Figuring out the area of Koch snowflake

The following equilateral triangle K_{S0} of side length a (drawn using the Python’s Turtle) is the base step for constructing a beautiful closed curve known as the Koch snowflake.

During the 11/1 class, we have found the area of the triangle.

$$A_0 = \frac{\sqrt{3}}{4} a^2 \quad (1)$$
The figure KS_1 is the next step of the construction.

The area A_1 of KS_1 is the sum of A_0, the area of the base triangle, and of the areas of the three new spikes, each of them an equilateral triangle of side length $a/3$. To find the area of a spike, we can use formula [1] with a replaced by $a/3$, the side length of the spike.

$$\text{Spike area} = \frac{\sqrt{3}}{4} \left(\frac{a}{3} \right)^2 = \frac{\sqrt{3}}{4} \frac{a^2}{9} = \frac{A_0}{9}$$

Therefore, $A_1 = A_0 + 3 \times \frac{A_0}{9} = A_0 + \frac{A_0}{3}$.

$$A_1 = A_0 \left(1 + \frac{1}{3} \right) \quad (2)$$

For the reason that will become clear soon, we will not simplify formula [2] any further.
The figure KS_2 below is the next step.

The area A_2 of KS_2 is the sum of A_1 and the areas of the 12 spikes KS_1 sprouts. A spike is an equilateral triangle of side length $a/9$. To compute the area of the spike, we can use formula [1] with a replaced by $a/9$.

$$\text{Spike area} = \frac{\sqrt{3}}{4} \left(\frac{a}{9}\right)^2 = \frac{A_0}{81}$$

Therefore,

$$A_2 = A_0 \left(1 + \frac{1}{3} + \frac{12}{81}\right) = A_0 \left(1 + \frac{1}{3} + \frac{4}{27}\right)$$

$$A_2 = A_0 \left(1 + \frac{1}{3} + \frac{1}{3} \times \frac{4}{9}\right) \quad (3)$$
To trace the changes, let us start forming the following table.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>side length</td>
<td>a</td>
<td>$\frac{a}{3}$</td>
<td>$\frac{a}{9}$</td>
</tr>
<tr>
<td>number of sides</td>
<td>3</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>number of new spikes</td>
<td>0</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

At the next step of the construction, each of the 48 sides of KS_2 sprouts a spike, an equilateral triangle of side length $a/27$. To compute the area of the spike, we can use formula \[\frac{\sqrt{3}}{4} \left(\frac{a}{27} \right)^2 = \frac{A_0}{27^2} \] with a replaced by $a/27$.

\[\text{Spike area} = \frac{\sqrt{3}}{4} \left(\frac{a}{27} \right)^2 = \frac{A_0}{27^2} \]

Therefore,

\[A_3 = A_2 + \frac{48}{27^2} A_0. \]
Note that at each step of the construction, the number of sides quadruples. We remove the middle of each side, breaking the former into two, and add two more sides to fill the gap. At the next step, each of the sides sprouts a triangle, adding to the area. Let us check this observation by taking a look at the extension of our table.

$$A_3 = A_0 \left(1 + \frac{1}{3} + \frac{1}{3} \times \frac{4}{9} + \frac{1}{3} \times \left(\frac{4}{9} \right)^2 \right)$$

(4)
Problem 1 Fill the table for $n = 4, 5$.

Problem 2 Check if the following formula

$$A_4 = A_0 \left(1 + \frac{1}{3} + \frac{1}{3} \times \frac{4}{9} + \frac{1}{3} \times \left(\frac{4}{9} \right)^2 + \frac{1}{3} \times \left(\frac{4}{9} \right)^3 \right)$$

(correctly represents the area of $K S_4$.)
Problem 3 Guess the pattern and write down the formula for A_5. Generalize to any $n = 1, 2, 3, \ldots$

$A_5 =$

$A_n =$

Let $S = \sum_{n=1}^{\infty} \frac{1}{3} \times \left(\frac{4}{9} \right)^{n-1} = \frac{1}{3} + \frac{1}{3} \times \frac{4}{9} + \frac{1}{3} \times \left(\frac{4}{9} \right)^2 + \frac{1}{3} \times \left(\frac{4}{9} \right)^3 + \ldots$

Problem 4 Find S. Hint: find $4/9 \times S$ and compare it to S.
Problem 5 Find the area A of the Koch snowflake $KS = \lim_{n \to \infty} KS_n$.

Please get back to Problem 11 of the previous handout.