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Introduction

The idea of knot factorization arose quite naturally while Alexander and Briggs
were trying to classify all knots (see On types of knotted curves, Ann. Math., 28
(1926/27), 562-586).  They noticed that one does not need to classify all knots, but rather
only those knots that cannot be made up of smaller pieces. This motivates the following
definitions:

Definitions: Connected Sum:  To form the connected sum of two knots, cut each knot at
any point and join the boundaries of the cut, keeping orientations
consistent.  Notice that the connected sum is independent of the location of
the cut.

Factoring:  To factor a knot into two components, select a sphere that
intersects the knot (transversely) at two points, and separate into two
components.  Then join the two loose ends of each knot with some path in
the sphere.  Notice that unlike the connected sum, this operation depends
on the sphere that one chooses to factor the knot.

A knot is called prime if it can not be represented as a connected sum of
two knots such that both of these are knotted.  Any knot which is not prime
is called composite.

The standard table of knots and links only classifies prime knots and links, which
makes the problem seem much easier.  However, before it makes sense to only classify
prime knots, it needs to be verified that composite knots are in some sense uniquely
determined by their prime factors.  Note that given any knot, one can factor it recursively
into smaller and smaller components, until the resulting components are prime.
Schubert’s paper “Die eindeutige Zerlegbarkeit eines Knoten in Primeknoten” S.-B.
Heidelberger Akad. Wiss.  Math.-Nat.  Kl 3 (1949) was the first to demonstrate that if
decomposes a knot into prime factors, the factorization is unique up to their order.



The intention of this paper will be to demonstrate the existence of prime knots and
that the factorization of knots into prime factors is unique up to the order of the operation.
To show existence, we will use a knot's Tgenus,T an additive knot invariant.  Although there
are shorter ways to show the existence of prime knots, the use of the genus will allow us
to show that the unknot is not the connected sum of two knots.  This argument is what
gives hope that there might be a unique factorization into prime components because no
component of a knot can be “cancel” another component of the knot.  Then, we present
an argument similar to the one Schubert gave to show the uniqueness of the prime
factorization.

Existence of prime knots:

The quickest way to show that there are prime knots is to show that any knot that
can be embedded into the torus is prime.  The way to do this is to first homotope a knot
embedded into the torus into a standard form with straight lines.  (Here the torus is
represented as a rectangle with opposite sides identified.)

1)    becomes        2)

and finally we get:           3)

Notice that no matter how we try to intersect the torus with a sphere, we cannot
obtain a factorization into two prime components.  A sphere whose intersection with the
torus looks like a circle (on the diagram above) with two intersection points with the knot
can only determine the unknot.  A sphere whose intersection looks like two vertical or
horizontal lines cannot intersect the knot at exactly two points.  Hence we cannot get a
valid factorization into two nontrivial components.

This short argument tells us that looking at the structure of (compact) surfaces that
a knot can be embedded into might tell us something about the structure of the knot.
Before considering surfaces that a given knot can be embedded into, let’s consider
surfaces that have the knot as a boundary.

Definition: A Seifert surface SBK Bof a knot K is an orientable surface (in SP

3
P) that has

boundary K.



Seifert developed the following algorithm that constructs the diagram of a Seifert surface
from the diagram of a knot:

1) Given a projection of a knot, orient it, and resolve all crossings, by joining the
incoming segment from one strand to the outgoing component of the strand
that crosses it.  This will result in a collection of circular components called
Seifert circles.

2) Now consider each Seifert circle as the boundary of a disk at a different level
in 3-space.

3) Finally, reconnect the disks where the crossings were with a strip, giving it a
half-twist.  We will refer to these strips as bridges.  The resulting surface will
have the knot as its boundary.

UExampleU:

            

Now let’s verify that the surface that we have just constructed is orientable.  Note
that we can two-color the surface across any bridge, whether the Seifert circles that are
being connected are nested or not.  It is quite easy to see that if the two circles that are
being connected are nested they have the same orientation and if they are not nested they
have opposite orientations.  Assign a consistent coloring to the two sides of the surface in
the following way:

Top Bottom
If the Seifert circles run clockwise: dotted lined
If the Seifert circles run counterclockwise: dotted lined

                          
This diagram shows that the 2-coloring of the diagram that we defined above

remains consistent across any bridge, and therefore the entire surface can be 2-colored
consistently.  Hence it is orientable.

This algorithm is simple to implement, but provides a very important result: any
knot is the boundary of some orientable surface.  Now, by compactifying this orientable
surface, we obtain an orientable compact surface in which the knot is embedded.  This



means that it will make sense to define knot invariants that are related to the surfaces in
which a knot can be embedded.

Definitions: The associated compact surface ŜK of an orientable surface SK is obtained
by “sewing” a disk along each boundary component.  (This is unique up
to homotopy).

Informally speaking, compact surfaces can be classified up to homotopy by the
number of “holes” that they have.  These “holes” are holes in the sense of a torus or a
coffee cup, not puncture holes in a 2-dimensional surface.

The genus of a compact surface is the number of “holes” that it has.

The genus of a knot K is the minimal genus over all associated compact
surfaces of all Seifert surfaces of K.

Remark:  It is quite possible that the associated compact surface of minimal genus is
cannot be obtained by the algorithm above.  

In order to compute the genus of a surface, we’ll use the Euler Characteristic of a
surface S, which we’ll denote by χ(S).  To obtain the Euler Characteristic, we first need to
triangulate our surface.

Recall that a triangulation is a division of our surface into 2-simpleces (=triangles)
in such a way that the only intersections are 1-simpleces (=edges) shared by at most two
2-simpleces.  Less formally, we make a model of our surface that is made up of triangles
that are glued along the full length of their edges, and at most two triangles share an edge.

For a triangulation of the surface S, let VS = #vertices, ES = #edges, FS = #faces.

Then  χ(S) = VS – ES + FS (1)

Now, let’s relate the genus of a surface to its Euler Characteristic.  We do this
inductively by beginning with a sphere (genus 0) and increasing its genus by adding one
torus at a time.

First, compute the Euler Characteristic of the connected sum of two triangulated
surfaces.  The connected sum of surfaces works exactly like the connected sum of knots.
Remove a disk from each of the surfaces, and connect the boundaries.  In order to
simplify matters, the disk that we choose to remove from each surface will be one of the
triangles from the triangulation.  This will result in a triangulation of the new surface.
We will lose three vertices, three edges and two faces from the earlier triangulations.  

Thus:
χ(S1#S2) = (V1 + V2 – 3) – (E1 + E2 – 3) + (F1 + F2 – 2) 

   = χ(S1) + χ(S2) – 2 (2)

Now, do induction on the genus g of a surface to obtain the following relation
between the genus and the Euler characteristic of a Surface:



χ(S) = 2 – 2g   g(S) = 1- χ(S)/2 (3)

To avoid having to triangulate compact surfaces, notice that triangulating the
compact surface ŜK is the same as triangulating the Seifert surface SK and then
triangulating the disk.  Triangulate the disk in the following way.  Add one vertex and
then connect it to each of the vertices that lie along the knot.  We add one vertex, n edges
and n faces, and therefore:

  χ(ŜK) = χ(SK) + (1 – n + n) (4)

 and then using (3)  g  S K =1− χ  S K 1
2

(5)

Since often we are considering surfaces that were obtained using Seifert’s
algorithm, the following relation will save us from having to triangulate surfaces once
we’ve already gone through the algorithm.

UPropositionU: Let s be the number of Seifert circles (as defined in the algorithm) and c
be the number of crossings of a projection of a knot K.  Then:

g  S K =1− s−c1
2

(6)

Proof:  Choose a triangulation of the surface SBK obtained from the algorithm that has
the following properties:

-There is one vertex in the middle of each Seifert circle, and n vertices on the
Seifert circle, and n edges connecting the middle vertex to the others.
-There are vertices at each corner of each bridge, and one edge along the
diagonal, as in the following diagram.  The dark regions are Seifert circles and
the light region is a bridge.

With this triangulation, each Seifert circle contributes n+1 vertices, 2n edges and n faces.
The total contribution of each Seifert circle to χ(SK) is: (n+1) – (2n) + n = 1.
Each bridge will add no extra vertices, 3 extra edges and two extra faces.  The total
contribution of a bridge to χ(SK) is: 0 – 3 + 2 = -1.
Putting these two facts together we get:

χ(SK) = 1∙s + (-1)∙c = s – c ,



and by (5)            g  S K =1− s−c1
2

 . (7)

□

We now have the machinery to prove the main result that will allow us to draw
conclusions about knots based on their genus: the genus is an additive invariant under the
connected sum operation.

UTheoremU: For two knots KB1B    and KB2

B   
g(K1# K2) = g(K1) + g(K2) (8)

To prove this result, first construct minimal Seifert surfaces ŜK1 and ŜK for each of the
knots K1 and K2.  Triangulate them in such a way that at least two vertices appear “close
enough” along each knot, connected by a small piece of the knot.  Then take the direct
sum of the surfaces using triangles that include the chosen vertices, and that lie in SK1 and
SK2.

The important thing to notice is that the resulting surface is a Seifert surface for
K1#K2.  We have taken the direct sum of the two knots lying on the surface, by cutting
them between the two chosen vertices, and identifying the boundaries.  The surfaces SK1

and SK2 lie on the same side of the resulting knot.  They have been connected along the
two edges of each triangle that were inside the surfaces, and now form a single surface.
The resulting surface that has K1#K2 as a boundary.  The disks that we sewed on to make



ŜK1 and ŜK2 have been joined to make one big disk.  This big disk is “sewed” along the
boundary of K1#K2 and forms an associated compact surface of K1#K2.  

Now, by (2)    χ(ŜK1# ŜK2) = χ(ŜK1) + χ(ŜK2) -2 .

Using (3):

Since   ŜK1#
ŜK2 is an

associated compact surface to a Seifert surface for K1# K2, 

g(K1# K2) ≤ g(K1) + g(K2).

To establish the other inequality, build a Seifert surface Ŝ(K1# K2) of minimal genus for K1#
K2.  Then select a sphere that will separate the knot into its factors.  It can be selected so
that all of its intersections with Ŝ(K1# K2) are 1-dimensional.  Triangulate the surface and the
interiors of the intersections between the surface and the dissecting sphere.  Then split the
surface into Ŝ1 and Ŝ2, “capping off” all holes with the interiors of the intersections.  The
resulting surfaces will be associated compact surfaces to Seifert surfaces of the knots K1

and K2.  The disk is split into two disks, and the Seifert surface into two Seifert surfaces.  
We again examine the resulting triangulation.  Consider the case when the

intersection with the sphere is a circle.  All other cases (multiple cirles, that might be
nested) involve a similar algebraic manipulation of the Euler characteristic.

χ(Ŝ1) + χ(Ŝ2) = (V(S1 # S2) + n + 2) – ( E(S1 # S2) +3n) +  (F(S1 # S2) + 2n)
         
         = χ(Ŝ(K1#K2)) + 2

Using (3):

g  S K 1¿ S K 2 =1−
χ  S K 1  χ  S K 2 −2
2

=1− χ  S K 1 
2

1− χ  S K 2 
2

=g  S K 1 g  S K 2 .



g  S 1 g  S 2 =1−
χ  S 1 
2

1−
χ  S 2 
2

¿2−
χ  S 1  χ  S 2 
2

¿2−
χ  S K1#K2  2
2

¿1−
χ  S K1#K2  
2

=g S 1 #S 2 
Hence g(K1) + g(K2) ≤ g(K1# K2) ,

and the argument is complete.

Proposition: A knot has genus 0 if and only if it is the unknot:

The unknot’s Seifert surface is a disk, therefore its associated compact surface is a
sphere.  As we’ve seen above:  g =  0 (by (7)).
On the other hand, if g = 0, the knot’s associated compact surface is a sphere.
Therefore the knot can be embedded in a sphere.  Cut the sphere along the knot,
and that will result in two disks.  The disk must be the knot’s minimal Seifert
surface, whose boundary, K is the unknot.

□

Corollary: Knots do not have inverses under the direct sum operation.

Any nontrivial knot has strictly positive genus.  Therefore connected sum of two
nontrivial knots will also have strictly positive genus, and cannot be the unknot.

Example: Let’s compute the genus of the trefoil.  To do this, begin Seifert’s
algorithm:



Then, by (7), we only need to count the number of Seifert circles and the number of
intersections in the diagram:

g(ŜK) = 1- (2-3 +1)/2 = 1

We know that the trefoil is nontrivial, and by the remark above, its genus is strictly
greater than 0.  The computation above bounds the genus of the trefoil by 1, therefore the
genus of the trefoil must be 1.  

That means that if the trefoil is the connected sum of two knots, one must have
genus 1 and the other genus 0.  This is a trivial factorization, and we conclude that the
trefoil is prime.  We have now shown the existence of prime knots.

Uniqueness

The following definitions do not introduce any new ideas.  They will serve as
shorthand as we build the uniqueness argument.

Definition: A dissecting sphere system S of a knot K is a collection of nonintersecting
spheres that “assign one prime factor per region” of 3-space.  When the
knot is factored along these spheres, we get a factorization into prime
components.

We’ll call the region that a sphere si determines int(si) This is the region of
3-space between the sphere si  and all spheres inside of si. On the diagram above
int(s1) is the region that determines K1.

We say that S ~ S’ if S and S’ determine the same factorization of K.

Let’s now attack the main result:

Theorem: Any two factorizations of a knot K determines the same prime knots.

We argue that for any S and S’ that dissect a knot K into prime factors, S ~ S’.  We will
only sketch the proof here.  (To make the proof rigorous, one needs to introduce lots of



notation to describe the rather intuitive idea of having one prime factor in each “region on
3-space”, where a region of 3-space is a region in between a sphere and all spheres that
are inside it.)  The argument is built by doing induction on the number of components in
the intersection of the two dissecting sphere systems.
If n = 0: To argue here we’ll do induction on m + m’, the sum of the number of

spheres in the two dissecting sphere systems.
The base case is trivial.
For the inductive step, select a sphere si that is innermost with respect to S.
It must be outermost with respect to some s’j in S’, and hence determine
the same prime component.  Put S’’ = S’ – s’i  s’j.  Then, S’~S’’.  Now
factor out the prime component inside s’i.  The remaining knot must have
(m + m’ – 1) components since the s’i does not determine the unknot.
Apply the induction hypothesis to each of those pieces, and we get the
same prime factors on each of them, and hence S’’~S.  We conclude that
S~S’’~S’.

If n > 0: Assume the result is true for (n – 1) components.  Reduce the number of
components as follows:

Choose a pair of intersecting spheres s and s’ in S and S’ respectively.  Consider
the regions int(s) int(s’) and int(s’)\int(s).  They cannot both contain knotted
components since the knot in s’ is prime.  They cannot both determine unknots
since otherwise the resulting knot would be the unknot.  Replace s’ with ŝ’(one of
the dotted spheres on the diagram below), the sphere that contains a knotted
component.  We now have reduced the number of intersections by one, and by
induction, the proof is complete.

Conclusion:  The unique factorization of knots into prime components is an important
step in understanding knots because it is a drastic reduction.  Instead of having to look for
invariants of all knots, it suffices to look at invariants of prime components and how
those invariants behave under the connected sum operation.  It allows knot theorists to
focus their attention on smaller components that make up knots.  The proof also
simplifies the way in which one can look at knots: it doesn’t matter in which order one
tries to break a knot into prime components, the resulting factors will be the same.

The construction of Seifert surfaces was a useful tool in this argument.  Even
though it was a very geometric construction and is difficult to implement, the genus has
been used to distinguish between knots that had not previously been distinguished, which
makes it a useful invariant, as in the Kinoshita-Terasaka mutants [see Adams].  An
important question about Seifert’s algorithm still remains unsolved: which knots have a



projection such that when Seifert’s algorithm is applied to it yields a surface of minimal
genus?  All that is known is that alternating projections of alternating knots yield a Seifert
surface of minimal genus [see Gabai]
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