GEOMETRY - FINDING ANGLES II

MATH CIRCLE (INTERMEDIATE) 03/03/2013

Facts about parallel lines:
When two parallel lines are cut by a transversal (see figure; line m is the transversal), the following sets of angles are congruent:

- Alternate interior angles (for example, α and β)
- Vertical angles (for example, γ and α)
- Corresponding angles (for example, γ and β)

(1) Let's prove that the sum of the angles in a triangle is always 180 degrees.

(a) Draw a triangle, any triangle. It does not need to be equilateral or even isosceles. Label the vertices as A, B, and C.

(b) Draw on the above diagram a line l that passes through point C and is parallel to segment AB.

(c) Consider the three acute angles formed by the intersection of line l with triangle ABC. What is the sum of these angles' measures?

(d) Use your result from part (c), and the facts about parallel lines cut by a transversal above, to prove that the sum of the measures of the interior angles of triangle ABC is 180 degrees.
(2) In the picture, $AD = DC$, $AB = AC$, and the measures of angles ABC and ADC are 75 and 50 degrees, respectively. What is the measure of angle BAD?

(3) ABC is an isosceles triangle such that $AC = BC$. CBD is an isosceles triangle such that $CB = DB$. BD meets AC at a right angle. If the measure of angle A is 57 degrees, what is the measure of angle D?

(4) Some angle measures of the quadrilateral $ABCD$ are shown in the picture to the right. In addition, $AD = BC$. Find the measure of angle ABC.

2
(5) Triangle ABC is equilateral. Point B is the midpoint of segment AD. Point E belongs to a circle which has a center at point D and whose radius equals AB. What is the measure of angle BED when the distance CE is the greatest possible?

(6) In the convex quadrilateral $ABCD$, $AB = AC$. In addition, $m\angle BAD = 80^0$, $m\angle ABC = 75^0$, and $m\angle ADC = 65^0$. What is the measure of angle BDC?

(7) What is the measure of angle a in the figure?
(8) In triangle ABC, the bisectors of angles ABC and ACB intersect at point D. We know that the measure of angle BDC is 150 degrees. What is the measure of angle BAC?

(9) In quadrilateral $ABCD$, $\angle ABC = 110^\circ$, $\angle BCD = 100^\circ$, and angles BAD and CDA are trisected as shown. What is the degree measure of $\angle AFD$?

(10) Triangle ABC is isosceles with base AC. Points P and Q are respectively on CB and AB such that $AC = AP = PQ = QB$. Find the measure of $\angle B$.
(11) The diameter of the circle with center \(O \) is also the base of the isosceles triangle \(ABC \). Points \(K \) and \(L \) are points of intersection of the triangle with the circle. If \(\angle KOL = 100^\circ \), what is the measure of angle \(C \) of triangle \(ABC \)?

(12) In a general triangle \(ADE \) (as shown) lines \(EB \) and \(EC \) are drawn.

(a) Show that \(x + y = m \). (This convenient result is called the Exterior Angle Theorem).

(b) Show that \(x + y + n = a + b + m \).
(13) Given triangle PQR with RS bisecting $\angle R$, PQ extended to D, and CD perpendicular to RS, show that $m = \frac{p+q}{2}$.
HINTS:

Problem 2.

Hint 2.1: If two sides of a triangle are congruent, the angles opposite those sides are also congruent.

Hint 2.2: What is the sum of the measures of the angles of a triangle?

Problem 3.

Hint 3.1: See Hint 2.1.

Problem 4.

Hint 4.1: See Hint 2.2.

Hint 4.2: Hint 2.1 goes the other way, too: if two angles of a triangle are congruent, then the sides opposite those angles are also congruent.

Problem 5.

Hint 5.1: Complete the figure by drawing the specified circle. Label point E on the circle and draw segment BE.

Hint 5.2: What is the measure of each angle in an equilateral triangle?

Hint 5.3: What is the sum of the measures of the angles that form a straight line?

Problem 6.

Hint 6.1: What is the sum of the measures of the angles of a quadrilateral?

Hint 6.2: See Hint 4.2.

Problem 8.

Hint 8.1: Let a be the measure of one of the angles formed by the bisector of angle ABC. Let b be the measure of one of the angles formed by the bisector of angle ACB. What is the value of a + b?

Hint 8.2: What is the measure of angle BAC in terms of a and b? Now apply the result of Hint 8.1.

Problem 9.

Hint 9.1: See Hint 6.1.

Hint 9.2: Use a similar approach to Problem 8 (see Hint 8.1). Can you express the measure of \(\angle AFD \) in terms of \(x \) and \(y \)?

Problem 10.

Hint 10.1: Let \(x \) equal the measure of \(\angle B \). What is the measure of angle \(PQA \) in terms of \(x \)? \(APC? \ BCA? \) (Use Hints 2.1 and the result of Problem 1.)

Problem 11.

Hint 11.1: Can you find any isosceles triangles in the figure?