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Stochastic Calculus

Main input: Brownian motion process: family of random variables B([s, t)),
t > s >0 so that B([s, t)) are Gaussian, B([s,t)) + B([t,r)) = B([s, r)) if
s <t <rand B([s, t)) is independent from B([s',t")) if [s,t) N [s',t'] = 0.
Then one can write

B([0, 1)) = /Ot dB,.

Furthermore, for nice enough probability measures i, there exists a process X;
with the properties that:

X; is stationary, i.e., X; has distribution p for all t
X satisfies the stochastic differential equation dX; = ¢(X,) - dB, — ((X;)dt
(Note: dB; ~ O(t'/?)).
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dX; = ¢(Xt) - dBy — C(Xt)dt

Very roughly, this means that
Xeve = Xe + (X)BIt, t + ] —((Xe)e + O(/?)
—_——
0(81/2)

In particular, the map
f(X) = f(Xp)

gives rise to an isomoprhism a; : L®(R, u) — W*(X;) € W*(X, B[s,t] : s < t)
which satisfies

ar(f(X)) = £(X) + ¢(X)F'(X)B([0, t)) +0(t?)

O(t)

(i.e., it “exponentiates” the derivation O(f) = ¢f’, @ : polynomials — L?(R, p)).
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Free Stochastic Differential Equations

Main fact: L(F.) is generated by a family of self-adjoint elements

5([0, t)) = {S«([0, t))}7_; associated to intervals [0,t) C R, t > 0. For all ¢,
5([0,t)) is a free semicircular family and S([0, t)) is free from

5([0,¢)) — 5([0, 1)) if t' > t.

5([0, t)) is the free analog of Brownian motion on R” measured at time t.
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Stationary solutions.

If X, is a stationary solution (this means that 9,7(f(X;)) = 0 for all
non-commutative polynomials f), then the map

g F(X) — f(Xe2)

extends to an isomorphism from W*(X) to W*(X;) € W*(X,5([s,t)) : s < t).
Moreover,

ae(X) = X; + 0(X;)#dSe + O(¢2).

so we can apply the estimate on §.
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