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INTRODUCTLION

The first operatcr algebra analogue of the rigidity phenomena
in representation of groups and ergodic theory was discoverd by
connes in [ ) : He showed that the type 1I, factor M=L(&) of a
discrete grou5$aith property T of Kazhdan has discrete automorpnism

- group Aut M/Int M. #s a conseqguence these factors were proved to
have countable fundamental group ) ({ 11, a fact that may be
viewed as a typical and specific riqiditv result for operator
algebra. Then in { ] connes defined the property T for arbitrary
type II1 factors, in a way that makes egquivalent the property
T of a group G and of its vonr Neumann algebra L{G). To do this
Connes considered the concept of correspondences between von
Neumann algebras: these are normal M-N Hilbert bimodules over
pairs of von Neumann algebras or, equivalently, representations
of the algebréic toensor prcdﬁct M ® N, normal on M & ) and 1 & N.
If regarded as representatlions correspondences get suitable notions
of equivalence, topolowy etc. In turn, from the theory of bimodules
one got operations: of cowpositlion (or tensar product) and of
inducing from smaller alucwbras o larger onesg, both important

in any roeprescontation theory, Yet, A. {onnes nointed out a third




and a fourth point of view of looking to these‘objects: he noted
" that a céfrespondence may be regarded as a *-isomorphism of N into
some. amplification of M and, also, that the Stiﬁespring dilation
associates in a natural way a correspondence to a normal completely
positive map and vice-versa.

Since this notion 1s' so rich in interpretations and embrasses
36 many mathematical aspects it is natural to expect that it may
be used to.get some new insight in von Neumann algebras, especlally '
in the study of type II1 factors. And indeed Conpes' correspondences
provided operator algebras with the right ;etting for studying 17,4
factors with property T and for preving rigidity results about
them in{ 3,0 1. -

The main purpose of this paper is to continue thié study ahd
to prove more rigidity results on factors of type II1. The same
way property T can be thought of as characterizing the opposite
extreme from amengbility in the case of groups and ergedic
theory, it has all reasons to be sc considered for operator alée-
bras too. It is therefore natural to try to study amenability
phenome;a in operaéor alqeﬁra from the correspondences point of
view and this is ancther purpose of our paper, '

Let's now explain in more detail the content of this paper.

fo develop the two mentioned directions (amenability and
rigldity) we need the technical hackground on correspondences, all
due to Connes, but most of it unpublished. So we begin with an
expository part.intended to fill in this gap. We mention that,
aside few exceptions, we work cnly with finite von Neumann alge~
bras. In this first part of the paper, besides the basic defini-
tions, operations and properties, we also introduce some new notions

and prove new technical results from which we mention here a

necessary and sufficient condition, in terms of correspondences,

E '

for two subalgebras to be inner conjugate. -

' In the chapter on amenability {(Ch. 3) we first discuss
Connes' classical results on the injective II, factor by using
correspondences. Then we introduce a notion of amenability of an
algebra M.rfl@ative to a subalgebra BcM : it means the existence
of a certain Fplner.type cond;tion of the algebra M relative.to
its subalgebra B¢M. We call this an amenable inclusion. We ‘prove
several equivalent descriptions of it and we give some sufficient
conditions for an inclusidn to be amenable. For instance we show
that BeM is amenable 1ff any normal derivation of M into a dual
Banach M-bimodule X* which vanishes an B must be inner. A typical
example of amerable inclusion Bel is when M is the crossed product
of B by the {(B-cocycle} action ¢f an amenable group. ’

The last chapter deals with rigidity. In the first part we
define the relative property T for a 1L, factorM with ;espoct to a
subalgebra of {t BeM, The same notlon {s independentiy considérod
by Aﬁantharam—Delaroche in{ Y . In the case B=C this notion coin-
cides with Connes' property T for M while in the case B=AcM is
a Cartan subalgebra it is equivalent with Zimmer's propérty T of
the corresponding measured equivalence relation. We call such
an inclusioﬁ BeM rigid and if M itself has the property T then
we call M a rigid factor. Then we prove some baéic technical
properties of rigid inclusicns and describe how thev behave to
certain natural operations such as tensor preoducts, crossed pr;—
ducts,.basic construction ete. {(some of these results are indepen-
dently obtained in [ 13). Sectlon 4.2 contains the main technizal
result of this chapter t422.1): it shows that if N is a rigid

subfacter of a separable type ir, factor M and if % is a normal



_completely positive map from N into some finite algebra Mo‘close

on a certain finite subset of elements in N to a *-morphism

r:N-—tMO then Y and ¢ are uniformly cloae.-Section 4,3 contains
a discussich of Connes-Jongs result tﬁat rigid II1 factors cannot
he embedded in the algebra_L(?z) of the free group F,. In secticon
4.4 we prove a theorem that generalizes the rigidity results of
connes [ 1 and respectively Zimmer [ 1: if 'BeM 1s a rigid inclu-
gion and‘BcMncM is an increasing sequence of von Neumann algebras
generating M then, from a certaiﬁ né’the sequehce Mn must be stable
{in a certain sense)..Connes' theorem L5 when M itself is rigid
{(i.e. B=C} ;nd was checked independently by Bion-Nadal in t 1.
zimmer's result is when B=A is a Cartan subalgebra {cf.({ ])l Then,
also in section 4.4, we prove a technical result.showing that
if two rigid subfactors of a type II1 factor are close onh a certain
finite set of elements then they are "almost" inner conjugafe
(4.4.3).

In the last sections we prove the méin rigidity results.
We show that the set of rigid subfactors of a type II1 factor is
poor. Then we show that the presence of a rigid subfactor with smail
relative commutant (e.g. finite dimensional) ih‘a'separable typé

11. factor M already determines certain rigidity properties of

1
that factor: M must have countable fundamental group T{M) and
countable set of indices of subfactors ﬁ(M). Finally we congider
a new type of rigitdity result, not considered until now in operator
algebra or in ergodic theory. Namely we compare the restrictions
of a measured equivalence relation which contains a free ergodic
action of a discrete group with propérty T and show that mest of

them are not orbit cquivalent. Translated into operator algebra

terms and combined with the construction of L 1 this statement

shows the existencg‘of a separable type IT, factor with uncountable

many nonconjugate Cartan subalgebras.

The main results of the paper have been announced at the
th'

XI Conference in Operator Theory, 2-12 June 1986 and in a note

circulated as INCREST preprint.

We are most gratefuf to A, Connes for giving us the possibi-

lity to get acgquinted with his unpublished work.
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CH.1 DEFINITIONS AND BASIC PROPERTIES

8§11 pefinition of correspondences

1.1.1. FIRST DEFINITION. Let N and M be von Neumann alge-~

bras. A correspondence between N and M (or from N to M} is an

N-M Hilbert w*-bimodule %, i.e. ® is a Hilbert space and there
are scparately weakly continuous biliniar product maps N x ¥ &
My, E) v yEeR, YW x M(g,x) » ExeX such that-1N£=£1M=£, yqly,6h=
=(y1y2)£, (ax])xé=£€x1x2) and (y;)x=y(£x), for all y,y1,y2&N,
XX e Xyt M. : . )

in particular the product maps are norm continuous and in
fact they give rise to mutually commuting normal unital t-rTepre-~

sentations of N and M° (the opposite of M) on the Hilbert space

W, 8o, alternatively, a correspondence may be regarded as follows

1.1.2,. SECOND DEFIﬂITION. A correspondence between N and

M is a pair of mutually commuting, normal, unital, *-representa-

‘tions = and Tyo of N and respectively M° on the same Hilbert

N
space '\,

1.1.3. THIRD DEFINITICN. A correspondenge between N oand M

is a unital *-representation of the algebraic tensor praoduct ’

N ® ﬁ°, which is normal when restricted to both N=N & 1 and

M%=1 @ K%,

rrespens

There is yet another cquivalent way of definlng co

dences. This forth point of view will be helpful in several tech-



.

nical situations, for enalrging our intuition and also for justi-

fying certain notions and statementa in this paper,

1.1.4. FORTH DEFINITION. Suppose M is a factor. A corres-
pondence from N to M is & normal, unital *-morphism- p of N into
an amplification of M.

‘Before any other comment on Fhis last definition, let us
recall what the amplificat;on M, of a factor M is: if M is a
properly infinite factor and o’ is a cardinal then M, is the fac-
tor M g]ﬁ(ﬁ) where %-is a Hilbert space of dimension a (in parti-
cula} if a is at most countaple then MuzM); if M is a type II1
factor then either ae(0,») or = is an infinite cardinal; if a« is
infinite then MQ=M @ B{A} as before; if a is finite and n2a is
an integer then Ma=piM @ o (4})p, where dim*’=n énd the normalized

trace of p is a/n; if M is a factor of type In then o is necéssa-

rily a cardinal {finite or infinite) and M =M @ () with a=dim * .

To see that 1.1.4 defines the same objects as the prece-
ding definitions note that if M is a properly infinite factor and
Tnr Ty
isomorphic to an amplification of M, say M;, and_via‘this isomar-
phism i becomes a normal unital *-morphism of N into Ma‘ Conver-
sely given a normal unital *-morphisﬁ a of N into Mu‘ by Tomita-
-rakesakl theory Ma may be represented on a Hilber space so that
its commutanzi%somorphic to M° and this givea ny and n; . If M
ig a finite factor then the same arguments work, by the classical
results of Murray and von Neumann {sece ec.g.l 1 chap.7).

The Hilbhert bimodﬁlo (1.1.1) assocliated to a *-morphism o
{1.1.4) will be dencted bu L.

Definitions 1.1.%1 and 1.1.4 taken together show that the

m., are as in t.1.2 then by Tomita-Takesaki theory nMJM°)' is

o s ——— e *A -

.

name "correspondence® is better gnited to call our objects thon
the more neutral name of “himodule”. Indeed, the presence of a
*-morphism from N into an amplified Ma of M secem to relate the

two algebras in some way and to reveal some conections between

1.1.5. EQUIGALENCE CLASSES AND Corr (N,M}. Two correspon-
dances X, ' betweén N and M are equivalent 1f they are equiva-
lent as N-M bimodules, or, in terms of 1.1.3, 1f the correspond-
ing representations of N'@ M° are (unitarily} equivalent. If we
regard a correspondence as a *—morphism p (1.1.4) then this
equivalence translates as follows: p:N -~ Md; p':N + Mu, are equi~
valent iff a=a' and there is a unitary element u in Mu such that
p'={Adulep. We leave it as an exercise to check this observation.

"we denote by ~ the equivalence ard by %-the class of W
under this equivalence relation and by Corr (N,M) the set of all
classes of correspondences; if no confusion is possible we'll
scmetimes use the same notation W for a correspondence and.its

class.

1.1.6. SUBCORRESPONDENCES AND SUBEQUIVALENCE. Given a

'corres@ondence’i between N and M, a subcorrespondence xo of A

is a Hilbert subspace of ¥, stable for the actions of N and M
(NxoMcxb!. In other words a subcorrespondence is a subrepresen-
tation {of N @ M®).
A corrcospondence »' between N and M is subeguivalent te A,
or 1s contalned in A, L{f it is equivalent to a subcorrespon-
dence of A. We write this ®'eX (or i‘q i).

The following twd exemples of correspondences will play
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cage: a coarse correspondence exists between any two von Neumann
-algebrés and it doesn't relage them at all. This is because the
corresponding *-morphism of N into M_=M éiﬂ(xl sends- N into- the
amplification part (W) oﬁ M_. In fact as we'll see in this.sec-
tion, to éive a correspondence between two von Neumann algebras
is the same as to give a normal completely positive map between
them. |

For the sake of technical simplicity, at this point we
make the assumption that the voﬁ Neumann algébras N and M are
finite and countable decomposable and from nowon we'll only con-
gider correspondences between such von Neumanh algebras. Moreover

we fix on N and M normal finite faithful traces 1, and respective-

N
1y Ty ¢ with TN(1]=!=TM(1).

1.2.1. STINESPRING DILATION AND CONSTRUCTION OF K@°.Let
$:N + M be a normallcompletely pbsitive map. In this section we
show how cone assccilates to 4 a correspondence 3@ and vice-versa.
Define on the linear sgace'&o=ﬁ @ M the sesquiliniar form
Y B K Yy D x2>¢=rM(Q(Y§Y})x1x§}, ¥qeYqeN, x1,x2e¥. Let){¢ be
the completion of)(o/- (~ 18 here the equivélence‘modulo the mull.

space of <,> in)(ol. Since ¢ is completely poéitive, if

¢
N .

= %, fo 3 N, &M, th ay * *

p k'—};1yk ® x, for some y.eN, x,eM, then Nay ngwwijimxj)

is a positive normal functional on N of norm <p,p>¢. Similarly,

M%¥x® [ ?(¢(y3Yi)xLxx5) 1s normal, nositive, of norm Sp.p>,-
i:j .

Morcover N and M act on Ro on the left and respectively on the

right by ypx=y(£yk b ] xk)x=zyyk [ria] Xy X These two actlions commute

and by the above remarks we have <yp,yp>$=<y*yP,p>$£!}y‘y[[<p,p*a=

2

=l{yi|"<p.,p> and <px,px>‘b$! [x]]%<p,p> Ffor ytN, xtM. Thus the above

- Ao

".an important role in the seguel:

1.1.7. THE TRIVIAL AND THE COARSE éORRESPONDENCES. Let M be
a von Neuménn algebra and let LZ(M} bé the Hilbert space of‘the
standard representation of, M. By Tomita-Takesakl theory M acts on
L2(M) by left and right multiplication. Lz{xl with this bimodule

structure is called the identity correspondénce of M and (tids

unigue yp to equivalence. The coarse correspondence between N and

M is the Hilbert space HEO=L2£N; §'L2(M) with bimodule structure
given by the left action of N on the first Hilbert space (LZtN))
and by the right action of M on the second (L2[M)). Eguivalently
“to may be regarded as the Hilbert space of Hilbert—Schmidt.ope—
rators fromLz{N) intoc L2(M), with its obvious N-M bimodule struc-
ture. .

The identity correspondence will play here the role of ;he
trivial representation for groups while the coarse correspondence
will be the analogue of the regular representation for groups.

We note here the trivial but important fact that 1f M is
finite and countable decomposable then a correspondence X of M
contains the identity correspondence Hid if and only if there
egists a separating central vector for M in X, i.e., E&Xwith
xt=0 Lff x=0 and x£=EX fo} all xeM. We call such a vector a

central vector for M.

§1.2 The correspondence Hw associated to a completely

positive map

As we mentioned before, definition 1.1.4 suggests that
the existence of a correspondence between two ven Neumann algebras

already rclates them in some way. This is not necessarily the



actions of N and M on XO pass to ‘r(ol-..and then extend to commuting
actions on1¢. By the normality of the forms y <yp,p>¢, i
x = <§x,p>¢ the product actionsg are w—continuoos.

These show that\(¢ with the above N-M bimocdule structure
‘is a correspondence between N and M. Moreover 4 can be recuperated
f:om&° ag follows: let T: L2 My1y) + X¢, T(x)=7 @ x. Then

<P (YITX x> Eemly){t @ x), 1 @ x2>p=1M(¢(Y)x1x*"
- M

sch{y}xy 1 %y> B8O that $(y)=T*m {y}T, where rrN is the representa-

tion of N on \L¢ associated to the left action of N on){o
More generally, given a correspondence N between N and M,

1et teR, ||E£]|=t, be such that <fxx*,f>scT)(xx*) for some c>0.

Let T: l_LZ(M,TM) +¥, T(x)=f{x. Then T is a bounded oparator that

satisfies <THn (y)Tx, x, xzirun<wﬂ(y)(ﬁx1x): Exy> =M (y) By Exoxh> =

=<Jx*J('i‘*nN(y)T)x1. LT which shows that ¢(y)=T*nN(y!T commutes

with the right multiplication cn Lz(M,t) with elements of M. In
other words ¢({yle(M'}'=M and thus % is a normal compleéely positive
map from N into M, Now, if we denoty by Xo=§'ﬁ"ﬁ NE£M the subcor-
respor;denc:e of 4 generated by £, then (TI:)L(‘5 + A, Uly @a y=yEx

satisfies

[Ty, @ x4l . E Tl yly g xgd= T U gy T =
173

yiy Exy Exgr =

¢

= oan (yty ITx,, Tx,> = 1
b NI N

=113y e 1 2= lutlyy @11

This shows r,hat‘rl.vp is eguivalent to :r\o.
Note that any vector n¢¥ is a norm limit of "bounded"
vectors f€X, i.e. so that <£xx*,i>:ch(xx*) far some c>»0, as con-

sidered before. Hence it follows by a maximality argument that any

TPTTHE

~ 13-

correspondence by is a direct sum f cyclic correspondences associat

ed to completely positive maps as above. l'\ i—id we

have  the  followtng mare general useful observation:

1.2.2.. LEMMA. If WM is a correspondence hetween N and M then
let K°={(é‘&\ 3c»0 . such that Nsy ——<¢yi, 4> 15 majorised by cBy
and M:x — <%%X, 4> is majorised by C‘ME Then )Lo is a denae
vector subspace in W and NJLDMr-K

. o R
Proof, It is clear that 3&0 is a vcctor space-. If 1&22 and

. 2 2 '
XM then <y*yix ,txgr= ytx, U 1%, 1 4y a 2= ux ) 2eyryt, 4o

s }\xo [ %N(y*y) for some o»0. Alsc < \xoxx*, txo>sc"r,M(xoxx*xg)=

- H 2
c"{:M(x"xSxox)sc' 1 Xg i 'c.M(x*x), for some ¢'»0. This shows that

o o o_, 0 "
Amexd similary NA e . Mow Lf 16X et Y ertmn, gy, ,

1 . .
xoeL (M,'GM)' be so that 4y1,h='5N(yYo), <.tx,\>=.'cM(x°x). Then

xo, Y-O may he rogarded as positive summable operators affiliated

with M respectively N. Using the spectral decompositions of x and

X.e, &
Yo we can find increasing sequences of projections e EM“fWWl

+ r
en‘1’ EnT1. Thcn { lch — %

and it is easy t - o
a ¥ to see that {ntenc }(o

for each n.
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1.2.%. EXAMPLES: The case ¢ is a *~morphism. If ¢:N + M is

a trace presgserving *-morphism of N into M then){¢-¢(1JL2(M.r) with

the bimodule structure given by y-£.x=¢(y)Ex. Indeed the map

e, Te(Dx + 1ax

|I§¢(yi)xilig'tigyi @ xillze which éhows'that it'gives a bimodule

equivaleénce. In particular this shows that if we assume the

t.morphism ¢ is unital and denote it by p then with the notation

of 1.1.4 we have xp=L€o). Morecever if ¢=8 is an automorphism of

M then the class XB corresponds to the class of 8§ in Aut M/int M.
Note that if ¢=id, then Kid is just the identity correspon-

dence of M.

1.2.4. EXAMPLES: The case ¢ {s a conditional expectation. If

B(M is a von Neumann subalgebra and E,_, is the trace preserving con-

B
ditional expectation of M onto B then, the associated correspendence
between M and B 1s the M=-B bimodule L2(M,t), with M acting by left .
multiplication and B by right multiplication.

Tf EB:ﬂ + BeM is regarded as a completelyApositive map Erém

M to M then we denote the assoclated correspondence of M by?&B. The

bimodule structure cah be described explicitely as follows: let M

be represented by its left action on LZ(M,T), let y be the canonical

conjugation on LZ(M.T]; denote by ME=JB'J and ﬁy ep the orthogonal
projection of LZ(H,T) anto Lz(B,r) {regarded as the closure of B

as a vector subspace of Lz(M,T}). It is well known that eg is the
extension of EB to szn,t). Then M1=4Md{ea})“ and in fact, because

n
eyxe =B (x)ey , we have M1=span{iz1xiogyij nzt, xi,yi&M}. Moreover,

"since B is finite, M

is a well defined isometry, satisfying

45~

is semifinite and, e, having central support

1 B

t, there is a unique normal semifinite fafithful trace Tron M. so

1
that Tr(xeB]-rIx). The detalls of this construction mhy be found
in{ ) and inlL 1. In the terminology of \ \,M1 is called the
extension of M by B and thé above construction, the basic construc-
tion fof the inclusion BeM. Now, let L (M1,Tr) be the Hilbert ‘space
of the GNS construction for Tr, in other words L2 (M1,Tr} is the
Hilbert space of the stand;rd repre;entation pf (Mi,Tr). By res-
triction to M it becomes 4n M~M bimodule. This isﬁkn. Indeed, the

asignement [yi @ x, «~ Eyieaxi clearly defines an equivalence of

- M=M bimodules between “¢ and LZ(M1.Tr).

_The above interpretation of KB as a Hilbert algebra will
he very helpful for us,. '

Related to suequivalence of correspondences of the form3{B

let's note here the following facts.

1.2.5. PROPOSITION. (1) Let NcM be type i1, factors. Then
.}.nde divmaniion al

ile 4
NN T and X W o implies IMsii<w, I [M:NY<= then % 2%, . .

(iL)} If Bc¢M are arbitrary finite von Neumann aléebras then

XBQKCO iff B s atomic.

Proof. (i) Suppose [ M:Nl< = and let [m.}. be an "ortha-
normal basis” of M over ¥ as inl 3. Then 0#% ij ymiedy is cen-

tral for M and thus ﬂidC! Conversely if for some gcxN we have

N
xE=Ex, xeM then if we lnterpret £6XN»

:LZ(MT,Tr) as a square summable operator affiliated with M1 {the

extension of M by N} it follows that x commutes with |£| and with
nan§0f0

its spectral decomposition. Thus there exists a Elnite pro;ection

[} }m“z. CH "‘Pnur'la\ e 3l {nna e Aiewngieag

in M1 that commutes wWith M. But since N nﬁv B M'AM1\V and M1 being
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‘properly infinite this is a2 cé_nt:actionl by 1).

{11i) Suppose B 1is an atomic algebra. Let ey be the atoms

of X (B} and {ekl 15k, 150, the matrix units of Beg,. Let

i .1 W § i -1 1.2
Ew ] e ge , where a_ .= [tes;|]5' - Since {a, ) =1
L% @ %k ® %) k1ll2 1,15.1 k2 =t
EE!B. Let u,veM be unitary elements.
: i b T
T ( (vekl @ ekl) (uepr ® epr))_
2 S SigbiTlena Tt ve)
- i3 ir “x1’
' Thus:
Tr(E*uEv}=_
‘ -r(ue )T(ve
=} T(ekk)———-—L-——E
L.,k,p {e kk)
r(ucikll i 1'(1.:«'3}c
But Ej(u)= ] —=—el , so that t{Eg{ulv)= § __}___&
k,lr(ekk} ik,1 'r(ekk

which shows that 'I‘r(&'u!:v)-=T(EB'(u)v) and thus proves that “B‘MEMCV‘C .
o

To prove the converse implication, supposé on the confeary

that 8 has a completely nomatomic part, say Be, , for some

o;leoq.Z.(B), and that KBCKCO. It follows that there exists a Hilbert-

~Schmidt operator, say To ;s on thM,r). such that bT‘o=Tob for all

) .
bEBSB(L" (M, 1)) and eo‘I‘o;’O. But a completely nonatomic von Neumann
algebra cannot comnmute with a nonzero compact operator. Thls con-

tradiction completes the proof.

Q.ED.

[ ————
o

41~

1.2.6. LEMMA: Let M be a filhite factor and MgcM a matrix

subalgebra of H, 1M =1u. Let 3 :M—M be a normal completely po-

[s]
»,_c
sitive map such that §=EMO°Q°EM°. Then ® )Lco‘ )
proof. Let §0=M0—¢ M, . q;o:EMoorl;Mo . If io is the eylic
unit vector of the coarce correspondence of Mo' lgo s then

T yioxlsy 1%): defines a unigue bounded operator from the finite

dimensional Hilbert space ){go onto M , which is clearly an

%o
M_-bimodule morphism. Taking the partial isometry in the polar

decomposition of T instead of T, we may suppose T T*=id“q

equivalent to 3

Thus T*3. c¥Y®_ is a subcorrespondence of we .
cO co . {10

e now take M1=M“Jr\.‘4 and note that the coarce correspondence of il

gt =0 1 N
satisfies ){co-{ o @}\co ;, where Y\co is the coarse corresnon

M 4
dence of Wof\ 4, and that ‘A?' ""co

e X

® . .Thus since %,c
c:n‘&?o p &l :LCO '
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As concerning equivalence of correspondences of the form XB .
it is trivial to observe that if'Bo,Br-M are inner conjugate, i.e.
.there exists a unitary element ueM with uB_u*=B, then XB ~Ry .
It seems that the converse implication is true in the mo:t interest-
ing situations. We can pro\-re it for regular subalgebras and subfac-

tors of finite index.

. 1.2.7. THEOREM. Let M be a finite factor, BO,BC-M von Neumann
_subalgebras of M. A \f “‘B'ﬁ L thea in ﬂ-'.'t‘“ of the Eo“pw&n%
situstions B, and B ar: innér conjugate in M:

(1) ao,a are Cartan subalgebras of Mj

(i1) BQ,B are subfactors with Béf\M=¢, B'AM=¢€ and "!‘L(BO)"=M,
T{B) " =M , ’ .

.

(iii)-Bo, B8 are subfactors of finite index in M.

proof. We give separate proofs for each situation. The
common property of these three cases that will help us in the proofs
is the existence of nice orthonormal basis of M with respect to

B (ef.i 3.0 1 respectivelyl 1I).

+

.

§1.3 Operations with correspondences

Until now we conside‘x:}')}nore or less explicitly two trivial
operations with correspondences: restriction (if W is a correspon-
" dence between N and M and NOCN, MOCH are von Neumann subalgebras
then the restriction of * to N -M_ is Just W owith its N (eN)-M_{cM)

bimodule structure) and direct sum. We now consider some other

impoxrtant operations,

1.3.1. COMPOSITION (OR TENSOR PRODUCT}. Let H be a corres-
pondence between N and P and X a correspondence between P and M.

We define the composition correspondence XoX (or the tenser product

correspondence X g% ) as follows:
P .

. Let ‘_k.o={nc:}<|P,z + <zn,n>» is majorised by crp for some c>0}.

Note that i'o='x. Define onX®¥  a sesguiliniar form by < ®n, £'® n

=<fp,£'> where peP is the Radon-Nykodim derivative of_ the normal

form Psz + <zn,n'? with respect toc the trace Tp‘ Then the Hilbert

space #+X is the completion of \L@‘xo/-. and the N-M bimodule struc-

ture is given by y({ @ n)'x=yi @ nx. ]

Indeed , the proof of the positivity of the above defined

sesquiliniar form is the same as int141. For convenience we sketch
here the proof in the case P acts in standard form on X (bﬂ left

multiplication). If ~1‘1,...,.-?n;_3to, 11,...,1“4,‘)& then let rij

be the Radon-Nykodym derivative of Przwed2 74+ 7> - We have

. 2 -
; > = P t K =L%tP, T_}, K _=P
‘2{1‘5.@ ”{i‘jljsjj’ Z]!<tipij.'t)> Bu s Tp a
LY K

so that there are some elements Z.¢ PT"such" that 'r,(z?‘..a):’r-(zzizs) ; thus

2
2% and Z_.&{ipij. by s 2ot zyeigeges Wiy 45200 I ds

Pii71%5

i ]
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clear by the above computations that left multiplication i*alements

in N and rlqht multiplication by elements in M preserve the null
space of the above positive;ggsquiliniar form on X a3{° and that
they implement unital *-morphisms of N respectively M on e 'CK_,Q/,V .
Moreover, since N»y-—-%jcy[ig.i._ 1jzj-> and Msx b—-r%< ii(zix}, 1jzjs
are normal these representat{éhs:are normal and they ¢clearly commute.
Ae use;tz;e fact that since P acts standardly on'X , M may be

considered as a subalgebra of the right action of P on 3&=L (P,zp)

‘and the multiplication zyx has this meaning.

It is easv to see that we could have defined N ek starting
P

from 3{°=X}€}Kl?bz-—+&\z,ﬁ> is majorised by s, for some >0}

and by letting < taﬂl. ' e q'>=<qq,w'> where geP is the Radon-

‘-Mykodim derivative of Przws<fz, ¢ with respect to Bp‘ That

indeed this definition coincideswith the first one is equivalent to
the fact that Ep(qp)=tn(pq) for all p,qeP.
The next two results are trivial consequences of the

definitions:

1.3.7. PROPOSITION. The composition of correspondences is

assoclative.

1.3.3. LEMMA. If Ko¢vlare correspondences from N to P and
:Kocx correspondences from P to M then>{ou¥6zxe1k as correspondences
from N to M. '

As we have seen (1.1,4 and 1.1.5) correspondences may be

viewed as *-morphisms. It is desirable to see what composition

JoA-

means in this context., It is what we expect to be:

1.3.4. PROPOSITIOM. Let N, P, M be finite countable decom-

posable von Neumann algebras (as usual) and assume P and M are

factors. Let p:N ~ P_, TP - MB unital normal *-morphisms of N
into an amplification Pa of P and respectively of P into an am-

plification M, of M. Denote by m_ the a amplification of m as a

B
unital *-morphism of Pu into (Mgla (which is uniguely defined up

to inner perturbations). Then L(o)eL(nlzL(na°p).

Proof. Assume for”simplicity that o=8=1 {the proof of the
general case is the same but the formalism is unsiénificantly more
complicated). Then L(p)=L2(P,TP) with bimodule structure y-t-p-=
=g (y) £p and L(n)=L2(M,r ) with p.n-x=nmi{p)nx. Define a linear map

irom the algebraic tensor product P & M into L IM 1) by Pax-
+ n{plx, (we regard P as a vector subspace of L (P,t} and M as a
vector subspace of L (M,7)}}. It is easily seen that via this map
the sesgquiliniar form defined at 1.3.1 on P @ M(:LZ(P) @ Lz(Ml)
transforms in the usual scalar product form on LZ(M). Moreover
we have yo(p b x)xo=c(yo)p @ xx, - v(o(yo)p]xxo=(ﬂnm(yo)hdpbdxo
wich is the bimodule structure of Liwepnl). 0.E.D.

1.3.5.. INDUCED CORRESPONDENCES. A very importan£ operation
in various representation theories (e.g. for groups) is that of
inducing from “smaller" objects to larger ones. We also have such
a concept here equaly important for this theory.

Let N; N, Mg 4 be finite countable decomposable won Neu-
mann algebras and w, @ correspondence form N, to MO. Then the
correspondence LndUCCd bv.i from the pair N Mo to the Eair
N, M is by definition the N- M correspondenco L (N} @ 5{0 o] L (M},

No Mo

where L2(N) is regarded here as a left N module and right N, module

and L2(M) as a left M_ module and right M module. We dencte this

N M
correspoendance by A,
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. The next properties are trivial coﬁsequencés of the defi-
nition:

1.3.6. PROPOSITION. (4) If NSNN, MeMSH and M is a
correspondence between Ny, and M, then‘NnM.-_N(N.Km)“.

(14) If Bem then s =" (2 (m)M.

1.3.7. THE ADJOINT CORRESPONDENCE. Let H be a correspbndence
from N to M. Let ¥ be the conjuqatelﬂilbert Spacé of ¥, 1.e. =N
as & seb, the sum- of vectors‘in;I is the same as in Y but A-geXg
and ‘5'”’I‘<“'5ﬁt' We denote by T the vector £ as an element of the
Hilbert space L. Define an % an M-N bimodule structure given by
xEy=y*Lx*, It is easy to verify that ¥ thus defined is a correspon-

dence from M to N, We call it the adjoint of the correspondence X.

The following proposition relates this oberation {of

adjointness) with the preceding ones. The next proposition,wili

show that n¢= b whenever this makes sense,

1.3.8. PROPOSITION. (1) W=X..

(1i) R oR=XsX.

(i) (M TNRM L

Proof. (i), (ii) follow directly by the definitions and

remarks in 1.3.1. Then by (i) we have (LP1N) @ W w nZm))7-
NO MO
»12(M) & W @ L2(N) which proves (4ii). Q.E.D.

o Mo

1.3.9, PROPOSITION, Let »:N -~ M-be a normal complectely
positive map. Consider N and M as vector subspaces of N*=L1(N.rv)
and respectively M,=L1(M,tﬂ} in the obvious way and denote &*:M ~N,

where $*({x} is the Radon-Nykodim derivative of the normal form

- 23 -

\

COoNvy - Tidlyix) with respect to Tyt

(1) If there exists c>0 such that_TMo¢5c1N then ¢*(M}eN
and ¢*:M + N 1s completely positive and normal. Moreover, in this
case, as applications from N to M and respectively M to N, ¢ and
$* can be extended to boudded operators from LZ(N) to LZ(M) and
respectively from L2{M) to LZ(N}, also denqted by ¢ and $* , 'BO
that ¢* is the adjoint bperator iin.the usual sehse) of 3.

- (1) Under the hypothesis and with the notations of (i)

we have (R¢] RYEE
proof. Since ¢*(1) satlsfies TN(y¢*(1l)=TM(¢(y)1)=TM(¢y)).
by the hypothesis of {i) it follows that ¢*(1)&N and thus by the

obvious positivity of ¢*, ¢*(M)<N. To see that $* is completely

positive note that iijt(¢‘ (x;xj)y5y1,=iij(xixj¢(y§yi))207

3 Now we have by Kadison's inequality [l¢(y)|!§=rn(¢(y*b(y})
a n

??&(@(y*y))S:TN(y'y)=c|ly]Ig which completes the proof of (i}.
{1i)} The identification of the bimodules ﬂ¢, and I; is give:

by K¢*>M @ Nax @ yes [y* @ x*) & (N @ M}-LQQ. . Q.E.D.
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1.3.10. OTHER OPERATIONS. If \;{1‘001‘1:(1‘11 .H ). ‘l\f Corr{Nz.Mz

- then ﬁﬁ o\{z {8 in an obvious way a correspondence between

N1 - ] N2 and M1 ¥ H . We call thia the trivial tensor product

of the correspondenc
| anel ‘-“Iunhtqz
If”@LeCorr(N M), 04 ,peo then let nel, nae,fp and

LZ(Mn,Tr)e W as a correspondence between M. ® N and Mn & M
with M acting standardly on L2(Mn,T;). Let ﬁsMn ® M, e¢M ® R
be projections with w(f)=p/n, wle)=o/n. Then we denote by

K: =f(£ﬁﬂ®¥kle with its obvious bimo?ule s¥ructure of

£(M @ N)f on the left and e(M, ® Mle on the right. It is
easily seen that the class of 3? depends only on =p and not
on the choice of e and f. We call “ the a-—p amplification

of‘t‘\ . If «=» we denote ‘ﬂ =Y,

§1.4. Index of correspondences and stable equivalence

of factors

1.4.1. THE INDEX OFY . Suppose N and M are finite factors

and let Y\ be a correspondence from N to M. Then we define the index

of ¥ to be the number dimNi-dimHQ%.and denote .it dimN'M¥(or simply
dim% if no confusion is possible (here dimNHq dimM,K are the
Eoupling constants of N and respectively M° in their represen-
tation onW ). Note that if the correspondence 1s given as in 1.1.4
by a *-morphisms p of N into an amplification Ma of M with

a&(0,=] then the index of L(p) Ls infinite if o== and is equal

to Jones' index IM 1p (M)} if n<e (i.e. when M is fintte). Thas !

.’n'i 3 bt

fellovus by Jonecs' results Hlm i& can only take the values

(4cos?L  np3jula,-1.

...2‘ &~ .
1.4,2, PROPOSITION. i If W eX, dim ad l
(1) o ’ N H\(OS imN M
ii dim M=dim
( ) M i ML N .

b a3yl Ao Lowr(t, ¥, ReGou st
I

(114} dimN'M(XuklntdimN’Pil(dim
{iv) If NOLN, MOCM are subfactors and ¥ ,is & correspon-
dence between N d NeM) i :
o 2nd M_ then ‘“"‘N,M‘ ®,) LN.NQ][M.M;IdimNO'Ho\,(“.
If¥ is a correspondence between N and M and we regard 1it, by

restriction, as a correspondence between No and Ho then d!.mN

=TMiM ) [u:uo]dmn’ﬂvt.

Proof. (1) is trivial.

(Lii) follows by 1.3.4 and the pgopertiés of the index
of subfactors in L 1 .

(1ii) is a consequence of (ii). Q.E,D.

1.4.3. STABLE EQUIVALENCE. Let N and M be finite factors.

Then N and M are stable equivalent, N~M, if there exists a

correspondence of index one between them. This is the same as to say
that there exists an iscomorphism of N onto same finite amnlification

M-\
«Me  fer rewne f--robia\‘ons e et , fen .,

0f M (with Osa =% ) or Q_Qu}\f‘ltn‘“n’av\ 46 Mor phiim  befwegn 1.\(1 smc

Then we. say that N and M arg¥gtaple equivalent and write N.M if

R -
there exists a correspondence of finite index between them. Thes.
&ve clearly equivalence relations.

3ince stable equivalence cannct distinqguish between the ampli-
T there exist I1, factors with

small fundamental qroup, it follows that this equivlaence relation

fications of a factor and since by ¢

is strictiy wea'tk_c-r than the usual isomorphism of factors. Morcover,
since by T 1 there exists a II1 factor % with a periecd 2 automorphis:
3 gso that M is not isomorphic to M» o and sc¢ that MzM @ R, it
follows that w-stable eguivalence is strictlv weaker than stable

equivalence of factors,
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We note that by 1.4.1 to show thot two factors N and M ¥ .s-atable

weith $amite indes

equivalent amounts to find an embedding of N into some finlte am-
woifl finife frd e
plification of M or vice-versa, an embedding of M is some ampli--
fication of N. -
In connection with a well known classical problem in type
agking emether LEFL) ore wmutualy tiemorpric srwet ferasinaa
11, factors'(ef. L 3 ,% },U 1), let us mention here the following

-
exemple of "stable equivalent II1 factors.

1.4.4, PROPOSITION. If Fn is the free group on n genara-

e )
tors then L(Fn) are mutually¥vStable equivalent for all 2snse.,

Proof. It is sufficlent to embed L(F_ ) Into L(Fn} with
finite index, for each ni2. Let s:F - t/22 be a suriective group

morphism. Then ker s 1s easily seen to be isomorphlc to Fm'(sec

e.g.t 5 ) and thus we have F ¢F with [Fn:F;\=2. Thus LL(Fn):L(Fmﬂ'=

=2, : Q.E.D,
Note in connection with the preceding proposition that we
can go further and define the modulus o?xééable equivalencé to be
the infimum dimN'M%K over all correspondences X between N and M.
It would be very interstging to show that this infimum is in fact

; 2
a minimum. Since if dimN’MK<4 implies dimN‘ﬁﬂ{4cos 5inz3} this is

indeed the case if we can find a bimodule of such small index.

he grass D) Gad ¥l 3
4%_‘é

By 1.4.47it follows that either the modulus of stable equivalence
sneme fladle smplifredlen of )

between LI{F.) and LIF_) is 2 or L(Fn] is isomorphic to'LIF_){i.e

1.4.5. INDEX AND ENTROPY OF 4. Glven a normal completely

positive map 3
nalm }(

v we call the numbeorthe index of the completely positive map H

LTSI

29~

Moreover, in the same line, we - call the relative entropy of

the .associated embedding p(N)}¢M (cf. 1.1.4) as defined in L ],
(To ure the tevm antropyin
the entropy of Q.V‘Tﬁis second definition is in fact quite impro-
snce

prious™ ¥ in case ¢=0¢Aut M it doesn't coincide with the usual
notion of entropy 1 1). There are at least two aspects to be con-
sidered about this index . . ' '+ to use

1{' in the study of completely positive maps and to use comple-
tely positive maps (of finite index) in the study of subfactors
of finite index of a given factor.

One can easily formulate a lot of preblems
about this notion, | he <esdes maq do this ) himself . There
awd we-na-'a}m_q e

is one problem that however.seems of most interest® find necessary
and/or sufficient condittons for ¢ to have finite index, or even
more, to have a certain number as index.

. — IR o
C_;;d;;ke here a iuess on this problem: if ¢:M -+ M are such

tome &3>0 XN

that ¢ (x)rex for aﬁ} %20 then the index of ¢ is finite.

1.4.6. TYPES OF CORRESPONDENCES. As we have seen, a corres-
pondence X between N and M is in fact a.unital *~representation i o
N @ M° onX. So we may speak about the type of this correspondence
as being the type of 7. Thus X can be irreducible, factorial, of
type I, II, TII etc. Such considerations seem of interest if we wan:
to find out how much the two'algebras N and M are related. For
instance if there exists an irreducible correspondence between them
this may be an indication that in some sense N and M are close onc
to the othor. Notec however that this is the same as having an
embedding of N in some M 5O that ¥'AM =C. It then follows by L 1}
that therc exists irreducible correspondneces between the hyperfini
II, factor R and any other scparable 11, factor. Note also problem

in L2
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§1.5 Comments

1.5.1. The notions, terminology, propérties and results

presented in §1.1, and §1.3 are due t¢ A. Connes (L'1,U 1).

Morecver the construction of a correspondence from a nor-
mal completely positive map and, vice-versa, of a completely
bositive map from a correspondence are also due to Connes (i.e.
§1.2.1).

Another notion of index for a correspondence of the form
)LN for NeM has been considered int 1, TSat index of )(N coincides
with the square root of our index cf “‘N"

In the case g:M— M is a unital *-isomorphism our index

of HS*Mgcoincides with the index of ¢ as defined inf .1‘

1.5.2. People which are familiar with Hilbert C*-bimodules
will note that the construction of the composition product of
correspondences follows step by step the construction of the tensor
product in that theory (see e.q. % 1,L 1,1 1), since in fact
on)kg we do have d4n N-M Hilbert C*-bimodule structure, as it
explicitely appears inthe proofs of 51;3. However in the theory
of von Neumann algebras the completion of)Lg relative to its
Hilbert norm (i.e. l {tself} will play a crucial role and the
existence of L\gn\{ will be carried in mind only for technical

reasons.

1.5,3. The possibility for a normal completely positive
map & to be'included in Kco when & have certain nice properties
{e.q. % with finite range or, more generally, a Hilbert-Schmidt
operator on Lz(u,nf) was suggested to us by Connes' unpublished

wark on correspendences,

P

CH.2 TOPOLOGY ON CORRESPONDENCES

§2.1 The definitions

Like for groups and.algebra representations one can define
a suitable topology on Cofr{N,M): . © it is given by
the topology of the corresponding representations of ¥ © M® as
inl 1 ch. (ef. L 1,1 1, L 1 I; To describe this topology we

define 1ts neighbourhoods.

2.1.1. FPIRST DEFINITION. Let chCorr(N,M), e>0, and FeN,
EcM, S=(E1}....£p}cu_o some finite sets of elements. We denote by
Utﬁo;F:E;S)CCorr(N,M) to be the set of classes of correspondences
Cisuch that there exists {ni,nz,...,nn}tK with [<y£ix,£j>-<ynix,nj
<e for all yeF, xeE, 135i,3j$¢p. We consider an Corr {N,M] the topelo
gy for which these sets U are basis of neighbourhoods. Note that
if we regard correspondences as *-representations of N @& M° thén
this topology is the usual topelegy on classes of representations

of N & M°.

2.1.2. SECOND DEFINITION. As for represen;ations of groups
and algebras the topology on Corr(N,M} may also be characterized
by strong operator convergence. As béfore we describe this topoloc
by its neighborhocds. For simplicity we assume that N and M have
separable preduals and only consider for them correspondences with
separable infinite dimenslonal underlying Hilbert space. We denote
CorrO(N,M! tho set of such classes of correspondences. Let
ioecérrO(M,M). ¢>0, and F&N, geM, Se¥., be finite sets of elements.
We denote by V(;O;g;F;E;S) the sct of all classecs of correspon-
dencos;LeCorro(N,MJ having the property: there oxisty a corres-

N
pondence N in the class W such that A coincides with W as a
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Hlibert space and such that if y+«g+x denotes the bimodule structure
on X (with Etﬂzﬂb) and yEx the one in Ko then ||y+Eex-yEx}|<e for

all ye¢F, x£E, E¢S.

2.1.3. PROPOSITION. The two topologwsgiven by 2.1.1.and.
2.1.2 coincide, More precise}y if €, F, E, § are as before and if
" we denote F'={1N}UF'UF*F, E'={1, JUEUE*E and 8'=S5U{yEx]|yeF, xeE, £es}

then there exists c¢'>0 such that U(H':o:c':F':E':S')-’-V(?(oas:F:E;S).

Proof. The proof is just a tran§1ation"to this context

of the proof of int 1l Q.E.D.

2.1.4. REMARKS., 1°, If 5&}{0 is a cyclic vector for*&o, i.e.

span NE _M=X_, then it is easy to see that the neighborhoods of the
form U(ﬂo;e:F;E;{go]) lor vtﬁo:c;F:E;{Eol)) give a basis of neigh-
borhoods for the topology on Corr{N,M). Moreover F and E can be
chosen finite sets in given . éugséE%iJ;fglghd M. eq. i
the sets cf unitary or selfadjoint elements) . .

2°%. For correspondences of the form H¢ we have a nice suf-
ficient condition for convergence, as .follows: let @:N > M be a net
6f :normal completely positive maps with SEP!1¢11|<Q and let ¢:¥ » M

be also normal and completely positive. If ¢i(y) tend weakly to

${y) for all yeN then b.S 9.
by ¢

3°. .We have by ‘a contravariant equivalence between
{Rala Aut M} with composition product 1.3.1 and the above topolo-

gy and Aut/Int M with its usual structure of polish group.

2.1.5. A NOTATION. Let KO,){ be two correspondence between

N and M. We say thatW  is weakly subequivalent to A (or that A,

s weakly contained in¥) if ¥ is in the closure ofx.d. We write

this ¥4 OQ - ((.31« ioi,;() Nafe s34 fhat M, i w-la&\\v(x?o,q"‘ Ta }(1!_ Hog ¥ K,

34—
§2.2. Continuity of operations

As a direct consequence of the definitions we obtain that
all the operations that we jntroduced are continuous in the above

topology. We summarize this 1in the next:

2.2.1. PROPOSITION. (1) The comyosition product Corr{N,P)x
) - ) sapacately
xCorr (P,M)» (% k) + HoKeCory (N, M) {sContinuous in #ach variable .
{11} The adjoint operation W =+ R is continuous.
{111) The restriction operation is continuocus.

: ' M
(iv) If Noc M, MOCM then Corr(No,Mo)aK - Nx Corr{N,M} is

continuous. '
Proof. (1i) and (ili) are trivial and clearly (i) = (iv).

(i} follows by the definition of = in 1.3.1 and the observation

at the end of that paragraph.
' 0.E.D.

Note in connection with 2.2.1 that it is easy to construct
exemples showing that the composition preduct is not continuous

simultanecously in the two variables.

We mention that the index is not a continuous function on

Corr{N,M) {(exercige!). This will follow implicitely from the

results of Ch.3.

§2.3. Nelghborhoods ofﬁiid

Let M be a finite factor and ﬂid its identity correspon-

C X
dence. For fﬁfher purposes it is important to have a better under-

standing of the nelighborhoods of M&d' A more suitable description

to work with is given beliow (ef.l i,
Let £>0 and E<M a finite set. We dencte by W{e,E) the sct

of classes of correspondences Y. of M such that there_exLng.gé ¥

[1£1]=1, with ||x7-£x|i<e for xeE.
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e
.

. 2.3.1. LEMMA. The sets W form a basis of neighborhoods
of Kid.

Proof. If E*»! and if we denote EJ-L2(H,T] the trace vector

th : ‘
en we clearly have V(lid;E/ZJF;F;EO)CW(e;F}. Let's show that given

e>0, FcM there exist ¢'>0, F'“M such that W(e"F']‘U(*idﬂliF' FiLL)
) 3T R,

y Dixmier's theorem
thera exist unitary elements ut'“"ﬁf“

such that !I Iuiy,yz g =tly,¥,) 1} l<et for all ¥y ,2F. Let then
f=FupY
F U[“1Y1Y21Y;fY24F}U{“1}i If eW(e';F') then there exists

ge%, [€]]=1 such that ||xg-Ex]|<e' for all xeF'. It follows that

if X, 1X,eF' then:
(1) }ex,gx,,E5~ - .
i 18%5.5> <x1§ox2,£o>[—f<x1gxz,§>f1(x1x2));
5]<x1x25:§>-T(x1x2) I+g'| lx1 l |,

(ii) I<X1X2,l€> <x 1E,E>E$!<x1x2£,£>_<x2£x1'€>i+€-”x2H=

=|<x122£,£>-<x25,5x;>|+5'|[x2|ls

R i L e LI AL REPT I EE L REIS A

Taking then x au?y yzeF' and x2=Uf F' it follows that

|<U*Y 1¥ou B>y Y, 8, JEx182e'sup |Ix|{=2e'c
xeF!'

1
sa th — 5 - . :
at l<m§u1y1y2uia.ﬁ> <y1Y25.£>|sze c and thus ]r(y1y2)-<y1yzg,5q:

$3c'c which together with (1), (ii) give for all y1,y2eFCF'
|$3e'c

< £ £ %= - T
| Y13Y2I't; <Y1-,oy2,,°>

Taking v'=+</3c the lemma follows.
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We end this section with a result showing that in some sense,

the coarse correspondence is the smallest one.

2.3.2. PROPOSITION. If M is a separable type II1 factor then

X.cos W for any correspondénce X of M.
This result is a consequence of the noncommutative ergodic

phenomena specific for type II, factors proved iﬂ{ 1. It will

follow easily by the next:

3.1.3. PROPOSITION. Let M is a separable type II, factor
and t> 0, xt,...,x ¢M. Then there exists a maximal abelian *-sub-

algebra A of M such that EA(xi)—1(x1)1Hn2¢& for all 1. More-

over, there exists a nonzero projection eel such that

l\exie~3(xi}e“< e for all 1.

Proof. By L 1 there exists a hyperfinite type II, subfactor

RcM such that R'nM=C, Moreover there exists in R a sequence oOf

! =
subfactor Rn such that RnnR ¢ and llER {x)- L(x)1“ 2**0 for all

n
x&R. This can be easily seen using the techniques in t land is

also a consequence of { 1 . New let n be sufficiently large so

. w 2 2 - a e .
that %fiERn(xi)-gtxi)1‘12<(=4) Since R)AR=C byl 1, there

exists a finite dimensional abelian ven Neumann subalgebra AO

2 2
- " E .
in Rn 50 that é “EA nR(ER(wiJ) (xi)1 u2<{ /4) Moreover, by

P2 there exists a finite dimensional abelian refinement

A, of N in R such that if xi!xl-ER(xi) then 2 ﬂE .ﬁ“(xill

1
2 - - 2
<(£/212, We thus get‘T !EA;n”{xl) t(x1115[“25 2Zﬁ SA.nM(xl)‘\z

b PRI RIS a2/4+2“;“.‘. Atar{Eg ()50 il

A ﬁ“ R
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Thus any maximal abelian A<M'with Adh, will do.
Moreover, if LIRERRNL are the minimal projections of A1

then the above inequality can be written
‘ 2 .2 2 .
%‘%nejxiej slxgleg Ny <t %}\ejnz., L

2
fhus, for some j we have %l ejxiej-'(,{xi)ej r‘2<£2 “ej 11% .

Tt follows by arguing as inl lor by 1.2.1 in { lthat for some
projection Oy!esej we have: exie-z(xi)e'& < % (&), with () —+0
when t—+0.

Q.E.D.

The proof o.f 2.3.2 is now quite easy. Let {c){_g he as in
1.2.2 . Let £>0, x.l,....,xmc_ M. Let 0fee M be a"projection ;uch
that & exieﬂ‘r\(xi)et < & ., There exist unitary element_s u,veM
such that eu*jve#0. We define 10=eﬁ*}ve/ v euttven < ¥, . Then

we have for K=max 1 xju B
3

L exytoxg, B -Tx ) Blxng) §

£ th{(‘ctxi)ioxj. !O>-‘G(xi)'5(xj)\s. 2Ke

This shows that J{.cof—.,\{ .
Q.BE.D.

Let us finally note that we do not have in general ‘r(ees'skid
for normal completely positive maps $ . In fact 1f M is a rigid
factor, as it will be defined in Ch. 4, with a non inner auto-
morphism & then ‘4(8_1 ‘f;"‘t’.id. Indeed because otherwise
)(_idf‘ ‘_6_1u§’\953!6 which w;uld imply)Lde)f.g contradicting the
outerness of + ., However it will be shown in Ch.3 that if M=R

LS

is the h.;.rperfj.nite'IJ:1 factor then the closure of any correspon=

dence R equals Corr{M).

§2.4. Comments

The topology on Corr (N,M) was considered by Connes when
he first defined correspoﬁdences and ﬁhe property f for type II1
factors (see §4.1). For generai von Neuamnn algebras it was
defined inl 1 . The lemma 2.3.1 details a remark inl 1.

Like in the theories of group or C*-algebras representations
the topology on Corr (M) will help us get some informations about
the algebra M knowing certain topological properties of Corr (M) .
For instance in the next two chapters we will exploit thg privileged
position of SLid and x‘co in the topological space Corr (M} tq
define amenability and property T for M. Following ideas from
C*-algepra representation theory it seems to us that other topolo-

gical properties of Corr (M) may be helpful to classification or

structure properties of M.
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CH.3 AMENABILITY

53\1 Amenable factors

It is wéll known { [ 1 ) that the amenability of a discrete
group G can be characterized by a condition involving only the re-
presentation theory of-that group: by a result Ogﬁﬂﬁﬂ%;‘is amenable
1ff the trivial representation of G is weakly contained in its
reqular representation. For Kac algebras, which may be viewed as
generalized groups {see e.g.l 1), the amenability may also be de-
fined starting from a similqr property (cf. L A). For von Neumann
algebras however, using other considerations as a starting point,
the amenébility is defined in terms of cohomological conditions
(see | 1,1 1),

It turns out that in the framework of correspondences we
may consider a definition of amenability which is exactly the trans-
lation in this representation theory of the above characterisation
of amenability for groups. To do this wé cnly need to find a geood

anhalogue of the regular representation: this will be here the coarse

correspondence.

3.1.1. DEFINITION, A.finite von Neumann algebra M (or more
generaly an arbitrary von Neumann algebra) is called amenable if
the identity correspondence of M, W id ! is weakly contained in
the ccarse correspondence of M, Kco' i.e. if Y‘idiﬁtco.

It is easy to observe that if M comes from a discrete group

G then M is amenable Lff G is amenable. lw fact  we have:

-

-3n-

N

3.1.2. THEOREM. A finlte ven Neumann algebra M is amenable

1ff 1t is injective (i.e. there exlsts a conditional expectation of

T

fb(L (M,7T}) onto M L1 ).

Proof, The proof of injectivity implies amenability is Jjust

the interpretation in thia context of the proof of Connesa' Folner
Sivam by Mg wt Fa my

type condition for injective algebras. Indeed by .his result' there
exist Hilbert-Schmidt operators on Lz(M)-(in fact finite rank pro-
jections) n_ such that ]]xnn-nanHS + 0 for-any »£R. The operators
n, in turn are obtained by just applying Day's trick to the hyper-
trace on M (which is the composition of the trace with the condi-
tional expectation of &2 (M,1)) onto M, see I 3 for all this).
Since n, may be viewed as vectors in ﬂ o! this shows that x‘id XCO

end diads by T the diredial wt ol Diach mhu.t\.u\ ™,

Conversely, assume M is amenaEIef Let {n, }*=‘-\A\c =12 (M) @
@ L2 (M) be a ~i . of unit vectors such that lIan-nlx|| ¢ 0

for all xeM. Let then ¢(T}=lim<Tn£.nL> for TEEXLZ(M,TM}) &gﬂoﬂ.a
I .

Banach- Ll over T (see '-‘-g-l 3) it follows that ¢ is a state on
EﬂLz(M,r)) and that for any unitary element u€M we have
¢(uTu*)=limcuTu*qL,nL>=lim<Tu*nL,u*nL>ﬁ
‘I .

s1im<Tn, u*,n, u*s>=1lim<Tn, ,n. >=5(T)
1 t L L% v

Thus & 1s a hypertrace on Mcb(Lz(M!) which means that M

is injective. Q.E.D.

3.1.3. THE EQUIVALENCE OF AMENABILITY AND HYPERFINITENESS.
If M is hyperfinite and BncM is an increasing sequence of finite
dimensional *-subalgebras with Uﬁn=ﬁ then by the remark 2.2.3, 3°

N
g Kid' But by 7.% we have “Bﬁ.ﬁtO' This shows thatlkidﬁito

n
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arid thus that M is amenable. The converse implication is the hard
part of Connes' celebrated theorem 1 1 . One may ask whether we
canléet any real use of this new setting to get a simplifiéd and
more conceptual proof of thus part of Connes' theorem. The proof
given in% 1 may be viewed as giving a partly positive answer to
this question. Indeed we used there 1mplicitely the context of
correspondence' as followsa:¥M be amenable, then }{idgx for any
maximal abelian *-subalgebra. Using the bimodule structure of
Lz(M) over A this approximate inclusion can be translated in a
number of norm *%we inequaliteis only 1nvolvin§' elements in M,
Using then the local Rehlin lemma of [ Jwe can construct from the
given elements of M a local ﬁatrix unit which "approximate® M

on a small "corner" (i.e. under a projection). By a maximality

argument we obtain a finite dimensional subalgebra of M with the

same unit as M and "approximating" M. This proves the hyperfinite-

ness of M.

We now prove a general property about the correspondences

of the hyperfinite’ type II& factor R.

3,1.4. PROPOSITION. Any two correspondences L, X' of the

hyperfinite type II, facthfd R are w-eguivalent( Le. woa e,

procf. By 2.3.2 we onl;{ have to show that K&Kbo for any
correspondence“r{ of R. Since Y}\ild QKids-,*tL 4 {see §3.3 below) .and
xidcx‘co {by 3.1.3 and 2.3.2) and since any A is a direct sum
of correspondences of the form)i@ ., for some normal completely

-3% -
positive maps¢. it follows that it is sufficient to prove that

ngs(co Since Rnuw for an 1ncreasing sequence of matrix alge-
n

'bras M, by taking §n-EH ofoE we have l@ (x)—@{x)\\ - O
n

Ma

for all x<R ao that \QQ *'“9 and thus 1f is sufficient to show
: n

that y‘b,f’xco' But this fo.ubws by 1.2.6.
Q.EB.D.

Note that, Hagerup's proof L 1 to Connes' fundamental
theorem'depends on a careful lnéerpratation of the fact that
1f M is an injective type II1 factor then given any normal

completely positive map with finite dimensional range §, XQE,KQd,

§3.2 Relative amenability

As the preceding comments sth, the condition \&idgia
for subalgebras B¢M seems natural to consider. A closer look to
this condition will show that it implies the existence of certain-
amenability properties of M relative to B, so it is natural to

consider the following:

3.2 DEFINITION. Let BtM be finite von Neumann algebras.

We say that M is amenable relative to B (or over B, or that the

13
inclusion BeM is amenable) if?(idhln.

Note that M is amenable if and only if it is amenable

over ¢1M.
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The same way amenability can be proved to be eguivalent
to other conditions (such ae injectivity), we now show that
the relative amenability can be characterized by the corresponding

"relative type" conditionas.

To statethe last condition we need some preliminaries. We
use all the way the notations and terminoclogy in L 71 . So, if
M is as usual a finite von Neumann algebra with a faithful nor-
mal finite trace &, , we put Biﬁ;M,M) to be thé set of bounded
normal bilinear forms F on M satisfying Fixb,y)=Fi(x,by} for all
beB, x,veM, with the usual Banach norm, arid we let Mcgr M=
=Bif§(M,M)3.with its obvious dual M-M bimodule structure., Also
we let T :R a*BM-¢ M be the w*-continuous extension of x & y v xy
like in [ 7 . Then we say that Vel GFBM iz a normal virtual
B-diagonal if xV=Vx, xeM, and w{V)=1,

Limite
. M ol oo s ond
.3.23. THEOREM. Le€ggzh bé}finitg von Neumann:%iqebrac. The
ﬁollowing conditions are equivalent. ‘
{i) BeM {5 amenable.
(14) If M1 is the extension of M by & (relative to some trace

Ty on M} then there exists a conditional expectation of M, onto !,

1
{111y If M1 is as in (ii)_then 1, has a state that contains

M in jts centralizer,

1
{iv) HB!M.X)=0 for any dual M bimodule X, i.e. any w-conti-

nuous derivation §:M - X with diBED is inner.

LYY U omas o hefweal swietasl o d';al—lonal

A=

.

. Proof, (i) = {iii). Let I be the set of finite subsets 1 of
the unit ball of M ordered by incluaion and let (i} be the number
of elements in M. For each ieI let ?i’“ﬁ R “'11‘ =1, with

-1
] xﬁ1i_11xk“‘ 111

M by B) we put $(T)=1lim< Ti1'71>' where the right hand side repre-
I .

for all kel. Por each TeH1(-the extension of

sents‘a panach limit after I (see e.g.l 1, Ch.10}. Since the usual
limit of utuqi—qiu Yy is zero for all unitary elements uaM, we have

fuTu*) =lim<uTu*y, v, > =1im{Tu*y ,utn >=14im < T u*, u*>=§4T). Since
4 s 1E30 P RE R Pl Fhaa T

clearly § 1s a state on M, this proves (iii}.

{4i4i) =» (i). Using Day's trick it follows the existence of
! 1 'y =
a net of elements jiéL (M1. M1)+ with QM}711—1 for all i£@ where

I is as in the proof of (i) = (iii) and'zM is the unique normal
1

semifinte faithful trace on M, as in 1.3, such that 1\u1iu*;?£ v, ~C

for all ueU{M). By the Powers-Stormer inequality it follows that

_ 1/2 .2 . - - ke 1 0
71-(1£) €L (M1, LM1) satisfies n1 i L 1 and ju iiu :i“ 2™

for all ueW{M). This proves (i}).

(1i) => (iifj). If E:M1—¢ M is a conditicnal expectation then .

=tM°E is a state on M1 containing M in its centralizer.

(1i1) = (ii). Let ErM,~» M be defined by {E(T) %) =& ({Tx)

for xeM, where & is a state on M, having M in its centralizer.
(w0 BT s mvpmeral 0 0 ftliamnd comby foam Ho kod Al Mo dads
Then it is easy to verify that E is a conditional expectation of

M1 onto M.

(1w} w»{iili). The proof of this implicaticon follows step
by step Connes' proof of the case B#C in sec. 2.3 0f L 1. S0 let
X=iH €My | \ixTYNE K x b o0 Ty avy, for some K>o ang any T,

x,yeM and Ti{x)=0 for all xéMj .
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4t is easy to check that feX and x,yeM implies x“yeX -and
that these actions are norm continuous, so X becomas a Banach

M-bimodule and in fact it is a normal dual himodule by the same

argument as in{ 1. For xeM. we define D (%) »uk-xw> where w('r)-l'rea,eg

2 .
-'541le3"1_‘e3) for T&M1 where eBaL (M., ,'GM1) is as defined in 1.3 .and

T ig regarded as an operator acting by left .mul-t'.ifalication on
LZ(H1 ,'5241').- Then Gix}eX (and XF10%), & is a normal derivation and
for any baB we have & (b)=0. Thus by (V) there exists 'Y¢ X auch
that xY-yx=wa-wx for all xeM. Since clearly w 4X,p sw9=40

- and xt=2x for all xeM. To get a positive ¥ we do like inl 1.

{v] =» {iv). The proof of this implication is the same as
the first part of the proof of Theorem 3.1 inl Y: given a normal
derivation E:wa with%(B)=0 in the normal dual M-bim&dule X
we let F(x,y);b(x)y which is bilinear and nofmal in each va.riable
and satisfies F(xb,y)=F(x.by} for beB. Then, if V is a normal

virtual B-diagonal of M, we let
£, P, y)avix, vl = olx) yavix, yieX

as.inl 1, and we have for aeX
afo'—-Sa%(x)de(x.y]sj%fax)yd\l(x,y)-S%(a)xvdv(x,vH
« % (x)yadvix,yl-2(a) Sxydvix,y)=f_a-éta) .

(1) = (V). If BeM is amenable then for each lel (defined
) ’ scalaw

Kix]
as in the proof of (i) => (W}) we let ~ eXg be a multiple” finite
L

v M
projection” {when W, is Interpreted as a Hilbert subalgebra of M,)

such that 17 v =1, h ’}i"k“"kh“““_1 for all xgei. Then

43

suitable normalizations of 1 | may be viewed as norm one elements

). in BUT(M,M)*, via the inclusion M, @ M,c'M o M=BLIT (%, M) *
B B '

{defined like int 1). Then the above estimates imply that

':_mfiv-'fix.,tend T ~weakly to zero for all xeM and 'lr'(‘fi) tend weakly

to 1, Thus, 1f Vv is a weak limit of 'fi then xV=Vx for all xe¢M

and Y(V)el,
Q.E.D.
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The next theorem lists the main properties of the relative
amenability and provides new motivations for considering this

notion and for calling it like éhis.

3.2.4. THECREM. 1°. If B BeM then B M is amenable iff

both BO¢B and BcM are amenable.
2%, If MsN ® N, then NcM is amenable Iff L is amenable.
3-, Suppose.M is a cocycle crossed product of the finite

von Neumann algebra B by a . cocycle action of a discrete group

¢, with measure preserving transformations. Then B¢M is amenable
iff G is an amenable group.
4°, 1f NeM are finite factors, [M:Nl<=, then N¢cM is amenable.

5°: If BeM and if Mn+M, with B LMn, then

B CM amenable for all n implies Be¢M amenable.

Proof.If BocB and BeM are amenable then LZ(B,EB}Q

B M_Z M

[ BLZ(BO, 4 and Lz(M,z)g L (B, zB) so that by 2.2 we have

g !
o

M_ M B2 By M_4 2

UL L LEE L S I S (8, %)™ which shows that

BOcM is amenable,

If BSLM is amenable then BO:B, BeM foliow amenable by
3.2.3 {iii) respectively 3.2.3 (iv}.
{'n‘.hm N“_I‘\AMJ

2°. "¢= " follows by 3°, taking N *L{G) for some “discrete”
1¢C group G.

2% " % " follows by 3.2.3 (ii) and 3.1.2.

3¢ " <.—= " O1f epe }LB 15 defined as usual and Kn'!G are

finite Folner subsets of G then normalizations of the vectors

* g ; x= -»0 M.
7“=:;§ ugenug satisfy W ?n‘ xTn“ >0 for xe
n

3° " = ig the some as in the case B=C inl 13,

. . .
4°, Is clear, since Aidc'{n

4s-

"~

M

2 n - M
5°, We have ){Mn_»ﬂm and L2 z)e  L2(B,a) ™. Thus

M M
Ay Mo, 2 B2 (p,n ) MMent

n B’

Q.E.D.

§3.3. Asimptotic commutativity

We note in this section that the property [ of Murray and

von Neumann {see { ] ) can be characterized in terms of correspon-

dences.

3.3.1. THEOREM. Let M be a type II1 factor. Then

2 .
L4(M,%) o L2(M,0)e82(M,7) LEF M has the propertyl . -

Proof. The implication "¢= " is e¢lear. The converse impli-

cation follews by L 1.

Q.E.D.

3.3.2. PROBLEM. In f 1it is shown that if N is a p?oPerty T
type II1 factor and is a free action of & on N then the corres-
ponding crossed product M=N M. Z also has property " . By[ lwe
may expect that the sdme result holds true if £ is replaced by
an arbitrary amenable group G. Moreover in { it is proved that
if NcM are type II1 factors and { M:Nl<=~ then again M has property
7. It is therefore natural to ask whether the following question
has an affirmative anawer:

Let Nc M be separable type II1 factors. Suppose N has pro-

perty © and Ned is amenable. Does this imply that M has property [
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§3.4. Comments

3.4.1, There are several equivalent descriptions of the

amenability for type IXI, factors for which we couldn't find
good analogue notions equiv@ﬂent to the relative amenability.

the lewerphiiw 0\~ AR LR ed RBL , '_59.

These are semi-discritenessy innerness of the flip automo

and existence of normal finite range completely positive maps
tending to the identity. We belleve it would be important to
find sqch notions. For the last of these conditions we do have
a candidate as follows: We say that M is aproximately finite
dimensional over BeM if there exists a sequence of normal

completely positive maps @n:M ~-»M so that & {b}=b for beB,

\\@n‘(xlux it 2% 0 and EB@n(x)z A3, (x) for all xeM, ‘where 2 o.

Then the theorem would be that this condition . - 1is equi-

valent to the amenability of BeM. If_§n=EM where BCM cM

n
then this condition implies that B has finite index in Mn

{ef. L \ ) but, of course, the condition of the existence
of such Mn's is too strong to hold true in general (e.g. when

M=BAZ and B is a factor).

We mention that our main purpose for consldering the
notion of relative amenability was tec provide a tocl for the
approach to the problem of vanishing {or nonvanishing) of the

2

second cohomology for cocycle actions of £ en arbitrary

type II, factors (see { 11}.

3.4.2. In'i 1 zimmer considered a notion” amenable
actions of arbitrary groups. This notion has been generalized

tn { 7\ . wWhen the algbra B on which the group acts is finite

47 .

and the action.is measure prederving the amenability-of the
action is equivalent to the amenability of the group (1 ).
In general if the group is discrete thén there {3 a normai
conditional expectation of M#BR G onto B. Then the constructic

of the M-correspondence \LB is the same as the one described

in §1.2 so that the condition Lz(M}CS{N makes sense in this

context. More generally we may consider arbitrary von-Néuménn
algebras Bt¢M with the condition of the existence of a normal
condiﬁional expectation of M onto B and defipe the amenability
of M relative to B by LZ[M)&‘iB. It worth verifying whether
this definition coincides with the one in L lana{ 1 for the

particular case M=BXG .
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CH.4 RIGIDITY IN TYPE 111 FACTORS ‘

Connes introduced the notlon of correspondences to have
an gpprogriate framework to define his property T as an int;ihsic
property of a von Neumann algébra. Moreover correspéndences pro-
vided the-n#tural setting to obtain rigidity results about such

algebras,

In this chapter we continue the study of type IT, factors
with property T and we prove varicus rigidity results about

factors, -

arhitrary type II.t

§4.1 Definitions and basi& properties

4.1.1. DEFINITION. We say that a finite factor M haS.EEE—
perty T (or is rigid} if there is a neighborhood U of the identi-
ty correspondepce)&id such that any correspondence in U‘éontains
Wiar

This definition is formally very similar to the definition
of the property T for groups. We'll see that in fact a type II1
factor coming from a discrete group G has property T iff the
group G has it.

From the description of the neighborhoods of K‘id given

in 2.2 we readily get the following reformulation of the property T.

4.1.2. LEMMA., M has property T iff there exist >0,

Xqress X EM such that if X ls a correspondence of M with a vector

- 48 -

£ .. |lE}|=1, satisfying [[xiz-txi||éé, 1%1<n, then Y has a nonzero

central vector for M.

4.1.3. DEFINITION. Let M be a finite factor and BcM a von

Neumann subalgebra of it. We say that M has property T relative to B

»
{or that the inclusion BeM is rigid) if there exist ¢>0, x1,;..,xneH
such that 1f X is a correspondence of M with a central vector for B
£¢X, {1&11=1, satisfying ||x E-Ex,|l<e, 1Sisn, then¥ has a nonzero

central vector for M, i.e.\k=¥1d£ We then say that e>0,x1,...,xﬁ&M

give a critical neighborhood of Rid‘

Note that this definition is different from Moore's relative
property T in LU 1 . In the case B=A is a Cartan subalgebra of M
then our definition agrees with Zimmer's property.T of the corres-
ponding equivalence relation. We'll discuss all this in the final

section of this chapter.

We now prove some results that will justify the preceding

il .
definitions (4.1.1, 4.1.3) and 'show that they are good. A basic

technical device needed in_what_follows is that given an almoest
central vector for M one can find a central vector for M close to
it. To prove it we use a characterizat;on of a kind of relative
property I in terms of the .automorphism group of the factor. This
is A.1 in the Appendix. Moreover we use the next theorem which s

a generalization of the first rigidity result in II‘l factors (L ).

4.1.4. THEOREM. Let BeM be a von Neumann subalgebra and

denote Aut M={deAut M &ei3=1dn} and IntgM=Aut MO Int M. If BeM is

rigid then Int M is cpen and closed in AutBM.

B
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Proof, Since autBM is a tovnlogical group, it is sufficient Let X be a correspondence yith a vector £ central .for B

to prove Int M is open in AutpM. Let >0, x{,....xn M give a criti- with ||{x,.6]]|<ésc. Let £, be the projection of £ on the subcor-

cal neighborhood of ¥, ,. Suppose feAut M is mo that [|e(x1|-x1]!2<£, respondence of X which is a direct sum of coples of L2(M,t) and
151sn. Then the wveéctor it&e satisfies b.1#1-b (because 0(b)=bh) ‘for denote 51-5-501 Let ‘c"é+i; with té central and t; orthogonal’

LA™ L] 2 2
all bép and 1[xi.1-1.xi||2.;’9(x1)1_1x1|!2.|13(x1,_x1||2<£_ Thus to central vectors. Then_bto 1°b for beB and \1[; T gpc‘i .

) ; N Indeed, S;éause otherwise pc%2< nl; uzch:nuig'-t'ui uzspcﬁz.
Xa enters in the critical neighborhood of Kid ¢« 80 that there exists i - i e e
2 - .
™, (=L (M,7) as a Hilbert space) with 8(x}n=x-n=n-x=nx. Regarding ; _ a contradiction. Moreover we have N1t 0 %/g , because otherwise
N a8 a square sumable operator affiliated with M, it follows that . lf_/s 1113_1 and xi"1-11x1\‘% , 80 that 1 "1“'/{, "-1’-”’/8 11)”‘1\”‘.

the partial isometry v in the polar decomposition of n is in M and . :
: But then, since bt1=t1b for all baB it follows that }{T-SpanML1M

satisfies @{x)v=vx, which implies that & is inner (see L Jorl 1)
contains a nonzero central vector, again a contradiction.

and thus eeIntBM. . Q.E.D.
Thus té is central for M and we have
- N v
4.1.5. LEMMA. Let BcM be a-'rigid inclusion. There exist 2 L 1o \® &N R

' 1 We =g W=l v g <y .7 > . Q.E.D.
K>0, g0, x1,...,xn«M such that given any 6550 and any correspon- .
dence W of M with a vector £eX, [[g[]=1, central for B satisfying : ' 4.1.6. REMARK. Let Bui be a rigid inclusion and MM a
“Xiﬁ”’ﬁxif [<8, there exists a vector We%\ central for M with ] . . weakly dense *-subalgebra of M. Let Ugees oty be some unitary cle-
[ In-g]]<ks, : ments in M so thatZii;quuI; jﬁ%zp n~1n2 for any Qaths'nu,t),

i
Proof. Since Int M is closed in AutyM it follows by A.1 <%,1>=0 as in A.1 (cf. 4.%.4). Then there are y?,...,yzg Moo
that there exists a finite set {u1....,up} of unitary elemetns in N y?\s 1, such -that ﬁo=E?/2‘2pc and ixiiig{y§lj0&9kik give a critin
Y > tpem L N
M and a constant ¢>0 such that {IEIIZSCII}u t-fu }32 for any - . Sukfiﬁﬁ,f.‘k‘ ene Avdema LUl atigenedrenad of LP0TT N,
2 ’ . forany Finia yer of g'.(,m..-\"si T~ Aj‘-‘Jv.,_ﬂ;k'_e-y-. . : cal neighhorhood of L” (M,%). In other words, up to the unitaries
€L (B'NM with <f,1>=0, Indeed, because othePWTEEY¥here would : )
& ( AR & 2 ' =€ e . u1....,up, the elements civen the critical neighborhood ofF LT (M,%)
exist a sequence {f K L(B'"M,1), |]|& =1, <f£ ,1»=0 and
4 n ( e dlenll=te <5 may be chosen in M_.
Ay 0 for a ¢ ., which by A.1 is a ¢ ad fon. More-

HLEn'v‘}'i2 * 1 "2 ¢ whic b X s entradiction To see this, let ! be an M-correspondence and e with
v 11t el 1%se} |1, .50 t d of ’
o e; the inequality |[£]] cgllhui,,]‘; is true if instea WEx;=%, 8¢ € . Wwe claim that from the condition % tu -u v W &
3 B’ arbitra B- tral ctor of a corres-
E€L“(B'aM,T} we let £ be an ry central vector o e it follows that there is tOg“' \ 10_11 p 2(2pczo)1/25 £/16 such

peondence X which 1s a direct sum of copies of Lz(M,TI. Now let e*0,
that io is bounded on the left and right by 1, l.e. Max <Xt ity

Yyreoor¥ £ M give a critical neighboerhocod of “id and denote by .
- and <20x,gO> are majorized hv tﬂ' 1f we show this and if ¢€°0,

{x Po=ly, tovlu |} .
LRI R kT Yyreo ¥ M, ﬂyil.s 1 give the critical neighborhood of Lz(M,’I),
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then y2,...,y° ' o

hen y3,...,yf €M, with ¥ yQue, 1 y‘i‘nyi N ,4%4 will do, Indeed,
we have |y,5-fy 18 41 ¢ - o_ - \

- v T N R L 2 2 L R & e e P

+1ty -y°1|$1. which shows t

-y hat 4f fug-fw hie, and \ yg’t-ty‘; Het,
then & YiifiY1\515° that X has an M central vector.
N -1 '

' ow 1f Utup-uy £ heg, then let X, ,en'(M,2), be the Radon-
-Nykod ' : '

Ny ir derivatives of :xé,t»:(xtuk,tuk> respectively ¢ ix,{r=
ncuktx,uk\> and let 71=x1/ 6L2(M,5). Note that in fact qieI?(BhM,m
and let ®, be the orthogonal projection of M4 onta c.1cL2(amm,m.

Then by A.1 and the Powers-Stormer ineéuality (see e.g.L 13, 10.24)
we have \-q - a25c fu, N, - 2 !
174 X Uy 4 52e Ry X ur-X, 1= -
AL RaAE: Z LK upX 0y L PRI

- ¢ 2 - '
tgk.gug? QF hukf iukﬂs 2pct,. It follows that zi=f(qi) where

t,4f tgd

£:00,7) —{0,1], f(t)JL -

. , satlsfy 1171-2111“25ﬁ1;‘“,“25

JLE £t
<(2pct ) /2 - A
(2pc o) and !lqz Ta%a nz ‘“72““2“15 t2pc£0)1/2. Then an easy
computati = ' ;
putation shows that 30—21122 will satisfy the above requircments.

This remark may be of further use. In this paper we will
need it only to show how property T behaves to tensor products.,

Por this purpo =N B . !
purpose note that if M=N © N and the inclusion N<M is

nonl (i.e. i : .
. {i.e IntNM is closed in AutNA ; See A.1) then the unitarjes

v as above can be taken in No=t @& N_=N"NM
5 M.
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We can now prove the main properties of rigid inclusions.

4.1.7. THEOREM. Let M be a type 1I, factor.
{1} Suppose M is the cocycle crossed product of a finite
von Neumann algebra B by the cocycle action of a discrete group

G by measere preserving. transformations. Then the inclusion BeM is

. rigid iff G has the property T of Kazhdon

{ii) Let B<«M be a von Neumann subalggbra and suppose
m{B)"=M. Suppose G is a discfete group with property T of
Kazhdan and that m:G + MN(B) is a ’—representaélon of G such that
(r{GIuB)"=M. Then B¢M is a rigid inclusion.

{111) If M=N & Ng then NcM‘is a rigid inclusion iff No 1s
a rigid factor. Morecver M is rigid 1ff both N and N, are rigid

factors. .

proof. (1) Suppose G has property T and let e>0, Fpeeror9,

give a critical neighborhood of the trivial representation of G.

Let ¥ be a correspondence of M and SJH , i1£o|[=1, a central vec-

tor for B with IJugiSOPEngil(g' where {ug}gchM is the family of

unitary elements implementing the qivén action o of G on B with
?—cocycle u:G x G ~ U(B}, l.e. ugbu§=°g(b] and uguh=u(q,h)uqh
Let O#Mo be the Hilbert subspace of all B-central vectors in A

Then n:G *11(10), 7(g)£=uq£ua, geG is a well defined unitary repr

sentation of G en . and ,En(gi)io-£°||<c. Thus (7,4 ) has a

nonzerc fixed vector o Since g is also central for B, it is

central for M.
Suppose BeM is a rigid inclusion. Let £>0, x‘....,xneM

give a critical neighborhood of';lici as in 4.1.5. We may clearly

1 for each i. If xi=zb;ug is the expresion of
10,22

gI|2 -

supposc :§x1L§2=

%, in M=BX G then let PeG be a finite set such that AL
i sk {}JF
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.whgte §s¢ as in 4.1.5.

Let =:G 4'“(Kbr'be a unitary representation of G and suppose
E¢X, 18 a unit vector with E[ﬂlg)io-goll<6 for geF. Let W -lz(s,xn)-
-12(6) DXO and -E'Ds\[, Eote)-é;o . Eo(g)wo,gﬁe. Let M act on the left

by b-E-(b & 1)2, ug-f-(uq cxﬂ(q))gf for beB, geG and on the right
by E-x=Elx @ 1).

Then we have

[y EmBormy 1o 1T gy 0 mon By tbgug @ 1) 12

A - 2, 11,2 - 2
=l!§bgug @ (mighg =~ M 5 gEclibglizlln{q)so £l 175

2 1,2 2..,2
s448°+ 7 bt Intare_~£ | 1%556° .
: ger g't2 o o

By 4.1.5 there is a vector neX central for M and close to £s
.|IK"EII</§K6. Since Ejel=60. it follows that for & small enough,
n=R{e)£0. But neX, and by the definition it is fixed by mn{g). Thus
Lo contains the trivial representation of G. This shows that G has
property T.

(ii) The proof is the same as the fifst implicétion of (i},

(111) If N_ is rigid then let ¢>0, y],...',yneno give a cri-
tical neighborheood of LZ(NG). Let Y. be a correspondence of M=N & N,
with a vector £¢%, || |l=1,£ central for N and ||Eoyimviﬁol|<c.
¥i. Let O#XOcﬂ\ be the set of N-central vectors of A . Then NoioNoﬁl%
sa by restricticn Yo becomes &n No-No binmcdule and since chﬁo .
by the definition of rigidity 3 has an No—central vector n. This
n. will also be ceﬁtraL for ¥ and thus for H.

Conversely if NeM is a rigid inclusion then let >0,

x1,...,xnﬁM give a critical neighborhood of L2€HJ. 8y 4.1.6 wo

-55-

may suppose xi={yii -] y?j for some ?ijaﬂ, y?jeNo and moreover we
may take [Yij}j to be mutuall ontoq,nsi(with respect to the trace)
foan @

for each i and of normone. Let X , be a correspondence of N, with

EeXe Hggll=1, 11%6,,v 41l |<e/K. Let ®=L?(N) ®W_ which is #n M

~correspondence in the obviqus way and for which £=1 & Eo is an

N-central vestor with |1L6Iy,y @ v 1% lly 41 13118v3y.63 113467

Thus by the definition of relative rigidity X has-a nonzero M cen-
tral veq?or n closg to £, Thus tpe projection n, of n onto

xoﬂ? ® xocK is close to EO (-the'prbjection of £ on ﬂo). So, n#0,
and No has property T.

The proof of the rest of (i1i) is similar to the above

s0 we omit further details. Q.E.D.

4.1.8. THEOREM. (i)} If BeNeM are von Neumann subalgebras
with N and M factors and Be¢N, NeM are rigid inclusions then BcM
is rigid. If BeM is rigid then NeM is rigid.

(ii) Let BeNeM and suppose UM:N]l<w., Then BoN is rigid Lff
BeM is rigid,

{111) If N cNeM are finite factors and [N:NJ <= then N M
is rigid 1ff NeM is rigid. ‘ '

{iv) If NeM are factors and (M:N]<w then NeM is rigid.

If N'nM is finite dimensional and NeM is both rigid and amenable

then TM:N]<W.

Proof, (1) Suppose BeN, NeM are rigid inclusions and let
¥ be a correspondence of M with a B-central vector &, |[&)[=1,

H'igr}"i-! H<Ca H{E;Kﬂ.ij‘:i': where >0, Y-IJ---lYnGN give the cri-

tical neighborhood of ﬁz(N) {for the rigid inclusion BeN) and 7'-0,

X ,...,xméM the one cof LZ(M) [for NaM).

1
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By regarding Y as- 4n N correspondence (by restriction)
it followa that there exists in W an N-central vector n close
to £. Moreover if ¢ ig small enough we can obtain n 80 that
|[£-n||<s'({[!x1|]+1)'1. But then ||{n,x,1][<e’ and since NeM is
rigid, ¥ contains an M central vector.

The '&ther affirmation in (i) is trivial.

(11) Since [M:Nl<= by L 1 there exists an Brthonormal
basis of M over Nf l.e. mo""’“ﬁfM with !:‘.N-(rn;r\'l:,‘)-=sz_j for i¥0
or j#£0 and EN(msmo)nf for some projection fﬁNband 80 that

§ jEy(m3%) for all xeM. Suppose BeM is rigid and let e>0,

xi,...,xneM give a critical neighborhood of LZIM). Let

- k k
ximj_zmkyij for ¥i57 Ey (mEx,m j Then m X Zyikm* . We infer that

there is a §>0 which toqether with [Y;k}i,jk give a critical
]

2

neighborhood of L“(N) thus showing that BeN is rigid. Indeed if

Hb is an N-correspondence with & &K . |[EO||=1, £, central for

M M

| k
B and i:fyij,i 1il<d then let A= be the induced of A, to M,

K =52 () m( mL {M) and denote £= {mj @, e m; Then |]|£]||2z1 and

x £-Ex nJYka e ([y}k.i 1) ® mf so that |I£xi.£]1!

satzllmjlgza 2.5tM:NV2. 1t follows that 1f §LM:N}2<e then W has
3

an M central vecter » close to § so that the projectioen Mg of n

on¥ =1 e, m i is close to the projection £, of & on ”‘o' Thus

ﬂo,nofo and fig is central for N.

Conversely if BeN is rigid and :»0, Yyreee ¥ eN glve
the critical neighborhood of LZ(N) then let {KL}={Vj}U[mk} and
u suppose ¥ is an M-correspondence wilth a B-central
unit vector &R such that iilxi,iil!<n. Then in particular

ll{yi,ilifcc so that if we regard W as N-correspondence (by res- '

_$3-

B

triction), 1t folloﬁs that A has an N-central vector n close to [,
In particular ||n[|21/2 and thus n'-{mjnmi,ls central for M (by
the same computations as above) and we have Iln'-lH=Mqﬂsl!2mjnm5—

~Madq | | =} | L (mynmg-nmym3) | I$§1 Imyn=nmy | | ]m3] |s(im:al+1) 25, Thus

1f § is small enough, since ||n||21/2, it follows that nteo.

. (114} 1If NocM ts rigid then by (i), NeM is rigid. Conversel’
let N¢cM be a rigid inclusien, {mj)j be an orthonormal basig of N
over No and'czo, Yqrer-1¥y M give the crit;ca; neighborhocod for the
rigid inclusion NeM. Let {xi)=tyj}u{mk}.and let X be an M-corres-
pondence with an N_-central vector &, tletl=1, and [|[xi,E]§]<e,
151isn. Let c'=):mjf,m§. 1t follows that £' is close to gimjm§=gmmg
and that £' is N-gentral. By the rigidity of the inclusion NeM it
follows that ¥ contains a nonzero central vecto; for M and thus
NocM is also rigid,

(iv}) If NeM is amenable then Kidﬁxn and if NeM is also
rigid then by definition it follows that KichN. But thent2.4 im-
plies {M:NQ<w, TEf (M:Nl<= then Ry coincides with the Hilbert space
2(M1) where M, is the finite factor obtained as the extension of
M by N. Thus {GM1¢L2(M1)=HN is a central vector for M so that
204X, which shows that Ne is amenable. Since the inclusion Mcv
is clearly rigid, by (iii} it follows that MeM- is also rigid.
G.8.0.
Let us also note that the rigldity properties are inherited

by inducing or reducing von Neumann algebras by prejections.
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4.1.9. THEOREM. Let B ,!:e a von Neumann suba-lgt.?bra of M.
1°. 1f éaBU(B'nM) is a nonzero projection and eBeceMe
is rigid then BcM is rigid,
2%, If eeB (respectively e«B'nM) i3 a nonzero projection
and 1f we assume the normalizer of B (respectively B'AM) in M

the cavler of
actn‘ergodically on the center of B (reapectively*B'nM} then

* BeM rigid implies eBeceMe is rigid.

Proof. 1°, Suppose egBU(B'nM) and eBeceMe is rigid and
let téo, Yo=€: ¥qrees ¥y €Me, 1 yjls 1 give the critical neigh-
borhood of theMe.n). Since M is a factor there exists partiél

isometries e i:M, 0titn, so that e for 1<i4n, e

1
and Zeu o

1181178 1070
Let then ¢'>0 and {xiiiﬁyg {e,lp,e 1

Assume X is a cofrespondence of M andtew e =1,

uxil‘-lxiﬂ <¢' for all i, bi=th for beB. Then in particular

i°=ete will sa.t.isfy boi°=i°bo for.boeseBe, lyj(o-ioyjl =.

= R y.e{e—eiey.l\‘; 2 let-fel + U yji—iyj\ls 3e'. Moreover
ngets “Zeu 11 —flleu 11‘“252“871‘911 V2
1 .

}, so that 'f_o it 2;1/n+1—t.‘2., .

Thus Lf 3¢' (1/ne1- ¢ %) % ¢ where n+122(e)”!, then the eMe
3

+{n+1) t.'z,s(nﬂ)[h [ é.'z
correspondence ele enters in the critical n#ighborhood of

2(eMe,T-) and will thus ¢ontain an eMe central vector

Oi?oee\fe. But then a trivial computation shows that

n
. * .
= :=Oe1i’Foe1i lg central for M.

2°. Suppose DeM is rigid, c<B and the normalizer of B,
TUB), acts ergodically on Z(B)., By 1° to show that cBeceMo

is rigid it is sufficient to prove that eoEco‘eoMCo is rigid

S8

-for some oy‘eoeB. e.se. Since B 1s finite there exists a pro-

jecticn fo“B' O#foie, which divides a central projection of B

’

i.e. there are f,0£44--+,£,¢B equivalent in B with%fiueztai.
Since M(B) acts ergodically on Z(B) it follows that for aome
z sz, 0#z ez(B) there exists projections 21,...,2 ez(a) and

T=u,, u, o0 UMDY such that uyz ut=z, and Z_z . Let

ei=f-iz° and denote by Vg rVyreos "y €B some partial isometries

satisfying v;v ;v v*mei. Let now E>0, x1 ,...,xpeM give

1% 1V

the critical neighborhood of L (M,%}. We define {yili
-’Lvsut k j 11 0¢3,tfm, 0%1i,s¢n, 1$k£g?1 and put L='c,(eo)£ N
={m+1} (n+1)= 'G(eo)—1. Suppase )(0‘ is an eOMeo—correspondence
with epBe central vectlor ‘Eo satisfying 1 ‘zou 1, U toyi yiio‘
for all i. Let X dencte the® —amplification of )(O , l.e.

H=12 Moer Tr) @ K regarded as an M-correspondence like
in 1.3.,10. Let } = Z u vt viuted . It is easy to verify that §

ost

is B central and clearly [ 111 Moreover if weé denote e

st
v_viu* then

tsst
' 2 2
- =) =
“"-xk "k"“z ‘lzt iovstk kutvsost“
. I3
4. luv_ t viturx e XL!V%‘.""‘U*“2=
. t'ste st k137 étkjloij
s,t,1,3 .
2,2_.2
5:2 W viurx u,v v'uxuvi\xt‘=t.
TN o's tTkii [ S Sk S §

Thus X has an M central vector 044 e¥ . Then ee,?0, s L
-4 .

{;eo?\eo—/{o is central for e Me_ in ‘»(0
The proof of the case e«¢B'nM and M{B'NM) acts ergodi-~

cally on Z{B'"M) is exactly the samc.
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4.1.10. EXAMPLES. 1*., Since G=SL{3,%), has the proberty

"¢ and is an /GG group it follows that MsL(G) has the property
T. But we may construct free ergodic actione of G on a non-

atomic probability measure space A so0 that the crossed product

type IIi factor A ¥ G has the property T or not {the inclusion

ACA 3% G is allways rigid!). Indeed if A= ® A_ and

A= ® (C7(10,11)), for each geG then the Bernoulli shift
9 ne1 ctabtnet
action ¢ on A has the property that tere e;ist‘“ﬁbelian sub=-

———
algebras AncA, with Aﬂshn+1 ’ :f1An=A' Q‘g(An)zAn for all n.

Thus MnxAn HGLAN G is an increaéing sequence of sub-
factors in A x G with gﬁn=A X G but M #A X G and
MIO(A %o G1=€ for all n. If A Xg-G would be rigid this would
contradict 4.4.% below. Thus A He G is not rigid.

Ot the other hand 53 X SL{3,2) has the property T by
£ 1, so that if A=L(Z3} theﬁ%orrespondinq cross product

AX SL(3,£)=L(z3 » SL(3,£)) has the property T.

2°. Free products of von Neumann algebras are not
rigid in general. In fact if My M1 are finite von Neumann
algebras with normal finite faithful traces %0,11 and if
both Mo' M1 have dimension 2 3 then M=(MO,EO)*(M1,‘G‘) is
a type II, factor, but if we assume either M, or M, has a
nondiscrete automorphism group Aut Mo then M will also have
nondiscrete automorphism.qroup and by 4.1.4 this implies
that M is not rigid. Note however that 1if My is a rigid
type II1 factor then MéﬁMac. Thus the discreteness of the
automorphisms of a factor M does not follow by only assuming

the existence of a rigid subfactor MDCM with trivial relative
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commutant MAM=C. We'll see however that other rigidity
proporties of such factors M hold (cf. 4.6.1).

In particular from the preceding considerations it
follows that even if Mo' M1 are rigid II.l factors, M=M M,
is not rigid (because Int M, is not discrete!). Thus if a
ﬁ}ﬁé 11, factor M has two rigid subfactors that generate
it then this doesn't imply that M itself is rigid. The best
positive result in this direction that we could get is the

following:

4,1.11. PROPOSITION. Let Baﬁ be a von‘Neumann subal~
gebra, MO, M1CM type II, factors that contain B and generatce
M as a von Neumann algebra..Suppose BcMO ; BeMy are rigid
ipclusions. Moréover suppose the group ’ i
?(o={uoa‘uJMo)\uOM1ué=M1i generate M_ as a von Neumann al-
gebra. Then BeM is rigid.

Proof. Let ™ be an M-M correspondence and denote by
Py the orthogonal preojection onto the subspace Yki of all
central vectors for Mi , i=0,1. Then py may be realized as

follows: if 1M let K(=Co RupruflueUM )} and i)

the unique vector of minimal norm in K;. Then qﬁ\)eﬁki and
in fact ~(1)=p,{{}. Indeed, if Y 6W, this is clear and if
4 L3, then K\ L so that ,(1)=0.
But by hypothesis we also have uod1u5=>(1. Thus, by the
above construction of Py, it follows that pD€J1}C&k1. Since
we also have po(K1)C§LO it follows that pO(K1)510hH1 . Now,

if BEM o BeM, are.rigid and &0 | x?,...,x; & M,
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x}u...,x; € M1“give the critical neighborhoods of Lé(Mo,g)
respactively LZ(M1,z} then we let {_xilisixil i3} . If'\(
is an M-corrgspondence and t is invariant to B and ¢'-in-
variant to all X, than it follows that there is 116 X dinva-
riant to M1 ang close to ¥ . In particular £1 is almost in-
variant to Mo so that by 4.1.5 its projectlion ;o onto the
invariant vectors for Mo_is close to f.. Thus 20#0 and by
the preceaing remarks to is central for MO‘M.l and thus for M.

4.E.D.
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§4.2 Rigidity and complet2ly positive maps

In this section we prove a rigldity result about completely

-positive maps defined on factors with property T. It generalises

the main argument in the proof of Theorem 3 in L 3 , which shows
that if M has property T and ¢:M + M is a normal completely posi-
tive map close to the identity in certain finitely many points then
¢ is uniformly close to the identity. Our generalization consists in
leting ¢ take values in an arbitrary algebra and replacing the'idenu
tity by a *-morphism and of‘coufse. as usual, assuming a relative
property T instead of the full property T. We'll get many applica-
tions of this technical result in the next secﬁions. It is fearly

possible that other rigidity resultswill come out from it.
be a W‘-iu\l‘%\‘nf; el M sueh Bt Doe Qe Tl N 52 ™

. N
4.2.1. THEOREM. Let BeM be a rigid inclusion. Let k>0.
5¢t

There exist e>0 and x.l,...,xnéM such that If%:M =~ Mo is a normal

(Mo,e )
completely position map into a finite von Neumann algebr¥a~",with
RENONELN

and P
V¢l |sK p:m - M, is a *-jsomorphism {not necessarily unitall!) withH-~

Yo, -
¢|B=p!E and |]¢(xi)-p(xi)E[2<Qébﬁj$isn, then I|¢(x)-p(x){|zsbkfb’»a

for any xett, |[x]|]|st,wMere &, is the cons'ant aP;’ta""""% n 4TS and de-
. C .
peads ealy o dhe ivoaiion B_C;ﬁ:\e'-l-‘ag_, -
Procf. MNote prd twil¥fTxed normal finite faithful trace an
Toollen Y2 4 we have k3L, R

i, - o
M siajier YT Since M is a factor, by the'trace on M it follows

N
that To00 18 a scalar multiple?ﬁ? , s0 that p is normal and™p (M)

is a subfactor of Mg but with 1 =o(1M) not necesarily egqual to

N

1Mo.
We first show that we may assume ${t)ép(1}. Indeed, if we

let 1, belong to the sect {xi}i , we havc\]¢[1]-D(1}!12<§2uofi Anch

M
0, 0st$1-2' or t>1+4"

|l¢(1fii=||¢i|skl Lot qil0pe)—> L0, }, q(t)=slt—1/2' 148 2t51=5"



e

et a=a4(4(1)) and note that e o=2d(1}a i3 a projection and
e -alf, |l{1-e ol #{1) 1|, are smalil. Thus ||as(x)a- ds(x)l]2
5[ |as (x)a-e QP ixle ||2+He $txre ~4(x)[],=018) +2] e ¢(x)-¢(x)||2 .

But for ||x[[s1, we have ||e ¢(x)-¢(x)||2-r(¢(x*)¢(x) TN(x*)e o (%) )=
'TN(x)MX*iH—e )l$[]¢[|1(¢[xx*){!-e ))5[[¢!!1(¢(1)(1-e 1)=O8Y,

Thus |]a¢(x)a- $(x) | |=0’(6) is small uniformly in xeM,
Stace the proyeilen e mad(1)a sstufies | e -p(1) I.!z“"(é')-%{&‘we can

find a projection fSe majorized by p{1)} (in the sense that £ is

i

equivalent to a subprojection of p(1)} and such that || £-e H @‘(5’)*38/

amd Fr@la)e sClyy e e i
YBy 1.4 in T 7 there existq a partial isometry veM with v*y=£,vv* 3 80L),

|__))_\_‘_‘J Yor B el enouamu
vEUD=51] lv-£] |2—<9(6') It follows that’ the completely positive map

R YT AN L T
¢, (x)=vas(x)av* satisfies 8o (115 (N V8, tx) “Bix) 1,8 {vag(x)ave-

-o(x) |1, $2Hlv=l [, fa¢ ral [+ las () a~g ) | |

‘.§.:‘.ok8/thl z Vsks + uniformly in xeM, |[x]/]$1. This shows that

by replacing if necessary ¢ bj ¢o we can assume $(1)s5p0(1).

We denote by EN the unique normal conditionatl exfnectation

of Mo

onto N which preserve the trace on p(1)Moo(1) . We also dennte

by p* the adjoint of p in the sense of 1.3. Note that p*=p 'oE
-1 '

N

where p - M, )=t (8 (x}).

is the inverse of p:M + N. Put P M

Then |[y(x}- xliz—i.o*t*tx)) x| | =f§0(c*(¢(XJ))—D(X)][2'“ gL ¢

Sk'&HENN(XU"O(XJII :!E (dx)- D(X)).\Z.Md}(x)—o(x)fﬁ . Moreover

P¥{b)=b for beB. Let X . denote the correspondence associated to Wy
L]

and {=1 & 1ex . Then E{i%st (1)), bi=cb for bem and ||yf- by |2

=r(%’(y"y))M{Y(l)jj‘)-l’ﬂer(:J(y*)y) f;)r yeM. Since if zeM we have |ri(z)is

si]z[iz, it follows that }r('.'-ty*y)—y*y)!sl!;-(y*y)-y*yl!2 Ty (1)) e

3
== ], wd
H.-_v"!;sl,

Let now 0¥ haen ,ync-ﬁ“ﬁlvo a critical neighborhood of )’“id

(for the rigid inclusion B} as in 4.1.5. By the above computations,

| 1=||st.”

“J‘ . 1‘,& “1& n "'{3’35' ]-: “‘ > N4a- .""‘J‘}litll‘:“lt N ‘,'u‘ﬂl:“:\al"."l'-

i
]
!
.4

(S~

1f we put (x,) -(1}U(yj}jb‘(ykyk} et and if ¢ is
defined as before y=p*e¢ with E‘L‘Batisfying [¢(x )-pix )||2c{{}\:’)g
for all i, then it follows that 2;(‘J enters in the critical neighbor:
hood of A ,, given by $st and (yj}. Thus there exists by 4.1.5 a

vector nex; central for M and close to £, |In-g| l“kos. for some

k_ only depending on the inclusion BeM. We may clearly assume
. o .

[in]]=1. Then we have the following estimates for arbitrary xeM,
HENEE
19 =x| | 227 (0 (%) 0 (00 ) +1 (x#3) = 2Re T (4 (x* ) x) =
= (<xE,Ep(x) >=Re<xn, nP(x) >} + (<xn,nx>-Re<xi,L )
sa[fg=nlllleiie2tiE-nlls.  4k;5 .

Since ¢{1)sp(1) we have T{4(x))=T{E (d{x)}}=T(p*o(x}} soO
that by Kadison's inequality, [l¢(_x)-p(x) | |§=
Tl Ix*) o (x) )+ plx*x) =2ReT (o (x*) o {x}) Srlolx %) e1fxtx) =
-—2Re1°(yf.()¢(x))]=1( W-(x*x))+1 [x*x)-2ReT{x* ¥ {x)) and by the
preceding estimate the last term 1is amall uniformly in xe&M,
I1x]]s1. More '?”’""”-“3. woe have

g $4,
§ ey - EodNy = blhe® for n @M, Unn

[ this thows dhal f;.o,r aentie

63 the {-ws‘\‘ (aar'f of twue proey
% satisyging e r.ono\'(?\'\ovss. i

, L R R,
R R o A% sk S

L .
the sTatewent we have :

,go‘, €M, Axd st

we .
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§4.3. Embedding rigid factors

We present in this section the result of Connes and Jones
.in [ ) showing that a rigid factor cannot be embedded in the II,

factor L{En)_coming from the free group on n generators F_, nil.

E:de& s

t

;,t ~;¥ es Haagerup theorem, that the identity in L{F_ )} can
Se :S§§$:e approkximated \py compact completely po tive\ﬁg;hkaga

e case - My receding theorem.

‘mt\,‘w s\rﬁwold\n _ﬁ s L ol

4.3.1. THEOREM. L(Eh) contains no,rigid:type II1 subfactors.

Proof. Since L(Ez}CL(Fn) for any nz2 1t is sufficient to
prove the statement for n=2. Suppose'McL(Fz) is a rigid subfactor

{we do not assume 1.=1), By L 7 there exist unital normal completely

M
positive trace preserving maps wn:L(FZ) -+ L(Fz) such that
|!wn{x)—x§52 + 0 for all xeL{F,) and such that i, send the unit

béll of L(F,} {in the uniform norm) in a compact set rglatlvg to

the topology of the norm || Iiz (in fact in L1 ¢, are so that o,
send the unit ball of LZ(L(Fz),r) in the norm || [I2 in a compact
subset of L2(L(F2),T)). Tﬁen @nwEM¢n!M:M + M are also normal comple-
tely positive compact maps (in the above sensel and satisff
dngtas1 and {i¢n(x)~xl[2 + 0 for ail xéM. By 4.2.1 it follows that
||¢nlx!—xE|2 + 0 uniformly for xeM, !ix]l%1. Now let AcM be a maxi-
mal abelian *-subalgebra of.M. Since M is of type 11, A is com-
pletely nonatomic so that {A,7) is isomorphic to Lm(ﬁ,u) where 1

is the Lebesgue measure. Hence there is a unitary element ush such

& k
that T(uk)=0 for all k#0 (the image of zelL (T,ud). Then {u )kzl

k
tends to zero In the w-topology and since &, are normal, [@n(u )}k:1

also tend to zero in the w-tapology)for cach n. By the relative
compactneas of (hn(ukllk tn the norm | 552 it follows that

Xy'1_ . 0 for each n. On the other hand

H#‘n(u i i

ol Yan ovbe\wah {Nﬁﬁ,\i‘&‘:lke&u wcw

PP

1_6?—
heg ] 2] (W =L Tu*-0 () [],m1-] Ju*~0_ (¥) [],. But as we

previously showed, for large n,.iluk»¢n(uk)|[2‘ia uniformly small fe

k. This gives the contradiction, Q.E.D.

Second approach. This proof ia based on a completely

different property of the algebras coming from free groups.
We use the fact that the automérphi;ms of LiFn) coming from
automorphisms of Fn are cohnected to the ifidentity automor-

phism of L(Fn). It is i? open question whether Aut{L(Fnl)

o+ h
is pathwise connected but let's not here:

4.3.2. LEMMA., Let u,v& L(Fz) be the unitaries correspon-
ding to the generators of FZ and A, Av the abelian von
Neumann algebras generated by u respectively v, The trace

preserving automorphisms of Au, A implement in a natural

v
way automorphisms of L(Fz). Let Gochut(L(Fz)) be the group
generated by these automorphisms and by those implemented

by automorphisms of Fye- Then GD is pathwise connected in

Aut(L(lel.

Proof. Let o be an automorphism of Au.preserving'b and

: : 1
\etgiatzo a nest of projections generating AL let L be

the restriction (in the ergodic theory sense, see { 1) of T

to e, and Gtﬁc'fid . Then L is a path {(in the point

t 1-e
t
norm=two topology) of automorphisms connecting ¢ to id.

Then Ut*id on AU*AV=L(F2) connects G xld to id. Now if

=] " . .
u e uv, v 2 v 'is an automorphisms of F2 then let vtéhv
[}
be any path of unitarics relating v to 1., Then u LY '

t
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5 .
t
Ve—— ¥ implement automorphisms of L(Fz) that relates® to

id. Since any automorphism of'P2 is a.composition of auto-
morphisms © as above and ues u” | , veev (cf.l 1) the proof

ie complete,

0.E.D.

Now the idea of this second approach to 4.3.1 is quite
simple. We assume L(F,) contains a rigid factor M_ so that
for some projection eeMo B (eMoe)'n eL(FZ)e=c (the proof

of the general case requires a longer argument that we do

not detail here). We may assume %{e)=1/n so that the algebra .

M generated by eM_ e and a suitable n by n matrix algebra is

also rigid and M'n L(F2)=C. Let L(F2)C L(F4) in the obvious

way and @ the automorphism reversing the first two generators

of F# (which are the generators of L(FZ)C L(F4)) with the

last two. By 4.3.2 there is a path e ts\~ tro Of automor-

phism with eo=id, 91= &, By 4.2.1 this path is continuous

in the unifeorm norm on the unit ball of M and so by A.4 and
by %@H'f\L(FéFQ tcf.l 1), there are unitary elements

Upreon,u € L{F,} so that vy (2] (x)u;= 8, (%), xeM, where

B

£y

0=td=t <...<tn=1. Thus M and &{M} are inner conjugate in

1
L(F4) in contradiction with 7L T S

~65 -

We mention that in {"\ Connes and Jones obtained a sur-

prising consequence of the above result: an example of nonvanisghing

2-cohomology for a free action of a property T group G on L(F_).

There construction is as follows. Since G is finitely ge~
nerated {1l 3} there is a presentation En + G+ 0 of G. The kernel
of Fn + G + 0 is easily seen to be isomorphic to F_,, being a normal
proper subgroup of Fn , see e.g. 1% . By'general properties of free
groups it follows that given any e#gEFn the conjugacy class of g
by elements in F_c o is infinite. Thus L(Fm)‘nL(En)=C. Moreover
the normalizer TLof L(F_) in L(F ) generates L(¥ )} and 1f Y is the
unitary group of L{F_} then ﬂ”uf P /F.=G. In fact this way L(£)
may be viewed as the cocycle crossed product of L(F_} by G. Now
if there would be a lifting from G toji,uqeﬂd g¢G, so that
uguh=ugh , g,heG, then this would imply that there exists a copy
of the left regular representation of G in LIF ), this L(G)cL(Fn),

in contradicticn with 4.3.1.

Note that the above construction provides an example of a
rigid inclusion L{F )< LIF,) with [LOF ):L0F J]==. In fact this
example satisfies the conditions of 4.1.7, {i). It would be
interesting to know whether any II, factor M has a hyperfinite sub-

. 4
factor R so that ReM be rigid. In connectien with this problem,

note the results in § 1 ,% 3,0 3

The problem of embedding a factor into another secem gquite
difficult. SUch problems were first poesed by Murray and von

Neumann who asked whether a nonhyperfinite 1Ty factor, such as
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L{F,), can be embedded into R. The romplete answer to this problem
was only given by Connes in { 7] : as a consequence of his thecrem
on the equivalence hetween injectivity and hyperfiniteness, any
subfactor of R is isomorphic to R or finite dimensiocnal. The fact
that L{le¢ R was noted before, as a consequence of . 1. On the
other hand it should be mentioned here the old problem about
whether any nonamenable group contains a copy ogjéf%'This problem
is now solved in the negative ({ 1). However its operator alge-
bra analogue is stil an op§n quéstion: does any nonhyperfinite‘ll1
factor contain a copy of L(FZ)?'Let us mention here that L(Fz}
can be approximately emhedded in any 11, factor (cf;[ 1.

§4.4 Rigidity and convergence of conditional

expectations

An impeortant rigidity phenomena about property T groups is
the following (cfL % ): 4f G is a discrete group with property T
and Gnc G is an increasing sequence of subgroups withl;Gn=G then,
for some L Gn =G. In paFticular this shows that rigid groups
are finitely qengrated. '

Using his approach with correspondences Connes obtained
an operator algebra analogue of this result (cf L‘-i; 6.2). This
result was checked independently by Bion-NAdal in 1 1. Moreover
Moore proved in 1 1a result of this type for his property T rela-
tive to Cartan subalgebras.

The next theorem gives a unifying generalisation of these

results in the context of our definition of relative property T.

4.4.1. THEOREM. Let BeM be a rigid inclusion and suppese

{Mn)n-is an increasing sequence of von Neumann subalgebras of M,

- -

all containing B, so that ﬁﬁn=M. Than there exist projections

T = =
fneMnnM such that fn+1 and annfn anfn. In particular if HénM [
{or, more generally, if it is finite dimensional) for each n, then

M, =M for n large enough. Thus ™ l‘h\\?c\a 5‘“\2#&‘{1.:1 ever Oy,

.
.Proof. Since UM =M it follows that [|E, (x)-x [|L+ 0 for
each xeM, so that by 4.2.1 HEM (x)—xi12 + O‘unzformly in xeM,
||x]]%1. By A.2 in the appendixn;t follows that for n large enough
MonH hes atoms . and that if fn 1s the atom of maximal trace in

' =
HnﬁM then annfn anfn. Q2.E.D.

Note that in the preceding proof we used the condition
M, tH only to get |[EM {x)-x|l2 + 0 for each xeM. So we could
directly put this wea;er conditicon as hypothesis.in 4.4.1. Using
the perturbation results in { 1 ({see the appendix} we can actually
de much more than that: even 1if the ambiént factor M is not rigid
but we have a sequence ¢f subfactors Nkc M "tending pointwise”
to & rigid subfactor NeM then for k large enough the factors Ny

"contain" the rigid factor N in a scnse that we make now mare

precise:
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4.4.2. PROPOSITION. Let NocM be a type II1 subfactor of

M and BeN, a W*-subalgebra of N_ 'so that if By=B+C{ly ~1
[+]

! f

then the inclusion BocNo is rigid (we allow here 1Bf1Nof1M).

et 1 ¢+ 0D, xt""'xn"No be given by 4.2.1 for the inclusion
Bot.uo and kozko(aofNo) the constant appearipg in 4.1.5. '1f
96t and NeM 13 a subfactor with BeN and B Ey (3 )=x, 1,
s 92501, 1327200, 1sten, them W EGx)-x B, s(ek] /41y 1/2 41/
o
lfor all xGNo ; ¥ X4% 1, Moreover, there exist
a) projections eocNo + eaN and a unital *-isomorphism
9:e0N0e0-4 eNe;
b} projections foe(eoNoeo)'n eoMeo ’ fe s(eonoeo)'neme
and partial isometry usM satisfying the following conditions:

LAVE] * = = H
1} u*u fo , uu*=f and ux (x}u for all xieoNoeo i

- s & Gox s
2y B(e,xeol egxe oy . » XEN . Rox 15

and * u~1NoU 2 \lu-?Nllzs

proof. Let @o:No—a Ny o« Cgo(x)=EN Ey{x}. Then @0 is
o

normal, completely positive, % {(b)=b for bes, \ {)o“s 1,

' N 2 2,0
and U@ (x )=x, 0 =4 ENO(EN(xl}ﬂci) s NE IR ) -x, W e %z.nNo) /20
Thus, by 4.2.1 we have QQ‘O(X}—x112&(3k;/4+1/5)$1/4 for all

XeN, , Uxas 1. But then 4 x—EN{x}ll§=1lx Hgv“ EN(K)H g %

2, 2 _ -
Slix 5= -lENoaNtx) b SE2 Mk, xd - ENDEN(x) it,)

¢ 21 x~ENOEN(x)1tz=3*.‘. x-3_tx) s 2(3k(1)/4*1/5) S for anx

_13-

'cho , 4 xus 1 which proves the first part of the preposition.

The rest of the statement follows now by just applying
directly A.3.
Q.E.D.
Note that the filrst part of 4.4.2 generalizes the tech-
nical argument used in . 1. Moreover, as we noted before,
the above proposition generalizes Theorem 4.4.1 (just take
N=M),. We presented first 4.4.1 to underline the simplicity

of its proof, which do not use deformation arguments.
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. such that 1 Py ~Py it 4 32/200. Then we have for 1=0,1 and
§4.5 The set of rigid subfactors of a II, factor o 1

T

X3¢ Fy o N By (xfhexd FewxinZ-umy (U3«
Usirig 4.4.2 and elementary topological arguments we now i i 4
_ i, 2 1 w2, . 442 1, .14
show that the set of rigid subfactors of an arbitrary sepa : s\ Xy -\ pni(le \\2 A PNi{xj) x5 \'.2 so that || Eni(xji Xy o,
rable 111 factor is in some sense very poor. First we con- £ 2 :
i £%°/200. Thus, by 4.4.2 we have 1 EN {xi)-xi \\2$
sider subfactors with the same unit as M, 4 oo i
' ! $ten)/ M1/ g1/ gor a11 xpem, , v x1 <1, 420,1. Alsg
4.5.1. THEOREM. Let M be a separable type 11, factor, | for veme propailions po

by 4.4.2 we have a unital +-isomorphism © :poNopO-—-» p1N1p1"V

2

BSM a von Neumann subalgebra of M. Consider the set

-Rosx_NcM subfactor| N contains B and BCN is rigid, N'NM is ,uniformly close to the identity and with | Py~ 2 small

- 3 Ly —
finite dimensionall}. Consider on the set “eo the equivalence 20,1 (depending on's }, more precisely 1\ BlxgI=x W 5 ¢

=2 given by inner conjugacy with unitary elements of M. for XL PN P, v B xou$1 and 1 P1'1r\“ <

Then £o/'-3 is countable. It follews that for any x1e;p,‘l'~*l1p1 with X, i<l we have

' E (x.)-%, %, ¢ UL E °E Xy )=
Proof. For each class in 20/% we choose a type II, - h Blp bt 710 T T2 o (p N p) PON.Fo( 1

factor N in that class. Denote by 2(‘) the set of these ’ -E

x4, +21E (x)-%, I, (here, as allways,

P NP PN P
factors N. For each Ne?.(') let t20 FN={x1,...,xnjc. N, eoe o oo

- i i =@E .
' xills 1 give a critical neighborhood of Lz(N,L) as in when we have a W*-subalgebra B in M with unit 18 eeM we

4.1.5, Let kN be the constant associated to BeN as in 4.1.5 denote by EE the unique trace preserving conditional expec-

If we assume 20/% is uncountable it follows that for some tation of d onto B that preserve the trace on eMe, i.e.

5. V! . -1
n, the set ZJ {NCXO , cardinal Fyg¢n_ , ttn, s kytn

EB(X)=EB(exe), and it coincides with the restriction to M of
O r
the orthogonal projection of LZ(M,L) onto the closure of B

‘r.'-(e):n-1 for ail eeN'nM Y is uncountable. Now let }(N=span Fy 2
° ! in L°(M,%)). Now we have

4 L2 {M,%) and PN the corresponding orthogonal projection onto

KN. Then " ne N and Pytey where eye EB(Lz (M,t}) is the ex- il EpoNopo(x})_xl 1{'2= i) ENo(pox1po)—x1 it 25 2 po-1 i 5 *
tension by continulty of the conditional expectation EN to the :
j 2 2 =Fer? - and E X,)1~E i
‘orthogonal projection of L°(M,%) onto L°(N,n)=NelL” (M,n). + ENO(X1) %, [\ 2 ny i B(E’ONOPO)EPONOPO( 1) poNopo(Ki) 5
Since dimXNsnO for all NGJZ; it follows that the set
! NG"'\CH\(LEIH %)) {8 separable in the unlform norm. ¢l @gis (x,1)1~E tx, 3
‘F’N ~1 ! ' b P P, PaNuP, 1 2

Since ;f,; is uncountahle it follows that given any o> 0,

~-1 ~
Ss n0 thore are No' .'\11L i

‘{, .‘In not inner conjugate to Ny
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Thus by A.1 it follows that if p is the atom of maximal trace
in 8(PN,P,)'N PyNypy then & p-1U .54 pop, 15+ \py-11 2%

and e(poNopo)pnpN1p. Hence, if we denote by 9':poN°po-q.pN1p,
g' {x)=6(x)p then o' is a surjective unital s-isomorphism. By
A.3 it follows that there exists a partial isometry vaM such
.that R v-1 “2 4 ’ on’-'a' (xo)v for all xO&pONOPO
and v*vs(ponopo) 'npoMpo=po(NénM)po ¢ VV*e (pN,p) ‘N pMp=
=p(N;nM)p._Now if v*v#po then since Ner; it follows that

-1
-y -

b[po v v)zzApO)no . Since we alsoc have |\ Py vy ﬂ2$ '
for ® small encugh we get a contradiction. Thus v*v=poeNO.
Similary, for% small enough we also have Vv*ﬂp¢N1. Moreover
VNoV*=pN1p°N1‘ Since both Noland N, are type II, factors it
follows that N_, N, are inner conjugate in M. This final
contradiction completes the proof.

0.E.D.

As a consequence of 4.5.1 we get the “"relative version"

of Theorem 2 int{ 1

4.5.2. COROLLARY. Let BcM be a rigid inclusion. Then
the set ﬁB(M)={LM:N]\ BeNed subfactory is countable. In
: . road —
particular, {f Ma™then %(M) and the fundamental group « (M)

of M are countable {t.e.l 1 and{ 3}.

Pr-of. By 4.1.7 any subfactor with finite index NeM
with BeN is still rigid relative to B. If the set :55“'” is
uncountable then for some Noz1, §5B(M)n{_1,N01 is also
uncountable and by { Tif {M:Nl«= then N'AM is finite
dimensional. Thus since the index is invariant to conjugacy

4.5.1 applics, Since by & lwe have an injoctive map from

39-

-

F (M) into % (M) the rest of the statement follows.
G . E.D.

4.5.3, COROLLARY. There are uncountable many honisomor

phic rigqid type II1 factors.

Theorem 4.5.1 also gives a partlial answer to the old
standing problem on whether there exists a universal separab

11, factor, i.e. a separable I1, factor containing copies of

1
any other separable factor. Indeed by 4.5.1 and 4.5.3 we get

4.5.4. COROLLARY. There exist no separable II1 factor
containing copies of any rigid factor N so that N'"M be fini

dimensional.

Recall from 1.3.2 that two factors are stable equivale
if one of them is isomorphic to a reduced algebra of the oth
in other words If there exists a correspondence of index !

between them.

4.5.5. CONJECTURE. The set of classes of stable equi-
valent rigia factors is countable. In particular the union
U F (M} of the fundamental groups of all rigid factors is

countable.

In connection with this problem using the same ideas
as in the proof of 4.5.1 we get a result ﬁoncerning the
sct of all rigld subfactors of M,not neccsarily with the

same unit as M.

4.5.6. THEQREM. Let M be a separable type IT, factoer.
Then the set of classes of stable equivalence of rigid

not necessarily equal te 1M)

subfactrrs N in M (with 1N
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is countable.

Proof. We proceed the same way we did in the proof of
4.5.1, ¥e denote by ~. the relation of stable equivalence and
denote by & | the set of all rigid subfactors N of M with .
not necessarily equal to Ty If-2°/~ is uncountable then

there is an n, such that the set .21=3\Nﬁ-2°\ cardinal Fyin
1

(] ’

I

1

|

|

|
t 1n; ¢ kysno %(1N12n;1j is uncountable modulo ~ , where §
|
E
i
i
!

N
FN A tN’ kN have the same meaning as in the proof of 4.5.1.
Like there, it follows that given any'ﬁ’o there are factors

iy _.1 2 ) l

Nor €2, , N 4N, , so that I E:Ni(xj)_ xj 0,8 B%/200 7, i
= i . -~ Rt
i=0,1, xjéFN . Thus 1 EN (x1) x, 0 zé B . :
)_

i a ) | i

ﬂEN1 (xgd=x, 1k, 8 ‘ for all xgeN, , v %304 1, 1=0,1.

By'4.4.2 {or directly by A.3) we have a unital x-isomorphism
e:poNop0 —op1th1 , where piaNi . R P1‘1Ni“ 0%

and W& (x )-x_ i, ¢ for all xep Nop. N 'xou Ll

Arguing as in the proof of 4.5.1 it follows that S {p N p,le

€ pyN;p; is close to PiN,p, SO that by A.1 the projection :
of maximal trace in Q(pONOpO)'n p1N1p1 r Py Will satisfy
G(poNopo)p:pN1p. Thus 5':pONopo->pN1p defined by Q‘(XO)=

=B(x}p is a surjective *—isomorphism. Thus NO is stable egui-

valent to N1 , 4 contradiction.
Q.E.D,
Note that by 4.5.5 a negative answer to the conjecture
4.5.4 would imply that there cxist no universal separable
11, factors. Howover we strongly belicve 4.5.4 holds true.
in L 7 Connes posed the rigidity problem for 11,
factors:

R o

§4.6 Rigidity and fundamental groups of factors

In this sectlon we glve another approach to the problem
of eatimating the fundamental group of a type II1 factor and
the set of indices of its subfactors. We show that for these
sets to be countable it is sufficient that M contains a rigid

subfactor with small relative commutant.

4,6.1. THEOREM, Let M be an arbitrary separable type II,
factor. If M contains a rigid subfactor N {we allow 1N#1M)
so that N'AM has a nonzero atomic part then the set B (M)
of indices of the subfactors of M is countable. In particular,

the fundamental group of M, F(M), is countable.

proof. Note first that for any projection ee Py
we have Y(M)="%(pMp) {(cf.0 1, . ). Thus in estimating
% ({4) we may assume that M contains a rigid subfactor MM

1, and N'nM=C. For each k& %) let My e My [M=Mk1=k-

with 1N= "

1f %(M) is uncountable then for some k ’ S(3=%{H)ﬁ i1,k01
° M is th
is uncountable. For each k&so let Mchk be so that M is o

o .
A ¥ bi -
extension of Hk by M: (cf.0 1, ) and let eki{Mk)r\ im

=4 ¢
plement the conditional expectation of M, onto M, as in € 1
g = . Since

’ i.e.‘g(ek)rk R ekxek-EMz(x)ek for xeMk n

N is a type II1 facter, for each keso there is a unitary

T - * s a rigid
oclement ukeM s0 that ukNuﬁzek. Then Nk ekukNukek i aq

o .
subfactor of Moek which in turn is isomorphic to M.. We

k
o i e somorphism. Since
denote by Nkcﬁk the image of Nk via this iscmorp

o M O . us
(N0 e, & (NP 11 ey Mey =T 1t follows that NpnM =€. Th
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‘nM is finite dimensional for each kaSo. Morover i 4,6.3. REMARKS. 1°. Note that rigidity properties of

K
we have ek‘NéAM by construction of Nk' Now by theorem 4.5.1 4 - the type 4.1.4 {i.e., discreteness of the éutomorphisms group)

the set {Nk\ki%; is countable modulo conjugacy by unitary ’

by A.5 N

or of the type 4.4.1 don't follow from the existence of rigid

elements in M. But Nin M is an invariant for such conjugacy. subfactors with trivial relative commutant. Indeed the exemple

Thus the set {0¢t<1 | there exists k&5 and eaN AM with MG M*M _, where M, 1s completely nonatomic and M is a rigid

wle)=t} 1is countable. This is a contradiction, because type II, factor, has the property M'A(M*M_)=C but Aut/Int (M*M!
-1 . . >

e, ¢NAM and the correspbnding traces Gle,}=k form an . contains an injective image of Aut M (and in partlcular Int H

uncountable set when k runs over 5. while the second exemple in the proof of 4.6.2 has an increa-

Q.E.D. sing sequence of subfactors which don't step.

2. 1n [ 1 Connes proved the existence of non [

4.6.2. COROLLARY. There exist separable type II1 factors | .
’ : {or full) type IT, factors with nontrivial fundamental group.

without property T having countable fundamental group. In
on the other hand in the years 1970% €1  was a feeling that

particular there exist uncountable many nonisomorphic non r

there are only few non [ 11, factors. COf course by Connes'

type 11, factors without property T.
result L 1 (see 4.5.3) and by 4.6.2 this is not the case.

4

. Proof. Let M be a rigid type 1I, factor and (Mo,tb)

However the following strengthening of the conjecture 4.5.5
may hold true: there are only countable many classes of stable

an arbhitrary f£inite von Neumann ‘algebra with a nondiscrete

) ) -
trace preserving automorphisms group Aut M (g, is as usual ! equivalent non I type II, factors.

a normalized faithful normal trace on M ). By 4.1.31, MM, ‘ 3°, We mention that the methods we used until now as

is hot rigid and byl lwe have M'N(M*H_ }=C. well as the technigues of the next section may give the

Another example can be obtained as follows. Let N be

Wl

{but not isomcrphic with its tensor product by R!) with ccuan-

a rigid factor, « a free ultrafilter on N, N the corres-

.! possibility to construct a type 11, factor with property V
i
‘ table fundamental group. We leave this as an open problem.
?

ponding ultrapower II, factor (L 1)+ Then by{ 1. N'ANT=C
so that any von Neumann subalgebra M with Ne¢MaN™ is a }11
factor with N'AM=C. Since N™ is nonseparable there exists

an increasing sequence of separable distinct IT, factors

MkCN“ all contalning N. By 4.4.1, M=ﬁﬁk is not rigid. :
Q.E.D.



L

§4.7 Rigidity and Cartan subalgebras

A particular case of 4.6.1 in the preceding sectien is
as follows: let G he an I.C.C. group with property T acting
fréely, ergodically and measure preserving on a completely
nonatomic probability space (X, % ,u). Let M denote the cross
product type II, factor M=I"®(X,p})¥ G and NeM be the rigid
subfactor LIGICL™(X,u)¥G. Let also A=L™(X,u)cM. Then N'nMsC
so that by 4.6.1 F (M) {s countable. In particular it follows
that if R(G) is the measured eguivalence relation given by
the action of G on X then, except for é countable set of

values t, the restricted eguivalence relations R(G)]E .
T

where Eé:x 15 a subset of measure t, are not orbit eguiva-
lent to R{(G) {in the sense of 1T 1 ). The reason-is that the
associated II, factors {0 1) are nonisomorphic, and this
is of course a sufficient condition for the correspornding

measured equivalence relations not to be orbit equivalent.

But Connes and Jones have shown in [ 7 that this 1is not

a necessary condition: the 11, factors may well be isomorphic.

but not necessarily so that the Cartan subalgebras be carried

one onto the other.

The results of this section deal precisely
with this kind of problems: given a von Neumann subalgebra
BCM and a projection e¢B we try to find obstructions for
the cxistence of lsomorphisms of M onte oMe carying B onte
eBe, Qf course, the Interesting case is when M is isomor-

phic to cfle and B to eBe. In these cases the obstructions

-84~

for the existence of such isomorphisms will come ocut from
rigidity propertiea..WQ first state the theorem that provided
the motivation for this study: it shows that if a measured ‘

equivalence relation % contains an ergodic action of a

rigid group then most of the restrictions of 2 to subsets

. of positive measure are not orbit equivalent to R . This is

a new type of rigidity result, even in ergodic theory.

4.7.1. THEOREM. Let & be an ergodic countable measured

equivalence relation on 5 nonatomic probability space with

KX -invariant measure {(X,% ,u). Suppose % contains the free
ergodic action of an I.C.C. group with property T. Then there .
is a countable set S < [ 0,17 such that whenever FeX, and

ui{F)¢ S, the restriction of X to F is not'orbit equivalent

to X . In other words, if M is the type II, factor with
normalized trace & constructed from X as in I 1and if
A=ﬁ”(x,x,u)cw is the corresponding Cartan subalgebra then

for any projection ecA with Zleld §, there are no isomorphisms

of M onto eMe carying A onto Ae.

A main interest of the above theorem is related to the

following:

4.7.2, COROLLARY. There exist separable type 11, fac-

tors with uncountable many nonconjugate Cartan subalgebras.

- More precisely there exists a separable type II1 factoer 1

with a Cartan subalgebra AcM so that M¥M & R {and thus
MreMe for all e}, but so that for a certain countable set

SJLIG,II, given any projection ath with t(chiso there are

no isomorphisms of M onto eMe carying A onto Ae.
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Proof of 4.7.2. By € 1, given any I.C.C. group G, with
the property T there is a free measure preserving action
of GoxH, where H is a suitable amenable group, on the nonato-
mic probability space (X,%,u) 8o that Gwco is ergodic and
8o that the corresponding II, factor Msﬁ“(x,u)n¢LG°xH)has
noncommuting central sequences. Thus M=M ® R (by{l ) and
the rest of the conclusion follows by 4.7.1.

. Q.E.D.

Although with a statement of ergodic theory flavor,
Theorem 4.7.1 has a purely operater algebra procof. It is in

fact the immediate consequence of the following more general:

4.7.3. THEOREM. Let M be a separable type II, factor

and B¢M a von Neumann subalgebra . - ot

BinMgeneratea—a—facker. Assume there exist type II1
subfactors NS:NCM so that BeN, N'aN=€, N'aM=C and so that
B yrapens }-n-‘{'-*a‘f { L
the factor N, and the inclusion BeN are rigid.¥ Then there
exists a countable sct.scﬁio,1] such that for every projec-

tion esB with L(e){SO there are no isomorphisms of M onto

eMe carrying B ontc eBe.

proof of 4.7.3. Suppose the sct SO={0<t<1 | there exists
a projection edB, ©{e)=t, and an isomorphism of M onto eMe

carrying B onto eBe } is uncountable. For each téso we choose

a projection etGB, %(e£)=t, with an isomorphism Gt of M

_1 |
onto etMet such that Ut(B)'Otﬂct' wWe dencte by N =0, (e:xet).
since e_Be ¢ e Ne  is rigid {cf. 4.9 tt follows that

tTt
B:p;’(etget)ct3:$(§tNet)=Nt is also rigid, for all t&S,.

taod e gl o e N ad evgcd.ic.o.ﬂﬂm My odir ob 2

ettt e -

2 g

By 4.5.1 it follows that there is an uncountable set Sicso

s0 that for all t‘,t’&s1 ¢ N is inner conjugate to Nyoo

g0, if we fix t1e51 and N1=Nt , then for each téS1 there is

- 1 1
a unitary element u M 80 that ut"t“t”“ . Thus Stadut(N }=

’etnet ) k&S, {but no longer 9€Adut(B)=etBet - anyway‘we
don't need thils coendition anymore}. Since N is a type II!

factor
¢ ’ thefe are unitary‘elements vtnN such that \Vtetvgites

ts a totally ordered set of projections {i.e. tgtt' implies

1. Let szhdvto 9toAdut . Then for each pair

* "
vee visv, e v}
10t <t' we have a surjective *-isomorphism

sl @ N ENVE where £29 o, (1) and wif)=t /v

t ,t' s5s
t ,t

But N' contains a rigld subfactor with trivial relative com-
mutant, namely if v is a unitary element in N so that VNOV*)

> e, (which allways exists since NO is a type IIt factor) th

1
¥ ) . o 4_
et1vNOv et1 is a rigid subfactor of et1th1 50 that N*=
.ot caon~1ra -
=6 N (et Net } will contain N%=G (Lt vNOv*ct } as a rigid
1 1 1 . ‘ i 1 1
b d i A * e 'y =
subfactor and since (et VN Ve, ) ’\et Net C we also have

1 1 1 1
(N®})'n n'=¢. Thus by 4.6.1 the fundamental group of N s
countable. Thus, with the above notations, it fellows that
the set {t JE L et L e Lt e 51} is countable. But this

is a contradicticn, since 51 itself is uncountable. This

contradiction completes the proof.

2.E.D
Pproof of 4.7.1. If M>A are as defined in the statement
then it follows by the hypothestis that there is a free crgo-

—

dic actleon T of the [.C.C. property T yroup G on AL Lot
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the corresponding crossed product type II1 factor N=AR, G be
embedded in M in the obvious way to contain A. If NO;L(G)
then the inclusion AcN and the factor No are rigid and NénNn&,

N'nM=C. Thus 4.7.3 applies.
Q.E.D.,

Finally note that to prove 4.7.3 (and thus 4.7.1 too)
we uged the notion and technical results an rigid inclusions
of the preceding sections in full generality, thus providing

an effective motivation for considering such generalizations.

=

APPENDIX

We prove here sevéral technical deviées that have been wuse
in the paper.

Tﬁe next result is a generallzation of Connes' characteri-
sation of non T 1, factors by a property of their automorphism

group.

. .
A.1. PROPOSITION. Let BeM bé¥von Neumann subalgebra of

. " )
the type II1 factorY, The following conditions are equivalent:

. Given day fmite 3L of elawents F &M
1° Nthere exists a sequence of unit vectors {gn}nCLZ(BWH.T

such that ||gnx—x£ * 0, xeF, <f ,1>=0, ¥n.

nllz
_L‘Eﬁvgn any il vek c{— g eranals TE A
2°.¥There exists a sequence of unitary alements {un}n

in B'i such that i[[un,x]lfz + 0, x€¥, and Tia )=0, n21.

3°, IntBM is not closed (n Autb M.

Proof. The proof of the equivalence between 2° and 3° is
the same as the proof of the case B=C in{ 3 while the proof of

1°¢= 52°% {8 the same as the one in 1 1%,
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Phe next result is a strengthening of L 1. The proof

uses L 1.

.

A.2. PROPOSITION. Let M be a finite factor MOCM a von
Neumann subalgebra and nasup{||x-EM tx)]}zlxeM, | |=]1s1).

Let £ be an.arbitrary projegtion in MénM and fo an a?om
of HéqM. Then we have:

a) azz min(t{£f}, 1-1{£}}
b) If t is the index of § M _f_ in fMf_ then a2T(f,)/I=t"

In particular if M)AM=C then aa1—ﬁﬂ:MO]“‘.

proof.

-89~

The next two results beleony to E. Christensen.

For the reader's convenience, we give them full proofs here.

A.3. PROPOSITION. Let M be a type II1 factor, NO,NCH type

6

II, subfactors of M. Suppose sup{||x-Eg(x) |1 fxeN ,||x]|]|s1}=8<107",

1
Then there exist projections eeN, , e, a unital *-isomorphism

r Ll L]
b:e N e  + eNe, projections f eNinM, fsﬂteoNoeo) AeMe and a partial

isometry ueM such that

15, [11-e | 1,261/ | 11-e|| <2677
2u.‘|1e(eoxeo)-eoxe°||és10261/2,

30, [ 1=£ ] 1,<10%61 25 | 1-g]] 510361/ 2
4. uruze £ 5 wateof; |[1mul],<2.10%1/2

-
. = x u, xee N e
> ues*e, 8(eo eo) ! o 0%
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A.d4. PROPOSITION. Let M be a finite von Neumann algebra
and NeM a von Neumann subalgebra (with IN possible different from
1,) and 0:N + M a *-igomorphism of N into M so that ||B(x)—x]|25
st for all x¢N, |[x||21. Then there exist projections E NN MY,

pef (N) 'nO(1}MB(1) and a partial isometry veM such that
1%, |11-f§£2$2t; H‘!—p||252t'; [i1-vilzs4t’;
2%, v*v=f; yv*ep;

3%, vx=90(x)v, xeN.

r

-~ 3.

The final result we present in this appendix estimates
the relative commutant of a subfactor when passing to larger

factors.

A.5. THEOREM. Let NeM cM be type II1 factors. Suppose
[M:Mol 4o and N‘AM ig finite dimensional. Then N'M is

Ci rnmM, 2@ How ceaWnm sTmrd.
finite dimensional. MWMNWMMMU;@M.M{B%.

Progf. The fagt that N nM\is fin}te dim&nsional fallqys
tri;}illyﬁxi aﬁ\\ To get the estimate we proceed

as follows
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Procf. Suppose there ex'ists a sequence of projections

1,
OffncNﬁM such that ‘a{fn)-> 0. Let ey
tions in N'nM, such that Zei=1. For each n there is an i so
that he £ %1 Lz 1/m2. indeed because otherwise 1} f PR T'Im
so that 8 fu¢ Z_‘lf e l;< 1 a contradiction. Taking a subse-
quence 1if necessary we may assume W e £ n® ‘l 1) 1/m for all n.

L]

Then BM (elfnei)cw nMo so that EMo{ei nei) is a scalar multiple

of e, say E, (eifnei)=>\nei' Since EMO(x)z)\xr. where xeM, and

):‘.M:MO-E-", it follows that )\n/mzz}\ for all n. But
S\t Tl V/nle;) so that Gif )zktte.)mz, a contradictien,
n n 1 n i
The estimate on dim N'AM when N'aM_ =C follows easily
by 1.3 inl T, taking an arthonormal basis m,,...,m, of ¥'A:
with respect to the trace & . Other estimates for the

general case follows by 6.1 in [ 1.

be minimal projec- "
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