Some applications of free stochastic calculus to II_1 factors.

Dima Shlyakhtenko

UCLA

$$\Gamma(G) = \tau_{G}$$
-preserving homomorhisms $G \to \prod_{n \in G} M_{n \times n}$

$$\Gamma(G) = \tau_{G}$$
-preserving homomorhisms $G \to \prod_{n \in G} M_{n \times n}$

$$\Gamma(G) = \tau_{G}$$
-preserving homomorhisms $G \to \prod_{n \in G} M_{n \times n}$

$$\Gamma(G) = \tau_{G}$$
-preserving homomorhisms $G \to \prod_{n \in G} M_{n \times n}$

$$\Gamma(G) = \tau_{G}$$
-preserving homomorhisms $G \to \prod_{n \in G} M_{n \times n}$

$$\Gamma(G) = \tau_{G}$$
-preserving homomorhisms $G \to \prod_{n \in \mathcal{N}} M_{n \times n}$

$$\Gamma(G) = au_G$$
-preserving homomorhisms $G o \prod^\omega M_{n imes n}$

$$\Gamma(G) = au_G$$
-preserving homomorhisms $G o \prod^\omega M_{n imes n}$

$$\Gamma(G) = au_G$$
-preserving homomorhisms $G o \prod^\omega M_{n imes n}$

$$\Gamma(G) = au_G$$
-preserving homomorhisms $G o \prod^\omega M_{n imes n}$

Properties of $\delta(G)$

You can think of $\Gamma(G)$ as an analog of the set $\mathcal{A}(G) = \{\text{homomorphisms } G \to Aut(X, \mu)\}.$

Properties of $\delta(G)$

You can think of $\Gamma(G)$ as an analog of the set $\mathcal{A}(G) = \{\text{homomorphisms } G \to Aut(X, \mu)\}.$

Properties of $\delta(G)$

You can think of $\Gamma(G)$ as an analog of the set $\mathcal{A}(G) = \{\text{homomorphisms } G \to Aut(X, \mu)\}.$

 $\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$

 $\geq \mathsf{dim}_{L(G)}\{\mathsf{space}\,\,\mathsf{of}\,\,\ell^2(G) ext{-}\mathsf{va}$

 $\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$

 $\geq \mathsf{dim}_{L(G)}\{\mathsf{space}\,\,\mathsf{of}\,\,\ell^2(G) ext{-}\mathsf{va}$

 $\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$

 $\geq \mathsf{dim}_{L(G)}\{\mathsf{space}\,\,\mathsf{of}\,\,\ell^2(G) ext{-}\mathsf{va}$

 $\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$

 $\geq \mathsf{dim}_{L(G)}\{\mathsf{space}\,\,\mathsf{of}\,\,\ell^2(G) ext{-}\mathsf{va}$

 $\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$

 $\geq \mathsf{dim}_{L(G)}\{\mathsf{space}\,\,\mathsf{of}\,\,\ell^2(G) ext{-}\mathsf{va}$

 $\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$

 $\geq \mathsf{dim}_{L(G)}\{\mathsf{space}\,\,\mathsf{of}\,\,\ell^2(G) ext{-}\mathsf{va}$

$$\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$$

$$\delta(G) \geq \dim_{L(G)} \{ \text{space of } \ell^2(G) \text{-valued cocycles} \}$$

looks constructive/easy.

Given $c:G \to \ell^2(G)$ construct elements in $\Gamma(G)$.

$$\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$$

$$\delta({\sf G}) \geq {\sf dim}_{L({\sf G})}\{{\sf space of } \ell^2({\sf G}) ext{-}{\sf valued cocycles}\}$$

looks constructive/easy.

$$\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$$

$$\delta({\sf G}) \geq {\sf dim}_{L({\sf G})}\{{\sf space of } \ell^2({\sf G}) ext{-}{\sf valued cocycles}\}$$

looks constructive/easy.

$$\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) + 1.$$

$$\delta({\sf G}) \geq {\sf dim}_{L({\sf G})}\{{\sf space of } \ell^2({\sf G}) ext{-}{\sf valued cocycles}\}$$

looks constructive/easy.

Deformations and estimate on δ

Let S_1, \ldots, S_m be a free semicircular family in $L(\mathbb{F}_{\infty})$.

Deformations and estimate on δ

Let S_1, \ldots, S_m be a free semicircular family in $L(\mathbb{F}_{\infty})$.

Deformations and estimate on δ

Let S_1, \ldots, S_m be a free semicircular family in $L(\mathbb{F}_{\infty})$.

Stochastic Calculus

Main input: Brownian motion process: family of random variables B([s,t)), $t > s \ge 0$ so that B([s,t)) are Gaussian, B([s,t)) + B([t,r)) = B([s,r)) if s < t < r and B([s,t)) is independent from B([s',t')) if $[s,t) \cap [s',t'] = \emptyset$. Then one can write

$$B([0,t))=\int_0^t dB_t.$$

Furthermore, for nice enough probability measures μ , there exists a process X_t with the properties that:

 X_t is stationary, i.e., X_t has distribution μ for all t

 X_t satisfies the stochastic differential equation $dX_t = \phi(X_t) \cdot dB_t - \zeta(X_t) dt$ (Note: $dB_t \sim O(t^{1/2})$).

$$dX_t = \phi(X_t) \cdot dB_t - \zeta(X_t)dt$$

Very roughly, this means that

$$X_{t+\epsilon} = X_t + \underbrace{\phi(X_t)B[t, t+\epsilon]}_{O(\epsilon^{1/2})} - \zeta(X_t)\epsilon + O(\epsilon^{3/2})$$

In particular, the map

$$f(X) \mapsto f(X_{t^2})$$

gives rise to an isomorphism $\alpha_t : L^{\infty}(\mathbb{R}, \mu) \to W^*(X_t) \subset W^*(X, B[s, t] : s < t)$ which satisfies

$$\alpha_t(f(X)) = f(X) + \underbrace{\phi(X)f'(X)B([0, t^2))}_{O(t)} + O(t^2)$$

(i.e., it "exponentiates" the derivation $\partial(f) = \phi f'$, ∂ : polynomials $\to L^2(\mathbb{R}, \mu)$).

Free Stochastic Differential Equations

Main fact: $L(\mathbb{F}_{\infty})$ is generated by a family of self-adjoint elements $\vec{S}([0,t)) = \{S_k([0,t))\}_{k=1}^n$ associated to intervals $[0,t) \subset \mathbb{R}$, $t \geq 0$. For all t, $\vec{S}([0,t))$ is a free semicircular family and $\vec{S}([0,t))$ is free from $\vec{S}([0,t')) - \vec{S}([0,t))$ if t' > t. $\vec{S}([0,t))$ is the free analog of Brownian motion on \mathbb{R}^n measured at time t.

Free Stochastic Differential Equations

Main fact: $L(\mathbb{F}_{\infty})$ is generated by a family of self-adjoint elements $\vec{S}([0,t)) = \{S_k([0,t))\}_{k=1}^n$ associated to intervals $[0,t) \subset \mathbb{R}$, $t \geq 0$. For all t, $\vec{S}([0,t))$ is a free semicircular family and $\vec{S}([0,t))$ is free from $\vec{S}([0,t')) - \vec{S}([0,t))$ if t' > t.

Free Stochastic Differential Equations

Main fact: $L(\mathbb{F}_{\infty})$ is generated by a family of self-adjoint elements $\vec{S}([0,t)) = \{S_k([0,t))\}_{k=1}^n$ associated to intervals $[0,t) \subset \mathbb{R}$, $t \geq 0$. For all t, $\vec{S}([0,t))$ is a free semicircular family and $\vec{S}([0,t))$ is free from $\vec{S}([0,t')) - \vec{S}([0,t))$ if t' > t.

Stationary solutions.

If X_t is a stationary solution (this means that $\partial_t \tau(f(\vec{X}_t)) = 0$ for all non-commutative polynomials f), then the map

$$\alpha_{t^2}: f(\vec{X}) \mapsto f(\vec{X}_{t^2})$$

extends to an isomorphism from $W^*(\vec{X})$ to $W^*(X_t) \subset W^*(\vec{X}, \vec{S}([s, t)) : s < t)$. Moreover,

$$\alpha_t(X_j) = X_j + \partial(X_j) \# d\vec{S}_{t^2} + O(t^2).$$

so we can apply the estimate on δ .

.... is a somewhat subtle problem in the non-commutative case.

As a corollary you get:

$$\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) - 1$$

As a corollary you get:

$$\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) - 1$$

As a corollary you get:

$$\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) - 1$$

As a corollary you get:

$$\delta(G) = \beta_1^{(2)}(G) - \beta_0^{(2)}(G) - 1$$