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Problem 1.
The number 82019 is written on the board. At each step it is replaced by the sum of its
digits, until a 1-digit number is left. What is that one-digit number?

Solution 1.
Let’s first prove a lemma:

Lemma 1 (Divisibility rule by 9).
Any nonnegative integer A has the same remainder modulo 9 (i.e., has the same remainder
after dividing by 9) as does the sum of its digits.

Proof. Let’s write A = anan−1...a1a0, where bar denotes that an, ..., a0 are digits in A.
For example, if a2 = 9, a1 = 3, a0 = 7, then a2a1a0 = 937. Note that

A = 10nan + 10n−1an−1 + ...+ 101a1 + 100a0

Looking at the difference A− (an + an−1 + ...+ a0), we see that the difference is divisible
by 9:

A− (an + an−1 + ...+ a0) = 10nan + 10n−1an−1 + ...+ 101a1 + 100a0

− (an + an−1 + ...+ a1 + a0)

= 99...9︸ ︷︷ ︸
n−1

an + 99...9︸ ︷︷ ︸
n−2

an−1 + ...+ 99a2 + 9a1

= 9 ∗ (11...1︸ ︷︷ ︸
n−1

an + 11...1︸ ︷︷ ︸
n−2

an−1 + ...+ 11a2 + a1)

If A and (an + an−1 + ...+ a0) had different remainders modulo 9, their difference would
have nonzero remainder modulo 9, and thus would not be divisible by 9. Therefore, A
and (an + an−1 + ...+ a0) have the same remainder modulo 9.

Note that, in particular, this means that if the sum of the digits of A is divisible by 9
(remainder is 0), then A itself is divisible by 9. This statement is probably more familiar
to you!

Let’s return to the original problem. We can see an invariant: The remainder of our
number modulo 9. Indeed, we just proved that the remainder stays the same when a
number is substituted by the sum of its digits! This means that if we find the remainder
modulo 9 of the original number 82019, the remainder of the one-digit number left on the
board would be the same.
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To finish the proof, we’ll need one more thing. Suppose two integers A and B have
remainders a and b modulo 9. Then the product AB has the same remainder modulo 9
as ab. Indeed, we can write:

AB = (9k + a)(9n+ b) = 81kn+ 9kb+ 9an︸ ︷︷ ︸
divisible by 9

+ab

We now need to find the remainder of 82019 modulo 9. 8 has remainder 8 modulo 9
(obviously). 82 has remainder 1 (check!). Then, by the fact above, 83 has remainder 8
modulo 9. Similarly, 84 has remainder 8 and so on. We can see that remainder of 8n will
be 1 if n is even, and 8 if n is odd. Thus, 82019 has remainder 8, and so the remaining
one-digit number’s remainder is also 8. The only such number is 8.
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