Warm up

In each of the following, we let \(x \) represent the instructor’s favorite number.

- \(5x + 1 = 5 \) so \(5x = 4 \), and dividing by 5, \(x = \frac{4}{5} = .8 \).
- \(10x = 6 + x \) so \(9x = 6 \) and hence \(x = \frac{6}{9} = .6666 \cdots \).
- \(100x = 100 + x \), hence \(99x = 100 \), so \(x = \frac{100}{99} = 1.010101 \cdots \).
- \(1000x = 37 + x \), so \(999x = 37 \) or \(x = \frac{37}{999} = .037037037 \cdots \).

Problems

1. Yes there is something to prove. What we proved before is called the converse of this statement. That is if we let \(a \) represent the phrase ”\(x \) is a fraction with denominator having only powers of 2 and 5” and \(b \) represent the phrase ”\(x \) is a decimal which terminates”. We have proven

\[a \implies b \]

what we are looking to prove now is

\[b \implies a \]

also called the converse, which is different.

2. (a) \(\frac{89}{100} \)
 (b) \(\frac{35}{100} = \frac{7}{20} \)
 (c) \(\frac{125}{1000} = \frac{1}{80} \)
 (d) \(\frac{1111}{100} = \frac{1111}{25} \)

3. Given an arbitrary terminating decimal \(x \) we can write

\[x = .a_1a_2\cdots a_k0\cdots \]

then \(10^k x = a_1a_2\cdots a_k \) an integer.

4. In the previous problem we have shown that \(10^k x \) is an integer, says \(r \). So \(10^k x = r \), thus \(x = \frac{r}{10^k} \) and we have the claim.

5. (a) \(.1\overline{1}\)\(\cdots \)
 (b) \(.2\overline{2}\)\(\cdots \)
 (c) \(.3\overline{3}\)\(\cdots \)
 (d) \(.4\overline{4}\)\(\cdots \)
 (e) \(.5\overline{5}\)\(\cdots \)
Well, we saw in (a) that \(\frac{1}{9} = .1111 \cdots \) so \(1 = 9 \cdot \frac{1}{9} = .9999 \cdots \). Thus we have two decimal representations for the number 1.

6. (a) 3.3333 \cdots = 3 + .3333 \cdots = 3 + \frac{1}{3} = \frac{10}{3} \\
(b) 17.5555 \cdots = 17 + .5555 \cdots = 17 + \frac{5}{9} = \frac{17 \cdot 9 + 5}{9} \\
(c) 2.08888 \cdots = 2 + .08888 \cdots = 2 + \frac{1}{10} \cdot \frac{8}{9} = \frac{188}{99}

7. (a) 10x = 2.222 \cdots \\
(b) 10x = x + 2 \\
(c) 9x = 2, so \(x = \frac{2}{9} \) (which we already knew from the previous problem.) \\
(d) this is just telling you to realize that in part (c) what we have shown is that .222 \cdots = \frac{2}{9}.

8. 10x = 6 + x, so we get 9x = 6, or \(x = \frac{6}{9} \).

9. (a) 10w = 4.666 \cdots and 10w - 4 = .666 \cdots \\
(b) Well, we just showed .666 \cdots = \frac{2}{3} so we have that as the fractional version of 10w - 4. \\
(c) Therefore 10w = 4 + \frac{2}{3} = \frac{14}{3} and so \(w = \frac{14}{99} \).

10. (a) 100y = 36.36363636 \cdots \\
(b) 100y = 36 + y \\
(c) Therefore, we get 99y = 36 or \(y = \frac{36}{99} \). \\
(d) Again, this is just looking at part (c) and realize we have derived .36363636 = \frac{36}{99}.

11. 100y = 5.05050505 = 5 + y. Therefore, we solve this and get 99y = 5, or \(y = \frac{5}{99} \).

12. The idea is to multiply by 10 to the power of (length of period of the decimal). Therefore we should multiply by \(10^3 \) or 1000. We get 1000y = 148.148148 \cdots, and hence 1000y = y + 148, so \(999y = 148 \) and \(y = \frac{148}{999} \).

13. Let \(y \) represent the decimal number. Multiply by 1000, and we get 1000y = \(abc.abccab \cdots \), that is \\

\[
1000y = abc + y
\]

solving this equation we get 999y = \(abc \) and hence \(y = \frac{abc}{999} \).

14. (a) Yes, \(\frac{5242362343}{1} = 5242362343 \)

(b) Yes, we saw that every terminating decimal comes from a fraction, so 47.26 comes from a fraction, and so \(-47.26 \) also comes from a fraction (just multiply the numerator by \(-1\)).

(c) Yes, but we haven’t actually proven this yet and its quite hard. Heres the proof: Let \(x \) be an arbitrary eventually periodic decimal, then \\
\[
x = .a_1 \cdots a_kb_1 \cdots b_nb_1 \cdots b_n \cdots
\]

so \(a_1, \cdots, a_k \) are random and the pattern starts at \(b_1, \cdots, b_n \). Multiplying \(x \) by \(10^k \) we get \\
\[
10^kx = a_1 \cdots a_k + .b_1 \cdots b_nb_1 \cdots b_n \cdots
\]

Now, preforming the same process as in problem 13, but with \(n \) digits instead of three, we see that \\
\[
.b_1 \cdots b_nb_1 \cdots b_n \cdots = \frac{b_1 \cdots b_n}{10^n - 1}
\]
So adding it up we get

\[10^k x = a_1 \cdots a_k + \frac{b_1 \cdots b_n}{10^n - 1} \]

and solving this for \(x \) we see that \(x \) is indeed a fraction.

(d) No, you came up with some examples yourself last week of decimals that did not repeat, and we have already proven that every rational has a decimal equivalent which repeats.

Homework

1. (a) No, it does not repeat.

 (b) Yes! we can bring the 7^2 and 9 down into the big denominator making this into a fraction with integers on the top and bottom.

2. Yes, you can do this! (it sounds a little bit surprising, but the once you see the answer you will say D’oh! like Homer Simpsons)

 Let \(a = .010100100 \cdots \) (which we know is not rational by the first homework!) and set \(b = -a \), then \(b \) is also not rational because it still has a decimal which does not repeat. But

 \[a + b = a + (-a) = a - a = 0 \]

 and of course, \(0 = \frac{0}{1} \) is rational.

3. If we denote the number by \(q \), multiply the number by 1000 we get

 \[1000q = def + .abcabc \cdots \]

 we already know the fractional equivalent of this decimal, from the worksheet so we get

 \[1000q = def + \frac{abc}{999} \]

 hence

 \[q = \frac{999(def) + abc}{999 \cdot 1000} \]