GAUSS MAP AND THE SECOND FUNDAMENTAL FORM

Let S be a regular orientable surface, and ¢ : U — S be a parametrization of S. Let

{€u;,eu,} be the corresponding basis of the tangent plane 7,S to the surface at a point
€uy Neyy

p = p(u,uz). Let N(p) = e her] be the unit normal vector to S, compatible with the

chosen orientation. Note that together the three vectors (e,,, €,,, N) form a basis of R?, with
the center at p.

The Gauss map is the map N : S — S? defined by the normal vector. That is, for each
point of the surface p € S the result of the map N is the unit normal vector N(p) € S%. Note
that the normal vector to S at p is parallel to the normal vector to S? at N(p). Thus, 7,5
is parallel to T ;)S?. Therefore, the differential of the Gauss map, dN, : 1,5 — Tn()S?,
can be considered as an operator on the tangent plane 7,,S. This operator turns out to be
self-adjoint, and thus, (its negative) defines a symmetric bilinear form on 7,S. This form is
called the second fundamental form. We have

II,(w) = — < dNy(w),w > Vw € T,S,

where brackets denote the standard scalar product.

The coefficients of the second fundamental form are denoted by e = — < N,,,e,, >,
f=—< Ny,ey, >= — < Ny,,€6y, > and g = — < N,,,e,, >. In practical computations
of the coefficients, it is convenient to use the identity < N,e,, >= 0 (which holds simply
because N L T,,S). This allows to obtain the following formulas:

e=<N, Curuy =~
f=<N,eyu >
g =< N, ey u, >

Exercise 1. Choose your favorite parametrized surface and compute the matrix of its second
fundamental form with respect to your favorite parametrization. (Hint: compute the basis
corresponding to the parametrization, the normal vector, the derivatives of the basis vectors,
and then apply the formulas above).

Gaussian curvature at a point p € S is given by K = (det(dN,)) and mean curvature at
pis H = —%tr(de). Note that it is very convenient to have this definition in terms of the
determinant and the trace of a matrix of dN, for the following reason: since matrices of
the same operator with respect to different bases are similar, and the determinant and the
trace of two similar matrices are the same, this definition allows to compute K and H once
we know dN, in any basis (e.g., in the basis associated to a given parametrization). There
is a classification of points (elliptic, hyperbolic, parabolic or planar points) depending on
whether the Gaussian curvature is positive, negative, or has one or both eigenvalues equal
to 0 respectively. (See p. 146 of the book for more details).

The eigenvalues of dN, are called the principal curvatures of S at p and denoted by k;

and k. In terms of these curvatures, K = kiky and H = %(k‘l + ko).
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For a unit-speed curve y(s) € S, let p = (s9) be a point on the curve, and w = 7'(sp)
be the tangent vector to the curve at this point. The “acceleration” vector v"(sg) has two
components, one, denoted by 77, belongs to the tangent plane 7),S , and the other, denoted
by 7%, is parallel to the normal vector N at p, so that

7' =7+

Recall that |y”| = k, the usual curvature of the curve 7 at the given point. The length |v/.
is called the geodesic curvature at p and is denoted by kr. The length |v%| is called the
normal curvature at p and is denoted by ky. One can show that ky(Y'(s0)) = I1,(7'(s0))-
Thus, the normal curvature of a curve at a point p depends only on the tangent vector to
the curve at this point. This allows on to speak of a normal curvature ky(w) in the given
direction of a vector w € T,S.

Note that the relation I1,(w) = kn(w) holds only for unit vectors. For a vector of an
arbitrary (non-zero) length, ky(w) = I1,(w/|w|) = [ L,(—=).

vV Ip(w)

Exercise 2. Fix h € (—1,1) and let
v(0) = (V1 — h%cosf, V1 — h?sinf, h),

where 6 € [0, 27], be a “horizontal” circle on unit the sphere, at height A . Compute the
normal curvature or () (by symmetry, it is the same at all points of the curve). Compute
the geodesic curvature. Note how these curvatures behave as functions of h. What are the
values of h that correspond to the zero normal curvature? (Hint: first, check whether () is
a unit speed curve). Draw several pictures for various values of &, indicating on each picture
the vectors 7" (so), 74(s0) and v (so) and the normal vector N at a point y(sg) on the curve.

Since the principal curvatures ki, ko are the eigenvalues of a self-adjoint linear operator
dN, on T),S, there is a corresponding orthonormal basis (e;, e3) of eigenvectors of dN,,. The
directions of these two vectors are called the principal directions of S. Let w be a unit vector
in T),S. Since w = cosf - e; +sinf - ez for some @, one can compute the normal curvature in
the direction of w using the principal curvatures:

kn(w) = I, (w) = cos®0 - k; +sin® 0 - ky
This, in particular, shows that normal curvature in any direction satisfies
ky € (min(ky, ko), max(k, k2))

(Note that if a given vector w is not unit, it should be replaced by w/|w| in the computation
of ky using the second fundamental form). Moreover, every value of the normal curvature
between min(kq, ks) and max(kq, ko) is achieved by some direction. For example, if both
principal curvatures are positive (i.e., the point is elliptic), then all normal curvatures are
positive. On the other hand, at a hyperbolic point, where the principal curvatures have
opposite signs, there are some directions (called the asymptotic directions) in which the
normal curvature is 0.

Exercise 3. Let p € S be a point on a regular orientable surface, such that the principal
curvatures at this point are k; = 1 and k; = 4. Let e; = (1,0) and e; = (0,1) be the
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corresponding principal directions. Find all the unit vectors w € T,S in the direction of
which the principal curvature is equal to 2%.

As we already saw above, the operator d/N, plays a major role in the study of local behavior
of a surface. So, it is very important to be able to compute the value of this operator on a
given vector in the tangent plane, as well as its matrix with respect to the basis corresponding
to a given parametrization. The first of these computations can be done in the following
way: given a vector w € T,S , represent w as a tangent vector to a curve, w = o/(0) for
some curve « : (—&,e) — S, with «(0) = p. Let N(t) be the restriction of the normal vector
to this curve. Then dN,(w) = N'(0). For an example of a such computation, see examples
2-4 on pages 137-140.

Given a basis (ey,, €y,) of T,S corresponding to a given parametrization, the matrix A of

the operator dV, can be computed using the first and second fundamental forms, as follows:
A= —[1L) - [1],7,

where [I,] and [I],] denote matrices of the fundamental forms with respect to the same basis.
det[I1,]
det [I:] :

In particular, it follows that K =

Exercise 4. For the surface and parametrization you chose in Exercise 1, compute the
matrix of the operator d/V,, the Gaussian and the mean curvature.



