CLASSIFICATION OF ACTIONS OF DISCRETE AMENABLE
GROUPS ON AMENABLE SUBFACTORS OF TYPE II

SORIN POPA

ABSTRACT. We prove a classification result for properly outer actions o of discrete
amenable groups G on strongly amenable subfactors of type II, N C M , a class of
subfactors that were shown to be completely classified by their standard invariant
GN,Mm, in ([PoT7]). The result shows that the action o is completely classified in
terms of the action it induces on Gy, ar. As a an application of this, we obtain that
inclusions of type III, factors, 0 < A < 1, having discrete decomposition and strongly
amenable graph, are completely classified by their standard invariant.

0. Introduction. In ([C1]) A.Connes classified the amenable semifinite factors
showing that, up to isomorphism, there is only one of type II;, the unique approx-
imately finite dimensional II; factor R of Murray and von Neumann, also called
the hyperfinite factor, and one of type Il ( R ® B(H) ). Then, motivated by
the problem of classifying infinite amenable factors of type III, automorphisms of
amenable factors of type II were classified in ([C2,5]). Further classification results
were proved for actions of finite and general amenable groups on R and R ® B(H)
in ([J1]) and respectively ([Oc]).

For inclusions of factors N C M of finite Jones index [M : N| < oo, the suitable
notion of amenability was introduced in ([Po7]). Also, it was proved in ([Po7]) that
the amenable subfactors coincide with the subfactors that can be approximated
by the finite dimensional subalgebras of their higher relative commutants. In the
case of a trivial inclusion N = M C M this corresponds to the uniqueness of the
amenable type II; factor. In general, this shows that amenable inclusions are com-
pletely classified by their standard invariant Gy, the graph type combinatorial
object that encodes the lattice of higher relative commutants in the Jones tower
([PoT7]). Gn,m consists of a pair of weighted, pointed, bipartite graphs (I'y ar, 5),
(TN e s') called the standard (or the principal) graphs of N C M ([J2]), with some
additional structure. The invariant gives rise to a canonical model N C M*" and
in fact the theorem in ([Po7]) states that N C M is strongly amenable, i.e., it is
amenable and its standard graph is ergodic, if and only if N C M is isomorphic to
its canonical model.

We will prove in this paper a classification result for properly outer actions of
amenable groups on strongly amenable inclusions of type II; and I, factors. The
result can be regarded as an equivariant version of ([Po7]). The main motivation
for studying this problem is, as in the single von Neumann algebra case, the classifi-
cation of inclusions of type III, factors, 0 < A < 1, for which a similar Connes type
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discrete decomposition holds as shown in ([Lol]). Thus, by our results it follows
that the classification of type III, inclusions, 0 < A < 1, reduces to the classification
of trace scaling actions of Z on inclusions of type Il factors.

More precisely, our first result (see Theorem 2.1) shows that if an inclusion
N> C M*®° of hyperfinite II,, factors is extremal and strongly amenable, then
a trace scaling automorphism o on it splits into the tensor product between the
action 0%, implemented by o on the model inclusion of II; factors Nt ¢ M*t, and
a model action op on a commonly splitted 11, factor. Thus, (N> C M, o) =
(N5t € M*®*) ® R*,0% @ g¢). More generally, we prove that for a trace scaling
action of Z™ on N*° C M which is diagonalizable (in the obvious sense) a similar
splitting result holds true.

An important application of the above result is the classification of inclusions
of hyperfinite type III, factors with discrete decomposition and strongly amenable
graph, i.e. of the form (N C M) = (N*® x o C M*> x o), with N> C M a
strongly amenable inclusion of type Il factors and o a A-scaling automorphism
of M leaving N globally invariant. Thus, our theorem implies that N' C M
is isomorphic to the inclusion (N*' @ R® % 05 ® 09 C M @ R™® % o5 ® 0y),
where N C M?*! is the canonical model associated with N C M, ¢%¢ is the
action implemented on it by o, and o( is a model A-scaling automorphism on the
hyperfinite 11, factor R*°.

Although it is not needed for the classification of type III, inclusions, we also
prove a classification result for properly outer actions 6 of arbitrary discrete amena-
ble groups G on strongly amenable inclusions of type II; factors N C M as well
(see Theorem 3.1). It shows that 6 is cocycle conjugate to an action of the form
05" ® o9 on (N5* C MSY)®R, with 6°° the “standard” part of # and og a properly
outer action of GG on the hyperfinite II; factor R.

Thus, in all these cases the actions are completely classified (up to outer con-
jugacy) by the actions they implement on the standard invariant Gy as. Due to
its rigid combinatorial structure Gn ar generally admits only a few (finitely many)
actions, oftenly just the trivial action. In the case of the index < 4 all such actions
were listed ([Lol,2]).

The proofs of both theorems rely on non-commutative ergodic theory techniques,
much in the spirit of ([Pol1,2,4,7]). The idea we use is to build “local Rohlin towers”
for larger and larger finite parts of the acting group Z", GG, indexed by corresponding
Fglner sets. We then “glue them together” by using maximality arguments, very
much the same way we did in [P07], inspired by similar arguments in [C3]. As a
result of this argument, we obtain that o splits into a tensor product of o5 and a
trace scaling action oy. In case n = 1, we can then further apply Connes Theorem
in [C2] to derive the final result. In turn, for the proof of the classification of
(trace preserving) actions of arbitrary amenable groups G on N C M ~ R, we
ultimately use Ocneanu’s uniqueness (up to cocycle conjugacy) of cocycle actions
of G on the hyperfinite II; factor [Oc]. However, as pointed out in [Po7,8], note
that our classification of strongly amenable subfactors in [Po7] does imply both
the uniqueness of the trace scaling automorphisms of R*> in [C2] and the case
G strongly amenable of the results in [Oc], for which it thus provides alternative
proofs.

Part of the results in this paper have been presented by the author in a number
of lectures during 1991-1992 and in a C. R. Acad. Sci. Paris note ([Po8]). A
preliminary form of the paper has been circulated by the author since the fall of
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1991 and in its final form as an IHES preprint no. 46,/1992.

The final version of this paper was completed during the author’s visits at the
University of Odense, Universita di Roma II, Université de Paris 7 and IHES, during
the year 1991-1992. He wishes to gratefully acknowledge U. Haagerup, R. Longo,
G. Skandalis and A. Connes for their kind hospitality and support.

Added in the proof, July 2009. While the work presented in this paper has been
completed some 18 years ago, its typing proved to be an agonizing process. Thus,
my traveling schedule during 1991-1992 resulted into several people being involved
with this task. They had to cope with a manuscript full of complicated formulas
and a handwriting unfamiliar to them, under limited time-frame. The outcome was,
alas, a 1992 preprint with hundreds and hundreds of typos, a nightmare to correct.
As the results in the paper were fully accepted by the mathematical community
and amply used and cited in subsequent papers, I felt little incentive to go through
the necessary proof reading ordeal, for several years. Then other mathematical
interests prevailed, all the way until the Summer of 2009, when I needed some
of the results and techniques in this paper, to study rigidity properties of certain
inductive limits of II; factors. This gave me the energy to carefully go through the
paper and make the corrections. Other than that, I have chosen to leave the original
1992 preprint essentially unchanged, although I certainly would have written the
paper quite differently today...

While initially the main interest in this paper was due to the application to
the classification of type III) subfactors, a hot topic at the time, the techniques
used here seem to be of a broader interest in von Neumann algebras, including
deformation/rigidity theory. Hence my decision to revive the paper and seek its
publication in a refereed journal, despite so many years of neglect. Some of the
ideas used in this approach to the classification of actions of amenable groups on
inclusions of hyperfinite type II factors, are quite novel. Thus, unlike the usual
strategy for classifying trace scaling automorphisms of the hyperfinite Il factor
R*> due to Connes ([C2]), which consists in reducing to the trace preserving case
(resulting into a “type II; treatment”), one works here directly in the Il setting.
Actually, one relies heavily on the trace scaling property of the automorphism,
to prove it coincides with the model. Also, in the classification (up to cocycle
conjugacy) of actions € of amenable groups G on strongly amenable II; subfactor
N C M ~ R, the model considered is a cocycle action 6y on R, rather than a
genuine action (see Sec. 3.2)!

It is worth mentioning that the techniques and ideas in this paper have later
inspired me in isolating the concept of central freeness and approximate innerness
for subfactors in [P9,10] and in the proof of the classification of approximately
inner, centrally free subfactors with amenable graph in [P9,10,11] (note that these
are the only papers I have added to the reference list of the initial 1992 version).
In particular, [Pol0] provided a new proof to the classification of hyperfinite III)
subfactors with strongly amenable graph, in case the standard part of the action
of the trace scaling automorphism in the common discrete decomposition is trivial
(i.e., with the above notations, o5 = id).

1. The standard invariant of an equivariant inclusion. We begin by

explaining the standard invariant and model associated to a triple (N C M, @),

where 6 € Aut(M, N) def {0 € AutM|o(N) = N}, as considered by Loi in [Lol],

for inclusions of type I or Il factors N C M of finite index.
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1.1. Inclusions of type Il factors. If N°° C M are type Il factors then
there exists a normal conditional expectation of M > onto N°° if and only if N>V
(N°" N M*®°) contains finite projections of M (see e.g. [Po6]). If N°° contains
finite projections of M then there exists a unique trace preserving conditional
expectation of M onto N°°, Ene and, in fact, if N°° = N®B(H) is any splitting
of N with N a type II; factor and M = B(H)' N M®°, then (N> C M) =
(N@B(H) C M@B(H)) and En~ = En ® idB(’H)-

The index of N in M, [M° : N°°|, is defined to be oo if there is no normal
conditional expectation of M > onto N or, more generally, if N°° doesn’t contain
finite projections of M>°. It is defined by

[M*>: N*°| = (max{\ > 0|Ey=(2) > Az, x € M*})~!

in case N°° contains finite projections of M. Alternatively, with the above no-

tations, we can define the index of N C M by [M> : N*°] o [M : NJ|. If

the index is finite then we can associate to N> C M the tower of embeddings
([PoT7]):

0o oo & oo &2
N®CM®cM®C-..
U U U

€2

Nc M¢c& M C-..

where M° = M®@B(H) and e, € My ~ M, ®1 C Mj, @ B(H) are the usual Jones

projections for the Jones’ tower N C M ecl My % My C ---.

Moreover, due to the splitting of N> C M into a type II; inclusion @B(H),
there exist projections eg € N°° C M so that Eye(eg) = Al = [M> : N*®°]711.
The proof of [PiPol] then shows that any two such projections are conjugate by a
unitary element of N°°. If ey, e) € M are as above, with Exe(eg) = En(e]) =
AL and N> = {eg} N N>®°, NP = {9} N N®, with e € N®1 C N and
N1 = {ep}’ N N, then the unitary element u € N°°, uequ* = e, also satisfies
uNPu* = NP, We have N° = N; @ B(H) and N{"™ = N @ B(H°) where
N = ulNyu*, B(H®) = uB(H)u*. Note that the conjugation by u changes the
splitting of N°° C M ¢ M¢® C -+ by B(H) into a splitting by B(HY).

It thus follows that we may choose recursively a tunnel of type Il factors

e e e
M2 35 N> 5 e 51 N3 > -+ so that for each k there exists B(H}) € N>

0

0
e e_
with the property that NO = B(H2) N N> are type II; factors and M 5 N 5
0

NY) D ... A N? | D N} is a tunnel of type II; factors for M D N.

It thus follows that one can define for a type Il inclusion N°° C M its
standard invariant, in the same way one does for type II; inclusion, as the sequence
of commuting squares of higher relative commutants { No® N N> C N N M>¥}y,
on which one has a canonical finite trace, and which doesn’t depend on the choice
of the tunnel. Moreover this invariant, that we denote Gnoo asoo, coincides with the
standard invariant Gx, ps of the corresponding inclusion of type II; factors N C M,
independently on the choice of N C M (e.g., by [Po7]). Also, we denote by M =
UMp® with the closure being taken in the strong topology of the common trace.
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Note that M coincides with M ® B(H). It is called the enveloping algebra of
N> C M.

Finally, let us define the notion of amenability for inclusions of type Il factors.
In order to avoid lengthy discussions and too abstract statements (which, unlike in
the II; case where they were quite necessary, are here practically useless) we will
adopt the simple minded point of view of reducing to the type II; case. We thus
put:

Definition. N°° C M is amenable if N C M is amenable. It is strongly
amenable (respectively, has ergodic care) if N C M is strongly amenable (respec-
tively, has ergodic core).

1.2. The standard part of an automorphism. Let N C M be both type II;
factors and (N> C M*°) = N ® B(H) C M ® B(H), the corresponding type Il
amplification. Assume [M : N] = [M> : N*°] < co. Denote by Aut(M®, N¢) =
{6 € AutM*|(N*) = N*} where a =1 or a = 0.

Let us first point out that the automorphisms in Aut(M >, N°°) always commute
with the trace-preserving expectation.

LEMMA. If 0 € Aut(M®>,N*°) then 0En~ = En=0 and the action of 6 on
N>"N M, equipped with its canonical trace (see 1.1), is trace preserving.

Proof. Since an expectation of M onto N° is uniquely determined by its values
on N N M, by comparing En- and §En~0~1 we see that it is sufficient to
prove that they agree on N>’ N M. For this it is sufficient to show that | yocrqnre<
is trace preserving. This is clear if modf = 1. If modf = X\ # 1 then let R> be
a hyperfinite type I, factor and ¢ an automorphism of R* with modo = A1,
Then clearly (N*®@R>) N M*RQR>® = NN M> ® 1 and the action of § ® o on
(NN M*>)®1 coincides with that of 8| yo/npr« ® 1. But by the above case d ® o
acts trace preservingly on (N*° ® R*®) N M> ® R>. Q.E.D.

We can now describe Loi’s construction ([Lo2]), based on ([PiPol]), of the action
implemented by € on the higher relative commutants, for arbitrary actions 6 on
inclusions of type II factors.

(i) Given any choice of the tunnel
& « & = o P
M* > N* D N>

there exist unitary elements uy € N, k > 0, such that Ad(ug - --up)f(e_i) = e_p
(cf.[PiPol]).

(ii) For x € %(N,?’ N M*®) define

05 () & Ad(- - uy - uo)0().

Then 5* (N N M) = NN M*, 55(NPNNY) = NM NN, 05 (e_y) = e_p,
for all k£ > 0. Moreover, in case o = oo, if Ng® N M are interpreted as higher
relative commutants of the corresponding type II; inclusions obtained by splitting
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all Np°, i >k > —1, by a common B(H) C Ni°, then 65 as defined above is trace
preserving (with respect to the corresponding type II; trace).

Thus, both in the II; and II., case, #5° implements a trace preserving automor-
phism on the union algebra U(NQ' N M), leaving %(NI?IQMI?)7 N NM*, NN
N, globally invariant and all the Jones’ projections fixed.

(iii) 6°* implements a trace preserving automorphism on the standard invariant
GNneo pme = {NF NN C N N M>}>0, which is independent on the choice of the
tunnel N, on the choice of the unitaries u; € N and on perturbations of 6 by
inner automorphisms Adu, with u € U(N®).

(iv) If one also denotes by 6% the trace preserving automorphism of M5! =
U(N" N M) leaving N5t = L]_CJ(N,?’ N Ne) globally fixed, then 6 — 6% implements

a group homomorphism, from Aut(M®, N%)/IntN® to Aut(M*s*, N5'), leaving all
Jones projections e_j fixed and all finite dimensional algebras Ng' N N* globally
invariant.

(v) Define recursively 01 : M — Mg, | by

Ok1(Xxiers1ys) = Bibr(xi)ert10k(yi), kb > 0,24, y; € My

Then O y1are = Ok and 01 € Aut(Mg, ;, My'). Also denote 0o @ M5 — M
the unique automorphism which on the dense set UM} acts by 6 My = 0, and
by 500 : MO O M2 — M® 0 M2, its restriction to M® N M. Then § — 600
is a group morphism from Aut(M%, N®) to Aut(M® N MZ, M, N M2), with
%9 leaving each Jones projection ey fixed and M N MY € M N Mg globally
invariant. Note that if N C M® is extremal ([P7]) and °? denotes the canonical

antiisomorphism of N;_; N M onto M’ N My, ([Po7]), then °P intertwines 6" and
est,O.

Definition. The automorphism #°! on N$' C M*! is called the standard part
of the automorphism 6 (on N C M). The automorphism °%° on M| N M., C
M’ N M is called the opposite standard part of 6. The action implemented by
65" on Gyo pre (i.e., on the lattice of higher relative commutants) will be denoted
by v and (Gn ar,7ve) is called the standard invariant of the equivariant inclusion
(N> C M, 0).

We will now summarize some of the properties of #%! that are more or less implicit
in the above considerations.

1.3. PROPOSITION. (i) The application 5t factors to a group morphism from
Aut(M*, N®)/Int N into Aut(M*s*, N5).

(ii) The group morphism 5t is continuous from Aut(M<, N®)/IntN® with the
quotient topology into Aut(M5t, N5t) with its usual topology.

(iii) Assume N* C M is strongly amenable standard invariant ( equivalently,
N5t M5t are factors and have same higher relative commutants as N C M®, see

[Po7]). If 0 € Aut(M*, N%) then (o°")%" = o,

Proof. We already proved (i) above. Then (ii), and (iii) are trivial by the
definitions. Q.E.D.
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1.4. Actions with trivial standard part. As it turns out in certain situations the
standard part of an action follows automatically trivial. Since the standard part of
a cocycle action on an inclusion (N* C M%,6) coincides with the standard part of
the cocycle action it implements on the associated 1I; inclusion, N C M, we can
reduce our discussion to the case of II; inclusions, i.e. when o = 1.

PROPOSITION. (i) If o is inner on all relative commutants M’ N My, and I' 5 ar
is a tree (equivalently axe € {0,1},Vk, €, and Ty ar has no cycles), then o5t = id.

(ii) If U v ar is a tree and the canonical weights (sk)kek, resp. (t)ier, are distinct
then, 040 = id Vo € Aut(M, N).

(iii) If supdim Z((M’' N My)?) < oo then ot is periodic, Yo € Aut(M*, N%),
i.e., (0°9)" = id for some n < oo, (0°)* properly outer for 0 < k < n.

Proof (i) If 0°%0 is inner on M’ N M}, (equivalently, 0! inner on all Nj_, N M)
then it acts trivially on its center. If I'y as is a tree then M’ N Mg, = sp(M' N
Mk)6k+1(M/ N Mk) D Bk‘+17 with Bk+1 abelian. Since U(€k+1) = 6k+1,Bk+1 -
Z(M/ N Mk+1) and O|1Z(M'NMy11) — Zd, we obtain that O\M'NM,;,, — id 1mphes
O"M/kaJrl =1d.

Then (ii) is trivial by (i), since for distinct (sx)x, (¢;);, o is forced to act trivially
on the center of M’ N M, Vk.

To prove (iii) note first that if N** C M5 are factors and if for some ky we have
ar = o' (z)a,x € Ni',a € M*, then given any € > 0 there exists m such that
a € N5t/ N Mst. Thus, if a # 0 then for x € N3t we have ||[x,a]||2 < 2¢||z| and

g

|z — o5 (z)||2 < f(e)||lz]] with f(¢) — 0 as e — 0. Thus o' is inner on N3! for m
large enough (cf. e.g. [Ch]), say oy, = Adu,u € N3/, But 0°* = (Adu*0)*" for
u € N5t C N*t so that 0% = id on N5'. Since 0% (e_;) = e_;,Vi > 0, it follows
that 0%t = id, unless a = 0.

Now, if dim Z((M’ N My)?) is uniformly bounded then by (1.1 in [Po7]), (M’ N

My—1)? C (M'n My)° e (M'" N My41)° is a basic construction for k large

enough and the support of exy1 in (M’ N Myy1)? is 1. Thus the support of epiq
in M’ N My, is also 1 and N C M has finite depth (cf. e.g. 1.1 in [Po7]), in
particular it is extremal and N** C M5! are factors (e.g. by [Po4]). Also, we have
a sequence of commuting squares

ek
MAOMy: CM OMy, C M 0OMy
U U U

k41

(M’ My_1)° © (M' 0 M) (M’ N Mysr)°

in which ey, implements a basic construction on both rows (for & large enough).
Also (M' N My)? = (%(M’ﬂMk)”) is a factor (e.g., by [Po4, 5], [We]) and by

([GHJ]), if T" is the inclusion matrix of (M’ N Mj_1)? C M’ N My, then [M' N M :
(M MLo)] = T

By the arguments above, we see that if (0%)" is inner for some n then (05%)" = id
on N*' and thus on all M*!. Thus, either (¢°/)" = id and (0°%)* is outer for
0 < k < n, where n is the period of o%¢, or o5 acts freely on M*!. In the latter
case though the fixed point algebra (M*")”" would have infinite index in M*' (cf.
e.g. [Lol]), a contradiction. Q.E.D.
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COROLLARY. (i) If Tn.as is a tree then ker(°') contains the connected compo-
nent of the identity in Aut(M,N).

(@) If o : G — Aut(M, N) is a continuous action of a connected group G and
either T'n pr is a tree, or if supdim Z((M' N My)?) < oo, then o5t = id.

Proof. (i) If o is in the connected component of the identity in Aut(M, N) then
Uf]{,m oy is inner Vk and part (i) of the previous proposition applies.

(ii) If 'y as is a tree then part (i) applies. Also, since G is connected, if for some
k aﬁiféﬁM # id then there exists g € G such that 0°%(g)"™ # id Vn (even on N, N M),

which contradicts (iii) in the previous proposition. Q.E.D.

1.5. Proper outerness for actions on inclusions. In order to be able to prove
that the standard invariant of an equivariant inclusion is a complete invariant, we
need the actions to satisfy some proper outerness condition.

Definition 1. An automorphism o of a II; inclusion N C M is called properly
outer if for any k and any choice of the tunnel M D N D --- D Nj we have the
implication:

(*) If @ € M is such that ax = o(x)a, Yx € Ni, then a = 0.

An automorphism o of a Il inclusion N*° C M is properly outer if the
corresponding automorphism of its associated II; inclusion is properly outer.

Remarks. 1°. If N = M® then the above condition coincides with the usual
definition of proper outerness of an action on the single algebra M¢.

2°. If o is a properly outer action on N C M then it is properly outer on both
N and M®, more generally, it M* D N* D --- D N is a tunnel and v € U(N®)
is so that AduN;* = N7, j < k, then Aduo is properly outer on each N¢*,j < k.

3°. The above definition doesn’t depend on the outer conjugacy class of o, i.e.,
if o satisfies the above condition and v € U(M*) is so that AdulN® = N* (e.g., if
u € N®or if u € NN M®) then Aduo satisfies it. Also if p € N* is a nonzero
projection then o is properly outer iff o), is properly outer.

4°. If the implication (*) in the above definition holds true for some k and some
choice of the tunnel up to k then it holds true for any j < k and any choice of the
tunnel up to j. Thus, in order for o to be properly outer it is sufficient that there
exists a tunnel M® D N® O --. such that if for some £ > 0 and a € M we have
ax = o(z)a,Vxr € Ny, then a = 0.

PROPOSITION. Let 6 be a cocycle action of a discrete group G on N* C M*.
The following conditions are equivalent:
(i) 6(g) is properly outer on N C M“ Vg # e.
(ii) There exists a tunnel M* D N O --- such that N N (M x9 G) =
NN M for all k > 0.
(ii") For any tunnel M® D N“ D --- and any k, N}’ N(M*xG) = N NM®*.
Moreover, if N* C M is extremal, then these conditions are also equivalent to
the following:
(i) MY N (MZ x G) = M N Mg, Vk.
(iii") MY N (M x G) = MY N ME.

Proof. (i) = (ii). If X = Yz4uy € M x G is so that [X, NJ¥] = 0 for some k
and if z, # 0 for some g # e then z,0(g)(x) = xz, for all x € Nj. Thus 6(g) for
8



that g will not be properly outer.

(ii) = (i). If 6(g) is not properly outer then for some k and a € M, a # 0, we
have ao(z) = za,Vo € Nf. Thus X = auy, € N’ N (M xpG) but X ¢ N N M.

(i) < (ii') is trivial.

(ii) < (iili). By 1.2(v) there exists an antiisomorphism of Ng}_; N(M* x G) onto
M N (Mg, x G) carrying N§'_; N M* onto M N M.

(iii) & (iif"). f MY N (M x G) = M* N M then by the commuting square
relation we have M N (MY x G) = Enewa(M™ N (MS, % G)) = Exewg(M* N
MS) = M N M. Q.E.D.

Definition 2. A cocycle action 6 of a discrete group G on N* C M% is properly
outer if the equivalent conditions in the above proposition are satisfied. A faithful
action 6 of a locally compact group G on an extremal inclusion N C M¢ is
properly outer if M N (MY x G) = M*' N M, Vk,V. (It has been pointed out to
us by Y. Kawahigashi that a similar property has been independently considered
by M.Choda and H. Kosaki in [ChK]).

In ([EvKa]) there are examples of periodic automorphisms on N C M that are
properly outer on both N and M but not on N C M in the sense of the above 2
definitions. There in fact do exist aperiodic ones as well:

Ezample. Let P® be a type II; or Il factor and o = (o1, ... ,0,) some n au-
tomorphisms acting on P*. Let M = M(,,41)x(n+1)(P*) and Ny = {X;0;(x)e;j; |
xr € P}, where 09 = id and {e;;}o<i j<n is a matrix unit for M, 1 1)xn41)(0)
(see [Pob]). An automorphism 6 of M fixing {e;;} will leave N globally invari-
ant iff # commutes with all ;. It is easy to see that such a 6 acts properly outer
on N C M® iff § doesn’t belong to the group generated by the o;’s and IntP“
in AutP®. In particular, if we take n = 1 and o7 = 6 aperiodic, one obtains an
example of an automorphism which is aperiodic on M* but is not properly outer
on the inclusion N C M® that was first pointed out by Y. Kawahigashi (private
communication).

1.6. Sufficient conditions for proper outerness. We will now show that in certain
situations an action on an inclusion follows automatically properly outer once it is
properly outer on one of the algebras. But first, we will introduce an invariant that
measures the “distance” from proper outerness.

LEMMA. Let 8 be a cocycle action of a discrete group on the inclusion N C M*
and assume that the action is properly outer on each of the algebras N“, M®* (in
the usual sense). If {N®}r>1 is a choice of a tunnel then the algebras {N N
(M* x G)}r>_1 are finite dimensional and there exists a unique normalized trace
To on LIQJ(N]?/ N (M* xg Z)) such that E%QXG(Q:) = 10(x)1, for all k > —1 and all

€ NY' N(M*xG). Moreover, the sequence of inclusions C = M* N(M*x G) C
N N(M*xG) C --- and respectively the trace 7y are described by a pointed matrix
(or pointed bipartite graph) I'g and its transpose and respectively a positive vector
So satisfying F@Fé?@ = M~ : Na]gg. Also, up to trace preserving isomorphism
this sequence of inclusions (and thus 'y, sg) doesn’t depend on the choice of the

tunnel.
9



Proof. Let R be a copy of the hyperfinite type II, factor and let 6’ be an action
of the group Go = G/ ker(modf) on R* such that mod¢’(w(g)) = modf(g)~1,g €
G, where 7 : G — G is the quotient map. Let 6y : G — AutR>,0y(g) € 0'(n(g)).
Then 0 ® 0y : G — Aut(M* ®@ R, N ® R*) is a cocycle action that will still be
properly outer on each algebra and modf ® 0y(g) = 1 for all g. Also the higher
relative commutants and the state 7y do not change if we replace 6 by 6 ® 6y. So
we may assume from the beginning that 6 is trace preserving and then, by splitting
off some B(H), that (N C M®) = (N C M) are type II; factors. The trace 7y is
then simply the restriction of the unique trace on the type II; factor M x G. Since
M'N (M x G) = C and since N, N (M x G) C Ni; N (M x G) has [PiPol] index
< [M : N] (cf. e.g., [Po3]), the algebras are indeed finite dimensional. The fact that
the inclusions are determined by a unique pointed matrix and an eigenvector follows
then by ([Po7], §1.2). Obviously, all this is independent on the tunnel. Q.E.D.

Definition . The weighted graph (I, sg) of the above lemma is called the stan-
dard graph of the action 6. Note that, by ([Po7]), ||[Ts]|*> < [M : N] and that if
[y is finite we have equality, by the Peron-Frobenius theorem. Note also that 6 is
properly outer iff I'g = I'y as. In general, this may not be the case though (see [Ka)
for examples). However we have:

THEOREM. Let 6 be a cocycle action of a discrete group G on an extremal
inclusion of type 1, factors N® C M. If one of the following conditions 1° — 4°
holds true, then the action 0 is properly outer on N C M*.

1° a = o0 and 0 is trace scaling, i.e., TrO(g) # Tr, g # e (so that necessarily
G CR).

2° N C M has finite depth, G is torsion free and the action 0 is properly outer
on either M or on N“.

3° Ty is a tree (i.e., it has only multiplicities 0 and 1 and it has no cycles), G
is torsion free and the action 6 is properly outer on M®.

4° The standard vectors (si)k, resp. (1)1, have distinct entries and 6 is properly
outer on M*.

5°. a =1 and (N C M) = (N C M*") is a standard inclusion of type 11
factors and 6 = 0% is a nontrivial standard action on it such that 0 is properly
outer on M*t.

Moreover, in the case a = 1, we have:

6°. If M'NN¥ is nontrivial, and if o € Aut(M, N) is properly outer on M'NN¥,
then o is properly outer on N C M. If in addition N C M 1is strongly amenable
then, conversely, if o is properly outer on N C M then it is properly outer on
M' NN« .

Proof. To prove 1°, it is clearly sufficient to treat the case 6 is a single auto-
morphism. Let A\ = mod#, i.e. Trf = A Tr, X\ # 1. Assume there exists k£ > 0 and
0 # a € M such that (x)a = az,x € N°. By conjugating if necessary with a
unitary w € N°° we may suppose ON° = N°. Thus (N NM>®) = N N M>.
Taking polar decomposition of a, it follows that there exists a partial isometry
0 # v C M® such that §(z)v = va,x € N°. Also, v*v,vv* € N N M. If
p < v*v,q < vv* are minimal projections in N> N M such that qup # 0, then,
by multiplying the equation §(x)y = vx by ¢ on the left and p on the right, we may
suppose ¢ = v*v,p = vv* are minimal projections in N N M.

10



Since N*° C M is extremal, N° C M is extremal (cf. [PiPo2]) so that
by [PiPol], [gM>q : Np°q|Eng(p) = [pM>=p : Nx°p|Ene(q). But since 0(z)v =
ve,z € Ni, we have Nyv = v Ny, so that (N°q C gM>q) = v(NZp C pM>®p)v*.
Thus [¢gM>°q : Ng°q| = [pM*>°p : Ng°p] and we get Ene(p) = Ence(q).

It follows that if f € Ng°,Trf < oo, then Tr(pf) = Tr(qf) = (Trf)Ene=(q) =
(Trf)Ene(p). Thus we get for A = modd

ATr(fp) = ATr(f)Eng=(p) = Tr(o(f)) Eng=(q)
=Tr(o(f)q) = Tr(o(f)ve?)
=Tr(vfv*)=Tr(fv*v) =Tr(pf).

This contradiction shows that a must be zero and thus 6 acts properly outer on
N C M.

To prove 2°, it is sufficient to prove the case G = Z. To this end, denote
P, = NY'N(M*~Z) and Qi = N’NM®*. Reasoning as in the proofs of the previous
lemma and of Lemma 1.2, it is sufficient to prove the case (N C M) = (N C M)
is of type II;.

Let 6 be the action of T = Z on M x4 Z dual to 8 and note that 6(P,) =
Py,0|o, = id. Since M = (M xg Z)? we also have Q, = P!, by commuting

~

squares. Since T is simply connected, 6§ acts innerly on each Pj and thus trivially
on Z(Py). Thus, supdimZ(Qy) > supdimZ(Py), so that if N C M has finite depth
k k

then T’y is finite. Thus, for k large enough, the commuting square

P, C Pria
U U
Qr C Qr+1

is just the basic construction of

Py_1 C Py
U U
Qr—1 C Qk

so that by [GHJ] or [Wel], we have [Py : Qo] < 00, where Py, = LI;JP'“’ Qoo = %Qk'

Since Pfo = Qoo, if we can show that Q. N Py = C we will get a contradiction,
unless Qoo = P~ . In turn, this equality implies 6 is properly outer, by Proposition
1.5.
If x € Q, N P then let € > 0,k < 0 and xx, € P, = Ny, N (M x Z) be so
that ||z — zg,[|2 < . Thus |lurgu” —zll2 < €,u € U(Qw). Since supdimZ(N; N
J

(M xZ)) < oo we have sup dimZ(N; N (M; x Z)) < oo (see e.g. the proof of the
4,
previous Proposition). Thus, there exists ¢ large enough such that N, N (M, xZ)
is the basic construction of NN (M, xZ) by N;_; N (M, xZ) with Jones projection
ej, for all j. Thus xg, € N N (M % Z) C N, N (Mg x Z) = sp(Ny,_1 N (M %
Z))e—ky+1(Ny,_1N(MyxZ)). But since N C M has finite depth Ny, 11 C N, 42 has
11



finite depth, so that if Q;.c = U(N; N N;) then Eg: g (e—;) € C. Averaging

over u € Qj oo, j = ko + 1,ko+2,... in the relation ||uzy,u* — z||2 < €, we obtain

recursively that there exists zy € '<Q 1(NJ’- N(MyxZ))NM =M NM = C1 such
J>Ro—

that ||xg — z||2 < e. Since € > 0 was arbitrary, x € C1.

To prove 3°, it is again sufficient to consider the case G = Z and we can use the
same notations as above. Also, note that if I'y is a tree for the G action, then it
is a tree for the Z action as well. In this case, Py, is obtained from Py by the
basic construction (obtained with the Jones’ projection which is in M and thus on
which 6 acts trivially) adding in direct sum an abelian algebra. By induction, since
Py = C, we get by the triviality of § on P, and Z (Pgy1) that 0 acts trivially on
Py 11, thus Q; = P; for all j and 6 follows properly outer by Proposition 1.5.

To prove 4°, we may assume 0 is a single automorphism, which is outer on
M<. We may also clearly assume o = 1. If for some k and 0 # a € M we
have 6(x)a = ax for all x € M, then taking the polar decomposition of a we may
assume a = v is a partial isometry with the right and left supports being minimal
projections in M’ N M. By the hypothesis, it follows that these supports are in the
same direct summand of M’ N Mj. This implies that the normalizer of Mp in pMjp
is non-trivial, where p is a minimal projection in that direct summand of M’ N Mj,.
But this implies that (sj) has an entry s = 1 for some k # %, a contradiction.

Part 5° has already been proved in the first part of the proof of (ii7) in Propo-
sition 1.4.

To prove 6°, let N C M be an inclusion of type II; factors such that M’ N N¥ #£
C1, i.e., N contains nontrivial central consequences of M. Note that by arguing
as in [McD], it follows that M’ N N“ has no atoms. Let § € Aut(M,N). Then
O(M' N N¥) = M’ N N¥. Since M’ N N“ has no atoms, if 6 is properly outer
on M’ N N* then by Connes’ local Rohlin lemma ([C2], see also [P2]), given any
e > 0 there exists a partition {p;} of 1 with projections in M’ N N“ such that
1Zpib(pi)ll2 < €. If O(x)a = ax for all z € Ny, for some k > 0 and a € M, then,
since [p;,a] = 0 and p; € Ny (because p; € N¥ and [p;,e;] = 0,7 > 0), we get
Zile(pi)pia = Yap; = a, while HXi]G(pi)piaHQ < ¢l|a||. Since € > 0 was arbitrary a = 0.
Thus 6 is properly outer on N C M.

Conversely, if we assume N C M is a strongly amenable inclusion and if 6 is

e_
properly outer on N C M then let M SN D Nyp D --- be a tunnel such that
N.NM /M and let p € P(M'NN¥),p# 0. Since p € N¥ and [p,ex] =0,k >
0,p C (;N,‘C" . Thus we may assume p is represented by a sequence p = (pn)n,

with p, € P(Ng), and k, — oo. Note that, since Nén NM /" M, any sequence
x = (z,) with z,, € N, is in M’ N N*“. Since 0 is properly outer on N C M, the
proof of the Rohlin lemma in [Po2] shows that given any ¢ > 0 and any n there
exists d = d(¢) (independent on n!) and g, = P(Nk,),¢n < Pn,7(qn) > 7(pn),
such that [|6(¢n)qnll2 < €llgn||2- But then ¢ = (g,,) is in M’ N N¥,0 # ¢ < p and
160(q)qll2 < €llq]]2. Thus 6 is properly outer on M’ N N¢. This proves the converse
implication in 6°. Q.E.D.

We mention that the finite depth case of part 6° in the above theorem was also
shown independently by Y. Kamahigashi ([Ka2]). Thus, all the examples in [EvKa]
of actions of finite groups on N C M that act trivially on M’ N N“ (i.e., which are
“centrally trivial”) are also examples of non-outer automorphisms of N C M.
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2. Classification of trace scaling actions on type II,, subfactors. We
will prove in this section that a trace-scaling action of Z™ on a strongly amenable
inclusion of type Il factors splits into the tensor product between its standard
part (as defined in 1.2) and a trace-scaling action on a common type Il factor.
More precisely we will prove:

2.1. THEOREM. Let N*° C M® be a strongly amenable inclusion of type
I factors. Let 6 be a properly outer action of Z"™ on N°° C M such that
modf(g) # 1, if g # e = (0,...,0). Assume there exists a partition of the unity
{eg}q € Z™ with finite projections in N°° such that O(h)eq = epg, h,g € Z"™. Then
there exists an isomorphism o from M onto M3 ® R, with a( N>®°) = NS*@R>,
such that afa~! = 65 @ o, where R™ is a copy of the hyperfinite type 1l factor
and o is an action of Z™ on R with modo(g) = modf(g), g € Z".

When applied to the case n = 1, i.e., for actions by one automorphism that scale
the trace, by using Connes’ theorem showing that all automorphisms acting on the
hyperfinite type Il factor and scaling the trace by the same number are conjugate,
we get:

2.2. COROLLARY . Let N°° C M® be a strongly amenable inclusion of type
Il factors and 6 a properly outer automorphism on N°° C M, scaling the trace
(i.e., IN>° = N>° modf # 1). Then there exists an isomorphism « of M> onto
Mt @ R, with a(N*®) = N5t @ R®, such that afa=! = 05 ® oq, where R
is a copy of the hyperfinite type Il factor and og is the model action on R™,
with modoy = modf. Moreover, if N C M 1is extremal then the proper outerness
condition 1s automatically satisfied.

2.3. COROLLARY . Let N' C M be an inclusion of hyperfinite 111y factors,
0 < XA < 1. Assume there exists a conditional expectation of finite index from M
onto N which has discrete decomposition, i.e., if N°° is the Il core of N and ¢
is a normal semifinite weight on N whose centralizer is N°°, then the centralizer
of ¢ o & is the Iy core of M, M. Let (NN C M) = (N*®° x0 C M>® x o) be
the associated discrete decomposition. Assume also that N C M has strongly
amenable graph. Then (N C M) ~ (N @ R*® x 0" ®0y C M @ R™ x 0% ®0y),
where 0%t is the action implemented by o on the model 11, inclusion Nt C M5t

associated with N°° C M and o is a A-scaling automorphism of the hyperfinite
I factor R*°.

We will prove 2.1 by building a tunnel for M> O N°° that is invariant to all 6(g),
g € Z™, and so that the algebra of higher relative commutants splits its commutant
in N°°, being a hyperfinite type 11, factor containing the “diagonal” {e;}g4ezn.

To do this we need a technical lemma, which uses the noncommutative local
Rohlin theorem ([Po1,2,7]) and some maximality arguments inspired from ([C3]).
We will consistently denote by multiplication the operation in a discrete group,
including Z".

2.4. LEMMA. Assume modf(g) > 1 if g # e = (0,...,0) and g has only
nonnegative entries. Let v;, 1 < 1 < n, be partial isometries in N such that
13



v = ee, vjv; < es,, 1 < i < mn, where 6; = (0,...,1,0,...,0), 1 appearing
only on the i’th entry. Let m > 0 and denote by K,, = {g € Z" | 0 < g; < m}.
Let ¢ > 0 and X C e.M™e. be a finite set. Then there exist unitary elements
wy € es, N®es,, and a partition of the unity {QS}QEKm with projections in e. N e,
of trace 1/ |k, such that

1o fJw) —esll1me < 3/my 1 <0 <
1

n.
2. Ad(v;w?)0(6:)(qg) = ¢2 () LS 1< n, g€ Ky, where s;(g) = 6ig, if the i’th

entry g Ofg is less than m and Sl(Q) = (gb s 7gi—1707.gi+17 s 7gn) ngz =m
3. Nlw =32, qgrqgl2 < e, x € X.

Proof. Let F be the set of all (n + |K,,|)-tuples ((w;)1<i<n, (¢9)gek,,) in which
(g9)geK,, are mutually orthogonal, mutually equivalent projections in e, N*°e. and
w; are unitary elements in es, N*°es, such that

(1) lwi —es, o < 3/mTr(0(6:)(X4 49)), 1 < i < .

(i) Ad(v;w;)0(0:)(qg) = Gs,(9), 1 <1<, g € Kppy.
(i) (@ — (1= 5, 40)a(1— 5, ) — 5, dg2d 3, < €TH(E, ), 7 € X.
We define on F a (strict) order < by letting ((w;):, (¢4)q) < (( Dis (dg)g) if

QQ S Q;7V9 6 Km7

> ag £ 4l
w; = w,0( qu

w0} — willme < 3/mTe(8(8:) (D (a5 — 45))), V1 < i < .
g

Then (F, <) is clearly inductively ordered. Let ((w)s, (¢5)y) be a maximal element
in F. Assume >_ ¢, # e. and let s = e, — Y qy. Note that Ad(v;wy)0(d;)(s) = s.
To prove the lemma we only need to show that the assumption s # 0 leads to a
contradiction.

For each g € Ky, let vy be a partial isometry in N°° with vyuy = s, vy
6(9)(s) < ey

Let ¢g > 0. Since sN*°s is hyperfinite, there exists a finite dimensional subfactor
By C sN*°s such that:

a) 0(g)~ 1(1} vy) 6 By, g € K,,

vy <

b) 0(6;9) 1(v5igviw?9(5i)(vg)) € By,g€ Ky, 1 <i<n.

Since Bj N sN>°s C B{, N sM™s is strongly amenable, given any ¢ > 0 there
exists a tunnel M>° D N° D Nf° D --- D Ng° such that s € Ny, By C sNys, and
such that one has the estimates

c) 0(g9) " H(vgwv}) Cor Bo V ((sNp°s) NsM™>s), g € K.

Next let €1 > 0. By the noncommutative local Rohlin theorem ([Po1,2,7]) from
the proper outerness condition 1.3 on @ it follows that there exists a partition of
the unity {r;}; with projections in Bj N sNg°s such that
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D Syrrerc, [T 0005005000600 |, < [5,m),
It follows by d) that the set J; of all the j’s for which

(1) > llvgb(g) (r))vivg 0(g") (r)vill3 m < €3l l5 1
979’

satisfies Tr(_;c 5, 75) > (1 — €7)Tr(s).
Moreover, for each g € K,,, by a) we have:

(2) Z Tr (v0g8(9) (rj)vg — ve0(g)(r;)vgve0(9)(r;)vg)

= Tr (6(g)(s)vgv,) Hze (r)v50g0(9) () 3,2

< Tr(vyvg) — 10(9)(Eynspes(0(9) ™ (v509)) 13 1

< Tr(s)=110(9)(0(9) " (vzve)) 12, 10(9) (0(9) ™ (vgvg) — Epyrspe=s (0(9) " (v5v9)) 2.1l

= 116(9)(0(9) ™ (vyvy) = Enyrsp=s(0(9) " (v509)) I3 1
< egmodf(g) Tr(3,r;).

This shows that if J, denotes the set of all j’s for which

(3) Z [vg8(g)(rj)vy — (Uge(g)(rj)U;)QHl,Tr < egTrr;

then ¥je s, Trry > (1 — €9, modf(g))Trs. Indeed, for if not then Xje s, Trr; >
(1 —e0 ), modf(g))Trs, so

Yigg, Trr; > EO(Z modf(g))Trs
9

which together with the inequality

Y llwgb(g)(rj)vy — (vg0(9) (r)vy)*llime > €0 Y Trr;

Jj¢J2 g J€J2

implies

Z Z [vg0(g)(rj)vg — (090(9)(Tj)vz)2
Jj€Jz g
> 0 g, Trry > 53(2 modé(g))Trs

g
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contradicting the inequality (2).
Also by first applying the Cauchy-Schwartz inequality and then a), we get:

Z|Tr vg0( vg) — Tr(r;)|

= ZlTr (0305 — Eog)(0) (v304))8(9) ()]
< 29 (V509 — Eo(g)(Bo) (V5v4))0(9) (15) || 1,1
= ”29 (0505 = Eog)(Bo) (v504))0(9) (r; HzTrHZG () |27

< llvgvg = Eo(g)(Bo) (vgg) ll2,12[|0(g) (5) [[2,1x < €omodb(g ZT””J

Thus, reasoning exactly as above, it follows that if J3 denotes the set of all j’s
for which

(4) Z ’Tr(vge(g)(rj) o) = Tr(rj)’ < 50/ Trr;

then >, ;. Trr; > (1 — 5 Z mod#(g))Trs.
Further, we have for all g e K for which d;9 € K,,:

Z | Ad(0:109)0(8:) (wg8(9) (r5)v5) — vaz«gewig)(rj)vag!!im =
_ZTr vwl0(5:) (vg)0(8:9) (r;)0(8:) (v ) w7 +ZTr vs,90(8:9) (75)v5,4)°)

- 2Tr(9(5¢9)(7“ ) (05,40iw}0(5; )(vg))9(5z'g)(Tj)(9(51)(09)100*”*”519))

= HEA’ 0(5;) (v w* v v;wd(5;) (v

2
g )HQ,Tr

| By (05,405,015 5y — 2 | By (05,40020(5) (0g)) |5 1,

where we denoted by Ay C 0(d;9)(BjNsNg°s) the algebra generated by the partition
{0(6;9)(rj)};. But then b) shows that this last term is majorized by:

1606:) (vg)wi™ v viw 0(6:) (vg) 12,

+[1v5, V5.9 113,10 — 21105, 405w 0(0:) (vg) 13,10 + 420(m0d(8;) Tr(s)
= [[vs,9v5,5 — viw; 0(0:) (vgvg )wy Vi |[3 1 + 40 (mod(;)

= ||s — s[5 1 + 4comodf(6;) Tr(s) = 4egmodb(d; ZTrrj.

Thus, if we denote by Jy the set of all the j’s for which

(4) D IAd(awd)0(8:) (v53(9)(r5)5) = vs,90(8:9) (1503, 4 I3 < 0" Trr,
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then >, Tr(r;) > (1 - 451/2m0d0((5 ))Trs.

Finally, ¢) shows that if ¢f, is sufficiently small then

Z Z v Vg — ZQ (rj)vizvgf(g)(rj)|3m < egTr (Z Tj).

zeX geK,

Thus, if we denote by J5 the set of all j’s for which

(5) > D lI(6(g)(s) = 8(9)(r)))v;048(9) (75) 13 e < £0Trr;

then T 1 —¢€p)Trs.
en 36557“] > (1 —¢gp)Trs

From all this, we see that if €y, are chosen sufficiently small then irlei # 0.
Let j € NJ; be fixed. Let ag = v,0(g)(rj)vy;, g € K. If @ = &1 + 25(1)/4 then by
(1) = (5) we get:

(1) llagag |2, < allaglle,re, Vg,9" € K, g # g'.

(2) llag — aglli, < allaglli e, Vg € K.

(3") |Tr(ay) — Tr(ae)| < aTrae, Vg € Ky, e = (0,...,0).

(4') [|Adv;wd0(5;)(ag) — as,gllzm < allagllam, 9 € K, 1 <i<n, §;g € Kpn.

(5") 324 llsws, aglllz < allagll2,r, Yo € X.

But then a standard perturbation argument shows that (1’) — (3') imply the
existence of mutually orthogonal projections {p,}4cx,, in sN*°s such that ||p, —
aglle, e < fo(a)|lpglle, e, Trpg = Trpe, g € Ky, where fo(o) — 0 as o — 0 (m is
fixed!). By (5') we will then have for any = € X the estimate:

’(sms—(s—2p9>x(s—2pg)) Zpgxpg Tr Hng

with fi(a) — 0 as o — 0.
By (4') it follows the existence of unitary elements w} in 6(5;)(s)N>°6(d;)(s) =
0(6;)(sN>°s) such that

Ad(v;w)w})0(6;)(pg) = ps,g » 9 € Kimwith 8;9 € Ky,

!~ 8(6(8) . < e <Z€ )

where fo(a) — 0 as a — 0.
Since the set {g € K, | d;9 ¢ K,,,} has cardinality |K,,|/,, it follows that there
exist unitary elements v; in sN*°s such that |[v] — s||1 v < 2/mTr(>_ py) and such

that Ad(vjv;w)w})0(8;)(pg) = Psi(g) (With s;(g) the bijection on K, defined in the

statement of the Lemma). But then, w;*w®* v v/v;wdw] can be completed to a

unitary w; in 0(6;)(sN>s), by defining it to be the identity on the complement of
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)1
6

its support. This unitary will still satisfy Hw 1; — 0(0;)(s

1o < 2/mTr(3opg) <
2/mTr (0(0:) Y- pg). If we thus define w; = wiw + (es, i)

(s )) then we have:
Adv;wiwib(5:)(pg) = Psi(g)s 9 € Km;

[|w;

< (fale) +2/m)Te(Y_ 6(6:) (py))

where the inequality follows from the estimate

lwiwi = es, [l me < [lwiwi’ — w

1!
= [Jw;

< (fal@) +2/)Tx(3 06

Thus, if « is sufficiently small then |jw; — es, [[1,1c < 3/mTr(3_, 0(5:)(pg))-

Define w; = wjw; and ¢, = q) +py, 1 <i <n, g € K. Then by the definitions
we have:

(i) Advyw;6(8;)(q5) = q.. (g),geKm, 1<i<n.

(if) fJws < fJwiw; — + [Jwi < 3/mTr(0(6:) (X q5))-
(iii) 12 ¢) = wj(1—s) —wo

(iv) lwi = w | me = [Jws < 3/mTr(0(6:) (35 a5 — - 4p))-

(v)

o (oo~ 34)) - e,
o (ee=3003)) = Y dge] ], +
+|(ss — (S—Zpg)x (8 Zpg)) > pgpg llype < Tr qu

But this shows that ((w;)i,(q,)g) is in F and majorizes ((w))s, (qg)y), thus
contradicting the maximality of the latter. Q.E.D.

We can now obtain the existence of equivariant tunnels for which the higher
relative commutant approximate well a given finite set of elements.

2.5. LEMMA. Let N*° C M® be a strongly amenable inclusion of type 11,
factors, 8 : Z™ — Aut(M>, N>°) an action scaling the trace and {eg4}gezn C N
a partition of the unity like in the hypothesis of 2.2. Let X C M = e, M*e. be a
finite set, Ag C eeNe. = N be a finite dimensional factor and w; € N°° be partial
isometries such that w,w; = e., wiw; < es,. Given any 6 > 0 there exist a choice

_g+

eO
of the tunnel M SN>--- D Ny_1 D Ny, up to some l, for M D N, and a finite
dimensional subfactor Bo C Ny containing Ay such that ife_; =3 0(g)(e e? ;) then
(i) x%BO\/(NéﬂM) , v e X.
(ii) w; % Ng© 1 <i<n, where N* ={ep,e_1,...,e_pt1} NN>.
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Proof. By Lemma 2.4, if ¢ > 0 then there exist m > 3¢7!, unitary elements
w; € e5;Nes,, 1 <1 <n, and a partition of the identity with mutually orthogonal,
mutually equivalent projections (gg)g4ek,, in e.N*°e. such that

(1) Ad(wiw;)0(:)(qg) = s;(g)» 9 € Km, 1 <1 <.
(2) [Jw; <g 1<i<n.

(3) [lz =22, qgxggll2, e < &, 2 € X or & = e;; € Ao, with {e;;} a fixed matrix
unit of A.

Note that (1) and the fact that {g,}, have equal traces implicitly means that
10(6:)(gqq), wiwfwiw;] = 0 and Tr(0(6;)(qe)w;wiww;) = Tr(gy) = Tr(ge), for all
ge K,,, 1 <i<n.

For each g € Ky, let wy, € N> with wyw; = g4, wywy, < 0(g)(ge) and w, = e.
Like in the proof of the previous lemma, glven any g9 > 0 there exists a finite
dimensional subfactor B C ¢.N“°q. such that:

(a) 0(9) " (wywy) Cey B, g € K.
(b) 9(52-9)—1(w§i9w2-w2-9(52-)(wg)) €B,g€ K,Né 'Ky,
€0
By a small perturbation depending only on ¢q it follows that there are partial
isometries w in N*° such that:

(a") wg'wy € 0(g)(B), wywy" < g, [Jwy, < fo(€0), g € K.

Moreover, by enlarging if necessary B, We will also have:
(a") qqeijqq p (E : Adwy0(g)(B), g € K, eij € Ag.

ol€o
It then follows that there are partial isometries w; ; € gs,4IN°°gs,4 such that:

(b’) bi g = w;jgwg’gwiw,ﬁ(éi)(w;) is a partial isometry in 6(d;9)(B) and we have
the estimates

W) w* < Ad(ww;)0(8;) (whw.*), omegal

/ " %
i.g%ig gWyg < Ws,gWs, g

i,g%i g
||W§,g — s,gll2me < fo(e0) s g € KN 5i_1Km

where f'(e¢), f"(e0) — 0 as gg — 0.

Now, since N¢ = B’ N quooqe C B'n quooqe = M¢, and more generally

(wy0(g )(B)w;*) N (wyw *Noowgwg) C (wy0(g9)(B)w, =0 (w w *Moow w,") are

strongly amenable and also since

(wyB(g)(B)wy) N (whw, N ww,") = Adwj0(g)(N°),
(w)0(9)(B)w,") N (whw, M>¥w/w*) = Adw!,0(g)(M®)
it follows that given any £; > 0 there exists a choice of the tunnel up to some ¢,
e S Ne S NE 5 T NE L S NE, for M S N, so that to have:
(¢') whwy Xwlw* C Adw0(g)(B) v Adw!0(g)(Ng N Me).

Put pe = e — 3, w’gwlg* and let {€’ ,}o<j<¢ be a set of Jones projections in
peM®>p,, with e, projecting on the scalar [M> : N*°]~!p, when expected onto
peNpe and with €},...,€)_; € peNp,.
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def e def
Then define ¢? ; = > gek,, Adwgb(g)(e;) + e and e; = > n 0(g)(e”;),
N2 € e, emg1} NN, Since Y Adw!(g)(B) C ecNi%e. it follows
that given any €2 > 0 there exists a finite dimensional subfactor By C e.N; e, such
that {qy}¢ek,, C Bo, B C geBoge, Adw,0(g)(B) C Bo, Vg € K.
€2
Since by (a’) we have |lec — 3, whwy||l2me < [Km|f'(20), with K| f/(€0) — 0
as g9 — 0, and since by (3) we have X C > g4Xgqq, it follows by (¢’) and by the
g

definition of By that if we let ¢, ¢, €1, €2 sufficiently small then condition (i) of
the statement is satisfied.
To show that (ii) is also satisfied note that if we let

def /
qd = g wiw," € eeN>e,
1
gEK NS, " K,

1 def P s %
9 = 2 : Wi,gWi,g = § :wfsigbi’gbi,gw&g’
9EK NS " Koy,

I /
wi= )L wig

9EK NS ' Koy,

then [¢',e_;] =0, [¢",e—;] = 0. By (b’) we then have:

Ad(wiwiw)0(S:)(d'e—) = > Ad(wjwiwd(5;)(w)))0(8:g) (e )
gEK NS Koy,

= Z Ad(ws, ,bi g)0(dig) (e ;)

gEK NS Ky,

= > Adw,(0(8i9)(e° )b gbl )
9EK NS ' Koy,

:6_3'(],/.
Thus, since 0(d;)(e—;) = e_;, it follows that
(¢"wiwiwi0(0:)(q"))e—; = e (¢"wjwiwif(8:) ("))

Since ¢ is close to e, 0(d;)(¢’) is close to es,, w! close to e, and w; close to es,,
it follows that there exist w}(= ¢"wiw;w;0(5;)(¢')) in N°° that is arbitrarily close
to w;, say ||w; —w;|2, < J, so that [w},e_;] =0,0 < j </, ie., so that w, € N;*.
This shows that for appropriately small €, €¢, €1, €2 condition (ii) of the statement
will also be satisfied.

Still, the condition Ay C By is not yet achieved. But by the way By was defined,
condition (a”) shows that Ay C By with « as small as we please. Since both Ay,

By C e.N*e, it follows by [Ch] that there exists a unitary element ug € e, N*e,

close to e, so that Adug(Bg) D Ap. But then, if we conjugate spatially all the

previous choices, {e_;}to<j<e—1, {N;°hi<j<e, by Adu, where u = 3" 7. 0(g)(uo),

then for a small enough the estimates (i), (ii) will still hold true. Q.E.D.
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Proof of Theorem 2.1. By changing if necessary the positive cone of Z" we may
assume Trf(g) > Tr for all the g having only nonnegative coordinates.

Let {x,}, be a sequence of elements in e, M*e,, dense in the strong operator
topology in e, M*>e.. We construct recursively an increasing sequence of integers,

e e_1 €—i
i1 < i < ...., continuations of the tunnel M > S N® S N D - > N{ZO .
and an finite dimensional factors By, € N° = {eg,e_1,...,e_;, }' N N, such that:

(i) z; €, BV ee(Ne N M*®)e,, 1 < j < k.

(ii) [Jwl —wi | [lome < 278, wiwt* = e, wirwi <es,, 1 <i < n.

Assume we made this construction up to some k.

By [C3] there exists ¢" > 0 such that if P> C N * is a subfactor containing
the projections {e;}4ezn and if b; € P are so that ||b;|| < 1, b; = ecbses,, |w), —
bil2 7+ < 0, then there exists partial isometries w; € P such that wgw;* = e,

Also, there exist a finite subset X C e.N7° je. and a 0" > 0 such that if

wirw} < es,, |wh — whllam < 2751

€_i, +1
N<_y 5 Npe D -+ D Ni° | is a continuation of the tunnel up/to some %x41
such that By C Ni°, |, {eghgezr C N2, and if X j Bip1 Vee(NZ NN e,

for some finite dimensional subfactor By, C eeNz':OH@e with Bxy+1 DO By, then
r; € ) By V’ee(ﬁJoo

s o N M*>)e., 1 < j < k+ 1. Indeed if one takes {m,;};
g

to be an orthonormal basis of e.N;, _je. over eeNZ-‘fee then one may construct
an orthonormal basis {mF}; of e.M>e, over ecNi e, as words in the m;’s and
in eg,e_1,...,e_;+1 (see [PiPol,2]). Writing z1,..., 2,11 in the basis {mF}; of
eeM>e. over e N °e. we obtain a finite set X C ee N e, which for suitably small
0" will yield the above estimates.

If we now take § = min{d’,6”} and apply Lemma 2.5 for N° C N{° ; (as
N C M*), By C ecNi e, (as Ap), the restriction of § to N;° ; and the above X
and § then we get the iry1 the f-equivariant continuation of the tunnel up to ixi1,
the algebra By and the partial isometry w1 satisfying (i), (ii) for k& + 1.

Now, since all N2 contain the projections {e,}4ezn, we have {ey}, C FJ?N]C-X’. By

condition (ii) we have {w? }; is Cauchy in the norm || |21y and if w; = lim w¥ then

w; are also contained in ON;?O. Moreover L]_cJBk - rjeeNfoe6 and if P = LI%JBk then
J J

by (i) we have e,M®e, = PV e.(N° N M>)e,. Thus ee(NN$°)e. = P so that
j
ec(NN)e. and all 0(g)(e. N Niee) = eg(NNF°)ey are type II; factors. But then
j

the fact that the w; (and thus all (g)(w;)) are in NIN° shows that the projections

{eg}gezn C rij;O are comparable (in the Murray-von Neumann sense) in erN 2.

Thus NN is a type Il factor.
j

It follows that if we denote by R>® = NN, M®* = U(N*' NM), N* =
j j

U(N. J‘?O/ N N°°) then all the conditions in the theorem are satisfied. Q.E.D.
j

3. Classification of actions on type II; subfactors. In this section we will
use ([Po7]) and noncommutative ergodic theory techniques to prove that a properly
outer cocycle action 6 of a discrete amenable group G on a strongly amenable
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inclusion of type II; factors N C M is (cocycle) conjugate to the tensor product
of the canonical action %! on N% C M*! and a commonly splitted properly outer
model cocycle action o of G on a single hyperfinite type 1I; factor Ry. When applied
to the case N C M = Mas,5(C), for which the standard part of any action is trivial,
this shows that any properly outer cocycle action of G on a hyperfinite I1; factor
Ry is cocycle conjugate to a cocycle action of the form id ® o. Altogether, this
gives:

3.1. THEOREM. Let N C M be a strongly amenable inclusion of type Il
factors and G a countable discrete amenable group. Let 0 : G — Aut(M, N)

be such that 0(g) is properly outer on N C M for each g # e and such that
0(g)0(h) = Ad(u(g, h))0(gh), for g, h € G, where u(g, h) € U(N) satisfy

ulg, hyu(gh, 1) =6(g)(u(h, h'))u(g, hh')
u(e, g) =u(g, e) = 1.

If Ry 1s a copy of the hyperfinite type 11, factor and oy is a properly outer action
of G on Ry, then (N C M, 0) is cocycle conjugate to (NS*®@Ry C M3*®Ry, 05*®0y),
i.e., there exists an isomorphism o : M — M>*® Ry such that «( N*®@ Ry) = N and
such that Adv(g)0(g) = a1 (65 (g9) ® 00(g))av, for all g € G and for some unitaries
v(g) € U(N).

The rest of this section is devoted to the proof of this theorem. The idea is to

construct a tunnel of subfactors M S N 5’ Ny D -+ with unitaries vg(g) € U(Ng)
such that |Jvk(g) — 1|2 < 27%, for g € Fx C G, with F}, finite sets satisfying F}, C
Fy_1, UF, = G, and Ad(vk(g)...v0(9))0(g)(e—k) = ey, for all g € G, and such that
S =U(N/,NN), ng(NéﬂM) = Rsplits N C M,i.e, S NN =RNN =R NM and

(NCM)=(SV(RRNM)C RV(R'NM)). Then v(g) = lil?wk(g) ~-up(g), (N5t C

M?') ~ (S C R), 0°*(g) = Adv(g)0(g)|R, Ro = R'N M, o(g) = Adv(g)6(9)|r,
will be of the form 65" ® o¢ on (N*' C M*') ® Ry, with o¢ an action of G on Ry.
Moreover, we will construct this split off of § so that Advfg, is a prescribed model
properly outer cocycle action of G on the hyperfinite II; factor Rj.

3.2. Some model cocycle actions. To construct the above perturbations vg(g)
and prove the Theorem, we first need to introduce some notations. We will then
construct a “model” for properly outer cocycle actions of amenable groups on the
hyperfinite II; factor.

Notations.

(1) Let G be a countable discrete amenable group. For each finite subset F' C G
and € > 0 we choose a finite (Folner) set K C G, K = K(F,¢), with the
property that |[FKAK| < ¢|K|. Moreover, for each h € G we choose once
for all a permutation sk (h) of the set K, such that for ¢ € K with hg € K
we have sk (h)(g) = hg.

(2) Let {F),}n>1 be an increasing sequence of finite dimensional subsets of G
with G = UF,, and K,, = K(F,,27"). Denote by w,(h) the unitary ele-
ment on ¢?(K,) defined on the orthonormal basis {d,},cx, of (*(K,) by
wn(h)ég = 58Kn(h)(g)7 heG,geK,.
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(3) Let R = ®@,>1B(¢*(K,),T,) be the hyperfinite type II; factor realized as
an infinite tensor product with respect to the unique normalized traces 7,
of the finite dimensional factors B(¢?(K,)). For each k > 1 and h € G
let 0x(h) € AutR be defined as the product type automorphism 0y (h) =
Adl1®- - ®1Qwk(h) ®wgs1(h) ®@--- where wi(h) appears exactly at the
k’th position.

LEMMA. For each k > 1 and h,g € G, the element

def — _
up(h,9) = 1@ ® 1@ wi(g)wi(h)wy(gh) ™" @ wis1(9) w1 (M) wir1(gh) ™ @ -+
s a unitary in R and 0,: G — AutR is a properly outer cocycle action of G with
2-cocycle uy.

Proof. Due to the condition |[¢K,\K,| < 27"|K,|, |hK,\K,| < 27"|K,| for
h, g € F,, it follows by the definition of sk, (g), sk, (h), sk, (gh) that sk, (gh) co-
incides with sg, (9)sk, (h) on “most” of K,,, more precisely ||wy(g)wy(h)wy(gh) 1 —
1||3 < 27™*2. This shows that ux(g, h) are all unitaries, k > 1, g, h € G, and that
Jim [lur(g, h) =12 =0, g, h e G.

Clearly we have Adug(g, h) = 0x(9)0k(h)0k(gh)~! and uk(g, €) = ux(e, g) =1
and the identity:

ur(g, h)uk(gh, h')
=1® - @ 1@ wy(g)wi(h)wy(gh) ™ wi(gh)wy (A )wy (ghh') ™!
=1®- @ 1@ w(g)wi(h)wy(h )wy(ghh') ' ©1® -
= @ 1@ wy(g)(wr(h)wy (b )wy (Rh") ™ ) wi(9) ™" (wr(9)wk (R Ywi (ghh') ) @ - - ]

shows that ug (g, h)ux(gh, h') = 0r(g)(ux(h, h'))ur(g, hh'), and thus ug(g, h) is a
2-cocycle for 6. Q.E.D.

COROLLARY. Let 6: G — R be a cocycle action of the discrete amenable group
G on the hyperfinite type 11y factor R. Given anye >0, z1,...,2, € R, F C G a
finite subset and By C R a finite dimensional factor, there exist a finite dimensional
subfactor B C R containing By and unitary elements v(h) € R, h € F, such that

(1) ||EB(«I@) — x7/||2 <eg,1<1<n.

(2) ||lv(h) —1||2<e, heF.

(3) Adv(h)0(h)(B) =B, h € F.

Proof. By the previous Lemma and [Oc|, there are unitary elements vy(h) € R,
h € G, such that Adwvg(h)6(h) is identical to the cocycle model action 6 (h), h € G,
for some splitting of R in an infinite tensor product, as in (3) above. But then
there exists m large enough so that if B = B({*(K1)) ® --- @ B({*(K,,)), then
|Eg(x;) — il < 0, 1 < i <mn, ||[Eg(vo(h)) —vo(h)|2 < 6, h € F, with ¢ to be
chosen later. Since 01(h)B = B, from the last set of inequalities it follows that for
T € B, [|z|| > 1, we have:

|E(8(h)(x)) — 0(h)(z)|l2 = || Es(vo(h)*81(h)(x)vo(R))
23— vo(h)*01(h)(z)vo(h)|2 < 36.



By [Ch] it follows that if § is small enough then there exist unitary elements v(h) €
R such that Adv(h)8(h)B = B and |[v(h) — 1||2 <&, h € F. Q.E.D.

3.3. Construction of Rohlin towers. We will first construct partitions of the
unity in /N on which small perturbations of a given finite set of automorphisms 6,
act by permutations, as in the model action 3.2, i.e., like on a Rohlin tower.

LEMMA. Under the hypothesis of 3.1 and with the notations in 3.2, let € >
0, X = X* C M, F C G be finite sets and K = K(F,c/2). Then, there ezist
projections {eJ}gex C N, with Xe) = 1, and unitary elements {vo(h)}her C N
such that

|l — Zegmegﬂg <e, z€eX
geK
|lvo(h) —1]1 <e, heF

Advo(h)eh(e(;) = egk(h)(g), h e F, g e K

Proof. Let F be the set of all |F| + |K| tuples ((v(h))ner, (eg)ger) in which
(eg)gek are mutually orthogonal projections in N and (v(h))rer are unitary ele-
ments in N such that

@ = (1= eg)a(l = egn)) = > eqmeglls < %D eyll3
K

K K K
lo(h) = 1]1 < &> 7(eq)
Adv(h)eh(eg) = €s,(h)(g)>» 9 c K, h e F.

We define on F the (strict) order < given by

(v(h))ner: (eg)ger) < ((V'(W)ner (eg)gex)
if eg <), g€ K,Ye, # Xe,, v(h) = v’(h)ggKeg and [[v'(h) —v(h)[|, < eT(Zej, —

Yey). Then (F,<) is clearly inductively ordered. Let ((vo(h))ner, (€))gex) be
a maximal element in F. Assume ey # 1 and let s = 1 — ¥ ). Note that

geK
Advg(h)0(s) = s.

Now denote sNs = @, sMs = P and 0 : G — Aut(P, @) the cocycle action
defined by oy = Advg(g)f,p for each g € G and note that 0,0, = Adw(h, g)op, for
some unitary elements w(h, g) € @, g, h € G. By 1.3 ¢ is properly outer on Q C P.
Let Y = {0, (sws) |z € X, g€ K}U{o_ ' (w(h, g))*' |h € F, g, ¢ € K} and let
09 > 0. Since Q C P has the generating property, there exists a choice of the tunnel
up tosomed, P> Q D Q1D Q2D - D Q;suchthat [[Egnp(y)—yll2 < do, y €Y.

By 1.2 there are unitary elements w’(g) € @ such that Adw’(g)og4(Q;) = Qj, j <
1. It follows by the proper outerness of o that if we denote by L the crossed product
algebra P x, G and by u, € L the unitary elements implementing the action o, on
P, then EQ;mL(ug_lug/) = O, g 7& gl.

Given any § > 0 there exists by (A.1.4 in [Po7]) a projection ¢ € @; such that

lgy = Eqnp(y)allz < do/2lgll2, y €Y

lgug tugrallz < dllallz, 9. 9’ €K, g#g'".
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Since Y = Y™ the first relation implies

Ilg, vlll2 < dollgllz, yeY

so that one has:
(1) [llog(q)s z]ll2 < dollglle, € X U{w(h, g)|hEF, g€ K},g€ K.

The second relation implies 0(g)(q), g € K, are J-mutually orthogonal projec-
tions.

(2) llog(@)og()llz < dllgll2, 9, 9" € K, g # 9"
When applied to z = w(h, g), (1) implies that

(3) lonog(q) = ong(@)ll2 < dollgll2, h € F, g€ KNAT'K.

Since |[K\FK| < ¢/2|K| and since §, Jp are arbitrarily small, it follows that
there exist mutually orthogonal projections e, € @), g € K, such that

(4) llleg 2lll2 < f1(%)llegll2, 7(eg) = 7(a), g € K;
(5) lleg = ag(@)ll2 < f2(0)llegll2; 9 € K
(6) llon(eq) — engllz < f3(0)llegll2, h € F, g€ KNhIK;

where f;(¢) = 0ase —0,i=1,2,3.

Thus, if w(h) = Dy th
us, if w(h) geKmh—lKehgah(eg)’ en

lw(h) = > el <021 D el

gEKNh—1K gEKNh—1K

Since gefgl\hKT(eg) < €/2g§KT(69), it follows by letting 4, Jdp very small and

by taking the polar decomposition of w(h) and suitably extending it to a partial
isometry wi(h) from EKah(eg) to EKeg carrying oy (ey) onto ep, when g € K N
ge ge

h~'K and more generally oy, (e,y) onto es(n)(g), that we have wy(h) € Q = sNs,h €

F and
lwi(h) =D eglly < (/24 £(S0, ) DY egll-

geEK gEK

But then, by ([C3]), there exists a suitable extension of wq(h) to a unitary wg(h)
in Q which will satisfy

lwo(h) = lls < el Y eglhn.

geK

Thus, if we take now the |F| + |K| tuple ((vi(h))ner, (ef)ger), with vi(h) =
((1 = s) +wo(h))vo(h) and e, = € + ¢4, then it is easy to see that it satisfies the
necessary conditions to be contained in F. But ((v1())n, (e5)g) > ((vo(R))n, (€)q),
which contradicts the maximality of ((vo(h))ner, (€))gex)-

This shows that EKeg = 1 and that vo(h), h € F, are unitary elements satisfying
g€
the requirements. Q.E.D.

3.4. FEuxistence of equivariant Jones projections. We now prove that given any
finitely many automorphisms of a cocycle action of an amenable group, there exist
Jones projections that are almost invariant to all of them.
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LEMMA. Assume the conditions in the hypothesis of 3.1 are satisfied. Let X C
M, F C G be finite sets and € > 0. Denote K = K(F,e|F|~1/4). There exist a

choice of the tunnel up to some 1, M SN 651 Ny D --- D N;, a partition of the
unity {€)}gex n N; and unitary elements {v(h)}ner in N such that

(1) flv(h) = 1la <eheF
(2) Adv(h)f(h)(e]) = SK(h)(g),h cFgeK
(3) Adv(h)0(h)(e—;) =e_;,0<j<i—1,heCG

(4) |’ENiv(N;mM)(37) —zl2 < e,z € X.

Proof: By Lemma 3.3, there exist some unitary elements {vg(h)}her C N and
a partition of the unity by projections {e)}sex C N such that

lvo(h) — 12 <e/2, heF

Adwg(h)0(h)(e) = €2, (1)) hEF,9€K

||z — Zegaz'egHz <e/2, xzeX.

Let {wg}gex be partial isometries such that wy6(g)(ed)w) = €, g € K. For any

5o > 0, there exists a finite dimensional factor By C e Ne? such that if h € F, g €
K, and hg € K then |(Adwpy0(hg)) tAdvg(h)0(h)Adw,0(g)(x) — z||2 < do/2 for
all z € B)Ne?Nel, ||z|]| < 1. This is possible because 6 is a 2-cocycle action, so
that any product 6(h)f(g) differs from 6(hg) by an inner automorphism and also
because N (and thus e2Ne?) can be approximated by finite dimensional subfactors.
Let Y = {(Adwy0(g))~'(eJze))|z € X,g € K} C elMe?. Since the inclusion
BiNelNel ¢ By NelMel has the generating property, it follows that there exist

some ¢ and some choice of the tunnel up to ¢ for this inclusion, coming from some
0

0
e e_
tunnel M 5 N 5 N? 5 ... 5 NP with 0 € N° By C /N, such that

7 67

S EByveon eoneonreoy (y) — yll3 < 3e%/4, the sum being taken over all y in Y.

Flnally, lete_; et dogeK wef(g)(e? jed)ws, 0 < j <i—1. If B L'y JAdwy0(g )(BO)I
then eg € N;, B C N; and for each x € X we have

||ENiv(N{ﬂM)($) - 95||§ < ||Engeng;mM($) - m”%

= 2 1 Beguivinmneg (egueg) — eqregls + o = 3 egueflls
7 g

<Y sy vonane (Adw,8(g)) ™ (ehzed))
— (Adw,f(g)) " (Saed)|[3 + (c/2)* < & 1

This proves that the tunnel M > N°-t D N; D --- Y N;_1 D N; satisfies (4).
Next, due to the choice of By, we have that Advg(h)0(h)Adwyb(g)|eoB;nnreo
differs from Adwpy0(hg)|ecop;nne0 by an inner automorphism Aduj, , with up,. g €
e Adwngf(hg)(By N N)ey , [|uj, , — 1ll2 < f(do) and f(do) — 0 as dg — 0.
We now let uj, = Xguy, With the sum taken over g € K’ = Npeph 'K and
define up, = uj, + uj, Where uy Eu’}: the sum being taken over all g € K \ K’,
with uj, , satisfying Adwhge(hg)( V(e )26 Aduy ,Adwy6(g)(e? ;e). Then v(h) =



upvo(h) is a unitary element in N that satisfies (1) and (3). Since uy lies in
{e9}, e NN, condition (2) will still be satisfied, since vg(h) satisfies it. ~ Q.E.D.

3.5. Proof of Theorem 3.1. Let {x,}, be a dense sequence (in the norm || ||2) in
M. Let F,, be an increasing sequence of finite subsets of G such that UF,, = G.

We construct recursively an increasing sequence of integers 0 = igp < i1 < 13 <
€—i €—ip+1

<o+ <1 < ---, for each k a choice of the tunnel Dk_l Niy , D+ DO N;jy_1D
N, , finite dimensional subfactors { By }r>0, with By C N;N;, [Bg, Br] =0,k # K/,
and unitary elements {vg(h)}x>0, h € G, with vg(h) € (ByV---V Bk_1)'NN;,, and
satisfying:

k)

(1) ”37; - EBO\/31V~~~kav(N;kmM)(fﬂj)H2 < 2_k7j < k.

(2) Ad(vg(h)...vo(h))0(h)(e—;) =e—_;,0 <ig, h € G.

(3) Ad(vk(h)...vo(h))0(h)(By) = Bg, h € G with By, ~ B({?(K},))®@M,, xn, (C) i
where Kj, = K(Fy,27%72|F;|7') and Ad(vg(R) ... vo(h))0(h)el = 6I;Kk(h)(g)’
for h € Fy,{el}sek, being the diagonal of B(¢*(Ky)).

(4) ||ve(h) —1|l2 < 27%, h € Fy.

Assume we made this construction up to some k£ > 0. We claim that there exist

e_;

e > 0 and a finite subset X C (By V ---V Bg)' N N;,_1 such that if N;, _4 o
€—m

Ni, D -+ DH Np—1 D N, is a continuation of the tunnel satisfying B =

ByVv---VB, C N,,, and X C N{nﬂNik_l,then Z; % ) Nm\/<N;nﬂM),VJ < k+1.
€ 9—k—

To see this, we argue exactly as in the proof of Theorem 2.1. Thus, we take
{m;}; to be an orthonormal basis of N; _; over INV;,_; and note that one can
construct an orthonormal basis {mF}; of M over N;, as words in the m;’s and in
€0,€_1,---,6_i,+1 (see [PiPol,2]). Writing x1,... , 7541 in the basis {mF}; of M
over N;, we obtain a finite set X C N;, which for suitably small e will yield the
estimates.

We can thus apply Lemma 3.4 to the inclusion B'NN;, C B'NN;, —1, to the above
e >0and X C B'NN;, —1, to the automorphisms {Ad(vi(h) ...vo(h))0(h)

and to the finite set Fi41 C G, to get a continuation of the tunnel up to some

: eik Coikgrtl : :
Chtly - - ~Nik—1 D N’Lk DR D) Nik+1—1 D) Nik+17 with B C Nik+17 unitary
elements v) ,; (h) € B'NN;, and a partition of the unity {e¥*!} cx, . in B'NN;

indexed by the Folner set Kj1 = K(Fpy1, |Fri1]7127%72), such that

|B’ﬁNik_1}

k+1

(1) ”E((BOV...\/B,C)’QN%+1V(N{lﬁ_lmekil)(ZIZ') —zlls <e,z € X.

(2") Advp,(h)vk(h) ... vo(h)0(h)(e—;) = e_j,ix < j < irp1,h €G.

(3") Advp,(h)vr(h)...vo(h)0(h) (k) = €siepyy (W)(9)r 10 € Frt1, 9 € Kpqr.

(4) sy (B) = 1lls < 272751 B € Py

Indeed, in order to be able to apply Lemma 3.4 we only need to show that
Ad(vg(h)...ve(h))
6(h),h ¢ e, are all properly outer when restricted to both N; _; and N;, . To
see this we only need to show that if o € Aut(M, N),o, 0|y are properly outer,
M3N> N; is a downward basic construction and v € N is a unitary such that
Advo(eg) = eg, Adva(N7) = Ny, then Advo|y, is also properly outer. But Adveo
properly outer on M and Advo(eg) = ey implies Advo|e,nre, properly outer and

since egMey = Nyeg ~ Ny, it follows that Advo|y, is also properly outer.
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Now, since Nj, ., is hyperfinite, there exists a finite dimensional factor By 11 C
(BoV ...V Br) NN;

(1) [ B

k41

w1 containing the projections {ef*} ck, | such that

V(NékﬂﬁNik_l)(x) — 1zl <e,x€X.

But then, by Corollary 3.2, there exist a finite dimensional subfactor By, C
B'NN;,,, containing By, and unitary elements v ,(h) € B'NN;, ., h € G, such
that

(3") Adv, (W)l (WO(R)(Brir) = Biy, h € G.
(4) Jlod 1 () = 1l < 27572 h € Fipn.

Thus, if we define vg41(h) = vi,(h)vjy,,(h) then, by the above properties of
X, e, it follows that all the conditions (1) — (4) are satisfied at step k + 1.

We now let R = Up(N, N M), S = Up(N,NN), Ry = BoVB1V...,vh)=
limg (vi(h) ... vo(h)), oo(h) = 0(h)|Rr,, h € G.

Condition (1) implies that M = RV Ry ~ R® Ry. Condition (4) shows that v(h)
are all unitary elements in N. Then (2) shows that Adv(h)0(h) restricted to S C R
(which is isomorphic to N5t C M*?) is nothing but 65*(h). Finally, by (3), we have
that Adv(h)0(h)(Ro) = Ry and also that Adwv(h)@(h) is of the form 6y ®#6;, for some
splitting Ry = R ® Ry, with 6y a model properly outer cocycle action of G on the
hyperfinite II; factor R, as in Section 3.2. Thus, Adv(h)0(h)r,,h € G, is a cocycle
action of G on Ry. But then by Ocneanu’s theorem in [Oc|, Adv(h)0(h)|g, is the
same as the chosen action o¢ on Ry, after perturbing if necessary with unitaries in
Ry. Q.E.D.

k41 k+1)
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