,\frac{1}{2}] = [-1,\frac{1}{2}] \cap Y$.

Remark. If $A \subseteq Y$ is open in Y, then $Y \setminus A$ is closed in Y. Indeed, if A is open in $Y, \exists D = \mathring{D} \subseteq X : A = Y \cap D$. Then $Y \setminus A = Y \cap {}^{c}A = Y \cap {}^{c}D$ and ${}^{c}D$ is closed.

Lemma. Let (X, d) be a metric space, $Y \subseteq X$. Then Y is open $\iff \forall A \subseteq Y$ which is open in Y, we have A is open in X.

Proof. " \Leftarrow " take A = Y. " \Longrightarrow " let $A \subseteq Y$ be open in Y, then $\exists D = \mathring{D} \subseteq X : A = Y \cap D$, both are open so A is open.

Definition. Let (X, d) be a metric space, $A \subseteq Y \subseteq X$. The closure of A in Y is $\overline{A}^Y = \overline{Y} \cap Y$.

Complete metric spaces

Definition. Let (X, d) be a metric space, $\{x_n\}_{n \ge 1} \subseteq X$. We say $\{x_n\}_{n \ge 1}$ converges to a point $x \in X$ if

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} : d(x, x_n) < \epsilon \ \forall n \ge n_{\epsilon}.$$

In this case, we say x is the limit of $\{x_n\}_{n\geq 1}$ and we write $\lim_{n\to\infty} x_n = x$ or $x_n \xrightarrow{d}{n\to\infty} x$

Exercise. 1. The limit of a convergent sequence $\{x_n\}_{n\geq 1}$ in (X, d) is unique.

2. A sequence $\{x_n\}_{n\geq 1}$ converges to $x\in X$ iff each of its subsequences converge to x.

Lemma. Let (X, d) be a metric space, $\{x_n\}_{n \ge 1}, \{y_n\}_{n \ge 1} \subseteq X : x_n \xrightarrow[n \to \infty]{d} x, y_n \xrightarrow[n \to \infty]{d} y$. Then $d(x_n, y_n) \xrightarrow[n \to \infty]{(\mathbb{R}, ||)} d(x, y)$.

Proof.

$$|d(x_n, y_n) - d(x, y)| \le |d(x_n, y_n) - d(x_n, y)| + |d(x_n, y) - d(x, y)| \le d(y_n, y) + d(x_n, x) \xrightarrow[n \to \infty]{} 0.$$

Definition. Let (X, d) be a metric space. A sequence $\{x_n\}_{n\geq 1} \subseteq X$ is called a **Cauchy sequence** if $\forall \epsilon > 0$, $\exists n_{\epsilon} \in \mathbb{N} : d(x_n, x_m) < \epsilon \ \forall n, m \geq n_{\epsilon}$.

Remark. A sequence in \mathbb{R} converges iff it is Cauchy, but this is not true in a general metric space.

- **Example.** In $(\mathbb{Q}, ||)$, let $x_1 = 3$ and $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n} \forall n \ge 1$. We showed $\{x_n\}_{n\ge 1}$ converges to $\sqrt{2}$. Consequently, $\{x_n\}_{n\ge 1} \subseteq \mathbb{Q}$ is Cauchy in $(\mathbb{R}, ||)$. However, it does not converge in $(\mathbb{Q}, ||)$.
 - In ((0,1), ||), let $x_n = \frac{1}{n} \forall n \ge 2$. Then $\{x_n\}_{n\ge 1}$ is Cauchy but not convergent.

Definition. A metric space (X, d) is called **complete** if every Cauchy sequence in X converges in (X, d).

Exercise. 1. Convergent sequences are Cauchy.

2. A Cauchy sequence with a convergent subsequence is convergent.

Definition. Let (X, d) be a metric space. A sequence $\{k_n\}_{n \ge 1}$ of subsets of X is called a **nested sequence of closed balls** if

$$k_n = K_{r_n}(x_n) = \{x \in X : d(x, x_n) \le r_n\}, \quad k_{n+1} \subseteq k_n \ \forall \ n \ge 1.$$

Remark. In a general metric space, it is not true that

$$\overline{B_r(x)} = \overline{\{y \in X : d(x,y) < r\}} = K_r(x) = \{y \in X : d(x,y) \le r\}$$

Example. Let $X = (-\infty, 0] \cup \mathbb{N}$ and d(x, y) = |x - y|. Then

$$B_1(0) = \{x \in X : |x| < 1\} = (-1, 0] \implies B_1(0) = [-1, 0]$$

but

$$K_1(0) = \{x \in X : |x| \le 1\} = (-1, 0] \cup \{1\}.$$

Theorem. A metric space (X, d) is complete iff for every nested sequence $\{k_n\}_{n\geq 1}$ of closed balls with $\delta(k_n) \xrightarrow[n\to\infty]{} 0$, we have

$$\bigcap_{n\geq 1}k_n\neq \emptyset.$$

Proof. • " \implies " Let $\{k_n\}_{n\geq 1}$ be a nested sequence of closed balls with $\delta(k_n) \xrightarrow[n\to\infty]{} 0$. Write $k_n = k_{r_n}(x_n)$. Then

$$\delta(k_n) = 2r_n \implies \lim_{n \to \infty} 2r_n = 0 \iff \lim_{n \to \infty} r_n = 0$$

Claim. $\{x_n\}_{n\geq 1}$ is a Cauchy sequence.

Let $\epsilon > 0$, then $\exists n_{\epsilon} \in \mathbb{N} : r_n < \frac{\epsilon}{2} \forall n \ge n_{\epsilon}$. For $n, m \ge n_{\epsilon}$ we have $k_n, k_m \subseteq k_{n_{\epsilon}}$ and

$$d(x_n, x_m) \le d(x_n, x_{n_{\epsilon}}) + d(x_{n_{\epsilon}}, x_m) \le r_{n_{\epsilon}} + r_{n_{\epsilon}} < \epsilon$$

As (X, d) is complete, $\exists x \in X : x_n \xrightarrow[n \to \infty]{d} x$. For $m \ge 1$, we want to show $x \in k_m$. Note $\{x_n\}_{n \ge m} \subseteq k_m$. As k_m is closed, $x = \lim_{n \to \infty} x_n \in k_m$. Therefore

$$x \in \bigcap_{m \ge 1} k_m.$$

• " \Leftarrow " Let $\{x_n\}_{n\geq 1}$ be a Cauchy sequence in X. For every $n\geq 1, \exists N_n\in\mathbb{N}: d(x_k,x_l)<\frac{1}{2^{n+1}} \forall k,l\geq N_n$. Let $k_1=N_1$ and for $n\geq 1$, let $k_{n+1}>\max\{k_n,N_{n+1}\}$. In particular, $d(x_m,x_{k_n})<\frac{1}{2^{n+1}} \forall m\geq k_n$. Let $k_n=k_{\frac{1}{2^n}}(x_{k_n})$. Claim. $k_{n+1}\subseteq k_n$

Let $y \in k_{n+1} \implies d(y, x_{k_{n+1}}) \le \frac{1}{2^{n+1}}$. By the triangle inequality

$$d(y, x_{k_n}) \le d(y, x_{k_{n+1}}) + d(x_{k_{n+1}}, x_{k_n}) \le \frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} = \frac{1}{2^n} \implies y \in k_n$$

Then

$$\bigcap_{n \ge 1} k_n \neq \emptyset \iff \exists x \in \bigcap_{n \ge 1} k_n \implies d(x, x_{k_n}) \le \frac{1}{2^n} \forall n \ge 1 \implies x_{k_n} \xrightarrow{d} x_{k_n} x_{k_n} \xrightarrow{d} x_{k_n} x_{k_n} x_{k_n} \xrightarrow{d} x_{k_n} x_{k_n}$$

We have proved previously that a Cauchy sequence with a convergent subsequence converges.

Examples of complete metric spaces

1. $(\mathbb{R}, ||)$

2.

Lemma. Let $(X, d_1), (Y, d_2)$ be complete metric spaces. Then $X \times Y$ with the metric

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{d_1(x_1, x_2)^2 + d_2(y_1, y_2)^2}$$

is a complete metric space.

Proof.

Exercise. Show d is a metric.

We show the metric space is complete. Let $\{(x_n, y_n)\}_{n \ge 1} \subseteq X \times Y$ be Cauchy, then

$$\begin{aligned} \forall \ \epsilon > 0, \exists \ n_{\epsilon} \in \mathbb{N} : d((x_n, y_n), (x_m, y_m)) < \epsilon \ \forall \ n, m \ge n_{\epsilon} \\ \implies d_1(x_n, x_m)^2 + d_2(y_n, y_m)^2 < \epsilon^2 \\ \implies \begin{cases} d_1(x_n, x_m) < \epsilon \\ d_2(y_n, y_m) < \epsilon \end{cases} \\ \implies \begin{cases} \{x_n\}_{n\ge 1} \text{ is Cauchy, let } x = \lim_{n\to\infty} x_n \\ \{y_n\}_{n\ge 1} \text{ is Cauchy, let } y = \lim_{n\to\infty} y_n. \end{cases} \end{aligned}$$

Claim. $(x_n, y_n) \xrightarrow[n \to \infty]{d} (x, y)$ Let $\epsilon > 0$, then

$$\begin{cases} \exists n_1(\epsilon) \in \mathbb{N} : d_1(x_n, x) < \frac{\epsilon}{2} \ \forall \ n \ge n_1(\epsilon) \\ \exists n_2(\epsilon) \in \mathbb{N} : d_2(y_n, y) < \frac{\epsilon}{2} \ \forall \ n \ge n_2(\epsilon) \\ \implies \text{ for } n \ge \max\{n_1(\epsilon), n_2(\epsilon)\}, \end{cases}$$
$$d((x_n, y_n), (x, y)) = \sqrt{d_1(x_n, x)^2 + d_2(y_n, y)^2} < \sqrt{\left(\frac{n}{\epsilon}\right)^2 + \left(\frac{n}{\epsilon}\right)^2} < \epsilon.$$

_	_
-	_

3.

Corollary. (\mathbb{R}^n, d_2) is a complete metric space. Recall

$$d_2(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{\frac{1}{2}}.$$

1

Exercise. Fix $1 \le p \le \infty$ and $n \in \mathbb{N}$, show that (\mathbb{R}^n, d_p) is complete.

4. Let

$$l^2 = \{\{x_n\}_{n \ge 1} \subseteq \mathbb{R} : \sum_{n \ge 1} |x_n|^2 < \infty\}$$

and $d_2: l^2 \times l^2 \to \mathbb{R}$ be defined as

$$d_2(x,y) = \left(\sum |x_n - y_n|^2\right)^{\frac{1}{2}} \ \forall \ x = \{x_n\}_{n \ge 1}, y = \{y_n\}_{n \ge 1}.$$

Claim. (l^2, d_2) is a complete metric space.

Proof. We will prove completeness. Let $\{x^{(k)}\}\$ be a Cauchy sequence. Note $x^{(k)} = \{x_n^{(k)}\}_{n\geq 1} \in l^2$. For $\epsilon > 0$,

$$\exists k_{\epsilon} \in \mathbb{N} : d_2(x^k, x^l) < \epsilon \ \forall \ k, l \ge k_{\epsilon} \implies \sum_{n \ge 1} |x_n^{(k)} - x_n^{(l)}|^2 < \epsilon^2 \ \forall \ k, l \ge k_{\epsilon}$$

In particular, for all $n \ge 1$ we have $|x_n^{(k)} - x_n^{(l)}| < \epsilon \ \forall \ k, l \ge k_\epsilon$. Thus $\forall \ n \ge 1, \{x_n^{(k)}\}$ is Cauchy in \mathbb{R} . Let $x_n = \lim_{k \to \infty} x_n^{(k)}, x = \{x_n\}_{n \ge 1}$. We will show $x^{(k)} \xrightarrow[k \to \infty]{d_2} x$ and $x \in l^2$ (this follows from the triangle inequality). For $\epsilon > 0$,

$$\exists k_{\epsilon} \in \mathbb{N} : d(x^{(k)}, x^{(l)}) < \epsilon \ \forall \ k, l \ge k_{\epsilon}.$$

Fix $N \geq 1$ and let $k, l \geq k_{\epsilon}$. We have

$$\sum_{n \ge 1}^N |x_n^{(k)} - x_n^{(l)}|^2 < \epsilon^2$$

Freezek and let $l \to \infty$ to get

$$\sum_{n \ge 1}^{N} |x_n^{(k)} - x_n|^2 < \epsilon^2$$

Thus $\sigma_N = \sum_{n\geq 1}^N |x_n^{(k)} - x_n|^2$ is an increasing sequence bounded above by ϵ^2 . Then

$$\lim \sigma_N = \sum_{n \ge 1} |x_n^{(k)} - x_n|^2 \le \epsilon^2 \implies d(x^{(k)}, x) \le \epsilon \ \forall \ k \ge k_\epsilon.$$

Lemma. Let (X, d) be a metric space. A set $A \subseteq X$ is dense iff $\forall \emptyset \neq O = \mathring{O} \subseteq X$, we have $A \cap O \neq \emptyset$.

Proof. • " \implies " Assume towards a contradiction that

$$\exists \ \emptyset \neq O = \mathring{O} \subseteq X : A \cap O = \emptyset.$$

Then we reach a contradiction:

$$O \subseteq {}^{c}A \implies \emptyset \neq O = \mathring{O} \subseteq {}^{c}\mathring{A} = {}^{c}(\overline{A}) = {}^{c}X = \emptyset.$$

• " \Leftarrow " Assume $\overline{A} \neq X$. Then ${}^{c}A = {}^{c}(\overline{A}) \neq \emptyset \iff \exists B_{r}(x) \subseteq {}^{c}A$ for some r > 0. In particular, $\emptyset \neq B_{r}(x)$ is an open set such that $B_{r}(x) \cap A = \emptyset$. This is a contradiction.

Baire property

Definition. We say a metric space (X, d) has the **Baire property** if for every $\{A_n\}_{n\geq 1} \subseteq P(X) : A_n = A_n, \overline{A} = X$, we have $\overline{\bigcap_{n\geq 1}A_n} = X$. Namely, for each countable collection of open dense sets, their intersection is dense.

Lemma. Let (X, d) be a metric space, the following are equivalent

- 1. X has the Baire property
- 2. If $\{F_n\} \subseteq P(X) : F_n = \overline{F_n}, \mathring{F_n} = \emptyset$, then $\bigcup_{n \ge 1} F_n = \emptyset$. Namely, the interior of the union of closed sets with empty interior is empty.

Proof. • "1. \implies 2." Let $F \subseteq X : F = \overline{F_n}$ and $\mathring{F_n} = \emptyset$. Define $A_n = {}^cF_n$, then $A_n = \mathring{A_n}$ and $\overline{A_n} = \overline{cF_n} = {}^c\mathring{F_n} = {}^c\mathring{V} = X$. As X has the Baire property, $\overline{\bigcap_{n\geq 1}A_n} = X$. But $\overline{\bigcap_{n\geq 1}A_n} = \overline{\bigcap_{n\geq 1}cF_n} = {}^c\overline{\bigcup_{n\geq 1}F_n} = {}^c(\bigcup_{n\geq 1}F_n) = X \implies \bigcup_{n\geq 1}F_n = \emptyset$.

• "2. \implies 1." Let $A_n = \mathring{A}_n, \overline{A_n} = X$, we want to show $\overline{\bigcap_{n \ge 1} A_n} = X$. Define $F_n = {}^cA_n$, then $F_n = \overline{F_n}$ and $\mathring{F}_n = {}^c\mathring{A}_n = {}^c\overline{A}_n = {}^cX = \emptyset$. Therefore, $\bigcup_{n \ge 1}F_n = \emptyset \implies {}^c\bigcup_{n \ge 1}F_n = X$. But $\bigcup_{n \ge 1}F_n = \bigcup_{n \ge 1}{}^cA_n = {}^c\bigcap_{n \ge 1}{}^cA_n = {}^c\bigcap_{n \ge 1}{}^cA_n = {}^c\bigcap_{n \ge 1}{}^cA_n = \emptyset \implies \overline{\bigcap_{n \ge 1}{}^cA_n} = X$.

Baire category theorem 1

Theorem. A complete metric space (X, d) has the Baire property.

Proof. Let $A_n = \mathring{A}_n$ and $\overline{A_n} = X$, we want to show $\overline{\bigcap_{n \ge 1} A_n} = X$. Equivalently, it suffices to show that $\forall \ \emptyset \neq W = \mathring{W} \subseteq X$, we have $W \cap (\bigcap_{n \ge 1} A_n) \neq \emptyset$. Fix $\emptyset \neq W = \mathring{W} \subseteq X$.

- As $\overline{A_1} = X$, we have the open set $W \cap A_1 \neq \emptyset \implies \exists B_{r_1}(x_1) \subseteq W \cap A_1$ for some $r_1 > 0$. Let $\rho_1 < \min\{r_1, 1\}$, then $K_{\rho_1}(x_1) \subseteq B_{r_1}(x_1) \subseteq W \cap A_1$.
- As $\overline{A_2} = X$, we have the open set $B_{\rho_1}(x_1) \cap A_2 \neq \emptyset \implies \exists B_{r_2}(x_2) \subseteq B_{\rho_1}(x_1) \cap A_2$ for some $r_2 > 0$. Let $\rho_2 < \min\{r_2, \frac{1}{2}\}$, then $K_{\rho_2}(x_2) \subseteq B_{r_2}(x_2) \subseteq K_{\rho_1}(x_1) \cap A_2$.

Proceed inductively to find a sequence of points $\{x_n\}_{n\geq 1} \subseteq X$ and a sequence of radii $\{\rho_n\} \subseteq (0,\infty) : \rho_n < \frac{1}{n}$ and $K_{\rho_{n+1}}(x_{n+1}) \subseteq K_{\rho_n}(x_n) \cap A_{n+1} \forall n \geq 1$. As (X,d) is complete, we get $\bigcap_{n\geq 1}K_{\rho_n}(x_n) \neq \emptyset$. Note $\emptyset \neq \bigcap_{n\geq 1}K_{\rho_n}(x_n) \subseteq W \cap A_1 \cap (\bigcap_{n\geq 2}A_n) = W \cap (\bigcap_{n\geq 1}A_n)$.

Definition. Let (X, d) be a metric space. A set $A \subseteq X$ is said to be of **first (Baire) category** if it can be written as a countable union of closed, nowhere dense sets. If A is not of the first category, then A is said to be of **second** (**Baire**) category.

Remark. A metric space (X, d) is of first category if $X = \bigcup_{n \ge 1} A_n$ with $A_n = \overline{A_n}$ and $\overline{Ext(A_n)} = X$. Recall $Ext(A_n) = \ ^c\mathring{A}_n \implies X = \overline{Ext(A_n)} = \ ^c\mathring{A}_n = \ ^c(\overline{A_n}) = \ ^c\left(\overline{A_n}\right) \implies \overrightarrow{A_n} = \emptyset$. So X is of first category if $X = \bigcup_{n \ge 1} A_n$ with $A_n = \overline{A_n}$ and $\overset{\circ}{\overline{A_n}} = \emptyset$.

Example. \mathbb{Q} is of first category.

Baire category theorem 2

Theorem. A complete metric space (X, d) is of second category.

Proof. We argue by contradiction. Assume X is of first category, i.e. $X = \bigcup_{n \ge 1} A_n, A_n = \overline{A_n}, \overset{\circ}{A_n} = \emptyset$. By the previous theorem, X complete \implies X has the Baire property $\implies \bigcup_{n \ge 1} A_n = \emptyset \iff \overset{\circ}{X} = \emptyset \iff X = \emptyset$, contradiction.

Corollary. $\mathbb{R} \setminus \mathbb{Q}$ *is of second category.*

Proof. Assume towards a contradiction that $\mathbb{R} \setminus \mathbb{Q}$ is of first category, then we can write $\mathbb{R} \setminus \mathbb{Q} = \bigcup_{n \ge 1} A_n$ with $A_n = \overline{A_n}$ and $\mathring{A}_n = \emptyset$. Notice $\mathbb{R} = (\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q} = (\bigcup_{n \ge 1} A_n) \cup (\bigcup_{q \in \mathbb{Q}} \{q\})$ with $\{q\} = \overline{\{q\}}$ and $\{\mathring{q}\} = \emptyset$ so \mathbb{R} is of first category, contradiction.

Remark. If (X, d) is complete and $A \subseteq X$ is of first category, then $X \setminus A$ is of second category.

The Banach-Mazur game

Imagine we have two players P_1, P_2 playing the following game. Let I_0 be a closed interval.

- P_1 gets dealt a subset $A \subseteq I_0$,
- P_2 gets dealt a subset $B \subseteq I_0 \setminus A$.

Then

- P_1 chooses a closed interval $I_1 \subseteq I_0$,
- P_2 chooses a closed interval $I_2 \subseteq I_1$,
- ...,
- P_1 chooses a closed interval $I_{2n+1} \subseteq I_{2n}$,
- P_2 chooses a closed interval $I_{2n+2} \subseteq I_{2n+1}$.

Then P_1 wins if $(\cap I_n) \cap A \neq \emptyset$, otherwise P_2 wins.

Question. Can either player ensure a winning strategy by choosing the intervals wisely, no matter how the opponent plays?

Answer. If A is of first (Baire) category, then P_2 has a winning strategy. Indeed, assume $A = \bigcup_{n \ge 1} A_n$, with $A_n = \overline{A_n}, \mathring{A} = \emptyset$. Then P_2 needs only choose $I_{2n} \subseteq I_{2n-1} \setminus A_n \ \forall \ n \ge 1$. Then $\bigcap_{n \ge 1} I_n \subseteq I_0 \setminus A$ and so P_2 wins.

Conjecture. P_2 has a winning strategy $\iff A$ is of first category (proved by Banach).

This gives insight into how "small" a set of first category is, namely, it is a set on which even the first player is bound to lose, unless his opponent fails to take advantage of the situation.

Theorem. P_1 has a winning strategy iff there is an interval $I_1 \subseteq I_0 : I_0 \cap B$ is of first category.

Connected sets

Definition. Let (X, d) be a metric space. We say that two sets $A, B \subseteq X$ are separated if $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$.

Remark. Any two separated sets are disjoint because $A \cap B \subseteq \overline{A} \cap B = \emptyset$. However, two disjoint sets need not be separated.

Example. $A = (0, 1), \overline{A} = [0, 1], B = \{1\}$

Lemma. Let (X, d) be a metric space, $A, B \subseteq X : d(A, B) > 0$. Then A, B are separated.

Proof. We argue by contradiction. Assume $\overline{A} \cap B \neq \emptyset$. Let $x \in \overline{A} \cap B$. Since $x \in \overline{A}$, $d(x, A) = \inf \{d(x, a) : a \in A\} = 0$. But then $d(B, A) = \inf \{d(b, A) : b \in B\} = 0$, contradiction. Similarly, one shows that $A \cap \overline{B} = \emptyset$.

Remark. There are separated sets A, B for which d(A, B) = 0.

Example. $A = (0, 1), B = (1, 2) \implies \overline{A} \cap B = [0, 1] \cap (1, 2) = \emptyset, A \cap \overline{B} = (0, 1) \cap [1, 2] = \emptyset, d(A, B) = 0$

Exercise. Let (X, d) be a metric space, $A, B \subseteq X$ separated. If $A_1 \subseteq A$ and $B_1 \subseteq B$, then A_1 and B_1 are separated.

Proposition. Let (X, d) be a metric space, then

- 1. Two closed sets are separated iff they're disjoint.
- 2. Two open sets are separated iff they're disjoint.

Proof. 1. • " \implies " This is clear.

- " \Leftarrow " Let $\overline{A} = A, \overline{B} = B, A \cap B = \emptyset$. Then $\overline{A} \cap B = A \cap B = \emptyset, A \cap \overline{B} = A \cap B = \emptyset$, so A, B are separated.
- 2. " \implies " This is clear.
 - " \Leftarrow " Let $\mathring{A} = A, \mathring{B} = B, A \cap B = \emptyset$. We want to show $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. Assume towards a contradiction that $\overline{A} \cap B \neq \emptyset$. Let $x \in \overline{A} \cap B$, since $x \in B = \mathring{B}, \exists r_0 > 0 : B_{r_0}(x) \subseteq B$. Since $x \in \overline{A}, \forall r > 0, B_r(x) \subseteq A$. For any $r \geq r_0, \emptyset \neq B_r(x) \cap A \subseteq A \cap B$, contradiction. This shows $\overline{A} \cap B = \emptyset$, one shows similarly that $A \cap \overline{B} = \emptyset$.

Proposition. Let (X, d) be a metric space.

1. If a closed set is the union of two separated sets A, B, then A, B are closed.

2. If an open set is the union of two separated sets A, B, then A, B are open.

Proof. 1. Let $F = \overline{F} : F = A \cup B, \overline{A} \cap B = A \cap \overline{B} = \emptyset$. Then

$$\overline{A} = \overline{A} \cap \overline{F} = \overline{A} \cap F = \overline{A} \cap (A \cup B) = (\overline{A} \cap A) \cup (\overline{A} \cap B) = A \cap \emptyset = A.$$

Similarly, one proves B is closed.

2. Let $D = \mathring{D} : D = A \cup B, \overline{A} \cap B = A \cap \overline{B} = \emptyset$. We want to show $\mathring{A} = A, \mathring{B} = B$. We know $\mathring{A} \subseteq A$. Let $a \in A \subseteq D = \mathring{D} \implies \exists r_0 > 0 : B_r(a) \subseteq D = A \cup B$. As $A \cap \overline{B} = \emptyset$ and $a \in A, a \notin B$. Thus $\exists r_1 > 0 : B_{r_1}(a) \cap B = \emptyset$. Then for $r < \min\{r_0, r_1\}, B_r(a) \subseteq D \setminus B = A$. So $a \in \mathring{A} \implies A \subseteq \mathring{A}$.

Exercise. Is it true that in a metric space $(X, d), B_r(a)$ cannot be written as the union of separated sets? **Definition.** Let (X, d) be a metric space, $A \subseteq X$.

- We say A is disconnected if it can be written as the union of two non-empty separated sets.
- If A is not disconnected, then we say A is connected.

Theorem. Let (X, d) be a metric space. Then X is connected iff the only subsets of X that are clopen are \emptyset, X .

- *Proof.* " \implies " Assume towards a contradiction that $\exists A \subseteq X : \emptyset \neq A \neq X, A$ clopen. Then $X \setminus A \neq \emptyset$ is both closed and open. As A and $X \setminus A$ are disjoint, they are separated. Then $X = A \cup (X \setminus A)$ and $A, X \setminus A \neq \emptyset$ separated implies that X is disconnected, contradiction.
 - " \Leftarrow " Assume towards a contradiction that we can rewrite $A = B \cup C$ with $B \neq \emptyset, C \neq \emptyset$ and $\overline{B} \cap C = B \cap \overline{C} = \emptyset$. As X is open, B, C are open. As X is closed, B, C are closed. Then B, C are both open and closed so B or $C = \emptyset$, contradiction.

Theorem. Let (X, d) be a metric space, $A \subseteq X$. Then A is connected iff the only subsets of A that are both open and closed in A are \emptyset, X .

Proof. • " \implies "We argue by contradiction. Assume that $\exists \ \emptyset \neq B \subsetneq A : B$ is both open and closed. Then $\emptyset \neq A \setminus B \subsetneq A$ is both open and closed. Thus $A = B \cup (A \setminus B)$. *Claim.* $B, A \setminus B$ are separated.

B is closed in *A* so $\overline{B} \cap A = B$. Then

$$\overline{B} \cap (A \setminus B) = (\overline{B} \cap A) \cap {}^{c}B = B \cap {}^{c}B = \emptyset.$$

 $A \setminus B$ is closed in A so $A \cap \overline{A \setminus B} = A \setminus B$. Then

$$B \cap \overline{(A \setminus B)} = B \cap A \cap \overline{(A \setminus B)} = B \cap A \setminus B = \emptyset.$$

Thus A can be written as the union of two separated sets, contradiction.

• " \Leftarrow " Assume towards a contradiction that A is disconnected. Then $\exists B \neq \emptyset, C \neq \emptyset$ with $\overline{B} \cap C = B \cap \overline{C} = \emptyset : A = B \cup C$.

Claim. B is closed in A.

$$\overline{B} \cap A = \overline{B} \cap (B \cup C) = (\overline{B} \cap B) \cup (\overline{B} \cap C) = B \cap \emptyset = B.$$

Similarly, one shows that if C is closed in A then $B = A \setminus C$ is open in A. Thus $\emptyset \neq B \subsetneq A$ is both open and closed in A, contradiction.

Theorem. Let (X, d) be a metric space. The following are equivalent.

- 1. A is disconnected.
- 2. There exists open sets $D_1, D_2 : A \subseteq D_1 \cup D_2, A \cap D_1 \neq \emptyset, A \cap D_2 \neq \emptyset, A \cap D_1 \cap D_2 = \emptyset$.
- 3. There exists closed sets $F_1, F_2 : A \subseteq F_1 \cup F_2, A \cap F_1 \neq \emptyset, A \cap F_2 \neq \emptyset, A \cap F_1 \cap F_2 = \emptyset$.

Proof. We show $3 \implies 2 \implies 1 \implies 3$.

• "3 \implies 2" Let $D_1 = {}^cF_1, D_2 = {}^cF_2$. Then D_1, D_2 are open. Since $A \subseteq F_1 \cup F_2$, we have

$$A \cap D_1 \cap D_2 = A \cap {}^cF_1 \cap {}^cF_2 = A \cap {}^c(F_1 \cup F_2) = \emptyset.$$

We know $A \cap F_1 \cap F_2 = \emptyset \implies A \subseteq {}^c(F_1 \cap F_2) = {}^cF_1 \cup {}^cF_2 = D_1 \cup D_2$. Let's show $A \cap D_1 \neq \emptyset$. Notice $A \cap D_1 = \emptyset \implies A \subseteq D_2 \implies A \subseteq {}^cF_2 \implies F_2 = \emptyset$, contradiction. Similarly, $A \cap D_2 \neq \emptyset$.

- "2 \implies 1" Let $B = A \cap D_1, C = A \cap D_2$. Then $A = B \cup C, B \neq \emptyset, C \neq \emptyset, B \cap C = \emptyset$. Note that if B and C are open in A then B is closed in A. $B \neq \emptyset, B \neq A$ since $A = B \cup C, C \neq \emptyset, B \cap C \neq \emptyset$. Thus A is disconnected.
- "1 \implies 3" As A is disconnected, $\exists \emptyset \neq B \subsetneq A : B$ is both open and closed in A. In particular, $C = A \setminus B$ is both open and closed in A and $\emptyset \neq C \subsetneq A$. Let F_1, F_2 be closed sets such that $B = A \cap F_1, C = A \cap F_2$. Then $A = B \cup C \subseteq F_1 \cup F_2, A \cap F_1 = B \neq \emptyset, A \cap F_2 = C \neq \emptyset, A \cap F_1 \cap F_2 = B \cap C = \emptyset$.

Proposition. Let (X,d) be a metric space, $A \subseteq X$ be disconnected. Let D_1, D_2 be open sets such that $A \subseteq D_1 \cup D_2, A \cap D_1 \neq \emptyset, A \cap D_2 \neq \emptyset, A \cap D_1 \cap D_2 = \emptyset$. If $B \subseteq A$ connected, then $B \subseteq D_1$ or $B \subseteq D_2$.

Proof. Assume towards a contradiction, that $B \cap D_1 \neq \emptyset$ and $B \cap D_2 \neq \emptyset$. Then $B \subseteq A \subseteq D_1 \cup D_2$ and $B \cap D_1 \cap D_2 \subseteq A \cap D_1 \cap D_2 = \emptyset$ implies that B is disconnected, contradiction.

A similar argument yields

Proposition. Let (X, d) be a metric space, $A \subseteq X$ be disconnected. Let F_1, F_2 be closed sets such that $A \subseteq F_1 \cup F_2$. Then $A \cap F_1 \neq \emptyset, A \cap F_2 \neq \emptyset, A \cap F_1 \cap F_2 = \emptyset$. If $B \subseteq A$ is connected, then $B \subseteq F_1$ and $B \subseteq F_2$.

Proposition. Let (X, d) be a metric space, $A \subseteq X$ be connected. If $A \subsetneq B \subseteq \overline{A}$, then B is connected.

Proof. Assume towards a contradiction that B is disconnected. Then $\exists F_1, F_2$ closed subsets of $X : B \subseteq F_1 \cup F_2, B \cap F_1 \neq \emptyset, B \cap F_2 \neq \emptyset, B \cap F_1 \cap F_2 = \emptyset$. Then $A \subseteq B \subseteq F_1 \cup F_2 \implies$ either $A \subseteq F_1$ or $A \subseteq F_2$. Without loss of generality, assume $A \subseteq F_1$. Then $B \subseteq \overline{A} \subseteq \overline{F_1} = F_1 \implies \emptyset = B \subseteq F_1 \cup F_2 = B \cap F_2 \neq \emptyset$, contradiction. \Box

Proposition. Let (X, d) be a metric space, $\{A_i\}_{i \in I}$ be a family of connected subsets of X such that for any $i \neq j$, A_i and A_j are not separated. Then $\bigcup_{i \in I} A_i$ is connected.

Proof. Assume towards a contradiction that $\cup_{i \in I} A_i$ is disconnected, then $\exists B, C \neq \emptyset : \overline{B} \cap C = B \cap \overline{C} = \emptyset$ and $\cup_{i \in I} A_i = B \cup C$. For any $i \in I$, $A_i = (B \cap A_i) \cup (C \cap A_i)$. But A_i is connected while $B \cap A_i$ and $C \cap A_i$ are separated. So either $B \cap A_i = \emptyset$ or $C \cap A_i = \emptyset$. In particular, if $A_i \cap B \neq \emptyset$, then $A \subseteq B$. Then $\cup_{i \in I} A_i = B \cup C \implies \exists i_1, i_2 \in I$:

$$A_{i_1} \cap B \neq \emptyset \implies A_{i_1} \subseteq B$$
$$A_{i_2} \cap C \neq \emptyset \implies A_{i_2} \subseteq C$$

But B, C separated $\implies A_{i_1}, A_{i_2}$ separated, contradiction.

Corollary. Let (X, d) be a metric space, $\{A_i\}_{i \in I}$ be a family of connected subsets of $X : \bigcap_{i \in I} A_i \neq \emptyset$. Then $\bigcup_{i \in I} A_i$ is connected.

Theorem. The only non-empty connected subsets of \mathbb{R} are the intervals. In particular, $\mathbb{R} = (-\infty, \infty)$ is connected so the only subsets of \mathbb{R} that are both open and closed are \emptyset, \mathbb{R} .

Proof. Let's first show that intervals are connected. Let $I \subseteq \mathbb{R}$ be an interval. Assume towards a contradiction that I is disconnected. Then $\exists \ \emptyset \neq A \subsetneq I : A$ is both open and closed in I. Then its complement $\emptyset \neq B = I \setminus A \subsetneq I$ is both open and closed in I. Let $a_1 \in A, b_1 \in B$.

- Set $c_1 = \frac{a_1+b_1}{2}$. If $c_1 \in A$, set $a_2 = c_1, b_2 = b_1$. If $c_1 \in B$, set $a_2 = a_1, b_2 = c_1$. In either case, $b_2 a_2 = \frac{b_1 a_1}{2}$.
- Set $c_2 = \frac{a_2 + b_2}{2}$. If $c_2 \in A$, set $a_3 = c_2, b_3 = b_2$. If $c_2 \in B$, set $a_3 = a_2, b_3 = c_2$. In either case, $b_3 a_3 = \frac{b_1 a_1}{2^2}$. Proceeding inductively, we construct $\{a_n\} \subseteq A, \{b_n\} \subseteq B$:
 - $\{a_n\}$ is non-decreasing and bounded above by b so it converges, let $a = \lim_{n \to \infty} a_n$
 - $-\{b_n\}$ is non-increasing and bounded below by a so it converges, let $b = \lim_{n \to \infty} b_n$

$$b_n - a_n = \frac{b_1 - a_1}{2^{n-1}} \xrightarrow[n \to \infty]{} 0$$

Thus a = b. But $a \in \overline{A} \cap I = A$ and $b \in \overline{B} \cap I = B$ so $A \cap B \neq \emptyset$, contradiction. Finally, show connected sets are necessarily intervals. Let $A \subseteq \mathbb{R}$ be connected. Let $a = \inf A$ (possibly $-\infty$). Let $b = \sup A$ (possibly ∞). We have to show that if a < c < b, then $c \in A$. Assume, towards a contradiction, that $\exists c \in (a, b) \setminus A$. Set $D_1 = (-\infty, c), D_2 = (c, \infty)$ open in \mathbb{R} . Then $A \subseteq D_1 \cup D_2, A \cap D_1 \cap D_2 = \emptyset, A \cap D_1 \neq \emptyset$ (because $\inf A < c$), $A \cap D_2 \neq \emptyset$ (because $\sup A > c$). Thus A is disconnected, contradiction.

Lemma. Let (X, d) be a metric space, $A \subseteq X$. If any pair of points in A is contained in a connected subset of A, then A is connected.

Proof. Assume towards a contradiction that A is disconnected. Then $\exists D_1, D_2$ open : $A \subseteq D_1 \cup D_2, A \cap D_1 \neq \emptyset, A \cap D_2 \neq \emptyset, A \cap D_1 \cap D_2 = \emptyset$. Let $a \in A \cap D_1, b \in A \cap D_2$. Then $\exists B \subseteq A$ connected : $\{a, b\} \subseteq B$. Then $B \subseteq D_1 \cup D_2, B \cap D_1 \neq \emptyset, B \cap D_2 \neq \emptyset, B \cap D_1 \cap D_2 = \emptyset \implies B$ is disconnected, contradiction. \Box

Exercise. Let $(\mathbb{R}^n, d), B_1(0) = \{x \in \mathbb{R}^n : d(x, 0) < 1\}$. Then $B_1(0)$ is connected.