Factorizations

LA Math Circle | Advanced Group

April 20, 2014

DIRECTIONS. For your solutions to these problems, you may only rely on basic algebra (and facts like $x^2 \geq 0$ for all x) or on problems that you have already solved. You may not, for example, rely on a theorem you found in a book, or something like the quadratic formula (unless you prove it in the course of your solution).

1. **(Warm-Up)** Verify the following four formulas related to factorization:

 (a) $a^2 - b^2 = (a - b)(a + b)$

 (b) $a^2 + b^2 = (a + b)^2 - 2ab$

 (c) $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

 (d) $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
2. If $\frac{1}{a+c} = \frac{1}{a} + \frac{1}{c}$, find $(\frac{a}{c})^3$.

3. Given that $123456 = 15241383936$, find 123457^2. (Remember, no calculators allowed!)

4. What is the sum of the prime factors of $2^{16} - 1$? (Please do this without grinding out 2^{16}!)

2
5. **Without** solving the following equation, find the sum of the squares of its roots.

\[2x^2 - 3x - 4 = 0\]

(Hint: Use a theorem you proved in a recent handout...)

6. Find four nontrivial (not 1) factors in terms of \(x\) and \(y\) whose product is \(8^{2x} - 27^{2y}\).

7. If \(r\) and \(s\) are the roots of \(x^2 + px + q = 0\), then find each of the following in terms of \(p\) and \(q\).

 (a) \(r^2 + s^2\)
(b) \(r - s \)
(Do you see any significance to your answer?)

(c) \(r^2 s + rs^2 \)

(d) \(r^4 + s^4 \)
8. Find two four-digit numbers whose product is $4^8 + 6^8 + 9^8$.
(Hint: You’ll need to factor the expression first.)

9. Prove that all numbers that can be represented by $n^3 - n$, where n is an integer, are divisible by 6. Can you also prove the converse?