Intro to Python

On the positive side:

• Python – an industrial-grade yet easy to learn programming language. If the only thing you know is coding in Python, you already can get a job.

• Takes much less code than C, C++, and Java to program the same task.

• Runs without changes on all major platforms. Moving a Python program from Linux to Windows most often takes no more than coping the file from one computer to the other.

• Python programs can use and can be used by programs written in C/C++.

On the negative side:

• For large computations, Python can be much slower than C/C++.

The Turtle Module

Problem 1 Type in the following commands. Hit ENTER after entering each command. See what happens.

```python
>>> from turtle import *
>>> fd(100)
>>> rt(90)
>>> fd(200)
```

You can clear the above picture using the following prompt.

```python
>>> clear()
```

Note that the `clear()` command clears the picture, but does not revert the turtle to the original position. The `reset()` command does just that.

A loop: to draw a square, do the following.

```python
>>> for i in range(4):
    fd(100)
    rt(90)
```

Then press ENTER twice.

Problem 2 In the Turtle module, draw an equilateral triangle.

Problem 3 In the Turtle module, draw a beautiful picture of your own.
A Function

Let us define a function \textit{square}.

$$
>>> \textit{def} \ \textit{square}() : \\
>>> \text{for } i \text{ in } \textit{range}(4): \\
>>> \text{ } \text{ } \text{ } \text{ } \textit{fd}(100) \\
>>> \text{ } \text{ } \text{ } \text{ } \textit{rt}(90)
$$

Problem 4 Enter the prompt

$$
>>> \textit{square}() \\
$$

and see what happens.

Problem 5 Type the following few lines of code. What do you think is going to happen when you hit ENTER twice? Discuss your idea with the class before drawing the picture.

$$
>>> \text{for } i \text{ in } \textit{range}(36): \\
>>> \text{ } \text{ } \text{ } \text{ } \textit{square}() \\
>>> \text{ } \text{ } \text{ } \text{ } \textit{rt}(10)
$$

Question 1 What if we want the turtle to draw a square with a side length different from 100 units?

A Variable

Let us use the variable \textit{side} for the purpose. Please type in the following code

$$
>>> \textit{def} \ \textit{square}(\textit{side}): \\
\text{The code continues to the next page.}
$$
for i in range(4):
 fd(side)
 rt(90)

and hit ENTER twice. Now you can draw squares with various side lengths.

Problem 6 Run the following prompts.

```python
>>> square(80)
>>> square(100)
>>> square(120)
```

We can also change the value of a variable inside a loop.

Problem 7 Type in the following lines of code.

```python
>>> side=20
>>> for i in range(30):
    square(side)
    rt(5)
    side=side+10
```

Then hit ENTER two times and see what happens.

Problem 8 Now try this line. `>>> square()`

What’s wrong? How can we fix it? (The answer is on the next page.)
The command \texttt{def square(side=100)} saves the day. Now if you set the value of the variable \texttt{side}, the program will use that value. It will use the value \texttt{side = 100} otherwise.

\textbf{Problem 9} Let \(n \) be the number of sides of a regular \(n \)-gon with a side length \(s \). Define \(\text{plygon}(s, n) \) as a function of the variables \(s \) and \(n \). Use the function to draw a regular

- \texttt{pentagon},
- \texttt{hexagon}.

In the Turtle mode, there exists a command \texttt{circle}(r) that draws a circle of radius \(r \).

\textbf{Problem 10} Assume that the command \texttt{circle}(r) does not exist. Define a function \texttt{circle}(r) that draws a circle of radius \(r \) yourself.

\textbf{The Math Module}

\textbf{Problem 11} Type in the following commands. Hit \texttt{ENTER} after entering each prompt. See what happens.

\begin{verbatim}
>>> from math import *
>>> sqrt(81)
>>> log(8,2)
>>> cos(pi/3)
\end{verbatim}

The problem continues to the next page.
>>> degrees(pi/2)
>>> floor(3.62)
>>> ceil(4.12)

Problem 12 Use the Math module to solve the following quadratic equation.

\[3.84x^2 + 8.26x - 11.76 = 0\]

Problem 13 Use the Turtle module to draw the first six shapes from page 19 of the course book. If you do not finish the task in class, this becomes your homework.