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Talk in two parts

Sorin Popa’s cocycle superrigidity theorems.

~—» Sketch of proof.
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Talk in two parts

Sorin Popa’s cocycle superrigidity theorems.
~—» Sketch of proof.

~~—» Needing von Neumann algebras.

Application : bimodules of certain Il; factors.

~~—» Kind of representation theory.
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Group actions and 1-cocycles

Let (X1 ) be a probability measure preserving action.
Standing assumptions : essentially free and ergodic.
Definition

A 1-cocycle for I [ XZWith values in a Polish group V, is a
measurable map

W X% 5V
satisfying w(x, gh) = w(x,g)w(x - g, h)
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Let (X1 ) be a probability measure preserving action.

Standing assumptions : essentially free and ergodic.

Definition
A 1-cocycle for I [ XZWith values in a Polish group V, is a

measurable map
W X% 5V

satisfying w(x, gh) = w(x,g)w(x - g, h)

L1 Cah if [Plwith wi(x,9) = G(x)w2(x, 9P (x - g) ™+
CHomomorphisms [ - V : 1-cocycles not depending on x [X1

C_(Zimmer) Orbit equivalence ~— 1-cocycle.
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Group actions and 1-cocycles

Let (X1 ) be a probability measure preserving action.
Standing assumptions : essentially free and ergodic.
Definition

A 1-cocycle for I [ XZWith values in a Polish group V, is a
measurable map

W X% 5V
satisfying w(x, gh) = w(x,g)w(x - g, h)

Let U be a class of Polish groups.

Definition
I (X1 p) is U-cocycle superrigid if every 1-cocycle for I [X“With
values in a group VV [, is cohomologous to a homomorphism.
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Statement of Popa’s cocycle superrigidity

Generalized Bernoulli action : let I [CI#ith | a countable set and set

I ) = (Xo, Ho) -

[
U : class containing all compact and all discrete groups.
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U : class containing all compact and all discrete groups.
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Let (Xl ) be a generalized Bernoulli action and H [Tk normal
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Statement of Popa’s cocycle superrigidity

Generalized Bernoulli action : let I [CI#ith | a countable set and set

I ) = (Xo, Ho) -

[
U : class containing all compact and all discrete groups.

Theorem (Popa, 2005-2006)

Let (Xl ) be a generalized Bernoulli action and H [Tk normal
subgroup with H - i infinite for all i 1.1

In both of the following cases, I [ X“Is U-cocycle superrigid.

H [T has the relative property (T).

There exists a non-amenable H-< T, centralizing H and
with HY'CI2(X) having stable spectral gap.
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Background : von Neumann algebras

A von Neumann algebra is
a weakly closed unital ~subalgebra of B(H).
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Background : von Neumann algebras
Examples of von Neumann algebras

B(H) itself.

C0°(X,n) (as acting on L2(X, p)).

C—The group von Neumann algebra L(I') generated by
unitaries Ag on [2QI) : Agdh = dgh .
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Background : von Neumann algebras

Examples of von Neumann algebras

B(H) itself.
C0°(X,n) (as acting on L2(X, p)).

C—The group von Neumann algebra L(I') generated by
unitaries Ag on [2QI) : Agdh = dgh .
Finite von Neumann algebras : admitting tracial state T.

GNS
Finite von Neumann alg. (M,t) ~~— Hilbert space L?(M, T)
which is an M-M-bimodule.

Example
CI2Qr) is an L()-L(T)-bimodule : AgOhAk = Oghk-
C (M) CI2Qr) densely : x [xde.
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Special case of Popa’s theorem : sketch of proof

Theorem
Let T be a property (T? %roup and ' [CIwith infinite orbits.
Take ' CX1p):= [O0,1].

[

Every 1-cocycle w : X xT - A with values in the countable group A
is cohomologous to a homomorphism.
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Special case of Popa’s theorem : sketch of proof

Let T be a property (T? %roup and ' [CIwith infinite orbits.
Take ' CX1p):= [O0,1].
[

Every 1-cocycle w : X xT - A with values in the countable group A
is cohomologous to a homomorphism.

First ingredient : property (T).

Second ingredient : Popa’s malleability.

~—» There exist a flow (a)t rg1@and an involutive 3 on X x X :
—ar; and B commute with the diagonal I-action,
o (xy) =(y,-.)
CBaiB = a—t and B(X,y) = (X, ...)

Also : T (X1 ) is weakly mixing.
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Sketch of the proof

Take w : X x - A and define
o : XXX X[ - AN (A)()()(l)/l gl) = (*)()(igg)
W XXX 3T -5 A oi(X,y,9) = wo(ai(X,y),9) .
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Sketch of the proof

Take w : X xT - A and define
Wo X XX xT & A:wo(X,Y,9) = w(X,Q)
We X XXX o A wi(x,y,9) = wo(at(x,y),9) -
~~— New actions : I Xk X xA:
(x,y,8)-9=(x-9,y -9, we(x,y,9) " swo(x,y,9))

~—~ Unitary representations : Tt : T - U(L?(X x X x A)).

Property (T) yields t = 1/n and ¢ CLA(X x X, [2QA\)) with
wWimn(X,y.9) ¢(x -9y -9) = d(X,y) wo(X,y,9) .
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Sketch of the proof

Take w : X < - A and define

W XXX 5 A:wo(X,Y,9) = w(X,9)
Wi X XX X[ - At wi(X,y,9) = wo(a(X,y),9) .
~—» New actions : I LXK X xA:
(x,y,8)-g=(X-g,Y -9, w(x,y,9) Fswo(x,y,9))

~—~ Unitary representations : Tt : T - U(L?(X x X x A)).

Property (T) yields t = 1/n and ¢ CLA(X x X, [2QA\)) with
wWimn(X,y.9) ¢(x -9y -9) = d(X,y) wo(X,y,9) .

~—» Polar decomposition of ¢ allows to assume
¢$ : X x X - partial isometries in L(AN).
~» Let’s cheat and assume ¢ : X x X - U(L(A)).
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Sketch of the proof

So, we started with w : X xT - A. We defined

Wo wO(vav g) = (JO(X,g)
Wt wi(X,y,0) = wo(0e(X,y),0) .

We have found that

w1/n g as 1-cocycles for ' X"k X with values in U(L(A\)).
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Sketch of the proof

So, we started with w : X xT - A. We defined

Wo wO(vav g) = (JO(X,g)
Wt wi(X,y,0) = wo(0e(X,y),0) .

We have found that

w1/n g as 1-cocycles for ' X"k X with values in U(L(A\)).

—Applying ai/n, we obtain : wz/n LA/, ..., W1 CAnp-1y/n.

But then, w; Cddo.
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Sketch of the proof

Since w1 Cadg and

(A)l(x,y,g) = O‘)(yvg) ’ O‘)O(X!y!g) = (*)(X1 g) ’

there exists ¢ : X x X - U(L(A)) with

w(y,9) ¢(x-9,y -9) = d(X,y) w(x,9) .
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Sketch of the proof

Since w1 Cadg and

(A)l(x,y,g) = O‘)(yvg) ’ O‘)O(X!y!g) = (JO(X, g) ’

there exists ¢ : X x X - U(L(A)) with
w(y,9) ¢(x-9,y -9) = d(X,y) w(x,9) .

Clet o : X - U(L(A)) beaness. valueof p : X - U(X - L(A)).
C—Then, by weak mixing,
() w(x,9) d(x-g) = 1(g) for 1T - ULN)).

[—We may assume that 1 is an essential value of ¢.
Again by weak mixing, ¢ (x),t(g) CAl!

End of the proof.
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What did we really use

We have I (Xl 1) and H [CTinfinite normal subgroup with the
relative property (T).

CMalleability of I L_(X1 W).
CWeak mixing of H L (X1 ).

—All 1-cocycles
with values in a closed subgroup of the unitary group of (M, T),
are cohomologous to a homomorphism.
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A first application of cocycle superrigidity

1
Take C(XIp) = (X0, Ho). Assume
I/To
[_Commensurator of [ [T kquals p.
7 has no finite normal subgroups.

L H [T has relative (T) with Hlo/To infinite.

Corollary to Popa’s cocycle superrigidity

The action I (X1 ) is orbitally superrigid.

The orbit equivalence relation remembers o [T Bnd (Xo, Uo)-
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What we are after

Distinguish group actions up to orbit equivalence.

[Distinguish group actions up to von Neumann equivalence :
L (X) CITOCLTP(Y)

—Bven distinguish group actions
‘up to commensurablity of their von Neumann algebras’.
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What we are after

Distinguish group actions up to orbit equivalence.

[Distinguish group actions up to von Neumann equivalence :
L (X) CITOCLTP(Y)

—Bven distinguish group actions
‘up to commensurablity of their von Neumann algebras’.

~-» ll; factor : tracial vNalg (M, T) having trivial center.
~—» Distinguishing ll; factors is an extremely hard problem.

~—» Orbit equivalence = von Neumann equivalence
+ control of Cartan.
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Group measure space construction

Let I (X1 W), probability measure preserving, free, ergodic.

The 1l; factor L=(X) [T

[gontains a copy of L*(X),

[—gontains a copy of I' as unitaries (Ug)g
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Group measure space construction

Let I (X1 W), probability measure preserving, free, ergodic.

The 1l; factor L=(X) [T
[gontains a copy of L*(X),
[—gontains a copy of I' as unitaries (Ug)g

in such a way that

‘I‘gF(')Ug':—DEﬁ'Q),

12717



Popa’s von Neumann strong rigidity theorem

w-rigid group : admitting an infinite normal subgroup with the
relative property (T).

Theorem (Popa, 2005)
Let I be w-rigid and ICC. Take ' [ (Xl ) free ergodic.

Let A be ICC and A [(Xb, po)” plain Bernoulli action.

If both actions are von Neumann equivalent, the groups are
isomorphic and the actions conjugate.

~—» To get hold of the Cartan subalgebras,
an extremely fine analysis is needed.
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Good generalized Bernoulli actions

1
We study ' I3 T7/Tg and T [_1(Xo, Mo) satisfying

[C_Commensurator of g in I equals .

W < T almost normal, with the relative property (T)
and the relative ICC property.

[ _No infinite sequence (i) in | with Stab(iy,..., in) strictly decreasing.

[Por every g LT+ {e}, Fixg [Ihas infinite index.

14/17



Good generalized Bernoulli actions

Some examples
PSL(n,Z) CPIQ") and PSL(n,Q) [PIQ") for n = 3.

—(SL(n,Z2) CZ1) [ZMand (SL(n,Q) Q") Q1 forn=2.

C(@r <) CITdforl an ICC group, with property (T),
without infinite strictly decreasing sequence Cr (g1, ..., gn) of centralizers.
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Good generalized Bernoulli actions

Some examples
PSL(n,Z) CPIQ") and PSL(n,Q) [PIQ") for n = 3.
—(SL(n,Z2) CZ1) [ZMand (SL(n,Q) Q") Q1 forn=2.

C(@r <) CITdforl an ICC group, with property (T),

without infinite strictly decreasing sequence Cr (g1, ..., gn) of centralizers.
(I L1
Write VN(To [T JXo,Ho) =L*  (Xo,Ho) [T
I/To

Theorem (Popa-V, 2006 and V, 2007)

Under the good conditions, every isomorphism between
VN(To [TIXo,Mo) and VN(Ao [CA]Yo,nNo)t,

yieldst =1, (o [T) (/Ao CA) and (Xo,Ho) (Mo, No).
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Good generalized Bernoulli actions

Some examples
PSL(n,Z) CPIQ") and PSL(n,Q) [PIQ") for n = 3.

—(SL(n,Z2) CZ1) [ZMand (SL(n,Q) Q") Q1 forn=2.
C(@r <) CITdforl an ICC group, with property (T),

without infinite strictly decreasing sequence Cr (g1, ..., gn) of centralizers.
(I L1
Write VN(To [T JXo,Ho) =L*  (Xo,Ho) [T
I/To

Trivial Out

With PSL(n,Z) CPQ"), we get the simplest available concrete Il1
factors with trivial Out (and trivial fundamental group).
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Connes’ correspondences

A representation theory of Il; factors

Let M be a type lI; factor with trace T.
A right M-module is a Hilbert space with a right action of M.
~— Example : L2(M, T)w.
L1
Always, Hy [_1; piL2(M)
. . —1
and one defines dim(Hy) = ; T(pi) C]Q, +co].
~~—» Complete invariant of right M-modules.

A bifinite M-M-bimodule, is an M-M-bimodule yHy satisfying

dim(Hy) <o and dim(yH) < oo.
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The fusion algebra of bifinite bimodules

Notation : FAIg(M) is the set of all bifinite M-M-bimodules modulo
isomorphism and called the fusion algebra of M.

~~—» Both Out(M) and F (M) are encoded in FAIg(M).
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The fusion algebra of bifinite bimodules

Notation : FAIg(M) is the set of all bifinite M-M-bimodules modulo
isomorphism and called the fusion algebra of M.

~~—» Both Out(M) and F (M) are encoded in FAIg(M).

The set FAIg(M) carries the following structure.
CDirect sum of elements in FAIg(M).

CConnes’ tensor product H '\IAZK:Iof bimodules H,K CEAIg(M).
—Motion of irreducible elements.

~~—» FAIg(M) is a group-like invariant of Il; factors.

~~—» We present the first explicit computations of FAIg(M).
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Again generalized Bernoulli actions

LI 1
Take again vN(o [T IXg, Ho) =L (Xo, o) [T
r/To

Theorem (V, 2007)

Under the good conditions, every bifinite bimodule between
VN(To [T 1Xo, o) and VN(A\o [CAlYo,No)
is described through
—a commensurability of T [T /Tg and A [CAA/ o,
—a finite-dimensional unitary rep. of 1 <T.
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Again generalized Bernoulli actions

LI 1
Take again vN(o [T IXg, Ho) =L (Xo, o) [T

r/To

Theorem (V, 2007)

Under the good conditions, every bifinite bimodule between
VN(To [T 1Xo, o) and VN(A\o [CAlYo,No)
is described through
—a commensurability of T [T /Tg and A [CAA/ o,
—a finite-dimensional unitary rep. of 1 <T.

~~—» General principle.

Conclusion holds whenever I' [ (X1 1) is cocycle superrigid
and the bimodule ‘preserves the Cartan subalgebra’.
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Again generalized Bernoulli actions

LI 1
Take again vN(o [T IXg, Ho) =L (Xo, o) [T
r/To

Theorem (V, 2007)

Under the good conditions, every bifinite bimodule between
VN(To [T 1Xo, o) and VN(A\o [CAlYo,No)
is described through
—a commensurability of T [T /Tg and A [CAA/ o,
—a finite-dimensional unitary rep. of 1 <T.

Example : trivial fusion algebra
With (SL(2, Q) CQF) Q17 (and a scalar 2-cocycle), we get
the first concrete llI; factors without non-trivial bifinite bimodules.
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