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Prime Factorization of Knots

Abstract

A knot is called prime if it can not be represented as a connected sum of two knots such
that both of these A ¥ notted. Using the notion of a Seifert surface of a knot, we define a
knot's genus, an additive invariant which allows to prove the existence of prime

knots. Then, after defining an equivalence relation on all possible ways of factoring a
knot, we will show that there is only one equivalence class. Hence we show that every
knot has a unique (up to order) factorization into prime components.

Definitions: Connected Sum:
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Factoring a knot:
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A knot is prime if it cannot be factored into two knotted components.

Existence of prime knots:

Definition: A Seifert surface Sk of a knot K is an orientable surface (in S3) that has
boundary K.

Seifert’s Algorithm:

1) Given a projection of a knot, orient it, and resolve all crossings.

2) Now consider each component as the boundary of a disk at a different level in
3-space

3) Finally, reconnect the disks where the crossings were with a strip, giving it a
half-twist.




Example:
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Orientability:

Note that we can two-color across any bridge, whether the circles are nested or not.

Top Bottom
If the Seifert circles run clockwise: dotted lined
If the Seifert circles run counterclockwise: dotted lined

Definitions:  The associated compact surface Sk of a surface Sk (orientable) is obtained
by “sewing” a disk along each boundary component. (Note that it is
unique up to homotopy).

The genus of a knot K is the minimal genus over all associated compact
surfaces of K.

In order to compute the genus of a surface, we use a surface invariant (under homotopy)
called the Euler Characteristic of a surface S, denoted x(S).

First, triangulate the surface S. Then count the number of Vertices, Edges and Faces.

Then xS)=V-E+F (D)
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Now notice that if we take the connected sum of two triangulated surfaces, we get the
relation:

A(S#S2) = x(S1) + x(S2) - 2 2)

And by induction on the genus g of a surface:
x(S)=2-2g © gS)=1-xS)/2 (3)

Now, to avoid having to triangulate compact surfaces, notice that:

%(Sk) = 1(Sk) +1 4)

and then using (3) g(§)=1- 1(—3% )

Proposition: Let s be the number of Seifert circles and ¢ be the number of crossings of a
projection of a knot K. Then:

X(Sk) =s—c (6)

Choose a triangulation so that the vertices are at the edge of each “strip”.
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Then xSk)=1*s+c(0-3+2)=s—-cC
and by (5) 28y =1-3=¢*!
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Theorem: g(Ki# Ky) = g(Kyp) + g(K2) (8)

First construct a minimal Seifert surface Sm and Sxofor the knots K, and Ko. Triangulate
them in such a way that at least two vertices appear “close enough” along each knot.
Then take the direct sum of the surfaces using a triangle that includes the chosen vertices.

Then, by (2) v(Sxi# Sx2) = 1Sk1) + xSk2) -2
Using (3)
g(§K1#§K2) =]- Z(SKI) +,§(SK2) -2
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= g(SAKl)'F g(SAl(z)
Since Sk;# Sk is a Seifert surface for Ki# Ko,
g(Kl# Kz) < g(KI) + g(KZ)

Now build a Seifert surface S(Kl# x2) of minimal genus for K;# K,. Then select a sphere
that will separate the knot into its factors. It can be selected so that all of its intersections
with Siki# k2) are 1-dimensional. Triangulate the surface and the interiors of the
intersections between the surface and the dissecting sphere. Then split the surface into S
and S,, “capping oft™ all holes with the interiors of the intersections.

Let’s examine the case when the intersection with the sphere is a circle. All other cases
are similar.

xS0 +%S2) = (Vsi#s2)+ n +2) — (Esi 452 +3n) + (Fis1 452 +2n)

= x(Ski#x2) + 2




Using (3):
xS 26
2
_, X80+ ()
2
o I(é(Kl# K2)+2
2

—1 Z(S(Kl# K2)
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g(Sn+g(S2)

g(Si#8S2)
hence g(Ky) + g(Kz) < g(Ki# K2)

and the theorem is proven.

Note that a knot has genus 1 if and only if it is the unknot:

For the direct statement g = 1- (1-0+1)/2=0 by (7)
For the indirect statement, 0 = 1-(x(Sk) + 1)/2 '(by (?)
=> x(Sk) =1 => Sy is a disc.

We conclude that knots do not have inverses under the connected sum operation.

Let’s compute the genus of the trefoil:

By (7) gK)=1-2-3+1)2=1

We conclude that the trefoil is prime.




Uniqueness

Definition: A dissecting sphere system S of a knot K is a collection of spheres that do
not intersect and that “assign one prime factor per region”

We say that S ~ S’ if S and S’ determine the same factorization of K.

We show that for any S and S’ that dissect a knot K S ~ §’, by doing induction on the
number n of components of SNS’.

Ifn=0: Notice that if SNS’ = @, S~S’, since we can interchange some of the
spheres to turn S into S’.

Kfn>0: Assume the result is true for (n — 1) components. Reduce the number of
components as follows:

Choose a pair of intersecting spheres s and s’ in S and S’ respectively. Consider
the spheres s N s’ and s’\ s. They cannot both contain knotted components since
the knot in s’ is prime. They cannot both determine unknots since otherwise the
resulting knot would be the unknot. Replace s” with §” and shrink it slightly. We
now have reduced the number of intersections by one, and by induction, the proof
is complete.




Conclusion:

Be aware that this theory does not distinguish knots that have different orientations. This
theory is in line with that that was used to classify all knots

Also, the notion of Seifert surface and genus is constructed in exactly the same way for
links as we have done for knots. The same goes for prime factorization of links.

The existence part of the proof can be shortened considerably in the following way:

All torus knots are equivalent to the standard torus knots that we saw in
homework 1. Draw the square with opposite sides identified in the proper way,
and embed the knot in the torus. Think about all of the ways that a dissecting
sphere can intersect the torus. There should not be any way to capture knotted
component.

An interesting proof that is not included here shows that when one applies Seifert’s
algorithm to alternating projections of knots, the resulting Seifert surface is of minimal
genus.




