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Countable Borel equivalence relations

Definition
The Borel equivalence relation E on the standard Borel space X is
said to be countable iff every E-class is countable.

Standard Example
Let G be a countable (discrete) group and let X be a standard Borel
G-space. Then the corresponding orbit equivalence relation EX

G is a
countable Borel equivalence relation.

Theorem (Feldman-Moore)
If E is a countable Borel equivalence relation on the standard Borel
space X, then there exists a countable group G and a Borel action of
G on X such that E = EX

G .
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The space of torsion-free abelian groups of rank n

Definition
The standard Borel space of torsion-free abelian groups of rank n is
defined to be

R(Qn) = {A 6 Qn | A contains a basis }.

Remark
Notice that if A, B ∈ R(Qn), then

A ∼= B iff there exists ϕ ∈ GLn(Q) such that ϕ[A] = B.

Thus the isomorphism relation ∼=n on R(Qn) is a countable Borel
equivalence relation.
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The Polish space of f.g. groups

Let Fm be the free group on {x1, · · · , xm} and let Gm be the compact
space of normal subgroups of Fm. Since each m-generator group can
be realised as a quotient Fm/N for some N ∈ Gm, we can regard Gm as
the space of m-generator groups. There are natural embeddings

G1 ↪→ G2 ↪→ · · · ↪→ Gm ↪→ · · ·

and we can regard
G =

⋃
m≥1

Gm

as the space of f.g. groups.

Theorem (Champetier)
The isomorphism relation ∼= on the space G of f.g. groups is a
countable Borel equivalence relation.
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Borel reductions

Definition
Let E, F be Borel equivalence relations on the standard Borel spaces
X, Y respectively.

E ≤B F iff there exists a Borel map f : X → Y such that

x E y ⇐⇒ f (x) F f (y).

In this case, f is called a Borel reduction from E to F.
E ∼B F iff both E ≤B F and F ≤B E.
E <B F iff both E ≤B F and E �B F.

Definition
More generally, f : X → Y is a Borel homomorphism from E to F iff

x E y =⇒ f (x) F f (y).
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A Cantor-Bernstein Theorem

Theorem
If E, F are countable Borel equivalence relations on the standard Borel
spaces X, Y , then the following are equivalent:

E ∼B F.
There exist complete Borel sections A ⊆ X and B ⊆ Y such that

( A, E � A ) ∼= ( B, F � B )

via a Borel isomorphism.

Definition
A Borel subset A ⊆ X is a complete section iff A intersects every
E-class.
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
Definition
The Borel equivalence relation E
is smooth iff E ≤B id2N , where 2N

is the space of infinite binary
sequences.
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
Definition
E0 is the equivalence relation of
eventual equality on the space 2N

of infinite binary sequences.

Question
Does there exist a nonsmooth
countable Borel E with an
immediate <B-successor?

Question
Does there exist a nonsmooth
countable Borel E with no
immediate <B-successor?
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
Definition
A countable Borel equivalence
relation E is universal iff F ≤B E
for every countable Borel
equivalence relation F .
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
Theorem (JKL)
The orbit equivalence relation E∞
of the action of the free group F2
on its powerset P(F2) = 2F2 is
countable universal.

Theorem (TV)
The isomorphism relation on the
space of f.g. groups is countable
universal.
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Theorem (Adams-Kechris 2000)
There exist 2ℵ0 many countable
Borel equivalence relations up to
Borel bireducibility.
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The measurable vs. Borel settings

Let G be a countable group and let X be a standard Borel G-space.

The Fundamental Question in the Borel setting

To what extent does the data ( X , EX
G ) “remember” G and its action

on X?

Fact
We cannot possibly recover the group G from the data ( X , EX

G ) unless
we add the hypotheses that:

G acts freely on X.
there exists a G-invariant probability measure µ on X.
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The obvious question

Question
Let E be a nonsmooth countable Borel equivalence relation. Does
there necessarily exist a countable group G with a free
measure-preserving Borel action on a standard probability space
( X , µ ) such that E ∼B EX

G ?

Definition
The countable Borel equivalence relation E on X is free iff there
exists a countable group G with a free Borel action on X such
that EX

G = E.
The countable Borel equivalence relation E is essentially free iff
there exists a free countable Borel equivalence relation F such
that E ∼B F.
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Some closure properties

Theorem (Jackson-Kechris-Louveau)
Let E, F be countable Borel equivalence relations on the standard
Borel spaces X, Y respectively.

If E ≤B F and F is essentially free, then so is E.
If E ⊆ F and F is essentially free, then so is E.

Corollary
The following statements are equivalent:

Every countable Borel equivalence relation is essentially free.
E∞ is essentially free.
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Essentially free countable Borel equivalence relations

t

Essentially
Free

t E0

E∞
Theorem (S.T.)
The class of essentially free
countable Borel equivalence
relations does not admit a
universal element.

Corollary
E∞ is not essentially free.
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Bernoulli actions

Let G be a countably infinite group and let µ be the usual product
probability measure on P(G) = 2G.

Then the free part of the action

P∗(G) = (2)G = {x ∈ 2G | g · x 6= x for all 1 6= g ∈ G}

has µ-measure 1.
Let EG be the corresponding orbit equivalence relation on (2)G.

Observation
If G 6 H, then EG ≤B EH .

Proof.
The inclusion map P∗(G) ↪→ P∗(H) is a Borel reduction from
EG to EH .
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Homomorphisms

Definition

Let E be a countable Borel equivalence relation on the standard
Borel space X with invariant nonatomic probability measure µ.
Let F be a countable Borel equivalence relation on the standard
Borel space Y .
Then the Borel homomorphism f : X → Y from E to F is said to
be µ-trivial iff there exists a Borel subset Z ⊆ X with µ(Z ) = 1
such that f maps Z into a single F-class.

Definition
If G, H are countable groups, then the group homomorphism
π : G → H is a virtual embedding iff | ker π| < ∞.
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An easy consequence of Popa superrigidity

Theorem

Let G = SL3(Z)× S, where S is any countable group.
Let H be any countable group and let Y be a free standard
Borel H-space.

If there exists a µ-nontrivial Borel homomorphism from EG to EY
H ,

then there exists a virtual embedding π : G → H.

Corollary
If S, T are countable groups with no nontrivial finite normal subgroups,
then the following are equivalent:

ESL3(Z)×S ≤B ESL3(Z)×T .
SL3(Z)× S embeds into SL3(Z)× T .
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Essentially free countable Borel equivalence relations

Corollary
If E is an essentially free countable Borel equivalence relation, then
there exists a countable group G such that EG �B E.

Proof.
We can suppose that E = EX

H is realised by a free Borel action on
X of the countable group H.
Let L be a f.g. group which does not embed into H.
Let S = L ∗ Z and let G = SL3(Z)× S.
Then G has no finite normal subgroups and so there does not
exist a virtual embedding π : G → H.
Hence EG �B EX

H .
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Towards uncountably many non-essentially free
countable Borel equivalence relations

Definition
The countable groups G, H are isomorphic up to finite kernels iff there
exist finite normal subgroups N E G, M E H such that G/N ∼= H/M.

Lemma
There exists a Borel family {Sx | x ∈ 2N} of f.g. groups such that if
Gx = SL3(Z)× Sx , then the following conditions hold:

If x 6= y, then Gx and Gy are not isomorphic up to finite kernels.
If x 6= y, then Gx doesn’t virtually embed in Gy .

Definition
For each Borel subset A ⊆ 2N, let EA =

⊔
x∈A EGx on

⊔
x∈A (2)Gx .
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Not essentially free

Lemma
If the Borel subset A ⊆ 2N is uncountable, then EA is not essentially
free.

Proof.
Suppose that EA ≤B EY

H , where H is a countable group and Y is a
free standard Borel H-space.
Then for each x ∈ A, we have that EGx ≤B EY

H and so there exists
a virtual embedding πx : Gx → H.
Since A is uncountable, there exist x 6= y ∈ A such that
πx [Gx ] = πy [Gy ].
But then Gx , Gy are isomorphic up to finite kernels, which is a
contradiction.
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Uncountably many non-essentially free relations

Lemma
EA ≤B EB iff A ⊆ B.

Proof.
Suppose that EA ≤B EB.
Suppose also that A * B and let x ∈ A r B.
Then there exists a Borel reduction from EGx to EB

f : (2)Gx →
⊔
y∈B

(2)Gy .

By ergodicity, there exists µx -measure 1 subset of (2)Gx which
maps to a fixed (2)Gy .
This yields a µx -nontrivial Borel homomorphism from EGx to EGy

and so Gx virtually embeds into Gy , which is a contradiction.
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Smooth disjoint unions

Question
Is every countable Borel equivalence relation is Borel bireducible
with a smooth disjoint union of free countable Borel equivalence
relations?

Equivalently, is E∞ Borel a smooth disjoint union of essentially
free countable Borel equivalence relations?

Question
Suppose that E∞ =

⊔
z∈A Ez is expressed as a smooth disjoint union

of countable Borel equivalence relations {Ez | z ∈ A}. Does there
necessarily exist an element z ∈ A such that Ez is countable universal?

Remark
The previous question remains open when A = {1, 2}.
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Partitions of the space of f.g. groups

Recall that the isomorphism relation ∼= on the standard Borel space
G of f.g. groups is countable universal.

Question
Suppose G is partitioned into two ∼=-invariant Borel subsets

G = X t Y .

Is it necessarily the case that either ∼=� X or ∼=� Y countable universal?
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Strongly universal relations

Definition
Suppose that E is a countable Borel equivalence relation on the
standard Borel space X with invariant ergodic probability measure µ.
Then E is strongly universal iff E � A is universal for every Borel subset
A ⊆ X with µ(A) = 1.

Question
Does there exist a strongly universal countable Borel equivalence
relation?

Question
Suppose that E is a countable Borel equivalence relation on the
standard Borel space X with invariant ergodic probability measure µ.
Does there always exist a Borel subset A ⊆ X with µ(A) = 1 such
that E � A is essentially free?
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Equivalently ...

Question
Suppose that E is a countable Borel equivalence relation on
the standard Borel space X with invariant ergodic probability
measure µ. Does there always exist a Borel subset A ⊆ X
with µ(A) > 0 such that (E � A)× I(N) is free?

Definition
Here I(N) is the equivalence relation on N such that all points are
equivalent.
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