This week, we will continue to investigate the irreducible elements of \(\mathbb{Z}[i] \) and eventually characterize the integers which are sums of two squares. Last week, we showed that prime integers that are congruent to 3 mod 4 can not be written as sums of two squares and therefore are irreducible in \(\mathbb{Z}[i] \). Now we have to analyze the more difficult case of when \(p \equiv 1 \mod 4 \).

Exercise 1.
(a) Find an integer \(a \) such that \(a^4 \equiv 1 \mod 5 \) but \(a^k \not\equiv 1 \mod 5 \) for any \(0 \leq k \leq 3 \).
(b) Find an integer \(a \) such that \(a^{16} \equiv 1 \mod 17 \) but \(a^k \not\equiv 1 \mod 17 \) for any \(0 \leq k \leq 15 \).

It turns out that this is always possible. If \(p \) is any prime integer, then there exists some \(0 \leq a \leq p-1 \) such that \(a^{p-1} \equiv 1 \mod p \) but \(a^k \not\equiv 1 \mod p \) for any \(0 \leq k \leq p-2 \). Such an \(a \) is called a primitive root mod \(p \).

Another fact: we know that if \(x \) is an integer such that \(x^2 = 1 \), then \(x = 1 \) or \(-1 \). This is also true mod \(p \), i.e. if \(x \) is an integer such that \(x^2 \equiv 1 \mod p \), then \(x \equiv 1 \) or \(-1 \mod p \). Using these two facts, prove the following.

Exercise 2. If \(p \equiv 1 \mod 4 \), prove that there is some integer \(n \) such that \(p \) divides \(n^2 + 1 \) (Hint: this is equivalent to showing that some \(n \) satisfies \(n^2 \equiv -1 \mod p \). Let \(a \) be a primitive root mod \(p \) and proceed).

Exercise 3. (CHALLENGE). Prove that if \(p \) is a prime integer and \(a \neq 0 \mod p \), then \(a^{p-1} \equiv 1 \mod p \) (Hint: compare the two sets \(\{1, 2, 3, \ldots, p-1\} \) and \(\{a, 2a, 3a, \ldots, (p-1)a\} \)). This result is known as Fermat’s little theorem.

Now we are ready to analyze the case when \(p \equiv 1 \mod 4 \).

Exercise 4. The purpose of this exercise is to prove that if \(p \equiv 1 \mod 4 \), then \(p \) factors as \(p = (a + bi)(a - bi) \) where \(a + bi \) is an irreducible element of \(\mathbb{Z}[i] \).

(a) Factor \(n^2 + 1 \) in the Gaussian integers for any integer \(n \).
(b) Let \(p \) be a prime integer congruent to 1 mod 4 and let \(n \) be any integer. Show that \(p \) does not divide \(n + i \) via a contradiction argument. (Hint: What can we say about \(p \) and \(n - i \)?)
(c) By the claim above, \(p \) divides \(n^2 + 1 \) for some integer \(n \). Prove that \(p \) is not irreducible.
(d) Show that \(p \) factors as \(p = (a + bi)(a - bi) \) for integers \(a, b \). (Hint: Exercise 8(a))
(e) Show that \(a + bi \) and \(a - bi \) are irreducible Gaussian integers. (Hint: Use the norm)
We are now ready to write down all irreducible elements of \(\mathbb{Z}[i] \). As a recap of what we have done, there are three classes of irreducible elements in the Gaussian integers.

1. We know that \(1 + i \) is irreducible via the norm.
2. We showed that prime integers congruent to 3 mod 4 are irreducible.
3. Finally, we showed that when \(p \) is a prime integer congruent to 1 mod 4, the distinct irreducible factors \(a + bi \) and \(a - bi \) of \(p = a^2 + b^2 \) are irreducible.

We want to show that these are all the irreducible elements of the Gaussian integers.

Exercise 5. Assume that \(\alpha = a + bi \) is an irreducible element of \(\mathbb{Z}[i] \).

(a) Prove that \(\alpha \) divides \(N(\alpha) \).

(b) Conclude that \(\alpha \) divides some prime integer. (Hint: \(N(\alpha) \) is an integer that might not be prime)

(c) Conclude that \(\alpha \) must be an element of our list.

Now, finally, we are able to prove a complete characterization of which positive integers are sums of two squares. The following theorem was first proved by Fermat.

Theorem 1. Let \(n \) be a positive integer. Write the prime factorization of \(n \) as

\[
 n = 2^k \cdot p_1^{\ell_1} \cdots p_k^{\ell_k} \cdot q_1^{f_1} \cdots q_d^{f_d}
\]

where \(p_1, \ldots, p_k \) are distinct primes congruent to 1 mod 4 and \(q_1, \ldots, q_d \) are distinct primes congruent to 3 mod 4. Then \(n \) is the sum of two squares if and only if all of the \(f_j \) are even.

Exercise 6. Prove the above theorem.

(a) Prove that \(n \) is the sum of two squares if and only if there is some Gaussian integer \(\gamma = A + Bi \) such that \(N(\gamma) = n \).

(b) Prove that if \(\alpha \) is irreducible in \(\mathbb{Z}[i] \), then \(N(\alpha) \) is equal to 2, a prime congruent to 1 mod 4, or the square of a prime congruent to 3 mod 4.

(c) Suppose \(n = N(\gamma) \) for some \(\gamma \in \mathbb{Z}[i] \). Show that each \(f_j \) must be even (Hint: factor \(\gamma = \alpha_1 \cdots \alpha_m \) as a product of irreducible Gaussian integers. Take the norm and use part (b)).

(d) Suppose that each \(f_j \) is even. Show that there exist irreducible Gaussian integers \(\alpha_1, \ldots, \alpha_m \) such that \(N(\alpha_1) \cdots N(\alpha_m) = n \) (Hint: Exercise 8(c)).

(e) Explain why parts (a)-(d) together complete the proof of the theorem.