Review of arithmetic mod \(p \)

Throughout this handout, \(p \) will denote an odd prime \(p \geq 3 \). First we review some basic facts about arithmetic mod \(p \).

Theorem 1. If \(a \) and \(b \) are relatively prime positive integers, then there exist integers \(s \) and \(t \) such that \(as + bt = 1 \).

Exercise 1. Prove that if \(a \not\equiv 0 \mod p \), then \(a \) has a multiplicative inverse mod \(p \), i.e. there exists an integer \(b \) such that \(ab \equiv 1 \mod p \).

Exercise 2.

(a) Calculate the inverse of 4 mod 5.

(b) Calculate the inverse of 3 mod 11.

(c) Calculate the inverse of 2 mod 7.

Exercise 3.

(a) Prove that \(x^2 \equiv 1 \mod p \) if and only if \(x \equiv \pm 1 \mod p \). (Hint: \(p \) divides \(x^2 - 1 \). Factor and use a property of prime numbers).

(b) Prove that \(x^2 \equiv y^2 \mod p \) if and only if \(x \equiv \pm y \mod p \). (Hint: Exercise 1).

Exercise 4 (CHALLENGE). Prove Theorem 1. More generally, prove that if \(a \) and \(b \) are any two positive integers, then there are integers \(s \) and \(t \) such that \(as + bt = \gcd(a, b) \).

Also, recall our favorite theorem from the Gaussian integers unit:

Theorem 2 (Fermat’s Little Theorem). If \(a \not\equiv 0 \mod p \), then \(a^{p-1} \equiv 1 \mod p \).

Quadratic residues modulo \(p \) and the Legendre symbol

Definition 1. If \(a \not\equiv 0 \mod p \), we say \(a \) is a quadratic residue modulo \(p \) if there is some \(b \) such that \(b^2 \equiv a \mod p \). If there is no such \(b \), then we say \(a \) is a quadratic nonresidue modulo \(p \).

Exercise 5.

(a) List all the quadratic residues modulo 5.

(b) List all the quadratic residues modulo 11.

Note that we can determine the quadratic residues modulo \(p \) by squaring each of \(\{1, 2, \ldots, p - 1\} \).

Exercise 6. Prove that exactly half of the elements \(\{1, 2, \ldots, p - 1\} \) are quadratic residues modulo \(p \) (Hint: square the values and figure out how many of these are distinct).

Definition 2. If \(p \) is an odd prime, the Legendre symbol is defined as

\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } a \text{ is a quadratic residue mod } p \\
-1 & \text{if } a \text{ is a quadratic nonresidue mod } p \\
0 & \text{if } a \equiv 0 \mod p.
\end{cases}
\]

Exercise 7. Calculate the following Legendre symbols

(a) \(\left(\frac{2}{7} \right) \) and \(\left(\frac{3}{7} \right) \)

(b) \(\left(\frac{3}{13} \right) \) and \(\left(\frac{-3}{13} \right) \)

Exercise 8. Let \(a \) be any integer. Prove that the number of integers \(x \in \{0, 1, \ldots, p - 1\} \) such that \(x^2 \equiv a \mod p \) is exactly \(1 + \left(\frac{a}{p} \right) \).
Euler’s Criterion

We will now introduce a way of calculating the Legendre symbol in general.

Theorem 3 (Euler’s Criterion). If p is an odd prime, then for any residue class a, \(\left(\frac{a}{p} \right) \equiv a^{\frac{p-1}{2}} \pmod{p} \).

Exercise 9. Prove Euler’s Criterion.

(a) Prove Euler’s Criterion in the case \(\left(\frac{a}{p} \right) = 0 \).

(b) Let $a \neq 0 \pmod{p}$ and let u be a primitive root mod p. Then recall that there is a unique integer $k \in \{0, 1, \ldots, p-1\}$ such that $u^k \equiv a \pmod{p}$. Prove that a is a quadratic residue mod p if and only if k is even.

(c) Prove Euler’s Criterion in the case \(\left(\frac{a}{p} \right) = 1 \). (Hint: Fermat’s Little Theorem).

(d) Finally, consider the case \(\left(\frac{a}{p} \right) = -1 \). Let u be the primitive root mod p from part (b). Prove that $a^{(p-1)/2} \equiv u^{(p-1)/2} \pmod{p}$.

(e) Prove that $a^{(p-1)/2} \equiv -1 \pmod{p}$, completing the proof. (Hint: Fermat’s Little Theorem and Exercise 3).

In proving which integers are the sum of two squares, we showed that -1 is a square modulo p if and only if $p = 2$ or $p \equiv 1 \pmod{4}$. We can restate this problem in terms of quadratic residues.

Exercise 10. Prove that -1 is a quadratic residue modulo p if and only if $p = 2$ or $p \equiv 1 \pmod{4}$ (Hint: use Euler’s Criterion).

Exercise 11. (a) Prove that \(\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right) \) for any integers a, b.

(b) Explain what the Legendre symbol being multiplicative means in terms of quadratic residues.

Quadratic Reciprocity

We are almost ready to state the core theorem of the handout.

Exercise 12. (a) Compute \(\left(\frac{5}{13} \right) \) and \(\left(\frac{13}{5} \right) \).

(b) Compute \(\left(\frac{3}{11} \right) \) and \(\left(\frac{11}{3} \right) \).

(c) Compute \(\left(\frac{7}{2} \right) \) and \(\left(\frac{2}{7} \right) \).

(d) Do you notice any patterns?

Theorem 4 (Quadratic Reciprocity). Let p and q be distinct odd primes.

\[
\begin{cases}
\left(\frac{p}{q} \right) = \left(\frac{q}{p} \right) & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\
\left(\frac{p}{q} \right) = -\left(\frac{q}{p} \right) & \text{if } p \equiv q \equiv 3 \pmod{4}
\end{cases}
\]

Exercise 13. An equivalent formulation of quadratic reciprocity is if p and q are distinct odd primes, then

\[\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{(p-1)(q-1)/4}. \]

Show that this gives the same result.

Exercise 14. (a) Is 149 a quadratic residue mod 197? (you may assume these are both prime)

(b) Is 47 a quadratic residue mod 349? (same assumption)