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Notation

Let (X , µ) be a measure space with µ(X ) = 1.

Let G be a countable discrete group acting by measure-preserving
transformations on (X , µ).

The triple (G,X , µ) is a dynamical system .

Two systems (G,X1, µ1) and (G,X2, µ2) are isomorphic if there exists a
measure-space isomorphism φ : X1 → X2 with φ(gx) = gφ(x) for a.e.
x ∈ X1 and for all g ∈ G.

Main Problem: Classify systems up to isomorphism.
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Bernoulli shifts

Let K be a finite set, κ a probability measure on K .

K G = {x : G→ K}.

κG is the product measure on K G.

G acts on K G by shifting. (gx)(f ) = x(g−1f ) for all
x ∈ K G,g, f ∈ G.

(G,K G, κG) is the Bernoulli shift over G with base measure κ.
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von Neumann’s question

If |K | = n and κ is the uniform probability measure on K then
(G,K G, κG) is the full n-shift over G.

von Neumann’s question: Is the full 2-shift over Z isomorphic to the full
3-shift over Z?
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Ideas from Information Theory

Let x ∈ X be a point unknown to us. Let E ⊂ X .

Goal: quantify the “amount of information” we gain by being told that
x ∈ E .

This amount, denoted I(E), should depend only on µ(E). So write
I(E) = I(µ(E)).

I(t) for 0 ≤ t ≤ 1 should satisfy:
1 I(t) ≥ 0.
2 I(t) is continuous.
3 I(ts) = I(t) + I(s).

So I(t) = − logb(t) for some b > 1.
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Entropy
An observable is a measurable map φ : X → A into a finite set A.

The Shannon entropy of φ is the average amount of information one
gains by learning the value of φ. I.e.,

H(φ) =
∑
a∈A

µ
(
φ−1(a)

)
I(φ−1(a)) = −

∑
a∈A

µ
(
φ−1(a)

)
log
(
µ
(
φ−1(a)

))
.

If φ : X → A and ψ : X → B are two observables then their join is
defined by φ ∨ ψ(x) := (φ(x), ψ(x)) ∈ A× B.

Let T : X → X be measure-preserving. The entropy rate of φ w.r.t T is:

h(T , φ) = lim
n→∞

1
2n + 1

H
( n∨

i=−n

φ ◦ T i
)
.
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Coding

Let (G,X , µ) be a system and φ : X → A an observable.

Define Φ : X → AG by Φ(x) := g 7→ φ(g−1x).

φ is a finite generator if Φ is an isomorphism from (G,X , µ) to
(G,AG,Φ∗µ).
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Kolmogorov’s entropy

Theorem (Kolmogorov, 1958)
Let T : X → X be an automorphism of (X , µ) . If φ and ψ are finite
generators for (Z,X , µ) = (〈T 〉,X , µ) then h(T , φ) = h(T , ψ).

So h(Z,X , µ) := h(T , φ) is the entropy of the action.

Theorem (Sinai, 1959)
If φ is any finite observable then h(T , φ) ≤ h(Z,X , µ). Hence we may
define the entropy of (Z,X , µ) to be supφ h(T , φ).
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Bernoulli shifts

Let φ : K Z → K be evaluation at the identity element.

φ is generating for the shift-action. So,

h
(
Z,K Z, κZ) = h(φ) = −

∑
k∈K

κ(k) log
(
κ(k)

)
=: H(κ).

H(κ) is the base measure entropy.

Theorem (Kolmogorov, 1958)

If (Z,K Z, κZ) is isomorphic to (Z,LZ, λZ) then H(κ) = H(λ). So the full
2-shift is not isomorphic to the full 3-shift.
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Questions

Does the converse hold?

What if Z is replaced with some other group G?
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The Converse

Definition
A group G is Ornstein if whenever (K , κ), (L, λ) are two standard
probability spaces with H(κ) = H(λ) then (G,K G, κG) is isomorphic to
(G,LG, λG).

No finite group is Ornstein.

Z is Ornstein [Ornstein, 1970].

Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].

If G contains an Ornstein subgroup H then G is Ornstein [Stepin,
1975].

Is every countably infinite group Ornstein?
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Classification

Theorem (Ornstein, 1970)
Bernoulli shifts over Z are completely classified by their entropy.
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Classification

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action
of an amenable group on a probability space. Ann. Probability 3
(1975), no. 6, 1031–1037.

D. Ornstein and B. Weiss. Entropy and isomorphism theorems for
actions of amenable groups. J. Analyse Math. 48 (1987), 1–141.

Theorem
If G is infinite and amenable then Bernoulli shifts over G are completely
classified by their entropy (which equals their base measure entropy).

What if G is nonamenable?
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Factor maps

Definition
Let (G,X , µ), (G,Y , ν) be two systems and φ : X → Y a measurable
map with φ∗µ = ν, φ(gx) = gφ(x) for a.e. x ∈ X and all g ∈ G. Then φ
is a factor map from (G,X , µ) to (G,Y , ν).

Theorem (Sinai, 1959)
Entropy is nonincreasing under factor maps.

If G is amenable then the full n-shift over G has entropy log(n).

So the full 2-shift over G cannot factor onto the full 4-shift over G.
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The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)
If F = 〈a,b〉 is the rank 2 free group then the full 2-shift over F factors
onto the full 4-shift over F.

Define φ : (Z/2Z)F → (Z/2Z× Z/2Z)F by

φ(x)(g) =
(

x(g) + x(ga), x(g) + x(gb)
)
.

Theorem
If G contains a subgroup isomorphic to F then every nontrivial
Bernoulli shift over G factors onto every other Bernoulli shift over G.
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New Results

Theorem
If G is a sofic group (e.g., a residually finite group) then Kolmogorov’s
direction holds. I.e., if (G,K G, κG) is isomorphic to (G,LG, λG) then
H(κ) = H(λ).
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The case G = Z

Let T : X → X be an automorphism of (X , µ).

Let φ : X → A be an observable.

Let x ∈ X be a typical element and consider the sequence
(. . . , φ(T−1x), φ(x), φ(Tx), . . .).

The idea: For n > 0, count the number of sequences (a1,a2, . . . ,an)
with elements ai ∈ A that approximate the above sequence.
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Approximations in the case G = Z
First idea: For each a ∈ A, we’d like the frequency of a in
(a1,a2, . . . ,an) to be close to µ(φ−1(a)).

Second idea: For each a,b ∈ A, we’d like the frequency of a,b in
(a1,a2, . . . ,an) to be close to µ(φ−1(a) ∩ T−1φ−1(b)).

Let φm : X → Am be the function φm(x) = (φ(x), φ(Tx), . . . , φ(T m−1x)).
Let φm

∗ µ be the pushforward measure on Am.

Fix m ≥ 0. Given a sequence α = (a1,a2, . . . ,an), define
π(α) : Am → [0,1] by

π(α)(b1, . . . ,bm) =
#appearances of (b1, . . . ,bm) in (a1, . . . ,an)

n
.

Let dm(α, φ) be the l1-distance between π(α) and φm
∗ µ.
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dm(α, φ) =
∑

(b1,...,bm)∈Am

∣∣∣π(α)(b1, . . . ,bm)− φm
∗ µ
(
(b1, . . . ,bm)

)∣∣∣.

Theorem

h(T , φ) = lim
m→∞

inf
ε>0

lim
n→∞

1
n

log
∣∣∣{α = (a1, . . . ,an) : dm(α, φ) < ε

}∣∣∣.
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Sofic Groups

Let Sym(m) be the symmetric group on {1, . . . ,m}.

Let G be a group and σ : G→ Sym(m) a map.

σ is not necessarily a homomorphism!

For F ⊂ G, let VF ⊂ {1, . . . ,m} be the set of all v such that

σ(fg)v = σ(f )σ(g)v ∀f ,g ∈ F with fg ∈ F ,
σ(f )v 6= σ(g)v ⇐ f 6= g ∈ F .

σ is a (F , ε)-approximation to G if |VF | ≥ (1− ε)m.
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Sofic Groups

A sequence Σ = {σi}∞i=1 of maps σi : G→ Sym(mi) is a sofic
approximation if σi is an (Fi , εi)-approximation with εi → 0 and Fi → G
(i.e.,

⋃∞
n=1

⋂∞
i=n Fi = G).

G is sofic if there exists a sofic approximation to G.

(Gromov, 1999), (Weiss, 2000).

Residually finite groups are sofic. Hence all linear groups are
sofic.

Amenable groups are sofic.

Is every countable group sofic?
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Entropy for Sofic Groups

Let (G,X , µ) be a system,

Σ = {σi} be a sofic approximation to G where σi : G→ Sym(mi),

φ : X → A be a measurable map into a finite set.

The idea: Let ζ be the uniform measure on {1, . . . ,mi}. Count the
number of observables ψ : {1, . . . ,mi} → A that approximate φ.
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Approximating

If F ⊂ G is finite, let φF : X → AF be the map φF (x) :=
(
φ
(
fx
))

f∈F
.

φF
∗ µ is the push-forward measure on AF . So φF

∗ µ(a) = µ
(
(φF )−1(a)

)
.

Given ψ : {1, . . . ,mi} → A, ψF : X → AF is the map
ψF (j) :=

(
ψ
(
σ(f )j

))
f∈F

. ψF
∗ ζ is the push-forward measure on AF .

Let dF (φ, ψ) be the l1-distance between φF
∗ µ and ψF

∗ ζ.
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Entropy for sofic groups

h
(
Σ, φ

)
:= inf

F⊂G
inf
ε>0

lim sup
i→∞

log
(∣∣{ψ : {1, . . . ,mi} → A : dF (φ, ψ) ≤ ε}

∣∣)
mi

.

Theorem
If φ1 and φ2 are generating then h

(
Σ, φ1) = h(Σ, φ2). So let

h(Σ,G,X , µ) be this common number.

Theorem
If G is amenable then h

(
Σ,G,X , µ

)
is the classical entropy of (G,X , µ).

Theorem
h
(
Σ,G,K G, κG) = H(κ).
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Proof sketch
We identify φ : X → A with the partition {φ−1(a) | a ∈ A} it induces on
X (up to measure zero).

Let φ, ψ be observables.

Definition (Rohlin distance)

d(φ, ψ) := 2H(φ ∨ ψ)− H(ψ)− H(φ) = H(φ|ψ) + H(ψ|φ).

Definition
φ refines ψ if H(ψ ∨ φ) = H(φ).

Definition
φ and ψ are equivalent if there exists finite subsets K ,L ⊂ G such that
φK refines ψ and ψL refines φ.
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We identify φ : X → A with the partition {φ−1(a) | a ∈ A} it induces on
X (up to measure zero).

Let φ, ψ be observables.
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Proof sketch

Theorem
If φ is a generator then its equivalence class is dense in the space of
all generating observables.

Lemma
h(Σ, φ) is upper semi-continuous in φ.

Theorem
If φ and ψ are equivalent then h(Σ, φ) = h(Σ, ψ).
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Proof sketch

Definition
φ is a simple splitting of ψ if there exists f ∈ G and an observable ω
refined by ψ such that

φ = ψ ∨ ω ◦ f .

φ is a splitting of ψ if it can be obtained from ψ by a sequence of simple
splittings.

Lemma
If φ and ψ are equivalent then there exists an observable ω that is a
splitting of both φ and ψ.

Proposition
If φ is a simple splitting of ψ then h(Σ, φ) = h(Σ, ψ).

Lewis Bowen (University of Hawaii) Entropy in Measurable Dynamics 27 / 34



Proof sketch

Definition
φ is a simple splitting of ψ if there exists f ∈ G and an observable ω
refined by ψ such that

φ = ψ ∨ ω ◦ f .

φ is a splitting of ψ if it can be obtained from ψ by a sequence of simple
splittings.

Lemma
If φ and ψ are equivalent then there exists an observable ω that is a
splitting of both φ and ψ.

Proposition
If φ is a simple splitting of ψ then h(Σ, φ) = h(Σ, ψ).

Lewis Bowen (University of Hawaii) Entropy in Measurable Dynamics 27 / 34



Proof sketch

Definition
φ is a simple splitting of ψ if there exists f ∈ G and an observable ω
refined by ψ such that

φ = ψ ∨ ω ◦ f .

φ is a splitting of ψ if it can be obtained from ψ by a sequence of simple
splittings.

Lemma
If φ and ψ are equivalent then there exists an observable ω that is a
splitting of both φ and ψ.

Proposition
If φ is a simple splitting of ψ then h(Σ, φ) = h(Σ, ψ).

Lewis Bowen (University of Hawaii) Entropy in Measurable Dynamics 27 / 34



Applications: von Neumann algebras

A system (G,X , µ) gives rise in a natural way to a crossed product von
Neumann algebra L∞(X , µ) o G.

If the action is ergodic and free and G is infinite then L∞(X , µ) o G is a
II1 factor.
Major problem: classify these algebras up to isomorphism in terms of
the group/action data.

Theorem (Connes, 1976)
If G is infinite and amenable and the action G y (X , µ) is free and
ergodic then L∞(X , µ) o G is hyperfinite. In particular, all such
algebras are isomorphic.
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Rigidity

Definition
(G1,X1, µ1) and (G2,X2, µ2) are von Neumann equivalent (vNE) if
L∞(X1, µ1) o G1

∼= L∞(X2, µ2) o G2.

Theorem (Popa, 2006)
If G is a countably infinite ICC property T group then any two von
Neumann equivalent Bernoulli shifts over G are isomorphic.

Corollary
If, in addition, G is sofic and Ornstein then Bernoulli shifts over G are
classified up to vNE by base measure entropy. E.g., this occurs when
G = PSLn(Z) for n > 2.
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Applications: orbit equivalence

Definition
(G1,X1, µ1) is orbit equivalent (OE) to (G2,X2, µ2) if there exists a
measure-space isomorphism φ : X1 → X2 such that φ(G1x) = G2φ(x)
for a.e. x ∈ X1.

Theorem (Dye 1959, Connes-Feldman-Weiss 1981)
If G1 and G2 are amenable and infinite and their respective actions are
ergodic and free then (G1,X1, µ1) is OE to (G2,X2, µ2).
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OE rigidity

Theorem (Kida, 2008)
Let G be the mapping class group of a genus g surface with n holes.
Assume 3g + n − 4 > 0 and (g,n) /∈ {(1,2), (2,0)}. If (G,X , µ) is free
and ergodic then it is strongly orbitally rigid. I.e., if (G2,X2, µ2) is free,
ergodic and OE to (G,X , µ) then it is isomorphic to (G,X , µ).

Corollary
If G is as above then Bernoulli shifts over G are classified up to OE by
base measure entropy.
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Free Groups: a special case
For each i ≥ 1, let σi : F = 〈s1, . . . sr → Sym(i) be chosen uniformly at
random.
Let Σ = {σi}.
Define

h
(
Σ, φ

)
:= inf

F⊂G
inf
ε>0

lim sup
i→∞

log
(
E
[∣∣{ψ : {1, . . . , i} → A : dF (φ, ψ) ≤ ε}

∣∣])
i

.

If

F (φ) := −(2r − 1)H(φ) +
r∑

i=1

H(φ ∨ φ ◦ si).

f (φ) := inf
n

F
(
φB(e,n)

)
,

then h
(
Σ, φ

)
= f (φ).
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Systems of algebraic origin
Let G be a compact separable group and let T : G → G be a group
automorphism fixing a closed normal subgroup N .

Theorem (Yuzvinskii, 1965)
h(T ,G,HaarG) = h(T ,N ,HaarN ) + h(T ,G/N ,HaarG/N ).

Theorem
If G is totally disconnected and F acts by automorphisms on G with
closed normal subgroup N then
f (F,G,HaarG) = f (F,N ,HaarN ) + f (F,G/N ,HaarG/N ).

Let G = (Z/2Z)F. Let N = {0,1}. By Ornstein-Weiss’ example,

G/N ∼= G × G = (Z/2Z× Z/2Z)F.

f (F,G,HaarG) = f (F,N ,HaarN ) + f (F,G/N ,HaarG/N )

log(2) = − log(2) + log(4).
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Further Results & Open Questions

Ornstein theory for free groups: factors of Bernoulli shifts, factors
onto Bernoulli shifts, mixing Markov chains, etc.

Random regular graphs: bisection width, independence ratio,
chromatic number, etc.

Topological entropy.

Noncommutative entropy.

Entropy for hyperlinear group actions.
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