Fun and Games on a Chess Board

I Names of squares on the chess board

Color the following squares on the chessboard below:

c3, c4, c5, c6, d5, e4, f3, f4, f5, f6

What letter do these squares form together?
II How many squares are there on a chessboard?

A chessboard itself is a square with side 8.

1. The number of 1×1 squares on the chess board is 64.

2. What about bigger squares?
 Let’s first count squares of size 2×2:

 Idea: Instead of counting 2×2 squares, we will count the small 1×1 squares which can serve as the left lower corners of the 2×2 squares that fit on the chessboard.

 First, shade the left lower corner of the 2×2 square above.
For each of the squares below, decide if it can be a left lower corner of a 2×2 square:

(a) square c3
Yes No

(b) square g6
Yes No

(c) square f8
Yes No

(d) square h2
Yes No

Now color all 1×1 squares that can serve as the left lower corners of a 2×2 square:

How many 2×2 squares can you fit onto a chessboard?

$7 \times 7 = 49$
3. For each of the squares below, decide if it can be a left lower corner of a 3×3 square:

(a) square e6

(b) square g3

(c) square a7

(d) square f6

Now color all 1×1 squares that can serve as the left lower corners of a 3×3 square:

How many 3×3 squares can you fit onto a chessboard?

6x6=36
Now you can fill out the table below:

<table>
<thead>
<tr>
<th>Type of Square</th>
<th>Number of such squares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>