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ABSTRACT: In this paper we introduce two generalized knot polynomials, the Kauffman
and HOMFLY polynomials, show that they are distinct invariants and show that the Jones
polynomial is a special case of each. We then use properties of the Kauffman polynomial
to prove invariance of the writhe of different alternating diagrams of an alternating link. 

Vaughn Jones’ discovery of the Jones Polynomial as a knot invariant was a major
breakthrough in knot theory. The importance was perhaps not in the polynomial itself but
in the method of construction, i.e. the skein relation. The skein relation allows you to take
apart the knot crossing by crossing, and keep track of what happens at each stage. With
only one variable however, things can get muddled. The basic ideas behind the
generalized polynomials we will explore is that two variables keep a better record of how
the link was decomposed. 

Generalized Polynomials

HOMFLY Polynomial

The HOMFLY polynomial of a link L is a two variable polynomial denoted PL

(a,z). It is completely defined for any link by the following three axioms:

1. .
2. The HOMFLY polynomial of the unknot is 1.
3. The HOMFLY polynomial is an invariant of ambient isotopy.

It is easy to prove using these axioms that there is a unique HOMFLY polynomial for any
link using induction on the number of crossings of the link (note that the base case for
this induction is the second axiom), and an induction on the uncrossing number. 

We give the value of the HOMFLY polynomial for some typical simple knots and
links: 

1. P(unknot) = 1
2. P(n-component unlink)= [(a+a-1)/z]  n-1  

3. P(Hopf link) = a z-1 – a3 z-1 + a z
4. P(trefoil) = 2a2 – a4 + a2 z2 

Remember that the Jones polynomial was also defined by three axioms:

1. .
2. The Jones polynomial of the unknot is 1.
3. The Jones polynomial is an invariant of ambient isotopy.



This looks very similar to the definition of the HOMFLY polynomial. We see that
substituting a=t, z= t½ - t-½ in the HOMFLY polynomial, it satisfies the axioms of the
Jones polynomial. Since the axioms completely determine the Jones polynomial, we must
have PL(t, t½ - t-½) = VL(t) for all links L.

Claim: All powers of variables appearing in the HOMFLY polynomial of a link L are 
incongruent modulo 2 to the number of components of the link. 

Put a little more simply, the claim says that if there are an even number of components,
we only see odd powers of a and z in the HOMFLY polynomial, and vice versa. 

Proof: 
We use double induction, first on the number of crossings and then on the

uncrossing number. Let a link L have n components. If there are no crossings, then L is
the n-component unlink with HOMFLY polynomial

 [(a+a-1)/z]  n-1 = z –n+1 cj a j a j-n+1 = z –n+1 cj  a2j-n+1

The exponents that appear in the polynomial are –n+1 and 2j-n+1 where j runs from 0 to
n-1. These are all incongruent to n modulo 2.

Suppose we know the result for links with up to k-1 total crossings (between
separate components and within each component) and any number of components (our
base case is true for all numbers of components). Let L be a link with n components, k
crossings and uncrossing number one. We use the skein relation of the HOMFLY
polynomial on the crossing of L which when switched gives us the unknot.

Let L+ be the link, L- the link with switched crossing (the unknot since it has uncrossing
number one), and L0 be the link with resolved crossing. Then the skein relation becomes:
a-1P L+  -  aP L- = zP Lo  , or equivalently  P L+ =  a2P L- + a zP Lo . But we know that L- is
the n-component unknot. We also know that the resolution as above of a crossing changes
the number of components by 1, and decreases the number of crossings by one. Therefore
by induction we know that  P Lo  will have only powers incongruent to n1 modulo 2, and
therefore  a zP Lo  will have only powers incongruent to n modulo 2 as desired.

To complete the proof, we do induction on the uncrossing number, which is
obtained by an argument almost identical to the above.

Pre-Kauffman Polynomial



The pre-Kauffman polynomial Λ is a polynomial in two variables a and z defined
on unoriented links and is invariant under only regular isotopy. It is completely defined
by the axioms below:

1.

2.

3.
4. Λ (unknot) = 1
5. Λ is invariant under regular isotopy (R2 and R3 moves)

One will note that this is very similar to the Kauffman bracket which is defined by the
following: 

1.
2. 0 K  = d K   where  d = -(A2 + A-2)
3. 0  = 1

We can derive from these axioms that:

Comparing this with the definition of the pre-Kauffman polynomial, we see that:

K  =  Λ(K)(-A3, A + A-1)

Kauffman Polynomial

The Kauffman polynomial is a two variable polynomial, denoted FL(a,z), defined
on oriented links. It is defined as follows:

FL(a,z) = a w(L)  ΛL(a,z) 

As usual w(L) is the writhe of L. One will notice that this is similar to the definition of the
Jones polynomial via the Kauffman bracket:

VL(t) = fL(t1/4) = -(t1/4)-3w(L) L(t1/4) 

Using the relation we had above between the pre-Kauffman polynomial and the
Kauffman bracket we can find a relation between the Kauffman polynomial and the Jones



polynomial. Again, we can make the substitution  a = -A3, z= A + A-1 so that the pre-
Kauffman and Kauffman bracket polynomials are equal. Then we can make a third
substitution of  A=t -1/4, and then we have  a w(L)  = -(t-1/4)3w(L). Under these substitutions we
have:

FL(-t-3/4, t-¼ +  t-¼) =(-t-3/4) w(L)  ΛL(-t¾, t-¼ +  t-¼ ) = -(t1/4)-3w(L) L(t1/4) = VL(t)

Therefore the Jones polynomial can be obtained as a special case of the Kauffman
polynomial. 

Here are the values of the Kauffman polynomial on some simple links:

1. F(unknot) = 1
2. F(n-component unlink) = [(a + a-1)/z  - 1]  n-1  

3. F(Hopf link) = (-a3 - a-1) z -1 – a-2  +  (a3 + a-1) z 
4.   F(trefoil) = -2a-2  - a-4   + (a-3  + a-5   ) z  + (a-2   + a-4) z2

Distinct Invariants

The following questions are very natural at this point: We had two ways of
defining the Jones polynomial, one of which was axiomatic (as in the definition of the
HOMFLY polynomial) and one was via a bracket polynomail which was only regular
isotopy invariant (as in the definition of the Kauffman polynomial). In the case of the
Jones polynomial we got the same thing both times. So how do we know the Kauffman
and HOMFLY polynomials are not the same? We can clearly see from the polynomials of
some simple links that they are not termwise equal, but could they be similar up to
substitution of variables? Another natural question is whether or not either of these
polynomials nontrivially extends the Jones polynomial. Does either polynomial give us
information that the Jones polynomial alone cannot? The following examples answer
both of these questions:

Knots 8-8 and 10-129 have the same HOMFLY polynomial but distinct Kauffman
polynomials. Knots 11-alternating-79 and 11-alternating-255 have distinct HOMFLY
polynomials but identical Kauffman polynomials: 



F(8-8) = 2a-5z - 3a-5z3 + a-5z5 - a-4 + 4a-4z2 - 6a-4z4 + 2a-4z6 + 3a-3z - 5a-3z3 + a-3z7 - a-2 + 5a-2z2 - 9a-2z4 + 4a-

2z6 + a-1z - 3a-1z3 + a-1z5 + a-1z7 + 2 - z2 - z4 + 2z6 - az + 2az5 + a2 - 2a2z2 + 2a2z4 - a3z + a3z3

P(8-8) = - a-4 - a-4z2 + a-2 + 2a-2z2 + a-2z4 + 2 + 2z2 + z4 - a2 - a2z2

F(10-129) = 2a-5z - 3a-5z3 + a-5z5 - a-4 + 4a-4z2 - 6a-4z4 + 2a-4z6 + 3a-3z - 5a-3z3 + a-3z7 - a-2 + 5a-2z2 - 9a-2z4

+ 4a-2z6 + a-1z - 3a-1z3 + a-1z5 + a-1z7 + 2 - z2 - z4 + 2z6 - az + 2az5 + a2 - 2a2z2 + 2a2z4 - a3z + a3z3

P(10-129) = -a-2 - a-2z2 + 2 + 2z2 + z4 + a2 + 2a2z2 + a2z4 - a4 - a4z2

F(11-alternating-79) = a-2z2 - 2a-2z4 + a-2z6 - a-1z + 5a-1z3 - 9a-1z5 + 4a-1z7 + 2 - 5z2 + 11z4 - 16z6 + 7z8 -
3az + 10az3 - 9az5 - 6az7 + 6az9 + 3a2 - 19a2z2 + 44a2z4 - 45a2z6 + 14a2z8 + 2a2z10 - 5a3z + 14a3z3 - a3z5 -
20a3z7 + 13a3z9 + 3a4 - 19a4z2 + 47a4z4 - 48a4z6 + 17a4z8 + 2a4z10 - 5a5z + 16a5z3 - 14a5z5 - 2a5z7 + 7a5z9 +
a6 - 5a6z2 + 11a6z4 - 16a6z6 + 10a6z8 - 2a7z + 6a7z3 - 12a7z5 + 8a7z7 + a8z2 - 5a8z4 + 4a8z6 - a9z3 + a9z5

P(11-alternating-79) = 2 + 3z2 + 3z4 + z6 - 3a2 - 9a2z2 - 10a2z4 - 5a2z6 - a2z8 + 3a4 + 8a4z2 + 7a4z4 +
2a4z6 - a6 - 2a6z2 - a6z4

F(11-alternating-255) = - 2a-2z4 + a-2z6 + 3a-1z3 - 9a-1z5 + 4a-1z7 + 2 - 8z2 + 19z4 - 22z6 + 8z8 + az - 6az3

+ 15az5 - 19az7 + 8az9 + 3a2 - 22a2z2 + 50a2z4 - 42a2z6 + 9a2z8 + 3a2z10 + a3z - 13a3z3 + 38a3z5 - 40a3z7 +
16a3z9 + 3a4 - 20a4z2 + 44a4z4 - 39a4z6 + 11a4z8 + 3a4z10 - a5z + 2a5z3 + a5z5 - 9a5z7 + 8a5z9 + a6 - 5a6z2 +
10a6z4 - 16a6z6 + 10a6z8 - a7z + 5a7z3 - 12a7z5 + 8a7z7 + a8z2 - 5a8z4 + 4a8z6 - a9z3 + a9z5

P(11-alternating-255) = 2 + 3z2 + 3z4 + z6 - 3a2 - 9a2z2 - 10a2z4 - 5a2z6 - a2z8 + 3a4 + 8a4z2 + 7a4z4 +
2a4z6 - a6 - 2a6z2 - a6z4

This shows that the two invariants are distinct since each can distinguish a pair of links
that the other cannot. Since F(8-8) = F(10-129) we must have V(8-8) = V(10-129) (and
similarly for the others), so both the HOMFLY and Kauffman polynomials give strictly
more information than the Jones polynomial. 

Application

We will now use some properties of the Kauffman and pre-Kauffman polynomials
to prove the famous result that the writhe of a reduced alternating diagram is an invariant.

First we need some definitions. A prime link is a link not representable as the
connected sum of two or more links, neither of which is the one component unlink. It has
been proven that every knot is (up to position and ambient isotopy) uniquely
decomposable into the direct sum of prime knots. A bridge is simply an arc in a planar
link diagram, i.e. a single connected line segment. We will mostly be concerned with arcs
in link diagrams that form the overcrossing strand in multiple crossings. We call it a
bridge because it is forming a bridge over a section of the knot by going over multiple
other strands. The length of a bridge is the number of overcrossings formed by a bridge.
To any link diagram, we can assign a bridge length. This is the length of the longest
bridge in the diagram. We are ultimately interested in alternating link diagrams; diagrams
which alternate over-under as we travel along the knot. Any alternating knot diagram has
bridge length 1. For techical reasons we will see later, we need to define improper



bridges. They are the four types of bridges shown below that can be removed by ambient
isotopy:

Finally, a centered polynomial is a Laurent polynomial whose highest x degree and
highest x-1 degree are equal; e.g. x-4 + 6x-1 +5x3 +2x4 is a centered polynomial in x. 

We are now ready to discuss and prove the theorem.

Theorem: The writhe of a reduced alternating diagram of an alternating link is invariant.

Proof:

The proof will be made up of several lemmas, many of which are interesting in
their own right. We will piece everything together as we go along until the proof is
complete. 

Lemma 1: If an unoriented link diagram, L, is prime, connected and alternating, then
both of the link diagrams formed by the splicings of that diagram at any crossing, Lo and
L, are connected and alternating, and at least one of the spliced diagrams is prime.

This lemma basically says that at least one of the splicings of a prime link diagram
is prime. The proof will be very geometric but the argument is simple. 

Proof: 
Suppose this lemma were not true, i.e. that both Lo and L, the splicings of L at a

crossing c, are composite links. Then we can draw lines through the diagrams of Lo and
L such that away from c each line only intersects the diagram twice. It is clear that the
line must go through where the splicing happened or else L was composite to begin with.
Suppose the dissecting lines Co and C were as in the following diagram:



The diagram to each side of each line is not trivial (i.e. a single arc) or else the crossing c
could have been removed with a Reidemeister 1 move. Since Co and C only intersect the
diagram twice each, we must have that the lines do not intersect the diagram anywhere
else. But away from the crossing c the diagrams of Lo and L are the same as that of L so
that Co and C do not intersect L away from c. This means that the lines dissect L into the
direct sum of two nontrivial knot diagrams. Therefore the lines Co and C must be as
below:

We can go back and superimpose the lines Co and C onto the diagram of L and we can
study the regions X and Y:

The circular part of the boundary of X and Y is such that it only intersects L in the four
places shown. Since L is a connected link diagram, it must intersect the boundary of the
regions X and Y an even number of times (we can of course assume that the diagram is
not tangent to the boundaries of X and Yanywhere). Also Co and C intersect the diagram
twice, so by symmetry we can assume L intersects Co at least once on the boundary of X
and C at least once on the boundary of X. Since L intersects the boundary of X once on
the circular edge of X near the crossing c, we have at least three intersections between L
and the boundary of X. However we must have an even number of intersections so there
must be a fourth on (without loss of generality) the C boundary of X. This gives us a
total of two intersections between L and C and hence all such intersections. Examining
the region Y, L cannot intersect the circular or the C part of the boundary. We have at
least one intersection between L and the Co part of the boundary of Y, giving us two
intersections between L and the boundary of Y. Any more would have to occur on Co, and



they would have to occur in pairs, but Co can intersect L at most once more. Therefore L
intersects the boundary of Y exactly two times and Y dissects L into the direct sum of two
nontrivial links, but this is a contradiction because we said L was prime. Therefore at
least one of  Lo, L is prime, and Lemma 1 is proven.

We are now going to examine the quantities N and N-B, where N is the number of
crossings of a link diagram and B is its bridge length. First we see how these two
quantities vary when we remove improper bridges (see definition of improper bridge for
diagrams). One can easily see that in each case if we remove the obvious unnecessary k
crossings, then the bridge we see in the picture decreases in length by k. But there may be
other bridges in the knot longer than B-k, so B decreases by at most k. Therefore when
removing improper bridges, N decreases (strictly) and N-B decreases or remains constant.
The important fact we will use later is that if a bridge is not improper, then it does not
terminate by going under itself.

Lemma 2: The z degree of FL and ΛL (these quantities are the same) is less than or equal
to the number of crossings N minus the bridge length B. In symbols:

deg z FL = deg z ΛL   N – B

Proof:
Let us look at the set of all link diagrams L that do not satisfy the desired

inequality, i.e. links L such that deg z FL >  N – B. We can then take a link L in the set with
minimal crossing number N. Suppose L had an improper bridge. Then we can remove the
improper bridge to obtain a link diagram L’. Since they are ambient isotopic to each other
FL = FL’ , and in particular, deg z FL = deg z FL’ . We know L’ has strictly fewer crossings
than L, but also by our argument above N’-B’ < N-B, and hence 

deg z FL’ >  N’ – B’
i.e. L’ is in our set of links and has strictly less than N crossings. This is a contradiction
since L was taken to have minimal crossing number in the set. So any link diagram L
contradicting our lemma will have no improper bridges. 

Now of all links L for which deg z FL >  N – B which have the minimal crossing
number N, take the one with maximum bridge length B. We now use the skein relation
for the pre-Kauffman polynomial to resolve L at one of the endpoints (a crossing) of a
bridge  b in L attaining length B:

ΛL+  +   ΛL-  =  z ( ΛLo +  ΛL )

where L+ = L. The maximal bridge length for any link with N crossings violating our
inequality is B. Since the crossing we are resolving terminated the bridge b, the link
diagram L- has bridge length at least B+1, and N crossings. Therefore L- must satisfy

deg z FL- = deg z ΛL-    N – B - 1

So by the skein relation, at least one of ΛLo ,  ΛL  must have a nonzero term of z to a
power strictly greater than N-B-1 = (N-1) – B, i.e without loss of generality



 deg z ΛLo >  (N-1) – B. But since each of them has the crossing which terminated b
resolved, they each must have bridge length at least B. Therefore if N0 and B0 are the
crossing number and bridge length of L0, then:

deg z ΛLo >  N0 - B0

So L0 is in the set of links which violate our degree inequality, but it has crossing number
N0 = N –1 < N  and this contradicts the minimality of N in the set. Therefore the set must
be empty and our inequality:

deg z FL = deg z ΛL   N – B

always holds, and Lemma 2 is proven. 

Lemma 3: If a link projection L is prime, connected and alternating then the coefficient
of zn-1  in ΛL (this is the highest power of z appearing) is a centered polynomial in a with
positive first and last coefficients, i.e. of the form: 

c-m a-m +c-m+1 a-m+1 +…+ c0 +…+ cm-1 am-1 + cm am 

 where c-m >0, cm >0.

Proof:
We prove this easily by induction on the crossing number N. If N = 0, then the

link is the 1-component unlink since we are considering connected diagrams. The
theorem is trivially satisfied. Suppose the theorem is true for prime, connected,
alternating links with any number of crossings less than N, and let L be a prime connected
alternating link with N crossings. Pick any crossing and resolve the link diagram using the
skein relation:

ΛL+  +   ΛL-  =  z ( ΛLo +  ΛL )

where L+ = L. Since L was alternating, it has bridge length 1. But when we switch a
crossing to get L-, we create a bridge of length three. Therefore  deg z ΛL-    N – 3 and it
does not contribute to the zn-1 coefficient of  ΛL. We know that one of ΛLo ,  ΛL  is prime,
and both are connected alternating. So without loss of generality, the theorem holds for
ΛLo, i.e. it has highest z degree n-2, and its coefficient is a centered polynomial in a with
positive first and last coefficient. Now we need to look at ΛL. If  L is prime, then ΛL

satisfies the same conditions as ΛLo. In this case the coefficient of  zn-1 in ΛL is the sum of
the zn-2 coefficients of  ΛLo and ΛL which will again be a centered polynomial in a with
positive first and last coefficients and we are done. So we need to address the case when
L is not prime. We know deg z FL = deg z ΛL , and that FL is multiplicative under direct
summation of knots. So let L = L1 # L2 # … # Lk. Then:

deg z FL = deg z F(L1)  deg z F(L2) …  deg z F(Lk)

If the link Li has crossing number Ni and bridge length Bi then we know:



deg z F(L1) = deg z Λ (L1)  Ni - Bi

Using that 1  Bi for all links Li and  N1 + N2 + …+Nk = N –1 , we know:

deg z FL < N –2

and therefore will not contribute to the zn-1 coefficient of  ΛL and Lemma 3 is proven. 

We now have all the necessary knowledge to prove the theorem.

Proof of Theorem:
The Kauffman polynomials of any two reduced, prime, alternating projections L1

and L2 of the same link L are equal, so from the definition of the Kauffman polynomial
we have:

F(L1)(a,z) = a w1  Λ(L1)(a,z) = F(L2)(a,z) = a w2  Λ(L2)(a,z)

In particular,  the pre-Kauffman polynomials of the two projections differ by a factor of
aw1-w2  where w1 and w2 are the writhes of each projection. Since the leading coefficient of
both pre-Kauffman polynomials is a centered polynomial in a, then we must have 
aw1-w2  = 1. Multiplying a centered polynomial in a by any nonzero power of a will result
in a polynomial that is not centered. Hence  w1 - w2 = 0, i.e. the two projections have the
same writhe.

The theorem is poven for prime alternating links. The general case (composite
links) follows from the prime case since the writhe is additive under direct summation
and knots are uniquely decomposable into primes. Therefore the full theorem is proven.

The story doesn’t end with the Kauffman and HOMFLY polynomials. Until a
complete link invariant is discovered, it never will. A lot of current research on knot
polynomials is focused on the Colored Jones Polynomial which uses quantum invariants
and is much beyond anything in this paper. The curious reader will find many resources
about the Colored Joned Polynomial online. 
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