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Abstract:   In this paper, I  will  give an introduction to fundamental  groups in a topological

space, and the application of it as a knot invariant, called the knot group.

Introduction to Fundamental Groups

Definition:  Let X and Y be topological spaces.  Let f: X → Y be a bijection.  If both the function

f and the inverse function:

f-1: Y → X

are continuous, then f is called a homeomorphism.

The condition that f be continuous says that for each open set U of Y, the inverse image

of U under the map f is open in X.

Definition:  If f and f’ are continuous maps from a topological space X into a topological space

Y, we say that f is homotopic to f’ if there is a continuous map F: X x [0,1] → Y such that

F(x,0) = f(x) and F(x,1) = f’(x) for each x.

The map F is called a homotopy between f and f’.

Moreover, we can consider a homotopy as a continuous deformation of the map f to the

map f’, as t represent the time from 0 to 1.

In particular, if we have X = [0,1] in the above definition, and same end points x0 and x1

for f and f’, we obtain:

Definition:  Two paths f and f’ with fixed end points x0 and x1 mapping the interval [0,1] into X,

are said to be path-homotopic, and if there is a continuous map F: [0,1] x [0,1] → X such that

F(s,0) = f(s) and F(s,1) = f’(s),

F(0,t) = x0 and F(1,t) = x1

for each s in [0,1] and each t in [0,1].  We call F a path-homotopy between f and f’.
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Path-Homotopy between f and f’:

For  this  paper,  we  will  only  be  looking  at  path-homotopy,  so  we  will  simply  call  it

homotopy for convenience.

Definition:  If f is a path in X from x0 to x1, and if g is a path in X from x1 to x2, we define the

product f ¿  g of f and g to be the path h given by the following equation:

h(s) = f(2s) for s in [0,0.5],

g(2s-1) for s in [0.5,1].

Geometrically, f ¿  g is the concatenation of paths f and g.

The  product  operation  on  paths  induces  a  well-defined  operation  on  homotopy  classes,

defined by:

[f] ¿  [g] = [f ¿  g].

Definition:  Let X be a topological space.  Let x0 be a point of X.  A path in X that begins and

ends at x0 is called a loop based at x0.  The set of homotopy classes of loops based at x0, with

the operation ¿ , is called the  fundamental group of X relative to the base point x0.  It is

denoted by π1(X,x0).

Definition:  A topological space X is path-connected if for any two points in X we can find a

path which connects them and entirely lies in X.

For path connected topological space we have the following theorem:

Theorem:  If X is path-connected and x0 and x1 are two points of X, then π1(X,x0) is isomorphic

to π1(X,x1).
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Thus, it makes sense to talk about the fundamental group π1(X) of a path-connected

topological space X without a reference to the base point.

Definition:  Let A be a subspace of X.  We say that A is a deformation retract of X if the identity

map of X is homotopic to a map that carries all of X into A, in such a way that each point of A

remains fixed during the homotopy.  This means that there is a continuous map H: X x [0,1] →

X such that 

(1) H(x,0) = x for all x in X,

(2) H(x,1) is in A for all x in X,

(3) H(a,t) = a for all a in A.

The homotopy H is called a deformation retract of X onto A.  The map r: X → A defined by the

equation r(x) = H(x, 1) is a retraction of X onto A, and H is a homotopy between the identity

map of x and the map j o r, where j: A -> X is the inclusion.

Example:  Consider R2\(0,0).  We assert that this space has the unit circle as a deformation

retract.  The retraction is shown in the picture below:

Definition:  Let h: (X,x0) → (Y,y0) be a continuous map.  Define

h*: π1(X,x0) → π1(Y,y0)

by the equation

h*([f]) = [h o f].

The map h* is called the homomorphism induced by h, relative to the base point x0.

Lemma:  Let f0, f1: (X,x0) → (Y,y0) be continuous maps.  If f0 and f1 are homotopic, and if the

image of the base point x0 of X remains fixed at y0 during the homotopy, then f0* = f1*.

Proof:  By assumption, there is a homotopy H: X x [0,1] → Y between f0 and f1 such that H(x0,t)

= y0 for all t.  It follows that if f is a loop in X based at x0, then the composition

[0,1] x [0,1] → X x [0,1] → Y

    (f x Id)    (H)

is a homotopy between f0 o f and f1 o f, and f is a loop at x0 and H maps x0 x [0,1] to y0.

Theorem:  The inclusion map j: Sn → Rn+1 – 0 induces an isomorphism of fundamental groups.

Proof:  Let X = Rn+1 – 0.  Let b0 = (1, 0, …, 0).  Let r: X → Sn be the map r(x) = x / ||x||.  Then r
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o j is the identity map of Sn, so that r* o j* is the identity homomorphism of π1(Sn,b0).

Now consider the composition j o r, which maps X into itself:

j o r:  X → Sn → X.

This is not the identity map of X, but it is homotopic to the identity map.  Also the homotopy H:

X x [0,1] → X, given by

H(x,t) = (1-t)x + tx / ||x||,

is a homotopy between the identity map of X and the map j o r.  It follows from the preceding

Lemma that the homomorphism (j o r)* = j* o r* is the identity homomorphism of π1(X,b0).

Theorem:  Let A be a deformation retract of X.  Let x0 be in A.  Then the inclusion map

j: (A,x0) → (X,x0)

induces an isomorphism of fundamental group.

Proof:  The proof is a generalization of the proof of the previous theorem.

Theorem:  (Seifert-Van Kampen Theorem)

Let X = U V, where U and V are open in X.  Assume that U, V, and U∩V are path connected.∪

Let x0 be in U∩V.  Let H be a group, and let

φ1: π1(U,x0) → H,

φ2: π1(V,x0) → H

be group homomorphisms.   Let i1,  i2,  j1,  j2 be the group homomorphisms indicated in the

following diagram, each induced by inclusion.

If φ1 o i1 =φ2 o i2, then there is a unique homorphism φ:π1(X,x0) → H such that φo j1 = φ1 and

φo j2 = φ2.

Basically the theorem says that if φ1 and φ2 are arbitrary homomorphisms that are “compatible

on U∩V,” then they induce a homomorphism from π1(X,x0) into H.

Example: (Fundamental Group of The Figure Eight Curve)
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Let X be the figure eight curve, and let the sets U, V in X be chosen as in the diagram above.

Thenπ1(U) is isomorphic to Z, and π1(V) is isomorphic to Z.  By the Seifert-Van Kampen

Theorem.  We conclude that π1(X) = Z x Z.

The Knot Group

Now we have defined fundamental groups in a topological space, we are going to apply it

to the study of knots and use it as an invariant for them.

Definition:  Two knots K1 and K2 contained in R3 are equivalent if there exists an orientation-

preserving homeomorphism h: R3 → R3 such that h(K1) = K2.

If  we compare two equivalent knots,  K1 and K2,  as topological  objects,  then R3\K1 is

homeomorphic to R3\K2.  Therefore, R3\K1 and R3\K2 have isomorphic fundamental groups.  In

fact, if we can prove that the fundamental groups π1(R3\K1) and π1(R3\K2) are not isomorphic,

then we know that the knots K1 and K2 are not equivalent.  This is one of the most common

methods to distinguish different knots, and the fundamental group π1(R3\K) is called the knot

group of K.

Theorem:  The knot group is an invariant of ambient isotopy.

Proof:   Recall  that  by  definition,  two  topological  objects  are  equivalent  if  they  are

homeomorphic.   It  is  clear  that  the  complements  of  a  knot  under  ambient  isotopy  are

homeomorphic, and homeomorphic topological spaces have isomorphic fundamental groups.

So the knot group is invariant under ambient isotopy.

In 1925, Wilhelm Wirtinger proved that given a knot diagram of a knot with n-crossings,

the knot group may be generated by a set of n (homotopy classes of) loops, one for each arc.

Let K be a knot, we can write down a presentation of π1(R3 \K) in the following way:  Select an

orientation of K.  Label the three arcs at a crossing with gi for distinct i’s.  For convenience,

we’re going to label gi, gj, gk as below:
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Following  the  picture  above,  define  the  relations  between  the  group  generators  as  the

following:

(1) gj = gk gi gk
-1 (-), (2) gj = gk

-1 gi gk (+).

Here (+), (-) denote the sign of the crossing.

The symbol gi represents the loop that, starting from a base point somewhere in the

complement of the knot, goes straight to the ith over passing arc, encircles it in a positive

direction  (with  linking  number  +1)  and  returns  straight  to  the  base  point.   The  resulting

presentation is called the Wirtinger presentation of the knot group.

Moreover,  it  is  possible to prove equation (1)  and (2),  where gj,  gk, gi are homotopy

classes of the loops described above.  The following is the proof for equation (1):

Proof:

gj = gk gi gk
-1 (-)

If  there  are  m  arcs  in  the  diagram and  n  crossings,  then  the  group  of  the  link  is

isomorphic to group G with this presentation:

G = <g1, g2, …, gm; r1, r2, …, rn>,

where G is the quotient of the free group on generators {g1, g2, …, gm} by the smallest normal

subgroup generated by the relations {r1, r2, …, rn}.

Example: (Trefoil)

Consider the trefoil:
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We get the following three relations:

g2 = g3 g1 g3
-1

g3 = g1 g2 g1
-1

g1 = g2 g3 g2
-1

And the group is given by the presentation:

G = <g1, g2, g3 | g2 = g3 g1 g3
-1, g3 = g1 g2 g1

-1>

We see here that only two relations are necessary.  In fact, we will prove later that a knot with

n crossings, at most n – 1 relations are actually needed.

Let Σn be the group of permutation of n elements.  Define a group homomorphism        φ: G →

Σ3 by:

g1 → (1,2), g2 → (2,3), g3 → (3,1),

where (i,j) in Σ3 denotes the element of the permutation group which switches i and j.

We can check that φ preserves the relations:

φ(g3 g1 g3
-1) = (3,1)(1,2)(1,3) = (2,3),

φ(g1 g2 g1
-1) = (1,2)(2,3)(2,1) = (3,1).

Moreover, one can easily check that φ is an isomorphism.  So, we can conclude that G is

isomorphic to Σ3. In particular, G is not abelian.

Next we will prove that the knot group of the unknot is infinite cyclic.

Theorem:  The knot group of the unknot is infinite cyclic.

Proof:  Let K denote the unknot in R3, and construct the Wirtinger presentation of the knot

group of K.  Choose a base point p in R3\K, then the class of a loop based at p and linking K

once is the generator of the group, say x. Any loop based at p which links K is homotopic to

some power of x.  A loop which does not link K is contractible in R3\K, hence homotopically

trivial.  So we can conclude that π1(R3\K, p) is the infinite cyclic group generated by x.

` p p
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x is a generator of the group x6 (The loop based at p isn’t contractible.)

Here is another way (using the Seifert-Van Kampen theorem) to prove that the group of

the unknot in R3 is infinitely cyclic.

Theorem:  The knot group of the unknot is infinitely cyclic.

Proof:  Consider the unknot circle in R3.  The first step is to obtain a decomposition of the 3-

sphere S3 into the following two pieces.  Let

A = {(x1, x2, x3, x4) in S3 | x1
2 + x2

2  x≦ 3
2 + x4

2},

B = {(x1, x2, x3, x4) in S3 | x1
2 + x2

2  x≧ 3
2 + x4

2}.

It is clear that A B = S∪ 3, and that

A∩B = {(x1, x2, x3, x4) in S3 | x1
2 + x2

2 = 1/2 and x3
2 + x4

2 = 1/2}.

It is clear that A∩B is a torus.  More precisely, it is the Cartesian product of the circles     x1
2 +

x2
2 = 1/2 and x3

2 + x4
2 = 1/2, lying in (x1, x2) and (x3, x4) planes respectively.

Also A and B are both solid tori.  We shall show this by constructing a homeomorphism.  First,

let

D = {(x1, x2) in R2 | x1
2 + x2

2  1/2}≦ be a disc,

S = {(x3, x4) in R2 | x3
2 + x4

2  1/2} be a circle.

Define a map f: D x S → A by:

f(x1, x2, x3, x4) = (x1, x2, 21/2x3[1 – (x1
2 + x2

2)]1/2, 21/2x4[1 – (x1
2 + x2

2)]1/2).

One can check that this is indeed a homeomorphism.  A similar construction holds for the set

B.  It is clear that the torus A∩B is the common boundary of the two solid tori A and B.

Now we consider the group of an unknot circle K in S3.  We can take K as the middle circle of

A:

K = {(x1, x2, x3, x4) in A | x1 = x2
 = 0},

then K is the unit circle in the (x3,x4) plane.  The boundary of A is a deformation retract of A\K.

Since the boundary of A in A∩B, it follows that B is a deformation retract of S3\K.  It is also

clear that the middle circle of B,

{(x1, x2, x3, x4) in B | x3 = x4
 = 0},
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is a deformation retract of B.  Therefore, the middle circle of B is a deformation retract of S3\K.

Hence S3\K has the homotopy type of a circle, and the group of K is infinite cyclic, by the fact

the fundamental group is preserved under deformation retracts.

Combining the two results from above, we now know that the trefoil and the unknot are not

equivalent since they have different knot groups.

Next we will compute the knot group for the figure eight knot.

Example: (Figure Eight Knot)

Consider the figure eight knot:

Let {1, 2, 3, 4} denote crossings, and {a, b, c, d} denote the group generators corresponding to

the overpasses.

Since we have 4 over passes, immediately we know there are at most 4 generators in the

group.  Moreover we can find all relations for this group in the Wirtinger presentation:

1:  c = a-1 b a, 2:  b = d a d-1,

3:  d = b c b-1, 4:  a = c-1 d c.

But we only need at most 3 of the relations out of the 4, so we can drop the 4th one out.  We

get:

c = a-1 b a,

b = d a d-1,

d = b c b-1 => d b = b c.

Next, 

b = d a d-1,

d b = b a-1 b a => b-1 d b = a-1 b a.

Then,

a d a-1 d a = d a d-1 a d.

Lastly, we obtain a representation of the knot group for the figure eight knot,

G = <a, d | a d a-1 d a = d a d-1 a d>.

Moreover, since the knot group for the figure eight knot only has 2 generators because we can

represent c = a d-1 a d a-1 and b = d-1 a d, it is not isomorphic to Σ3, the knot group of the trefoil.

So the figure eight knot is not equivalent to the trefoil.
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Theorem:  Let R3+ be the closed half-space defined by the inequality z  0, and let K be a knot≧

in  R3+.  Then π1(R3+\K, p) is the free group generated by {g1, g2,  …, gn}, where {g1, g2,  …, gn}

represent the elements corresponding to the overpasses {x1, x2, …, xn} of K respectively.

Proof:  In the proof, we shall use the trefoil as an example for the figure.

Let  K denote the union of overpasses of K together with the vertical line segments.  Then

clearly R3+\K and R3+\K have the same fundamental group.

For each over pass we build a vertical wall up from the plane z = 0 to fit exactly underneath

the arc, and thicken this wall slightly to get a three-dimensional ball.  We do it in such a way

that resulting balls B1, B2, …, Bn are disjoint.

Suppose we now remove the interior of each Bi, plus the interior of the horseshoe shaped disc

in which it meets the plane z = 0.  Then clearly the resulting space X is simply connected  (i.e.,

has trivial fundamental group.)  We shall build up R3\K as the union X U (B1\K) U … U (Bn\K).
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Any Bi – K is homeomorphic to a solid cylinder with its center line removed.  This deformation

retracts onto a disc minus its center point, and therefore has fundamental group Z generated

by a loop which links once around K.  Also, the intersection of Bi\K with X is homeomorphic to

a disc and is therefore simply connected.

Suppose we know that the fundamental group of X U (B1\K) U … U (Bi\K) is the free group

generated by g1,  …,  gi,  (where  g1,…,  gi are  the  generators  corresponding  to  arcs  x1,…,  xi

respectively.)  When we add in Bi + 1\K, Van Kampen’s theorem tells us that we need an extra

generator,  which  we  can  clearly  take  to  be  gi  +  1.   And  by  induction,  we  arrived  at  the

conclusion.

But as powerful as the fundamental group a tool to compare two spaces, it is still not a

complete invariant.  We will give the following example to show that two different knots that

have isomorphic knot groups.

Example: (The Square Knot and The Granny)

The square knot (i.e. the connect sum of a trefoil and its mirror image) can be represented by

the following diagram:

The Square Knot

If we take {a, b, c} to be the generators corresponding to the arcs as shown, we can obtain

presentations for the other arcs by the set of generators.

(b-1 a b)(b-1 a-1 b a b) = (b-1 a-1 b a b) b

=> a b = b-1 a-1 b a b b

=> a b a b = b a b b

=> a b a = b a b.

Then,

(c-1 a c)(b-1 a-1 b a b) = c (c-1 a c)

=> c-1 a c b-1 a-1 b a b = a c

=> a c b-1 a-1 a b a = c a c

=> a c a = c a c.

So the knot group of the square knot is:
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G = <a, b, c | a b a = b a b, a c a = c a c>.

Similarly, one can check that the granny (i.e. the connect sum of 2 trefoils) has knot group

isomorphic to the knot group of the Square knot.

The Granny

Moreover, one can easily check that the square knot and the granny are not equivalent, so this

shows that the knot group is not a complete knot invariant.

Conclusion

After establishing the basic knowledge about fundamental groups for a topological

space, we see the application of it (the knot group) as a knot invariant.  Though the idea of the

knot group is not entirely complicated, it is still a very sufficient and powerful invariant for knots

as shown in the theorems and examples provided in the paper.
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