
Some invariants of Poisson manifolds

by

Olga Valerievna Radko

Grad. (Moscow Institute of Physics and Technology) 1995
Grad. (Moscow Institute of Physics and Technology) 1997

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Alan D. Weinstein, Chair
Professor Nikolai Y. Reshetikhin
Professor Robert G. Littlejohn

Spring 2002



The dissertation of Olga Valerievna Radko is approved:

Chair Date

Date

Date

University of California at Berkeley

Spring 2002



Some invariants of Poisson manifolds

Copyright 2002

by

Olga Valerievna Radko



1

Abstract

Some invariants of Poisson manifolds

by

Olga Valerievna Radko

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Alan D. Weinstein, Chair

In this thesis we study various invariants of Poisson manifolds.

Given a compact oriented surface, we provide a complete classification of Poisson struc-

tures on it having at most quadratic degeneracies by constructing an explicit finite set of invariants.

In the case that the Poisson tensor has at most linear degeneracies we also compute the Poisson co-

homology, and explicitly describe (in terms of the invariants) deformations of the Poisson structures

associated to various elements of the second cohomology.

We study the properties of gauge and Morita equivalence of Poisson manifolds. In par-

ticular, we show that gauge equivalent integrable Poisson manifolds are Morita equivalent. We

prove that the leaf spaces of Morita equivalent Poisson manifolds are homeomorphic as topological

spaces, and that the modular periods around the zero curves are invariant under Morita equivalence.

As an example, we classify topologically stable Poisson structures on a two-sphere up to Morita

equivalence and gauge equivalence.

We compute the Poisson cohomology of the standard r-matrix structure on the Poisson-

Lie group SU�2�. In particular, the second cohomology turns out to be infinite-dimensional, which

implies that there exist infinitely many linearly-independent infinitesimal deformations of the struc-

ture.

Professor Alan D. Weinstein
Dissertation Committee Chair
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Chapter 1

Introduction

Poisson manifolds arose naturally in mathematical physics, in the course of studying phys-

ical systems possessing a symmetry. Recall that a symplectic manifold M (corresponding to a phase

space in physics) provides the geometric framework for the Hamiltonian formulation of mechanics.

A point in the symplectic manifold represents a state of the classical system. The presence of a sym-

plectic form allows one to associate to each function H (“Hamiltonian” in physics) a vector field;

the flow of this vector field gives the time evolution of the physical system described by the Hamil-

tonian. In the presence of symmetry of the physical system, it is natural to replace the manifold M

by its quotient by the symmetry. The quotient manifold P no longer has a symplectic structure; but

a trace of the symplectic structure remains. Namely, as was discovered by Poisson, the symplectic

structure on M can be equivalently described by a Poisson bracket ��� �� on the space of smooth

functions on M. It is this structure that descends to the quotient manifold P. Thus it makes sense to

consider Poisson manifolds (i.e., manifolds together with a Lie bracket ��� �� satisfying the Leibniz

identity on the space of smooth functions) as a generalization of symplectic manifolds. The Poisson

bracket on a symplectic manifold is then characterized by the property of being locally isomorphic

to the standard one on �2n . In a certain loose sense, every Poisson manifold is a quotient of a

symplectic manifold by a symmetry.

If the Hamiltonian H on M is invariant under the symmetry, it descends to a function,H̃

on P. The equations of motion on P are then given by

Ḟ � �F� H̃� (1.0.1)

for any smooth function F �C∞�P� (here Ḟ refers to the time derivative of F). Note that F can be

thought of as a “measurement” or an “observable” on the manifold P, assigning a number to each
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state of the physical system.

With the advent of quantum mechanics, it was noticed that in many instances there is a

quantum analog of the equation above:

˙̂F � �F̂� Ĥ�� (1.0.2)

where Ĥ is the Hamiltonian of the quantum system, and F̂ is an observable. The key difference

in the quantum situation is that F̂ and Ĥ are no longer functions, but operators on a Hilbert space,

lying in a non-commutative algebra. The bracket ��� �� is the commutator bracket for the operation of

multiplication (composition) of operators.

This analogy motivated the study of deformation quantization [BFF�78]. The key idea is

that a quantum-mechanical system must degenerate to a classical system, if considered in the range

of energies in which quantum effects are insignificant (the so-called correspondence principle).

Since one of the simplest examples of non-commutativity of quantum observables is the Heisenberg

uncertainty principle

�P̂� Q̂� � i��

where � is Planck’s constant, one should obtain classical mechanics from quantum mechanics by

formally taking the limit �� 0.

Thus for each quantum observable one must have a corresponding classical observable.

Since the multiplication of quantum observables is non-commutative, while the multiplication of

classical observables is commutative, the multiplication �� must depend on the parameter �. Math-

ematically, this means that the (non-commutative) algebras of quantum observables are defined by

formal deformations of algebras of classical observables. This fact, and the correspondence between

the evolution of the quantum system and the evolution of its classical limit gives a relation between

the corresponding equations of motion (1.0.2) and (1.0.1):

lim
��0

�F̂� Ĥ�� � 0� (1.0.3)

lim
��0

�F̂� Ĥ��
i�

� �F� H̃�� (1.0.4)

where �F̂� Ĥ�� � F̂ �� Ĥ � Ĥ �� F̂� It follows from the recently proved Kontsevich’s Formality

Theorem [[Kon]] that every Poisson manifold admits a formal deformation quantization. That is,

given a Poisson bracket � � � on a manifold M, there exist a deformation of the multiplication on

C∞�M� so that the properties (1.0.3) and (1.0.4) are satisfied. Thus, Poisson manifolds can be
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viewed as “semi-classical” limits of phase spaces of quantum mechanical systems, or, equivalently,

of a non-commutative algebras of quantum observables (see e.g. [CW99]). For this reason, Poisson

manifolds have both a geometric and an algebraic side. Also, it is clear, since Poisson brackets arise

as deformations of multiplication on an algebra, that the deformation theory (hence cohomology

theory) of Poisson manifolds is of interest.

In this thesis, we are primarily interested in the question of classification of Poisson man-

ifolds. Our goal is to find effective invariants that determine the possible Poisson structures on a

given manifold, and to study infinitesimal deformations of these structures.

Because of the dual algebraic and geometric nature of Poisson manifolds and their rela-

tions with physics, there are many interesting notions of equivalence for Poisson structures.

Perhaps the most straightforward (and strongest) notion is that of a Poisson isomorphism.

By that one means a diffeomorphism preserving Poisson brackets. It is in general a hopeless propo-

sition to classify Poisson structures on a given manifold up to this notion of equivalence. Indeed,

a Poisson structure induces a certain (singular) foliation of the underlying manifold, whose iso-

morphism class is clearly an invariant of the Poisson structure. Thus one would have to start by

classifying all possible foliations of a certain type, which is a very hard problem.

Fortunately, the situation is much simpler in the case of a two-dimensional manifold. In

Chapter 3, we give a complete set of invariants, allowing one to classify Poisson structures on

a compact oriented surface, having at most quadratic degeneracies at a finite number of isolated

points, and vanishing linearly on the rest of their zero sets. Besides the obvious invariant (the

topology of the embedding of the zero set into the surface), there are numerical invariants of three

kinds. The modular eigenvalues measure the rate of vanishing of the modular vector field at each

quadratic degeneracy. The modular flow times measure the “energy” it takes to move between two

points of quadratic degeneracy along an arc of a zero curve. (If there are no points of quadratic

degeneracy on a zero curve, the corresponding invariant is the period of a modular vector field

around the curve). The last invariant is the regularized volume, which is a certain generalization of

the Liouville volume of a symplectic manifold.

When the Poisson tensor has at most linear degeneracies, we also compute the Poisson

cohomology, and explicitly describe (in terms of the effect on our invariants) the infinitesimal de-

formations of the Poisson structures associated to the various cohomology elements.

Another, very recent, notion of equivalence for Poisson manifolds is that of gauge equiva-

lence, introduced by P. Ševera and A. Weinstein. Their approach is to interpret Poisson structures as

a particular case of the so-called Dirac structures on a manifold. Very roughly, the idea is to replace
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the Poisson tensor by the graph of the canonical map from the cotangent bundle to the tangent bun-

dle that it defines. More generally, a Dirac structure gives rise to a certain subbundle of the direct

sum of the cotangent and the tangent bundles. The additive group of differential two-forms on the

manifold acts naturally on the space of all Dirac structures by “rotating” the associated graphs. Two

structures are then called gauge-equivalent, if they belong to the same orbit of the action. It was

shown by Ševera and Weinstein that gauge-equivalent Poisson structures are very “close” to each

other (for example, they have the same cohomology); however, this equivalence relation remains

rather mysterious.

Another, algebraically motivated, notion of equivalence of Poisson manifolds is that of

Morita equivalence, introduced by P. Xu. His motivation was to start with the notion of representa-

tion equivalence (also called Morita equivalence) for algebras and arrive, by following the analogy

between Poisson manifolds and non-commutative algebras, to the corresponding notion of Morita

equivalence for Poisson manifolds.

In Chapter 4, we show that gauge equivalence of integrable Poisson manifolds implies

their Morita equivalence, thus relating the two notions of equivalence. To obtain this result, we first

prove that Poisson maps are equivariant with respect to gauge transformations of Poisson structures.

We also show that if two Poisson manifolds are Morita equivalent, their leaf spaces are

homeomorphic; moreover, the modular periods of Morita equivalent Poisson structures around the

corresponding zero curves (on which the Poisson structures vanish linearly) must be the same.

As an example, we classify topologically stable Poisson structures on a two-sphere up to

Morita equivalence. To do so, we utilize our result that the modular periods around the zero curves

and the topology of the leaf spaces are invariants for Morita equivalence. On the other hand, using

the results on classification of structures with linear degeneracies obtained in Chapter 3, we show

that if two topologically stable structures on a compact oriented surface have the same modular

period invariants, but possibly different regularized volumes, they are gauge equivalent. It remains

then to note that the topologically stable structures are integrable to conclude that, according to the

main result of Chapter 4, they are Morita equivalent. The results in Chapter 4 are a part of the joint

work ([BR]) with H. Bursztyn.

Finally, in Chapter 5, we compute the Poisson cohomology for the standard r-matrix

Poisson-Lie structure on SU�2�. One of our results is that the second Poisson cohomology is infinite-

dimensional. This means that the structure admits an infinite number of linearly-independent in-

finitesimal deformations.
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Chapter 2

Preliminaries

We give here a short review of some basic notions in symplectic and Poisson geometry

which will be used in the main part of the thesis. For a more detailed exposition, see, e.g., [Vai94,

Wei98].

2.1 Symplectic manifolds

A symplectic manifold is a smooth (even-dimensional) manifold M with a non-degenerate closed

2-form ω � Ω2�M�. This symplectic form gives rise to an invertible bundle map ω̃ : T M � T �M

according to

ω̃�v��u� � ω�v�u�� v�u � TM

For a smooth real-valued function f � C∞�M� on a symplectic manifold �M�ω� the vector field

Xf ��
1�M� � Γ�TM� given by

Xf � ω̃�1�d f �

is called the hamiltonian vector field of f . The symplectic form defines a Lie bracket � � � :C∞�M��

C∞�M��C∞�M� on the space of smooth functions according to

� f �g� � Xg f � ω�Xf �Xg�� f �g �C∞�M�

This bracket satisfies the Leibniz identity

� f �gh� � g� f �h��� f �g�h� f �g�h �C∞�M� (2.1.1)

and is called the symplectic Poisson bracket.
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The simplest example of a symplectic structure is given by �2n with coordinates �qi� pi�
n
i�1

and the symplectic form

ω0 �
n

∑
i�1

dqi�d pi� (2.1.2)

A diffeomorphism ϕ : �M1�ω1�� �M2�ω2� between two symplectic manifolds is called

a symplectomorphism if ϕ�ω2 � ω1. According to Darboux’s theorem, the standard symplectic

structure (2.1.2) provides a local model for any 2n-dimensional symplectic manifold �M�ω�: for

any point p �M there exists a neighborhood U of p which is symplectomorphic to ��2n �ω0�.

2.2 Poisson manifolds

2.2.1 Definition

A Poisson structure on a smooth manifold P is a Lie bracket on the space C∞�P� which satisfies the

Leibniz identity (2.1.1).

The Leibniz identity implies that the Poisson bracket � � � is a derivation in each argu-

ment. Together with anti-symmetry of the bracket, this implies that there exists a bivector field

π � �2�P� � Γ�Λ2TP� such that

� f �g� � 	π� d f �dg
� f �g �C∞�P��

where 	 � 
 : Γ�Λ2TP��Γ�Λ2T �P�� C∞�P� is the canonical pairing. The Jacobi identity for a

Poisson bracket is equivalent to the following condition on the Poisson bivector π:

�π�π� � 0� (2.2.1)

where ��� �� denotes the Schouten bracket on the space ���P� of multi-vector fields. Recall that the

Schouten bracket � � � : �a�P���b�P�� �a�b�1�P� is the unique extension of the Lie bracket of

vector fields and the action of vector fields on smooth functions such that

1. � f �g� � 0� f �g �C∞�P�;

2. �X � f � � X f � f �C∞�P�� X � �1�P�;

3. �X �Y � is the commutator bracket of vector fields for X �Y � �1�P�;

4. �A�B� ����1�a�b�B�A�� A � �a�1�P�� B � �b�1�P�;
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5. For A ��a�1�P�, �A� �� is a derivation of degree a of the exterior multiplication on ���P�;

The signs in this definition are motivated by superalgebra. Another sign convention for the Schouten

bracket is sometimes (e.g., in [Vai94]) used.

The Schouten bracket satisfies the graded Jacobi identity

�A� �B�C�� � ��A�B��C�� ��1�ab�B� �A�C�� (2.2.2)

for A � �a�1�P�, B � �b�1�P� and C � �c�1�P�.

A Poisson structure π can be equivalently described in terms of a bundle mapπ̃ : T �P�

TP such that

α�π̃�β�� � π�α�β�� α�β � T �P

For a smooth real-valued function f �C∞�P� the vector field Xf � π̃�d f � is called the Hamiltonian

vector field of f .

When π has constant maximal rank (the corresponding bundle map π̃ is invertible and

the manifold is even-dimensional in this case), it defines a symplectic structure on the manifold

according to

ω�X �Y � � π�π̃�1�X�� π̃�1�Y ��� (2.2.3)

The non-degeneracy of the form (2.2.3) follows from the maximality of rank of π and the closedness

of ω is equivalent to the integrability condition (2.2.1) on π. Conversely, a symplectic structure ω

on a manifold P defines a Poisson structure by

π�α�β� � ω�ω̃�1�α�� ω̃�1�β��� (2.2.4)

In this way, every symplectic manifold is an example of a Poisson manifold.

In general, π may have varying rank. The image of π̃ defines an involutive distribution.

The Poisson structure on the manifold induces a symplectic structure on each of the integral mani-

folds of this distribution. The integral manifolds of this distribution are called the symplectic leaves

of the Poisson manifold.

2.2.2 Local structure of a Poisson manifold.

It turns out that locally in a neighborhood of each point a Poisson manifold looks like a product of

an open subset of the standard symplectic manifold ��2k �ω0� for some k � 0 and a Poisson man-

ifold whose Poisson bivector vanishes at the point of consideration. More precisely, the following

theorem holds



8

Theorem. (Splitting Theorem [Wei83]) Let �P�π� be a Poisson manifold, and let x � P be a point.

Then there exist a neighborhood U of x with coordinates ��qi� pi�
k
i�1� �y j�

l
j�1� such that on U we

have

π�
k

∑
i�1

∂qi �∂pi �
1
2

l

∑
i� j�1

ϕi j�y� �∂yi �∂y j � ϕi j�0� � 0�

When l � 0, the structure is symplectic, and the theorem reduces to the Darboux’s theo-

rem.

If a Poisson structure on P has constant rank on the neighborhood U , it is possible to

choose coordinates in such a way that ϕi j�y� � 0. If the rank of the Poisson structure on P is

constant, the Poisson manifold �P�π� is called regular; in this case, the local decomposition of P is

into the product of a symplectic manifold (identified with a piece of each leaf) and a local transversal

to the symplectic leaves.

2.2.3 Example: Poisson structure on the dual of a Lie algebra.

Let � be a Lie algebra with a Lie bracket � � �, and �� be the dual space of �. Viewing � as the

subspace �
 ��� �C∞���� consisting of linear functions, it is possible to extend the Lie bracket on

� to a Poisson bracket on C∞����, by first extending it to polynomials using the derivation property.

Such an extension is unique, and the corresponding Poisson bracket is given by

� f �g��µ� � 	µ� �d f �µ��dg�µ��
� f �g �C∞����� µ � ��� (2.2.5)

where 	 � 
 is the canonical pairing between �� and �. The Poisson structure (2.2.5) on the dual of

a Lie algebra is often called the Lie-Poisson structure. Its symplectic leaves are the orbits of the

coadjoint action.

2.3 Poisson cohomology

2.3.1 Definition

A Poisson structure π on a manifold P gives rise to a differential operator dπ : ���P�� ���1�P�

of degree one on the space ���P� of multivector fields on P. This operator was first introduced by

Lichnerowicz [Lic77] and is given by Schouten bracket with π:

dπX
�
� �π�X �� X � ���P� (2.3.1)
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The condition �π�π� � 0 together with the graded Jacobi identity for the Schouten bracket implies

that d2
π � 0, making ����P�� dπ� into a differential complex. The resulting cohomology

Hk
π�P�

�
�

ker�dπ : �k�P�� �k�1�P��
Im�dπ : �k�1�P�� �k�P��

is called the Poisson cohomology of a Poisson manifold.

The map Ω��P�����P� defined by the natural extension of π̃ : Ω1�P���1�P� accord-

ing to

α1� �� ��αk �� π̃�α1�� �� �� π̃�αn�� α1� � � � �αn �Ω1�P�

is a morphism from the de Rham complex �Ω��P��ddeRham� to the Poisson complex ����P��dπ�.

Example 2.3.1. Let �M�ω� be a symplectic manifold. Since π̃ � ω̃�1 : T �M � TM is an iso-

morphism of vector bundles, the morphism �Ω��M�� ddeRham�� ����M�� dπ� is an isomorphism of

complexes. Therefore, the Poisson cohomology of a symplectic manifold is isomorphic to its de

Rham cohomology: H�
π�M�� H�

deRham �M�.

Example 2.3.2. Let �P�π� be a Poisson manifold with the zero Poisson structure, π � 0. Then

dπ � 0 and the cohomology spaces Hk
π�P�� �

k
π�P� for k � 0� � � � �dim�P� are infinite-dimensional.

In general, the Poisson cohomology combines the properties of the two extreme examples

above.

Example 2.3.3. Let �� be the dual of a Lie algebra � with its Lie-Poisson structure described in

Example 2.2.3. Then, by a result of J.-H.Lu [Lu91], H�
π��

�� � H�
Lie���C

∞�����, where the right

hand side is the Lie algebra cohomology of � with coefficients in C∞����. This isomorphism of

cohomology spaces comes from an explicit isomorphism of the corresponding complexes.

2.3.2 Interpretations of cohomology spaces.

Let �P�π� be a Poisson manifold. The Poisson cohomology in low degrees has the following inter-

pretations:

1. In degree 0, the differential dπ assigns to each function f �C∞�P� its Hamiltonian vector field:

dπ f � �π� f � � Xf . Then dπ f � 0 iff Xf g � � f �g� � 0 for all g �C∞�P�. Hence, H0
π�P� is

the space of so-called Casimir functions, i.e. those functions which commute with all smooth

functions with respect to the Poisson bracket.



10

2. In degree 1, for a vector field X ��1�P� we have dπX ��LXπ. Hence, H1
π�P� is the quotient

of the space of so-called Poisson vector fields (whose flow preserves π) by the subspace of

Hamiltonian vector fields. Interpreting Poisson vector fields as infinitesimal automorphisms,

and Hamiltonian vector fields as infinitesimal inner automorphisms, one can think of H1
π�P�

as of the space of outer automorphisms of �P�π�;

3. To find an interpretation of H2
π�P�, consider a formal one-parameter deformation of a Poisson

structure π given by

π�ε� � π� ε �π1� ε2 �π2 � � � � � (2.3.2)

where πi � �
2�P�� i � 1 and ε is a formal parameter. The condition for π�ε� to be a Poisson

bivector gives

�π�ε��π�ε�� � �π�π��2ε � �π�π1�� ε2 � �2�π�π2�� �π1�π1��� � � �� 0� (2.3.3)

Since π is a Poisson structure, �π�π� � 0. If dππ1 � �π�π1� � 0, then �π� επ1�π� επ1� �

O�ε2� and π1 � �
1�P� is called an infinitesimal deformation of π. If π1 � dπX � �LXπ for

some X � �1�P�, then π� ε �π1 is a Poisson bivector and π1 is called a trivial infinitesimal

deformation of π. Therefore, H2
π�P� is the space of infinitesimal deformations of π modulo

its trivial infinitesimal deformations.

4. To find an interpretation of H3
π�P�, we return to the equation (2.3.3). Suppose that π1 is an

infinitesimal deformation of π, i.e. �π�π1� � 0. The coefficient of ε2 in (2.3.3) is zero iff

dππ2 ��
1
2
�π1�π1�� (2.3.4)

The graded Jacobi identity together with �π�π� � 0, �π�π1� � 0 implies that dπ�π1�π1� � 0.

Therefore, �π1�π1� determines a class in H2
π�P�. This class is zero iff (2.3.4) has a solution

with respect to π2. In general, the recursive solution of (2.3.3) involves at the n-th step solving

an equation of the form

dππn � quadratic expression in π1� � � � �πn�1� (2.3.5)

Therefore, H3
π�P� contains the obstructions to extensions of infinitesimal deformations to

formal deformations of higher orders.
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2.3.3 The Mayer-Vietoris Sequence.

One of the tools useful in computations of Poisson cohomology is the Mayer-Vietoris exact sequence

(see, e.g. [Vai94]). Its existence follows from the fact that dπ is functorial with respect to restrictions

to open subsets. Explicitly, for a Poisson manifold �P�π� and open subsets U�V � P the short exact

sequence

0� ���U �V �� ���U�����V �� ���U �V�� 0

leads to a long exact sequence in cohomology:

� � � � H��1
π �U �V�� H�

π�U �V�� H�
π�U��H�

π�V �� H�
π�U �V �� � � �

2.3.4 Algebraic structures on H�

π�P�

The cohomology space H�
π�P� has the structure of an associative graded commutative algebra and

(after the necessary shifting of the degrees) the structure of a graded Lie algebra, which are obtained

in the following way.

� Since dπ�X �Y � � dπX �Y � ��1�degXX � dπY , the wedge product � : �k�P���l�P��

�k�l�P� induces an associative graded commutative multiplication (or cup product) on Pois-

son cohomology: �X �� �Y � � �X �Y �, for �X �� �Y � � H�
π�P�.

� Since dπ��X �Y �� ���dπX �Y �� ��1�degX �X �dπY �, the Schouten bracket of multivector fields

induces the bracket on H�
π�P�: ��X �� �Y �� � ��X �Y �� for �X �� �Y ��H�

π�P�, which becomes graded

anti-commutative and satisfies the graded Jacobi identity if the degrees of the elements are

shifted by �1.

2.4 Modular vector fields and the modular class of a Poisson manifold

The modular flow of a Poisson manifold is a one-parameter group of automorphisms determined

by the choice of a smooth density on the manifold. The modular automorphism group of a von

Neumann algebra A is a 1-parameter group of automorphisms of A, whose class modulo inner

automorphisms is canonically associated to A. Considering Poisson manifolds as “semiclassical

limits” of von Neumann algebras, A. Weinstein (see [Wei97] and references therein) arrived at the

following definition of the modular vector field of a Poisson manifold.

Let �P�π� be a Poisson manifold and µ be a smooth positive density on P. Associated

to this data, there is an operator ϕµ : f �� divµXf on the space C∞�P� of smooth functions on P.
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The anti-symmetry of the Poisson tensor π implies that ϕµ is a derivation of C∞�P� and, therefore,

defines a vector field on P. This vector field is called the modular vector field of P with respect to µ

and is denoted by Xµ:

Xµ f
�
� divµXf �

LXf µ

µ
� f �C∞�P�

The modular vector field has the following properties:

1. Xµ � 0 iff µ is invariant under the flows of all hamiltonian vector fields of π;

2. For any other µ� � a � µ, a � C∞�P� the difference Xµ� �Xµ is the hamiltonian vector field

X� loga;

3. The flow of Xµ preserves π and µ : LXµπ� 0, LXµµ � 0;

4. Xµ is tangent to the symplectic leaves of maximal dimension.

If Xµ � 0, µ is called an invariant density, and the Poisson manifold is called unimodular. For

example, all symplectic manifolds are unimodular since the Liouville density associated to the sym-

plectic structure is invariant under all hamiltonian flows (and the corresponding modular vector field

is zero).

Since a modular vector field preserves the Poisson structure and depends on µ up a hamil-

tonian vector field, it determines a canonical class in the first Poisson cohomology, called the mod-

ular class of a Poisson manifold.

Example 2.4.1. For a Poisson structure on �2 given by π� f �x�y�∂x �∂y, the modular vector field

of π with respect to the density µ � �dx� dy� is the same as the hamiltonian vector field of f with

respect to the canonical non-degenerate Poisson structure π0 � ∂x�∂y. Indeed, for any h,

Xµh �
L f �x�y��∂yh∂x�∂xh∂y��dx�dy�

dx�dy
� ∂y f∂xh�∂x f∂yh � �h� f�π0 � Xπ0

f h�

2.5 Symplectic groupoids and Morita equivalence of Poisson mani-

folds

2.5.1 Groupoids

A groupoid over a set Γ0 is a set Γ together with the following maps:



13

1. A pair of surjective maps Γ
α
�

β
Γ0. The map α is called the source map, and β is called the

target map of the groupoid.

2. A product m : Γ�2� � Γ (also denoted by m�g�h� � g � h) defined on the set of composable

pairs:

Γ�2�
�
� ��g�h� � Γ�Γ�β�g� � α�h���

This product (multiplication) must satisfy the following properties:

� For all �g�h� � Γ�2�, α�g �h� � α�g�� β�g �h� � β�h�;

� For all �g�h���h�k� � Γ�2�, �g �h� � k � g � �h � k� (associativity);

3. An embedding ε : Γ0 � Γ called the identity section such that

ε�α�g�� �g � g � g � ε�β�g���

4. An inversion map ı : Γ� Γ (also denoted by ı�g� � g�1) such that

ı�g� �g � ε�β�g��� g � ı�g� � ε�α�g���

An element g � Γ can be thought of as an arrow from x � α�g� � Γ0 to y � β�g� � Γ0.

Example 2.5.1. Any group G is a groupoid over its identity element e �G.

Example 2.5.2. For a set Γ0, the pair groupoid over Γ0 is Γ� Γ0�Γ0 with the following structure

maps:

α�x�y� � x� β�x�y� � y;

�x�y� � �y�z� � �x�z�;

ε�x� � �x�x�;

�x�y��1 � �y�x�;

for all x�y�z � Γ0.
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2.5.2 Lie groupoids and Lie algebroids

A Lie groupoid Γ over a manifold Γ0 is a groupoid over Γ0 which has a structure of a smooth

manifold such that

1. α�β are smooth submersions;

2. m�ε� ı are smooth maps;

For example, a Lie group is a Lie groupoid over its unit element. To any Lie group, one can

associated an infinitesimal object, its Lie algebra. In a similar way, every Lie groupoid gives rise to

an infinitesimal object: a Lie algebroid.

A Lie algebroid over a manifold P is a vector bundle A� P together with a Lie algebra

structure ��� �� on the space Γ�A� of sections of A and a bundle map (called an anchor) ρ : A� TP

such that

1. The induced map ρ : Γ�A�� �1�P� is a Lie algebra homomorphism;

2. For any f �C∞�P� and v�w � Γ�A� the following Leibniz identity holds:

�v� f w�A � f �v�w�A ��ρ�v� � f �w�

In contrast to the situation for Lie algebras (for which there is always a Lie group, “integrating” the

given Lie algebra), there are Lie algebroids which do not come from any Lie groupoids. Those Lie

algebroids for which there is a Lie groupoid “integrating” them are called integrable.

For any manifold M, its tangent bundle TM has a standard structure of a Lie algebroid:

the bracket on the sections of TM is just the commutator bracket of vector fields and the anchor is

the identity map. This algebroid is always integrable: as an integrating groupoid one can take, for

example, the pair groupoid M�M.

Every Lie groupoid has two associated anti-isomorphic Lie algebroid structures canoni-

cally defined on the normal bundle to its unit submanifold.

2.5.3 The Lie algebroid and the symplectic groupoid of a Poisson manifold

A Poisson structure π on a manifold P defines a Lie algebroid structure on the cotangent bundle

T �P in the following way. The Lie bracket on Ω1�P� � Γ�T �P� is determined be the condition that

on the exact forms it is given by

�d f �dg� � d� f �g�� f �g �C∞�P�
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and it is extended to all 1-forms using the Leibniz identity

�α� fβ� � f �α�β�� ��π̃�α� � f �β α�β �Ω1�P�� f �C∞�P��

The anchor is given by ρ
�
��π̃. With these definitions, the bundle map π̃ : Ω1�P�� �1�P� is a Lie

algebra anti-homomorphism. This Lie algebroid is called the Lie algebroid of a Poisson manifold.

If there is a Lie groupoid Γ
α
�

β
P whose corresponding Lie algebroid is isomorphic to

�T �P� � � �� π̃�, the Poisson manifold P is called integrable. When the α-fibers (i.e., the fibers of the

map α : Γ� P) are connected and simply-connected, the canonical symplectic structure on the

cotangent bundle T�P induces a symplectic structure Ω on Γ for which the graph ��z�x�y� � Γ�

Γ�Γ : z � x � y� of the groupoid multiplication is a lagrangian submanifold of �Γ�Ω�� �Γ��Ω��

�Γ��Ω�. In this case �Γ�Ω�α�β� is called a symplectic groupoid of the Poisson manifold. The

source map α : Γ� P of a symplectic groupoid is a Poisson map, and the target map β : Γ� P is

an anti-Poisson map. Conversely, a symplectic structure on a groupoid which is compatible with

the groupoid multiplication (i.e., the graph of the multiplication is lagrangian) induces a Poisson

structure on the base of the groupoid so that the source map is a Poisson map.

A symplectic realization of a Poisson manifold �P�π� is a Poisson map ϕ from a symplectic

manifold �Q�Ω� to �P�π�. For example, the source map α of a symplectic groupoid of a Poisson

manifold gives its symplectic realization. According to a theorem of Karasev [Kar87] and Weinstein

[Wei83], every Poisson manifold has a surjective submersive symplectic realization. Symplectic

realizations of Poisson manifolds can be considered as an analog of representations of associative

algebras.

2.5.4 Morita equivalence of Poisson manifolds

Definition 2.5.3. ([Xu91a]) Two Poisson manifolds �P1�π1� and �P2�π2� are called Morita equiva-

lent if there is a symplectic manifold �S�Ω� and surjective submersions α : S� P1 and β : S� P2

such that

� α : �S�Ω�� �P1�π1� is a Poisson map;

� β : �S�Ω�� �P2�π2� is an anti-Poisson map;

� α and β are complete maps of constant rank;

� α and β have connected simply connected fibers;
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� the fibers of α and β are symplectic orthogonal to each other, ker�Tα� � ker�Tβ��.

Such a symplectic manifold �S�Ω� is called a Morita equivalence bimodule of �P1�π1�, �P2�π2�. The

last property, in particular, implies that �α��C∞�P1���β��C∞�P2��� � 0. Equivalently, this means

that the map S
α�β
� P1�P2 is a Poisson map, where P1�P2 is endowed with the product Poisson

structure. An important property of Morita-equivalent Poisson manifolds is stated in the following

Proposition 2.5.4. (see, e.g., [CW99]) There is a one-to-one correspondence of the leaves of Morita

equivalent Poisson manifolds.

Example 2.5.5. Let P be a connected and simply connected symplectic manifold, and M be a

connected manifold with the zero Poisson structure. Then the manifold M��P�M with the product

Poisson structure is Morita-equivalent to M, with the Morita equivalence bimodule given by S �

P�T �M, and α � �id�pr� : S � P�M, β � pr : S � M. In particular, a connected and simply

connected symplectic manifold is Morita equivalent to a point with the zero Poisson structure.

For integrable Poisson manifolds, Xu [Xu91a] showed that Morita equivalence for Pois-

son manifolds is the natural notion of equivalence in the category of symplectic groupoids. There-

fore, one gets that for integrable Poisson manifolds, Morita equivalence is a true equivalence relation

(in particular, it is transitive).
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Chapter 3

Poisson structures on compact oriented

surfaces.

3.1 Summary of results.

Recently several results were obtained concerning the local classification of Poisson structures on a

manifold. According to the Splitting Theorem (Theorem 2.2.2), the problem of local classification

of Poisson structures can be reduced to the classification of structures vanishing at a point. In

dimension 2, V. Arnold [Arn78] obtained a hierarchy of normal forms of germs of Poisson structures

degenerate at a point (see also P.Monnier [Mon] for a detailed exposition). Using the notion of the

modular vector field of a Poisson structure, J.-P. Dufour and A. Haraki [DH91] and Z.-J. Liu and

P. Xu [LX92] obtained a complete local classification of quadratic Poisson structures in dimension

3. Some results related to local classification of Poisson structures in dimensions 3 and 4 were also

obtained by J. Grabowski, G. Marmo and A.M. Perelomov in [GMP93].

However, not much is known in relation to the global classification of Poisson structures

on a given manifold (i.e., classification up to a Poisson isomorphism, see [Wei98] for a general dis-

cussion). In this chapter we prove several global classification results pertaining to certain types of

Poisson structures on surfaces. Even though we always consider an equivalence via an orientation-

preserving Poisson isomorphism, we note that the question of global equivalence by orientation-

reversing Poisson isomorphisms can be reduced to the orientation-preserving case in the following

way. Let ν : Σ� Σ be an orientation-reversing diffeomorphism of a compact connected oriented

surface Σ. Two Poisson structures π�π� on Σ are globally equivalent via an orientation-reversing dif-
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feomorphism iff ν�π and π� are globally equivalent via an orientation-preserving diffeomorphism.

In Section 3.2 we consider the Poisson structures whose degeneracies are at most linear

(the simplest structures in Arnold’s local classification). We call such structures topologically stable,

since the topology of their zero set is preserved under small perturbations. The set of such structures

is dense in the vector space of all Poisson structures on a given surface. The main result (Theorem

3.2.13) of Section 3.2 is a complete classification of these topologically stable structures up to an

orientation-preserving Poisson isomorphism. In Section 3.2.7 we compute the Poisson cohomology

of a given topologically stable Poisson structure vanishing linearly on n disjoint smooth curves

on a compact oriented surface Σ of genus g. The zeroth cohomology (interpreted as the space of

Casimir functions) is generated by constant functions and is one dimensional. The first cohomology

(interpreted as the space of Poisson vector fields modulo Hamiltonian vector fields) has dimension

2g � n and is generated by the image of the first de Rham cohomology of Σ under the injective

homomorphism π̃ : H�
deRham�Σ�� H�

π�Σ� and by the following n vector fields:

Xω0�π� � �bump function around γi�� i � 1� � � �n�

The second cohomology is generated by a non-degenerate Poisson structure π0 on Σ and n Poisson

structures of the form

πi � π � �bump function around γi�� i � 1� � � � �n�

Each of the generators of the second cohomology corresponds to a one-parameter family of infinites-

imal deformations of the Poisson structure which affects exactly one of the numerical classifying

invariants. The deformation π �� π� ε � π0 changes the regularized Liouville volume. For each

i � 1� � � � �n, the deformation π �� π� ε � πi changes the modular period around the curve γi. This

shows that the number of numerical classifying invariants �n� 1� for �n�Σ�) equals the dimension

of the second Poisson cohomology, and is, therefore, optimal.

As an example, we consider the classification of topologically stable Poisson structures

on the sphere (Section 3.2.8) and describe the moduli space of such structures up to Poisson iso-

morphisms.

In Section 3.3, we explain how our techniques can be used to provide effective classifi-

cation results for Poisson structures with zeros of higher order. In particular, we give a complete

classification of Poisson structures π which vanish linearly on nearly all points in their zero set,

except possibly having quadratic degeneracies at a finite number of points. As an example, we

consider the structures on two-torus defined by a height function.
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3.2 A classification of topologically stable Poisson structures on a com-

pact oriented surface.

In this section we will find a complete classification of Poisson structures vanishing at most linearly

on a given compact oriented surface. Locally these structures are the simplest in the Arnold’s

hierarchy.

3.2.1 A classification of symplectic structures

According to Darboux’s theorem, all symplectic structures on a given manifold M are lo-

cally equivalent: for a symplectic form ω and a point p � M there exist a coordinate system

�� � x1� � � � �xn� y1� � � � �yn� centered at p such that ω �∑n
i�1 dxi � dyi on � . Therefore, the dimen-

sion of the manifold is the only local invariant of a symplectic structure.

Definition 3.2.1. Two symplectic forms ω0 and ω1 on M are globally equivalent if there is a sym-

plectomorphism ϕ : �M�ω0�� �M�ω1�.

In certain cases the following theorem of Moser allows one to classify symplectic forms

on a manifold up to global equivalence:

Theorem 3.2.2. (Moser, [Mos65]) Let ω0 and ω1 be symplectic forms on a compact 2n dimensional

manifold M. Suppose that �ω0� � �ω1� � H2
deRham�M� and that the 2-form ωt

�
� �1� t�ω0 � tω1 is

symplectic for each t � �0�1�. Then there is a symplectomorphism ϕ : �M�ω0�� �M�ω1�.

The total Liouville volume V �ω� �
�
�

M ω� �� ��ω� �� �
n

associated to a symplectic structure ω

on M is a global invariant. That is, if symplectic forms ω1 and ω2 on M are globally equivalent,

their Liouville volumes are equal, V �ω1� �V �ω2�.

In the case of a compact 2-dimensional manifold Moser’s theorem implies

Corollary 3.2.3. On a compact connected surface Σ two symplectic structures ω0� ω1 are globally

equivalent iff the associated Liouville volumes are equal:
�
Σω0 �

�
Σω1.

For completeness, we sketch a proof of the corollary (the proof of Moser’s theorem is

essentially the same). The idea is to find a time-dependent vector field Xt , whose flow at time t � 1

would take ω0 to ω1. Since
�

Dω1 �
�

Dω2, the class of ω0�ω1 in the second de Rham cohomology

is trivial. Hence ω0�ω1 � dµ for a 1-form µ. Then for Xt
�
��ω̃�1

t �µ� we have

LXtωt � dıXtωt � ıXt dωt � dıXtωt ���ω0�ω1�
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Therefore,

LXtωt �
dωt

dt
� 0�

Let ρt be the flow of the time-dependent vector field Xt . Since

d
dt

�ρ�t ωt� � ρ�t

�
LXtωt �

dωt

dt

�
� 0�

ρ�t ωt is constant and hence equal to ρ�0ω0 � ω0 for all t � �0�1�. Thus in particular ρ�1ω1 � ω0, as

desired.

3.2.2 Topologically stable Poisson structures

Let Σ be a compact connected oriented 2-dimensional surface. Since there are no non-trivial 3-

vectors, any bivector field gives rise to a Poisson structure. Thus, Poisson structures on Σ form a

vector space which we denote by Π�Σ�.

For n� 0 let �n�Σ��Π�Σ� be the set of Poisson structures π on Σ such that

� the zero set Z�π� �
� �p � Σ�π�p� � 0� of π � �n�Σ� consists of n smooth disjoint curves

γ1�π�� � � � �γn�π�;

� π vanishes linearly on each of the curves γ1�π�� � � � �γn�π�;

In particular, �0�Σ� is the set of symplectic structures on Σ. Let � �Σ� ��
�

n�0�n�Σ�. The symplectic

leaves of a Poisson structure π � � �Σ� are the points in Z�π� �
�n

i�1 γi (the 0-dimensional leaves)

and the connected components of Σ�Z�π� (the 2-dimensional leaves).

Unless indicated otherwise, throughout the section we denote by ω0 a symplectic form

compatible with the orientation of Σ and by π0 the corresponding Poisson bivector. Since any π can

be written as π� f �π0 for a function f �C∞�Σ�, we have Π�Σ� �C∞�Σ� �π0. The subspace �n�Σ�

corresponds in this way to the product �n�Σ� � π0, where �n�Σ� is the space of smooth functions

for which 0 is a regular value and whose zero set consists of n smooth disjoint curves.

Since � �Σ� �
�

n�0�n�Σ� is the set of smooth functions intersecting 0 � � transver-

sally (see, e.g., [GG73, Def. 4.1]), according to the Elementary Transversality Theorem (see, e.g.,

Corollary 4.12 in [GG73]), � �Σ� is an open dense subset of C∞�Σ� in the Whitney C∞ topology.

Therefore, we have the following

Proposition 3.2.4. The set of Poisson structures � �Σ� is generic inside of Π�Σ�, i.e. � �Σ� is an

open dense subset of the space Π�Σ� of all Poisson structures on Σ endowed with the Whitney C∞

topology.
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Of course, for some sets of disjoint curves on a surface there are no functions (and, there-

fore, Poisson structures), vanishing linearly on that set and not zero elsewhere. For example, such

is the case of one non-separating curve on a 2-torus.

We will use the following definition

Definition 3.2.5. Two Poisson structures π1 and π2 on an oriented manifold P are globally equiva-

lent if there is an orientation-preserving Poisson isomorphism ϕ : �P�π1�� �P�π2�.

The main goal of this section is to classify the set � �Σ� of topologically stable structures

ion a compact oriented surface Σ up to global equivalence.

First, we will need the following

Lemma 3.2.6. A topologically stable Poisson structure π � �n�Σ� defines an orientation on each

of its zero curves γi � Z�π�� i � 1� � � � �n. Moreover, this induced orientation on the zero curves of π

does not depend on the choice of orientation of Σ.

Proof. Let ω0 be a symplectic form on Σ, and π0 be the corresponding Poisson bivector. Since

π � f �π0 and f vanishes linearly on each of γi � Z�π� and nowhere else, f has a constant sign on

each of the 2-dimensional symplectic leaves of π. In particular, f has the opposite signs on two

leaves having a common bounding curve γi. This defines an orientation on γi in the following way.

For a non-vanishing vector field X tangent to the curve γi, we say that X is positive if ω0�X �Y �� 0

for all vector fields Y such that LY f � 0. We say that X is negative if �X is positive.

Suppose that X is a vector field tangent to γi and positive on γi with respect to the chosen

orientation of Σ. If ω�0 is a symplectic form inducing the opposite orientation on Σ, then ω�0 ��α �ω0

with α�C∞�Σ�� α� 0, and π��α � f �π0. Since for Y � such that LY ���α � f �� 0 we have LY � f � 0,

it follows that ω0�X �Y ��� 0 and, therefore,

ω�0�X �Y �� ��α �ω0�X �Y ��� 0�

Hence, if X is positive on γi with respect to a chosen orientation of Σ, it is also positive on γi with

respect to the reverse orientation of Σ.

We will refer to this orientation of γi � Z�π� as the orientation defined by π.

3.2.3 Diffeomorphism equivalence of sets of disjoint oriented curves

We will use the following definition
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Definition 3.2.7. Two sets of smooth disjoint oriented curves �γ1� � � � �γn� and �γ�1� � � � �γ
�
n� on a com-

pact oriented surface Σ are called diffeomorphism equivalent (denoted by �γ1� � � � �γn�� �γ1� � � � �γ�n�)

if there is an orientation-preserving diffeomorphism ϕ : Σ� Σ mapping the first set onto the sec-

ond one and preserving the orientations of curves. That is to say, for each i � 1� � � � �n there exists

j � 1� � � � �n such that ϕ�γi� � γ�j (as oriented curves).

Let �n�Σ� be the space of n disjoint oriented curves on Σ and �n�Σ� be the moduli

space of n disjoint oriented curves on Σ modulo the diffeomorphism equivalence relation, �n�Σ� �

�n�Σ�� �. For a set of disjoint oriented curves �γ1� � � � �γn�, let ��γ1� � � � �γn�� ��n�Σ� denote its

class in the moduli space �n�Σ�. If
�n

i�1 γi � Z�π� for a Poisson structure π, we will also write

�Z�π�� ��n to denote the class of the set of curves �γ1� � � � �γn� taken with the orientations defined

by π.

The topology of the inclusion Z�π�� Σ and the orientations of the zero curves of a topo-

logically stable Poisson structure π � � �Σ� are invariant under orientation-preserving Poisson iso-

morphisms. In other words, if π�π� � �n�Σ� are globally equivalent, �Z�π�� � �Z�π��� ��n�Σ�.

3.2.4 The modular period invariant

Let π � �n�Σ� be a topologically stable Poisson structure on a surface Σ. A symplectic form ω0

compatible with the orientation of Σ is also a volume form on Σ. Let Xω0 be the modular vector

field of π with respect to ω0. Since the flow of Xω0 preserves π, it follows that the restriction of Xω0

to a curve γi � Z�π� is tangent to γi for each i � 1� � � � �n. Since for a different choice ω�0 of volume

form the difference Xω0�Xω�

0 is a hamiltonian vector field and, therefore, vanishes on the zero set

of π, it follows that the restrictions of Xω0 to γ1� � � � �γn are independent of the choice of volume

form ω0. It is apparent from the definition of the modular vector field that it is unchanged if the

orientation of the surface is reversed.

Suppose that π � Π�Σ� vanishes linearly on a curve γ. On a small neighborhood of γ,

let θ be the coordinate along the flow of the modular vector field Xω0 with respect to ω0 such that

Xω0 � ∂θ. Since π vanishes linearly on γ, there exists an annular coordinate neighborhood �U�z�θ�



23

of the curve γ such that

U � ��z�θ�� �z� � R� θ � �0� 2π��� (3.2.1)

γ� ��z�θ��z � 0�� (3.2.2)

ω0�U � dz�dθ� (3.2.3)

π�U � cz∂z�∂θ� c � 0� (3.2.4)

Using this coordinates, it is easy to verify the following

Claim 3.2.8. The restriction of a modular vector field to the zero curve γ � Z�π� (on which the

Poisson structure vanishes linearly) is positive with respect to the orientation on γ defined by π (see

Claim 3.2.6 for the definition of this orientation).

Definition 3.2.9. (see also [Roy]) For a Poisson structure π � Π�Σ� vanishing linearly on a curve

γ � Z�π� define the modular period of π around γ to be

Tγ�π�
�
� period of Xω0�γ�

where Xω0 is the modular vector field of π with respect to a volume form ω0. Since Xω0�γ is

independent of the choice of ω0, the modular period is well-defined.

Using the coordinate neighborhood �U�z�θ� of the curve γ, we obtain

Tγ�π� �
2π
c
� (3.2.5)

where c � 0 is as in (3.2.4).

It turns out that the modular period of the Poisson structure (3.2.4) on an annulus U is the

only invariant under Poisson isomorphisms:

Lemma 3.2.10. Let U�R�� ��z�θ�� �z��R� θ� �0�2π�� and U ��R�� � ��z��θ��� �z���R�� θ� � �0�2π��

be open annuli with the orientations induced by the symplectic forms ω0 � dz�dθ and ω�0 � dz��

dθ� respectively. Let π � cz∂z � ∂θ� c � 0 and π� � c�z�∂z� � ∂θ� � c� � 0 be Poisson structures on

U�R� and U ��R�� for which the modular periods around the zero curves γ � ��z�θ��z � 0� and

γ� � ��z��θ���z� � 0� are equal, Tγ�π� � Tγ��π��. Then there is an orientation-preserving Poisson

isomorphism Φ : �U�R�� π�� �U ��R��� π��.

Proof. Since the modular periods are equal, c � c�. The map Φ : �U�R��π�� �U ��R���π�� given by

Φ�z�θ� �

�
R�

R
z� θ

�
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is a Poisson isomorphism since R�

R z � R
R�∂z � ∂θ � z∂z � ∂θ. It is easy to see that Φ preserves the

orientation.

The fact that this Poisson isomorphism allows us to change the radius of an annulus will

be used later in the proof of the classification theorem.

3.2.5 The regularized Liouville volume invariant

To classify the topologically stable Poisson structures � �Σ� up to orientation-preserving Poisson

isomorphisms, we need to introduce one more invariant.

Let ω� �π̃�1� π̃�1��π� be the symplectic form on Σ�Z�π� corresponding to (the restric-

tion of) π��n�Σ�. The symplectic volume of each of the 2-dimensional symplectic leaves is infinite

because the form ω blows up on the curves γ1� � � � �γn � Z�π�. However, there is a way to associate

a certain finite volume invariant to a Poisson structure in � �Σ�, given by the principal value of the

integral

V �π� � P�V�
�
Σ
ω�

More precisely, let h �C∞�Σ� be a function vanishing linearly on γ1� � � � �γn and not zero elsewhere.

Let� be the set of 2-dimensional symplectic leaves of π. For L �� the boundary ∂L is a union of

curves γi1 � � � � �γik � Z�π�. (Note that a leaf L can not approach the same curve from both sides). The

function h has constant sign on each of the leaves L �� . For L �� and ε� 0 sufficiently small,

let

Lε�h�
�
� L�h�1���∞��ε�� �ε�∞��� ∂εL�h� �

� L�h�1��ε�ε�

Define

V ε
h �π�

�
�

�
�h��ε

ω� ∑
L	�

�
Lε�h�

ω�

Theorem 3.2.11. The limit V �π� �
� limε�0V ε

h �π� exists and is independent of the choice of f h.

Proof. For i � 1� � � � �n, let Ui � ��zi�θi�� �zi�� Ri� θi � �0�2π�� be annular coordinate neighborhoods

of curves γi such that the restriction of π on Ui is given by π�Ui
� cizi∂zi �∂θi� ci � 0 and Ui�Z�π� �

γi. Let � �
�n

i�1Ui.

Let h and h̃ be functions vanishing linearly on the curves γ1� � � � �γn and not zero elsewhere.

On Ui, let Hθi�zi�
�
� h�zi�θi�, H̃θi�zi�

�
� h̃�zi�θi�. Shrink the neighborhoods Ui (if necessary) so that

the maps �zi�θi� �� �Hθi�zi��θi� and �zi�θi� �� �H̃θi�zi��θi� are invertible. Let ε � 0 be sufficiently
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small so that ∂εL�h��∂εL�h̃� �� . On Ui define

gε�θi�
�
� H�1

θi
�ε�� g�ε�θi�

�
� H�1

θi
��ε��

g̃ε�θi�
�
� H̃�1

θi
�ε�� g̃�ε�θi�

�
� H̃�1

θi
��ε��

so that gi

ε

�
� �gε�θi��θi � �0�2π���Ui�h�1��ε�, g̃i


ε
�
� �g̃
ε�θi��θi � �0�2π���Ui� h̃�1��ε� are

smooth curves in the neighborhood of γi. Then the volume V ε
h �π� can be represented as a sum of

the integral of ω over Σ�� (which is independent of ε) and of integrals of ω over some open sets

inside of �Ui�zi�θi� i � 1� � � � �n:

V ε
h �π� �

�
�h��ε

ω�
n

∑
i�1

� 2π

0

��� g�ε�θi�

�Ri

�

� Ri

gε�θi�

�
dzi

cizi

�
dθi �

�
Σ��

ω

�
n

∑
i�1

1
ci

� 2π

0
ln

����g�ε�θi�

gε�θi�

����dθi �

�
Σ��

ω;

V ε
h̃ �π��V ε

h �π� �
�
�h̃��ε

ω�
�
�h��ε

ω�
n

∑
i�1

1
ci

� 2π

0
ln

���� g̃�ε�θi�

g�ε�θi�
�

gε�θi�

g̃ε�θi�

����dθi;

Since Hθi and H̃θi are smooth invertible functions, the limits

lim
ε�0

����g�ε�θi�

gε�θi�

���� � lim
ε�0

���� g̃�ε�θi�

g�ε�θi�
�

gε�θi�

g̃ε�θi�

����
exist and equal to 1. Thus, V �π� � limε�0V ε

h �π� exists and is independent of the choice of h.

Remark 3.2.12. The fact that the principle value of the integral
�
Σω is well-defined is a consequence

of the following more general statement (having essentially the same proof). Let M be a compact

manifold, and let Ω be a volume form on M. Let furthermore f be a function, which has zero

as a regular value. Then one can define the principal value of the integral
�

M
Ω
f in a way that is

independent of the choice of coordinates. This seems to be well-known to specialists, but we could

not locate a precise reference.

Hence V �π� � � is a global equivalence invariant of a Poisson structure π � � �Σ� on

a compact oriented surface which we call the regularized Liouville volume since in the case of a

symplectic structure (i.e., π� �0�Σ�) it is exactly the Liouville volume. If we reverse the orientation

of Σ, the regularized volume invariant changes sign.

3.2.6 The classification theorem

Theorem 3.2.13. Topologically stable Poisson structures �n�Σ� on a compact connected oriented

surface Σ are completely classified (up to an orientation-preserving Poisson isomorphism) by the

following data:
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1. The equivalence class �Z�π�� ��n�Σ� of the set Z�π� �
�n

i�1 γi of zero curves with orienta-

tions defined by π;

2. The modular periods around the zero curves �γi �� Tγi�π�� i � 1� � � � �n�;

3. The regularized Liouville volume V �π�;

In other words, two Poisson structures π� π� � �n�Σ� are globally equivalent if and only if their sets

of oriented zero curves are diffeomorphism equivalent, the modular periods around the correspond-

ing curves are the same, and the regularized Liouville volumes are equal.

To prove this result we will need the following

Lemma 3.2.14. Let D be a connected 2-dimensional manifold, and ω1� ω2 be two symplectic forms

on D inducing the same orientation and such that

� ω1�D�K � ω2�D�K for a compact set K �D;

�
�

Dω1�ω2 � 0;

Then there exists a symplectomorphism ϕ : �D�ω1�� �D�ω2� such that ϕ�D�K � id.

Proof. (Moser’s trick). Let ωt
�
� ω1 � �1� t��ω2 � t for t � �0�1�. Since ω1�D�K � ω2�D�K , the form

∆�ω�
�
�ω2�ω1 is compactly supported (supp�∆�ω���K). Since

�
Dω1�ω2 � 0, the class of ∆�ω�

in the second de Rham cohomology with compact support H2
deRham�compact�K

o� is trivial (here Ko

denotes the interior of K). Hence ∆�ω� � dµ for a 1-form µ�Ω1
compact�K

o�. Then for vt
�
��ω̃�1

t �µ�

we have

Lvtωt � dıvtωt � ıvt dωt � dıvtωt ��∆�ω��

Therefore,

Lvtωt �
dωt

dt
� 0 (3.2.6)

Let ρt be the flow of the time-dependent vector field vt . Since

d
dt

�ρ�t ωt� � ρ�t

�
Lvtωt �

dωt

dt

�
� 0�

ρ�t ωt � ω1 for all t � �0�1�. Since vt � 0 outside of K, it follows that ρt �D�K � id. Define ϕ � ρ1.

Then ϕ�D�K � id and ϕ�ω2 � ρ�1ω2 � ω1 as desired.

We now have all the ingredients for the proof of the classification Theorem 3.2.13.
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Proof. (of Theorem 3.2.13) The class ��γ1� � � � �γn�� ��n�Σ�, the modular periods �γi �� Tγi�π�� i �

1� � � � �n� and the total volume V �π� are clearly global invariants of a Poisson structure in �n�Σ�.

Suppose that for Poisson structures π� π� � �n�Σ� we have �Z�π�� � �Z�π��� ��n�Σ�.

Since this implies that there exists an orientation-preserving diffeomorphism ϕ � Diff�Σ� such that

ϕ�Z�π�� � Z�π�� (where Z�π� is considered as the set of oriented curves), we may from now on

assume Z�π� � Z�π�� �
�n

i�1 γi.

For each i � 1� � � � �n, let Ui�Ri�
�
� ��zi�θi�� �zi� � Ri� and U �

i �R
�
i�

�
� ��z�i�θ

�
i�� �z

�
i� � R�i� be

annular neighborhoods of the curve γi, such that

π�Ui � cizi∂zi �∂θi� π��U �

i
� ciz

�
i∂z�i
�∂θ�i�

The radii Ri and R�i should be small enough so that Ui�Ri��Z�π� � γi, U �
i �R

�
i��Z�π� � γ�i.

Let � �
�n

i�1Ui�Ri�, � � �
�n

i�1U �
i �R

�
i�. Since V �π� � V �π��, we can choose the radii

Ri� R�i of the neighborhoods Ui�Ri��U �
i �R

�
i� in such a way that for each 2-dimensional leaf L�� the

following non-compact symplectic manifolds

D�L�
�
� L�� and D��L�

�
� L�� �

have equal (finite) symplectic volumes:
�

D�L�ω �
�

D��L�ω
�, where ω (respectively, ω�) is the sym-

plectic form on Σ�Z�π� corresponding to the Poisson structure π (respectively, π�.)

Consider the coverings of �Σ�π� and �Σ�π�� by the sets ��D�L��Ui�Ri��� i � 1� � � � �n; L �

� � and ��D��L��U �
i �R

�
i�� i � 1� � � � �n; L � � � respectively. Since Tγi�π� � Tγi�π

�� and the orien-

tations of γi defined by π and π� coincide, by Lemma 3.2.10, there exist orientation-preserving

Poisson isomorphisms ψi : Ui�Ri��U �
i �R

�
i� of these neighborhoods given in local coordinates by

ψi�ri�θi� �
�

R�

i
Ri

ri� θi

�
. Choosing a small εi � Ri and ε�i � εi �

Ri
R�

i
, we obtain Poisson isomorphisms

ψi : Ui�Ri��U �
i �R

�
i� mapping Ui�Ri��Ui�Ri� εi� onto U �

i �R
�
i��U �

i �R
�
i� ε�i�.

The Poisson isomorphisms ψ1� � � � �ψn map L�� onto L�� �. Therefore, we can extend

ψ1� � � � �ψn to a diffeomorphism Ψ of the surface Σ (first extend it as a diffeomorphism of class C1

and then smooth it out to a C∞-diffeomorphism; see [Mun63] for details on smoothing maps) such

that Ψ preserves the oriented zero curves and the 2-dimensional leaves. (Without the assumption

that π and π� define the same orientation on γi� i � 1� � � � �n it might happen that (for γi � ∂L) the

image of L�Ui under ψi does not belong to L. As a result, it might not be possible to extend

ψ1� � � � �ψn to a diffeomorphism Ψ � Diff�Σ�, as in Example 3.2.16 below).

Let 	� �
�n

i�1Ui�Ri� εi�, 	� � �
�n

i�1U �
i �R

�
i� ε�i�. For L �� , consider the non-compact

connected manifold D̃ ��D�L�
�
� L � 	� with symplectic structures ω1 � ω�D̃ and ω2 � Ψ�ω��D̃.
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Since by construction ω1�D̃�K �ω2�D̃�K for K
�
��D�L��� and

�
D̃ω1 �

�
D̃ω2, the result now follows

by application of Lemma 3.2.14 to�D�L� for each L �� .

Remark 3.2.15. Given π�π� � �n�Σ�, one can ask if �Σ�π� and �Σ�π�� are equivalent by an arbitrary

(possibly orientation-reversing) Poisson isomorphism. Fix an orientation-reversing diffeomorphism

ν : Σ� Σ. Then π and π� are equivalent by an orientation-reversing diffeomorphism if and only if

ν�π and π� are equivalent by an orientation-preserving diffeomorphism. It is not hard to see that

Tγi�π� � Tν�γi��ν�π� for all γi � Z�π� and V �π� � �V �ν�π�. Thus the question of equivalence by

orientation reversing maps can be reduced to the orientation-preserving context of Theorem 3.2.13.

Example 3.2.16. Let ω and ω� ��ω be two symplectic structures on a compact oriented surface.

Then ω and ω� are Poisson isomorphic by an orientation-reversing diffeomorphism, but not by an

orientation-preserving diffeomorphism.

There are, of course, similar examples of structures with non-trivial sets of linear degen-

eracy. Consider the unit 2-sphere S2 with the cylindrical polar coordinates �z�θ� away from its

poles. Let ω0 � dz�dθ be a symplectic form on S2 with the corresponding Poisson bivector π0. Let

π� π� � �2�S2� be the Poisson structures given by

π� �z�a��z�b�∂z�∂θ� �1 � b � a � 1

and π� � �π. Choose a and b in such a way that V �π� � V �π�� � 0. Let γ1 � ��z�θ��z � a� and

γ2 � ��z�θ��z � b� be the zero curves of π� π�. On both γ1 and γ2 the orientations defined by π

and π� are opposite to each other. Let Ltop � ��z�θ��a � z � 1�, Lmiddle � ��z�θ��b � z � a� and

Lbottom � ��z�θ�� � 1 � z � b� be the 2-dimensional leaves (common for both structures). The

structures π and π� can not be Poisson isomorphic in an orientation-preserving way since such a dif-

feomorphism would have to exchange the two-dimensional disks Ltop and Lbottom with the annulus

Lmiddle. On the other hand, �S2�π� and �S2�π�� are clearly Poisson isomorphic by an orientation-

reversing diffeomorphism �z�θ� �� �z��θ�.

3.2.7 Poisson cohomology of topologically stable Poisson structures

In this section we compute the Poisson cohomology of a given topologically stable Poisson structure

on a compact connected oriented surface and describe its relation to the infinitesimal deformations

and the classifying invariants introduced above. (For generalities on Poisson cohomology see, e.g.,

[Vai94]).

First, recall the following
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Lemma 3.2.17. (e.g., Roytenberg [Roy]) The Poisson cohomology of an annular neighborhood

U � ��z�θ�� �z� � R� θ � �0�2π�� of the curve γ on which π�U � z∂z�∂θ is given by

H0
π�U�π�U � � span	1
� �

H1
π�U�π�U � � span	∂θ� z∂z
� �

2

H2
π�U�π�U � � span	z∂z�∂θ
� �

Thus, H0
π�U� is generated by constant functions. The first cohomology H1

π�U� is gener-

ated by the modular class (∂θ is the modular vector field of π�U with respect to ω0 � dz� dθ) and

the image of the first de Rham cohomology class of U (spanned by dθ) under the homomorphism

π̃ : H1
deRham�U�� H1

π�U�, which is injective in this case. The second cohomology is generated by

π�U itself.

Let π � �n�Σ� be a topologically stable Poisson structure on Σ. Since a Casimir function

on Σ must be constant on all connected components of Σ �Z�π�, by continuity it must be constant

everywhere. Hence H0
π�Σ� � � � span	1
.

We will (inductively) use the Mayer-Vietoris sequence of Poisson cohomology (see, e.g.,

[Vai94]) to compute H1
π�Σ� and H2

π�Σ�.

Let Ui be an annular neighborhood of the curve γi � Z�π� such that Ui �Z�π� � γi. Let

V0
�
� Σ and define inductively Vi

�
�Vi�1 � γi for i � 1� � � � �n. Consider the cover of Vi�1 by open sets

Ui and Vi. To compute the first cohomology, we consider the first two rows of the Mayer-Vietoris

exact sequence of Poisson cohomology associated to this cover:

0� H0
π�Vi�1�

α0
i� H0

π�Ui��H0
π�Vi�

β0
i� H0

π�Ui�Vi�
δ0

i�

� H1
π�Vi�1�

α1
i� H1

π�Ui��H1
π�Vi�

β1
i� H1

π�Ui�Vi�
δ1

i� � � �

By exactness, H1
π�Vi�1�� δ0

i �H
0
π�Ui�Vi���kerβ1

i , where

β1
i ��χ�Ui � �ν�Vi� � �χ�ν�Ui�Vi χ � �1

π�Ui�� ν ��
1
π�Vi�� dπχ� 0� dπν� 0�

and �X �W denotes the class of the (Poisson) vector field X �W in H1
π�W �, for W �Ui�Vi.

By Lemma 3.2.17, H1
π�Ui� � π̃�H1

deRham�Ui��� span	∂θi
 � �
2 . Since Ui �Vi is a union

of two symplectic annuli, H1
π�Ui�Vi� � π̃�H1

deRham�Ui�Vi�� � �
2 . Therefore,

H1
π�Vi�1�� δ0

i �H
0
π�Ui�Vi��� span	∂θi
�ker

�
β1

i �π̃�H1
deRham �Ui��
H1

π�Vi�

�
� (3.2.7)
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Consider also the long exact sequence in de Rham cohomology associated to the same cover

0� H0
deRham�Vi�1�

a0
i� H0

deRham�Ui��H0
deRham�Vi�

b0
i� H0

deRham�Ui�Vi�
d0

i�

� H1
deRham�Vi�1�

a1
i� H1

deRham�Ui��H1
deRham�Vi�

b1
i� H1

deRham�Ui�Vi�
d1

i� � � �

By exactness, we have H1
deRham�Vi�1� � d0

i �H
0
deRham�Ui �Vi��� kerb1

i . Since Vn � Σ � Z�π� is

symplectic, H�
π�Vn� � π̃�H�

deRham�Vn��. This together with H0
π�Un� � H0

deRham�Un�, H0
π�Un�Vn� �

π̃�H0
deRham�Un�Vn�� implies Im�δ0

n� � π̃�Im�d0
n�� and, therefore,

ker
�
β1

n�1�π̃�H1
deRham �Un�
H1

π�Vn�

�
� π̃�ker�b1

n�1���

Hence, from (3.2.7) it follows

H1
π�Vn�1�� π̃�Im�di��� span	∂θn
� π̃�H1

deRham�Vn�1���

For i � n�2, we have

H1
π�Vn�2�� span	∂θn�1
�ker

�
β1

n�1�π̃�H1
deRham �Un�1�
�π̃�H1

deRham�Vn�1��
π̃�Im�d0
i ���

�
�

� span	∂θn�1
� span	∂θn
� π̃�H1
deRham�Vn�2���

Working inductively (from i � n�1 to i � 0), we obtain

H1
π�Σ�� �

n�2g �
n�

i�1

span	∂θi
�H1
deRham�Σ��

where g is the genus of the surface Σ.

To compute the second Poisson cohomology, it is more convenient to consider the cover-

ing of Σ by V
�
� Vn and U

�
�
�n

i�1Ui. The second and third rows of the associated Mayer-Vietoris

exact sequence are given by

� H1
π�Σ�

α1

� H1
π�U��H1

π�V �
β1

� H1
π�U �V�

δ1

�

� H2
π�Σ�

α2

� H2
π�U��H2

π�V �
β2

� H2
π�U �V�� 0�

Since H2
π�U �V� � 0 and H2

π�V �, it follows that

H2
π�Σ�� Im�δ1���H2

π�U� � δ1

�
H1
π�U �V �

β1�H1
π�U��H1

π�V ��

�
�

We have H1
π�U �V �� π̃�H1

deRham�U �V ��, H1
π�U�� π̃�H1

deRham�U��� span 	∂θ1 � � � � �∂θn
, H1
π�V ��

π̃�H1
deRham�V ��. Therefore, β1�H1

π�U��H1
π�V �� � β1�π̃�H1

deRham�U��� π̃�H1
deRham�V ���. We obtain

H2
π�Σ� � δ

�
π̃�H1

deRham�U �V ��

β1�π̃�H1
deRham�U��� π̃�H1

deRham�V ��

�
� (3.2.8)
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Consider the Mayer-Vietoris exact sequence for de Rham cohomology associated to the

same cover:

� H1
deRham �Σ� a1

� H1
deRham�U��H1

deRham�V �
b1

� H1
deRham�U �V �

d1

�

� H2
deRham�Σ�

a2

� H2
deRham�U��H2

deRham�V �� H2
deRham�U �V �� 0

This implies

H2
deRham�Σ� � d1

�
H1

deRham�U �V�

b1�H1
deRham�U��H1

deRham�V ��

�
� (3.2.9)

Comparing (3.2.8) and (3.2.9), we obtain

H2
π�Σ�� �

n�1 � H2
π�U�� π̃�H2

deRham�Σ�� � �
n�1 �

where the first n generators are the Poisson structures of the form

πi
�
� π � �bump function around the curve γi�� i � 1� � � � �n (3.2.10)

and the last generator is the standard non-degenerate Poisson structure π0 on Σ. Therefore, we have

proved the following

Theorem 3.2.18. Let π� �n�Σ� be a topologically stable Poisson structure on a compact connected

oriented surface Σ of genus g. The Poisson cohomology of π is given by

H0
π�Σ�π� � span	1
� �

H1
π�Σ�π� � span	Xω0�π1�� � � � �X

ω0�πn�
� π̃�H1
deRham�Σ�� � �

n�2g

H2
π�Σ�π� � span	π1� � � � �πn
� π̃�H2

deRham�Σ�� � span	π0; π1� � � � �πn
� Rn�1�

where π0 is a non-degenerate Poisson structure on Σ , πi� i � 1� � � � �n is a Poisson structure vanishing

linearly on γi � Z�π� and identically zero outside of a neighborhood of γi; Xω0�πi� is the modular

vector field of πi with respect to the standard symplectic form ω0 on Σ.

Notice that the dimensions of the cohomology spaces depend only on the number of the

zero curves and not on their positions. In particular, the Poisson cohomology as a vector space does

not depend on the homology classes of the zero curves of the structure. Recall (see, e.g., [Vai94])

that the Poisson cohomology space H�
π�P� has the structure of an associative graded commutative

algebra induced by the operation of wedge multiplication of multivector fields. A direct computation

verifies the following
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Proposition 3.2.19. The wedge product on the cohomology space H�
π�Σ�π� of a topologically stable

Poisson structure on Σ is determined by

�1�� �χ� � �χ�� �χ� � H�
π�Σ�π�

�Xω0�πi��� �Xω0�π j�� � 0� i� j � 1� � � � �n

�Xω0�πi��� �π̃�α�� � �α�Xω0�πi�� �πi� �

�
1

Tγi�π�

�
γi

α

�
� �πi�

�π̃�α��� �π̃�α��� � π̃�ᾱ�α���

�χ��H2
π�Σ�π� � 0� �χ� � H1

π�Σ��H2
π�Σ��

where α�α� �Ω1�Σ�� dα� dα� � 0.

(Here bar denotes the class of its argument in the de Rham cohomology and the brackets

� � denote the class in the Poisson cohomology). We should mention that the wedge product � in de

Rham cohomology is dual to the intersection product in homology [BT82].

This computation allows one to compute the number of zero curves γk, which determine

non-zero homology classes. To see this, we note that �πk� �H1
π�Σ��H1

π�Σ� iff there exists a 1-form

α such that
�
γk
α �� 0, i.e., γk is non-zero in homology. If Σ is not a sphere, H1

deRham�Σ� is non-zero.

Since the intersection form on H1
deRham�Σ� is non-degenerate (implementing Poincare duality), it

follows that H1
deRham�Σ��H1

deRham�Σ� �� 0. Thus in the case that Σ is not a sphere, H1
π�Σ��H1

π�Σ�

has the set

�π0���πk : γk is nontrivial in homology�

as a basis and so the number of curves γk, which are non-trivial in homology, is just dim�H1
π�Σ��

H1
π�Σ���1. In the case that Σ is a sphere, all γk are of course topologically trivial.

Proposition 3.2.20. The Schouten bracket on the cohomology space H�π�Σ�π� of a topologically

stable Poisson structure on Σ is determined by

�H0
π�Σ��H

�
π�Σ�� � 0

�H1
π�Σ��H

1
π�Σ�� � 0

��π̃�dϕ�γi��� �π0�� ���π0�� i� j � 1� � � � �n

��π̃�dϕ�γi��� �π j�� � 0� i� j � 1� � � � �n

��Xω0�πi��� H2
π�Σ�� � 0� i � 1� � � � �n

�H2
π�Σ��H

2
π�Σ�� � 0�
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The generators of H2
π�Σ�π� can be interpreted as infinitesimal deformations of the Poisson

structure π which change the classifying invariants.

Corollary 3.2.21. Let π � �n�Σ�, Z�π� �
�n

i�1 γi. The following n� 1 one-parameter families of

infinitesimal deformations form a basis of H2
π�Σ�π�

(1) π �� π� ε �π0;

(2) π �� π� ε �πi, i � 1� � � � �n ;

Each of these deformations changes exactly one of the classifying invariants of the Poisson

structure: π �� π� ε �π0 changes the regularized Liouville volume and π �� π� ε �πi changes the

modular period around the curve γi for each i � 1� � � � �n.

3.2.8 Example: topologically stable Poisson structures on the sphere

It would be interesting to describe the moduli space of the space of topologically stable Poisson

structures on a compact oriented surface up to orientation-preserving diffeomorphisms. The first

step would be the description of the moduli space �n of n disjoint oriented curves on Σ. However,

this problem is already quite difficult for a general surface. Here we will in detail consider the

simplest example of topologically stable Poisson structures on the sphere.

Let �γ1� � � � �γn� be a set of disjoint curves on S2. Let �1� � � � ��n�1 be the connected

components of S2 � �γ1� � � � �γn�. To the configuration of curves �γ1� � � � �γn� we associate a graph

Γ�γ1� � � � �γn� in the following way. The vertices v1� � � � �vn of the graph correspond to the connected

components �1� � � � ��n. Two vertices vi and vj are connected by an edge ek iff γk is the common

bounding curve of the regions �i and � j.

Claim 3.2.22. For a set of disjoint curves γ1� � � � �γn on S2 the graph Γ�γ1� � � � �γn� is a tree.

Proof. Let ei � E�Γ�γ1� � � � �γn�� be an edge of the graph corresponding to the curve γi. Since S2 � γi

is a union of two open sets, it follows that Γ�γ1� � � � �γn��ei (i.e., the graph Γ�γ1� � � � �γn� with the edge

ei removed) is a union of two disjoint graphs. Since this is true for any ei� i � 1� � � � �n, the graph is

a tree.

Choose an orientation on S2 and a symplectic form ω0 (with the Poisson bivector π0)

which induces this orientation. Let π � �n�Σ� be a topologically stable Poisson structure. The

function f � π�π0 has constant signs on the 2-dimensional symplectic leaves. Let Γ�γ1� � � � �γn� be

the tree associated to the zero curves γ1� � � � �γn of π as described above. Assign to each vertex vi a

sign (plus or minus) equal to the sign of the function f on the corresponding symplectic leaf �i of
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π. The properties of π imply that for any edge of this tree its ends are assigned the opposite signs.

We will call the tree associated to the zero curves of π with signs associated to its vertices the signed

tree Γ�π� of the Poisson structure π.

Consider the map Te�π� : E�Γ�π��� �� which for each edge e � E�Γ�π�� gives a pe-

riod Te�π� of a modular vector field of π around the zero curve corresponding to this edge. The

classification Theorem 3.2.13 implies

Theorem 3.2.23. The topologically stable Poisson structures π � �n�S2� on the sphere are com-

pletely classified (up to an orientation-preserving Poisson isomorphism) by the signed tree Γ�π�,

the map e �� Te�π�, e � E�Γ�π�� and the regularized Liouville volume V �π�. In other words,

π1� π2 � �n�S2� are globally equivalent if and only if the corresponding Γ�πi�, �e �� Te�πi��� V �πi�

are the same (up to automorphisms of signed trees with positive numbers attached to their edges).

The moduli space of topologically stable Poisson structures in �n�S2� up to Poisson iso-

morphisms is

�n�S
2���Poisson isomorphisms��


�
Γn�1

����n�Aut�Γ�Te�

�
���

where Aut�Γ�Te� is the automorphism group of the signed tree Γ with n�1 vertices and with pos-

itive numbers Te attached to its edges e � E�Γ�π��. The moduli space has dimension n� 1 and is

coordinatized by �Te�π��e � E�Γ�π��� and V �π�.

A particular case of topologically stable Poisson structures on S2, the SU�2�-covariant

structures vanishing on a circle on S2, were considered by D.Roytenberg in [Roy]. In cylindrical

coordinates �z�θ� on the unit sphere these structures are given by

πc � a�z� c�∂z�∂θ for �c�� 1� a � 0

The modular period around the zero curve (a “horizontal” circle γ� ��z�θ��z � c�) and the regular-

ized Liouville volume are given by

Tγ���z�θ��z�c��π� �
2π
a
�

V �π� �
2π
a

ln
1� c
1� c

�

Note that for a non-degenerate Poisson structure πc � a�z� c�∂z � ∂θ� �c� � 1 the total Liouville

volume is given by the same formula, V �π� � 2π
a ln

�� 1�c
1�c

��.
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Corollary 3.2.24. Let T � �� and V � �. A Poisson structure π � �1�S2� with the modular pe-

riod T and the regularized total volume V is globally equivalent to the Poisson structure which in

coordinates �z�θ� on S2 is given by

π�T�V � �
2π
T



z�

eV�T �1

eV�T �1

�
∂z�∂θ

and vanishes linearly on the circle z � eV�T�1
eV�T�1

.

Utilizing Poisson cohomology, D. Roytenberg [Roy, Corollary 4.3.3, 4.3.4] has previously

obtained that the structures πc, �1 � c � 1 are non-trivial infinitesimal deformations of each other.

Similarly, he proved that for each c, πc admits no infinitesimal rescalings. Using Theorem 3.2.13,

we get the following improvement of his results:

Corollary 3.2.25. (a) The Poisson structures πc � a�z� c�∂z � ∂θ and πc� � a�z� c��∂z � ∂θ are

globally equivalent iff c � c�.

(b) For α � � ��0�, the Poisson structures πc and απc are equivalent via an orientation-preserving

Poisson isomorphism (respectively, arbitrary Poisson isomorphism) if and only if α � 1 (respec-

tively, �α�� 1). In particular, πc admits no rescalings.

3.3 Toward a classification of Poisson structures with higher order

singularities.

If a Poisson structure vanishes non-linearly on its zero set, a finite number of invariants may not

be enough to achieve even a local classification. For example, the second Poisson cohomology of

the structure �x�y� � xn with n � 2 on �2 is infinite-dimensional. Therefore, a finite number of

invariants would not be enough to distinguish all of its infinitesimal deformations. As we shall see

below, the situation is much nicer if the higher-order singularities are isolated. For example, in the

case of isolated quadratic singularities, we will exhibit a finite number of classifying invariants.

3.3.1 Structures with isolated higher order singularities.

For α � 1�2, let πα be a Poisson structure on a compact oriented surface Σα, and let Z�πα�
�
�

�p � Σα�πα�p� � 0� be its zero set. Assume that πα vanishes linearly on Z�πα� except at a finite

number of special points pj
α � Z�πα�� j � 1� � � � �mα, where the degeneracies are of higher order.

Let now U j
α be neighborhoods of the special points pj

α, so that each U j
α is diffeomorphic to a disc,
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and U j
α �Ui

α � /0 for i �� j. Let Σ�α
�
� Σα � �U1

α � �� � �Umα
α �. Then Σ�α is an open surface, and

π�α
�
� πα�Σ�α has only linear degeneracies. Let furthermore �V j

α�
mα
j�1 be disjoint open neighborhoods

of �U j
α�

mα
j�1, and let W j

α
�
� V j

α � Σ�α, for α � 1�2, j � 1� � � � �mα. Also, denote by γ1α� � � � �γ
nα
α the

connected components of Z�π�α�, and by Tγ j
α
�π�α� the modular flow time of πα along γ j

α (which for

an open curve is defined to be the maximal flow time of a modular vector field along this curve,

similarly to Definition 3.2.9).

3.3.2 The regularized Liouville volume.

Assume that the flow time Tγ j
α

along each connected component γα j of Z�π�α� is finite. One can

assign to π�α a regularized volume invariant V �π�α : Σ� � Σ�, in much the same way that was done

for a Poisson structure with linear degeneracies on a closed surface. However, we must keep track

of the behavior of π�α at the “infinities” of the open surface Σ� � Σ. We therefore emphasize the

possible dependence of this invariant on the embedding of Σ� into Σ in our notation.

To define V �π�α : Σ� � Σ�, note that because the Poisson structure degenerates linearly on

each γ j
α, and because the flow time along each γj

α is finite, we can find a finite covering of Σ�α by

open sets Xi, i � I, Yj, j � J, Zk, k � K, so that:

1. For all i � I, Xi are pre-compact and π�α is non-zero on the closure of Xi;

2. For all j � J, �Yj�π�α�Yj�
�� �S1� ��r j�r j�� r∂r � ∂θ� (here θ is the periodic coordinate on S1

and r is a coordinate on the open interval ��rj�r j�);

3. For all k � K, �Zk�π�α�Zk�
�� ���lk� lk�� ��ck�ck��y∂x � ∂y�, where x is the coordinate on

��lk� lk� and y is the coordinate on ��ck�ck�.

We note that the coordinates θ and x are canonical (since the modular vector fields of the associated

Poisson structures are ∂θ and ∂x, respectively). Now, because π�α is nonzero on the closure of Xi,

its restriction to Xi comes from a finite-volume symplectic structure; thus the volume V �Xi�π�α� is

well-defined. To define the volume of π�α on Yi, let ωα be the symplectic form corresponding to π�α

on Σ� �Z�πα�� and set

V �Yi�π�α� � lim
ε�0

�
Yi��p:�h�p���ε�

ωα

for any function h so that hωα extends smoothly to a non-zero symplectic form in a neighborhood

of Z�π�α�. It was shown in the course of the proof of Theorem 3.2.11 that this limit is independent

of the choice of h.
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The idea of the proof for the case of V �Zk�π�α� is similar. Let

V �Zk�π�α� � lim
ε�0

�
Zk��p:�h�p���ε�

ωα�

where h is such that hωα extends to a smooth nonzero form on a neighborhood of Σ� in Σ. Let h̃ be

another choice of such h, and set Hx�y�
�
� h�x�y�, H̃x�y�

�
� h̃�x�y�, where �x�y� are coordinates as in

the definition of Zk. We may assume that the maps �x�y� �� �x�Hx�y�� and �x�y� �� �x�H̃x�y�� are

invertible. Let ε� 0 be sufficiently small. Define

gε�x�
�
� H�1

x �ε�� g�ε�x�
�
� H�1

x ��ε��

g̃ε�x�
�
� H̃�1

x �ε�� g̃�ε�x�
�
� H̃�1

x ��ε��

so that gi

ε

�
� �gε�x��x � ��lk� lk�� � Zk � h�1��ε�, g̃i


ε
�
� �g̃
ε�x��x � ��lk� lk�� � Ui� h̃�1��ε�

are smooth curves in the neighborhood of γi. Then

V ε
h �

�
Zk��p:�h�p���ε�

ωα �
� lk

�lk

��� g�ε�x�

�ck

�
� ck

gε�x�

�
dy
y

�
dx

�
� lk
�lk

ln

����g�ε�x�
gε�x�

����dx;

V ε
h̃ �V ε

h �

� lk

�lk
ln

���� g̃�ε�x�
g�ε�x�

�
gε�x�
g̃ε�x�

����dx;

Since Hx and H̃x are smooth invertible functions on the closed interval ��lk� lk�, the limits

lim
ε�0

����g�ε�x�
gε�x�

���� � lim
ε�0

���� g̃�ε�x�
g�ε�x�

�
gε�x�
g̃ε�x�

����
exist and equal to 1. Thus, V �Zk�π�α� � limε�0V ε

h �π� exists and is independent of the choice of h.

We can therefore set

V �π�α : Σ� � Σ� �
�∑

i

V �Xi�π�α��∑
j

V �Yj�π�α��∑
k

V �Zk�π�α��

It is easily seen that this sum does not depend on the choice of the covering of Σ�.

3.3.3 Global classification.

Suppose that for α � 1�2 the number of special points of πα is mα, and the number of connected

components of Z�π�α� is nα. We record the following lemma, whose proof proceeds exactly as in

the case of Theorem 3.2.13.

Lemma 3.3.1. With the above notation, assume that φ : Σ1 � Σ2 is a diffeomorphism, so that:
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1. φ maps a neighborhood W j
1 onto W j

2 and φ�π�1�W j
1
� π�2�W j

2
for all j � 1� � � � �m;

2. φ maps γi
1 to γi

2 for all i � 1� � � � �n ;

3. the modular flow times along corresponding curves are the same, Tγi
1
�π�1� � Tγi

2
�π�2� � ∞ for

all i � 1� � � � �n ;

4. the regularized volume invariants of π�1 and π�2 are the same, V �π�1� �V �π�2�;

Then there exists a diffeomorphism θ : Σ�1 � Σ�2, such that θ�W j
1
� φ�W j

1
for all j � 1� � � � �m and

θ�π�1 � π�2. Moreover, θ can be extended to a diffeomorphism of Σ1 with Σ2.

Proof. (Sketch; see also the proof of Theorem 3.2.13) Because of the assumptions (1)–(3), we may

extend φ (using the flows of modular vector fields to transport the neighborhoods Wj
1 around the

curves γi
1) to a neighborhood W1 containing W j

1 for all j � 1� � � � �m and γi
1 for all i � 1� � � � �n in such

a way that φ�π�1�W1 � π�2�W2 , where W2 � φ�W1�. Now we proceed exactly as in the proof of Theorem

3.2.13 to extend φ to the complement of W1, using condition (4). Since θ � φ was not modified on

each W j
1 , it can be extended to a diffeomorphism of Σ1 onto Σ2 (e.g., by defining it to be φ on each

V j
1 ).

The utility of this Lemma is explained by the following Corollary:

Corollary 3.3.2. With the above notation, assume that there exists a diffeomorphism φ : Σ1 � Σ2,

so that

1. φ maps U j
1 onto U j

2 and φ�π1�U j
1
� π2�U j

2
for all j � 1� � � � �m;

2. φ maps γi
1 onto γi

2 for all i � 1� � � � �n;

3. the modular flow times along corresponding curves are the same, Tγi
1
�π�1� � Tγi

2
�π�2�� ∞;

4. the regularized volume invariants of π�1 and π�2 are the same, V �π�1 : Σ� � Σ1� �V �π�2 : φ�Σ���

Σ2�;

Then there exists a diffeomorphism θ : Σ1 � Σ2 so that θ�U j
1
� φ�U j

1
for all j and θ�π1 � π2.

3.3.4 Localization.

The Corollary 3.3.2 allows one to reduce the question of whether π1 and π2 are Poisson-isomorphic

to local considerations. To do so, one proceeds as follows:
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� Step I: find neighborhoods U j
1 and U j

2 , j � 1� � � � �m of special points so that

– (3) and (4) of Corollary 3.3.2 are satisfied;

– there exists a diffeomorphism φ : Σ1 � Σ2 satisfying (2) and mapping U j
1 to U j

2 ;

– there exist neighborhoods Oj
1 �U j

1 of the special point pj
1 such that the maps φ�U1

j �Oj

are Poisson diffeomorphisms (thus perhaps failing (1) on Oj
1);

� Step II: for each j, check whether φ : U j
1 �U j

2 can be perturbed to a Poisson isomorphism,

keeping it the same on U j
1 �O j

1 (a local question);

If Steps I and Steps II can be carried out for a given pair π1 and π2 of Poisson structures with isolated

higher order singularities, Corollary 3.3.2 implies that π1 and π2 are Poisson-isomorphic.

Proposition 3.3.3. To find the diffeomorphism in Step I, it is necessary and sufficient that there exists

a diffeomorphism ψ : Σ1 � Σ2 carrying the zero set Z�π1� onto the zero set Z�π2� and mapping the

higher-order degeneracy points pj
1 of π1 to the respective points pj

2 of π2, j � 1� � � � �m.

Proof. Indeed, given ψ, we can first choose neighborhoods Oj
1 of pj

1 and Oj
2 of ψ�pj

1� � pj
2 in such

a way that the modular lengths of the components of Z�π1� � �O1
1 � �� � �Om

1 � are the same as the

corresponding components of Z�π2�� �O1
2� �� ��Om

2 �. By further modifying Oj
1 (e.g., by removing

a small disk near its boundary and away from Z�π1�) we may assume that the regularized Liou-

ville volume invariants of π1�Σ1��O1
1�����Om

1 �
and π2�Σ2��O1

2�����Om
2 �

are the same. We may furthermore

assume, by modifying ψ in a neighborhood Uj
1 of Oj

1, that it is a Poisson diffeomorphism from

U j
1 �O j

1 onto U j
2 �O j

2 � ψ�U j
1 � �ψ�O

j
1�. Since the modular length of a segment of a curve and the

regularized Liouville volume are invariant under Poisson maps, it follows that the modular length

of γ j
1� �U j

1 �O j
1� is the same as that of γj

2� �U j
2 �O j

2�, and the volume of U j
1 �O j

1 is the same as that

of U j
2 �O j

2. Thus conditions (2), (3) and (4) are fulfilled for this choice of Uj
α, α� 1�2 and ψ. Thus

we have indeed carried out Step 1.

3.3.5 Local classification in the quadratic case.

Let π� fπ0 be a Poisson structure on a surface Σ which vanishes linearly on its zero set Z�π�� Σ

except possibly at a finite number of points p1� � � � � pm � Z�π�, where it could have quadratic zeros;

i.e., f �x�y� � λ j�x2 �σ jy2� for some λ j �� 0 and σ j � ��1� in a local coordinate system �x�y�

around pj. We call pj� j � 1� � � � �m the special points of the structure π. If σj � 1 (resp., σ j ��1),
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the special point pj is called elliptic (resp., hyperbolic). Clearly, the special points (as a subset of

Z�π�) is an invariant of π.

Our aim is to extend the classification results of Section 3.2 to such structures.

By Proposition 3.3.3, the question of classification of such structures can be reduced to

local considerations. Let U1 and U2 be two open disk neighborhoods around �0�0� � �2 , and let

πα � λα�x2 �σαy2�∂x�∂y�Uα for α� 1�2

Our first question is: when can there be a Poisson isomorphism of �U1�π1� and �U2�π2�. It turns out

that �λα�σα� is a complete local invariant for such a structure. To prove this, we consider separately

the cases of elliptic and hyperbolic special points.

The case of �x2 � y2�∂x�∂y.

In this case the zero sets of π1 and π2 consist of the origin �0�0�.

Proposition 3.3.4. �U1�π1� is Poisson-isomorphic to �U2�π2� in an orientation-preserving way if

and only if λ1 � λ2. Moreover, if λ1 � λ2, then the Poisson isomorphism can be chosen so as to

extend to all of �2 and be identity outside of any prescribed open set containing U1 and U2.

Proof. For α � 1�2, let Xα be the modular vector field of πα with respect to the volume form
1
2dx�dy. It is not hard to check that Xα is a linear vector field given by

Xα � λα�x∂y� y∂x��

Its flow at time t is the rotation, FXα�t� : �r cosθ�r sinθ� �� �r cos�θ�λαt��r sin�θ�λαt��. Since the

flow of Xα fixes �0�0�, it follows that the flow defines a linear operator Tα on the tangent space to

�2 at the origin given by

Tα�v� �
d
dt

�FX�t���v��� v � T�0�0��
2 �

The structure of Tα as a linear operator on the tangent space is an invariant of πα. It is easily seen

that in our coordinates Tα is given by the matrix

Tα �

�
 0 λα

�λα 0

�� �

Thus the eigenvalues of Tα (equal to �iλα) are an invariant of πα, which we will call the modular

eigenvalues invariant. It follows that if π1 and π2 are isomorphic, then λ1 � λ2.
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Assume now that λ1 � λ2 � λ (or, equivalently, that the modular eigenvalues invariant is

the same). We must prove that given two neighborhoods U1 and U2 of �0�0� diffeomorphic to a disk,

there exists a Poisson isomorphism of �U1�π1� with �U2�π2�, which can be extended to all of �2 .

Denote by O�r� the open disk ��x�y� � �2 : x2 � y2 � r2�. Choose r1 and r2 so that O�ri��Ui and

the symplectic volumes of U1 �O�r1� and U2 �O�r2� are equal. Then applying Moser’s theorem, we

can find a Poisson isomorphism θ from U1 �O�r1� onto U2 �O�r2�, so that θ extends to all of �2 and

on a neighborhood of the boundary ∂O�r1� maps the point �x�y� to the point r2
r1
�x�y�.

It remains to note that the map

�x�y� ��
r2

r1
�x�y��

�
x2 � y2 � r1

extends θ to a map from all of U1 onto U2, having the desired properties.

We note as a corollary that if a Poisson structure π on a compact oriented surface Σ

has at a point p1 � Σ a singularity of the type λ�x2 � y2�∂x � ∂y, and some singularities at points

p2� � � � � pm � Σ, then for any choice of neighborhoods Uj � pj, j � 2� � � � �m, and any prescribed

number V � �, we can find a neighborhood U1 of p1 so that the regularized Liouville volume of

Σ� �U1� �� ��Um� is exactly V .

The case of �x2� y2�∂x�∂y.

In this case the situation is more intricate. Suppose that a Poisson structure is given by π �

λ�x2� y2�∂x � ∂y on a neighborhood U of �0�0� � �2 . The zero set of π can be identified with

the intersection of U and the lines �1�π�
�
� ��x�y� : x � y� and �2�π�

�
� ��x�y� : x � �y�. As we

remarked before, the restriction X �Z�π� of a modular vector field X depends only on the Poisson

structure (and not on the choice of a volume form with respect to which it is calculated). The sub-

sets �1�π� and �2�π� are canonically distinguished, since along one of them X �Z�π� points toward

the point of intersection �0�0� � �1�π�� �2�π�, while along the other it points away from it. The

modular vector field of π with respect to the area form 1
2dx�dy is given by

X � λ�x∂y � y∂x��

Once again, the flow of X fixes �0�0�; the associated linear operator on the tangent space at �0�0� is

given by the matrix

T � λ

�
 0 1

1 0

��
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and has eigenvalues �λ, which we again call the modular eigenvalues invariant and denote by

�λ�π� for a Poisson structure π.

Although the total modular flow time between the origin and any other point in Z�π� is

infinite, for any two points on �j�π�, j � 1�2 which are distinct from the origin one can define a

modular flow time between these points. Let p � �a���1�j�1a�� q � �b���1� j�1b� (with a�b �� 0)

be two points on the same line �j�π�. Choose a parameterization γ�t� � �g�t����1�j�1g�t�� of � j�π�,

so that γ��1� � p, γ�1� � q. If p and q are on the same connected component of �j�π� � ��0�0��,

the following integral

I�p�q�
�
�

� 1

�1

γ��t�
X�γ�t��

dt

is well-defined and independent of the parameterization γ�t�, since X�s� � 0 only if s � �0�0� (here

γ��t� denotes the tangent vector to the parametrized curve, and the ratio of γ��t� by X�γ�t�� makes

sense because these two vectors are parallel).

Assume now that p and q are on the opposite sides of �0�0� � �j�π�. Let t0 be such that

γ�t0� � �0�0�. Define the modular flow time by

I�p�q�
�
� lim

ε�0

�� t0�ε

�1

γ��t�
X�γ�t��

dt �
� 1

t0�ε

γ��t�
X�γ�t��

dt

�
�

Although the length of time it takes to get from p to �0�0� along the flow of the modular vector

field is infinite, the corresponding time it takes to flow from �0�0� to q is also infinite, but has an

opposite sign (since one goes against the flow of the modular vector field to get to q). This is similar

to the situation in physics, when the amount of energy it takes to move from a point in space to a

singularity of a potential is infinite, yet it takes a finite energy to “tunnel” across the potential well.

For this reason, I�p�q� could be thought of as the “energy” it takes to move from p to q.

We now claim that the definition of I�p�q� is independent of the parameterization γ�t�

and that the limit in the definition always exists. This actually follows from Remark 3.2.12, but we

prefer to give a direct proof. Note first that X�γ�t�� � λg�t� � ���1�j�1∂x � ∂y� � ��1� j�1λg�t� �

�∂x ���1� j�1∂y� and, therefore,

γ��t�
X�γ�t��

� ��1� j�1 g��t�
g�t�

�

It follows that

��1� j�1
� t0�ε

�1

g��t�
g�t�

dt � log��g�t0� ε���� log��g��1����

��1� j�1
� 1

t0�ε

g��t�
g�t�

dt � log��g�1���� log��g�t0 � ε����
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Thus

I�p�q� � ��1� j�1 lim
ε�0

�
log

���� g�1�
g��1�

����� log

����g�t0 � ε�
g�t0� ε�

����� � ��1� j�1 log

���� g�1�
g��1�

���� �
since

lim
ε�0

����g�t0 � ε�
g�t0� ε�

���� � ����g��t0�
g��t0�

���� � 1

by L’Hopital’s rule.

Thus, I�p�q� is defined for any pair of points p�q � �j and depends only on the Poisson

structure π and the choice of points p�q. In particular, associated to �U�π� we can consider the

numbers

R j�π�
�
� sup

p�q	� j

I�p�q� � ��1� j�1 log

����sup�x : �x�y� �U� x � ��1� j�1y�
inf�x : �x�y� �U� x � ��1� j�1y�

���� � j � 1�2

The numbers R1�π� and R2�π� are invariants of the Poisson structure π on U . Note that the lines

� j (and thus of the numbers Rj) are canonically distinguished (since the modular vector field along

�1�π� always points away from �0�0�, while on �2�π� it always points toward �0�0�).

Finally, let ω � 1
x2�y2 dx� dy be the symplectic form on U � Z�π� corresponding to the

restriction of π to U �Z�π�. By the discussion above, the tangent space at �0�0� has two preferred

one-dimensional subspaces, spanned by the eigenvectors of T (which are in our case the vectors

proportional to v
 � ∂x�∂y). Define the regularized Liouville volume of �U�π� by

V �π� �
� P�V�

�
U
ω� lim

ε�0

��
f�1��∞��ε2���U

ω�
�

f�1��ε2�∞���U
ω

�
� (3.3.1)

where f is any function so that

� f �0�0� � 0, d f ��0�0� � 0, v�v� f ��v�v� f , v�v� f � 0;

� f �ω extends to a non-degenerate (symplectic) 2-form on U ;

� f � 0 on the region above the lines �1 and �2 ;

We claim that the limit exists and is independent of the choice of f . To prove this, it is convenient

to change the coordinate system as follows. Let x�
�
� x� y, y�

�
� y� x. Then π � 2x�y�∂x� � ∂y� and

ω� 1
2x�y� dx�dy. Let

V ε
f �V ε

f �π� �

��
f�1��∞��ε���U

ω�

�
f�1��ε�∞���U

ω

�
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Figure 3.3.1: Definition of regularized volume in the quadratic case.

Let f and f̃ be two functions satisfying the conditions above. We will show that limε�0�V ε
f �V ε

f̃
� �

0. The assumptions on f and f̃ imply that

f �x��y�� � x�y� �g�x��y�� (3.3.2)

f̃ �x��y�� � x�y� � g̃�x��y�� (3.3.3)

for some smooth functions g� g̃. Let U1 � U �
�
�x��y�� � �2 : �x

��
2 � �y��� 2�x��

�
and U2 � U �U1

(see Figure 3.3.1). Let α� x��y�. Thus 1
2 � �α�� 2 on U1. We have

V ε
f �V ε

f̃ �
�

R1�R2

dx�dy�

x�y�
�
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where R1 �
�
�x��y�� �U1 : f �x��y��� ε2� f̃ �x��y��� ε2 or f �x��y��� ε2� f̃ �x��y��� ε2

�
and R2 ��

�x��y�� �U2 : f �x��y��� ε2� f̃ �x��y��� ε2 or f �x��y��� ε2� f̃ �x��y��� ε2
�

. Over the region R1, we

switch to the coordinate system �α�y��. Since dx�dy� � y�dαdy�, we have�����
R1

dx�dy�

x�y�

���� �

�����
R1

dαdy�

αy�

����
�

�
1
2��α��2

dα
�α�

�����
� f̃�1

α �ε2�

f�1
α �ε2�

dy
y

������
�

1
2��α��2

dα
�α�

����log

���� f̃�1
α �ε2�

f�1
α �ε2�

�������� �
where fα�y�� � f �αy��y��. Using (3.3.2) and (3.3.3), we find that

� f�1
α �ε2��2 �

ε2

α
�1�Oα�ε��

� f̃�1
α �ε2��2 �

ε2

α
�1� Õα�ε���

Thus

log

���� f̃�1
α �ε2�

f�1
α �ε2�

���� � O�
α�ε��

Since 1
2 � �α� � 2 on U1, we find that therefore the integral

� dα
�α�

���log
��� f̃�1

α �ε2�

f�1
α �ε2�

������� 0 as ε� 0, and

thus �
R1

dx�dy�

x�y�
� 0�

Let ρ be the diameter of U . Write R2 �R2�x�R2�y, where R2�x � ��x��y�� � R2 : �x��� �y���

and R2�y � ��x��y�� � R2 : �x��� �y���. Denote by rx�ε� the infimum

rx�ε� � inf
�
�x�� : �y� s�t��x��y�� � R2�x

�
�

Since the boundary of R2�x is contained in one of the sets f�1�ε2��U2 or f̃�1�ε2��U2, it fol-

lows that rx�ε� satisfies f �rx�ε�� 1
2rx�ε�� � ε2 or f �rx�ε��� 1

2rx�ε�� � ε2, or f̃ �rx�ε�� 1
2rx�ε�� � ε2,

f̃ �rx�ε��� 1
2rx�ε�� � ε2. It follows that rx�ε�2 � 2ε2�1�O�ε��. Thus on R2�x we have�����

R2�x

dx�dy�

x�y�

���� �

� ρ

rx�ε�

dx�

�x��

�����
� f̃�1�ε2�

f�1�ε2�

dy
y

�����
�

� ρ

rx�ε�

dx�

�x��

�����log

����� f̃�1
x� �ε2�

f�1
x� �ε2�

�����
����� �

Using (3.3.2) and (3.3.3), we find that f�1
x� �ε2� � ε2

x� �1�Ox��ε�� and similarly for f̃ . Thus�����log

����� f̃�1
x� �ε2�

f�1
x� �ε2�

�����
������ hx��ε��
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where hx��ε� is a continuous function in x� and ε and hx��ε�� as ε� 0 for each fixed x�.�����
R2�x

dx�dy�

x�y�

����� �
rx�ε���x��ρ

dx�

�x��
hx��ε��

Since hx��ε��ε has a limit as ε� 0 pointwise in x� and rx�ε�� ε, we get that hx��ε��rx�ε� is bounded

by a constant C (independent of ε) for 0� �x� � ρ. Fix δ� 0. We then get

�
rx�ε���x��ρ

dx�

�x��
hx��ε� �

� δ

0

hx��ε�
rx�ε�

dx��
� ρ

δ

dx�

�x��
hx��ε�

� δC�
� ρ

δ

dx�

�x��
hx��ε�

� δC�
1
δ

� ρ

δ
hx��ε�dx�

Letting ε� 0 first and noticing that hx��ε�� 0 pointwise, we find that
� ρ
δ hx��ε�dx� � 0. Letting

now δ� 0 we find that �����
R2�x

dx�dy�

x�y�

����� 0

as ε� 0.

The estimate for the integral over R2�y is obtained by exchanging the roles of x� and y�.

Thus the integral in the definition of V �π� is independent of the choice of f . Taking

f � x2� y2, we easily obtain that the limit exists; indeed, one can reduce the question to the case

that U is a disk of radius ε, in which case the two integrals in the definition of V �π� are equal (with

opposite signs) by symmetry.

Proposition 3.3.5. Let π1 and π2 be Poisson structures on two open disk neighborhoods U1 and U2

of �0�0� � �2 , given by

πα � λα�x2� y2�∂x�∂y�Uα � α� 1�2�

Then there exists a Poisson isomorphism θ : �U1�π�� �U2�π2� if and only if λ1 � λ2, R j�π1� �

R j�π2�, j � 1�2 and V �π1� � V �π2�. Moreover, if these conditions are satisfied, the isomorphism

can be chosen to extend to all of �2 and be identity outside any prescribed open set containing U1

and U2.

Proof. The necessity follows from the fact that λ1�λ2�R1�R2 and V �π� are invariants.

To prove sufficiency, we proceed as follows. Assume that the intersections of U1 with �1

are at �α
�α
� and the intersection with �2 are at �β
��β
�. Thus R1�π1� � log
�
�α�

α�

�
, R2�π1� �

log
�
�β�

β�

�
. By replacing �U1�π1� with F�t��U1�π1�, where F�t� is the flow at time t of the modular
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vector field of π1 with respect to the area form 1
2dx1�dy1, we get a Poisson-isomorphic neighbor-

hood, for which the points of intersection are changed to �eλ1tα
�eλ1tα
� for the �1-intersection

and �e�λ1tβ
��e�λ1tβ
� for the �2-intersection. By further replacing F�t��U1�π1� with its image

under the dilation map �x�y� �� �rx�ry�, we can change the intersections to �reλ1tα
�reλ1tα
� and

�re�λ1tβ
��re�λ1tβ
�, respectively. Denote the corresponding intersections for �U2�π2� by α�
 and

β�
, respectively. The assumption that Rj�π1� � R j�π2�, j � 1�2 implies that

log

�
�
α�
α�

�
� log

�
�
α��
α��

�
and

log

�
�
β�
β�

�
� log

�
�
β��
β��

�
�

It follows that by choosing t and r appropriately, we may assume α
 � α�
 and β
 � β�
.

Now choose an open disk O �U1 �U2. Since the lengths of the zero curves of π1 and

π2 on the complement of O in U are the same, and (by assumptions on the regularized Liouville

volumes) the regularized volumes of Ui �O are equal. We can now argue exactly as in the proof of

Lemma 3.3.1 to extend the identity map on O and �2 �W for an open neighborhood W of U1�U2

to the desired isomorphism.

3.3.6 A complete set of invariants in the quadratic case.

Returning now to Poisson structures on compact oriented surfaces, assume that π1 and π2 are Pois-

son structures on Σ1 and Σ2, so that πα vanish linearly on their zero sets Z�πα� except possibly at

some special points p1
α� � � � � pm

α � Σα, α � 1�2. Assume furthermore that in a neighborhood Uj
α of

pj
α, πα has the form πα�x�y��U j

α
� λ j

α�x2 �σ j
αy2�∂x�∂y, α� 1�2, where λ j

α �� 0 and σ j
α ��1.

Let Σ�α � Σα � �
�m

j�1U j
α�. Define the regularized Liouville volume invariant of πα to be

the sum

V �πα�
�
� Σm

j�1V
�
πα�U j

α

�
�V

�
πα�Σ�α : Σ�α � Σα

�
�

where we set for convenience V
�
πα�U j

α

�
� ∞̂ (a special symbol) if σj

α ��1, and we set r� ∞̂� ∞̂

if r � ����∞�.

We now consider the zero set Z�πα�. Embed Σα into the three-dimensional space �3 , and

replace the zero set Z�πα�� Σα by a set C�πα� of closed curves in �3 such that:

� C�πα��Σα�
�m

j�1 U j
α
� Z�πα��Σα�

�m
j�1 U j

α
;
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� If pj
α is an elliptic point (σj

α � 1), then C�πα��U j
α
� Z�πα��U j

α
;

� If pj
α is a hyperbolic point (σj

α ��1), then C�πα��U j
α

consists of two non-intersecting curves

obtained by resolving the intersection of the sets Z� and Z�.

This procedure is illustrated by the diagram below

Assign to each resulting closed curve γ �C�πα� its modular period Iγ�π� by adding the

modular flow times between the exceptional points on γ.

Theorem 3.3.6. With the above notation and assumptions, let φ : Σ1 � Σ2 be a diffeomorphism, so

that φ�Z�π1�� �Z�π2� and φ�pi
1� � φ�pi

2�, i� 1� � � � �m. Assume that the map Z�π1�� Z�π2� induces

the map φC : C�π1��C�π2�. Then there exists a Poisson isomorphism θ : Σ1 � Σ2, θ�π1 � π2 such

that θ�Z�π1� � φC if and only if

1. Iγ�π1� � IφC�γ��π2� for all γ �C�π1�;

2. V �π1� �V �π2�;

3. λi
1 � λi

2, σi
1 � σi

2 for all i � 1� � � � �m;

Proof. Clearly, γ �� Iγ�πα� and V �πα� are invariants, and hence the conditions are necessary.

Conversely, assume that the invariants are the same. Choose a curve γ �C�π1�. Choose

points ai
1�b

i
1 on γ so that pi

1 � �ai
1�b

i
1� � γ for all exceptional points pi

1 on γ. Do the same for

the corresponding curve in C�π2�, calling the points ai
2�b

i
2. The assumption (1) guarantees that

this can be done in such a way that the flow times along the corresponding segments are equal,

I�ai
1�b

i
1� � I�ai

2�b
i
2� and I�ai

1�b
i�1
1 � � I�ai

2�b
i�1
2 �. Now choose disjoint contractible neighborhoods

Ui
α� Σα of pi

α so that V �Ui
1� �V �Ui

2� for all i. Using the results of the previous section, we can now

find Poisson isomorphisms of Ui
1 and Ui

2 for all i. Similar procedure should be done for all pair of the

corresponding curves in C�π1�, C�π2�. The assumption (2) guarantees that V �Σ1��U1
1 ��� ��Um

1 �� �

V �Σ2 � �U1
2 � �� � �Um

2 ��. One then argues as in Moser’s theorem that these isomorphisms can be

extended to the desired global isomorphism φ.

Example 3.3.7. As an example, we discuss the classifying invariants in the case of a Poisson struc-

ture on a 2-torus, given by πh � h �π�, where π� is the (nowhere zero) Poisson structure coming from
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(a)

(b)

(b’ )

Figure 3.3.2: Poisson structures on a torus.

the area form on the torus, and h is a height function (see Figure 3.3.2). The function h has four

critical points, p1� p2� p3� p4; let’s say h�p1� � h�p2� � h�p3� � h�p4�. The points p1 and p4 are

extremal, and p2 and p3 are saddle points.

The zero set of the structure πh is the set of zeros of h. If h is nowhere zero on the

torus (i.e., h�p1� � 0 or h�p4� � 0), π comes from a symplectic structure, and is determined up to

isomorphism by the associated Liouville volume.

Generically, h is nonzero at its critical points. Then we have the following possibilities:

(a) h�p1� � 0 � h�p2� or h�p3� � 0 � h�p4� (the latter case is shown on the figure). The

zero set of πh consists of a single curve. The structure is determined by two invariants:

the modular period around the curve and the regularized Liouville volume.

(b) h�p2� � 0 � h�p3�. The zero set of πh consists of two ellipses (shown on the figure).

There are now three invariants: the two modular periods around each of the curves, and

the regularized Liouville volume.

In addition, h could be zero at one of its critical points. There are two possibilities:

(a’) h�p1� � 0 or h�p4� � 0 (not shown). In this case, the zero set of πh is a single point.

The structure is determined by one invariant, the modular eigenvalues at that point. It

is worth noting that if we replace h by hε � h�ε, then, for a suitable choice of the sign,

πhε will be as in (a). As ε� 0, the total volume of πhε becomes infinite. The modular
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eigenvalue invariant of πh can be recovered from the behavior of the modular period of

πhε as ε� 0. Indeed, introduce local coordinates x�y near the critical point of h; assume

that h�x�y� � λ�x2 � y2�, and π� � ∂x � ∂y. The modular vector field X of πhε does not

depend on ε and is given by �2λ�x∂y�y∂x� (the sign depends on whether we are at p1

or p4). Let γε be the zero curve of πhε . The curve is a circle of radius r �
�

ε��λ�. Then

the lengths of X �γε is constant and equals 2�λ�r, and the length of the curve is 2πr. Thus

the modular period is π��λ�, and its limit as ε� 0 allows us to compute �λ� (which is

the modular eigenvalues invariant for πh).

(b’) h�p2� � 0 or h�p3� � 0 (shown in the picture). In this case, the zero set of πh is a

“figure 8 curve”. The structure is determined by 3 invariants: the modular eigenvalue

invariant, the regularized modular period, and the regularized total volume. Again, we

can perturb h by setting hε � h� ε. For a suitable choice of the sign, πhε will be as in

(b). The three classifying invariants for πhε give rise to the three classifying invariants

for πh. The regularized volume for πh is the limit of the regularized Liouville volume

for πhε . To obtain the other invariants, consider coordinates �x�y� near the critical point

of h, so that h�x�y� � λ�x2� y2� and π� � ∂x�∂y. The modular vector field X in these

coordinates is (up to sign) �2λ�x∂y � y∂x�. Let U � ��x�y� : x2 � y2 � R�. Denote by

γ1�ε� and γ2�ε� the zero curves of πhε . Then the modular period Tγ j�πhε� around γ j can

be computed as

Tγ j�πhε� �
�
γ j�ε��U

1
�X �

dγ j �
�
γ j�ε��U

1
�X �

dγ j�

The second integral has a finite limit as ε� 0, which is the modular length of a portion

of the zero curve of πh lying outside of U and to the right or to the left of p, depending

on j. The first integral can be computed as

f j�ε� �
� R

�R

1

2λ
�

x2 � y2
�

�
1�

x2

y2 dx �
1
2λ

� cosh�1�R�δ�

cosh�1��R�δ�
dt

�
1
λ

log�R�δ� � const�
1
λ

log ε�

where δ� ε�λ� x2� y2. It follows that

λ� lim
ε�0

logε
Tγ j�πhε�

(the limit is independent of j); this expresses the modular eigenvalues invariant in terms
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of the behavior of Tγ j�πhε�. Moreover, the limit

lim
ε�0

�Tγ1�πhε��Tγ2�πhε��

is equal to

lim
ε�0

��
γ1�ε��U

1
�X �

dγ1�
�
γ2�ε��U

1
�X �

dγ2

�
(independently of U , since modifying R increases the two integrals by the same amount,

not changing their differences). This limit gives the regularized modular flow time

around the zero curve of πh.
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Chapter 4

Gauge and Morita Equivalence of

Poisson manifolds.

4.1 Summary of results

In this Chapter, we compute the effect of a gauge transformation on a symplectic groupoid of an

integrable Poisson manifold. We also show that gauge equivalence of integrable Poisson manifolds

implies their Morita equivalence, thus relating the two notions of equivalence. To obtain this result,

we first prove that gauge transformations of Poisson structures are compatible with (anti-)Poisson

maps. As an example, we classify topologically stable Poisson structures on a two-sphere up to

Morita equivalence. To do so, we first prove that the modular periods around the zero curves with

linear degeneracy are invariant under Morita equivalence, and that the leaf spaces of Morita equiva-

lent Poisson manifolds are homeomorphic. On the other hand, using the results on classification of

structures with linear degeneracies obtained earlier, we show that if two topologically stable struc-

tures on a compact oriented surface have the same modular period invariants, but possibly different

regularized volumes, they are gauge equivalent. It remains then to note that the topologically stable

structures are integrable to conclude that they are Morita equivalent. These results are a part of the

joint work [BR] with H. Bursztyn. In this chapter, we restrict ourselves to Poisson structures, rather

than the more general Dirac structures; see [BR] for some results on gauge transformations of Dirac

structures.

In this Chapter, �P1�π1� and �P2�π2� denote Morita-equivalent Poisson manifolds with a

Morita-equivalence bimodule �S�Ω� so that we have a diagram �P1�π1�
J1� �S�Ω�

J2� �P2�π2�.
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4.2 Properties of Morita equivalence

For Poisson manifolds, symplectic realizations are an analog of representations for associative al-

gebras. A symplectic realization α : �S�Ω�� �P�π� is called complete if α is complete as a Poisson

map, i.e., the pull-back of a compactly supported function on P has a complete Hamiltonian vector

field on S. The “category” of complete symplectic realizations (introduced in [Xu91b]) for a given

Poisson manifold P is the “category” with objects being the complete symplectic realizations of

P and the morphisms from a realization �S1�Ω1�
α1� �P�π� to a realization �S2�Ω2�

α2� �P�π� being

lagrangian submanifolds in �S2�Ω2��P �S1��Ω1� � ���x�y� � S2�S1�α1�x� � α2�y��� Ω2��Ω1�.

This is not a true category, because a certain transversality assumption is necessary for composition

of two morphisms to be defined (cf. [Xu91a]). It turns out ([Xu91a]) that the main characteriz-

ing property of Morita equivalence for algebras has an analog in the case of Poisson manifolds.

Namely, Morita equivalent Poisson manifolds have equivalent “categories” of complete symplectic

realizations.

It is a natural problem to classify Poisson manifolds up to Morita equivalence. The answer

is simple in the case of symplectic manifolds: the fundamental group of a manifold is the complete

invariant of Morita equivalence. A generalization of this result to a certain class of regular Poisson

manifolds was obtained in [Xu91a]. However, much work is still to be done to answer this question

in more general situations. Finding various invariants of Morita equivalence can be considered as a

first step in this direction.

4.2.1 Invariance of the topology of the leaf space.

In this subsection we prove that the leaf spaces of Morita equivalent Poisson manifolds are homeo-

morphic as topological spaces.

Let �P�π� be a Poisson manifold. Let

L�P�
�
� P��x� y if x and y are in the same leaf�

be the leaf space of P. Let p : P� L�P� be the quotient map. Endow L�P� with its quotient topology:

a function f : L�P�� X valued in a topological space X is continuous iff f Æ p : P� X is continuous

as a function on P.

Let �P1�π1� and �P2�π2� be Poisson manifolds and �P1�π1�
J1� �S�Ω�

J2� �P2�π2� be their

Morita equivalence bimodule. It is well-known (see e.g. [CW99]) that S induces a bijection of sets
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φS : L�M1�� L�M2� given by

φS�� � � J2�J
�1
1 �� �� (4.2.1)

for all leaves � � L�P1�.

Proposition 4.2.1. The map φS : L�P1�� L�P2� is a homeomorphism of topological spaces.

Proof. Let Fi, i � 1�2 be the subset of TMi consisting of vectors tangent to the symplectic leaves.

Let TJi � TS, i � 1�2 be the subbundles tangent to the Ji-fibers. Then

J�1 F1 � J�2 F2 � TJ1 �TJ2
�
� F�

where J�i Fi � �v � TS�TJiv � Fi� denotes the pull-back of Fi.

Since the fibers of Ji, i � 1�2, are connected, the natural maps

ψi : S�F �Mi�Fi

of leaf spaces are bijections. Moreover, it is not hard to see that φS is obtained as

φS � ψ2 Æψ
�1
1 : M1�F1 �M2�F2�

Endow S�F with its quotient topology. Then it is sufficient to prove that ψi, i � 1�2 are homeomor-

phisms.

By definition of the quotient topology, the map ψi : S�F � Mi�Fi is continuous iff the

map ψi Æ p : S�Mi�Fi is continuous (here p : S� S�F is the quotient map). But ψi � pi ÆJi, where

pi : Mi �Mi�Fi is the quotient map. Hence ψi is continuous.

Similarly, ψ�1
i : Mi�Fi� S�F is continuous iff ψ�1

i Æ pi : Mi� S�F is continuous. Since Ji

is a submersion, this is true iff ψ�1
i Æ pi ÆJi : S� S�F is continuous. But ψ�1

i Æ pi ÆJi � p. Therefore,

ψi is a homeomorphism for i � 1�2, which implies that φS is a homeomorphism.

4.2.2 Invariance of the modular class.

Here we recall (see [Cra] and [Gin] for the details) that the modular class of a Poisson manifold is

preserved under Morita equivalence.

By a result of Ginzburg and Lu [GL92], the isomorphism (4.2.1) produces an isomorphism

of Poisson cohomologies

φ�S : H1
π�P1�� H1

π�P2�� (4.2.2)
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By a theorem of Crainic [Cra] and Ginzburg [Gin], this isomorphism turns out to preserve the

modular class:

φ�S�µ�P1�π1�� � µ�P2�π2��

We will need the following remark from the construction of the isomorphism (4.2.2) in [Gin]:

Remark 4.2.2. Given volume forms ν1 and ν2 on P1 and P2, respectively, there exists a vector field

X on S, with the property that �Ji��X � Xνi , i � 1�2, where Xνi is the modular vector field of �Pi�πi�

with respect to νi. Such a vector field X on S is actually Hamiltonian, and its Hamiltonian H is

determined by the equation

DJ�1ν1 ��eHJ�2ν2�

where D : Ωk�M��Ω2m�k�M� is the symplectic �-operator (cf. [Bry88]).

4.2.3 Invariance of modular periods.

For convenience of the reader and to set the notation, we recall the definition of the modular period

invariant given in Section 3.2.4. Suppose that the Poisson tensor π on P vanishes on a closed curve

γ � P, and is nonzero away from γ in a neighborhood of γ. Since the modular vector field Xν of π

with respect to ν preserves the Poisson structure, its flow must take the zero set of π to the zero set

of π. Thus the flow of Xν preserves γ and, therefore, Xν must be tangent to γ. Moreover, for any

other choice ν� of the volume form we have

Xν��γ � Xν�γ��Xlog ν�
ν
��γ � Xν�γ�

since all Hamiltonian vector fields are zero when restricted to the zero curve γ. It follows that the

restriction of the modular vector field Xν to γ is independent of ν. In particular, as was observed by

Roytenberg [Roy], the period of the flow of this vector field around γ is an invariant of the Poisson

structure π. We denote this number by Tγ�P�π� (or, shortly, Tγ�π� when it is clear what P is).

In order to establish the invariance of a modular period with respect to Morita equivalence,

we first prove the following more general result:

Theorem 4.2.3. Let �Pi�πi�, i � 1�2 be Poisson manifolds and �P1�π1�
J1� �S�Ω�

J2� �P2�π2� be a

Morita equivalence bimodule. Assume that Zi � Pi are subsets for which πi�Zi � 0 and that the

isomorphism of leaf spaces satisfies

φS�Z1� � Z2�



56

Let Φi
t be the flow of the modular vector field Xνi for some volume forms νi on Mi, i � 1�2. Assume

that Φi
t takes Zi to Zi for all t. Then

φS ÆΦ1
t �Φ2

t ÆφS� �t � ��

Proof. Let X be a vector field on S such that �Ji��X � Xνi
i , i � 1�2 (see Remark 4.2.2) and let Φt be

its flow. By the definition of φS, for each point p1 � Z1 (which forms by itself a symplectic leaf) we

have

φS��p1�� � J2�J
�1
1 ��p1���

which by our assumption on φS is a single point p2 � Z2. It follows that J�1
1 ��p1�� � J�1

2 ��p2��.

Reversing the roles of p1 and p2 we get J�1
1 ��p1�� � J�1

2 ��p2��� In particular, it follows that

J�1
1 �Z1� � J�1

2 �Z2��

Thus for any fixed r � J�1
1 ��p1�� � J�1

2 ��p2�� we obtain

Φ2
t �φS��p1��� � J2�Φt��r��� � J2�J

�1
1 �Φ1

t ��p1��� � φS�Φ
1
t ��p1����

Therefore, φS ÆΦ1
t �Φ2

t ÆφS.

Corollary 4.2.4. Let �P1�π1� and �P2�π2� be Morita equivalent Poisson manifolds with an equiv-

alence bimodule �S�Ω�. Assume that γi � Pi are simple closed curves, and there exist open sets

Ui  γi, so that that πi�γi � 0 and π�Ui�γi
�� 0, i � 1�2. Assume finally that φS�γ1� � γ2. Then

Tγ1�P1�π1� � Tγ2�P2�π2��

Proof. Applying Theorem 4.2.3 with Zi � γi, i � 1�2 we obtain that the flows Φi
t of modular vector

fields Xνi
i are intertwined by φS. Thus for any p1 � γ1

Tγ1�P1�π1� � inf�t � 0 : Φ1
t �p1� � p1�

� inf�t � 0 : φS�Φ
1
t �p1�� � φS�p1��

� inf�t � 0 : Φ2
t �φS�p1�� � φS�p1��

� inf�t � 0 : Φ2
t �p2� � p2�� p2 � φS�p1�

� Tγ2�P2�π2��

Thus the modular period is a Morita equivalence invariant, as claimed.
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4.2.4 Tangent space to a Morita equivalence bimodule.

In this section we collect several useful statements about the structure of the tangent space at a point

of a Morita equivalence bimodule.

Let �P1�π1� and �P2�π2� be Morita equivalent Poisson manifolds, and let �S�Ω�α�β� be

their Morita equivalence bimodule. Denote by αx
�
� α�1�α�x�� the α-fiber through x � S and by

βx
�
� β�1�β�x�� — the β-fiber through x� S. Since �Txαx�

Ω �Txβx � �Xα� f � f �C∞�P2��, �Txβx�
Ω �

Txαx � �Xβ�g�g �C∞�P1��, we have

�α�C∞�P1�� β
�C∞�P2��� 0

Let �α�x� be the symplectic leaf of P1 through the point α�x� � P1 and let �β�x� be the

symplectic leaf of P2 through the point β�x� � P2.

Claim 4.2.5. The tangent space at a point x � S satisfies the following properties:

1. Txαx�Tx�αx�βx�� Tβ�x��β�x�;

2. Tα�x�P1�Tα�x��α�x� � Tβ�x�P2�Tβ�x��β�x�;

3. There is the following splitting of TxS:

TxS� Tα�x��α�x��Tβ�x��β�x��Tx�αx�βx��Tα�x�P1�Tα�x��α�x�; (4.2.3)

In particular, Txαx � Tx�αx�βx��Tβ�x��β�x� and Txβx � Tx�αx�βx��Tα�x��α�x�. With this

splitting, we have the following orthogonality relations with respect to the symplectic form

Ω
�
Tα�x��α�x�� Tβ�x��β�x��Tx�αx�βx��Tα�x�P�Tα�x��α�x�

�
� 0; (4.2.4)

Ω
�
Tβ�x��β�x�� Tα�x��α�x��Tx�αx�βx��Tα�x�P�Tα�x��α�x�

�
� 0; (4.2.5)

Ω
�
Tα�x�P�Tα�x��α�x�� Tα�x�P�Tα�x��α�x�

�
� 0; (4.2.6)

Ω�Tx�αx�βx�� Tx�αx�βx� � 0; (4.2.7)

Moreover, the restrictions Ω�Tα�x��α�x�
and Ω�Tβ�x��β�x�

are non-degenerate forms, and Ω gives a

non-degenerate pairing of Tx�αx�βx� and Tα�x�P1�Tα�x��α�x� � Tβ�x�P2�Tβ�x��β�x�.

Proof. (1) Let Txβ : TxS � Tβ�x�P2 be the map induced by β on the level of tangent spaces. The

image of the restriction Txβ�Txαx of this map to Txαx lies in Tβ�x��β�x�. Since ker�Txβ� � Txβx, there

is a well-defined quotient map �Txβ�Txαx : Txαx�Tx�αx�βx�� Tβ�x��β�x�. For ξ � Tβ�x��β�x�, let f �
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C∞�P2� be a function whose hamiltonian vector field Xf has the value ξ at β�x�, i.e. Xf �β�x�� � ξ.

Then �Txβ�Txαx�Xβ� f ��x� � ξ. Therefore, the map �Txβ�Txαx : Txαx�Tx�αx�βx�� Tβ�x��β�x� is onto.

The second statement of the Claim follows from the isomorphism of leaf spaces of Morita

equivalent Poisson manifolds, and the last one follows from the first two.

4.3 Gauge equivalence of Dirac structures and Poisson manifolds

In this section we recall the definitions of gauge transformations and gauge equivalence of Poisson

manifolds, and derive an equivariance property of gauge transformations with respect to (anti)-

Poisson maps.

4.3.1 Dirac structures

In order to define gauge transformations of Poisson structures by closed 2-forms, we first need to

recall the notion of a Dirac structure, generalizing that of a Poisson structure.

Dirac structures were introduced in [Cou90] to provide a geometric framework for the

study of constrained mechanical systems. Examples of Dirac structures include Poisson and pre-

symplectic structures, as well as foliations. In general, a Dirac structure determines a singular

foliation on a manifold together with a pre-symplectic structure on each leaf of this foliation.

A linear Dirac structure on a vector space V is a subspace L�V�V� which is maximally

isotropic with respect to the symmetric pairing 	 � 
 defined by

	�x�ω�� �y�ν�
 �
1
2
�ω�y��ν�x��� �x�ω���y�ν� �V �V� (4.3.1)

In other words, L is an isotropic subspace and dim�L� � dim�V �. For example, for a bivector

π�V �V on V the graph L � graph �π̃� of the associated linear map π̃ : V ��V is a Dirac structure.

A Dirac structure on a manifold P is a subbundle L� TP�T�P which determines a linear

Dirac structure Lp � TpP�T �
p P, p � P pointwise and satisfies the following integrability condition:

the space of sections of L is closed under the Courant bracket � � � : Γ�TP�T�P��Γ�TP�T �P��

Γ�TP�T �P�, given by

��X �ω�� �Y�ν�� �
�

�
�X �Y �� LXν�LYω�

1
2

d�ω�X��ν�Y ��

�
� (4.3.2)

For a Poisson bivector π � �1�P� on P the graph L � graph�π̃� of the associated bundle map π̃ :

T �P� TP is a Dirac structure; the integrability condition in this case is equivalent to �π�π� � 0.
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The Courant bracket (4.3.2) does not satisfy the Jacobi identity in general. However,

the Jacobi identity does hold for the restriction of this bracket to the sections of a Dirac bundle

L� T P�T �P. Thus, on L there is a natural Lie algebroids structure, the bracket being given by the

restriction of the Courant bracket and the anchor map being the restriction of the natural projection

TP�T �P� TP. The Lie algebroid structure on L determines a foliation on P. It turns out that this

foliation is symplectic if and only if L � graph �π� for a Poisson structure π on P .

4.3.2 Gauge transformations and gauge equivalence

The notion of gauge equivalence of Dirac structures was introduced in [SW] motivated by the study

of the geometry of Poisson structure “twisted” by a closed 3-form.

The additive group of closed 2-forms on a manifold acts on the set of Dirac structures on

the manifold as follows. For a Dirac structure L on P and a closed 2-form B � Ω2�P�, define the

gauge transformation of L by B according to

τB�L�
�
� ��X �η� B̃�X����X �η� � L�� (4.3.3)

This is equivalent to adding the pull-back of B to the pre-symplectic form on each of the leaves of

the foliation defined by L. Two Dirac structures on P which are in the same orbit of the action by

gauge transformations are called gauge-equivalent.

For a Poisson structure π on P, let Lπ � graph�π̃� be the corresponding Dirac structure.

As was observed in [SW], τB�Lπ� corresponds to another Poisson structure if and only if the en-

domorphism 1� B̃ Æ π̃ : T �P� T �P is invertible. If this is the case, the Poisson structure πB such

that

π̃B � π̃Æ �1� B̃Æ π̃��1 (4.3.4)

is said to be obtained from π by a gauge transformation. For short, we write πB � τB�π� instead of

LπB � τB�Lπ�.

Gauge-equivalent Dirac structures have a lot of common properties. For instance, the leaf

decomposition is the same (though the pre-symplectic forms on leaves differ by the pull-backs of the

closed 2-form defining the transformation). Gauge-equivalent Poisson structures have isomorphic

Lie algebroids, and, therefore, isomorphic Poisson cohomology.
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4.3.3 Equivariance property of (anti)-Poisson maps with respect to gauge transfor-

mations

In this section we prove that Poisson maps are equivariant with respect to gauge transformations

of Poisson structures. More generally, one can prove (see [BR]) that Dirac maps (a certain gen-

eralization of Poisson maps to the class of Dirac structures) are equivariant with respect to gauge

transformations of Dirac structures.

Theorem 4.3.1. Let �P�πP� and �Q�πQ� be Poisson manifolds and let ϕ : �Q�πQ�� �P�πP� be a

Poisson map. Let B be a closed 2-form on P such that the operators �id�B̃Æ	πP� : T �P� T �P and

�id��ϕ�BÆ	πQ� : T �Q� T �Q are invertible (so that τBπP and τϕ�BπQ define Poisson structures on

P and Q respectively). Then ϕ :
�
Q�τϕ�BπQ

�
�

�
P�τBπP

�
is also a Poisson map.

Proof. Since ϕ : �Q�πQ�� �P�πP� is a Poisson map, we have

TxϕÆ
	πQ

x ÆT �
ϕ�x�ϕ� �πP

ϕ�x�� x � Q� (4.3.5)

where Txϕ : TxQ� TxP and T �
x ϕ : T �

x P� T �
x Q are the maps associated to ϕ : Q� P. To prove that

ϕ : �Q�τϕ�BπQ�� �P�τBπP� is a Poisson map, it suffices to check that the following equality

TxϕÆ
�τϕ�Bπ

Q
x ÆT �

ϕ�x�ϕ� ��τBπP�ϕ�x�� (4.3.6)

where

�τBπP � 	πP �
�

id� B̃Æ	πP
��1

�

�τϕ�BπP � 	πQ �
�

id��ϕ�BÆ	πQ
��1

�

Let OP
�
� B̃Æ	πP and OQ

�
� �ϕ�BÆ	πQ be the operators on T�P and T �Q respectively.

Lemma 4.3.2. The map T �
ϕ�x�ϕ : T �

ϕ�x�P� T �
x Q intertwines �OP�ϕ�x� and �OQ�x, i.e.

T �
ϕ�x�ϕÆ �OP�ϕ�x� � �OQ�x ÆT �

ϕ�x�ϕ� (4.3.7)

Proof. Let χ � TyQ� η � T �
ϕ�y�P. We have

	OQ Æϕ��η��χ
� 	�ϕ�BÆ	πQ Æϕ��η�� χ

�I�
�

� 	B̃Æϕ� Æ	πQ Æϕ��η�� ϕ��χ�

�II�
� 	B̃Æ	πP�η�� ϕ��χ�
�

	ϕ�B̃Æ	πP�η��χ
� 	ϕ� ÆOP�η��χ
�

where step �I� follows from �ϕ�B�χ� � B̃�ϕ��χ�� (which is an easy consequence of the definitions)

and step �II� follows from (4.3.5). The claim follows.
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Lemma 4.3.3. The map T �ϕ intertwines �id�OQ�
�1 and �id�OP�

�1, i.e.

�id�OQ�
�1
x ÆT �

ϕ�x�ϕ� T �
ϕ�x�ϕÆ �id�OP�

�1
ϕ�x� � (4.3.8)

Proof. To obtain (4.3.8), add T�ϕ�x�ϕ to both sides of (4.3.7), and multiply the resulting identity by

�id�OQ�
�1
x on the left, and by �id�OP�

�1
x on the right.

Finally, (4.3.6) follows easily from (4.3.8) and (4.3.5).

To obtain an analogous statement for anti-Poisson maps, we need the following observa-

tion:

Lemma 4.3.4. Let �P�π� be a Poisson manifold and B be a closed 2-form on P such that �id�B̃Æ π̃�

is invertible. Then

�τBπ� τ�B��π��

Theorem 4.3.1 and Lemma 4.3.4 now imply

Theorem 4.3.5. Let �P�πP� and �Q�πQ� be Poisson manifolds and ϕ : �Q�πQ�� �P�πP� be an anti-

Poisson map. Let B be a closed 2-form on P such that the operators �id�B̃ Æ	πP� : T �P � T �P

and �id��ϕ�BÆ	πQ� : T �Q� T �Q are invertible. Then ϕ :
�
Q�τ��T �ϕ�BπQ

�
�

�
P�τBπP

�
is also an

anti-Poisson map.

4.4 Morita equivalence of gauge-equivalent integrable Poisson struc-

tures

In this section we compute the result of a gauge transformation of an integrable Poisson manifold on

the symplectic structure of its symplectic groupoid and prove that two integrable gauge-equivalent

Poisson structures are Morita equivalent.

Let �P�π� be a Poisson manifold and �S�Ω�α�β� be its symplectic groupoid. Let �P�πB�

be the Poisson manifold obtained by a gauge transformation of the original one. Since the Lie

algebroids of �P�π� and �P�πB� are isomorphic, the Lie algebroid of �P�πB� can be integrated to a

Lie groupoid isomorphic to �S�α�β�. It is natural to ask the following questions:

1. Is there a symplectic form on S making it into a symplectic groupoid of �P�πB�;

2. Are the manifolds �P�π� and �P�πB� Morita equivalent?



62

To answer these questions, we prove the following

Theorem 4.4.1. Let �P�π� be an integrable Poisson manifold and �S�Ω�α�β� be its symplectic

groupoid with connected simply-connected α-fibers. Let B � Ω2�P�, dB � 0 be a closed 2-form

on P such that πB
�
� τB�π� is a Poisson structure gauge-equivalent to π. Then

1. SB
�
� �S�Ω̂�α�β�, where Ω̂

�
�Ω�α�B�β�B, is a symplectic groupoid of �P�πB�;

2. The Poisson manifolds �P�π� and �P�πB� are Morita equivalent, with Morita equivalence

bimodule �S�ΩB�α�β�, where ΩB is given by

ΩB
�
�Ω�β�B� (4.4.1)

Proof. 1. To prove the first statement, we have to check that Ω̂ is symplectic, that the graph of the

groupoid multiplication Γm � ��x�y�m�x�y����x�y� � S2� (where S2 is the set of composable pairs)

is lagrangian in SB� SB� S̄B, and that the maps α : SB � P and β : SB � P are Poisson and anti-

Poisson respectively. The proof of the fact that Ω̂ is symplectic is analogous to the proof that ΩB is

symplectic given below.

Let �x�y� � S2. Consider a curve �x�t��y�t�� in S2 with �x�0��y�0�� � �x�y�. Let �u�v� �

�x��0��y��0��. Then
�
u�v�

�
T�x�y�m

�
�u�v�

�
� TpΓm, p � �x�y�x� y� and any tangent vector in TpΓm is

of this form. Differentiating the identities α�m�x�y�� � α�x�, β�m�x�y�� � β�y� and β�x� � α�y�,

we obtain

Tα�Tm�u�v�� � Tα�u��

Tβ�Tm�u�v�� � Tβ�v��

Tβ�u� � Tα�v��

Therefore, for wi
�
� �ui�vi�T m�ui�vi� � TpΓm, i � 1�2 we have

�Ω̂�Ω̂��Ω̂��w1�w2� � B�Tα�u1��Tα�u2���B�Tβ�u1��Tβ�u2���

B�Tα�v1��Tα�v2���B�Tβ�v1��Tβ�v2���

�B�TαTm�u1�v1��TαTm�u2�v2���

B�Tβ�u1�v1��TβTm�u2�v2�� � 0�

Hence, Γm � SB� SB� S̄B is lagrangian, and, therefore, SB is a symplectic groupoid. It is easy to

see that α is a Poisson map. Since there is a unique Poisson structure on the identity section of a

symplectic groupoid with this property, the Poisson structure induced byΩ̂ on P is πB.
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2. To prove the second part of the theorem, we have to check that �P�π� α
� �S�ΩB�

β
�

�P�πB� satisfies all the properties of a Morita equivalence bimodule. First, we will need the following

Claim 4.4.2. The 2-form ΩB �Ω�β�B on S is symplectic.

Proof. Let u� TxS be such that ΩB�u�v� � 0 for all v� TxS. Suppose that v� Txβx. Then β�B�u�v� �

0 and therefore, ΩB�u�v� �Ω�u�v� � 0. Hence, u � �Txβx�
Ω � Txαx.

We will now use the splitting (4.2.3) and the orthogonality relations (4.2.4)–(4.2.7). Let

u � u1 �u2, where u1 � Tx�αx�βx� and u2 � Tβ�x��β�x�.

Suppose that u2 �� 0. Let ωB be the symplectic form on the leaf through β�x� cor-

responding to the Poisson structure τBπ. Since β : �S�Ω� � �P�π� is an anti-Poisson map and

the form ω (on �β�x�) corresponding to the Poisson structure is non-degenerate, there exists

v � Tβ�x��β�x� � Txβx such that Ω�u2�v� �� 0. Since β�B�Txβx� �� � 0, ΩB�u�v� � Ω�u�v�. Since

Tx�αx�βx�� �Tα�x��α�x��
Ω, we have ΩB�u�v� �Ω�u�v� �Ω�u2�v� �� 0.

Suppose u2 � 0. Let v � Tα�x�P�Tα�x��α�x� be such that Ω�u�v� �� 0. Hence, ΩB�u�v� �

Ω�u�v� �� 0.

Claim 4.4.3. We have �Txαx�
ΩB � �Txαx�

Ω, �Txβx�
ΩB � �Txβx�

Ω.

Let v � �Txαx�
Ω � Txβx. For any w � Txαx we have

ΩB�v�w� �Ω�v�w��β�B�v�w� � 0�B�Tβ�v��Tβ�w�� � 0�

Therefore, �Txαx�
Ω � Txβx 
 �Txαx�

ΩB . In a similar way, �Txβx�
Ω � Txαx 
 �Txβx�

ΩB .

Let v � �Txαx�
ΩB . For any w � Txαx

0 �ΩB�v�w� �Ω�v�w��β�B�v�w� �Ω�v�w��B�Tβ�v��Tβ�w�� �Ω�v�w�

Therefore, �Txαx�
ΩB 
 �Txαx�

Ω and analogously �Txβx�
Ω 
 �Txβx�

ΩB .

Claim 4.4.4. The fibers of α and β are symplectically orthogonal with respect to ΩB and

�α�C∞�P1��β�C∞�P2��� 0.

Proof. From Claims 4.4.2 and 4.4.3 we obtain

Txβx � �Txαx�
ΩB � �XB

α� f � f �C∞�P���

Txαx � �Txβx�
ΩB � �XB

β� f � f �C∞�P���
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where XB
g is the Hamiltonian vector field of g �C∞�S� with respect to the modified symplectic form

ΩB.

Claim 4.4.5. The map α : �S�ΩB�� �P�π� is Poisson.

Proof. The map α is Poisson iff �Tα�XB
α� f � Xf for all f �C∞�P�, where XB

α� f is the Hamiltonian

vector field of α� f �C∞�S� with respect to the symplectic form ΩB. We have

d�α� f � � 	ΩB�X
B
α� f � � Ω̃�XB

α� f ��
�β�B�X B

α� f � � Ω̃�XB
α� f ��

(where �β�B�X B
α� f � � 0 since XB

α� f � Txβx by 4.4.4). Therefore, XB
α� f � Xα� f .

Claim 4.4.6. The map β : �S�ΩB�� �P�πB� is anti-Poisson.

Proof. The form ΩB is obtained from Ω by the gauge transformation of �S�Ω� by the 2-

form ��T �β�B. Applying Theorem 4.3.1 to the map β : �S�Ω� � �P�π�, we obtain that β :

�S�τ��T �β�BΩ�� �P�τBπ� is an anti-Poisson map.

Claim 4.4.7. We have XB
α� f � Xα� f , XB

β� f � X̂β� f , where X̂g is the Hamiltonian vector field of g �

C∞�S� with respect to Ω̂.

Proof. Since Xα� f � kerβ, we have β�B�Xα� f � � 0. Hence, ΩB�Xα� f � �Ω�Xα� f � � d�α� f �. There-

fore, XB
α� f � Xα� f . The other relation follows by symmetry.

Claim 4.4.8. The maps α : �S�ΩB�� �P�π� and β : �S�ΩB�� �P�πB� are complete.

Proof. Let f � C∞�P� be a complete function with respect to π. By Claim 4.4.7, XB
α� f � Xα� f ,

which is a complete vector field since the source map α : �S�Ω�� �P�π� of a symplectic groupoid is

complete (see, e.g., [Daz90], Sec. 6). Analogously, since �S�Ω̂� is a symplectic groupoid for �P�πB�,

it follows that β : �S�Ω̂�� �P�πB� is complete, and hence XB
β� f � X̂β� f is complete as well.

Since two Morita equivalent Poisson structures on the same underlying manifold do not

necessarily have the same leaf decomposition, it is easy to see that Morita equivalence does not

imply gauge equivalence. Moreover, as was shown in [BR], even if we consider gauge equivalence

up to a diffeomorphism, it is still not implied by Morita equivalence.
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4.5 Example: topologically stable Poisson structures on a compact

oriented surface

In this section we discuss gauge and Morita equivalence of Poisson structures with degeneracies

of the first order on a compact connected oriented surface. We refer the reader to Chapter 3 for

a discussion of these structures. In particular we recall (Theorem 3.2.13) that topologically stable

Poisson structures � �Σ� can be classified up to a Poisson isomorphism by a finite number of invari-

ants: the topology of the inclusion Z�π�� Σ and �n�1� numerical invariants: the n modular periods

of π around each connected component of the zero set Z�π� and the regularized Liouville volume

(obtained as a certain regularized sum of symplectic volumes of two-dimensional leaves, taken with

appropriate signs).

4.5.1 Gauge equivalence

An obvious necessary condition for two topologically stable structures π and π� on a surface to be

gauge-equivalent is Z�π� � Z�π��, i.e. the zero sets of both structures should be the same. The

following theorem gives the necessary and sufficient conditions for gauge-equivalence of two topo-

logically stable structures:

Theorem 4.5.1. Two topologically stable Poisson structures π� π� � �n�Σ� with the zero set Z�π� �

Z�π�� �
�n

i�1 γi are gauge equivalent if and only if their modular periods are the same around all

the zero curves, i.e. Tγi�π� � Tγi�π
�� for i � 1� � � � �n.

Proof. Modular periods are clearly an invariant of gauge equivalence.

Let π� f �π0, π�� f � �π0, where f � f � �C∞�Σ� are functions vanishing linearly on Z�π� �

Z�π�� �
�n

i�1 γi and non-zero elsewhere. Assume that Tγi�π� � Tγi�π
�� for all i � 1� � � � �n. We will

explicitly find a 2-form B�Ω2�Σ� such that π̃� � π̃ � �1� B̃Æ π̃��1. First, define a 2-form B�Σ�Z�π� on

Σ�Z�π� by

B�Σ�Z�π� � ω��ω�

�
1
f �
�

1
f

�
ω0 (4.5.1)

The question is whether B�Σ�Z�π� can be extended smoothly to a (closed) 2-form B �Ω2�Σ� on Σ.

For each i � 1� � � � �n, let Ui � ��zi�θi�� �zi� � Ri� θi � �0�2π�� be a small annular neigh-

borhood of the zero curve γi � Z�π� such that Z�π��Ui � γi and π�Ui � ci f �zi�∂zi � ∂θi , π
��Ui �

f ��zi�∂zi �∂θi with f �Ui � cizi �O�z2�, f ��Ui � c�izi �O�z2�. One can then compute that Tγi�π� �
2π
c ,
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Tγi�π
�� � 2π

c� . Thus on Ui � γi we have

1
f �
�

1
f
�

f � f �

f f �
�

czi� c�zi �O�z2
i �

z2
i �1�O�zi��

�
c� c�

zi
�O�1��O�1�� zi �� 0�

Therefore, B�Σ�Z�π� can be extended from U � γi to U if and only if ci � c�i. Hence B can be defined

as a smooth form on Σ if and only if ci � c�i for all i � 1� � � � �n, i.e., the modular periods of π and

π� around all curves are pairwise equal. Then π� � τB�π� and therefore the structures π and π� are

gauge-equivalent.

Let �n�Σ; γ1� � � � �γn; Tγ1 � � � � �Tγn� be the space of topologically stable Poisson structures

π � �n�Σ� which have the same zero set Z�π� �
�n

i�1 γi and the same modular periods Tγ1 � � � � �Tγn

around the zero curves.

Corollary 4.5.2. The additive group of closed 2-forms on Σ acts transitively on the space

�n�Σ; γ1� � � � �γn; Tγ1 � � � � �Tγn�. The regularized Liouville volume changes under this action in the

following way: V �τBπ� �V �π��Vol�B�, where Vol�B� is the Liouville volume of B.

For π � �n�Σ�, let � �π� � �T �Σ�ρ� � � �� be the Lie algebroid of the Poisson manifold

�Σ�π�. The anchor ρ � �π̃ : T �Σ� TΣ of this Lie algebroid is injective on the open dense set

Σ � Z�π�. According to a theorem of Debord [Deb00], a Lie algebroid with an almost injective

anchor (i.e., injective on an open dense set) is integrable. Therefore, �Σ�π� is an integrable Poisson

manifold.

Since for integrable Poisson manifolds gauge equivalence implies Morita equivalence, we

have

Theorem 4.5.3. Two topologically stable Poisson structures π� π� � �n�Σ� with the same zero set

Z�π� � Z�π�� �
�n

i�1 γi and equal modular periods, Tγi�π� � Tγi�π
�� for i � 1� � � � �n are Morita

equivalent.

4.5.2 Morita equivalence of topologically stable Poisson structures on S2

In the case of two-sphere we will show that two Morita-equivalent topologically stable Poisson

structures have topologically equivalent zero sets and their corresponding modular periods are equal.

Let M be the two-sphere. Let π � � �M� be a topologically stable Poisson structure on

M. Let as before π � f �π0, where π0 is a non-degenerate Poisson structure on M and f �C∞�M�

is a smooth function. The class of Z�π� modulo diffeomorphisms of M is a Poisson isomorphism
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invariant. This class depends only on the topological arrangement of the curves comprising Z�π�

and can be described combinatorially by a signed tree Tree�π� (see section 3.2.8).

Lemma 4.5.4. If two topologically stable Poisson structures π�π� � �n�M� are Morita-equivalent,

then there exists an isomorphism of trees φ : Tree�π�� Tree�π��, so that Tγ�π� � Tφ�γ��π�� for every

edge γ (corresponding to γ � Z�π�) of Tree�π� .

Proof. Assume that �M�π� and �M�π�� are Morita-equivalent. Denote as before by φ the isomor-

phism of the leaf spaces of �M�π� and �M�π��. By Proposition 4.2.1, φ is a homeomorphism of

topological spaces.

As a set, the leaf space L of �M�π� can be identified with the union Z�π�!��1� � � � � �n�,

where �1� � � � � �n are the points corresponding to the 2-dimensional leaves �1� � � � ��n. The quotient

topology of L is easily described: the only open subsets of L have the form U ���i1�� � � � � ��ik�,

where i1� � � � � ik � �1�n�, k � 0 and U � Z�π� is an open subset with the property that if U intersects

non-trivially a curve γ� Z�π�, then for both leaves bounding γ the corresponding points of the leaf

space occur among ��i1 � � � � � �ik�.

Now, given L with its topology, consider the collection � of all subsets Y � L with

the property that L �Y is Hausdorff. Order � by inclusion. We claim that X � ��1� � � � � �n� is a

minimal element of � of finite cardinality. First, note that X � � , since the relative topology on

L �X � Z�π� � L is Hausdorff. Next, assume that Y � � , and Y � X . Then �i � L �Y for some

i � �1�n�. Now all of the points of the boundary of �i in M lie in Z�π� and cannot be separated

from �i by open sets; thus all of these points must necessarily be in Y . Thus Y must have infinite

cardinality.

It follows that φ must map X to a subset of L� with the same minimality property; and

hence φ must take the complement of X , Z�π�, to Z�π��. Thus φ induces a map between the set of

vertices of Tree�π� and Tree�π��.

Now, two vertices �i� � j � Tree�π� are connected by an edge iff the corresponding regions

share a boundary in M. A point x � Z�π� � L cannot be separated from �k by an open set if and

only if x belongs to the boundary of�k in M. It follows that �i� � j are connected by an edge iff there

exists a point x� L, such that x �� �i, x �� � j, but which cannot be separated from either of them by an

open set. Since φ is a homeomorphism, it must preserve this property, and thus φ induces a map of

trees from Tree�π� to Tree�π��. The statement about modular periods now follows from Corollary

4.2.4.

Theorem 4.5.5. For two topologically stable Poisson structures π and π� on the two-sphere to
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be Morita-equivalent, it is necessary and sufficient that there exists an isomorphism of trees φ :

Tree�π�� Tree�π�� so that Tγ�π� � Tφ�γ��π�� for every edge γ of Tree�π�.

Proof. The necessity follows from Lemma 4.5.4.

Assume now that the isomorphism φ : Tree�π�� Tree�π�� satisfying the conditions above

exists. Let ψ : S2 � S2 be an orientation-reversing diffeomorphism. By replacing π� with ψ�π�

(which is obviously Poisson-isomorphic, and hence Morita-equivalent to, π�) if necessary, we may

assume that φ : Tree�π�� Tree�π�� is an isomorphism of signed trees.

Choose a function g � C∞�S2� supported on the interior of one of the two-dimensional

leaves. Let π�� � π�� gπ�. Since π�� � π� in a neighborhood of each of the zero curves γ � Z�π�,

the modular periods of π� and π�� are equal. Therefore, by Theorem 4.5.1, π� and π�� are gauge-

equivalent. Hence by Theorem 4.4.1, π� and π�� are Morita-equivalent, for any such choice of g.

Also, the isomorphism φ induces an isomorphism of trees φ� : Tree�π�� Tree�π���.

With a suitable choice of g, the regularized Liouville volume of π�� can be made equal to

that of π (see §3.2.5 for details). Thus by Theorem 3.2.13, π and π�� are Poisson-isomorphic. We

conclude that π and π�� are Morita-equivalent, since they are integrable (see [Deb00]; note that the

structures involved are symplectic except on a dense set). Thus π and π� are also Morita-equivalent,

by transitivity of Morita equivalence.
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Chapter 5

Poisson cohomology of the r-matrix

Poisson structure on SU�2�.

5.1 Poisson-Lie groups as examples of Poisson manifolds.

A Poisson-Lie group is a group object in the Poisson category, where objects are Poisson manifolds

and maps are Poisson maps.

The notion of a Poisson-Lie group was introduced and the theory of these objects was

developed in the works of Drinfeld [Dri83] and Semenov-Tian-Shansky [STS83], [STS85], moti-

vated by attempts to describe the Hamiltonian structures of the groups of dressing transformations

of some integrable systems. Poisson-Lie groups are also the objects corresponding to the so-called

quantum groups (in the sense of Drinfel’d [Dri87]) in the classical limit.

A Lie group G with a Poisson structure π is called a Poisson-Lie group if π satisfies the

multiplicativity condition, i.e., the group multiplication m : G�G�G is a Poisson map (where G�

G is endowed with the product Poisson structure). In terms of Poisson bivector, the multiplicativity

condition is equivalent to

π�gh� � �gπ�h�� rhπ�g�� �g�h �G� (5.1.1)

where �g and rh denote the extensions of the differentials of left and right translations on G by g

and h to bivectors. In particular, (5.1.1) implies that π�e� � 0, and that the linearization of π at the

identity element e � G gives rise to a well-defined map δ : �� �� �, called the cobracket on the
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Lie algebra � of the Lie group G:

δ�X� �
d
dt
�t�0π�exp�tX��exp��tX�� (5.1.2)

The Jacobi identity for π implies that the adjoint map δ� : �� � �� � �� also satisfies the Jacobi

identity and therefore defines a Lie bracket on �� (thus the name “cobracket” for the map δ).

The multiplicativity of π implies the following cocycle property for δ � ���Λ2�:

δ��X �Y �� � �X �δ�Y ��� �Y�δ�X��� (5.1.3)

This property can be interpreted as a compatibility condition for the Lie brackets ��� �� on � and δ�

on ��: these brackets can be extended to a Lie bracket on ���� if and only if the condition (5.1.3)

is satisfied. A Lie algebra ��� ��� ��� together with a map δ : �� �� � satisfying (5.1.3) is called a

Lie bialgebra. The Lie bialgebra ��� ��� ���δ� with δ defined by (5.1.2) is called the Lie bialgebra of

the Poisson-Lie group �G�π�. If the Lie group G is connected and simply connected, then �G�π� is

completely determined by the Lie bialgebra ��� ��� ���δ�: the Lie algebra ��� ��� ��� determines G as a

Lie group, while the comultiplication δ can be used to recover the Poisson structure π.

It is particularly easy to recover the Poisson structure on G under the additional assump-

tion that δ � ���Λ2� is a coboundary, i.e., that there exists an element r � Λ2�, so that

δ�X� ���X �r�� �X � �� (5.1.4)

In this case, the Jacobi identity for δ� is equivalent to the modified classical Yang-Baxter equation,

which states that the element ��r�r�� � Λ3� be ad-invariant (here ���� ��� denotes the algebraic Schouten

bracket on Λ��). An element r � Λ2� satisfying the modified classical Yang-Baxter equation is

called a classical r-matrix. If the cobracket δ on � is given by such an r-matrix as explained above,

the corresponding Poisson structure on G is given by the simple equation

π�g� � �g�r�� rg�r�� �g � G� (5.1.5)

where �g and rg denote, as before, the extensions of the differentials of left and right translations by

g to Λ2�.

5.2 The standard r-matrix Poisson structure on SU�2�.

Consider the Lie group SU�2� identified with the unit sphere in �2 as follows

SU�2� �

���A �

�
 z �w̄

w z̄

�� : z�w � � � detA � zz̄�ww̄ � 1

��� �
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Let su�2� be the corresponding Lie algebra with the basis �e1�e2�e3� given by

e1 �
1
2

�
 i 0

0 �i

�� � e2 �
1
2

�
 0 1

�1 0

�� � e3 �
1
2

�
 0 i

i 0

�� �

The Lie bracket is determined by �ei�e j� � εi jkek, where εi jk is the completely skew-symmetric

symbol. The standard r-matrix r � e1�e2 �Λ2su�2�, satisfying the modified Yang-Baxter equation,

defines a multiplicative Poisson structure on SU�2� by

πSU�2��A� � rA�Ar�

The Poisson brackets between the coordinate functions �z� z̄�w� w̄� on SU�2� are given by

�z� z̄���i�w�2� �w� w̄�� 0� �z�w� �
1
2

izw� �z� w̄��
1
2

zw̄�

The symplectic leaves of this structure are the two-dimensional discs

Dθ �

���A �

�
 z �w̄

w z̄

�� � SU�2� : argw � θ

��� � θ � �0�2π�

and the points of the circle N � �A � SU�2� : w � w̄ � 0� which bounds each of the disks Dθ.

To compute the Poisson cohomology of this Poisson structure we cover SU�2� with two

open sets U and V described below, then compute the cohomologies of U , V and U �V and use the

Mayer-Vietoris exact sequence for Poisson cohomology.

Let

U
�
�

���
�
 z �w̄

w z̄

�� � SU�2� : �z�2 � 1�3

��� � (5.2.1)

V
�
�

���
�
 z �w̄

w z̄

�� � SU�2� : �w�2 � 1�3

��� � (5.2.2)

Since �z�2 � �w�2 � 1, it can not happen that both �z�2 and �w�2 are less than 1�3. Therefore, U and V

cover all of SU�2�.

It is useful to have an explicit description of the restriction of the Poisson structure πSU�2�

to U and V . Consider the disc C � �w � � : �w�2 � 2�3� and the unit circle S � �s � � : �s� � 1�.

Then the map

Ψ : C�S � �w�s� ��

�
 �1��w�2�1�2s �w̄

w �1��w�2�1�2s̄

�� �U
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is a diffeomorphism of C� S onto U . The restriction of the Poisson structure to U identified with

C�S is then given by

�s� s̄�� 0� �w� w̄�� 0� �s�w� �
1
2

isw� �s� w̄��
1
2

isw̄�

If we write w � x� iy, w̄ � x� iy, and s � eiφ, the Poisson tensor becomes πU ���x∂x �y∂y��∂φ.

It will be also sometimes convenient to use the polar coordinates �r�θ� on C, given by r � �w�,

θ� argw. In coordinates �r�θ�φ� we have πU � r∂r �∂φ.

Consider now the disc D � �z � � : �z�2 � 2�3� and the unit circle T � �t � � : �t�� 1�.

The map

Φ : D�T � �z� t� ��

�
 z ��1��z�2�1�2t̄

�1��z�2�1�2t z̄

�� �V

is a diffeomorphism of D�T onto V . The pull-back of the Poisson structure on V to D�T is given

by the formulas

�z� z̄���i�1��z�2�1�2� �z� t� � �z̄� t�� 0�

It follows that the Poisson structure on D�T is the product of a symplectic structure on D (with

infinite total volume) and the trivial Poisson structure on T .

The intersection U �V is isomorphic to

Φ�1�U �V� � ��z� t� �D�T : 1�3 � �z�2 � 2�3�;

This manifold is manifestly Poisson-isomorphic to the product of the circle T (with the zero Poisson

structure) and the annulus A � �z � � : 1�3 � �z�2 � 2�3� with a finite-volume symplectic structure.

5.3 Cohomology of U .

Recall that, as a Poisson manifold, U has the following description. As a manifold, U is isomorphic

to the solid 2-torus C�S, where C is a disc and S is a circle and the Poisson tensor on U is given by

πU � �x∂x � y∂y��∂φ� (5.3.1)

where �x�y� are the usual coordinates on C resulting from its identification with a disc on a two-

dimensional plane, and φ is a periodic coordinate on S. The symplectic leaves of πU are the points

of the circle ��x�y�φ� : x � y � 0� and the annuli ��x�y�φ� : x�y � const� x�y not both zero�. In this

section we will compute the Poisson cohomology of �U�πU �.
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By an argument similar to the one in [Gin96], the complexified Poisson cohomology of

U is isomorphic to the cohomology of the complex

�0 � �1 � �2 � �3�

where �k is the space of k-vector fields on U , whose coefficients (as functions of x�y and φ) are

formal power series in x�y and Fourier series in eiφ. Let

f � ∑
n�m�0�p	�

an�m�pxnymeipφ � �0� (5.3.2)

X � ∑
n�m�0�p	�

xnymeipφ �bx
n�m�p∂x �by

n�m�p∂y �bφn�m�p∂φ
�
� �1� (5.3.3)

Y � ∑
n�m�0�p	�

xnymeipφ �cx
n�m�p∂y�∂φ� cy

n�m�p∂x�∂φ� cφn�m�p∂x�∂y
�
� �2� (5.3.4)

where an�m�p� bx
n�m�p� by

n�m�p� bφn�m�p� cx
n�m�p� c

y
n�m�p� cφn�m�p � � . The notation for f �X �Y will be fixed for

the remainder of the section. A direct computation shows that we have:

dπ f � ∑an�m�p�n�m�xnymeipφ∂φ

�∑ ipan�m�pxn�1ymeipφ∂x

�∑ ipan�m�pxnym�1eipφ∂y;

dπX � ∑
 
ipbx

n�m�pxnym�1eipφ� ipby
n�m�pxn�1ymeipφ!∂x�∂y

�∑
 
�bx

n�m�p��1�n�m�xnymeipφ� ipbφn�m�pxn�1ymeipφ!∂x�∂φ

�∑
 
�by

n�m�p��1�n�m�xnymeipφ� ipbφn�m�pxnym�1eipφ!∂y�∂φ;

dπY � ∂x�∂y�∂φ�

�
�
∑�n�m�2�cφn�m�pxnymeipφ

�∑ ipcx
n�m�pxn�1ymeipφ

�∑ ipcy
n�m�pxnym�1eipφ� �

We now turn to the question of computing the Poisson cohomology.

5.3.1 The zeroth cohomology.

The zeroth Poisson cohomology is generated by the functions constant on all of the symplectic

leaves of U . Since the circle ��x�y�φ� : x � y � 0� is in the closure of every two-dimensional leaf

and since the two-dimensional leaves together form a dense subset of U , such a function must be

constant. Thus H0
π�U�� � � span	1
.
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5.3.2 The first cohomology.

Let X � �1, dπX � 0. This is equivalent to the following conditions:

1. The coefficient of ∂x�∂y is zero in the expression for dπX . This implies

(a) pbx
1�n�m�p � pby

n�1�m�p for all n�m� p; and

(b) pbx
0�m�p � 0 and pby

n�0�p � 0 for all n�m� p;

2. The coefficient of ∂x�∂φ is zero. This implies

(a) �m�1�bx
0�m�p � 0 for all m and p; and

(b) ipbφn�m�p ���n�m�bx
n�1�m�p for all n�m� p;

3. The coefficient of ∂y�∂φ is zero. This means that:

(a) �n�1�by
n�0�p � 0 for all n and p; and

(b) ipbφn�m�p ���n�m�by
n�m�1�p ;

In order to compute the first cohomology, we have to find out when dπX � 0 for X � X1 implies

that X � dπ f for some f � X0. We claim that X � dπ f if and only if the following conditions are

satisfied:

bx
1�0�0 � by

0�1�0 � bx
0�1�0 � by

1�0�0 � bφ0�0�0 � 0� (5.3.5)

Indeed, if X � dπ f with f as in (5.3.2), we find that the only terms with p � 0 in the expression for

dπ f are

∑�n�m�an�m�0xnym∂φ�

Thus necessarily bx
n�m�0 � by

n�m�0 � 0 for all n and m. Also, bφ0�0�0 � �0�0�a0�0�0 � 0. So the conditions

(5.3.5) must be satisfied.

Conversely, if the conditions (5.3.5) are satisfied, let f be given by (5.3.2) where we set

for p �� 0

an�m�p �
1
�ip

bx
n�1�m�p� p �� 0�

an�m�0 �
1

n�m
bφn�m�0� n�m �� 0�

a0�0�0 � 0�
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In this case, dπ f is given by

dπ f � ∑
p��0

1
�ip

bx
n�1�m�p�n�m�xnymeipφ∂φ

� ∑
n�m ��0

bφn�m�0xnymei0φ∂φ

��∑
p��0

bx
n�1�m�pxn�1ymeipφ∂x

∑
p��0

bx
n�1�m�pxnym�1eipφ∂y�

We now claim that with these definitions X � dπ f . First, by condition (2a), the coefficients of ∂φ in

dπ f and X are the same when p �� 0. By (1b), the coefficient of ymeipφ∂x in the expression for X is

zero, so the coefficients of ∂x in X and dπ f are the same, when p �� 0. Finally, by (1a) we conclude

that bx
n�1�m�p � by

n�m�1�p. Using (1b) again, we get that the coefficients of ∂y in the expressions for

X and dπ f are the same when p �� 0, so that the coefficients of eipφ for p �� 0 are the same in X and

dπ f .

For the terms with p � 0, because of the assumptions (5.3.5) we get that the coefficients

of ∂φ are the same for both dπ f and X . It remains to prove that the all other coefficients in the

expression for X must be zero; i.e., bx
n�m�0 � by

n�m�0 � 0 for all n and m. The assumptions (5.3.5) give

us this for n and m such that n�m � 1. If n�m �� 1, we get the conclusion for bx from (2a) for

n � 0 and (2b) if n �� 0; the conclusion for by follows from (3a) and (3b) in a similar way.

We, therefore, conclude that H1
π�U�� � 5 � span	x∂x�y∂x�x∂y�y∂y�∂φ
.

It is useful to have an expression for the first four generators in the polar coordinates �r�θ�

on C:

x∂x � r cos2 θ∂r� cosθsinθ∂θ�

y∂x � r cosθsinθ∂r� sin2θ∂θ�

x∂y � r cosθsinθ∂r � cos2θ∂θ�

y∂y � r sin2θ∂r � cosθsinθ∂θ�

5.3.3 The second cohomology.

Assume that Y � �2 is such that dπY � 0. This happens iff all of the following conditions are

satisfied:

1. cφ0�0�p � 0 for all p (this is obtained by considering the coefficient of eipφ∂x�∂y�∂φ);
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2. �m � 1�cφ0�m�1�p � ipcy
0�m�p � 0 for all p�m (obtained by considering the coefficient of

ym�1eipφ∂x�∂y�∂φ);

3. �n� 1�cφn�1�0�p � ipcx
n�0�p � 0 for all p and n (obtained by considering the coefficient of

xn�1eipφ∂x�∂y�∂φ);

4. �n �m�cφn�1�m�1�p� ipcx
n�m�1�p � ipcy

n�1�m�p � 0 (obtained by considering the coefficient of

xn�1ym�1eipφ∂x�∂y�∂φ).

We claim that Y � dπX if and only if

cφ0�2�0 � cφ1�1�0 � cφ2�0�0 � cy
0�1�0 � cy

1�0�0 � cx
0�1�0 � cx

1�0�0 � 0� (5.3.6)

Indeed, if Y � dπX , we get from the expression for dπX that among the terms with p � 0

1. all coefficients of ∂x�∂y must vanish (i.e., cφm�n�0 � 0 for all m�n); and

2. all terms of the form xmynei0φ∂x�∂φ and xmynei0φ∂y�∂φ must vanish if n�m � 1.

Thus (5.3.6) is necessary for Y � dπX .

Conversely, given Y satisfying the conditions (5.3.6), consider X whose coefficients are

defined as follows:

bx
0�m�p �

1
ip

cφ0�m�1�p� p �� 0�

bx
0�m�0 �

�1
m�1

cy
0�m�0� m �� 1�

bx
0�1�0 � 0;

by
n�0�p �

�1
ip

cφn�1�0�p� p �� 0�

by
n�0�0 �

�1
n�1

cx
n�0�0� n �� 1�

by
0�1�0 � 0�

bx
1�0�0 � 0�

by
0�1�0 � 0�

bφn�m�0 � 0�
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bx
n�1�m�p �

�1
n�m

cy
n�1�m�p� n�m �� 0�

by
n�m�1�p �

�1
n�m

cx
n�m�1�p� n�m �� 0�

bφ0�0�p � �
1
ip

cy
1�0�p� p �� 0�

bφn�m�p � 0� n�m �� 0� p �� 0�

We now claim that Y � dπX .

Consider in the expression for dπX the coefficient of ∂x�∂y. When p � 0 this coefficient

is zero, and equals to the corresponding coefficient of Y (using (1) when n � m � 0; the assumptions

(5.3.6) together with (2) when n � 0, m �� 0, together with (3) when m � 0, n �� 0 and together with

(4) when m�n �� 0). Assume now that p �� 0. When n � 0 and m � 0, we get zero in the expression

for dπX and also zero for cφ0�0�p because of (1). When n � 0, m �� 0 we get cφ0�m�pxnymeipφ in the

expression for dπX , and similarly when m � 0�n �� 0. When both n and m are nonzero, we get

�ip
n�m

�cy
n�m�p� cx

n�m�p� � cφn�m�p

by (4). Thus the coefficients of ∂x�∂y are the same in both the expression for dπX and Y .

Consider next the coefficient of ∂x�∂φ. When p � 0, the corresponding coefficient in dπX

is given by

���1�n�m�bx
n�m�0xnymei0φ�

In the case that n � 0 and m �� 1, using (2) we get exactly cy
0�m�p; when m � 1 we get zero, just as in

(5.3.6). In the case m � 0, n �� 1 we get exactly cy
0�m�p by the definition of bx

n�m�p; when n � 1 we get

zero, just as in (5.3.6).

When p �� 0 the coefficient of eipφ∂x�∂ϕ is

∑�bx
n�m�p��1�n�m�xnym� ipbφn�m�pxn�1ym�

Looking first at the coefficient of x0ym in this expression, we get

��m�1�
1
ip

cφ0�m�1�p

as the coefficient coming from dπX ; using (2) we get exactly cy
0�m�p. Looking now at the coefficient

of xn�1ym we get

�
�1

n�m
cy

n�1�m�p�n�m�� if n�m �� 0

�ipbφ0�0�p � cy
1�0�p� if n � m � 0
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as desired.

We now look at the coefficient of ∂y�∂ϕ. We note that the definition of b������ is symmetric

with respect to changing the roles of x and y, with the only exception being the definition of bφ0�0�p �
�1
ip cy

1�0�p. Using (4) we get that also bφ0�0�p � �1
ip cx

0�1�p; the rest now follows by symmetry. Thus

Y � dπX .

It follows that H2
π�U� � � 7 and is spanned by the cohomology classes of the bivector

fields y2∂x�∂y, xy∂x�∂y, x2∂x�∂y, x∂y�∂φ, y∂y�∂φ, x∂x�∂φ and y∂x�∂φ.

5.3.4 The third cohomology.

Let now Z � ∑dn�m�pxnymeipφ∂x�∂y�∂z. For dimension reasons, we have dπZ � 0. We now claim

that Z � dπY if and only if

d2�0�0 � d1�1�0 � d0�2�0 � 0� (5.3.7)

Indeed, if Z � dπY , then the coefficients of x2, xy and y2 in the expression for Z must vanish (this

corresponds to n�m � 2 and p � 0 in the formula for dπY ), which implies (5.3.7).

Conversely, assume that (5.3.7) is satisfied. Then set

cφn�m�0 �
1

n�m�2
dn�m�0� n�m �� 2

cφ2�0�0 � cφ1�1�0 � cφ0�2�0 � 0

Set also cx
n�m�0 � cy

n�m�0 � 0 for all n�m. For p �� 0 let

cφn�m�p �
1

n�m�2
dn�m�p� n�m �� 2�

cx
n�1�m�p � 0� n�m �� 2�

cy
n�m�1�p � 0� n�m �� 2�

In the remaining cases (p �� 0 and n�m � 2, so that �n�m� is one of �1�1�, �0�2�, �2�0�) set

cφn�m�p � 0� n�m � 2

cx
1�0�p �

�1
ip

d2�0�p�

cy
0�1�p �

1
ip

d0�2�p�

cx
0�0�p � �cy

0�0�p �
�1
2ip

d1�1�p�
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We now check that Z � dπY . In the case that p �� 0, we get in the expression for dπX the term

�
∑�n�m�2�cφn�m�pxnymeipφ� ipcx

n�m�pxn�1ymeipφ� ipcy
n�m�pxnym�1eipφ�∂x�∂y�∂φ�

Considering the coefficient of xnym in the case n�m �� 2 we get �n�m�2�dφn�m�p 1
�n�m�2� � dφ

n�m�p.

In the case that n�m � 2, we get

�ipcx
n�1�m�p � ipcy

n�m�1�p � dn�m�p

by definition.

If p � 0, we obtain

∑�n�m�2�cφn�m�0xnymei0φ � ∑
n�m ��2

dn�m�pxnymei0φ � Z

because of conditions (5.3.7).

We conclude that H3
π�U�� � 3 and is spanned by the cohomology classes of the 3-vector

fields x2∂x�∂y�∂ϕ, xy∂x �∂y�∂ϕ and y2∂x�∂y�∂ϕ.

We summarize the results of this section:

Proposition 5.3.1. The Poisson cohomology of �U�πU� is given by:

H0
π�U� � span	1
� � 1

H1
π�U� � span	x∂x�y∂x�x∂y�y∂y�∂φ
� �

5

H2
π�U� � span	y2∂x�∂y�xy∂x�∂y�x

2∂x�∂y�x∂y�∂φ�y∂y�∂φ�x∂x�∂φ�y∂x�∂φ
� � 7

H3
π�U� � span	x2∂x�∂y�∂φ�xy∂x �∂y�∂φ�y

2∂x�∂y�∂φ
� �
3

5.4 The cohomologies of V and of U �V .

Recall (see, e.g., [Vai94, Corollary 5.14]) that the Poisson cohomology of a product Poisson mani-

fold P � M�N, where M is a symplectic manifold and N is a manifold with the zero structure and

finite Betti numbers, is given by the Künneth formula

Hk
π�P� �

k�
l�0

Hl�M���k�l�N�� (5.4.1)

We will apply this result to find the cohomology of the neighborhoods U and U �V intro-

duced above. As a Poisson manifold, V �� D�T , where D is a symplectic disc of finite symplectic
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volume and T is a circle with the zero Poisson structure. Therefore

H0
π�V � � C∞�θ��

H1
π�V � � �1�θ��

H2
π�V � � 0�

H3
π�V � � 0�

where we write θ for the coordinate on the circle T , and C∞�θ� and �1�θ� are the spaces of smooth

functions and smooth vector fields on T respectively.

Similarly, U �V �� A�T as a Poisson manifold, where A is an annulus of infinite sym-

plectic volume. It follows that the Poisson cohomology of U �V is given by (we use coordinates

�r�θ�φ� introduced above)

H0
π�U �V� � C∞�θ��

H1
π�U �V� � C∞�θ� � span	r∂r
��

1
π�θ��

H2
π�U �V� � X 1

π �θ�� span	r∂r
�

H3
π�U �V� � 0�

5.5 The Poisson cohomology of SU�2�

Let M � SU�2� �U �V . We have the following Mayer-Vietoris exact sequence for computing the

Poisson cohomology

0� H0
π�M�� H0

π�U��H0
π�V �

j0
� H0

π�U �V �
δ0�

� H1
π�M�

i1� H1
π�U��H1

π�V �
j1
� H1

π�U �V �
δ1�

� H2
π�M�

i2� H2
π�U��H2

π�V �
j2
� H2

π�U �V �
δ2�

� H3
π�M�

i3� H3
π�U��H3

π�V �� H3
π�U �V �� 0�

5.5.1 The zeroth cohomology.

Since the set of two-dimensional leaves of πSU�2� is dense in SU�2� and all these leaves have a

common circle in their closures, it follows that the only Casimir functions on SU�2� are constants.

Thus, H0
π�SU�2��� � 1 .
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5.5.2 The first cohomology.

From the first and second rows of the Mayer-Vietoris sequence, we have H1
π�M� � Imδ0� Imi1.

Since the map j0 is onto, by exactness it follows that Imδ0 � 0. The map i1 is injective, and

Imi1 � ker j1. It is easy to see that ��∂φ��0� � ker j1. For the remaining generators of H1
π�U�, let

u � ax∂x �by∂x � cx∂y �dy∂y, where a�b�c�d � � . We have

j1��u�U � � f �θ�∂θ�V � � (5.5.1)

��� f �θ��acosθsinθ�bsin2θ� ccos2 θ�d cosθsinθ� �∂θ�U�V � (5.5.2)

��acos2θ�bcosθsinθ� ccosθsinθ�d sin2θ� � r∂r�U�V � (5.5.3)

Therefore, j1��u�U � � f �θ�∂θ�V � � 0 iff a � d � 0, b � �c and f �θ� � c. Hence, ker j1 �

span	��∂φ��0�� ��y∂x� x∂y�� �∂θ��
 � � 2 . Therefore,

H1
π�SU�2��� span	∂θ�∂φ
� � 2 �

One could interpret this result by noting that the leaf space of the Poisson structure of SU�2�

consists of two circles N and T . Each point of N is a zero-dimensional leaf. Each point of T

represents a single two-dimensional leaf. The open sets of the leaf space are �U�U � T : U �

N open in the usual topology�. The first cohomology of our Poisson structure is the “tangent space”

to the leaf space. There are two “tangent directions”, corresponding to the rotations of T and N.

5.5.3 The second cohomology.

From the Mayer-Vietoris exact sequence we have H2
π�M� � Imδ1� Imi2. By exactness, Imi2 �

ker j2. Since for a�b�c � �

j2���ax2 �bxy� cy2�∂x�∂y�U � 0� �

� ��acos2θ�bcosθsinθ� csin2θ�r∂r �∂θ�U�V � 0 " a � b � c � 0�

and j2���ax∂x �by∂x � cx∂y �dy∂y��∂φ�U �0� � 0 for all a�b�c�d, it follows that

ker j2 � span	x∂x�y∂x�x∂y�y∂y
�∂φ �

� span	πSU�2��∂θ�∂φ��r cos 2θ �∂r� sin2θ �∂θ��∂φ��r sin2θ �∂r � cos2θ �∂θ��∂φ
�

We now turn to Imδ1. Since kerδ1 � Im j1 and from (5.5.1)-(5.5.3) it follows that

Im j1 � �
1�θ�� span	1�cos2θ�sin 2θ
 � r∂r�
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Therefore,

H1
π�U �V��kerδ1 � � f �θ�r∂r � f �θ� �C∞�θ�� f # span	1�cos2θ�sin 2θ
��

Recall that by definition δ1��v�� for �v� �H1
π�U �V � is given by

δ1�v� �

��� �dπXU � on U�

�dπXV � on V�

where XU � �
1�U�, XV ��

1�V � are any vector fields satisfying �XU �XV��U�V � v.

Let v � f �θ�r∂r and choose XU � ξ�r� f �θ�r∂r , XV � 0, where ξ�r� is a smooth function

such that

ξ�r� �

�""�""�
0 on �0�1�6��

strictly increasing on �1�6�1�3��

1 on �1�3�2�3��

(We need ξ�r� � 0 near zero to guarantee that X is smooth on U ; ξ�r� � 1 on �1�3�2�3� guarantees

that �XU �XV ��U�V � v). Since πU � r∂r �∂φ, we obtain

δ1�v� �

��� dπ�ξ�r� � f �θ�r∂r� � ζ�r� � f �θ�r∂r �∂φ on U�

0 on V�

where ζ�r� ��dξ�r�
dr is a “bump function” with support on �1�6�1�3�. Therefore,

H2
π�SU�2�� � span	πSU�2�� ∂θ�∂φ� �r cos2θ �∂r� sin2θ �∂θ��∂φ� �r sin2θ �∂r � cos2θ �∂θ��∂φ


��ζ�r� f �θ� �πSU�2� : f �θ�# span	1�cos2θ�sin2θ
�

and is, in particular, infinite-dimensional.

5.5.4 The third cohomology.

From the Mayer-Vietoris exact sequence we have H3
π�M� � Imi3 � Imδ2 � H3

π�U�� Imδ2. To

compute Imδ2, we need to determine kerδ2 � Im j2. First,

j2
� 

span	x�y
 � span	∂x�∂y
 �∂ϕ
!
�0

�
� 0

and for a�b�c � �

j2��ax2 �bxy� cy2�∂x�∂y�U �0� �

�acos2 θ�bcosθsinθ� csin2 θ�r∂r �∂θ�
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Therefore,

H2
π�U �V �

Im j2
� � f �θ� � r∂r �∂θ : f �θ� �C∞�θ�� f �θ� # span	1�cos2θ�sin 2θ
�

and

Imδ2 � �ζ�r� � f �θ�r∂r �∂θ�∂φ : f �θ�# span	1�cos 2θ�sin2θ
�

where ζ�r� is again a bump function concentrated on �1�6�1�3�. We obtain

H3
π�SU�2�� � �span	1�cos2θ�sin2θ
��ζ�r� f �θ� : f ��θ� # span	1�cos 2θ�sin2θ
�� � r∂r �∂θ�∂φ�

The results of this chapter are summarized in the following

Theorem 5.5.1. The Poisson cohomology of the standard r-matrix structure on SU�2� is given by

H0
π�SU�2�� � span	1
� � 1

H1
π�SU�2�� � span	∂θ�∂φ
� � 2

H2
π�SU�2�� � span	πSU�2��∂θ�∂φ��r cos2θ∂r� sin2θ∂θ��∂φ��r sin2θ∂r � cos2θ∂θ��∂φ
�

��ζ�r� f �θ� �πSU�2� : f �θ�# span	1�cos2θ�sin2θ
�

H3
π�SU�2�� � span	1�cos2θ�sin2θ
 �πSU�2��∂θ�

��ζ�r� f �θ� �πSU�2��∂θ : f �θ� # span	1�cos2θ�sin 2θ


where ζ�r� is a bump function with support on an interval inside of �0�1�.

Proposition 5.5.2. The Schouten bracket on multivector fields induces the following bracket on the

Poisson cohomology:

��∂φ��H
�
π�SU�2��� � 0

��∂θ�� �r cos 2θ∂r �∂φ� sin2θ∂θ�∂φ�� ��2��r sin2θ∂r �∂φ� cos2θ∂θ�∂φ��

��∂θ�� �r sin 2θ∂r �∂φ� cos2θ∂θ�∂φ�� � 2��r cos 2θ∂r �∂φ� sin2θ∂θ�∂φ��

��∂θ�� �ζ�r� f �θ�πSU�2��� �

#
ζ�r�

d f
dθ

πSU�2�

$
��∂θ�� �cos2θ �πSU�2��∂θ�� ��2�sin2θ �πSU�2��∂θ�

��∂θ�� �sin2θ �πSU�2��∂θ�� � 2�cos2θ �πSU�2��∂θ�

��∂θ�� �ζ�r� f �θ� �πSU�2� �∂θ�� �

#
ζ�r�

d f �θ�
dθ

�πSU�2��∂θ

$
�H2

π�SU�2���H2
π �SU�2��� � 0�
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Proposition 5.5.3. The wedge-product on the Poisson cohomology of SU�2� is given by

�∂θ�� �∂φ� � �∂θ�∂φ�

�∂θ�� �πSU�2�� � �∂θ�πSU�2��

�∂θ�� ��r cos2θ∂r� sin2θ∂θ��∂φ� � �r cos2θ �∂r�∂φ�∂θ�

�∂θ�� ��r sin2θ∂r � cos2θ��∂φ� � �r sin2θ �∂r �∂φ�∂θ�

�∂θ�� �ζ�r� f �θ� �πSU�2�� � �ζ�r� f �θ� � r∂r �∂φ�∂θ��

5.6 Remarks.

5.6.1 Deformations associated to certain elements of the second cohomology.

Parameterize the two-dimensional symplectic leaves of SU�2� by the argument of w; thus write

Dθ for the leaf on which argw � θ. Also let N be the set of zero-dimensional leaves (i.e., points

with w � 0). It is not hard to check that Xθ � Dθ �Dπ�θ �N is smooth and is isomorphic to a

2-sphere. The Poisson structure on this 2-sphere vanishes linearly along N. The two-dimensional

leaves are precisely D
θ and the zero-dimensional leaves are points in N. Such structures were

studied in Chapter 3. Each such structure has an invariant called the regularized Liouville volume

(see §3.2.5). The regularized volume of Xθ, as a function of θ, is an invariant of a Poisson structure

having Dθ� Dπ�θ, 0 � θ � 2π as its two-dimensional leaves. For the standard Poisson structure on

SU�2�, the regularized volume invariant of each Xθ is always zero because of the symmetry between

Dθ and Dπ�θ. However, if we replace the Poisson structure πSU�2� by πSU�2��ζ�r� f �θ�πSU�2�, where

ζ a bump function as before and f # span	1�cos2θ�sin 2θ
, the leaves of the new Poisson structure

stay the same, but the symplectic structure on each leaf is changed by “adding” more symplectic

volume to Dθ and “subtracting” some symplectic volume from Dπ�θ; the net amount added to

the regularized difference of volumes on Dθ and Dπ�θ depends on f �θ�� f �π� θ�. Therefore,

deformations of the kind considered above precisely change the values of the regularized symplectic

volume of Xθ by an amount depending on f �θ�� f �π�θ�. This explains why deformations of the

form written above for different F�θ� �
� f �θ�� f �π� θ� are different in cohomology. It is rather

mysterious why there are more deformations than just these. We mention that given an element in

the second Poisson cohomology represented by ζ�r� f �θ�πSU�2�, one can look for its antiderivative

in the form

X � ξ�r�� f �θ�r∂r��g�θ�∂θ�
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where ξ�r� is such that ξ��r� � ζ�r�. Indeed, we have

dπX � ζ�r� f �θ�r∂r �∂ϕ�

Thus the issue is whether X is smooth on all of SU�2�. Because we can choose ζ�r� to be zero

for large values of r, we may assume that X is supported on U . Moreover, since the only possible

singularity of X occurs as r� 0, it is enough to consider the region where ζ�r� � const. Hence the

question becomes whether, given a smooth periodic function f �θ�, there exists a smooth periodic

function g�θ�, so that

f �θ�r∂r �g�θ�∂θ

is a smooth vector field on �2 endowed with polar coordinates �r�θ�. A somewhat cumbersome

argument (which is in fact the verification of the exactness of the Mayer-Vietoris sequence in this

case) shows that this happens if and only if f �θ� lies in the linear span of 1�cos2θ and sin2θ. We

don’t know a geometric interpretation of this fact (which is perhaps why we don’t understand the

relevant invariant of Poisson structures on SU�2� distinguishing all deformations corresponding to

the functions f orthogonal to this linear span).
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