
Computational Problems in the Braid Group with

Applications to Cryptography

Umut ISIK

March 18, 2005

Abstract

After making some basic definitions and results on links and braids,
we focus on computational problems concerning the braid group such
as the word and conjugacy problems and examine the recent use of the
braid group and these problems in cryptography. We finally consider
the NP-completeness of the NON-MINIMAL BRAIDS problem. We
also briefly present some open problems as well as some basic notions
of the theory of computation.

1 Introduction

Artin first introduced braids in 1926 and later published a more rigorous
study of braids in 1947 [2]. Since then, braids and computational problems
concerning braids have attracted much attention. In this paper, we shall
present some of these problems and some of the solutions to those together
with some applications.

The concatenation of braids provides us a group operation and leads us
to the braid group Bn. Bn can be generated by a finite set of elements
called the standard generators. These generators lead us to the word and
conjugacy problems, concerning products of those generators, i.e. strings
in terms of the generators, and their meaning as elements. These problems
lead to applications in cryptography.

We begin with a brief summary of the basic notions of computability
theory and complexity before focusing on braids.

2 Computability and Complexity

Since we shall be considering algorithmic problems concerning braids, we
introduce several definitions for the sake of completeness.

In order to consider algorithms mathematically, one needs an abstract
model of computing and a clear definition of a problem. We shall be con-
sidering decision problems, that is problems that require an answer yes or

1

no which can be seen as deciding whether an element belongs to a specific
set or not. Several models such as the lambda calculus, recursive functions,
Markov algorithms, Post Systems and Turing machines have been proposed
for this purpose and they all have been shown to be of the same power. That
is if one can do a computation with any one of these, then one can do the
same computation with all of the others. One remark is that most of these
models were introduced before computers were actually made. We shall be
using Turing machines since it is the model which is the closest to today’s
computers.

A Turing machine is an abstract machine, accompanied with an infinite
tape. The machine has a tape using which it reads what is on the tape
and can write on the tape. The tape can also be used as memory. Initially,
the tape contains the input (consisting of a finite set of symbols, usually
0’s and 1’s) and the rest of the tape is blank with the head positioned at
the beginning of the input string. The machine has a finite set of states.
When the machine is at some state, it reads the symbol under its head, and
according to the input and its current state, it prints a symbol under the head
and moves its head right or left to the next symbol. Two states are accept
and reject states. They correspond to the termination of the computing,
accept means a positive answer and reject means a negative answer. The
reason for us to consider decision problems is that if we could make a Turing
machine which solves a problem which is not a decision problem and gives
the output on the tape, then we could make a Turing machine that tells us
whether the nth symbol of the output is 0 or 1 and extract the required
information from those. Here is the formal definition of a Turing machine:

Definition 1 A Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept, qreject),
with Q, Σ and Γ are finite sets and:

1. Q is the set of states.

2. Σ is the input alphabet, which does not contain a special blank symbol
B

3. Γ is the tape alphabet where Σ ⊆ Γ

4. δ : Q× Γ → Q× Γ× {L, R} is the transition function.

5. q0 is the initial state.

6. qaccept is the accept state.

7. qreject is the reject state and qreject 6= qaccept.

A Turing machine M makes computation by taking finite string {wn}
in the alphabet Σ as input, starting at the initial state, writing and going
to the next state according to the state transition function. If the machine

2

reaches the accept or reject states, then it halts. Note that a machine can
run forever, never reaching the accept or reject states.

We say that a Turing machine M decides a language L (a set of strings
over some alphabet Σ) if, when given an input string s, M accepts if and
only if s ∈ L; and M halts for every input. This definition coincides nicely
with our notion of decision problems because we can encode inputs as strings
and define a language which is the set of strings for which the answer is yes.
For example, if our decision problem is to determine whether a given integer
is prime, we can encode the binary representation of numbers as binary
strings and say that L is the language the elements of which represent prime
numbers in base 2. An important result in the theory of computation is that
there do exist undecidable languages. For example, the language of strings
corresponding to pairs of Turing machines and their inputs (one can encode a
Turing machine as a binary string) that halt in a finite amount of time is not
decidable. The Church-Turing thesis states that a problem can be solved
with a Turing machine if and only if it can be solved by any reasonable1

means of computation. So if we accept the Church-Turing thesis, it means
that one cannot design a program (say, coded in C) which takes another C
program and an input string as its input and which decides whether it will
ever stop running or not.

There also is another notion of Turing machine called a non-deterministic
Turing machine, which basically has a state transition function the range
of which consist of a finite sets of triples instead of just triples. In other
words, it is a Turing machine which makes copies of itself as necessary. A
non-deterministic Turing machine accepts or rejects if and only if at least
one of the copies accepts or rejects. This model of computing has the same
computing power as the ordinary (deterministic) Turing machine in terms
of the class of languages it decides.

We can now define the complexity of a Turing machine or a problem.

Definition 2 The time complexity of a Turing machine M is a function
f : N→ N, where f(n) is the maximum number of steps (maximum number
of referral to the state transition function) M takes to accept or reject, given
any input of length n.

This notion is often referred to as worst case complexity, for one can
also consider average complexity which is the average running time of M on
inputs of size n.

There is also a notion of space complexity but we shall not consider it
here and refer to time complexity as complexity. We shall use the notion
of complexity for algorithms, which will be the complexity of a Turing ma-

1this includes some newer, hopefully applicable abstract systems of computing, includ-
ing quantum computation or probabilistic computation

3

chine that simulates that algorithm. Usually, one is mainly interested in the
growth of the complexity function.

Definition 3 Let f : N → N and g : N → N. We say that f = O(g) if
f(n) ≤ cg(n) for some constant c and sufficiently large n. We say f = Ω(g)
if f(n) ≥ cg(n) for some constant c and sufficiently large n. If f = O(g)
and f = Ω(g) then we say f = Θ(g)

For example, 5n2 +9n+5 = O(n2). If we find an algorithm that runs in
5n2+9n+5 = O(n2) time, we say it is an O(n2) algorithm. So O(f) gives us
a general idea about the growth of f . Since we are mainly interested in how
much time we shall need as we run a program on larger and larger inputs.
But we also have that n2 + 9n + 5 = O(n3), but n2 + 9n + 5 6= Θ(n3).

These notions will give us an idea of the growth of an algorithm’s com-
plexity. We shall usually say that an algorithm has complexity O(f) where
f is a function of n. Roughly, f will be an upper bound for sufficiently
large inputs for the number of additions, subtractions, comparisons and use
of memory bits in today’s computers. For example, if we consider the al-
gorithm of finding the largest number among n integers through scanning
all of them and keeping in memory the largest found so far at all times, it
would be an O(n) algorithm. We now introduce complexity classes.

Definition 4 For a function f : N→ N, TIME(f) is the class of languages
(problems) that can be decided on a Turing machine with complexity O(f).

Definition 5 P is defined to be the class of languages (problems) which can
be decided by a Turing machine of polynomial time complexity. That is:

P =
∞⋃

k=0

TIME(nk)

For example, the problem of finding the maximum of a finite set of
integers is in P with the algorithm we just described. But we do not know
whether the clique problem, that is the problem of deciding whether a graph
with n vertices has a k-clique (a fully connected subgraph with k vertices)
is in P (no such algorithm is known).

Definition 6 A verifier for a language L is a Turing machine (algorithm)
V where

L = {w is a string |V accepts (w, c) for some string c}

The measure of the time of a verifier is in terms of w. A polynomial time
verifier runs in polynomial time in the length of w. A language is polyno-
mially verifiable if it has a polynomial time verifier.

4

For example, the clique problem has a polynomial time verifier. The
verifier would be the algorithm that takes a graph G and a suggested k-
clique and that checks if the suggested k-clique is really a k-clique or not.

Definition 7 The class NP is the complexity class of polynomially verifiable
languages.

The name NP stands for nondeterministic polynomial time and refers
in complexity theory to the standard theorem that every polynomially ver-
ifiable language can be solved in polynomial time by a non-deterministic
Turing machine. One of the greatest open problems in mathematics is to
determine whether the classes P and NP are equal. For this matter, we
finally introduce the notion of NP-completeness.

Definition 8 The class of NP-complete languages is the class of languages
N that are in NP such that for every other language L in NP, there is a
polynomial-time algorithm, that takes a string s and outputs a string f(s)
such that s ∈ L if and only if f(s) ∈ N . That is, every problem in NP is
polynomial time reducible or polynomially reducible to L.

Since the addition of two polynomials is a polynomial, solving one NP
problem in P would mean that P = NP. The first problem shown to be
NP-complete is the satisfiability problem, which is the decision problem of
finding whether a given boolean logical expression in terms of some variables
belongs to the class of boolean logical expressions that can be made to be
true with some value assignment of the variables.

A language is said to be NP-hard if every problem in NP is polynomial
time reducible to it. So an NP-complete language is an NP-hard language
that is polynomial time verifiable.

Some problems can be very easy to verify but this does not imply that
the negation of those problems are easy to verify. By negation, we mean
the complement of the corresponding language in the set of strings over
the given alphabet. For example, in the case of the CLIQUE problem, the
negation NON-CLIQUE would be the problem of answering whether the
graph does not have a k-clique, that is the decision problem corresponding
to the language of pairs (G, k) such that G does not have a k-clique. In
general, solving the negation of a problem means solving the problem itself.
However, there are differences in verifiability, for example, observe that it is
harder to verify that a graph does not have a k-clique rather than it does
have a k-clique.

Definition 9 A language is said to be co-NP (respectively co-NP-complete)
if it is the complement of a language in NP (respectively NP-complete).

5

It is not known whether the negation of any problem in NP, that is the
complement of the language corresponding to that problem is in NP. So,
It is not known whether NP=co-NP. The MINIMAL BRAIDS problem we
shall consider below is not known to be in NP, but it is NP-hard. But its
complement is NP-complete.

For a very intuitive introduction to the theory of computation and more
detail see [11].

3 Braids

We begin with the basic definitions concerning braids. There are several
ways to define a braid but the effective way is, especially for a computational
approach, the following definition.

Definition 10 A Braid is the union of images of a set of simple piecewise
linear curves φ1, φ2, ..., φn in R3 such that

• each φi has domain [0, 1] and satisfies φi(0) = (i, 0, 0); and φi(1) =
(σ(i), 0, 1) where σ is some permutation of 1, 2, ..., n.

• the z-coordinate of φi(t) increases as t increases in [0, 1]

• the φi do not intersect each other

In this definition, we take piecewise linear curves in order not to have
braids that have strings that curve in a very complicated manner. The
equivalence relation on braids is defined similar to the equivalence relation of
knots. In the smooth setting, two braids are equivalent if and only if one can
be continuously deformed to the other without making the curves intersect
and keeping the points (i, 0, 0) and (i, 0, 1) for i = 1, 2, ..., n fixed. In the
piecewise linear setting, one can define this equivalence as the existence of
a finite sequence of some basic moves, as for polygonal knots. Throughout
this report, we shall refer to the whole equivalence class of a braid when
mentioning a braid. We shall say that a braid having n piecewise linear
curves is a braid with n strings or an n-braid.

Braids can be represented by diagrams just as links can as the following
theorem and its corollary show.

Theorem 11 Any polygonal link (and hence any link) can be represented
by a link diagram.

To convince ourselves, we can consider a polygonal link L in R3 consist-
ing of line segments l1, l2, ..., lm. Without loss of generality, assume that no
two of the line segments are parallel. If we pick a point x far from the link,
and project the link to a plane in front of it, we will have a diagram if and

6

Figure 1: A smooth braid and a polygonal braid

only if there is no line passing through x and going through three of the line
segments. Since there are only finitely many line segments, we may assume
that x is not on the extension to a line of any one of them. Observe that
for any y in 3-space, and two line segments which are not parallel, there
cannot be more than two lines passing through y and both of the line seg-
ments. Let L(li, lj , y) be the union of those lines. Observe that if we unite
K(i, j, k) =

⋃
y∈lk

L(li, lj , y) we get a subset of a two dimensional surface in
3-space. So,

⋃
i,j,k K(i, j, k) will not be covering the 3-space, which means

that we can find an x such that no line will pass through x and three of the
line segments.

Figure 2: The projection described above

Assume we have an n-braid, by the same argument, there must be such
a point x in the box [0, n] × [0, +∞) × [0, 1], modifying the beginning and
endpoints slightly, we get a diagram for the braid. Hence

Corollary 12 Any braid has a diagram.

4 Braiding of a Link

The closure of a braid is the link formed by joining the points (i, 0, 0) with
(i, 0, 1) for each i as in this figure:

The closure operation gives us an important connection between braids
and links. The following theorem of Alexander shows that this connection

7

Figure 3: The closure of a braid

is quite strong.

Theorem 13 (Alexander) Every link is ambient isotopic to the closure of
a braid.

In order to prove the theorem, we start with the following definition.

Definition 14 An oriented polygonal link diagram is said to wind around
a point x ∈ R2 if every line segment in the link diagram has a positive
orientation with respect to the point x (i.e. counterclockwise orientation
where the center is taken to be x).

Figure 4: An example of a link diagram that winds around a point x and
how one can see such a link as the closure of a braid

Observe that if a given link winds around any point, then we can form a
braid which has the link as the closure. So it suffices to prove the following
theorem in order to prove Theorem 13

Theorem 15 Any link has a diagram which winds around a point.

Proof: We shall describe an algorithm that terminates and gives an equiv-
alent link that winds. Assume we are given the diagram of a polygonal
link:

8

• 1 pick any point x not on any of the the line segments (or on their
extension to lines) in the diagram and give the link an orientation.

• 2 do the following as long as the last obtained link does not wind
around x

– (i) find a line segment l of the diagram that is not positively
oriented with respect to x

– (ii) if l has no crossings, then replace l with two line segments such
that they both go over or both go under all the other line segments
they intersect, and l and the two newly added line segments form
a triangle that contains x. If the line segment contains a single
crossing on which l goes over, do the same but with the two new
line segments going over all the other line segments they intersect,
and similarly with undercrossings if l goes under. If l contains
more than one crossing, break l apart into line segments such
that each part contains only one crossing and do the above for
each of them.

Observe that at each time ”(ii)” is used, the number of edges that is not
positively oriented with respect to x is reduced by one. So this algorithm
terminates, and since it terminates only when there are no non-positively
oriented edges, the last link obtained must be winding around x. Thus,
every link can be turned into the closure of a braid. Thus, any linked is
ambient isotopic to the closure of some braid. 2

Observe that this algorithm runs in polynomial time. If we took the
link as a set of line n segments with indications of over and under crossings
between each pair of line segments, it would take O(n) time to find a neg-
atively oriented line segment, O(n) time to find the segments it intersects,
O(n2) time to break it into a set of segments if necessary and O(n) time to
create the two new line segments in the algorithm if necessary. Also since
two line segments can have at most one intersection, (so we may not reach
large numbers of line segments when breaking some line segments) For a
more formal addressing of matters of complexity, see Section 2.

Figure 5: The above algorithm

9

It is clear that if we define a map κ : Braids → Links taking a braid to
its closure; then this map preserves equivalence. But κ is not injective, as
we can see in the figure below.

Figure 6: Two non-equivalent braids the closures of which is the unknot

5 The Braid Group Bn

Let Bn be the set of equivalence classes of n-braids. Define a multiplication
operation Bn × Bn → Bn as the operation taking two braids a and b to
the braid formed by connecting the ith ending point of a to the ith starting
point of b for i = 1, 2, ..., n. It is clear that this operation is well-defined
and that it is associative. It has as identity element the braid formed by
linear curves. Also, every braid has an inverse with respect to this operation
because if we just take the mirror image of the braid with respect to the
xy-plane and translate, we get the inverse. So Bn is a group.

Figure 7: The group operation of Bn

Let σi, for 1 ≤ i < n be the element of Bn which interchanges the ith
string with the (i + 1)th, with the ith string overcrossing and keeps the
others fixed.

Theorem 16 Bn is generated by the elements σi.

The result is intuitively clear but we should say that any n-braid can be
represented with a diagram which is vertically divided into a finite number
of parts at each of which only two strings are exchanged and the others are
fixed.

10

Figure 8: One of the standard generators σi of Bn

Figure 9: A polygonal knot which is equal to σ−1
1 σ−1

2 σ−1
2 σ−1

1

Remark One can make a polynomial time algorithm that transforms a
given diagram to a multiplication of σi’s. If we are given a braid diagram,
we can just order the crossings from top to bottom, moving some of the
crossing slightly upwards as necessary. In general we shall think that our
input string consists of a string of the generators σi when we would like to
devise algorithms about braids.

Observe that braids satisfy:

(i) σiσj = σjσi for i and j such that |j − i| > 1

(ii) σiσi+1σi = σi+1σiσi+1for 0 ≤ i < n− 1

(i) is usually referred to as the far commutativity relation and (ii) is
usually referred to as the braid relation. Actually, these relations are the
defining relations of Bn, that is, if two braids are the same, they can be
transformed to each other using these relations. More precisely, we have the
following.

Theorem 17 (Artin’s theorem) Bn is isomorphic to the group

〈σ1, σ2, ..., σn−1 |σiσj = σjσi for all i and j (1)
such that |j − i| > 1; and (2)
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n− 1〉 (3)

11

From now on, we shall see Bn simply as the group in the last theorem.
Let Sn be the symmetric group on n letters. Now consider a map π : Bn →
Sn defined as follows. For b ∈ Bn, the corresponding element π(b) is given
by

π(b)(i) = b(i) for i = 1, ..., n

where b(i) is the place where ith string ends in the braid b. Observe that
π(σiσj) = π(σi)π(σj), so, since Bn is generated by the σi, π is a group
homomorphism.

Definition 18 The group of pure braids Pn is the kernel of the map π de-
fined above.

Pi is henceforth the subgroup of Bn consisting of the elements that have
each string end at the same place they started. By the first isomorphism
theorem, we have that Pn ¢ Bn and Bn/Pn

∼= Sn.

Figure 10: One of the generators bi,j of Pn

An induction on the number of strings of the braid shows

Proposition 19 The pure braid group is finitely generated by the elements

bi,j = σ−1
i σ−1

i+1...σ
−1
j−1σjσjσ

−1
j−1...σ

−1
i (4)

for 0 ≤ i < j < n.

6 The word and conjugacy problems in Bn

Assume we are given a group that is generated by finitely many elements
which behave according to a finite set of rules, just as in (1). The word
problem is an algorithmic problem to determine whether two strings (words)
of elements of a fixed generating subset of the group (which represent their
multiplication) represent the same element or not. In general, the problem

12

was proven to be unsolvable for arbitrary groups. That is there does not
exist an algorithm which would take any finite set of generators and relations
between them and words and give the answer to the question whether the
two given strings represent the same element of the group or not. However,
the word problem sometimes has a solution for some fixed groups. And the
braid group is one of the groups for which the word problem is solvable.
There actually is an efficient O(n2) algorithm to solve it.

We focus on the braid group versions of the word and conjugacy prob-
lems. Here are the formal definitions.

Definition 20 (WORD)
Instance: Two words w1 and w2, given in terms of the standard gener-

ators of Bn

Question: Do w1 and w2 represent the same element in Bn?

Another important problem that we shall discuss is the conjugacy prob-
lem.

Definition 21 (CONJUGACY)
Instance: Two words w1 and w2, given in terms of the standard gener-

ators of Bn such that the elements represented by w1 and w2 are known to
be in the same conjugacy class.

Question: What is c ∈ Bn such that cw1c
−1 = w2?

Observe that the conjugacy problem is not stated as a decision problem,
but one can create a related decision problems asking if the length of a word
representing c is of length less than or equal to some k and asking if the ith
generator in that word is σj . Using these, the same information could still be
extracted in polynomial time if we could find a polynomial time algorithm
that would be able to compute c as a word and print it.

The solvability of the word problem in Bn was originally proven by Artin
through his ”combing” algorithm. A polynomial time solution to this prob-
lem was first given by Thurston [5].

Observe that the word problem is actually the braid analogue of the
KNOT EQUIVALENCE PROBLEM which seems to be a lot harder [7].

Dehornoy’s algorithm for the word problem is an easy to implement and
efficient algorithm, we start describing it with the following definition.

Definition 22 A word ω is said to be reduced if for any i such that ω is
of the form:

ω1σiω0σ
−1
i ω2 (5)

or of the form
ω1σ

−1
i ω0σiω2 (6)

where ω1, ω0, ω2 are substrings, there exists some j < i such that σj or σ−1
j

is in w0.

13

For example, the string σ4σ3σ
−1
5 σ−1

4 is reduced because there is a σ3

between the σ4 and σ−1
4 , but σ3σ4σ5σ

−1
3 is not reduced since there is no σj

with j < i between the σ3 and σ−1
3 .

Definition 23 Let a word ω be as in (5), with σj−1 as the element with
the highest index to appear in w0. Then the Dehornoy reduction function R
takes ω to

ω0σ
−1
i+1σ

−1
i+2...σ

−1
j−1f(w0)σj−1...σi+1w2

where f changes the σk to σk+1 and σ−1
k to σ−1

k+1 for i < k < j; and similarly
for words as in (6).

Figure 11: Dehornoy’s reduction function w 7→ R(w)

Given two strings in terms of the standard generators of Bn, Dehornoy’s
algorithm is to apply the R function to both strings until they become
reduced. At that point, if the two strings are the same, then the words
represents the same braid. In other words, the reduced word of a braid is a
complete invariant. We shall not prove the following theorem because it is
long and has quite a few technicalities:

Theorem 24 Dehornoy’s algorithm terminates and the reduced word of a
braid is a complete invariant of braids.

Observe that this algorithm takes a braid to an equivalent braid. This
algorithm is conjectured to run in quadratic time. Experiments show that
it is likely that it does so. But there is no current bound on the number of
applications of the R function required to make a word reduced. However,
there is a polynomial-time algorithm for the word problem.

There are interesting problems in combinatorial group theory about the
braid group. A braid word w is said to be σ-positive (or respectively σ-
negative) if the σi with minimal index appearing in w appears only as σi

(respectively as σ−1
i). An open problem of Dehornoy is to prove or disprove,

for every fixed n, the existence of a constant cn such that every x ∈ Bn is
equivalent to a σ-positive or σ − negative word of length at most cn.

14

For example, let us reduce the word σ1σ2σ3σ
−1
1 σ−1

3 σ−1
2 using this algo-

rithm (the substrings in parentheses represent the substrings σiw0σ
−1
i as in

(5) or (6)).

w = (σ1σ2σ3σ
−1
1)σ−1

3 σ−1
2

R(w) = σ−1
2 σ−1

3 σ1σ3(σ2σ
−1
3 σ−1

2)
R2(w) = σ−1

2 σ−1
3 σ1σ3σ

−1
3 σ−1

2 σ3

On the other hand, the conjugacy problem for braid groups has been
shown by Garside [6] to be solvable. But no polynomial time solution is
known.

7 Braid groups and cryptography

Cryptography is the study of methods for exchanging information such that
it will not be understood by third parties. A cipher is an algorithm for
encryption and decryption. The way a cipher works is usually controlled by
a key.

Symmetric key ciphers use the the same key for encryption and decryp-
tion. But it is unsafe to exchange a key through an insecure channel. Public
key ciphers use different keys for encryption and decryption. In public key
cryptography, a person, say Alice, has a public and a private key. Alice
publishes the public key or sends it to another person, say Bob, she wants
to receive a message from. Then Bob encrypts his message using an en-
cryption algorithm that has the property that it is very hard to decipher
the encrypted message without knowing Alice’s private key. So it is very
hard for a third party to decipher the encrypted message because only Alice
knows her private key. An important point in this method would be that
it should be vary hard to understand what the private key is knowing the
public key. The most popular method of this kind is the RSA2 which relies
on the difficulty of factoring integers. Public key cryptography, and espe-
cially the RSA algorithm is used in many applications such as e-commerce
and military/diplomatic correspondence.

Usually, public key cryptography is used to create a shared secret key
that will be used with a symmetric cryptosystem because known public key
cryptosystems are a lot slower than symmetric cryptosystems (such systems
are called hybrid cryptosystems). For this purpose, systems that provide
just a shared secret key are also referred to as public key cryptosystems.

Here, we describe methods of public key cryptography that use the diffi-
culty of the conjugacy problem for braid groups. Note that it is not known
whether the difficult problems above are really difficult or not but they are

2named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman

15

thought to be so. The following protocol was proposed by Anshel, Anshel
and Goldfield [1].

Let Alice and Bob be the two parties that would like to exchange infor-
mation. Let them agree on some fixed integer n. Alice and Bob each pick a
subgroup of Bn, ΓA and ΓB, say

ΓA = < s1, s2, ..., sr1 >

ΓB = < t1, t2, ..., tr2 >
(7)

which will be their public keys. Now, Alice picks an element a = si1si2 ...sij ∈
ΓA and Bob picks and element b = ti1ti2 ...tik ∈ ΓB, (these elements are
among the generators). They send each other the sets of pairs:

{(t1, at1a
−1)...(tr2 , atr2a

−1)} (8)
{(s1, bs1b

−1)...(sr1 , bsr1b
−1)} (9)

Using this information, Alice can compute

(bsi1b
−1)(bsi2b

−1)...(bsijb
−1) = bab−1 (10)

and Bob can compute:

(ati1a
−1)(ati2a

−1)...(atika−1) = aba−1 (11)

Using these, Alice and Bob can both compute the commutator bab−1a−1

which is their shared secret. Using this shared secret, they can produce a
shared key and communicate safely.

The second protocol we describe was proposed by Ko et al. [8] We first
need the following definition.

Definition 25 In B2n, the subgroups

LB2n = < σ1, ..., σn−1 > (12)
UB2n = < σn+1, ..., σ2−1 > (13)

are called the lower and upper braid groups.

Observe that elements of these two subgroups commute with each other
and that UB2n

∼= LB2n
∼= Bn.

Alice and Bob agree on some fixed integer n and some x ∈ B2n, these
are the public keys. Then Alice chooses an element a ∈ LB2n and sends
ya = axa−1 to Bob; and Bob chooses an element b ∈ B2n and sends yb =
bxb−1 to Alice. Using what they received, Alice and Bob can compute

ayba
−1 = abxb−1a−1 = baxa−1b−1 = byab

−1 (14)

16

which will be their shared secret key. Observe that a solution to the word
problem must be used in both of the above methods because the elements
Alice and Bob find in the end are equal as braids, but they may not be equal
as words, so Alice and Bob must use a reduction algorithm (for example,
Dehornoy’s algortihm) in order to make sure they generate the same secret
key.

These methods can be generalized for many finitely generated groups for
which there is an efficient solution to the word problem but the conjugacy
problem is hard to solve. But after the publication of these protocols, it has
become apparent that the conjugacy problem is not as hard as anticipated
for the braid group and that several successful methods to attack such cryp-
tosystems can be made. For a survey of these attacks see [9]. But research
on algebraic methods for public key cryptography is still active and it is not
seen to be impossible that a better protocol can be discovered.

8 MINIMAL BRAIDS

The problem MINIMAL BRAIDS is the problem of deciding whether, for
a given word in the braid group, there exists a shorter braid representing
the same braid or not. But we are more interested in the negation of this
problem, which is:

Definition 26 (NON-MINIMAL BRAIDS)
Instance: A word in terms of the standard generators of Bn

Question: Is there a shorter word representing the same braid?

Lemma 27 NON-MINIMAL BRAIDS is in NP

Proof: We know that the word problem is in P. A verifier for this problem
would take two words, and check that the second word is indeed shorter than
the first and that these words represent the same braid using the polynomial-
time algorithm for the word problem.

In fact we have the following.

Theorem 28 NON-MINIMAL BRAIDS is NP-complete.

Which means that MINIMAL BRAIDS is co-NP. The proof of this fact
is due to Paterson and Razborov [10], who polynomially reduce the problem
a problem about strings over an alphabet Σ = 1, 2, ..., r and permutations,
which is NP-complete; to MINIMAL BRAIDS by associating each string
with a particular braid. A complete proof is unnecessary for the purposes
of this paper.

17

9 Conclusion

The study of algorithmic problems on braids is far from complete. It is
not known if there can or cannot be a polynomial-time solution to the con-
jugacy problem. Or even if the conjugacy problem is in NP. There is no
known upper bound on the number of reductions one has to apply to re-
duce a given word to its reduced form using Dehornoy’s algorithm. We have
achieved even less satisfying results with computational problems concern-
ing knots and links. Through Alexander’s theorem and Markov’s theorem,
some computational results with braids can lead to solutions to harder prob-
lems concerning knots and links. Also, with recent applications of knot and
braid theory to different fields, the study of braids (and especially the study
the braid group for computational purposes) has attracted a lot of interest.

References

[1] Iris Anshel, Michael Anshel, and Dorian Goldfeld. An algebraic method
for public-key cryptography. Math. Res. Lett., 6(3-4):287–291, 1999.

[2] E. Artin. Theory of braids. Ann. of Math. (2), 48:101–126, 1947.

[3] Patrick Dehornoy. A fast method for comparing braids. Adv. Math.,
125(2):200–235, 1997.

[4] Patrick Dehornoy. Braid-based cryptography. In Group theory, sta-
tistics, and cryptography, volume 360 of Contemp. Math., pages 5–33.
Amer. Math. Soc., Providence, RI, 2004.

[5] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F.
Levy, Michael S. Paterson, and William P. Thurston. Word processing
in groups. Jones and Bartlett Publishers, Boston, MA, 1992.

[6] F. A. Garside. The braid group and other groups. Quart. J. Math.
Oxford Ser. (2), 20:235–254, 1969.

[7] Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computa-
tional complexity of knot and link problems. J. ACM, 46(2):185–211,
1999.

[8] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju-sung
Kang, and Choonsik Park. New public-key cryptosystem using braid
groups. In Advances in cryptology—CRYPTO 2000 (Santa Barbara,
CA), volume 1880 of Lecture Notes in Comput. Sci., pages 166–183.
Springer, Berlin, 2000.

[9] Karl Mahlburg. An overview of braid group cryptography.
www.math.wisc.edu/˜boston/mahlburg.pdf, 2004.

18

[10] M. S. Paterson and A. A. Razborov. The set of minimal braids is
co-NP-complete. J. Algorithms, 12(3):393–408, 1991.

[11] Michael Sipser. Introduction to the Theory of Computation. Interna-
tional Thomson Publishing, 1996.

[12] A.B. Sossinsky V.V. Prasolov. Knots, Links, Braids and 3-Manifolds,
Translations of Mathematical Monographs Vol. 154. Amer. Math. Soc.
Providence, RI, 1997.

[13] D. J. A. Welsh. Knots and braids: some algorithmic questions. In
Graph structure theory (Seattle, WA, 1991), volume 147 of Contemp.
Math., pages 109–123. Amer. Math. Soc., Providence, RI, 1993.

19

