1. Draw the graph of \(f(x) = 1 - |x| \) for \(x \) on \([-1, 1]\). Now draw a figure that explains \(f(x) = 1 - |x| \) without drawing a graph, as you saw done for \(f(x) = |x| \). It’s easier if you look at \(f(x) \) on \([-1, 0]\) and on \([0, 1]\) separately.

2. Find the fixed points of \(f(x) = x^3 \). Draw the graph and locate the fixed points. What happens if you also draw the graph of \(g(x) = x \) on the same figure?

3. Use Bolzano’s Intermediate Value Theorem to prove that the equation \(\sqrt{x + 1} + \sqrt{x + 2} = 2 \) has a solution on \([-1, 1]\).

4. Describe how \(f(z) = z^2 \) behaves on the unit disc \(D \). What are its fixed points?

5. The complex conjugate of \(z = x + yi \) is \(\bar{z} = x - yi \). Describe \(f(z) = \bar{z} \) on \(D \) and find its fixed points.

6. Draw a figure to show how \(f(z) = z^3 \) behaves on the unit circle \(C \). There are two fixed points; can you find them? How many fixed points does \(f(z) = z^4 \) have on \(C \). Can you find the pattern for the number of fixed points of \(f(z) = z^k \) on \(C \)?

7. Describe a smooth map of \(D \) such that \(f(z) = \bar{z} \) on \(C \) that has no fixed points except on \(C \).

8. Define a map of \(D \) such that \(f(z) = z^3 \) on \(C \) that has no fixed point points except on \(C \). (Hint: Recall Schirmer’s construction for \(f(z) = z^2 \)).