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Abstract

Some invariants of Poisson manifolds

by

OlgaValerievna Radko
Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Alan D. Weinstein, Chair

In this thesis we study various invariants of Poisson manifolds.

Given a compact oriented surface, we provide a complete classification of Poisson struc-
tures on it having at most quadratic degeneracies by constructing an explicit finite set of invariants.
In the case that the Poisson tensor has at most linear degeneracies we also compute the Poisson co-
homology, and explicitly describe (in terms of the invariants) deformations of the Poisson structures
associated to various elements of the second cohomology.

We study the properties of gauge and Morita equivalence of Poisson manifolds. In par-
ticular, we show that gauge equivalent integrable Poisson manifolds are Morita equivaent. We
prove that the leaf spaces of Morita equivalent Poisson manifolds are homeomorphic as topol ogical
spaces, and that the modular periods around the zero curves are invariant under Morita equivalence.
As an example, we classify topologically stable Poisson structures on a two-sphere up to Morita
equivalence and gauge equivalence.

We compute the Poisson cohomology of the standard r-matrix structure on the Poisson-
Liegroup SJ(2). In particular, the second cohomology turns out to be infinite-dimensional, which
implies that there exist infinitely many linearly-independent infinitesimal deformations of the struc-
ture.

Professor Alan D. Weinstein
Dissertation Committee Chair
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Chapter 1

| ntroduction

Poisson manifolds arose naturally in mathematical physics, in the course of studying phys-
ical systems possessing asymmetry. Recall that a symplectic manifold M (corresponding to a phase
space in physics) provides the geometric framework for the Hamiltonian formulation of mechanics.
A point in the symplectic manifold represents a state of the classical system. The presence of asym-
plectic form allows one to associate to each function H (“Hamiltonian” in physics) a vector field;
the flow of this vector field gives the time evolution of the physical system described by the Hamil-
tonian. In the presence of symmetry of the physical system, it is natura to replace the manifold M
by its quotient by the symmetry. The quotient manifold P no longer has a symplectic structure; but
atrace of the symplectic structure remains. Namely, as was discovered by Poisson, the symplectic
structure on M can be equivalently described by a Poisson bracket {-,-} on the space of smooth
functions on M. It isthis structure that descends to the quotient manifold P. Thusit makes sense to
consider Poisson manifolds (i.e., manifolds together with a Lie bracket {-,-} satisfying the Leibniz
identity on the space of smooth functions) as ageneralization of symplectic manifolds. The Poisson
bracket on a symplectic manifold is then characterized by the property of being locally isomorphic
to the standard one on R?". In a certain loose sense, every Poisson manifold is a quotient of a
symplectic manifold by a symmetry.

If the Hamiltonian H on M is invariant under the symmetry, it descends to afunction,H

on P. The equations of motion on P are then given by
F={FH} (1.0.1)

for any smooth function F € C*(P) (here F refers to the time derivative of F). Note that F can be
thought of as a “measurement” or an “observable” on the manifold P, assigning a number to each



state of the physical system.
With the advent of quantum mechanics, it was noticed that in many instances there is a
guantum analog of the equation above:

F=[F Al (1.0.2)

where H is the Hamiltonian of the quantum system, and F is an observable. The key difference
in the quantum situation is that F and H are no longer functions, but operators on a Hilbert space,
lying in anon-commutative algebra. The bracket [-, -] isthe commutator bracket for the operation of
multiplication (composition) of operators.

This analogy motivated the study of deformation quantization [BFFt78]. The key ideais
that a guantum-mechanical system must degenerate to a classical system, if considered in the range
of energies in which quantum effects are insignificant (the so-called correspondence principle).
Since one of the simplest examples of non-commutativity of quantum observables is the Heisenberg
uncertainty principle

[P.Q =i,
where 7 is Planck’s constant, one should obtain classical mechanics from quantum mechanics by
formally taking the limit # — O.

Thus for each quantum observable one must have a corresponding classical observable.
Since the multiplication of quantum observables is non-commutative, while the multiplication of
classical observablesis commutative, the multiplication x; must depend on the parameter 7. Math-
ematically, this means that the (non-commutative) algebras of quantum observables are defined by
formal deformations of algebras of classical observables. Thisfact, and the correspondence between
the evolution of the quantum system and the evolution of its classical limit gives arelation between
the corresponding equations of motion (1.0.2) and (1.0.1):

lim[F,H]; =0, (1.0.3)
h—0

: [FA,F\']h_ ~

’lllirg) - ={F,H}, (1.0.4)

where [F,H]; = F x5 H — H x; F. It follows from the recently proved Kontsevich's Formality
Theorem [[Kon]] that every Poisson manifold admits a formal deformation quantization. That is,
given a Poisson bracket {, } on amanifold M, there exist a deformation of the multiplication on
C*(M) so that the properties (1.0.3) and (1.0.4) are satisfied. Thus, Poisson manifolds can be



viewed as“ semi-classical” limits of phase spaces of quantum mechanical systems, or, equivalently,
of a non-commuitative algebras of quantum observables (see e.g. [CW99]). For this reason, Poisson
manifolds have both a geometric and an algebraic side. Also, it is clear, since Poisson brackets arise
as deformations of multiplication on an algebra, that the deformation theory (hence cohomology
theory) of Poisson manifoldsis of interest.

Inthisthesis, we are primarily interested in the question of classification of Poisson man-
ifolds. Our goal is to find effective invariants that determine the possible Poisson structures on a
given manifold, and to study infinitesimal deformations of these structures.

Because of the dual algebraic and geometric nature of Poisson manifolds and their rela-
tions with physics, there are many interesting notions of equivalence for Poisson structures.

Perhaps the most straightforward (and strongest) notion is that of a Poisson isomorphism.
By that one means a diffeomorphism preserving Poisson brackets. It isin general a hopeless propo-
sition to classify Poisson structures on a given manifold up to this notion of equivalence. Indeed,
a Poisson structure induces a certain (singular) foliation of the underlying manifold, whose iso-
morphism class is clearly an invariant of the Poisson structure. Thus one would have to start by
classifying al possible foliations of a certain type, which isavery hard problem.

Fortunately, the situation is much simpler in the case of a two-dimensional manifold. In
Chapter 3, we give a complete set of invariants, allowing one to classify Poisson structures on
a compact oriented surface, having at most quadratic degeneracies at a finite number of isolated
points, and vanishing linearly on the rest of their zero sets. Besides the obvious invariant (the
topology of the embedding of the zero set into the surface), there are numerical invariants of three
kinds. The modular eigenvalues measure the rate of vanishing of the modular vector field at each
guadratic degeneracy. The modular flow times measure the “energy” it takes to move between two
points of quadratic degeneracy along an arc of a zero curve. (If there are no points of quadratic
degeneracy on a zero curve, the corresponding invariant is the period of a modular vector field
around the curve). The last invariant is the regularized volume, which is a certain generalization of
the Liouville volume of a symplectic manifold.

When the Poisson tensor has at most linear degeneracies, we aso compute the Poisson
cohomology, and explicitly describe (in terms of the effect on our invariants) the infinitessimal de-
formations of the Poisson structures associated to the various conomology elements.

Another, very recent, notion of equivalence for Poisson manifoldsisthat of gauge equiva-
lence, introduced by P. Severaand A. Weinstein. Their approach isto interpret Poisson structures as
aparticular case of the so-called Dirac structures on a manifold. Very roughly, the ideaisto replace



the Poisson tensor by the graph of the canonical map from the cotangent bundle to the tangent bun-
dle that it defines. More generally, a Dirac structure gives rise to a certain subbundle of the direct
sum of the cotangent and the tangent bundles. The additive group of differential two-forms on the
manifold acts naturally on the space of all Dirac structures by “rotating” the associated graphs. Two
structures are then called gauge-equivalent, if they belong to the same orbit of the action. It was
shown by Severa and Weinstein that gauge-equivalent Poisson structures are very “close” to each
other (for example, they have the same cohomology); however, this equivalence relation remains
rather mysterious.

Another, algebraically motivated, notion of equivalence of Poisson manifolds is that of
Morita equivalence, introduced by P. Xu. His motivation was to start with the notion of representa
tion equivalence (also caled Morita equivalence) for algebras and arrive, by following the analogy
between Poisson manifolds and non-commutative algebras, to the corresponding notion of Morita
equivalence for Poisson manifolds.

In Chapter 4, we show that gauge equivalence of integrable Poisson manifolds implies
their Morita equivalence, thus relating the two notions of equivalence. To obtain this result, we first
prove that Poisson maps are equivariant with respect to gauge transformations of Poisson structures.

We also show that if two Poisson manifolds are Morita equivalent, their leaf spaces are
homeomorphic; moreover, the modular periods of Morita equivalent Poisson structures around the
corresponding zero curves (on which the Poisson structures vanish linearly) must be the same.

As an example, we classify topologically stable Poisson structures on a two-sphere up to
Morita equivalence. To do so, we utilize our result that the modular periods around the zero curves
and the topology of the leaf spaces are invariants for Morita equivalence. On the other hand, using
the results on classification of structures with linear degeneracies obtained in Chapter 3, we show
that if two topologically stable structures on a compact oriented surface have the same modular
period invariants, but possibly different regularized volumes, they are gauge equivalent. It remains
then to note that the topologically stable structures are integrable to conclude that, according to the
main result of Chapter 4, they are Morita equivalent. The results in Chapter 4 are a part of the joint
work ([BR]) with H. Bursztyn.

Finally, in Chapter 5, we compute the Poisson cohomology for the standard r-matrix
Poisson-Lie structure on J (2). Oneof our resultsisthat the second Poisson cohomology isinfinite-
dimensional. This means that the structure admits an infinite number of linearly-independent in-
finitesimal deformations.



Chapter 2

Preliminaries

We give here a short review of some basic notions in symplectic and Poisson geometry
which will be used in the main part of the thesis. For a more detailed exposition, see, e.g., [Vai94,
Wei98].

2.1 Symplectic manifolds

A symplectic manifold is a smooth (even-dimensional) manifold M with a non-degenerate closed
2-form w € Q%(M). This symplectic form gives rise to an invertible bundle map® : TM — T*M
according to

®(V)(u) = o(vu), vueTM

For a smooth real-valued function f € C*(M) on a symplectic manifold (M, ) the vector field
Xt € X1(M) =T (TM) given by
Xt =& 1(df)

is called the hamiltonian vector field of f. The symplectic form definesaLiebracket {, } : C°(M) x
C*(M) — C*(M) on the space of smooth functions according to

{f.g} =Xf=w(X,Xy), f,geC*(M)
This bracket satisfies the Leibniz identity
{f,oh} =g{f,h}+{f.g}h,  f,gheC (M) (21.0)

and is called the symplectic Poisson bracket.



The simplest example of asymplectic structure is given by " with coordinates (g, p; )L}

and the symplectic form )
wo = Eldqi Adp;. (2.1.2)

=
A diffeomorphism ¢ : (M1,m1) — (M2, ®2) between two symplectic manifolds is called
a symplectomorphism if ¢*w, = w;. According to Darboux’s theorem, the standard symplectic
structure (2.1.2) provides a loca model for any 2n-dimensional symplectic manifold (M, w): for

any point p € M there exists a neighborhood U of p which is symplectomorphic to (", wo).

2.2 Poisson manifolds

2.2.1 Definition

A Poisson structure on a smooth manifold P isaLie bracket on the space C°(P) which satisfies the
Leibniz identity (2.1.1).

The Leibniz identity implies that the Poisson bracket {, } is a derivation in each argu-
ment. Together with anti-symmetry of the bracket, this implies that there exists a bivector field
n € ¥?(P) = T'(A?TP) such that

{f,g} = (m, df Adg), f,geC*(P),

where (, ) : T(A?’TP) x I'(A’T*P) — C*(P) is the canonical pairing. The Jacobi identity for a
Poisson bracket is equivalent to the following condition on the Poisson bivector s

[t 7] =0, (2.2.1)

where [+, -] denotes the Schouten bracket on the space X*(P) of multi-vector fields. Recall that the
Schouten bracket [, ] : ¥3(P) x XP(P) — x¥2tP~1(P) is the unique extension of the Lie bracket of
vector fields and the action of vector fields on smooth functions such that

1. [f,g] =0, f,ge C*(P);
2. [X, f] = Xf, f € C*(P), X € X1(P);
3. [X,Y] isthe commutator bracket of vector fields for X,Y € X1(P);

4. [A,B] = —(-1)2P[B, A, Ac x3Y(P), B xP+1(P);



5. For A€ X31(P), [A,-] isaderivation of degree a of the exterior multiplication on X*(P);

Thesignsin this definition are motivated by superalgebra. Another sign convention for the Schouten
bracket is sometimes (e.g., in [Vai94]) used.
The Schouten bracket satisfies the graded Jacobi identity

[A,[B,C]] =[[A,B],C]+ (—1)®[B,[A,C]] (2.2.2)

for Ac x2t1(P), B € X**1(P) and C € X°t1(P).

A Poisson structure st can be equivalently described in terms of a bundle maprnt: T*P —
TP such that

a(n(p)) =n(a,p),  o,BETP

For a smooth real-valued function f € C*(P) the vector field X; = xt(df) is called the Hamiltonian
vector field of f.

When &t has constant maximal rank (the corresponding bundle mapx is invertible and
the manifold is even-dimensional in this case), it defines a symplectic structure on the manifold
according to

o(X,Y) =n(@1X),77L(Y)). (2.2.3)

The non-degeneracy of the form (2.2.3) follows from the maximality of rank of st and the closedness
of w is equivalent to the integrability condition (2.2.1) on . Conversely, a symplectic structure w
on amanifold P defines a Poisson structure by

(o, B) = 0)(6)_1((1),6)_1([5)). (2.2.49)

In this way, every symplectic manifold is an example of a Poisson manifold.

In general, = may have varying rank. The image of & defines an involutive distribution.
The Poisson structure on the manifold induces a symplectic structure on each of the integral mani-
folds of this distribution. The integral manifolds of this distribution are called the symplectic leaves
of the Poisson manifold.

2.2.2 Local structure of a Poisson manifold.

It turns out that locally in a neighborhood of each point a Poisson manifold looks like a product of
an open subset of the standard symplectic manifold (¥, wo) for some k > 0 and a Poisson man-
ifold whose Poisson bivector vanishes at the point of consideration. More precisely, the following
theorem holds



Theorem. (Splitting Theorem [Wei83]) Let (P, xt) be a Poisson manifold, and let x € P be a point.
Then there exist a neighborhood U of x with coordinates ((q, pi)!‘zl, (yj)'jzl) such that on U we

have ) |
1
n:_zlaq/\api+§_21(Pij(Y)'ayi/\ayj, ¢ij(0) =0.
1= )=
When | = 0, the structure is symplectic, and the theorem reduces to the Darboux’s theo-
rem.

If a Poisson structure on P has constant rank on the neighborhood U, it is possible to
choose coordinates in such a way that qj(y) = 0. If the rank of the Poisson structure on P is
constant, the Poisson manifold (P, xt) is called regular; in this case, the local decomposition of P is
into the product of asymplectic manifold (identified with apiece of each leaf) and alocal transversal
to the symplectic leaves.

2.2.3 Example: Poisson structure on thedual of aLiealgebra.

Let g be a Lie algebra with a Lie bracket [, ], and g* be the dual space of g. Viewing g as the
subspace g C g** C C*(g*) consisting of linear functions, it is possible to extend the Lie bracket on
¢ to a Poisson bracket on C*(g*), by first extending it to polynomials using the derivation property.
Such an extension is unique, and the corresponding Poisson bracket is given by

15,95 = (K, [df (W), dg(w))), f,geC(g"),ned, (2.2.5)

where (, ) is the canonical pairing between g* and g. The Poisson structure (2.2.5) on the dual of
aLie agebrais often caled the Lie-Poisson structure. Its symplectic leaves are the orbits of the
coadjoint action.

2.3 Poisson cohomology

2.3.1 Definition

A Poisson structure ; on a manifold P gives rise to a differential operator ¢, : X*(P) — X**1(P)
of degree one on the space X*(P) of multivector fields on P. This operator was first introduced by
Lichnerowicz [Lic77] and is given by Schouten bracket with mt:

A X = [m,X], Xe€X*(P) (2.3.1)



The condition [x,t] = O together with the graded Jacobi identity for the Schouten bracket implies
that d2 = 0, making (X*(P), d,) into adifferential complex. The resulting cohomology

. ker(dy: x4(P) — x1(P))
He(P) = iy 2 1(P) - 24(P)

is called the Poisson cohomology of a Poisson manifold.
The map Q*(P) — X*(P) defined by the natural extension of 7 : Q*(P) — X(P) accord-
ing to

o1 A Aag = at(og) A Ast(an), ai,...,an € QYP)
is amorphism from the de Rham complex (€2*(P), dgerham) t0 the Poisson complex (X*(P),dy).

Example 2.3.1. Let (M,w) be a symplectic manifold. Sincex = ®!: T*M — TM is an iso-
morphism of vector bundles, the morphism (2*(M), dgernham) — (X*(M), dy) is an isomorphism of
complexes. Therefore, the Poisson cohomology of a symplectic manifold is isomorphic to its de

Rham cohomology: H: (M) ~ Hignam (M).

Example 2.3.2. Let (P,t) be a Poisson manifold with the zero Poisson structure, T = 0. Then
d, = 0 and the cohomology spaces H(P) ~ xK(P) for k=0,...,dim(P) are infinite-dimensional.

In general, the Poisson cohomology combines the properties of the two extreme examples

above.

Example 2.3.3. Let g* be the dual of a Lie algebra g with its Lie-Poisson structure described in
Example 2.2.3. Then, by aresult of J-H.Lu [Lu91], H:(g*) ~ H[.(9,C*(g")), where the right
hand side is the Lie algebra cohomology of g with coefficients in C°(g*). This isomorphism of

cohomology spaces comes from an explicit isomorphism of the corresponding complexes.

2.3.2 Interpretations of conomology spaces.

Let (P,xt) be aPoisson manifold. The Poisson cohomology in low degrees has the following inter-

pretations:

1. IndegreeO, the differential d, assignsto each function f € C*(P) its Hamiltonian vector field:
d.f = [r, f] = X¢. Thend,f = 0iff X;g= {f,g} =0 for al g€ C*(P). Hence, H(P) is
the space of so-called Casimir functions, i.e. those functions which commute with all smooth

functions with respect to the Poisson bracket.
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2. Indegree 1, for avector field X € ¥1(P) we have d, X = —Lx. Hence, H2(P) isthe quotient
of the space of so-called Poisson vector fields (whose flow preserves xt) by the subspace of
Hamiltonian vector fields. Interpreting Poisson vector fields as infinitessmal automorphisms,
and Hamiltonian vector fields as infinitesimal inner automorphisms, one can think of H:(P)
as of the space of outer automorphisms of (P, );

3. Tofind an interpretation of H?(P), consider aformal one-parameter deformation of a Poisson
structure it given by
n(e) =n+e-m+elmo+..., (2.3.2)

where i € X2(P),i > 1 and ¢ is aforma parameter. The condition for (e) to be a Poisson
bivector gives

[n(e),7(e)] = [m, @] + 2¢ - [, ;1] + €2 - (2, ;2] + [mg,71]) +--- = 0. (2.3.3)

Since & is a Poisson structure, [rt,nt] = 0. If dyty = [m,71] = O, then [+ emg, w4 emg] =
O(e?) and m; € X*(P) is called an infinitesimal deformation of m. If m = d;X = —Ly for
some X € X1(P), then w+ ¢ -y is a Poisson bivector and my is called atrivial infinitesimal
deformation of . Therefore, H2(P) is the space of infinitesimal deformations of = modulo

itstrivial infinitesimal deformations.

4. To find an interpretation of H3(P), we return to the equation (2.3.3). Suppose that m is an
infinitesmal deformation of m, i.€. [, m] = 0. The coefficient of ¢2 in (2.3.3) is zero iff

dnnz = —%[nl,nl]. (2.3.4)

The graded Jacobi identity together with [rt,n] = 0, [r,7u] = 0 implies that d[mq,71] = O.
Therefore, [r,7t1] determines a class in H2(P). This class is zero iff (2.3.4) has a solution
with respect to tp. In general, the recursive solution of (2.3.3) involves at the n-th step solving
an equation of the form

d.7tn = quadratic expression inmy, ..., Tn_1. (2.3.5)

Therefore, H3(P) contains the obstructions to extensions of infinitesimal deformations to

formal deformations of higher orders.
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2.3.3 TheMayer-Vietoris Sequence.

One of thetools useful in computations of Poisson cohomology isthe Mayer-Vietoris exact sequence
(see, e.g. [Vai94]). Itsexistence follows from the fact that d, isfunctorial with respect to restrictions
to open subsets. Explicitly, for a Poisson manifold (P, ) and open subsets U,V C P the short exact
sequence

0-X"(UUV)=X"U)eX"(V)=>X"UNV)—=0

leads to along exact sequence in cohomology:

o= HEHUNV) S HAUUV) = HAU)@HE(V) = HEUNV) — ...

2.34 Algebraic structureson H(P)

The cohomology space H;; (P) has the structure of an associative graded commutative algebra and
(after the necessary shifting of the degrees) the structure of agraded Lie algebra, which are obtained

in the following way.

e Since d;(XAY) = d X AY + (—1)%9%XX A d,Y, the wedge product A : ¥X(P) x X' (P) —
2! (P) induces an associative graded commutative multiplication (or cup product) on Pois-
son cohomology: [X]A[Y] = [XAY], for [X], [Y] € H}(P).

e Since d;([X,Y]) = —[d.X,Y] — (—1)%9X[X,d,Y], the Schouten bracket of multivector fields
induces the bracket on H(P): [[X], [Y]] = [[X,Y]] for [X],[Y] € H}(P), which becomes graded
anti-commutative and satisfies the graded Jacobi identity if the degrees of the elements are
shifted by —1.

2.4 Modular vector fieldsand the modular class of a Poisson manifold

The modular flow of a Poisson manifold is a one-parameter group of automorphisms determined
by the choice of a smooth density on the manifold. The modular automorphism group of a von
Neumann algebra A is a 1-parameter group of automorphisms of A, whose class modulo inner
automorphisms is canonically associated to A. Considering Poisson manifolds as “semiclassical
limits’ of von Neumann algebras, A. Weinstein (see [Wei97] and references therein) arrived at the
following definition of the modular vector field of a Poisson manifold.

Let (P,,) be a Poisson manifold and p be a smooth positive density on P. Associated
to this data, there is an operator ¢* : f — divX¢ on the space C*(P) of smooth functions on P.
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The anti-symmetry of the Poisson tensor t implies that ¢! is a derivation of C*(P) and, therefore,
defines avector field on P. This vector field is called the modular vector field of P with respect to u
and is denoted by X*:

L
XHF = divX; = ’;“, f €C*(P)

The modular vector field has the following properties:

1. XH=0iff pisinvariant under the flows of all hamiltonian vector fields of x;

2. For any other f = a-p, a € C*(P) the difference XM — XM is the hamiltonian vector field

X logas
3. Theflow of X" preserves w and W : Lxurt = O, Lxept = 0;

4. X"istangent to the symplectic leaves of maximal dimension.

If X" =0, piscdled an invariant density, and the Poisson manifold is called unimodular. For
example, all symplectic manifolds are unimodular since the Liouville density associated to the sym-
plectic structure isinvariant under al hamiltonian flows (and the corresponding modular vector field
is zero).

Since amodular vector field preserves the Poisson structure and depends on 1 up a hamil-
tonian vector field, it determines a canonical class in the first Poisson cohomology, called the mod-

ular class of a Poisson manifold.

Example 2.4.1. For aPoisson structure on R given by &t = f(X,y)dx A dy, the modular vector field
of mt with respect to the density p = |dx A dy| is the same as the hamiltonian vector field of f with
respect to the canonical non-degenerate Poisson structure mp = dy A dy. Indeed, for any h,

L t (xy)(ayha,—axha,) (AX A Y)

XMh =
dxAdy

- ayfaxh— axfayh — {h, f}nO - X?Oh

2.5 Symplectic groupoids and Morita equivalence of Poisson mani-
folds

25.1 Groupoids

A groupoid over aset Ty isaset T together with the following maps:
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1. A pair of surjective maps l“;& I'o. The map o is caled the source map, and {3 is called the
B
target map of the groupoid.

2. A product m: T® — T (also denoted by m(g,h) = g- h) defined on the set of composable
pairs:
r® = {(g,h) e T xT|p(g) = a(h)}.

This product (multiplication) must satisfy the following properties:
e Foral (g,h) €T, a(g-h) = a(g), B(g-h) =p(h);
e Foral (g,h),(h,k) € T, (g-h)-k=g- (h-k) (associativity);
3. Anembedding ¢ : I'p — T called the identity section such that
e(a(g))-g=9=9-£(p(9))-
4. Aninversionmap 1 : T — I (also denoted by 1(g) = g~*) such that
1(9)-9=2(B(9)), 9-1(9) =e(a(9)).

An element g € T can be thought of as an arrow from x = a(g) € [p toy = B(g) € To.
Example 2.5.1. Any group G isagroupoid over itsidentity element e € G.

Example 2.5.2. For aset Iy, the pair groupoid over Iy isT = I'g x I'g with the following structure
maps:

a(xy) =X B(xy) =Y
(X7 y) : (ya Z) = (X7 Z);
e(X) = (X,X);

(%y) = (y,%);

for al x,y,z € T.
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252 Liegroupoidsand Liealgebroids

A Lie groupoid T" over a manifold Iy is a groupoid over I'y which has a structure of a smooth
manifold such that

1. o, are smooth submersions;
2. m, g, 1 are smooth maps;

For example, a Lie group is a Lie groupoid over its unit element. To any Lie group, one can
associated an infinitesimal object, its Lie algebra. In asimilar way, every Lie groupoid gives rise to
an infinitesimal object: aLie algebroid.

A Lie algebroid over amanifold P is a vector bundle A — P together with a Lie algebra
structure [+, -] on the space I'(A) of sections of A and a bundle map (called an anchor) p: A— TP
such that

1. Theinduced map p : T'(A) — X(P) isaLie algebra homomorphism;
2. Forany f € C*(P) and v,w € T'(A) the following Leibniz identity holds:
[V, fwa = flvWla+ (p(v) - F)w.

In contrast to the situation for Lie algebras (for which there is always a Lie group, “integrating” the
given Lie algebra), there are Lie agebroids which do not come from any Lie groupoids. Those Lie
algebroids for which there isaLie groupoid “integrating” them are called integrable.

For any manifold M, its tangent bundle TM has a standard structure of a Lie algebroid:
the bracket on the sections of TM isjust the commutator bracket of vector fields and the anchor is
the identity map. This algebroid is aways integrable: as an integrating groupoid one can take, for
example, the pair groupoid M x M.

Every Lie groupoid has two associated anti-isomorphic Lie algebroid structures canoni-
cally defined on the normal bundle to its unit submanifold.

25.3 ThelLiealgebroid and the symplectic groupoid of a Poisson manifold

A Poisson structure st on a manifold P defines a Lie algebroid structure on the cotangent bundle
T*P in the following way. The Lie bracket on Q*(P) = I'(T*P) is determined be the condition that
on the exact formsit is given by

[df,dg] =d{f,g}, f,geC*(P)
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and it is extended to all 1-forms using the Leibniz identity
[, 18] = fon, ]+ (=F()- F)B @, p € QH(P), f €C*(P).

The anchor is given by p = —. With these definitions, the bundie mapz : Q(P) — X1(P) isaLie
algebra anti-homomorphism. This Lie algebroid is called the Lie algebroid of a Poisson manifold.

If there is a Lie groupoid T’ % P whose corresponding Lie agebroid is isomorphic to

(T*P, [, ],7), the Poisson manifold P is[j:alled integrable. When the a-fibers (i.e., the fibers of the
map o.: I' — P) are connected and simply-connected, the canonical symplectic structure on the
cotangent bundle T*P induces a symplectic structure Q on I for which the graph {(z,x,y) € T x
I'xT':z=x-y} of the groupoid multiplication is a lagrangian submanifold of (I, Q) x (I, —Q) x
(I',—Q). In this case (I',Q,a,p) is called a symplectic groupoid of the Poisson manifold. The
source map . : I' — P of a symplectic groupoid is a Poisson map, and thetarget map p: T' — P is
an anti-Poisson map. Conversely, a symplectic structure on a groupoid which is compatible with
the groupoid multiplication (i.e., the graph of the multiplication is lagrangian) induces a Poisson
structure on the base of the groupoid so that the source map is a Poisson map.

A symplectic realization of aPoisson manifold (P, ) isaPoisson map ¢ from asymplectic
manifold (Q,Q) to (P,xt). For example, the source map o of a symplectic groupoid of a Poisson
manifold givesits symplectic realization. According to atheorem of Karasev [Kar87] and Weinstein
[Wei83], every Poisson manifold has a surjective submersive symplectic realization. Symplectic
realizations of Poisson manifolds can be considered as an analog of representations of associative
algebras.

254 Moritaequivalence of Poisson manifolds

Definition 2.5.3. ([Xu91a]) Two Poisson manifolds (P, 1) and (P, ;) are called Morita equiva-
lent if there is a symplectic manifold (S Q) and surjective submersionso.: S— R andf:S— P,
such that

° . (87 Q) — (P]_,TE]_) is a Poisson map;
e B:(SQ)— (Py,m) isan anti-Poisson map;
e o and  are complete maps of constant rank;

e o and  have connected simply connected fibers;
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o thefibers of o and p are symplectic orthogonal to each other, ker(Ta.) = ker(TB)*.

Such asymplectic manifold (S Q) iscalled aMorita equivalence bimodule of (R, 1), (P2, 72). The
last property, in particular, implies that {o (C*(Py1)),p*(C*(P2))} = 0. Equivaently, this means
that the map SQ—XP P1 x P, is a Poisson map, where P, x P, is endowed with the product Poisson
structure. An important property of Morita-equivalent Poisson manifolds is stated in the following

Proposition 2.5.4. (see, e.g.,[CWO9]) Thereis a one-to-one correspondence of the leaves of Morita
equivalent Poisson manifolds.

Example 2.5.5. Let P be a connected and simply connected symplectic manifold, and M be a
connected manifold with the zero Poisson structure. Then the manifold M = P x M with the product
Poisson structure is Morita-equivalent to M, with the Morita equivalence bimodule given by S=
PxT*M, and o = (id,pr) : S— PxM, p=pr: S— M. In particular, a connected and simply
connected symplectic manifold is Morita equivalent to a point with the zero Poisson structure.

For integrable Poisson manifolds, Xu [Xu91a] showed that Morita equivalence for Pois-
son manifolds is the natural notion of equivalence in the category of symplectic groupoids. There-
fore, one getsthat for integrable Poisson manifolds, Moritaequivalence isatrue equivalence relation
(in particular, it istransitive).
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Chapter 3

Poisson structures on compact oriented

sur faces.

3.1 Summary of results.

Recently several results were obtained concerning the local classification of Poisson structures on a
manifold. According to the Splitting Theorem (Theorem 2.2.2), the problem of local classification
of Poisson structures can be reduced to the classification of structures vanishing at a point. In
dimension 2, V. Arnold [Arn78] obtained ahierarchy of normal forms of germs of Poisson structures
degenerate at a point (see dso PMonnier [Mon] for a detailed exposition). Using the notion of the
modular vector field of a Poisson structure, J.-P. Dufour and A. Haraki [DH91] and Z.-J. Liu and
P. Xu [LX92] obtained a complete local classification of quadratic Poisson structures in dimension
3. Some results related to local classification of Poisson structures in dimensions 3 and 4 were also
obtained by J. Grabowski, G. Marmo and A.M. Perelomov in [GMP93].

However, not much is known in relation to the global classification of Poisson structures
on agiven manifold (i.e., classification up to a Poisson isomorphism, see [Wei98] for agenera dis-
cussion). In this chapter we prove several global classification results pertaining to certain types of
Poisson structures on surfaces. Even though we always consider an equivalence via an orientation-
preserving Poisson isomorphism, we note that the question of globa equivalence by orientation-
reversing Poisson isomorphisms can be reduced to the orientation-preserving case in the following
way. Letv: X — 3 be an orientation-reversing diffeomorphism of a compact connected oriented
surface . Two Poisson structures i, ¥ on X are globally equivalent via an orientation-reversing dif-
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feomorphism iff v, and =’ are globally equivalent via an orientation-preserving diffeomorphism.
In Section 3.2 we consider the Poisson structures whose degeneracies are at most linear
(thesimplest structuresin Arnold’'slocal classification). We call such structures topologically stable,
since the topology of their zero set is preserved under small perturbations. The set of such structures
is dense in the vector space of al Poisson structures on a given surface. The main result (Theorem
3.2.13) of Section 3.2 is a complete classification of these topologically stable structures up to an
orientation-preserving Poisson isomorphism. In Section 3.2.7 we compute the Poisson cohomol ogy
of a given topologically stable Poisson structure vanishing linearly on n digoint smooth curves
on a compact oriented surface = of genus g. The zeroth cohomology (interpreted as the space of
Casimir functions) is generated by constant functions and is one dimensional. The first conomology
(interpreted as the space of Poisson vector fields modulo Hamiltonian vector fields) has dimension
29+ n and is generated by the image of the first de Rham cohomology of = under the injective

homomorphism 7 : Hjerpam(Z) — Hi(2) and by the following n vector fields:
X®(xt) - {bump function around y;}, i=1,...n.

The second cohomology is generated by a non-degenerate Poisson structure 5 on X and n Poisson
structures of the form

mi = x- {bump functionaround y;}, i=1,...,n.

Each of the generators of the second cohomology corresponds to aone-parameter family of infinites-
imal deformations of the Poisson structure which affects exactly one of the numerical classifying
invariants. The deformation = — 7+ ¢ - mp changes the regularized Liouville volume. For each
i =1,...,n, the deformation & — 7 + ¢ - i changes the modular period around the curve y. This
shows that the number of numerical classifying invariants (n+ 1) for 4(X)) equals the dimension
of the second Poisson cohomology, and is, therefore, optimal.

As an example, we consider the classification of topologicaly stable Poisson structures
on the sphere (Section 3.2.8) and describe the moduli space of such structures up to Poisson iso-
morphisms.

In Section 3.3, we explain how our techniques can be used to provide effective classifi-
cation results for Poisson structures with zeros of higher order. In particular, we give a complete
classification of Poisson structures st which vanish linearly on nearly al points in their zero set,
except possibly having quadratic degeneracies at a finite number of points. As an example, we
consider the structures on two-torus defined by a height function.
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3.2 A classification of topologically stable Poisson structureson acom-

pact oriented surface.

In this section we will find a compl ete classification of Poisson structures vanishing at most linearly
on a given compact oriented surface. Locally these structures are the simplest in the Arnold’s

hierarchy.

3.21 A classification of symplectic structures

According to Darboux’s theorem, al symplectic structures on a given manifold M are lo-
caly equivalent: for a symplectic form o and a point p € M there exist a coordinate system
(%, X1, ,%n, Y1, ,Yn) centered at p such that w = S, dx A dy; on % . Therefore, the dimen-
sion of the manifold isthe only local invariant of a symplectic structure.

Definition 3.2.1. Two symplectic forms wg and w; on M are globally equivalent if there is a sym-
plectomorphism ¢ : (M, wg) — (M, m1).

In certain cases the following theorem of Moser allows one to classify symplectic forms

on amanifold up to global equivalence:

Theorem 3.2.2. (Moser, [M0s65]) Let wp and w; be symplectic forms on a compact 2n dimensional
manifold M. Suppose that [wg] = [w1] € HZzram(M) and that the 2-form ax = (1 —t)wg +twy is
symplectic for eacht € [0,1]. Then thereis a symplectomorphism ¢ : (M, ap) — (M, ®1).

The total Liouville volumeV (w) = [\, w A --- A w associated to a symplectic structure w

n
on M isaglobal invariant. That is, if symplectic forms ey and w, on M are globally equivalent,
their Liouville volumes are equal, V (w1) =V (w2).
In the case of acompact 2-dimensional manifold Moser’s theorem implies

Corollary 3.2.3. On a compact connected surface X two symplectic structures ap, w1 are globally

equivalent iff the associated Liouville volumes are equal: [ wo = [5 1.

For completeness, we sketch a proof of the corollary (the proof of Moser’'s theorem is
essentially the same). Theideaisto find atime-dependent vector field X, whose flow at timet = 1
would take wp to w1. Since [ w1 = [ w2, the class of wg — w1 in the second de Rham cohomology

istrivial. Hence wg — o1 = dy for a1-form p. Then for X = —&; 1(u) we have

Ly o = d'XtU)t —{—Ix[d(x)t = d'XtU)t = —((Do—(Dl)
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Therefore,

d(JJt
L —=0.
Xt

Let p; be the flow of the time-dependent vector field X. Since
d . . da
a(Pt o) = Py ('—X[U)t + F) =0,

pfox is constant and hence equal to piwg = wg for al t € [0,1]. Thusin particular pjw; = wp, as
desired.

3.2.2 Topologically stable Poisson structures

Let Z be a compact connected oriented 2-dimensiona surface. Since there are no non-trivia 3-
vectors, any bivector field gives rise to a Poisson structure. Thus, Poisson structures on X form a
vector space which we denote by I1(X).

Forn > 0let %,(Z) C II(Z) be the set of Poisson structures x on = such that

e the zero set Z(w) = {p € Z|n(p) = 0} of & € % (X) consists of n smooth digoint curves
Y1(m), -5 yn(m);

e 1t vanishes linearly on each of the curvesy(x), - - - ,yn(m);

In particular, % () isthe set of symplectic structureson 2. Let 4(2) = | |50%(Z). The symplectic
leaves of a Poisson structure & € ¢4 (X) are the pointsin Z(x) = | vi (the O-dimensional leaves)
and the connected components of X\ Z(rt) (the 2-dimensional |eaves).

Unless indicated otherwise, throughout the section we denote by ap a symplectic form
compatible with the orientation of X and by my the corresponding Poisson bivector. Since any w can
be written ast = f - iy for afunction f € C*(X), we have I1(Z) = C*(Z) - mp. The subspace %,(X)
corresponds in this way to the product .7%,(X) - o, Where .%,(X) is the space of smooth functions
for which O isaregular value and whose zero set consists of n smooth disjoint curves.

Since .7 (2) = |n>0-7n(Z) is the set of smooth functions intersecting 0 € R transver-
sdly (see, e.g., [GGT3, Def. 4.1]), according to the Elementary Transversality Theorem (see, e.g.,
Corallary 4.12 in [GGT73]), % (Z) is an open dense subset of C*(X) in the Whitney C* topol ogy.
Therefore, we have the following

Proposition 3.2.4. The set of Poisson structures ¢ (X) is generic inside of II(Z), i.e. ¥(Z) isan
open dense subset of the space I1(X) of all Poisson structures on £ endowed with the Whitney C°

topol ogy.
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Of course, for some sets of digjoint curves on a surface there are no functions (and, there-
fore, Poisson structures), vanishing linearly on that set and not zero elsewhere. For example, such
is the case of one non-separating curve on a 2-torus.

We will use the following definition

Definition 3.2.5. Two Poisson structures iy and st on an oriented manifold P are globally equiva-
lent if there is an orientation-preserving Poisson isomorphism ¢ : (Pmm) — (P,mt2).

The main goa of this section isto classify the set ¢4(X) of topologically stable structures
ion a compact oriented surface X up to global equivalence.
First, we will need the following

Lemma 3.2.6. A topologically stable Poisson structure «t € %,(X) defines an orientation on each
of its zero curvesy; € Z(x), i =1,...,n. Moreover, thisinduced orientation on the zero curves of nt
does not depend on the choice of orientation of X.

Proof. Let wp be a symplectic form on X, and mp be the corresponding Poisson bivector. Since
n= f-mpand f vanishes linearly on each of y € Z(xt) and nowhere else, f has a constant sign on
each of the 2-dimensional symplectic leaves of w. In particular, f has the opposite signs on two
leaves having a common bounding curve . This defines an orientation on v; in the following way.
For a non-vanishing vector field X tangent to the curve y, we say that X is positive if wg(X,Y) >0
for all vector fieldsY such that Ly f > 0. We say that X isnegative if —X is positive.

Suppose that X is a vector field tangent to v and positive on vy; with respect to the chosen
orientation of 2. If ay, isasymplectic form inducing the opposite orientation on 2, then of, = —a- wo
witha € C*(Z), a > 0,andn = —a- f -mp. Sincefor Y’ such that Ly'(—a.- f) > OwehaveLy f <O,
it follows that wo(X,Y’) < 0 and, therefore,

0o(X,Y') = —a- wp(X,Y’) > 0.

Hence, if X is positive on y; with respect to a chosen orientation of X, it is also positive on y with
respect to the reverse orientation of =. O

We will refer to this orientation of v, € Z(it) as the orientation defined by .

3.2.3 Diffeomorphism equivalence of sets of digoint oriented curves

We will use the following definition
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Definition 3.2.7. Two sets of smooth disjoint oriented curves (yi,...,yn) and (y},...,Y,) ON acom-

pact oriented surface X are called diffeomorphism equivalent (denoted by (11,...,vn) ~ (Y1,---,Yh))

if there is an orientation-preserving diffeomorphism ¢ : £ — X mapping the first set onto the sec-
ond one and preserving the orientations of curves. That isto say, for each i € 1,...,n there exists
j €1,...,nsuch that o(yi) =vj (as oriented curves).

Let ¢n(Z) be the space of n digoint oriented curves on X and 9,(Z) be the moduli
space of n digoint oriented curves on £ modulo the diffeomorphism equivalence relation, 9}(2) =
%n(X)/ ~. For aset of digoint oriented curves (y1,--- ,vn), let [(y1,---,yn)] € MMn(Z) denote its
class in the moduli space M,y (). If ||,y = Z(x) for a Poisson structure m, we will aso write
[Z(r)] € 9N, to denote the class of the set of curves (yi,...,yn) taken with the orientations defined
by .

The topology of the inclusion Z(xt) C X and the orientations of the zero curves of atopo-
logically stable Poisson structure t € ¢(X) are invariant under orientation-preserving Poisson iso-
morphisms. In other words, if &t, @ € ¥,(X) are globally equivalent, [Z ()] = [Z(()] € Mn(Z).

3.24 Themodular period invariant

Let t € % (2) be atopologicaly stable Poisson structure on a surface =. A symplectic form ap
compatible with the orientation of X is also a volume form on Z. Let X“° be the modular vector
field of st with respect to wg. Since the flow of X®“° preserves m, it follows that the restriction of X®°
to acurvey; € Z(x) istangent toy; for eachi € 1,...,n. Since for a different choice of, of volume
form the difference X — X0 is a hamiltonian vector field and, therefore, vanishes on the zero set
of m, it follows that the restrictions of X®° to yq,---,yn are independent of the choice of volume
form wo. It is apparent from the definition of the modular vector field that it is unchanged if the
orientation of the surface is reversed.

Suppose that it € TI(X) vanishes linearly on a curve y. On a small neighborhood of v,
let 6 be the coordinate along the flow of the modular vector field X0 with respect to wg such that
X® = gg. Since & vanishes linearly on vy, there exists an annular coordinate neighborhood (U, z,0)
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of the curve y such that

U ={(z0)]1d <R [0, 24}, (321)
y={(26)]2=0}, (322)
wolu =dzAd6, (3.2.3)
nt|y =Cz9;Adg, C>0. (3.2.4)

Using this coordinates, it is easy to verify the following

Claim 3.2.8. The restriction of a modular vector field to the zero curve y € Z(xt) (on which the
Poisson structure vanishes linearly) is positive with respect to the orientation on y defined by = (see
Claim 3.2.6 for the definition of this orientation).

Definition 3.2.9. (see also [Roy]) For a Poisson structure = € TI(X) vanishing linearly on a curve

y € Z(t) define the modular period of x around vy to be
T,(r) = period of X“°|,,

where X0 is the modular vector field of w with respect to a volume form ap. Since X°|, is

independent of the choice of ax, the modular period is well-defined.

==

Using the coordinate neighborhood (U, z 6) of the curvey, we obtain

(3.2.5)

wherec > 0isasin (3.2.4).
It turns out that the modular period of the Poisson structure (3.2.4) on an annulus U isthe

only invariant under Poisson isomorphisms:

Lemma3.2.10. LetU(R)={(z0)||zZ <R 6 €[0,2n]} andU'(R) ={(Z,0')||Z| < R, 6’ € [0, 2n]}
be open annuli with the orientations induced by the symplectic forms oy = dzAd6 and wp = dZ A
do’ respectively. Let @ = czd, A dg,c > 0 and &’ = ¢'Zdy A dg, ¢ > 0 be Poisson structures on
U(R) and U’(R) for which the modular periods around the zero curves y = {(z8)|z = 0} and
v ={(Z,0")|Z = 0} are equal, T,(w) = T,(x). Then there is an orientation-preserving Poisson
isomorphism® : (U(R), n) — (U'(R), x').

Proof. Since the modular periods are equal, c=¢. Themap ® : (U(R),x) — (U'(R),x') given by

®(z,0) = (%z, 6)
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is a Poisson isomorphism since %z- %62/\ dg = 207\ dg. It is easy to see that @ preserves the
orientation. O

The fact that this Poisson isomorphism allows us to change the radius of an annulus will
be used later in the proof of the classification theorem.

3.25 Theregularized Liouville volumeinvariant

To classify the topologically stable Poisson structures ¢(X) up to orientation-preserving Poisson
isomorphisms, we need to introduce one more invariant.

Letw = (7"t @7 1) () bethe symplectic form on =\ Z(;) corresponding to (the restric-
tion of) t € 4,(X). The symplectic volume of each of the 2-dimensional symplectic leavesisinfinite
because the form w blows up on the curves - - - ,yn € Z(7t). However, there is a way to associate
a certain finite volume invariant to a Poisson structure in ¢(X), given by the principal value of the
integral

V(x) = PV. /zoo.

More precisely, let h € C*(Z) be afunction vanishing linearly onyi, - - - .y, and not zero elsewhere.
Let . bethe set of 2-dimensiona symplectic leaves of rt. For L € £ the boundary dL is aunion of
curvesyi,, ..., vi, € Z(x). (Notethat aleaf L can not approach the same curve from both sides). The
function h has constant sign on each of theleavesL € .Z. For L € . and ¢ > 0 sufficiently small,
let

LE(h) =LNh 1((—%,—¢)U (g, )), 9°L(h) =LNh Y(—g,¢)

Define
Vi () = / 0= / o.
n h>¢ ng Lt (h)

Theorem 3.2.11. ThelimitV(x) = lim,_,oV; (7) exists and is independent of the choice of f h.

Proof. Fori=1,....n,letU;={(z,6i)||z] <R, 6; € [0,2x]} beannular coordinate neighborhoods
of curvesy; such that the restriction of t on U, is given by Ty, = CiZdz Adg;, G >0 andUiNZ(xn) =
vi. Let % =L, Ui

Let h and h be functions vanishing linearly on the curvesy, - - - , y» and not zero elsewhere.
On U, let Hy, (z) = h(z,6;), I—~|ei(zi) = ﬁ(zi,ei). Shrink the neighborhoods U; (if necessary) so that
the maps (z,6;) — (He,(z),6i) and (z,6;) — (He,(z),6;) are invertible. Let ¢ > 0 be sufficiently
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small so that ¢°L(h), 3L (h) € %. OnU; define

0e(6) = Hg M(e), g« (61) = Hy ' (—¢),

gs(ei) = He_il(s)a gfs(ei) = |:|e_il(—8),
sothat gy, = {g:(6)|6i € [0,2n]} = Uinh Y(£e), §, = {Gc(61)]6i €[0,21]} =Uinh L (Le) are
smooth curves in the neighborhood of y. Then the volume Vi () can be represented as a sum of

the integral of w over X\ % (which isindependent of ¢€) and of integrals of w over some open sets
inside of (U;,z,6;)i=1,...,n:

n  ,2x g_(6) R dz
w0 = fom 30L&
h () |h\>aw 21 0 -R g(0))/ CiZ ' z\%w

gfs(ei)
gs(ei)

€ € 4 1 an
VE () — Vi (e :/ w—/ w=) — n
()~ Vh () Ifil>e Ih|>¢ ,Zlci 0

Since Hy, and Hg, are smooth invertible functions, the limits

gfs(ei) gls(ei) . gs(ei) ‘

Ge(61) 9-(61) Ge(6)

exist and equal to 1. Thus, V(xt) = lim._,oV{$ () exists and is independent of the choiceof h. [

‘dei + w;

\%
G-(61) Q(61)
g—s(ei) GS(ei)

‘dei;

lim
e—0

b

e—0

Remark 3.2.12. Thefact that the principle value of theintegral [5 w iswell-defined is a consequence
of the following more general statement (having essentially the same proof). Let M be a compact
manifold, and let Q be a volume form on M. Let furthermore f be a function, which has zero
as aregular value. Then one can define the principal value of the integra [, % in away that is
independent of the choice of coordinates. This seems to be well-known to specialists, but we could
not locate a precise reference.

Hence V(x) € R is a global equivalence invariant of a Poisson structure & € ¢(X) on
a compact oriented surface which we call the regularized Liouville volume since in the case of a
symplectic structure (i.e., & € %(2)) it isexactly the Liouville volume. If we reverse the orientation
of X, the regularized volume invariant changes sign.

3.2.6 Theclassification theorem

Theorem 3.2.13. Topologically stable Poisson structures ¢ (X) on a compact connected oriented
surface X are completely classified (up to an orientation-preserving Poisson isomorphism) by the
following data:
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1. The equivalence class [Z(xt)] € 9, () of the set Z(xt) = |JiL,vi of zero curves with orienta-
tions defined by ;
2. The modular periods around the zero curves {y — T, (n)| i =1,...,n};
3. Theregularized Liouville volumeV (x);

In other words, two Poisson structures i, @ € %,(Z) are globally equivalent if and only if their sets
of oriented zero curves are diffeomor phism equivalent, the modular periods around the correspond-
ing curves are the same, and the regularized Liouville volumes are equal.

To prove this result we will need the following

Lemma 3.2.14. Let D be a connected 2-dimensional manifold, and oy, w» be two symplectic forms
on D inducing the same orientation and such that

o w1|p\k = w2|p\k for acompact set K C D;
* [po1—w2=0;
Then there exists a symplectomorphism ¢ : (D, ) — (D, w2) such that ¢|p\x = id.

Proof. (Moser'strick). Let ax = w1 (1—1t)+w2-t fort € [0,1]. Since wy|p\k = wz|p\k, the form
A(w) = w2 — w1 iscompactly supported (supp(A(w)) C K). Since [ w1 —wy = 0, the class of A(w)
in the second de Rham cohomology with compact support I—EleRham’compact(Ko) is trivial (here K°
denotes the interior of K). Hence A(w) = di for a1-form p € Gorpae (K°). Then for v = —& (W)

we have
Ly, ¢ = diy, o + Iy dax = diy,0r = —A(w).
Therefore,
d
Lo + % ~0 (3.2.6)

Let p; be the flow of the time-dependent vector field . Since
d . . do
a(pt(ﬂt) =Pt (Lvt‘”t + d—tt> =0,

pfoy = wy for al t € [0,1]. Since v = 0 outside of K, it follows that pt|p\k = id. Define ¢ = p;.
Then gp\ = id and ¢* w2 = piwz = w; as desired. 0

We now have all the ingredients for the proof of the classification Theorem 3.2.13.
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Proof. (of Theorem 3.2.13) Theclass [(y1,- - ,yn)] € Mn(X), the modular periods {y; — T, (m)|i =
1,...,n} and the total volumeV () are clearly global invariants of a Poisson structure in 4(X).

Suppose that for Poisson structures wt, ¥ € %,(2) we have [Z(n)] = [Z()] € M (T).
Since this implies that there exists an orientation-preserving diffeomorphism ¢ € Diff(X) such that
@(Z(n)) = Z(') (where Z(x) is considered as the set of oriented curves), we may from now on
assume Z(n) = Z(n') = L%y vi.

Foreachi = 1,...,n, let U(R) = {(z,0/)|[z] < R} and U/(R) = {(Z,6))| || < R} be
annular neighborhoods of the curvey, such that

7ty = GiZdz A dg,, J'E/|Uir = CiZ‘{Gzir/\Gei/.

Theradii R and R should be small enough so that U (R;) N Z(xt) =i, U/ (R) N Z () = y].

Let =L Ui(R), Z' = |1 U/(R)). SinceV () =V (x'), we can choose the radii
Ri, R of the neighborhoods U, (R;), U/ (R)) in such away that for each 2-dimensiona leaf L € . the
following non-compact symplectic manifolds

DIL)=L\Z ad D/(L)=L\Z

have equal (finite) symplectic volumes: [p)w = [, o', where o (respectively, ') is the sym-
plectic form on =\ Z(rt) corresponding to the Poisson structure r (respectively, t.)

Consider the coverings of (£,7t) and (2,7) by the sets {(D(L), Ui(R))|i=1,....,m L €
Z} and {(D'(L),U/(R)|i =1,...,n; L € £} respectively. Since T, (x) = T, () and the orien-
tations of y; defined by = and ' coincide, by Lemma 3.2.10, there exist orientation-preserving
Poisson isomorphisms v : Ui(R)) — U/(R/) of these neighborhoods given in local coordinates by
Pi(ri, 6;) = (%ri, ei). Choosing asmall ¢ < R and &/ = ¢; - % we obtain Poisson isomorphisms
i+ Ui(R) — U{(R)) mapping Ui (R)) \ Ui (R — &) onto U/ (R) \U{ (R — ).

The Poisson isomorphisms y, ..., map LN % onto LN%'. Therefore, we can extend
Y1, ,Pp to adiffeomorphism W of the surface X (first extend it as a diffeomorphism of class C
and then smooth it out to a C*-diffeomorphism; see [Mun63] for details on smoothing maps) such
that W preserves the oriented zero curves and the 2-dimensional leaves. (Without the assumption
that & and o’ define the same orientation on y;, i = 1,...,n it might happen that (for y, € dL) the
image of L NU; under v does not belong to L. As a result, it might not be possible to extend
Y1,...,Pn to adiffeomorphism ¥ € Diff(X), asin Example 3.2.16 below).

Let % =" Ui(R — &), Z' = | I",U/(R —¢!). For L € .#, consider the non-compact
connected manifold D = D/(L/) = L\@vwith symplectic structures an = w|g and wz = P*o'|3.
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Since by construction w5,k = 02|k for K =D(L) N% and [5w1 = [z, theresult now follows

by application of Lemma3.2.14toD(L) for each L € .Z. O

Remark 3.2.15. Given n,’' € %,(2), one can ask if (£,x) and (2, x) are equivalent by an arbitrary
(possibly orientation-reversing) Poisson isomorphism. Fix an orientation-reversing diffeomorphism
v:3 — X. Then x and ' are equivalent by an orientation-reversing diffeomorphism if and only if
v, and ' are equivalent by an orientation-preserving diffeomorphism. It is not hard to see that
Ty () = Ty (varr) for @l v € Z(r) and V(r) = =V (v.r). Thus the question of equivalence by
orientation reversing maps can be reduced to the orientation-preserving context of Theorem 3.2.13.

Example 3.2.16. Let w and o' = —w be two symplectic structures on a compact oriented surface.
Then w and o’ are Poisson isomorphic by an orientation-reversing diffeomorphism, but not by an
orientation-preserving diffeomorphism.

There are, of course, similar examples of structures with non-trivial sets of linear degen-
eracy. Consider the unit 2-sphere $ with the cylindrical polar coordinates (z,6) away from its
poles. Let wg = dzA df be asymplectic form on S with the corresponding Poisson bivector m. Let
n, ' € %(S) be the Poisson structures given by

n=(z—a)(z—b)d;Ndy, —1l<b<a<l

and @’ = —nt. Choose a and b in such away that V() =V () =0. Lety1 = {(z,08)|]z=a} and
v2 = {(z,8)|z= b} be the zero curves of x, . On both y; and vy, the orientations defined by =
and «’ are opposite to each other. Let Loy = {(z,0)|a < z< 1}, Lmiade = {(20)|b < z< a} and
Lpottom = {(z,0)] —1 < z < b} be the 2-dimensional leaves (common for both structures). The
structures t and 7' can not be Poisson isomorphic in an orientation-preserving way since such adif-
feomorphism would have to exchange the two-dimensional disks Ligp and Lyottom With the annulus
Lmidde: ON the other hand, ($,x) and ($,x') are clearly Poisson isomorphic by an orientation-
reversing diffeomorphism (z,0) — (z,—0).

3.2.7 Poisson cohomology of topologically stable Poisson structures

In this section we compute the Poisson cohomology of agiven topologically stable Poisson structure
on a compact connected oriented surface and describe its relation to the infinitesimal deformations
and the classifying invariants introduced above. (For generalities on Poisson cohomology see, e.g.,
[Vaiod]).

First, recall the following
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Lemma 3.2.17. (e.g., Roytenberg [Roy]) The Poisson cohomology of an annular neighborhood
U={(z9)||7 <R 6 €[0,21]} of the curve y on which my = 23, A dg is given by

HO(U,my) = span(1) =R
Hi(U,my) = span(do, zd,) = R?
HZ(U,my) = span(zd; A dg) = R

Thus, HY(U) is generated by constant functions. The first cohomology H!(U) is gener-
ated by the modular class (dy is the modular vector field of my with respect to wp = dzA d6) and
the image of the first de Rham cohomology class of U (spanned by d6) under the homomorphism
7 Hignam(U) = H(U), which isinjective in this case. The second cohomology is generated by
my itself.

Let T € 4,(Z) be atopologically stable Poisson structure on X. Since a Casimir function
on X must be constant on all connected components of X\ Z(x), by continuity it must be constant
everywhere. Hence HO(Z) = R = span(1).

We will (inductively) use the Mayer-Vietoris sequence of Poisson cohomology (see, eg.,
[Vai94]) to compute H}(Z) and H2(X).

Let U; be an annular neighborhood of the curve y € Z(xt) such that Uy N Z(xt) = v;. Let
Vo = 2 and define inductively M =Vi_1 \ yi fori = 1,...,n. Consider the cover of \{_; by open sets
U; and V. To compute the first conomology, we consider the first two rows of the Mayer-Vietoris
exact sequence of Poisson cohomology associated to this cover:

: i 3
0— HoVi_1) B HOU) @ HO(V) = HOUi NVA) =

1 61

! ﬁll i
= HV_1) D HEU) @ HE V) B HEUinv) 2
By exactness, H}(Vi 1) ~ 82(HO(U; NV;)) @ kerft, where
B (dus VW) = [l —Viurw X € XE(U), v € XL(V), dey = 0, dev = 0,

and [X]w denotes the class of the (Poisson) vector field X |y in HY(W), for W = U;, V..
By Lemma 3.2.17, H(U;) =~ fi(Higpam(Ui)) @ span(de,) ~ R?. Since U; NV, is a union
of two symplectic annuli, H}(U;j NVi) = ft(Higpam (Ui NVi)) = R2. Therefore,

Hz(Vi—1) = 87 (H(Ui NVi)) @ span(ae, ) & ker (BH&(H&eRham (ui))@Hg(vi)> : (3.27)
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Consider also the long exact sequence in de Rham cohomology associated to the same cover
0 & 0 0 b o a4
0 — Hgernam(Vi-1) = Haernam (Vi) @ Haernam (Vi) = Haerham (Ui Vi) —
G bt d
— Haernam(Vi~1) = Haernam(Ui) © Hdernam (Vi) = Haernam (Ui NV) =
By exactness, we have Hignam(Vi—1) ~ do(HSrnam(Ui NVi)) @ kerbl.  Since Vi, = 2\ Z(n) is
symplectic, H: (Vi) = (Hgegpam (V). This together with H2(Up) ~ HSgram(Un), H2(UnNV;) =
7(H3mham (Un NVh)) implies Im(89) = &(Im(dg)) and, therefore,

ker (ﬁn 1lz(H (un)@H,}(vn)> = fi(ker(bf_y))-

deRham

Hence, from (3.2.7) it follows
Hz (Va-1) = &(Im(di)) & span(dp,) @ T(Hgernam(Va-1))-

Fori = n— 2, we have

HE (Vi-2) = SPaN(06, 1) ©KeF (B 1|zt (U 116 (Ko )05 ) =
= span(dg,_,) ® pan(da,) @ T Hgernam (Vn-2))-

Working inductively (fromi=n—1toi = 0), we obtain

n
Hz(£) ~ R™2 = D span(dn,) ® Hiernam(E),
i=1

where g isthe genus of the surface X.

To compute the second Poisson cohomology, it is more convenient to consider the cover-
ing of by V =V, andU = | |, U;. The second and third rows of the associated Mayer-Vietoris
exact sequence are given by

1 1
SHYE) S HY W) e H V) B
2 2
S H2(3) S HRU) @ HA(V) B

1
Hiunv) S
H2UNV) = 0.

Since H2(U NV) = 0 and H2(V), it follows that

e . . Hi(UNV)
H2(Z) ~ Im(s )@)HR(U)—M( ({1 ()@HT%(V))>'

We have H(U NV) =~ t(Hignam(U NV)), HA(U) ~ fi(Hignam(U)) @ span (dey, ..., dg,), HE(V) ~
7(Hdernam (V). Therefore, B (Hz(U) @ H(V)) = B*((Hernam(U ) © T(Hgernam(V))) - We obtain

2/ 7(Hiernam(U NV))
Ma(z) =9 (Bl( A rpem(V)) @n(HdeRhan(vn) ' (3:28)
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Consider the Mayer-Vietoris exact sequence for de Rham cohomology associated to the

same cover:
1 al 1 1 bl 1 dt
— Haernam (£) = Hgernam(Y) @ Haernham (V) = Haernam(U NV) =
2
- ngRham(Z) i> ngRham(U) ©® ngRham(V) - ngRham(U ﬂV) —0
Thisimplies

Hiegnem(U NV) ) _ (32.9)

Héernam(2) = di (bl(H&eRham(U) ® Hiernam(V))

Comparing (3.2.8) and (3.2.9), we obtain
H2(2) = R™! = H2(U) @ fi(Hmnan()) = R™.
where the first n generators are the Poisson structures of the form
wj = - {bump function around the curvey}, i=1,...,n (3.2.10)

and the last generator is the standard non-degenerate Poisson structure i on =. Therefore, we have

proved the following

Theorem 3.2.18. Lett € %,(X) be atopologically stable Poisson structure on a compact connected
oriented surface = of genus g. The Poisson cohomology of rt is given by

HO(Z,m) = span(1) =R
Hr(Z,m) = span(X®(my), -+, X“°(7tn)) @ 7(Hgemnam(Z)) = R™%9

HI%(ZPTE) = Span<J'C]_, e ,TEn> D J:‘c(ngRl’]&lm(Z)) = Span<n0; P 731:”) = Rn+la

where g isa non-degenerate Poisson structureonX , m, i = 1,...,nisaPoisson structure vanishing
linearly on y; € Z(xx) and identically zero outside of a neighborhood of y; X®°(s;) is the modular

vector field of ; with respect to the standard symplectic form ayp on X.

Notice that the dimensions of the cohomology spaces depend only on the number of the
zero curves and not on their positions. In particular, the Poisson cohomology as a vector space does
not depend on the homology classes of the zero curves of the structure. Recall (see, e.g., [Vai94])
that the Poisson cohomology space H:(P) has the structure of an associative graded commutative
algebrainduced by the operation of wedge multiplication of multivector fields. A direct computation

verifies the following



32

Proposition 3.2.19. The wedge product on the cohomology space H (2, =) of a topologically stable
Poisson structure on X is determined by

YA =B, [ € Hi(E )
X ()] A X®(mtj)] =0, i,j=1,...,n
~ 1
X8 A ] = X)) = (-5 [ @)l
R A ()] = K(@AT),

AHZ(E,m) =0, [x] € Hi(Z)@HI(Z),

where o, o € QY(Z), da=do’ = 0.

(Here bar denotes the class of its argument in the de Rham cohomology and the brackets
[ ] denote the class in the Poisson cohomology). We should mention that the wedge product A in de
Rham cohomology is dua to the intersection product in homology [BT82].

This computation allows one to compute the number of zero curves y, which determine
non-zero homology classes. To see this, we note that [r] € H1(Z) AHL(Z) iff there exists a 1-form
o such that ka a # 0, i.e, yk isnon-zero in homology. If X is not a sphere, I—I&eRham(Z) iS non-zero.
Since the intersection form on Hc}eRham(Z) is non-degenerate (implementing Poincare duality), it
follows that Hignam (Z) A Hisrnam(Z) # 0. Thus in the case that = is not a sphere, H(2) AHL(Z)
has the set

{mo} U {m : yx isnontrivial in homology }

as a basis and so the number of curves y, which are non-trivia in homology, is just dim(H:(Z) A
H1(Z)) — 1. Inthe case that X is a sphere, all v are of course topologically trivial.

Proposition 3.2.20. The Schouten bracket on the cohomology space H:(Z,xt) of a topologically
stable Poisson structure on X is determined by

[He(2),Hs(2)] =0

[H(2),Hz(£)] =0

[(dep(vi)]; [mol] = —[mo, 1,j=1,...,n
[®(de(v)); [x]] =0, i,j=1,....n
[X*(m)], HE ()] =0, i=1,...,n
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The generators of H2(Z, ) can beinterpreted asinfinitesimal deformations of the Poisson

structure st which change the classifying invariants.

Corollary 3.2.21. Let © € %(Z), Z(x) = LliL1vi- The following n+ 1 one-parameter families of
infinitesimal deformations form a basis of H(Z, x)

(1) t— w+¢-mp;

@Qnrn—na+e-mi=1...,n;

Each of these defor mations changes exactly one of the classifying invariants of the Poisson
structure: «t — 1+ ¢ - mp changes the regularized Liouville volume and &t +— it + € - 7 changes the
modular period around the curvey for eachi=1,...,n.

3.2.8 Example: topologically stable Poisson structures on the sphere

It would be interesting to describe the moduli space of the space of topologicaly stable Poisson
structures on a compact oriented surface up to orientation-preserving diffeomorphisms. The first
step would be the description of the moduli space 97%, of n digoint oriented curves on . However,
this problem is already quite difficult for a general surface. Here we will in detail consider the
simplest example of topologicaly stable Poisson structures on the sphere.

Let (y1,---,yn) be a set of digoint curves on $. Let ., ,.% 1 be the connected
components of $\ (y1,---,yn). To the configuration of curves (y,---,yn) We associate a graph
I'(y1,---,yn) inthe following way. The vertices w, ..., V, of the graph correspond to the connected
components .71, ...,-». Two vertices v; and v; are connected by an edge & iff yy is the common
bounding curve of the regions .4 and .7].

Claim3.2.22. For aset of digoint curvesyy,...,yn on & the graph T'(yy,...,yn) isatree.

Proof. Letg € E(I'(y1,...,yn)) be an edge of the graph corresponding to the curvey. Since §\ v;
isaunion of two open sets, it followsthat T'(yi,...,yn) \ & (i.e., thegraph T'(y1,...,yn) with the edge
g removed) isaunion of two digoint graphs. Since thisistrue for any ,i =1,...,n, thegraph is
atree. O

Choose an orientation on § and a symplectic form wg (with the Poisson bivector mp)
which induces this orientation. Let © € %4, (X) be a topologically stable Poisson structure. The
function f = xt/mp has constant signs on the 2-dimensional symplectic leaves. Let T'(y,...,yn) be
the tree associated to the zero curvesy, ..., yn Of &t as described above. Assign to each vertex v a
sign (plus or minus) equal to the sign of the function f on the corresponding symplectic leaf .5 of
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nt. The properties of t imply that for any edge of this tree its ends are assigned the opposite signs.
Wewill call the tree associated to the zero curves of wt with signs associated to its vertices the signed
tree T'(it) of the Poisson structure .

Consider the map Tg(rt) : E(T'(x)) — R* which for each edge e € E(I'(x)) gives a pe-
riod Te() of a modular vector field of & around the zero curve corresponding to this edge. The
classification Theorem 3.2.13 implies

Theorem 3.2.23. The topologically stable Poisson structures m € %(S?) on the sphere are com-
pletely classified (up to an orientation-preserving Poisson isomorphism) by the signed tree I'(x),
the map e — Tg(n), e € E(I'(r)) and the regularized Liouville volume V(xt). In other words,
1, T € 4n(SP) are globally equivalent if and only if the corresponding T'(%), {e— Te(mi)}, V(i)
are the same (up to automor phisms of signed trees with positive numbers attached to their edges).

The moduli space of topologically stable Poisson structures in %(S?) up to Poisson iso-
morphisms is

%,(S?) /(Poisson isomorphisms) ~ (|_| (RT)"/Aut(T, Te)> xR,

Fnt1

where Aut(T', Te) is the automorphism group of the signed tree T with n+ 1 vertices and with pos-
itive numbers T, attached to its edges e € E(I'(r)). The moduli space has dimension n+ 1 and is
coordinatized by {Te(t)| e € E(T'(x))} and V ().

A particular case of topologically stable Poisson structures on $, the SUJ (2)-covariant
structures vanishing on acircle on $, were considered by D.Roytenberg in [Roy]. In cylindrical
coordinates (z 6) on the unit sphere these structures are given by

=a(z—C)dz A\ dg for|c|<1,a>0

The modular period around the zero curve (a*“horizontal” circley = {(z6)|z = c}) and the regular-
ized Liouville volume are given by

2%
Ti={(z0)|z=c} (M) = —
231: 1+c

Note that for a non-degenerate Poisson structure i = a(z— €)d; A dg, || > 1 the total Liouville
volume is given by the same formula, V () = Z In| $£&|.
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Corollary 3.2.24. Let T € R and V € R. A Poisson structure t € % (%) with the modular pe-
riod T and the regularized total volumeV is globally equivalent to the Poisson structure which in
coordinates (z,0) on & is given by

2n e/ -1
TE(T,V) = ? (Z— m dz A\ dg

and vanishes linearly on the circle z= 57—

Utilizing Poisson cohomology, D. Roytenberg [Roy, Corollary 4.3.3, 4.3.4] has previously
obtained that the structures ., —1 < ¢ < 1 are non-trivia infinitessimal deformations of each other.
Similarly, he proved that for each c, w; admits no infinitesimal rescalings. Using Theorem 3.2.13,
we get the following improvement of his results:

Coroallary 3.2.25. (a) The Poisson structures i, = a(z— ¢)d; A dg and g = a(z— '), A dg are
globally equivalent iff c = C.

(b) For o € R\ {0}, the Poisson structures i and ot are equivalent via an orientation-preserving
Poisson isomorphism (respectively, arbitrary Poisson isomorphism) if and only if oo = 1 (respec-
tively, |a| = 1). In particular, iz admits no rescalings.

3.3 Toward a classification of Poisson structures with higher order

singularities.

If a Poisson structure vanishes non-linearly on its zero set, a finite number of invariants may not
be enough to achieve even alocal classification. For example, the second Poisson cohomology of
the structure {x,y} = X" with n > 2 on R? is infinite-dimensional. Therefore, a finite number of
invariants would not be enough to distinguish all of its infinitesimal deformations. Aswe shall see
below, the situation is much nicer if the higher-order singularities are isolated. For example, in the

case of isolated quadratic singularities, we will exhibit afinite number of classifying invariants.

3.3.1 Structureswith isolated higher order singularities.

For a = 1,2, let m,, be a Poisson structure on a compact oriented surface %,, and let Z(n,) =
{p € 2| mq(p) = O} beits zero set. Assume that w,, vanishes linearly on Z(m,,) except at afinite
number of special points p& € Z(ny), | = 1,...,my, where the degeneracies are of higher order.
Let now U(i be neighborhoods of the specia points dl so that each U({; is diffeomorphic to a disc,
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and U NUL =0 fori#j. Lets, =3,\(ULU---UUM™). Then X is an open surface, and
m, = y|s; has only linear degeneracies. Let furthermore {\/O{}rjrﬁl be digjoint open neighborhoods
of {U({}Tﬁl, and let W) =V N3, fora =12 j=1,...,m, Also, denote by v,...,yo the
connected components of Z(r,), and by T (;,) the modular flow time of x, along vk, (which for
an open curve is defined to be the maximal flow time of a modular vector field along this curve,
similarly to Definition 3.2.9).

3.3.2 Theregularized Liouville volume.

Assume that the flow time T along each connected component v, of Z(x),) is finite. One can
assign to «t, aregularized volume invariant V(x, : ' C %), in much the same way that was done
for a Poisson structure with linear degeneracies on a closed surface. However, we must keep track
of the behavior of =, at the “infinities’ of the open surface ¥ C =. We therefore emphasize the
possible dependence of this invariant on the embedding of ¥ into X in our notation.

To defineV (i, : ' C =), note that because the Poisson structure degenerates linearly on
each y(jx, and because the flow time along each y& is finite, we can find a finite covering of X, by
opensets X, i €1,Yj, j €J, Z, ke K, sothat:

1. Foralliel, X arepre-compact and =, is non-zero on the closure of X;

2. Fordl jeJ, (Yj,mly,) = (S' x (—rj,rj), rdr Adg) (here 6 is the periodic coordinate on S
and r is acoordinate on the open interval (—rj,r;));

3. For al k€ K, (Z,m,|z) = ((—lk k) x (—Ck,Ck),Yx A dy), where x is the coordinate on
(=, k) and y isthe coordinate on (—q, Cx).

We note that the coordinates 6 and x are canonical (since the modular vector fields of the associated
Poisson structures are dy and dx, respectively). Now, because =, is nonzero on the closure of X,

its restriction to X comes from a finite-volume symplectic structure; thus the volume V (X, x),) is
well-defined. To define the volume of =, on'Y;, let o, be the symplectic form corresponding to =,

onX'\ Z(my) and set

V(Y,n)=Ilim ®
(¥ime) = lirg Yo {pih(p)>e}

for any function h so that hay, extends smoothly to a non-zero symplectic form in a neighborhood
of Z(x,). It was shown in the course of the proof of Theorem 3.2.11 that this limit is independent
of the choice of h.
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Theidea of the proof for the case of V (%, x),) issimilar. Let

V(ema) = I8 f o carmpion
where h is such that hw,, extends to a smooth nonzero form on a neighborhood of ¥ in =. Let h be
another choice of such h, and set H(y) = h(x,y), Fx(y) = h(x,y), where (x,y) are coordinates asin
the definition of Z,. We may assume that the maps (x,y) — (X, Hx(y)) and (x,y) — (x,Fix(y)) are
invertible. Let ¢ > 0 be sufficiently small. Define

H;l(—g),
|:|X71(_8)a

G () = Hy H(e), 9e(¥)
G (9 = H, He), §-e(¥)

so that g, = {ge(X)|x € (=l l)} = Zknh 1(£e), §.p = {Goe (X)X € (=l, 1K)} = Ui nhL(£e)
are smooth curves in the neighborhood of 4. Then

Ik 9—(X) % \ dy
6 o L)
Zan{p:h(p)[>e} —lk —Ck L(x)/) Y

ol g—¢(X) )
_fl—lk In 009 ‘dx,

k1§ ¢(X) ge(X
VE -V = /_Ik In ‘ ZEX; - SEX; dx
Since Hy and Hy are smooth invertible functions on the closed interval [—k, lk], the limits
g (x) §c(x) G(x)
Qe (X) g-¢(X) Ge(x)
exist and equal to 1. Thus, V(Z, ;) = lime_,0V{ () exists and is independent of the choice of h.
We can therefore set

lim
e—0 e—0

V(r, 2 Cc3)= EV(xi,n;) + EV(Yj,n;) + EV(Zk,nél).
I ]

Itiseasily seen that this sum does not depend on the choice of the covering of 2.
3.3.3 Global classification.

Suppose that for o. = 1,2 the number of special points of =, is m,, and the number of connected
components of Z(x,) is n,. We record the following lemma, whose proof proceeds exactly as in
the case of Theorem 3.2.13.

Lemma 3.3.1. Wth the above notation, assume that ¢ : 3 — X is a diffeomor phism, so that:
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1 ¢ rnapsaneighborhood\/\éj ontoW2j and q)*rc’1|wlj :rc’2|W2j forall j=1,....m;
2. ¢ mapsy) toy, foralli=1,...,n;

3. the modular flow times along corresponding curves are the same, T (m}) = T, () < oo for
ali=1,....n;

4. theregularized volume invariants of = and =, are the same, V (rt}) =V (t5);

Then there exists a diffeomorphism 6 : ¥ — 3, such that 6|le = ¢|W1jfor al j=1,....,mand

0.7y = ). Moreover, 6 can be extended to a diffeomorphism of % with 2.

Proof. (Sketch; see also the proof of Theorem 3.2.13) Because of the assumptions (1)—(3), we may
extend ¢ (using the flows of modular vector fields to transport the neighborhoods W around the
curv&cy‘l) to aneighborhood W containing V\/lJ foral j=1,...,mand yil forali=1,...,ninsuch
away that .7t} jw, = 7t5|w,, WhereWs = ¢(Wi ). Now we proceed exactly asin the proof of Theorem
3.2.13 to extend ¢ to the complement of W, using condition (4). Since 6 = ¢ was not modified on
each le, it can be extended to a diffeomorphism of X; onto X, (e.g., by defining it to be ¢ on each
V). 0

The utility of this Lemmais explained by the following Corollary:

Corollary 3.3.2. With the above notation, assume that there exists a diffeomorphism ¢ : 3 — 2o,

so that
1 ¢ rnapsUlj ontoU2j and (I)*J'I31|Ulj :rc2|U21 forall j=1,...,m;
2. ¢ mapsy) ontoy, forall i=1,....n;
3. the modular flow times along corresponding curves are the same, T; (7) = T,i (75) < °°;
4. theregularized volume invariants of 7 and =i, arethesame, V (it} : ' C 1) =V (r, : ¢(2') C
%),

Then there exists a diffeomorphism 6 : 3; — X so that 6|Uj = ¢|Uj for all j and 6,7ty = m).
1 1

3.3.4 Localization.

The Corollary 3.3.2 alows one to reduce the question of whether g and rt, are Poisson-isomorphic

to local considerations. To do so, one proceeds as follows:
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e Step I: find neighborhoods Ulj and Uzj, j=1,...,mof special points so that

— (3) and (4) of Corollary 3.3.2 are satisfied;
— there exists adiffeomorphism ¢ : 1 — 2, satisfying (2) and mapping Ulj to Uzj;

— there exist neighborhoods O'l C Ulj of the specia point p{ such that the maps ¢|uj1\oj
are Poisson diffeomorphisms (thus perhaps failing (1) on dl);

e Sep ll: for each j, check whether ¢ : Ulj — Uzj can be perturbed to a Poisson isomorphism,
keeping it the same on Ulj \ O{ (alocal question);

If Steps| and Steps |1 can be carried out for agiven pair m and 5o of Poisson structures with isolated
higher order singularities, Corollary 3.3.2 implies that m and mt, are Poisson-isomorphic.

Proposition 3.3.3. To find the diffeomorphismin Sep, it is necessary and sufficient that there exists
a diffeomorphismap : =3 — X5 carrying the zero set Z(rt;) onto the zero set Z(rz) and mapping the
higher-order degeneracy points |o'l of 71 to the respective points pz‘ ofmp, j=1,...,m

Proof. Indeed, given 1, we can first choose neighborhoods q of p{ and Oé of w(p{) = p% in such
away that the modular lengths of the components of Z(m) \ (O} U---UOY") are the same as the
corresponding components of Z(m) \ (O3 U--- U OF). By further modifying O{ (e.g., by removing
asmall disk near its boundary and away from Z(m)) we may assume that the regularized Liou-
ville volume invariants of m |\ oi...uom ad 2[5, (o1u..uop) are the same. We may furthermore
assume, by modifying y in a neighborhood UlJ of O’l, that it is a Poisson diffeomorphism from
Ulj \Oi onto Uzj \Ob = w(Ulj) \w(O{). Since the modular length of a segment of a curve and the
regularized Liouville volume are invariant under Poisson maps, it follows that the modular length
of y{ﬂ (Ulj \O{) isthe same as that of y%ﬂ (U2j \Oé), and the volume of Ulj \O{ is the same as that
of UJ\ 0. Thus conditions (2), (3) and (4) are fulfilled for this choice of U}, o = 1,2 and . Thus
we have indeed carried out Step 1. O

3.3.5 Local classification in the quadratic case.

Let t = fmg be a Poisson structure on a surface = which vanishes linearly on its zero set Z(n) C =
except possibly at afinite number of points p',..., p™ € Z(x), where it could have quadratic zeros;
i.e, f(xy) =M (X% +oly?) for some Al # 0 and ol € {£1} in aloca coordinate system (x,y)
around pl. Wecall p!, j =1,...,mthe special points of the structure zt. If & = 1 (resp., o/ = —1),
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the specia point pl is called eliptic (resp., hyperbolic). Clearly, the specia points (as a subset of
Z(m)) isan invariant of x.

Our aim isto extend the classification results of Section 3.2 to such structures.

By Proposition 3.3.3, the question of classification of such structures can be reduced to
local considerations. Let U; and U, be two open disk neighborhoods around (0,0) € 2, and let

o = ha(X + 0aY?)dx A dylu, for o =1,2

Our first question is: when can there be a Poisson isomorphism of (U, ;) and (Uz,mtp). It turns out
that (Ay,0,) isacomplete local invariant for such astructure. To prove this, we consider separately

the cases of elliptic and hyperbolic specia points.

The case of (X2 +y?)dx A dy.
In this case the zero sets of m and mt, consist of the origin (0,0).

Proposition 3.3.4. (Uy,m) is Poisson-isomorphic to (Up,7t2) in an orientation-preserving way if
and only if A3 = Ap. Moreover, if A1 = Ay, then the Poisson isomorphism can be chosen so as to
extend to all of R? and be identity outside of any prescribed open set containing U, and Us.

Proof. For o = 1,2, let X, be the modular vector field of m, with respect to the volume form
%dx/\ dy. Itisnot hard to check that X, is alinear vector field given by

Xa = Ao (Xdy — yoy).

Itsflow at timet isthe rotation, Fx, (t) : (rcos8,rsing) — (rcos(0 + Aqt),rsin(0+Aqt)). Sincethe
flow of X, fixes (0,0), it follows that the flow defines a linear operator T, on the tangent space to

IR? at the origin given by
d

= a(
The structure of T, as alinear operator on the tangent space is an invariant of . It iseasily seen

Ta¥) = T (F(1).(v). Ve TooR.

that in our coordinates T, is given by the matrix

0 A
T, = “.
A, O

Thus the eigenvalues of T, (equal to +iA,,) are an invariant of m,, which we will call the modular

eigenvalues invariant. It follows that if m and m, are isomorphic, then Ay = A».
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Assume now that Ay = A, = A (or, equivalently, that the modular eigenvalues invariant is
the same). We must prove that given two neighborhoods U; and U, of (0,0) diffeomorphic to adisk,
there exists a Poisson isomorphism of (U, ;) with (U, ), which can be extended to all of R2.
Denote by O(r) the open disk {(x,y) € R : X2 +y? < r2}. Choose r; and r, so that O(r;) C U; and
the symplectic volumes of U; \ O(r1) and U2\ O(r2) are equal. Then applying Moser’s theorem, we
can find a Poisson isomorphism 6 from Uy \ O(r1) onto U, \ O(r>), so that © extends to all of R and
on a neighborhood of the boundary 9O(r1) maps the point (x,y) to the point ;—i (X,Y).

It remains to note that the map

;
(X,y)Hr—Z(X,y), \/X2+y2<rl
1
extends 6 to amap from all of U; onto Uy, having the desired properties. O

We note as a corollary that if a Poisson structure s on a compact oriented surface =
has at a point pt € = a singularity of the type A3 +y?)dx A dy, and some singularities at points
p?,...,p™ € =, then for any choice of neighborhoods Ul 5 p!, j = 2,...,m, and any prescribed
number V € R, we can find a neighborhood U of p! so that the regularized Liouville volume of
=\ (Ulu---uUM) isexactly V.

The case of (X2 —y?)dx A dy.

In this case the situation is more intricate. Suppose that a Poisson structure is given by xt =
A(x2 —y?)dx A dy on a neighborhood U of (0,0) € R2. The zero set of & can be identified with
the intersection of U and the lines /() = {(X,y) : X =y} and la(x) = {(X,y) : X= —Yy}. Aswe
remarked before, the restriction X|z(,) of a modular vector field X depends only on the Poisson
structure (and not on the choice of a volume form with respect to which it is calculated). The sub-
sets /() and /() are canonicaly distinguished, since aong one of them X} points toward
the point of intersection (0,0) = #1(xt) N ¢2(x), while along the other it points away from it. The
modular vector field of st with respect to the area form %dx/\ dy is given by

Once again, the flow of X fixes (0, 0); the associated linear operator on the tangent space at (0,0) is

01
T=A
10

given by the matrix
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and has eigenvalues +\, which we again call the modular eigenvalues invariant and denote by
+\(x) for a Poisson structure .

Although the total modular flow time between the origin and any other point in Z(x) is
infinite, for any two points on ¢j(x), j = 1,2 which are distinct from the origin one can define a
modular flow time between these points. Let p= (a,(—1)I~1a), q = (b, (—1)~1b) (with a,b # 0)
be two points on the same line 4j(r). Choose a parameterization y(t) = (g(t), (—1)'~1g(t)) of ¢; (),
so that y(—1) = p, y(1) = q. If p and g are on the same connected component of 4(x) \ {(0,0)},

LA
1?9 [ xoo

is well-defined and independent of the parameterization vy(t), since X(s) = 0 only if s= (0,0) (here

the following integral

Y'(t) denotes the tangent vector to the parametrized curve, and the ratio of y(t) by X(y(t)) makes
sense because these two vectors are parallel).

Assume now that p and g are on the opposite sides of (0,0) € 4(x). Let tg be such that
Y(to) = (0,0). Define the modular flow time by

. to—e  y/(t Loyt
[(p.) = lim (/1 %dw t0+8%0@ .
Although the length of time it takes to get from p to (0,0) along the flow of the modular vector
field is infinite, the corresponding time it takes to flow from (0,0) to q is aso infinite, but has an
opposite sign (since one goes against the flow of the modular vector field to get to q). Thisissimilar
to the situation in physics, when the amount of energy it takes to move from a point in space to a
singularity of a potential isinfinite, yet it takes afinite energy to “tunnel” across the potential well.
For thisreason, | (p,q) could be thought of asthe “energy” it takes to move from p to g.

We now claim that the definition of 1(p,q) is independent of the parameterization y(t)
and that the limit in the definition aways exists. This actually follows from Remark 3.2.12, but we
prefer to give a direct proof. Note first that X(y(t)) = Ag(t) - ((—1)'~2ax+ ay) = (—1)~rg(t) -
(9x+ (—1)1~1ay) and, therefore,

It follows that

(-0t 7 St~ og(gtto - 1) - tog(la(-).

t
. 1 o
-yt [ S —toga(w)) - log(late + o)
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Thus
il 9@ | |9+ [\ Li1aa] 9D
(P9 =2 lm(log —1)‘ % g(to—€)>_( D' oo 9(-1)|’
since
lim |9t )| _ d(to) 1
«=0|g(to—¢)| |d (to)

by L'Hopital’s rule.
Thus, 1(p,q) is defined for any pair of points p,q € 4 and depends only on the Poisson
structure z and the choice of points p,g. In particular, associated to (U,x) we can consider the

numbers

Rj(m) = sup I(p,q) = (1) "*log sup{x: (x,y) €U, x= (—1)i*ly}

- : , j=12
p.ael; inf{x: (x,y) €U, x=(—1)it1y} J

The numbers Ry (t) and Rx(x) are invariants of the Poisson structure t on U. Note that the lines
¢; (and thus of the numbers R;) are canonically distinguished (since the modular vector field along
¢1() dways points away from (0,0), while on /(=) it always points toward (0, 0)).

Finally, let ® = )@lezdx/\ dy be the symplectic form on U \ Z(x) corresponding to the
restriction of  to U \ Z(xt). By the discussion above, the tangent space at (0,0) has two preferred
one-dimensional subspaces, spanned by the eigenvectors of T (which are in our case the vectors

proportional to vi. = dy £ dy). Define the regularized Liouville volume of (U, ) by
V(:rc)iP.V./wzlim</ w—i—/ oo>, (3.3.1)
U e—=0 \ J f~1((w,—2))NU f-1((e2,00))NU
where f isany function so that
e (0,0) =0, df|(070) =0,vyvy f=—-vv f,vy,v f=0;
e f-w extendsto anon-degenerate (symplectic) 2-formonU;;
e f < 0ontheregion abovethelines/ and /5 ;

We claim that the limit exists and is independent of the choice of f. To provethis, it is convenient
to change the coordinate system as follows. Let X = x4y, Y =y—x. Then n = 2xXy'dx A dy and
= ﬁdx/\ dy. Let

Vf:st(n):(/ w—i—/ oo)
f=1((o0,—¢))NU f=1((e,»))NU



Figure 3.3.1: Definition of regularized volume in the quadratic case.

Let f and f be two functions satisfying the conditions above. We will show that lim_o(Vf —V§) =
0. The assumptions on f and f imply that

f(X,¥)=xy-g(x,y) (3.3.2)

f(X,y) =Xy -a(x.y) (333)
for some smooth functions g,§. Let Uy =U N {(x’,y) €R?: "(7‘ <ly|< 2|x’|} and U, =U \U;
(see Figure 3.3.1). Let a =X /y'. Thus 3 < |a| < 2 onU;. We have

iovie [ %Y
f RiURy le ’
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where Ry = {(X,y) € Ur: f(X,y) > €% f(X,y) <e?or f(X,y) <e? f(X,y)>¢€?} and R, =
{(X,y) €Uz: F(X,y) > 2, f(X,y) <e?or f(X,y) < ?, f(X,y) > e?}. Over the region Ry, we
switch to the coordinate system (a.,y). Since dXdy = y'dady', we have

/ dx'dy’ / dody
Rl le’ Rl ay
/ da /Fal(sz)d_ _/ do o f1(2)
1<z o] |Jizke) Yy | Jigu<e ol J fot(e?) ||’
where f, (Y) = f(ay,Yy). Using (3.3.2) and (3.3.3), we find that
.
(fo1(e%)? = a(1+0a(8))
~ 82 ~
(f.1(e%)? = a(1+0a(8))-
Thus “ 1
fo ~(e%)
log | -2 =0, (¢).
Since 3 < |a| < 2 on Uy, we find that therefore the integral f%o“ log :Z%E‘g —0ase— 0, and
thus
dxdy’
— —0.
f

Let p bethe diameter of U. Write R, =Ry xURyy, Where Ry = {(X,Y) € Ro 1 [X| > ||}
and Ryy = {(X,Y) € Ry: |X| < |Y|}. Denote by ry(e) the infimum

re(e) =inf{|x|: 3y st.(X,Y) € Rox}.

Since the boundary of Rex is contained in one of the sets f~(2) NU, or f~1(e2) NUy, it fol-
lows that ry(e) satisfies f(r«(e), 2rx(e)) = €2 or f(rx(e),—2rx(e)) = €2, or f(r(e), 2r«(e)) = €2,

f(rx(e), —2rx(e)) = €2. It follows that r«(e)? = 2e?(1+ O(e)). Thus on R, x e have

/ dx'dy - /p dx /fl(sz)d_y
Rx XY | 7 o) X[ /522 Y
o le 2

= / dx log X_l(s) .
re(e) |X| fo™(e?)

Using (3.3.2) and (3.3.3), wefind that f,*(e?) = f(—f(1+ Oy (e)) and similarly for f. Thus

‘Iog

fet(e?)
f-1(e2)

XI

‘ = hX’(S)a
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where hy (¢) isacontinuous function in X and € and hy (¢) — ase — O for each fixed X.

!
[EY o P,
Rex XY rx(e)<X<p [X]

Since hy (¢)/e hasalimit ase — 0 pointwisein X and ry(g) ~ €, we get that hy (¢) /r(e) is bounded

by aconstant C (independent of €) for 0 < |x| < p. Fix 8 > 0. We then get

dx’ 5 hy (e) Pdx
WX (o) < / X&) 40 4
/rx<e><x|<p |X| e(e) < o Ix(e) s X] e (e)
ac+/ e
o6C+ = / he ()dlx
0 Js

Letting ¢ — O first and noticing that h,(e) — O pointwise, we find that [¥ hy(e)dx — 0. Letting

d¥'dy
/RZ.x le’ - 0

VAN

IA

now & — 0 wefind that

ase — 0.
The estimate for the integral over Ry is obtained by exchanging the roles of X and y'.
Thus the integral in the definition of V() is independent of the choice of f. Taking
f = x? —y?, we easily obtain that the limit exists; indeed, one can reduce the question to the case
that U isadisk of radius ¢, in which case the two integrals in the definition of V (rt) are equal (with
opposite signs) by symmetry.

Proposition 3.3.5. Let 7t; and st be Poisson structures on two open disk neighborhoods U; and U,
of (0,0) € R?, given by
na:)\.a(xz_yz)ax/\atha, o= 172

Then there exists a Poisson isomorphism 6 : (Uy, ) — (Uz, 7o) if and only if Ay = A, Rj(m1) =
Rj(m2), j =1,2 and V(my) = V(). Moreover, if these conditions are satisfied, the isomorphism
can be chosen to extend to all of % and be identity outside any prescribed open set containing U,
and Uo.

Proof. The necessity follows from the fact that A1, A2, Ry, R, and V () are invariants.

To prove sufficiency, we proceed as follows. Assume that the intersections of U, with /4
areat (o4, a4 ) and theintersection with 4, are at (B, —f+). Thus Ry (1) = log ( ) Ro(mq) =
log ( ) By replacing (Uy, 1) with F(t)(Uq,7t1), where F(t) isthe flow at timet of the modular
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vector field of m; with respect to the areaform %dxl A dyi, we get a Poisson-isomorphic neighbor-
hood, for which the points of intersection are changed to (o, €. ) for the ¢;-intersection

d (e M'By, —e MB.) for the fo-intersection. By further replacing F(t)(Uy,mp) with its image
under the dilation map (x,y) — (rx,ry), we can change the intersections to (ré'o..,re*'o.) and
(re™™'B., —re~™M'B.), respectively. Denote the corresponding intersections for (U, ) by o, and
B!y, respectively. The assumption that R; (1) = Rj(m2), j = 1,2 implies that

o 2)-m( 2
() -

It follows that by choosing t and r appropriately, we may assume o, = o, and B+ = f/,..

Now choose an open disk O C U; NU,. Since the lengths of the zero curves of m and
7, on the complement of O in U are the same, and (by assumptions on the regularized Liouville
volumes) the regularized volumes of U \ O are equal. We can now argue exactly as in the proof of
Lemma 3.3.1 to extend the identity map on O and R \ W for an open neighborhood W of U; UU,

to the desired isomorphism. O

3.3.6 A completeset of invariantsin the quadratic case.

Returning now to Poisson structures on compact oriented surfaces, assume that 7 and i, are Pois-
son structures on X5 and X, so that wt, vanish linearly on their zero sets Z(x,) except possibly at
some special points pt, ..., pM € 2, o = 1,2. Assume furthermore that in a neighborhood U(i of
lui = M, (@ + 5ly2)ax A dy, 0 =1,2, where \), #£ 0 and o, = £1.

Let =, = 2, \ (L] 1U’) Define the regularized Liouville volume invariant of =, to be

p(jx, e, has the form m,, (X, y)

the sum

V(i) = V(na|uj>+V(na|2/ ! C3,),
where we set for convenience V (na|u ) & (aspecia symbol) if o), = +1, and we set r + & = &
if r € RU{£w}.

We now consider the zero set Z(m,,). Embed 2, into the three-dimensional space R®, and
replace the zero set Z(m,) C =, by aset C(m,,) of closed curvesin R® such that:

o Clalls 0t = 2l
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o If pl isan dliptic point (o}, = 1), then C(sty) | i = Z(7a)| i

o If p(‘; is a hyperbolic point (G(L = —1), then C(ny,)| ;i consists of two non-intersecting curves
obtained by resolving the intersection of the setsZ" and Z—.

This procedure isillustrated by the diagram below

X 5

Assign to each resulting closed curve y C C(m,) its modular period I, (i) by adding the
modular flow times between the exceptional points on y.

Theorem 3.3.6. With the above notation and assumptions, let ¢ : 33 — =, be a diffeomorphism, so
that ¢(Z (1)) = Z(m2) and o(py) = d(p), i =1,...,m. Assumethat the map Z(m;) — Z () induces
the map ¢© : C(m1) — C(m). Then there exists a Poisson isomorphism 0 : =1 — =5, 0,71 = 7, such
that 8]z(,) = ¢ if and only if

1 |Y(J'l71) = |¢C(Y) (mp) for all y € C(my);
2. V(J‘El) :V(J'Ez);
3. A =2, 0l =chforali=1...,m

Proof. Clearly, y+— I,(7,) and V(x,,) are invariants, and hence the conditions are necessary.
Conversely, assume that the invariants are the same. Choose a curve y € C(mg). Choose
points & ,b} on y so that p; € [a,b}] C y for al exceptiona points P, on y. Do the same for
the corresponding curve in C(m), calling the points d'z,biz. The assumption (1) guarantees that
this can be done in such a way that the flow times along the corresponding segments are equal,
I (al,b}) = 1(a,,b,) and I (a,b"*) = 1(a, b™). Now choose digjoint contractible neighborhoods
Ul =, of pl, sothat vV (Ul) =V (UJ) for al i. Using the results of the previous section, we can now
find Poisson isomorphisms of U{ and Ué for al i. Similar procedure should be donefor all pair of the
corresponding curvesinC(m ), C(m,). Theassumption (2) guaranteesthat V (% \ (Ui U---uUM) =
V(Z2\ (U2 U---UUM). One then argues as in Moser's theorem that these isomorphisms can be
extended to the desired global isomorphism ¢. O

Example 3.3.7. Asan example, we discuss the classifying invariants in the case of a Poisson struc-

ture on a 2-torus, given by m, = h-x/, where 7’ is the (nowhere zero) Poisson structure coming from
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Figure 3.3.2: Poisson structures on atorus.

the area form on the torus, and h is a height function (see Figure 3.3.2). The function h has four
critical points, p1, P2, Ps, Pa; let’'s say h(p1) < h(pz) < h(ps) < h(ps). The points p; and ps are
extremal, and p, and p3 are saddle points.

The zero set of the structure m, is the set of zeros of h. If h is nowhere zero on the
torus (i.e., h(p1) > 0 or h(ps) < 0), = comes from a symplectic structure, and is determined up to
isomorphism by the associated Liouville volume.

Genericaly, hisnonzero at its critical points. Then we have the following possibilities:

(@ h(p1) <0< h(p2) or h(ps) < 0 < h(ps) (the latter case is shown on the figure). The
zero set of my, consists of asingle curve. The structure is determined by two invariants:
the modular period around the curve and the regularized Liouville volume.

(b) h(pz) < 0 < h(ps). The zero set of x, consists of two ellipses (shown on the figure).
There are now three invariants: the two modular periods around each of the curves, and
the regularized Liouville volume.

In addition, h could be zero at one of its critical points. There are two possibilities:

@) h(p1) = 0 or h(ps) = 0 (not shown). In this case, the zero set of m, is a single point.
The structure is determined by one invariant, the modular eigenvalues at that point. It
isworth noting that if wereplace h by h. = h+ ¢, then, for asuitable choice of the sign,

np, Will be asin (a). Ase — 0, the total volume of m, becomes infinite. The modular
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eigenvalue invariant of m, can be recovered from the behavior of the modular period of
mth, ase — 0. Indeed, introduce local coordinates x,y near the critical point of h; assume
that h(x,y) = A(x2+y?), and ' = dx A dy. The modular vector field X of m,, does not

depend on e and is given by £2\(xdy — ydx) (the sign depends on whether we are at p

or ps). Lety, bethe zero curve of m, . The curveisacircle of radiusr = \/W . Then

the lengths of X|,, is constant and equals 2|A|r, and the length of the curve is 2ar. Thus
the modular period ist/|A|, and its limit as ¢ — 0 allows us to compute |A| (which is
the modular eigenvalues invariant for m,).

h(pz) = 0 or h(pz) = O (shown in the picture). In this case, the zero set of m, is a
“figure 8 curve’. The structure is determined by 3 invariants. the modular eigenvalue
invariant, the regularized modular period, and the regularized total volume. Again, we
can perturb h by setting h. = h+¢. For asuitable choice of the sign, m, will be asin
(b). The three classifying invariants for m, give rise to the three classifying invariants
for mh. The regularized volume for m, is the limit of the regularized Liouville volume
for ztp, . To obtain the other invariants, consider coordinates (x,y) near the critical point
of h, so that h(x,y) = A(x® —y?) and ' = dx A dy. The modular vector field X in these
coordinates is (up to sign) £2A(xd, + Ydx). Let U = {(x,y) : ¢ +y? < R}. Denote by
v1(e) and y2(e) the zero curves of i . Then the modular period T, (sth, ) around y;j can

1 1
= Lays[ Lg
() vienu X Syenu X

The second integral has afinite limit ase — 0, which isthe modular length of a portion

be computed as

of the zero curve of m, lying outside of U and to the right or to the left of p, depending
on j. Thefirst integral can be computed as

. R d 1 roosh (R/3) g
i X= t
i(e) = /sz\/x2 v 2\ Joosh 1(—Ryd)

~ = Iog(R/é) = const — 1

I
)\‘ )\‘ Ogsﬂ

where § = ¢/A = x% — y2. It follows that

% — lim 298
saOTYJ (J'Ehs)

(thelimit isindependent of j); this expresses the modular eigenvalues invariant in terms
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of the behavior of T,, (nt, ). Moreover, the limit

lim(Ty, (7th,) — Ty, (0, )

e—0

lim (/ Ly / !y >
T~ Y1 — T~ UY2
=0 \ Sy (e)\U X v2(e)\U [X|

(independently of U, since modifying Rincreases the two integrals by the same amount,

isequal to

not changing their differences). This limit gives the regularized modular flow time
around the zero curve of .
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Chapter 4

Gauge and Morita Equivalence of
Poisson manifolds.

4.1 Summary of results

In this Chapter, we compute the effect of a gauge transformation on a symplectic groupoid of an
integrable Poisson manifold. We also show that gauge equivalence of integrable Poisson manifolds
implies their Morita equivalence, thus relating the two notions of equivalence. To obtain this result,
we first prove that gauge transformations of Poisson structures are compatible with (anti-)Poisson
maps. As an example, we classify topologically stable Poisson structures on a two-sphere up to
Morita equivalence. To do so, we first prove that the modular periods around the zero curves with
linear degeneracy are invariant under Morita equivalence, and that the leaf spaces of Morita equiva-
lent Poisson manifolds are homeomorphic. On the other hand, using the results on classification of
structures with linear degeneracies obtained earlier, we show that if two topologicaly stable struc-
tures on a compact oriented surface have the same modular period invariants, but possibly different
regularized volumes, they are gauge equivalent. It remains then to note that the topologically stable
structures are integrable to conclude that they are Morita equivalent. These results are a part of the
joint work [BR] with H. Bursztyn. In this chapter, we restrict ourselves to Poisson structures, rather
than the more general Dirac structures; see [BR] for some results on gauge transformations of Dirac
structures.

In this Chapter, (P,7t1) and (P,,m2) denote Morita-equivalent Poisson manifolds with a
Morita-equivalence bimodule (S Q) so that we have adiagram (R, m1) &z (SQ) X (P, mt2).
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4.2 Propertiesof Morita equivalence

For Poisson manifolds, symplectic realizations are an analog of representations for associative al-
gebras. A symplectic realization a.: (S Q) — (P,n) iscaled completeif a is complete as a Poisson
map, i.e., the pull-back of a compactly supported function on P has a complete Hamiltonian vector
fieldon S. The“ category” of complete symplectic realizations (introduced in [Xu91b]) for agiven
Poisson manifold P is the “category” with objects being the complete symplectic redizations of
P and the morphisms from a realization (§,Q1) = (P,x) to aredlization ($, Q) 3 (P,x) being

lagrangian submanifoldsin (S, Q2) xp (S1,—Q1) = ({(X,Y) € S x S| a1(X) = az2(y)}, Q2 x —Q1).

Thisis not atrue category, because a certain transversality assumption is necessary for composition
of two morphisms to be defined (cf. [Xu9la]). It turns out ([Xu91a]) that the main characteriz-
ing property of Morita equivalence for algebras has an analog in the case of Poisson manifolds.
Namely, Morita equivalent Poisson manifolds have equivalent “ categories’ of complete symplectic
realizations.

Itisanatura problem to classify Poisson manifolds up to Moritaequivalence. The answer
issimple in the case of symplectic manifolds: the fundamental group of a manifold is the complete
invariant of Morita equivalence. A generalization of this result to a certain class of regular Poisson
manifolds was obtained in [Xu91a]. However, much work is still to be done to answer this question
in more general situations. Finding various invariants of Morita equivalence can be considered as a
first step in this direction.

4.2.1 Invariance of the topology of the leaf space.

In this subsection we prove that the leaf spaces of Morita equivalent Poisson manifolds are homeo-
morphic as topological spaces.
Let (P,xt) be a Poisson manifold. Let

L(P) =P/{x~yif xandy are in the same |eaf }

betheleaf space of P. Let p: P— L(P) bethe quotient map. Endow L(P) with its quotient topol ogy:
afunction f : L(P) — X valued in atopological space X iscontinuousiff fop: P — X iscontinuous
asafunction on P.

Let (Py,mtq) and (P,mt2) be Poisson manifolds and (P, 1) S (SQ) X (P2, mt2) be their
Morita equivalence bimodule. It is well-known (see e.g. [CW99]) that Sinduces a bijection of sets



¢s: L(M1) — L(M2) given by
0s(-Z) = LI L)) (4.2.1)

for al leaves £ € L(Py).
Proposition 4.2.1. Themap ¢s: L(P1) — L(P) isa homeomorphism of topological spaces.

Proof. Let F, i = 1,2 be the subset of TM; consisting of vectors tangent to the symplectic leaves.
Let TJ C TS i = 1,2 bethe subbundles tangent to the J-fibers. Then

P =FKR=Th+Th=F,

where J'F = {ve TYTJv € F} denotes the pull-back of F.
Sincethefibersof J, i = 1,2, are connected, the natural maps

LU/ S/F — Mi/|:|
of leaf spaces are bijections. Moreover, it is not hard to see that ¢s is obtained as

bs =20yt M1/F1 — My/Fa.

Endow S/F with its quotient topology. Then it is sufficient to prove that y, i = 1,2 are homeomor-
phisms.

By definition of the quotient topology, the map i : S/F — M;/F is continuous iff the
map ;o p: S— M;/F iscontinuous (here p: S— S/F isthe quotient map). But y = p; o J;, where
pi - Mij — M;/F isthe quotient map. Hence vy is continuous.

Similarly, 1 : M; /R — S/F iscontinuousiff ¢ o p; : M; — S/F iscontinuous. Since 3
isasubmersion, thisistrueiff wflo pioJi : S— S/F iscontinuous. But wflo pioJi = p. Therefore,

P isahomeomorphism for i = 1,2, which implies that ¢s is a homeomorphism. O

4.2.2 Invariance of the modular class.

Here we recall (see [Cra] and [Gin] for the details) that the modular class of a Poisson manifold is
preserved under Morita equivalence.
By aresult of Ginzburg and Lu[GL92], theisomorphism (4.2.1) produces an isomorphism
of Poisson cohomologies
0% Hi(P) — HL(Py). (4.2.2)
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By a theorem of Crainic [Cra] and Ginzburg [Gin], this isomorphism turns out to preserve the

modular class:
¢§(|-1(P1,n1)) = u(Pthz)‘
We will need the following remark from the construction of the isomorphism (4.2.2) in [Gin]:

Remark 4.2.2. Given volume forms vy and v, on P, and P», respectively, there exists a vector field
X on S with the property that (3).X = X", i = 1,2, where X" isthe modular vector field of (R, ;)
with respect to v;. Such a vector field X on Sis actually Hamiltonian, and its Hamiltonian H is
determined by the equation

DJjvi = +e Bv,,

where D : Q(M) — Q2™ K(M) is the symplectic «-operator (cf. [Bry88]).

4.2.3 Invariance of modular periods.

For convenience of the reader and to set the notation, we recall the definition of the modular period
invariant given in Section 3.2.4. Suppose that the Poisson tensor st on P vanishes on a closed curve
vy C P, and is nonzero away from y in a neighborhood of y. Since the modular vector field X' of &
with respect to v preserves the Poisson structure, its flow must take the zero set of x to the zero set
of m. Thus the flow of X" preserves y and, therefore, X¥ must be tangent to y. Moreover, for any

other choice V' of the volume form we have
XY |Y = XV|Y + (Xlogv_v')|Y = XV|Y’

since all Hamiltonian vector fields are zero when restricted to the zero curvey. It follows that the
restriction of the modular vector field X¥ to y isindependent of v. In particular, as was observed by
Roytenberg [Roy], the period of the flow of this vector field around y is an invariant of the Poisson
structure st. We denote this number by T,(P,xt) (or, shortly, T,(x) whenit is clear what P is).

In order to establish theinvariance of amodular period with respect to Morita equivalence,

we first prove the following more general resullt:

Theorem 4.2.3. Let (R,m), i = 1,2 be Poisson manifolds and (P, ;) & (SQ) 2 (Py,m2) be a
Morita equivalence bimodule. Assume that Z C P, are subsets for which m|z = 0 and that the

isomor phism of leaf spaces satisfies

¢s(Z1) = 2».
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Let d){ be the flow of the modular vector field X for some volume formsv; on M;, i = 1, 2. Assume
that @} takes Z; to Z; for all t. Then

dso D = DZogs, VtER,

Proof. Let X beavector field on Ssuch that (J).X = X", i = 1,2 (see Remark 4.2.2) and let & be
its flow. By the definition of ¢s, for each point p; € Z; (which forms by itself a symplectic leaf) we
have

os({p1}) = 27 ({p1}))

which by our assumption on ¢s is asingle point p, € Z,. It follows that 71 ({p1}) € 3,1 ({p2})-
Reversing the roles of py and p, we get J; 2 ({p1}) = 3, 2({p2}). In particular, it follows that

W1 (Z1) =% ().
Thus for any fixedr € 3, 2({p1}) = I, *({p2}) we obtain
o (9s({P1})) = J(Pe({r})) = R(3; (P ({pe}) = ¢s(Pi ({P1})).
Therefore, pso OF = D o ¢s. O

Corollary 4.2.4. Let (P,m1) and (P»,m2) be Morita equivalent Poisson manifolds with an equiv-
alence bimodule (S,€2). Assume that y; C P are simple closed curves, and there exist open sets
Ui D i, sothat that |y, = 0 and mt|y,\y, # 0, i = 1,2. Assume finally that ¢s(y1) = y2. Then

Ty (Pr,m1) = Ty, (P2, m2).

Proof. Applying Theorem 4.2.3with Z = y;, i = 1,2 we obtain that the flows @} of modular vector
fields X" areintertwined by ¢s. Thusfor any p; € y1

T, (P,m) = inf{t>0:®!(p) =p}

= TY2 (Pz, Tl?z).

Thus the modular period is a Morita equivalence invariant, as claimed. O
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4.2.4 Tangent spaceto a Morita equivalence bimodule.

In this section we collect several useful statements about the structure of the tangent space at a point
of a Morita equivalence bimodule.

Let (Py,m1) and (P,,m2) be Morita equivalent Poisson manifolds, and let (S Q,a, ) be
their Morita equivalence bimodule. Denote by ox = a~1(a(x)) the a-fiber through x € S and by
Bx= B~ (B(x)) — the p-fiber through x € S. Since (Tyax) = TuBx = {Xor 1| F €C*(P2) }, (TuBx) 2 =
Teow = {Xp+g|g € C*(P1)}, we have

{a"C*(P1), 'C*(P2)} =0

Let .Z,(x be the symplectic leaf of Py through the point o.(x) € Py and let %) be the
symplectic leaf of P, through the point g(x) € P,

Claim4.2.5. The tangent space at a point x € S satisfies the following properties:
1. Txox/Tx(ox N Bx) = Tgx)-Lpx):s
2. Ta P/ Tapg-Zax) = Too P2/ ToZpix:
3. Thereisthefollowing splitting of kS
TS~ To)-Zax) © Tpx)-Lpx) © Tx(0x N Bx) © Tax)Pr/ Ta(x) Loy (4.2.3)

In partICU| al', Txax >~ Tx(ax N Bx) @ TB(X)Dgﬁ(X) and Txl?)x >~ Tx(ax N Bx) @ T(X(X)Dg(x(x) . Wlth thIS
splitting, we have the following orthogonality relations with respect to the symplectic form

Q (Ta-Zaxs To00-Lx) ® Tu(ox N Px) & To P/ TaLux) =0, (4.2.4)
Q (oL Tax)Lax) S T(ox N Bx) ® TP/ TapyZux) =0, (4.2.5)
Q (Ta0 P/ TaZats TP/ Tapy L) = 0; (4.2.6)

Q(Tx(ox N Bx), Tx(oxNPx) = 0; (4.2.7)

Moreover, the restrictions Qfr, , ., and QJr, & = are non-degenerate forms, and Q2 gives a

non-degenerale pal ring of 1;((0()( N ﬁx) and Ta(x) Pl/Ta(x)ciﬂ(x(x) ~ Tﬁ(x) PZ/Tﬁ(X)DS/ﬂﬁ(X)'

Proof. (1) Let Ty : TxS — Tg(x) P2 be the map induced by  on the level of tangent spaces. The
image of the restriction Tyf|t,q, Of this map to Txax liesin Ty Lp(x)- Since ker(TxB) = TP, there
is awell-defined quotient mapTXB|TXaX : Txox/ Tx (0 N Px) — T -Lpx)- FOr & € Ty -Lpx), 1€t F €
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C*(P,) be afunction whose hamiltonian vector field X; has the value € at B(x), i.e. X¢(f(X)) =E.
Then 'Iﬁ&hxax(xﬁ* ¢)(X) = E. Therefore, the map 'ﬂﬁhxax : Txax/ Tx(0ox N Bx) — T -Lp(x) IS ONtO.
The second statement of the Claim follows from the isomorphism of leaf spaces of Morita

equivalent Poisson manifolds, and the last one follows from the first two. O

4.3 Gauge equivalence of Dirac structures and Poisson manifolds

In this section we recall the definitions of gauge transformations and gauge equivalence of Poisson
manifolds, and derive an equivariance property of gauge transformations with respect to (anti)-

Poisson maps.

4.3.1 Diracstructures

In order to define gauge transformations of Poisson structures by closed 2-forms, we first need to
recall the notion of a Dirac structure, generalizing that of a Poisson structure.

Dirac structures were introduced in [Cou90] to provide a geometric framework for the
study of constrained mechanical systems. Examples of Dirac structures include Poisson and pre-
symplectic structures, as well as foliations. In general, a Dirac structure determines a singular
foliation on a manifold together with a pre-symplectic structure on each leaf of this foliation.

A linear Dirac structure on avector spaceV isasubspace L C V &V* whichis maximally

isotropic with respect to the symmetric pairing (, ) defined by
1 x
(x o), (1)) = 5(0y) +v().  (Xw).(v)eVeV (431)

In other words, L is an isotropic subspace and dim(L) = dim(V). For example, for a bivector
eV AV onV thegraph L = graph (wt) of the associated linear map s : V* — V isaDirac structure.

A Dirac structure on amanifold Pisasubbundle L C TP& T*P which determines alinear
Dirac structure L, C T,P@® TP, p € P pointwise and satisfies the following integrability condition:
the space of sections of L is closed under the Courant bracket [, | : T(TP® T*P) x I(TP& T*P) —

I(TP& T*P), given by
(X, 0), (Y,v)] = ([x,v], Lxv — Lyo + %d(w(X) - V(Y))> . (4.3.2)

For a Poisson bivector € X%(P) on P the graph L = graph(it) of the associated bundle map 7 :
T*P — TP isaDirac structure; the integrability condition in this caseis equivaent to [r, ] = 0.
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The Courant bracket (4.3.2) does not satisfy the Jacobi identity in general. However,
the Jacobi identity does hold for the restriction of this bracket to the sections of a Dirac bundle
LC TP T*P. Thus, on L thereisanatural Lie algebroids structure, the bracket being given by the
restriction of the Courant bracket and the anchor map being the restriction of the natural projection
TP®T*P — TP. The Lieagebroid structure on L determines afoliation on P. It turns out that this

foliation is symplectic if and only if L = graph () for a Poisson structure x on P .

4.3.2 Gaugetransformationsand gauge equivalence

The notion of gauge equivalence of Dirac structures was introduced in [SW] motivated by the study
of the geometry of Poisson structure “twisted” by aclosed 3-form.

The additive group of closed 2-forms on amanifold acts on the set of Dirac structures on
the manifold as follows. For a Dirac structure L on P and a closed 2-form B € &*(P), define the

gauge transformation of L by B according to
(L) = {(X,n+B(X))[(X;n) € L}. (433

Thisis equivalent to adding the pull-back of B to the pre-symplectic form on each of the leaves of
the foliation defined by L. Two Dirac structures on P which are in the same orbit of the action by
gauge transformations are called gauge-equivalent.
For a Poisson structure it on P, let L, = graph(x) be the corresponding Dirac structure.
As was observed in [SW], tg(L,) corresponds to another Poisson structure if and only if the en-
domorphism 1+ Bo# : T*P — T*P isinvertible. If thisis the case, the Poisson structure ms such
that
fig=mo(1+Bow)t (4.3.4)

is said to be obtained from &t by a gauge transformation. For short, we write i = tg(7t) instead of
Lo =(Ly).

Gauge-equivalent Dirac structures have alot of common properties. For instance, the leaf
decomposition isthe same (though the pre-symplectic forms on leaves differ by the pull-backs of the
closed 2-form defining the transformation). Gauge-equivalent Poisson structures have isomorphic

Lie algebroids, and, therefore, isomorphic Poisson cohomology.
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4.3.3 Equivariance property of (anti)-Poisson maps with respect to gauge transfor-
mations

In this section we prove that Poisson maps are equivariant with respect to gauge transformations
of Poisson structures. More generally, one can prove (see [BR]) that Dirac maps (a certain gen-
eralization of Poisson maps to the class of Dirac structures) are equivariant with respect to gauge

transformations of Dirac structures.

Theorem 4.3.1. Let (P,n") and (Q,n®) be Poisson manifolds and let ¢ : (Q,n°) — (P,n") be a
Poisson map. Let B be a closed 2-form on P such that the operators (id+l§or?5) : T*P— T*Pand
(id+ ¢*Bo ;é) : T*Q — T*Qareinvertible (so that g™ and t,-gn? define Poisson structures on
P and Q respectively). Then ¢ : (Q,tg-gn®) — (Ptgn’) isalso a Poisson map.

Proof. Sinceq: (Q,n°) — (P,x") is aPoisson map, we have

TpomR o T ® =70, X€EQ, (4.35)

where Typ : TiQ — TxP and T g : T,'P — T,Q are the maps associated to ¢ : Q — P. To prove that
¢ (QTeen®) — (Pten”) isaPoisson map, it suffices to check that the following equality

T orm*BnS o T(;‘(X)(p = (tgnP) (x)> (4.3.6)
where
— N |
gt =P (id+ Bo nP> ,
— N |
Tt =nQ- (|d+ ¢*Bo ch> )
Let Op = BonP and Og = ¢*BonQ be the operators on T*P and T*Q respectively.
Lemma4.3.2. Themap T/ ¢ : To P — TeQintertwines (Op)y(x and (Oq)y, i-€.
T259®° (0p) 0 = (0Q)g0 T . (4.3.7)
Proof. Lety € TyQ,n € qu(y)P. We have

<OQOCP*(7])7X> = <C/P;/Bor}60(p*(n)’ %) U:)

= (Bog* om0 (M), ¢u(x)) = (BonP(n), . (x)) =
(@*BonP(m),x) = (¢ 0 Op(n). %),

where step (1) follows from ¢*B(x) = B(e. (%)) (Which is an easy consequence of the definitions)
and step (11) follows from (4.3.5). The claim follows. O
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Lemma 4.3.3. Themap T*g intertwines (id+Og)~t and (id+ Op) 71, i.e.
(id+0Q)x o T ® = Ty @o (id+Op) 7y (4.3.8)

Proof. To obtain (4.3.8), add qu(x)cp to both sides of (4.3.7), and multiply the resulting identity by
(id+ Og)x ! on the left, and by (id+ Op); ! on the right. O

Finally, (4.3.6) follows easily from (4.3.8) and (4.3.5). O

To obtain an analogous statement for anti-Poisson maps, we need the following observa-

tion:

Lemma4.3.4. Let (P,) be a Poisson manifold and B be a closed 2-form on P such that (id+Bo 7t)
isinvertible. Then

—tgnt =T_g(—).
Theorem 4.3.1 and Lemma 4.3.4 now imply

Theorem 4.3.5. Let (P,n”) and (Q,n®) be Poisson manifolds and ¢ : (Q,n%) — (P,n") be an anti-
Poisson map. Let B be a closed 2-form on P such that the operators (id +I§o;|:5) TP TP
and (id+c}5’?§o;‘3) : T*Q— T*Qareinvertible. Then ¢ : (Q,T_(1+¢)gn?) — (P.ten") isalso an
anti-Poisson map.

4.4 Morita equivalence of gauge-equivalent integrable Poisson struc-

tures

In this section we compute the result of agauge transformation of an integrable Poisson manifold on
the symplectic structure of its symplectic groupoid and prove that two integrable gauge-equivalent
Poisson structures are Morita equivalent.

Let (P,7t) be a Poisson manifold and (S Q, o, ) be its symplectic groupoid. Let (P, )
be the Poisson manifold obtained by a gauge transformation of the original one. Since the Lie
algebroids of (P,xr) and (P,zg) are isomorphic, the Lie algebroid of (P,mz) can be integrated to a
Lie groupoid isomorphic to (S,a, ). It isnatura to ask the following questions:

1. Isthere asymplectic form on Smaking it into a symplectic groupoid of (P,g);

2. Arethe manifolds (P,xt) and (P,ng) Morita equivalent?
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To answer these questions, we prove the following

Theorem 4.4.1. Let (Pxt) be an integrable Poisson manifold and (S, Q,a,f) be its symplectic
groupoid with connected simply-connected o-fibers. Let B € &(P), dB = 0 be a closed 2-form
on P such that g = tg(7) is a Poisson structure gauge-equivalent to st. Then

1. S =(SQ,0,p), whereQ = Q + a*B— p*B, is a symplectic groupoid of (P,mg);

2. The Poisson manifolds (P,x) and (P,ig) are Morita equivalent, with Morita equivalence
bimodule (S, @5, a, ), where Qg is given by

Qg = Q- p*B. (4.4.1)

Proof. 1. To prove the first statement, we have to check that Q is symplectic, that the graph of the
groupoid multiplication I'iy = {(X,y,m(X,¥))|(X,y) € S} (Where S; is the set of composable pairs)
islagrangian in S5 x Sg x S_B and that themaps o : §§ — P and  : S§ — P are Poisson and anti-
Poisson respectively. The proof of the fact that Q is symplectic is analogous to the proof that Qs is
symplectic given below.

Let (x,y) € S. Consider acurve (x(t),y(t)) in S with (x(0),y(0)) = (x,y). Let (u,v) =
(X(0),y(0)). Then (u,V, (T(xyym) (u,v)) € Tol'm, p= (XY, Xx*Y) and any tangent vector in Tyl is
of this form. Differentiating the identities a(m(x,y)) = a(x), B(m(x,y)) = B(y) and B(x) = a(y),

we obtain
Ta(Tm(u,v)) = Ta(u),
TR(Tm(u,v)) = TB(v),
TB(u) =Ta(v).

Therefore, for wi = (uj, Vi, Tm(u;, Vi) € ToI'm, i = 1,2 we have

(Q,Q,-Q)(Wi,wo) = B(Ta(ur), Ta(u)) — B(TR(ur), TR(uU2)) +
B(Ta(va), Ta(vz)) —B(TH(v1), TR(V2)) —
—B(TaTm(ug,vi), TaTm(uz,v2)) +
B(TB(u1,v1), TRTM(uz,vz2)) = 0.
Hence, I'm C Ss x s x S is lagrangian, and, therefore, S is a symplectic groupoid. It is easy to

see that a is a Poisson map. Since there is a unique Poisson structure on the identity section of a

symplectic groupoid with this property, the Poisson structure induced byQ on P is g,
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2. To prove the second part of the theorem, we have to check that (P,t) & (S Qg) — LA
(P, mtg) satisfies all the properties of aMoritaequivalence bimodule. First, wewill need thefollowing

Claim4.4.2. The2-form Qg = Q — *B on Sis symplectic.

Proof. Letu e T,Sbesuch that Qg(u,v) =0for al v e T,S. Supposethat v € Tyfx. Then $*B(u,Vv) =
0 and therefore, Qg(u,v) = Q(u,v) = 0. Hence, u € (TyPx)® = Tyxox.

We will now use the splitting (4.2.3) and the orthogonality relations (4.2.4)—«4.2.7). Let
U= Uz + Up, whereu; € Ty(axNpPx) and up € To)-ZB(x)-

Suppose that u; # 0. Let wg be the symplectic form on the leaf through p(x) cor-
responding to the Poisson structure g. Since p: (S Q) — (P,x) is an anti-Poisson map and
the form  (on %)) corresponding to the Poisson structure is non-degenerate, there exists
V€ TgLpx) C TxBx such that Q(up,v) # 0. Since B*B(Txfx,-) = 0, Qp(u,Vv) = Q(u,v). Since
Tx(0x N PBx) C (Ta-Lux)?, we have Qg(u,v) = Q(u V) = Q(up,V) # 0.

Suppose Uz = 0. Let v € Ty x)P/Tox)-ZLa(x) be such that Q(u,v) # 0. Hence, Qg(u,v) =
Q(u,v) #0.

Claim4.4.3. We have (Txo) 2 = (Txo) @, (TuBx) 28 = (TuBx) .

Letv e (Tyax)® = TyPx. For any w € Tyay We have

Qg(v\W) = QW) —B*B(v,w) = 0—-B(TB(v), TB(W)) = 0.

Therefore, (Txox)? = TyBx C (Txox) 8. Inasimilar way, (TuBx)? = Txox C (TyBx)
Let v e (Tyox) 8. For any w € Tyay

0= Qp(v,w) = Q(v,w) = B"B(v,W) = Q(v,w) — B(TB(V), TB(W)) = (v, W)
Therefore, (Tyox) 28 C (Tyon)® and analogously (TiBx)2 C (TuBx) . O
O

Claim 4.4.4. The fibers of a and f are symplectically orthogonal with respect to € and
{a*C*(Py),p*C*(P2)} = 0.

Proof. From Clams4.4.2 and 4.4.3 we obtain

TuBx = (Txox) e = {XB| f € C°°(P)}
Txax— TxBx QB {xﬁ }
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wherexgB is the Hamiltonian vector field of g € C*(S) with respect to the modified symplectic form
Qp.
Claim4.4.5. Themap o : (S, Q) — (P, ) is Poisson.

]

Proof. The map o is Poisson iff (Ta)XB; = X; for al f € C*(P), where XB.; is the Hamiltonian
vector field of o f € C*(S) with respect to the symplectic form Qg. We have

d(o f) = Qa(XZ) = QX2 1) +BBXG 1) = Q(X2),
(where B*B(XB.) = 0since XB, € Tyfx by 4.4.4). Therefore, X, = X 1. O
Claim4.4.6. Themap f: (S Qs) — (P,ng) is anti-Poisson.

Proof. The form Qg is obtained from Q by the gauge transformation of (S Q) by the 2-
form —(T*p)B. Applying Theorem 4.3.1 to the map p : (SQ) — (P.«), we obtain that f :
(St_(1+p)8S2) — (P, Tam) is an anti-Poisson map. O

Claim 4.4.7. We have XB.¢ = Xt , XE = X+, where Xg is the Hamiltonian vector field of g €
C*(S) with respect to Q.

Proof. Since Xyt € kerf3, we have B*B(Xq+t) = 0. Hence, Qg(Xq+1) = Q(Xo+f) = d(a*f). There-
fore, XOE;f = Xu+f . The other relation follows by symmetry.

Claim4.4.8. Themapsa: (S Q) — (Px) and f : (S Q) — (P,mg) are complete.

Proof. Let f € C*(P) be a complete function with respect to w. By Claim 4.4.7, X8 = Xy,
which is acomplete vector field since the source map a.: (S Q) — (P,x) of asymplectic groupoid is
complete (see, e.g., [Daz90], Sec. 6). Analogously, since (SQ) isasymplectic groupoid for (P, ),
it follows that B : (S Q) — (P,ng) is complete, and hence)ﬁfif = Xﬁf is complete as well. O

O

Since two Morita equivalent Poisson structures on the same underlying manifold do not
necessarily have the same leaf decomposition, it is easy to see that Morita equivalence does not
imply gauge equivalence. Moreover, as was shown in [BR], even if we consider gauge equivalence

up to adiffeomorphism, it is still not implied by Morita equivalence.
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45 Example: topologically stable Poisson structures on a compact

oriented surface

In this section we discuss gauge and Morita equivalence of Poisson structures with degeneracies
of the first order on a compact connected oriented surface. We refer the reader to Chapter 3 for
adiscussion of these structures. In particular we recall (Theorem 3.2.13) that topologically stable
Poisson structures ¢ (X) can be classified up to a Poisson isomorphism by a finite number of invari-
ants: the topology of theinclusion Z(x) C 2 and (n+ 1) numerical invariants: the n modular periods
of t around each connected component of the zero set Z(xx) and the regularized Liouville volume
(obtained as a certain regularized sum of symplectic volumes of two-dimensional leaves, taken with

appropriate signs).

45.1 Gaugeequivalence

An obvious necessary condition for two topologically stable structures t and st on a surface to be
gauge-equivalent is Z(it) = Z(7), i.e. the zero sets of both structures should be the same. The
following theorem gives the necessary and sufficient conditions for gauge-equivalence of two topo-
logically stable structures:

Theorem 4.5.1. Two topologically stable Poisson structures xt, ¥ € %,(X) with the zero set Z(nr) =
Z(7') = LI, vi are gauge equivalent if and only if their modular periods are the same around all

the zero curves, i.e. T, (n) =T, (') fori =1,...,n.

Proof. Modular periods are clearly an invariant of gauge equivalence.
Letw= f-mp, n' = f'-7p, where f, f' € C*(X) arefunctions vanishing linearly on Z(xt) =
Z(n') = |JiL1vi and non-zero elsewhere. Assume that T, () = T, («') for al i = 1,...,n. We will
explicitly find a2-form B € Q%() suchthat ' = 7t- (1+ Bo#) L. First, define a2-form Bly, () on
2\ Z(m) by
Bly\z(m) =0 —0 = (% - %) wo (45.1)
The question is whether Bz, 7(~) can be extended smoothly to a (closed) 2-form B € P (Z) on .
Foreachi=1,...,n letU = {(z,0i)||z| <R, 6 € [0,21]} be a small annular neigh-
borhood of the zero curve y; € Z() such that Z(t) NU; =v; and xtjy, = G f(z)dz A dg,, |y, =
f/(z)az A dg, With f|y, = ¢z +O(22), f'|y, = ¢z + O(Z%). One can then compute that T, () = Z

c’
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T, (') = Z. Thuson U; \ yi we have

1 1 f-f -dz4+0F) c-¢ |
ff ff ~ 2(1+0(z) -0(1)+0(1), z#0.

Z
Therefore, Bly\z() can be extended fromU \ y; to U if and only if G = ¢f. Hence B can be defined
as asmooth form on X if and only if g = ¢ for al i =1,...,n, i.e,, the modular periods of & and

7’ around all curves are pairwise equal. Then i/ = tg(nt) and therefore the structures «t and @ are
gauge-equivalent. O

Let % (25 v1,---5Yn Ty, .-, Ty,) be the space of topologically stable Poisson structures
Tt € %,(Z) which have the same zero set Z(xt) = L, yi and the same modular periods T,,,..., Ty,

around the zero curves.

Corollary 4.5.2. The additive group of closed 2-forms on X acts transitively on the space
“n(Zv15--5vn Ty, -, Ty,). The regularized Liouville volume changes under this action in the
following way: V (tgr) =V (t) + Vol (B), where Vol (B) is the Liouville volume of B.

For m € %,(2), let <7 (%) = (T*X,p,[,]) be the Lie agebroid of the Poisson manifold
(Z,m). The anchor p = —t: T*X — TZ of this Lie algebroid is injective on the open dense set
2\ Z(x). According to a theorem of Debord [Deb00], a Lie algebroid with an almost injective
anchor (i.e., injective on an open dense set) isintegrable. Therefore, (£, ) is an integrable Poisson
manifold.

Since for integrable Poisson manifolds gauge equivalence implies Morita equivalence, we
have

Theorem 4.5.3. Two topologically stable Poisson structures wt, ¥ € %,(Z) with the same zero set
Z(n) = Z(x') = L1y and equal modular periods, T, (x) = T, () for i = 1,...,n are Morita
equivalent.

452 Moritaequivalence of topologically stable Poisson structureson S?

In the case of two-sphere we will show that two Morita-equivalent topologicaly stable Poisson

structures have topologically equivalent zero sets and their corresponding modular periods are equal.
Let M be the two-sphere. Let m € ¢4(M) be a topologically stable Poisson structure on

M. Let as before T = f - mp, where mp is a non-degenerate Poisson structure on M and f € C*(M)

is a smooth function. The class of Z(xx) modulo diffeomorphisms of M is a Poisson isomorphism
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invariant. This class depends only on the topological arrangement of the curves comprising Z(x)
and can be described combinatorially by asigned tree Tree(r) (see section 3.2.8).

Lemma 4.5.4. If two topologically stable Poisson structures i, it € %,(M) are Morita-equivalent,
then there exists an isomorphism of trees ¢ : Tree(r) — Tree(«), so that T, () = Ty, (') for every
edgey (corresponding to y € Z(x)) of Tree(x) .

Proof. Assume that (M,x) and (M,«’) are Morita-equivalent. Denote as before by ¢ the isomor-
phism of the leaf spaces of (M,x) and (M,=). By Proposition 4.2.1, ¢ is a homeomorphism of
topological spaces.

As a set, the leaf space L of (M,xt) can be identified with the union Z(xt) LI {4,--- ,¢n},
where /1, ..., ¢, are the points corresponding to the 2-dimensional leaves 4, ..., .%,. The quotient
topology of L iseasily described: the only open subsets of L have the foomU U {4,} U---U{¥;,},
whereis,...,ik € [1,n], k> 0and U C Z(x) isan open subset with the property that if U intersects
non-trivially acurvey C Z(x), then for both leaves bounding y the corresponding points of the leaf
space occur among {4,,..., %}

Now, given L with its topology, consider the collection % of al subsets Y C L with
the property that L\ 'Y is Hausdorff. Order ¢ by inclusion. We claim that X = {4,...,4n} isa
minimal element of % of finite cardinality. First, note that X € ¢/, since the relative topology on
L\ X =Z(x) C L is Hausdorff. Next, assumethatY € #,andY 5 X. Then 4 € L\Y for some
i € [1,n]. Now all of the points of the boundary of .4 in M lie in Z(xt) and cannot be separated
from 4; by open sets; thus all of these points must necessarily bein Y. ThusY must have infinite
cardinality.

It follows that ¢ must map X to a subset of L’ with the same minimality property; and
hence ¢ must take the complement of X, Z(x), to Z(=¢). Thus ¢ induces a map between the set of
vertices of Tree(st) and Tree(r).

Now, two vertices 4, /; € Tree() are connected by an edge iff the corresponding regions
share a boundary in M. A point x € Z(xt) C L cannot be separated from 4 by an open set if and
only if x belongs to the boundary of .4 in M. It follows that 4, ¢; are connected by an edge iff there
existsapoint x € L, such that X # 4, X # £, but which cannot be separated from either of them by an
open set. Since ¢ isahomeomorphism, it must preserve this property, and thus ¢ induces a map of
trees from Tree(rt) to Tree(s’'). The statement about modular periods now follows from Corollary
4.2.4, O

Theorem 4.5.5. For two topologically stable Poisson structures st and #t on the two-sphere to
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be Morita-equivalent, it is necessary and sufficient that there exists an isomorphism of trees ¢ :
Tree(rw) — Tree(n') so that T, (rt) = Ty, (') for every edge y of Tree(r).

Proof. The necessity follows from Lemma4.5.4.

Assume now that theisomorphism ¢ : Tree(nt) — Tree(r) satisfying the conditions above
exists. Let vy : S — S be an orientation-reversing diffeomorphism. By replacing =t with g,
(which is obviously Poisson-isomorphic, and hence Morita-equivalent to, 5t) if necessary, we may
assume that ¢ : Tree(rt) — Tree(r') is an isomorphism of signed trees.

Choose a function g € C*(S?) supported on the interior of one of the two-dimensional
leaves. Let i’ =x' +gn’. Since " = «’ in a neighborhood of each of the zero curvesy C Z(x),
the modular periods of @ and =" are equal. Therefore, by Theorem 4.5.1, @ and «”" are gauge-
equivalent. Hence by Theorem 4.4.1, & and «”" are Morita-equivalent, for any such choice of g.
Also, the isomorphism ¢ induces an isomorphism of trees ¢f : Tree(rt) — Tree(xn”).

With a suitable choice of g, the regularized Liouville volume of ' can be made equal to
that of m (see §3.2.5 for details). Thus by Theorem 3.2.13, « and =’ are Poisson-isomorphic. We
conclude that = and = are Morita-equivalent, since they are integrable (see [Deb00]; note that the
structures involved are symplectic except on adense set). Thusx and st are also Morita-equivalent,
by transitivity of Morita equivalence. O
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Chapter 5

Poisson cohomology of the r-matrix
Poisson structureon J(2).

5.1 Poisson-Liegroupsasexamples of Poisson manifolds.

A Poisson-Lie group is agroup object in the Poisson category, where objects are Poisson manifolds
and maps are Poisson maps.

The notion of a Poisson-Lie group was introduced and the theory of these objects was
developed in the works of Drinfeld [Dri83] and Semenov-Tian-Shansky [STS83], [STS85], moti-
vated by attempts to describe the Hamiltonian structures of the groups of dressing transformations
of some integrable systems. Poisson-Lie groups are also the objects corresponding to the so-called
guantum groups (in the sense of Drinfel’d [Dri87]) in the classical limit.

A Lie group G with a Poisson structure x is called a Poisson-Lie group if &t satisfies the
multiplicativity condition, i.e., the group multiplication m: G x G — G isaPoisson map (where G x
G is endowed with the product Poisson structure). In terms of Poisson bivector, the multiplicativity
condition is equivalent to

n(gh) = £gr(h) + ram(g), vg,h e G, (5.1.1

where /4 and r, denote the extensions of the differentials of left and right tranglations on G by g
and h to bivectors. In particular, (5.1.1) implies that 7t(e) = 0, and that the linearization of & at the
identity element e € G gives rise to a well-defined map 8 : g — g A g, called the cobracket on the
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Liealgebra g of the Lie group G:
d
8(X) = o h-om(exp(tX)) exp(~tX). (5.1.2)

The Jacobi identity for s implies that the adjoint map & : g* A g* — g* aso satisfies the Jacobi
identity and therefore defines a Lie bracket on g* (thus the name “ cobracket” for the map 9).
The multiplicativity of  implies the following cocycle property for 8 € ¢ ® A%g:

d([X,Y]) =[X,d8(Y)] —[Y,d(X)]. (5.1.3)

This property can be interpreted as a compatibility condition for the Lie brackets [-,-] on g and &
on g*: these brackets can be extended to a Lie bracket on g & ¢ if and only if the condition (5.1.3)
is satisfied. A Liealgebra (g, [-,-]) together withamap d: g — gA g satisfying (5.1.3) iscalled a
Lie bialgebra. The Lie bialgebra (g, [-,-],0) with 8 defined by (5.1.2) is called the Lie bialgebra of
the Poisson-Lie group (G, ). If the Lie group G is connected and simply connected, then (G, xt) is
completely determined by the Lie bialgebra (g,[-,-],d): the Lie agebra (g,[-,-]) determines G as a
Lie group, while the comultiplication & can be used to recover the Poisson structure .

It is particularly easy to recover the Poisson structure on G under the additional assump-

tion that & € g* ® A%g is acoboundary, i.e., that there exists an element r € A%g, so that
3(X) = —[X,1], VXeg. (5.1.4)

In this case, the Jacobi identity for & is equivalent to the modified classical Yang-Baxter eguation,
which states that the element [[r,r]] € A3g be ad-invariant (here [, -]} denotes the algebraic Schouten
bracket on A*g). An element r € A%g satisfying the modified classical Yang-Baxter equation is
called aclassical r-matrix. If the cobracket & on g is given by such an r-matrix as explained above,

the corresponding Poisson structure on G is given by the simple egquation
n(g) ={g(r) —rg(r),  VYEG, (5.1.5)

where /4 and rq denote, as before, the extensions of the differentials of left and right translations by

gto A?g.

5.2 Thestandard r-matrix Poisson structure on U (2).

Consider the Lie group U (2) identified with the unit spherein @ asfollows

z —w —
V(2) = {A ( _ ) :zzwe C, detAzz+vvw1}.
Wz
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Let su(2) be the corresponding Lie agebrawith the basis {q,e;,e3} given by

el_1io e2_1 0 1 e3_1 0 i
2\ o0 —i /)’ 2\ -1 0/’ 2\ i o/

The Lie bracket is determined by [g, €] = &jjx&, where g;jx is the completely skew-symmetric
symbol. The standard r-matrix r = ey A& € A%su(2), satisfying the modified Yang-Baxter equation,
defines amultiplicative Poisson structure on U (2) by

TESJ(z) (A) =rA—Ar.
The Poisson brackets between the coordinate functions (z,z,w,w) on SJ(2) are given by

(22 =i, (W =0, (2w} =Ziw {29 = 2%

The symplectic leaves of this structure are the two-dimensional discs

De{A(Z XV>€SJ(2):argw6}, 0 € [0, 2n)
W Z

and the points of the circleN = {A € U (2) : w= w = 0} which bounds each of the disks Dy.
To compute the Poisson cohomology of this Poisson structure we cover SJ (2) with two
open setsU and V described below, then compute the cohomologies of U,V and U NV and use the

Mayer-Vietoris exact sequence for Poisson cohomology.

Let
U= |l eu©@:122>1/37, (5.2.1)
w V4
zZ —-wW
V= { ( - > e V(2 :|w?> 1/3} . (5.2.2)
W z

Since |Z12 + |w|? = 1, it can not happen that both |z and |w|? are lessthan 1/3. Therefore, U and V
cover all of J(2).

Itis useful to have an explicit description of the restriction of the Poisson structure g 2)
toU and V. Consider the disc C = {w e C: |w|?> < 2/3} and the unit circle S= {s€ C : |g = 1}.
Then the map

(1—|w?)Y?s —W
Y:Cx S>3 (Ws)— eu

w (1— |w?)/?s
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is a diffeomorphism of C x Sonto U. The restriction of the Poisson structure to U identified with
C x Sisthen given by

{ss}=0, {ww}=0, {S,W}:%iSN, {S,Vﬂ:%lsvv

If wewritew = x+iy, W= Xx—iy, and s= d?, the Poisson tensor becomes iy = —(Xdx +Ydy) A 9.
It will be also sometimes convenient to use the polar coordinates (r,8) on C, given by r = |w],
0 = argw. In coordinates (r,0,¢) we have iy = ror A d.

Consider now the disc D = {z€ C: |Z? < 2/3} and the unit circle T = {t € C : |t| = 1}.

Z ~(1-1z2h)Y%
®:DxT>3(zt) — _ eV
(1-12%)Y2 z

The map

isadiffeomorphism of D x T onto V. The pull-back of the Poisson structure onV to D x T isgiven
by the formulas

{27} =-i1-|1ZP)Y2 {zt}={zt} =0
It follows that the Poisson structure on D x T is the product of a symplectic structure on D (with

infinite total volume) and the trivial Poisson structureon T.
Theintersection U NV isisomorphic to

®1UNV)={(zt) eDxT:1/3< |2* < 2/3};

This manifold is manifestly Poisson-isomorphic to the product of thecircle T (with the zero Poisson
structure) and theannulus A= {z € C: 1/3 < |zf < 2/3} with afinite-volume symplectic structure.

5.3 Cohomology of U.

Recall that, as a Poisson manifold, U has the following description. Asamanifold, U isisomorphic
to the solid 2-torus C x S, where C isadisc and Sisacircle and the Poisson tensor on U is given by

where (x,y) are the usual coordinates on C resulting from its identification with a disc on a two-
dimensional plane, and ¢ is a periodic coordinate on S. The symplectic leaves of iy are the points
of the circle {(x,y,¢) : x=y =0} and theannuli {(X,y,¢) : X/y = const, X,y not both zero}. In this
section we will compute the Poisson cohomology of (U,my).
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By an argument similar to the one in [Gin96], the complexified Poisson cohomology of
U isisomorphic to the cohomology of the complex
X0 xt 5 X2 5 X8,
where XK is the space of k-vector fields on U, whose coefficients (as functions of x,y and ¢) are

formal power seriesin x,y and Fourier seriesin €. Let

f = anmpX"y"eP? € X0, (532

n,m>0,peZ

X = g XY ePe (0% a0 i pdy + Db pd) € X7, (5.3.3)
n7m_ 7p€Z

Y = 2 XY "R (X 0 o0y A g+ Chm pdx A dg+ Chn pdx A dy) EXZ, (5.3.4)
n,m>0,peZ

where anmp, b5 m ps btmp bﬁ,m,p, Chmp, Chmps cﬁmp € C. Thenotation for f,X,Y will be fixed for
the remainder of the section. A direct computation shows that we have:
def = Y anmp(n+mxyme™a,
— S ipanmpx" y"ePi
- 2 [ pan,m,pxnyrm_1ei p¢ay;

X = E [i pb)r§7m7pxnym+leip¢ —i pbymm,pxn—i_lymei p¢] Ox A\ ay
+ 3 [~Bmp(—L1+n+m)xy"ePt —ipbh o XYM 9, 9
+ 3 [~BYmp(—L1+n+m)Xy"ePt —ipbh o XYL oy A 9y

AY = Oy AdyAdyx
X (S(n+m=2)ch Xy
— P Xy
+ 3 ipc mpXy " ER)

We now turn to the question of computing the Poisson cohomology.

5.3.1 Thezeroth conomology.

The zeroth Poisson cohomology is generated by the functions constant on all of the symplectic
leaves of U. Since the circle {(x,y,¢) : x=y = 0} isin the closure of every two-dimensional |eaf
and since the two-dimensional leaves together form a dense subset of U, such a function must be
constant. Thus HY(U) ~ C = span(1).
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5.3.2 Thefirst cohomology.
Let X € X!, d,X = 0. Thisis equivalent to the following conditions:
1. The coefficient of dx A dy is zero in the expression for d, X. Thisimplies

€) pb)1(+n,m,p — pbyn,1+m7p for al n,m, p; and

(b) by, , = 0and pb}

ho.p = Ofor al n,m, p;

2. The coefficient of dx A 9, is zero. Thisimplies

@ (m—l)bémp = 0foral mand p; and

(b) ipbhmp=—(n+ M)bR, 1 mp for al n,m,p;

3. The coefficient of dy A 9, is zero. This means that:

@ (n—1)by,,=0foralnand p; and
(b) ipbhmp = —(N+ M) s o

In order to compute the first cohomology, we have to find out when d;X = 0 for X € X* implies
that X = d. f for some f € X°. We claim that X = d, f if and only if the following conditions are
satisfied:

bloo = b)é 1,0 = b)é,l,o = b)1/,0,0 = b(I(;,o,o =0. (5.3.5)

Indeed, if X =d,f with f asin (5.3.2), we find that the only terms with p = 0 in the expression for
d.f are
E(n+ M) anmoX"y .

Thus necessarily b ,, o = b, ;o = 0forall nand m. Also, b87070 = (0+0)ag00 = 0. Sothe conditions

n

(5.3.5) must be satisfied.
Conversely, if the conditions (5.3.5) are satisfied, let f be given by (5.3.2) where we set

forp#£0

1
anvm7p = pr?'(\+l7m7p7 p # 07
1
O
n_i_—mbn,m,ov
ag0,0=0.

anmo = n+m7é07
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Inthis case, d, f isgiven by

1

dif = ;o—_ip heimp(N+m)XyePhg,

Nm£0

++ Z’ b +17m7px”+1yme‘p¢ax
p#£0

bt 1 Xy P
p#0

We now claim that with these definitions X = d, f. First, by condition (2a), the coefficients of g, in
d, f and X are the same when p # 0. By (1b), the coefficient of y"eP?9, in the expression for X is
zero, so the coefficients of oy in X and d,; f are the same, when p # 0. Finally, by (1a) we conclude
that b"n+lmp = byn,m+1,p' Using (1b) again, we get that the coefficients of g, in the expressions for
X and d,; f are the same when p # 0, so that the coefficients of éP for p # 0 are the same in X and
d.f.

For the terms with p = 0, because of the assumptions (5.3.5) we get that the coefficients
of 9, are the same for both d,f and X. It remains to prove that the all other coefficients in the
expression for X must be zero; i.e., kj{mo = b%mo = 0for al nand m. The assumptions (5.3.5) give
us this for n and msuch that n+m= 1. If n4+ m3= 1, we get the conclusion for & from (2a) for
n=0and (2b) if n# 0; the conclusion for ¥ follows from (3a) and (3b) in asimilar way.

We, therefore, conclude that H(U) ~ C° = span(xdy, Ydx, Xdy, Yy, d¢) -

It isuseful to have an expression for thefirst four generators in the polar coordinates (r, )
onC:

Xdy = I C0S> 09; — coSHSINBI,
ydy = rcos0sinfd; — sin®0dy,
Xdy = I cos0sin0d; + cos® 03,

ydy = r in“0d, + cos0sinBdg.

5.3.3 The second cohomology.

Assume that Y € X? is such that d,Y = 0. This happens iff al of the following conditions are
satisfied:

1 c8707p = Ofor al p (thisis obtained by considering the coefficient of &P, A dy A dg);
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2. (m— 1)c4(;7m+17p + ipc‘émp = 0 for al p,m (obtained by considering the coefficient of

3. (n— 1)cﬁ +10p — ipc;‘w’p =0 for all p and n (obtained by considering the coefficient of
XHLEP 9, A dy A dg);

4. (n+ m)cﬁ+l,m+1,p —ipCAmp1p Tl pé’n+17m7p = 0 (obtained by considering the coefficient of

XHymHLEPR g A 9y A B).
Weclaimthat Y = d. X if and only if
C820="C110=00=Ch10="Cloo=C10=Cloo =0 (5.3.6)
Indeed, if Y = d: X, we get from the expression for d, X that among the termswith p=0
1. al coefficients of oy A 9y must vanish (i.e., cﬁmo = Ofor all m,n); and
2. al terms of the form x™y"d%®q, A 9, and xMy€% 9y A 9, must vanish if n+m= 1.

Thus (5.3.6) is necessary for Y = d; X.

Conversely, given Y satisfying the conditions (5.3.6), consider X whose coefficients are
defined as follows:

1,

b)c()vmvp = Eco7m+17p’ p # 0,
5 N m+#1
0,m,0 m_ 10mo )
bal,o = 0
-1
_ 9
blop = ip o P70,
-1
byn,o,o = m_cxn,o,m n#1,
b)(;,l,o =0
bioo = O,
b)c;,Lo = 0
B o = 0

n,m,0
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-1

bhiimp = rmCheimp N+HM#O
1
Y _
Pumiap = GymOimetp NHMAO,
o 1
boop = _ﬁ)ci,o,p’ p#0,

b%mp = 0, n+tm#0,p#0.

We now claimthat Y = d X.

Consider in the expression for d, X the coefficient of dx A dy. When p = 0 this coefficient
is zero, and equals to the corresponding coefficient of Y (using (1) when n = m= 0; the assumptions
(5.3.6) together with (2) when n= 0, m=£ 0O, together with (3) when m= 0, n # 0 and together with
(4) when m,n # 0). Assume now that p # 0. When n =0 and m= 0, we get zero in the expression
for d,X and also zero for ¢, , because of (1). When n =0, m+# 0 we get ¢} X"y"&P in the
expression for d, X, and similarly when m= 0,n # 0. When both n and m are nonzero, we get

—i p

n—+ m(Cﬁ,m,p - an7m7p) = c:ﬁ,m,p

by (4). Thusthe coefficients of dx A dy are the same in both the expression for d, X and Y.
Consider next the coefficient of dx A 9. When p = 0, the corresponding coefficient in d X

isgiven by

—(=1+n+mby 5 Xy,
Inthe case that n =0 and m+# 1, using (2) we get exactly %7m7p; when m= 1 we get zero, just asin
(5.3.6). Inthe case m= 0, n # 1 we get exactly c%mp by the definition of by , ,; when n= 1 we get

zero, just asin (5.3.6).
When p # 0 the coefficient of €P?ay A, is

3 =B mp(—14n+m)xy" —ipb ; XMy,
Looking first at the coefficient of X®y™ in this expression, we get
1
—(m- 1)Ecg7m+l,p
as the coefficient coming from d, X; using (2) we get exactly (%mp' Looking now at the coefficient
of x"t1y™ we get

__—t
n+m
—iptd o, =Clo,  ifn=m=0

(od

nt1mp(N+m), ifn+m#0
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asdesired.

We now look at the coefficient of d, A d,,. We note that the definition of b} , , issymmetric
with respect to changing the roles of x and y, with the only exception being the definition of lg’O’p =
TT,lC\l/,Qp- Using (4) we get that also b8707p = %%717p; the rest now follows by symmetry. Thus
Y =d.X.

It follows that H2(U) ~ C’ and is spanned by the cohomology classes of the bivector

fields y2dx A dy, Xydx A dy, X2ax A dy, Xy A g, Yy A dg, Xdx A g and Yoy A 9.

5.3.4 Thethird cohomology.

LetnowZ =Y dmm,,[,x”ymei PP A dy A 9. For dimension reasons, we have d,Z = 0. We now claim
that Z = d.Y if and only if
dp00=01,10=0do20=0. (5.3.7)

Indeed, if Z = d,Y, then the coefficients of 2, xy and y? in the expression for Z must vanish (this
corresponds to n+m= 2 and p = 0 in the formulafor d.Y), which implies (5.3.7).
Conversely, assume that (5.3.7) is satisfied. Then set

0 1

Cn7m70 == n'+ m— 2dn7m70, n+m # 2

o _ 0 0
C200="C110="Cp20=0

n

Setalso ¢t = o =0Oforal nm For p#0let

1

Cﬁ,m,p = mdnmpa n+m#2,
Chimp = 0, n+m#2
Chmip = 0, Nn+m#2

In the remaining cases (p # 0 and n+m= 2, so that (n,m) isone of (1,1), (0,2), (2,0)) set

CGmp = 0, n+rm=2
-1
C107p - ﬁdmpa
1
Q1p = Edozm’
Cso = —Cy :_._1d1]_p.
77p O7O7p 2|p tha]
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We now check that Z = d,Y. In the case that p # 0, we get in the expression for d X the term
(S (n+m—2)ck , XYMP —ipck o X HYMEP ipc, o XYTEPY) A dy A B

Considering the coefficient of X'y™ in the case n+m# 2 we get (n+m— 2)o|nmpm dnmp

In the case that n+m= 2, we get
=i pc>r(1—17m7p +i pcyn m-1p dn,m7p

by definition.

If p=0, weobtain

S(n+m-2) cﬂ7m70x”ymei°¢ =3 O pX"y"e® = Z
n+m#2

because of conditions (5.3.7).

We conclude that H3(U) ~ C2 and is spanned by the cohomology classes of the 3-vector
fields X2ax A dy A dg, Xydx A dy A 9, and Y2ax A dy A 9.

We summarize the results of this section:

Proposition 5.3.1. The Poisson cohomology of (U, ) is given by:

Hi(U) = span(1)=

Ha(U) = span(xdx,yox, Xdy,ydy, o) = C°

H2(U) =~ span(y?dx A dy, Xydx A dy, X2dx A dy, Xdy A dg, Yy A dg, Xdx A dg, Yox A dg) = C’
H3(U) =~ span(x@ax A dy A dg, Xydx A dy A 3y, Y2ax A dy A dg) = C

5.4 Thecohomologiesof V and of U NV.

Recall (see, e.g., [Vai94, Corollary 5.14]) that the Poisson cohomology of a product Poisson mani-
fold P=M x N, where M is a symplectic manifold and N is a manifold with the zero structure and

finite Betti numbers, is given by the Kiinneth formula

k
HX(P) = P H' (M) @ 2 (N). (5.4.1)

1=0
We will apply thisresult to find the cohomology of the neighborhoods U and U NV intro-
duced above. As a Poisson manifold, V= D x T, where D is a symplectic disc of finite symplectic
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volume and T is acircle with the zero Poisson structure. Therefore

HA(V) = C~(6),
Hi (V) = x%(6),
HI(V) = O,
H3(V) = o

where we write 0 for the coordinate on the circle T, and C*(0) and X1(0) are the spaces of smooth
functions and smooth vector fieldson T respectively.

Similarly, UNV =2 Ax T as a Poisson manifold, where A is an annulus of infinite sym-
plectic volume. It follows that the Poisson cohomology of U NV is given by (we use coordinates
(r,0,¢) introduced above)

HOUNV) = C(6).
HIUNV) = C*(6)-span(rir) & X1(6),
HAUNV) = XX(8) Aspan(ray),
H3UNV) = o

5.5 The Poisson cohomology of SU(2)

Let M =3UJ(2) = U UV. We have the following Mayer-Vietoris exact sequence for computing the
Poisson cohomol ogy

0 — HOM) — HO(U) @ HO(V) 8 HO(U NV) &8
S HAM) B HAU) @ HAV) B HAUNV) S
S H2(M) 2 H2(U) @ H2(V) B HZ(UNV) B
SH3M) B H3U) @ H3V) s H3UNV) — 0.

5.5.1 The zeroth cohomology.

Since the set of two-dimensional leaves of ng; () is dense in U (2) and dl these leaves have a
common circle in their closures, it follows that the only Casimir functions on U (2) are constants.
Thus, HO(U (2)) ~ C2.
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5.5.2 Thefirst cohomology.

From the first and second rows of the Mayer-Vietoris sequence, we have H:(M) ~ Imdo @ Imiy.
Since the map jo is onto, by exactness it follows that Imd = 0. The map iy is injective, and
Imiy ~ kerj;. It is easy to see that ([d,],0) € kerj;. For the remaining generators of H(U), let
U = axdy + bydy + cxdy + dydy, where a, b, c,d € C. We have

j1([ulu, [f(6)de]v) = (55.1)
[(—f(8) —acos®sind — bsirf 04 ccos?0 +dcossing) - dgluny + (55.2)
[(acos?6 4 bcosBsin® 4 ccosBsiNG +dsi’0) - 1o Juny. (5.5.3)

Therefore, j1([ulu,[f(B)delv) = 0 iff a=d =0, b= —c and f(8) = c. Hence, kerj; =
span(([94], 0), ([yox —xdy], [9a])) ~ C*. Therefore,

Hx(SU(2)) ~ span(do, dy) = C.

One could interpret this result by noting that the leaf space of the Poisson structure of SJ(2)
consists of two circles N and T. Each point of N is a zero-dimensional leaf. Each point of T
represents a single two-dimensional leaf. The open sets of the leaf space are {U,UUT : U C
N open in the usual topology }. Thefirst cohomology of our Poisson structure is the “tangent space”
to the leaf space. There are two “tangent directions’, corresponding to the rotations of T and N.

5.5.3 The second cohomology.

From the Mayer-Vietoris exact sequence we have H2(M) ~ Imd; @ Imi,. By exactness, Imip ~
kerj,. Sincefor a,b,ce C

j2([(20 + bxy+ cy?) dx A dy]u, 0) =
= [(acos?6 + bcosBsin® +csirO)ro, Adpluny =0 < a=b=c=0,

and jo([(axdy + bydy + cxdy + dydy) A d¢)u,0) = O for all a,b,c,d, it follows that

Ker jo ~ span(Xdy, yox, Xdy, Ydy) A d¢ =

= Span(mgy(2), do A g, (1 €0S20 - 9y — SiN20 - dg) A dg, (r SIN26 - 9y +€0S20 - dp) A Iyp)-
We now turn to Imd;. Since kerd; = Imj; and from (5.5.1)-(5.5.3) it follows that

Imj; ~ %¥1(8) @ span(1,c0s26,sin26) - ro.
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Therefore,
H1(U NV)/kerdy = {f(B)ra,| f(8) € C*(0), f L span(1,cos26,sin26)}.

Recall that by definition ;([v]) for [v] € H}(U NV) is given by

61(V) =

[dxXy] onU,
[anV] onV,

where Xy € X1(U), Xy € ¥1(V) are any vector fields satisfying (X — Xv)|unv = V.
Let v= f(0)ra, and choose Xy =&(r) f(0)ra,, Xy = 0, where E(r) is a smooth function

such that
0 on [0,1/6],
E(r) =< dtrictly increasing on (1/6,1/3),
1 on[1/3,2/3].

(We need &(r) = 0 near zero to guarantee that X is smooth onU; E(r) = 1 on [1/3,2/3] guarantees
that (Xu —Xv)unv = V). Sincemy = rdr A 9, we obtain

d(E(r)- f(O)ror) =C(r)- f(B)ror Aoy onU,
hulv) = 0 onvV
whereC(r) = — ) jgq- bump function” with support on (1/6,1/3). Therefore,

dr

HZ(SU(2)) = span(mgy(2), 9o A 9, (1 €0S20 - 6y —SiN20 - dg) A dg, (1 SIN20 - 9r +COS20 - dg) A Jy)
D{C(r)f(0) -may(2) : F(0) L span(l,cos26,sin20)}

and is, in particular, infinite-dimensional.

55.4 Thethird cohomology.

From the Mayer-Vietoris exact sequence we have H3(M) ~ Imiz @ Imd, ~ H3(U) @ Imd,. To
compute Imd,, we need to determine kerd, ~ Imj,. First,

j2 ([span(x,y) - span(ax, dy) - 9] ,0) = 0

and fora,b,ce C

j2([@x + bxy -+ cy?)dx A dyJu,0) =
(acos?@ +bcos0sing + csirf8)ra; A dg.
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Therefore,

H2(UNV)

imi ={f(0)-rd, Aag: f(B) € C*(0), f(6) L span(1,cos20,sin20)}
2

and
Imdz = {T(r)- f(B)ror Adg A dg : () L span(1,cos26,sin20),

where C(r) isagain abump function concentrated on (1/6,1/3). We obtain

H3(SU(2)) ~ (span(1,c0s20,sin20) @ {C(r) f(0) : f((0) L span(1,c0s20,siN20)}) - rd A dg A dg.
The results of this chapter are summarized in the following

Theorem 5.5.1. The Poisson cohomology of the standard r-matrix structure on U (2) is given by

HI(SU(2) =~ span(1)=C"

H1(QU(2)) =~ span(de,dy) = C2

I
il\[\_)
-
n
I
8 B

an(mg (2), o A 9y, (1 c0S209r —SiN209g) A 9y, (r'Sin200; +cos200g) A dy) D

2
—~—
y
=
—_
S
=
g
n
._;‘
©
l_
B
38
2]
N
s
.
>
N
2
——

,€0820,SN26) - gy (2) A o ©

I
A w
N
1
4
—~ /%\ —
H

D{C(r) £(0) -y (2) A dg = (0) L span(1,cos26,sin26)
where ¢(r) is a bump function with support on an interval inside of (0,1).

Proposition 5.5.2. The Schouten bracket on multivector fields induces the following bracket on the
Poisson cohomol ogy:

[[99],Hx (SU(2))] =0
[[06],[r c0S200; A 0 — SiN200¢ A 9]] = —2[(r SIN200; A 94 4 COS2009 A 0g)]

[[06],[rSiN200 A 94 + €0S200¢ A d]] = 2[(r c0S200; A 0y —SiN200¢ A dg)]

[oa} [ O] = | ) Ggmsuia

[[ae], [COSZB Ty (2) A ae]] = —2[5”126 T (2) A ae]
[[ae], [S|n26 Ty (2) A ae” = Z[COSZG T (2) A ae]

df(6)
[9u] (50 1(6)- w2, ] = [&()
[H7(SU(2)),H7 (U (2)] =0.

-ty (2) A 69:|



Proposition 5.5.3. The wedge-product on the Poisson cohomology of U (2) is given by

[96] A [09] = [0 A 0]

[00] A [0 (2)] = [96 A sy (2)]

[09) A [(r cOS200; —SiN200dg) A d¢] = [r COS20 - d; A D¢ A ¢
[09]) A [(r SiN200, 4 C0S20) A d¢] = [rSiN20- 9y A 9 A 9]
[90] ATE(r) F(8) Ty z)] = [E(r) (8) - Tdr A dg A b

5.6 Remarks.

5.6.1 Deformationsassociated to certain elements of the second cohomology.

Parameterize the two-dimensional symplectic leaves of SJ(2) by the argument of w; thus write
Dy for the leaf on which argw = 6. Also let N be the set of zero-dimensional leaves (i.e., points
with w=0). It isnot hard to check that Xy = DgUD, ;9 UN is smooth and is isomorphic to a
2-sphere. The Poisson structure on this 2-sphere vanishes linearly along N. The two-dimensional
leaves are precisely D.g and the zero-dimensional leaves are points in N. Such structures were
studied in Chapter 3. Each such structure has an invariant called the regularized Liouville volume
(see 83.2.5). Theregularized volume of X, asafunction of 0, is an invariant of a Poisson structure
having Dg, D19, 0 < 6 < 2r as its two-dimensional leaves. For the standard Poisson structure on
U (2), theregularized volume invariant of each X isaways zero because of the symmetry between
Do and D,,¢. However, if we replace the Poisson structure g 2) by gy 2) +5(r) f (6)mgy o), where
C abump function as before and f _L span(1,cos26,sin26), the leaves of the new Poisson structure
stay the same, but the symplectic structure on each leaf is changed by “adding” more symplectic
volume to Dy and “subtracting” some symplectic volume from D ¢; the net amount added to
the regularized difference of volumes on Dy and D¢ depends on f(0) — f(x+ 6). Therefore,
deformations of the kind considered above precisely change the values of the regularized symplectic
volume of Xy by an amount depending on f(8) — f(x+ 6). This explains why deformations of the
form written above for different F(8) = f(8) — f(x + 0) are different in cohomology. It is rather
mysterious why there are more deformations than just these. We mention that given an element in
the second Poisson cohomology represented by E(r) f (6)mgy (2), one can look for its antiderivative
in the form
X=E(r)(f(6)rar) +9(6)de,
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where &(r) issuch that € (r) = ¢(r). Indeed, we have
d X =C(r)f(0)rar Adg.

Thus the issue is whether X is smooth on all of SU(2). Because we can choose ¢(r) to be zero
for large values of r, we may assume that X is supported on U. Moreover, since the only possible
singularity of X occursasr — 0, it is enough to consider the region where T(r) = const. Hence the
question becomes whether, given a smooth periodic function f(6), there exists a smooth periodic
function g(0), so that

F(6)rr +9(6) o

is a smooth vector field on R? endowed with polar coordinates (r,8). A somewhat cumbersome
argument (which isin fact the verification of the exactness of the Mayer-Vietoris sequence in this
case) shows that this happens if and only if f(6) liesin the linear span of 1,cos26 and sin26. We
don’t know a geometric interpretation of this fact (which is perhaps why we don’'t understand the
relevant invariant of Poisson structures on SJ(2) distinguishing all deformations corresponding to
the functions f orthogonal to this linear span).
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