Then the permutation
\[
\begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2
\end{pmatrix}
\]
will reshuffle the figures into the following order.

Problem 5 For the original order of figures given on page 5, write down the permutations that correspond to the following pictures.

\[
\begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix}
\]
Note that the last permutation does not reshuffle anything at all. Permutations of this kind typically denoted as \(e \) and called trivial. A trivial permutation is still a permutation, and an important one!

Problem 6 Write down the trivial permutation for \(n = 5 \).

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{pmatrix}
\]

Problem 7 For the original order of figures given on page 5, draw the figures in the orders prescribed by the permutations below. Use the space to the right of a permutation to draw the corresponding picture.

\[
\begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}
\]
Recall that \(n! = 1 \times 2 \times \ldots \times (n - 1) \times n \). For example,
\(3! = 1 \times 2 \times 3 = 6 \).

Problem 8 Compute \(5! \)

\[
5! = 5 \times 4 \times 3 \times 2 \times 1 = 120
\]

Problem 9 How many permutation of four elements are there?

For the first place, we have 4 choices.

\[
\begin{array}{cccc}
\text{2nd} & \text{3rd} & \text{4th} & \text{1st} \\
\text{----} & \text{----} & \text{----} & \text{----}\\
\end{array}
\]

Thus, we have \(4 \times 3 \times 2 \times 1 = 4! = 24 \) permutations.

Problem 10 How many permutation of \(n+1 \) elements are there?

Similarly to what we did above, for the 1st place, \((n+1) \) choices of elements.

In total, there will be \((n+1)! \) permutations.

Problem 11 Write down a permutation of four elements.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{pmatrix}
\]

Note: There are many permutations (24, to be precise).

Problem 12 Write down a permutation of four elements that keeps the third element in place.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & \text{X}
\end{pmatrix}
\]

Note that there will be \(3 \times 2 \times 1 \times 1 = 6 \) permutations satisfying this standard. (The 1st place has 3 choices of element, 2nd has 2, and 3rd has 1.)
Find the number of permutations of four elements that keep the third element in place.

The number $= 3 \times 2 \times 1 \times 1 = 6$

It is possible to combine, or *multiply*, permutations. For example, let us apply the permutation

$$\delta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

to the marbles already reshuffled by the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

The permutation δ switches the first and second elements, so

$$\delta \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$

Let us take another look at the above computation using the figures from page 5. Originally, the set of the figures is ordered as follows.

\[\square \quad \triangle \quad \bigcirc \]
The permutation

\[\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \]

produces the picture below.

The permutation

\[\delta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \]

applied to the latter configuration gives us the following.

Comparing the last picture to the original gives us the answer.

\[\delta \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \]

Note that in the product \(\delta \circ \sigma \) of permutations, it is the one on the right, \(\sigma \), that acts first on the set it permutes!