Fun and Games on a Chess Board

Names of squares on the chess board

Color the following squares on the chessboard below:

c3, c4, c5, c6, d5, e4, f3, f4, f5, f6

What letter do these squares form together?
II How many squares are there on a chessboard?

A chessboard itself is a square with side 8.

1. The number of 1×1 squares on the chess board is 8^2.

2. What about bigger squares?
 Let’s first count squares of size 2×2:

 Idea: Instead of counting 2×2 squares, we will count the small 1×1 squares which can serve as the left lower corners of the 2×2 squares that fit on the chessboard.

 First, shade the left lower corner of the 2×2 square above.
For each of the squares below, decide if it can be a left lower corner of a 2×2 square:

(a) square c3
Yes No

(b) square g6
Yes No

(c) square f8
Yes No

(d) square h2
Yes No

Now color all 1×1 squares that can serve as the left lower corners of a 2×2 square:

How many 2×2 squares can you fit onto a chessboard?
3. For each of the squares below, decide if it can be a left lower corner of a 3×3 square:

(a) square e6 Yes No

(b) square g3 Yes No

(c) square a7 Yes No

(d) square f6 Yes No

Now color all 1×1 squares that can serve as the left lower corners of a 3×3 square:

![Chessboard diagram]

How many 3×3 squares can you fit onto a chessboard?
Now you can fill out the table below:

<table>
<thead>
<tr>
<th>Type of Square</th>
<th>Number of such squares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Homework

Count the number of 4×4, 5×5, 6×6 and 7×7 squares on the chessboard in the same way. In each case, use a chessboard picture to shade all the 1×1 squares that can be left lower corners of the bigger squares that fit completely onto the chessboard.

Now color all 1×1 squares that can serve as the left lower corners of a 4×4 square:
Color all 1×1 squares that can serve as the left lower corners of a 5×5 square:

Color all 1×1 squares that can serve as the left lower corners of a 6×6 square:
Color all 1×1 squares that can serve as the left lower corners of a 7×7 square:

![7x7 Grid](image)

Color all 1×1 squares that can serve as the left lower corners of a 8×8 square:

![8x8 Grid](image)