Handout &

COMPLEX NUMBERS

For the purposes of algebra, the field of real numbers 7 not sufficient, fiy
there are polynomials of nonzero degree with real c:c?...::? that _E.:. o
zeros in the field of real mumbers (for example, 22 +1). It is A..?,.: ._.,4__.:___..
to have a field in which any polynomial of nonzero degree with eca___....._:_.,,
from that field has a zero in that ficld. It is possible to “enlarge” the fick| of
real numbers to obtain such a ficld.

Definitions. A complex number is an expression of the form z = a + .
where a and b are real numbers called the real part and the imaginary part

of z, respectively. . ]
The sum and product of two complex numbers z = a+bi and w = ¢+ di
(where a, b, ¢, and d are real numbers) are defined, respectively, as follows:

z+w=(a+bi)+(c+di)=(a+c)+(b+d)i
and
2w = (a + bi)(c + di) = (ac — bd) + (bc + ad)i.

Example 1 .
The sum and product of z = 3 - 5i and w = 9 + 7i are, respectively,

z+w=03-5)+9+7)=@B+9)+[(-5)+T7i =12+2i
and

2w = (3= 5i)(9+7i) = [3:9— (=5)-7) + [(~5)-9+3-7)i =62 - 24i.  #

Any recal number ¢ may be regarded as a complex number by identifving «
with the complex number ¢+ 0z. Observe that this correspondence preserves
sums and products; that is,

(c+0) +(d+0i) = (c+d)+0i and (c+0i)(d+ 0i) = cd +Wli.

Any complex number of the form bi = 0 + bi, i_:._,.c bis a :::x.._._... _ _”...._“
number, is called imaginary. The product of two imaginary munbers is rea
since

(bi)(di) = (0 + bi)(0 + di) = (0 - bd) + (b-0 + 0-d)i = —ul.

In particular, for i = 0 + 1i, we have i - = .Iu. menber the
The observation that 12 = i-i = —1 provides an casy i:._< .5_ :~:=. o
initi iplicati ¢ : 'Ts: S ultiply two co )

definition of mmiltiplication of complex _:..:__F_,y. Z.::u_.< ____ _ _< e 1

nmumbers as you would any two algebraic expressions, and replace )

Example 2 illustrates this technique.
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Example 2

The product of =5+ 2i and 1 - 3i is

(=5+2i)(1 - 3i) = ~5(1 — 3) + 2i(1 - 3i)

= ~5+ 15i + 2i — 62 .
= =5+ 15i + 2i - 6(~1)
=1+17i. &

The real number 0, regarded as a complex number, is an additive identity
element for the complex numbers since

(a+bi)) +0=(a+b)+(0+ 0i) = (@ +0) + (b+0)i = a + bi.

Likewise the real number 1, regarded as & complex number, is a multiplicative
identity clement for the set of complex numbers since

(@ +b)1 = (a+b)1+ 0i) = (a1 -b.0) + (b-1 + a-0)i = a + bi.

Every complex number a + bi has an additive inverse, namely (—a) + (—=b)i.
But also cach complex munber except 0 has a multiplicative inverse. In fact,

a b
a? +p? a? + b2

(a+bi) ! =

i
In view of the preceding statements, the following result is not surprising.

Theorem D.1. The set of complex numbers with the operations of addi-
tion and multiplication previously defined is a field.

Proof. Exercise, . |

Definition. The (complex) conjugate of a complex number a +bi is

the complex number a — bi, We denote the conjugate of the complex number
chy s

Example 3

Fhe conjugates of —3 +2i, 4 - 74, and 6 are, respectively,

————

A+2%=-3-2

—_—

4-T7i=44+7i, and 6=C+0i=6-0i=6. ¢

._‘__a::xe::é..c.:ﬁ:_:::z %::.::_.c..?iv..c_x._]:%c..::. conjugate of
a complex nmnber., :

Theorem D.2. Let » and w be complex numbers. Then the following
Matements are true,



(a) 2= 2.

) +w)=z+w.

(¢) Zw=z-w

() va = w ifw#0.
) 2

is a real number if and only if Z = 2.

Proof. We leave the proofs of (a), (d), and (c) to the reader.
(b) Let z = a + bi and w = ¢ + di, where a,b,¢,d € R. Then

(z+w)=(a+c)+(b+d)i=(a+c)—(b+d)i
=(a-bi)+(c—di)=Z+w.

(c) For z and w, we have

zw = (a + bi)(c + di) = (ac — bd) + (ad + be)i

= (ac — bd) — (ad + be)i = (a — bi)(c — di) = Z-. i

For any complex number z = a + bi, 2% is real and nonncegative, for
2Z = (a + bi)(a — bi) = a® + V2.
This fact can be used to define the absolute value of a complex mumber,

Definition. Let z = a + bi, where a,b € R. The absolute value (o1

modulus) of z is the real number Va2 + b2. We denote the absolute value

of z by |z|.

Observe that zZ = |z|2. The fact that the product of a complex numlbwe
and its conjugate is real provides an easy method for determining the guotien
of two complex numbers; for if ¢ + di # 0, then

a+bi a+bi c—di (ac+bd)+(bc—ad)i ac+bd be—ad

= S
nu+&u s.u+&n + .,.u+;.

ct+di c+di c—di
Example 4

To illustrate this procedure, we compute the quotient (1 + 4i)/(3 — 2i):

1440 1+4i u+§.|nm+§||W+m~. *
3-20 3-2i 342 9+4 ~ 13 13~

The absolute value of a comnplex munber has the familiar properties of the
absolute value of a real munber, as the following result shows.

Theorem D.3. Let z and w denote any two complex numbers. Then the

following statements are true.
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(@) |zw| = |z|+]w].
I .
ih) ~=|~ = _n_l_ ifw # 0.
() Jz4+w| < || + juw.
(d) j=f = Jw} < |z + w.

Proof. (a) By Theorem D.2, we have
[zw]* = (zw)(zw) = (z0)(z - W) = (23)(wW) = [z} |w]?,

proving (a).
(b) For the proof of (b), apply (a) to the product A.ulv w.
N w
(¢) For any complex number 2: = a + bi, where a,b € R, observe that

r+T=(a+bi)+(a-bi)=2a<2Va2+1? = 2.

Thms .+ 7 is real and satisfies the inequality « + 7 < 2fx|. Taking & = wz
[ B : - ) ’
we have, by Theorem D.2 and (a)

1

W2+ Wz < 2wz = 2wl||z] = 2|z[|w].

B

ising ‘Theorem D.2 again gives

2+ wf* = z + w)(z ¥ w) = (F+w)Z+®W) =23+ wi+ 20+ ww
<P + 20z few] + Jw)? = (=] + )2

By taking square roots, we obtain (c).
(d) From (a) and (¢), it follows that

lz] = Iz +w) - w| < s+ wl + | —w| =]z + w| + w|.

2] = lwl < |2 + ).
proving (d). ]

] _... interesting as well as useful that complex mnnbers have both a ge-
suetric and an algebraic representation. Suppose that = = a + bi, where a
andd f._.: real nmbers. We may represent. = as a veetor in the complex plane
e Fignre D.1(a)). Notice that, as in RZ. there are two axes, the real axis
and e imaginary axis. The real and imaginary parts of 2 are the first and
,ﬁ.::: coordinates, amnd the absolute value of = gives the length of the veetor
....: is clear that addition of complex numbers may be represented as in R2
i the parallclogram law.




) ] . z = |zfet®
imaginary axis
bfwenememaz=a+ln o
' ¢ «!
'
' o
'
. -1 0 i
'
'
0 “ real axis
a
Figure D.1

In Scetion 2.7 (p.132), we introduce Euler’s formula. The special casw
= cos 0 + isin 8 is of particular interest. Because of the geometry we hine

W

10
introduced, we may represent the vector ¢ as in Figure D.1(b); that is. «
is the unit vector that makes an angle ¢ with the positive real axis.
this figure, we see that any nonzero complex number 2 may be depicted as
a multiple of a unit vector, namely, z = |z|e*®, where ¢ is the angle that the
vector z makes with the positive real axis. Thus multiplication, as well as
addition, has a simple geometric interpretation: If z = |zj¢® and w = |w}e*
are two nonzero complex numbers, then from the properties established in
Section 2.7 and Theorem D.3, we have

2w = |2[e - fw]e = |2w|e! @+
So zw is the vector whose length is the product of the lengths of = awd w.
and makes the angle 8 + w with the positive real axis.

Our motivation for enlarging the set of real numbers to the set of con
numbers is to obtain a field such that every polynomial with nonzero degre
having coefficients in that ficld has a zero. Our next result guarantees tha
the field of complex numbers has this property.

Theorem D.4 (The Fundamental Theorem of Algebra). Suppine
that p(z) = @n2" + ay_12"" " + - + ay2 + ag is a polynomial in P(C')
“degree n > 1. Then p(2z) has a zero.

The following proof is based on one in the book Principles of Mathemat wl
Analysis 3d., by Walter Rudin (McGraw-Hill Higher Education, New York
1976).

Proof. We want to find zg in C such that p(z9) = 0. Let mn be the greatest
lower bound of {|p(2)]: z € C}. For |2] = s > 0, we have

_fAuv_ = _G:N: + G:..._N:l_ +---+ Gc_
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2 _bq.__Na_ - _ﬁzl___N_=|~ —_— _g_
n-l _ oo = Jag|
..‘.—=§=_ - _hzl—_.wl_ —_—ee _g_mln.u.

I
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Because the last expression approaches infinity as s approaches infinity, we
may choose a closed disk D about the origin such that Ip(z)] >m+1if z is
not in D. 1t follows that m is the greatest lower bound of {|p(z)|: z € D}.
Because D is closed and bounded and p(z) is continuous, there exists 2p in

D such that |p(z9)] = . We want to show that m = 0. We argue by
contradiction.

Assume that m # 0. Let ¢(2) = (2 + 20)

P(20)
degree n, ¢(0) = 1, and |g(2)| > 1 for all z in C. So we may write

. Then ¢(2) is a polynomial of

@(2) = 1+ be2® + by y 2t 4 - 4 b2,

b
where by, # 0. Because {_Wnl_ has modulus one, we may pick a real number @
) b .
such that etk® = l_ﬂ”l__ or ¢*¥%by = —|bi|. For any r > 0, we have

q(re'®) = 1 + bpr*ei*® 4 bryarhHleitt 4 g onin \
= 1= [byfr® + by r D8 + b, e,
Choose r small enough so that 1 — [bjr* > 0. Then
la(re®)] < 1= Jbilr® + bega|r*+ 4o 4 b, "
1= 1Bkl = [bearlr = - = fba|r™¥).

Now a__cwmc r cven smaller, if necessary, so that the expression within the
brackets is positive. We obtain that jg(re'®)| < 1. But this is a contradiction.

T _..c following important corollary is a consequence of Theorem D.4 and
the division algorithm for polynomials (Theorem E.1).

Corollary. If .N.ANV =an2" +a,_12" '+ tajz+apisa polynomial
of degree nn > 1 with complex coefficicnts, then there exist complex numbers
‘162, -+, &y (n0t necessarily distinct) such that

P(2) = au(z —c1)(z = ¢2) - (2 — cn).

Proof, Exercisce. i

A field is called algebraically closed if it has the property that every
polynomial of positive degree with coefficients from that field factors as a
_._...._.:3 of polynomials of degree 1. Thus the preceding corollary asserts that
the field of complex numbers is algebraically closed.




