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Abstract. We prove a classification result for properly outer actions σ of discrete

amenable groups G on strongly amenable subfactors of type II, N ⊂ M , a class of
subfactors that were shown to be completely classified by their standard invariant

GN,M , in ([Po7]). The result shows that the action σ is completely classified in

terms of the action it induces on GN,M . As a an application of this, we obtain that
inclusions of type IIIλ factors, 0 < λ < 1, having discrete decomposition and strongly

amenable graph, are completely classified by their standard invariant.

0. Introduction. In ([C1]) A.Connes classified the amenable semifinite factors
showing that, up to isomorphism, there is only one of type II1, the unique approx-
imately finite dimensional II1 factor R of Murray and von Neumann, also called
the hyperfinite factor, and one of type II∞ ( R ⊗ B(H) ). Then, motivated by
the problem of classifying infinite amenable factors of type III, automorphisms of
amenable factors of type II were classified in ([C2,5]). Further classification results
were proved for actions of finite and general amenable groups on R and R ⊗ B(H)
in ([J1]) and respectively ([Oc]).

For inclusions of factors N ⊂ M of finite Jones index [M : N ] < ∞, the suitable
notion of amenability was introduced in ([Po7]). Also, it was proved in ([Po7]) that
the amenable subfactors coincide with the subfactors that can be approximated
by the finite dimensional subalgebras of their higher relative commutants. In the
case of a trivial inclusion N = M ⊂ M this corresponds to the uniqueness of the
amenable type II1 factor. In general, this shows that amenable inclusions are com-
pletely classified by their standard invariant GN,M , the graph type combinatorial
object that encodes the lattice of higher relative commutants in the Jones tower
([Po7]). GN,M consists of a pair of weighted, pointed, bipartite graphs (ΓN,M , ~s),

(Γ′
N,M , ~s′) called the standard (or the principal) graphs of N ⊂ M ([J2]), with some

additional structure. The invariant gives rise to a canonical model Nst ⊂ M st and
in fact the theorem in ([Po7]) states that N ⊂ M is strongly amenable, i.e., it is
amenable and its standard graph is ergodic, if and only if N ⊂ M is isomorphic to
its canonical model.

We will prove in this paper a classification result for properly outer actions of
amenable groups on strongly amenable inclusions of type II1 and II∞ factors. The
result can be regarded as an equivariant version of ([Po7]). The main motivation
for studying this problem is, as in the single von Neumann algebra case, the classifi-
cation of inclusions of type IIIλ factors, 0 < λ < 1, for which a similar Connes type
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discrete decomposition holds as shown in ([Lo1]). Thus, by our results it follows
that the classification of type IIIλ inclusions, 0 < λ < 1, reduces to the classification
of trace scaling actions of Z on inclusions of type II∞ factors.

More precisely, our first result (see Theorem 2.1) shows that if an inclusion
N∞ ⊂ M∞ of hyperfinite II∞ factors is extremal and strongly amenable, then
a trace scaling automorphism σ on it splits into the tensor product between the
action σst, implemented by σ on the model inclusion of II1 factors Nst ⊂ M st, and
a model action σ0 on a commonly splitted II∞ factor. Thus, (N∞ ⊂ M∞, σ) =
((Nst ⊂ M st) ⊗ R∞, σst ⊗ σ0). More generally, we prove that for a trace scaling
action of Zn on N∞ ⊂ M∞ which is diagonalizable (in the obvious sense) a similar
splitting result holds true.

An important application of the above result is the classification of inclusions
of hyperfinite type IIIλ factors with discrete decomposition and strongly amenable
graph, i.e. of the form (N ⊂ M) = (N∞ ⋊ σ ⊂ M∞ ⋊ σ), with N∞ ⊂ M∞ a
strongly amenable inclusion of type II∞ factors and σ a λ-scaling automorphism
of M∞ leaving N∞ globally invariant. Thus, our theorem implies that N ⊂ M
is isomorphic to the inclusion (Nst ⊗ R∞ ⋊ σst ⊗ σ0 ⊂ M st ⊗ R∞ ⋊ σst ⊗ σ0),
where Nst ⊂ M st is the canonical model associated with N∞ ⊂ M∞, σst is the
action implemented on it by σ, and σ0 is a model λ-scaling automorphism on the
hyperfinite II∞ factor R∞.

Although it is not needed for the classification of type IIIλ inclusions, we also
prove a classification result for properly outer actions θ of arbitrary discrete amena-
ble groups G on strongly amenable inclusions of type II1 factors N ⊂ M as well
(see Theorem 3.1). It shows that θ is cocycle conjugate to an action of the form
θst ⊗ σ0 on (N st ⊂ M st)⊗R, with θst the “standard” part of θ and σ0 a properly
outer action of G on the hyperfinite II1 factor R.

Thus, in all these cases the actions are completely classified (up to outer con-
jugacy) by the actions they implement on the standard invariant GN,M . Due to
its rigid combinatorial structure GN,M generally admits only a few (finitely many)
actions, oftenly just the trivial action. In the case of the index ≤ 4 all such actions
were listed ([Lo1,2]).

The proofs of both theorems rely on non-commutative ergodic theory techniques,
much in the spirit of ([Po1,2,4,7]). The idea we use is to build “local Rohlin towers”
for larger and larger finite parts of the acting group Zn, G, indexed by corresponding
Følner sets. We then “glue them together” by using maximality arguments, very
much the same way we did in [P07], inspired by similar arguments in [C3]. As a
result of this argument, we obtain that σ splits into a tensor product of σst and a
trace scaling action σ0. In case n = 1, we can then further apply Connes Theorem
in [C2] to derive the final result. In turn, for the proof of the classification of
(trace preserving) actions of arbitrary amenable groups G on N ⊂ M ≃ R, we
ultimately use Ocneanu’s uniqueness (up to cocycle conjugacy) of cocycle actions
of G on the hyperfinite II1 factor [Oc]. However, as pointed out in [Po7,8], note
that our classification of strongly amenable subfactors in [Po7] does imply both
the uniqueness of the trace scaling automorphisms of R∞ in [C2] and the case
G strongly amenable of the results in [Oc], for which it thus provides alternative
proofs.

Part of the results in this paper have been presented by the author in a number
of lectures during 1991-1992 and in a C. R. Acad. Sci. Paris note ([Po8]). A
preliminary form of the paper has been circulated by the author since the fall of
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1991 and in its final form as an IHES preprint no. 46/1992.
The final version of this paper was completed during the author’s visits at the

University of Odense, Universita di Roma II, Université de Paris 7 and IHES, during
the year 1991-1992. He wishes to gratefully acknowledge U. Haagerup, R. Longo,
G. Skandalis and A. Connes for their kind hospitality and support.

Added in the proof, July 2009. While the work presented in this paper has been
completed some 18 years ago, its typing proved to be an agonizing process. Thus,
my traveling schedule during 1991-1992 resulted into several people being involved
with this task. They had to cope with a manuscript full of complicated formulas
and a handwriting unfamiliar to them, under limited time-frame. The outcome was,
alas, a 1992 preprint with hundreds and hundreds of typos, a nightmare to correct.
As the results in the paper were fully accepted by the mathematical community
and amply used and cited in subsequent papers, I felt little incentive to go through
the necessary proof reading ordeal, for several years. Then other mathematical
interests prevailed, all the way until the Summer of 2009, when I needed some
of the results and techniques in this paper, to study rigidity properties of certain
inductive limits of II1 factors. This gave me the energy to carefully go through the
paper and make the corrections. Other than that, I have chosen to leave the original
1992 preprint essentially unchanged, although I certainly would have written the
paper quite differently today...

While initially the main interest in this paper was due to the application to
the classification of type IIIλ subfactors, a hot topic at the time, the techniques
used here seem to be of a broader interest in von Neumann algebras, including
deformation/rigidity theory. Hence my decision to revive the paper and seek its
publication in a refereed journal, despite so many years of neglect. Some of the
ideas used in this approach to the classification of actions of amenable groups on
inclusions of hyperfinite type II factors, are quite novel. Thus, unlike the usual
strategy for classifying trace scaling automorphisms of the hyperfinite II∞ factor
R∞ due to Connes ([C2]), which consists in reducing to the trace preserving case
(resulting into a “type II1 treatment”), one works here directly in the II∞ setting.
Actually, one relies heavily on the trace scaling property of the automorphism,
to prove it coincides with the model. Also, in the classification (up to cocycle
conjugacy) of actions θ of amenable groups G on strongly amenable II1 subfactor
N ⊂ M ≃ R, the model considered is a cocycle action θ0 on R, rather than a
genuine action (see Sec. 3.2)!

It is worth mentioning that the techniques and ideas in this paper have later
inspired me in isolating the concept of central freeness and approximate innerness
for subfactors in [P9,10] and in the proof of the classification of approximately
inner, centrally free subfactors with amenable graph in [P9,10,11] (note that these
are the only papers I have added to the reference list of the initial 1992 version).
In particular, [Po10] provided a new proof to the classification of hyperfinite IIIλ
subfactors with strongly amenable graph, in case the standard part of the action
of the trace scaling automorphism in the common discrete decomposition is trivial
(i.e., with the above notations, σst = id).

1. The standard invariant of an equivariant inclusion. We begin by
explaining the standard invariant and model associated to a triple (N ⊂ M, θ),

where θ ∈ Aut(M, N)
def
= {σ ∈ AutM |σ(N) = N}, as considered by Loi in [Lo1],

for inclusions of type II1 or II∞ factors N ⊂ M of finite index.
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1.1. Inclusions of type II∞ factors. If N∞ ⊂ M∞ are type II∞ factors then
there exists a normal conditional expectation of M∞ onto N∞ if and only if N∞ ∨
(N∞′ ∩ M∞) contains finite projections of M∞ (see e.g. [Po6]). If N∞ contains
finite projections of M∞ then there exists a unique trace preserving conditional
expectation of M∞ onto N∞, EN∞ and, in fact, if N∞ = N⊗B(H) is any splitting
of N∞ with N a type II1 factor and M = B(H)′ ∩ M∞, then (N∞ ⊂ M∞) =
(N⊗B(H) ⊂ M⊗B(H)) and EN∞ = EN ⊗ idB(H).

The index of N∞ in M∞, [M∞ : N∞], is defined to be ∞ if there is no normal
conditional expectation of M∞ onto N∞ or, more generally, if N∞ doesn’t contain
finite projections of M∞. It is defined by

[M∞ : N∞] = (max{λ ≥ 0|EN∞(x) ≥ λx, x ∈ M∞
+ })−1

in case N∞ contains finite projections of M∞. Alternatively, with the above no-

tations, we can define the index of N∞ ⊂ M∞ by [M∞ : N∞]
def
= [M : N ]. If

the index is finite then we can associate to N∞ ⊂ M∞ the tower of embeddings
([Po7]):

N∞ ⊂ M∞ e1

⊂ M∞
1

e2

⊂ · · ·

∪ ∪ ∪

N ⊂ M
e1

⊂ M1

e2

⊂ · · ·

where M∞
k = Mk⊗B(H) and ek ∈ Mk ≃ Mk ⊗ 1 ⊂ Mk ⊗B(H) are the usual Jones

projections for the Jones’ tower N ⊂ M
e1

⊂ M1

e2

⊂ M2 ⊂ · · · .
Moreover, due to the splitting of N∞ ⊂ M∞ into a type II1 inclusion ⊗B(H),

there exist projections e0 ∈ N∞ ⊂ M∞ so that EN∞(e0) = λ1 = [M∞ : N∞]−11.
The proof of [PiPo1] then shows that any two such projections are conjugate by a
unitary element of N∞. If e0, e0

0 ∈ M∞ are as above, with EN∞(e0) = EN∞(e0
0) =

λ1, and N∞
1 = {e0}′ ∩ N∞, N0,∞

1 = {e0
0}

′ ∩ N∞, with e0 ∈ N ⊗ 1 ⊂ N∞ and
N1 = {e0}′ ∩ N , then the unitary element u ∈ N∞, ue0u

∗ = e0
0, also satisfies

uN∞
1 u∗ = N0,∞

1 . We have N∞
1 = N1 ⊗ B(H) and N0,∞

1 = N∞
1 ⊗ B(H0) where

N0
1 = uN1u

∗, B(H0) = uB(H)u∗. Note that the conjugation by u changes the

splitting of N∞ ⊂ M∞
e1

⊂ M∞
1 ⊂ · · · by B(H) into a splitting by B(H0).

It thus follows that we may choose recursively a tunnel of type II∞ factors

M∞
∞

e0
0

⊃ N∞
e0
−1

⊃ N0,∞
1

e0
−2

⊃ N0,∞
2 ⊃ · · · so that for each k there exists B(H0

k) ⊂ N0,∞
k

with the property that N0
i = B(H0

k)′ ∩ N0,∞
i are type II1 factors and M

e0
0

⊃ N
e0
−1

⊃

N0
1 ⊃ · · ·

e0
−k+1

⊃ N0
k−1 ⊃ N0

k is a tunnel of type II1 factors for M ⊃ N .
It thus follows that one can define for a type II∞ inclusion N∞ ⊂ M∞ its

standard invariant, in the same way one does for type II1 inclusion, as the sequence
of commuting squares of higher relative commutants {N∞′

k ∩N∞ ⊂ N∞′
k ∩M∞}k,

on which one has a canonical finite trace, and which doesn’t depend on the choice
of the tunnel. Moreover this invariant, that we denote GN∞,M∞ , coincides with the
standard invariant GN,M of the corresponding inclusion of type II1 factors N ⊂ M ,
independently on the choice of N ⊂ M (e.g., by [Po7]). Also, we denote by M∞

∞ =
∪M∞

k with the closure being taken in the strong topology of the common trace.
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Note that M∞
∞ coincides with M∞ ⊗ B(H). It is called the enveloping algebra of

N∞ ⊂ M∞.
Finally, let us define the notion of amenability for inclusions of type II∞ factors.

In order to avoid lengthy discussions and too abstract statements (which, unlike in
the II1 case where they were quite necessary, are here practically useless) we will
adopt the simple minded point of view of reducing to the type II1 case. We thus
put:

Definition. N∞ ⊂ M∞ is amenable if N ⊂ M is amenable. It is strongly
amenable (respectively, has ergodic care) if N ⊂ M is strongly amenable (respec-
tively, has ergodic core).

1.2. The standard part of an automorphism. Let N ⊂ M be both type II1
factors and (N∞ ⊂ M∞) = N ⊗ B(H) ⊂ M ⊗ B(H), the corresponding type II∞
amplification. Assume [M : N ] = [M∞ : N∞] < ∞. Denote by Aut(Mα, Nα) =
{θ ∈ AutMα|θ(Nα) = Nα} where α = 1 or α = ∞.

Let us first point out that the automorphisms in Aut(M∞, N∞) always commute
with the trace-preserving expectation.

LEMMA. If θ ∈ Aut(M∞, N∞) then θEN∞ = EN∞θ and the action of θ on
N∞′ ∩ M∞, equipped with its canonical trace (see 1.1), is trace preserving.

Proof. Since an expectation of M∞ onto N∞ is uniquely determined by its values
on N∞′ ∩ M∞, by comparing EN∞ and θEN∞θ−1 we see that it is sufficient to
prove that they agree on N∞′∩M∞. For this it is sufficient to show that θ|N∞′∩M∞

is trace preserving. This is clear if modθ = 1. If modθ = λ 6= 1 then let R∞ be
a hyperfinite type II∞ factor and σ an automorphism of R∞ with modσ = λ−1.
Then clearly (N∞⊗R∞)′ ∩M∞⊗R∞ = N∞′ ∩M∞ ⊗ 1 and the action of θ ⊗ σ on
(N∞′∩M∞)⊗1 coincides with that of θ|N∞′∩M∞ ⊗1. But by the above case θ⊗σ
acts trace preservingly on (N∞ ⊗ R∞)′ ∩ M∞ ⊗ R∞. Q.E.D.

We can now describe Loi’s construction ([Lo2]), based on ([PiPo1]), of the action
implemented by θ on the higher relative commutants, for arbitrary actions θ on
inclusions of type II factors.

(i) Given any choice of the tunnel

Mα e0

⊃ Nα
e−1

⊃ Nα
1 ⊃ · · ·

there exist unitary elements uk ∈ Nα
k , k ≥ 0, such that Ad(uk · · ·u0)θ(e−k) = e−k

(cf.[PiPo1]).

(ii) For x ∈ ∪
k
(Nα′

k ∩ Mα) define

θst(x)
def
= Ad(· · ·uk · · ·u0)θ(x).

Then θst(Nα′
k ∩Mα) = Nα′

k ∩Mα, θst(Nα′
k ∩Nα) = Nα′

k ∩Nα, θst(e−k) = e−k,
for all k ≥ 0. Moreover, in case α = ∞, if N∞′

k ∩ M∞ are interpreted as higher
relative commutants of the corresponding type II1 inclusions obtained by splitting
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all N∞
k , i ≥ k ≥ −1, by a common B(H) ⊂ N∞

k , then θst as defined above is trace
preserving (with respect to the corresponding type II1 trace).

Thus, both in the II1 and II∞ case, θst implements a trace preserving automor-
phism on the union algebra ∪(Nα′

k ∩M∞), leaving ∪
k
(Nα′

k ∩Mα
k ), Nα′

k ∩Mα, Nα′
k ∩

Nα, globally invariant and all the Jones’ projections fixed.

(iii) θst implements a trace preserving automorphism on the standard invariant
GNα,Mα = {Nα′

k ∩Nα ⊂ Nα′
k ∩M∞}k≥0, which is independent on the choice of the

tunnel Nα
k , on the choice of the unitaries uk ∈ Nα

k and on perturbations of θ by
inner automorphisms Adu, with u ∈ U(Nα).

(iv) If one also denotes by θst the trace preserving automorphism of M st =

∪(Nα′
k ∩ Mα) leaving N st = ∪

k
(Nα′

k ∩ Nα) globally fixed, then θ 7→ θst implements

a group homomorphism, from Aut(Mα, Nα)/IntNα to Aut(M st, N st), leaving all
Jones projections e−k fixed and all finite dimensional algebras Nα′

k ∩ Nα
j globally

invariant.

(v) Define recursively θk+1 : Mα
k+1 → Mα

k+1 by

θk+1(Σxiek+1yi) = Σiθk(xi)ek+1θk(yi), k ≥ 0, xi, yi ∈ Mα
k .

Then θk+1|Mα
k

= θk and θk+1 ∈ Aut(Mα
k+1, M

α
k ). Also denote θ∞ : Mα

∞ → Mα
∞

the unique automorphism which on the dense set ∪Mα
k acts by θ∞|Mα

k
= θk and

by θst,0 : Mα′ ∩ Mα
∞ → Mα′ ∩ Mα

∞ its restriction to Mα′ ∩ Mα
∞. Then θ 7→ θst,0

is a group morphism from Aut(Mα, Nα) to Aut(Mα′ ∩ Mα
∞, Mα′

1 ∩ Mα
∞), with

θst,0 leaving each Jones projection ek fixed and Mα
1
′ ∩ Mα

k ⊂ Mα′ ∩ Mα
k globally

invariant. Note that if Nα ⊂ Mα is extremal ([P7]) and op denotes the canonical
antiisomorphism of N ′

k−1 ∩ M onto M ′ ∩ Mk ([Po7]), then op intertwines θst and

θst,0.

Definition. The automorphism θst on Nst ⊂ M st is called the standard part
of the automorphism θ (on N ⊂ M). The automorphism θst,0 on M ′

1 ∩ M∞ ⊂
M ′ ∩ M∞ is called the opposite standard part of θ. The action implemented by
θst on GNα,Mα (i.e., on the lattice of higher relative commutants) will be denoted
by γθ and (GN,M , γθ) is called the standard invariant of the equivariant inclusion
(Nα ⊂ Mα, θ).

We will now summarize some of the properties of θst that are more or less implicit
in the above considerations.

1.3. PROPOSITION. (i) The application st factors to a group morphism from
Aut(Mα, Nα)/IntNα into Aut(M st, Nst).

(ii) The group morphism st is continuous from Aut(Mα, Nα)/IntNα with the
quotient topology into Aut(M st, Nst) with its usual topology.

(iii) Assume Nα ⊂ Mα is strongly amenable standard invariant ( equivalently,
Nst, M st are factors and have same higher relative commutants as Nα ⊂ Mα, see
[Po7]). If σ ∈ Aut(Mα, Nα) then (σst)st = σst.

Proof. We already proved (i) above. Then (ii), and (iii) are trivial by the
definitions. Q.E.D.
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1.4. Actions with trivial standard part. As it turns out in certain situations the
standard part of an action follows automatically trivial. Since the standard part of
a cocycle action on an inclusion (Nα ⊂ Mα, θ) coincides with the standard part of
the cocycle action it implements on the associated II1 inclusion, N ⊂ M , we can
reduce our discussion to the case of II1 inclusions, i.e. when α = 1.

PROPOSITION. (i) If σ is inner on all relative commutants M ′∩Mk and ΓN,M

is a tree (equivalently akℓ ∈ {0, 1}, ∀k, ℓ, and ΓN,M has no cycles), then σst = id.
(ii) If ΓN,M is a tree and the canonical weights (sk)k∈K, resp. (tl)l∈L, are distinct

then, σst,0 = id ∀σ ∈ Aut(M, N).
(iii) If sup dimZ((M ′ ∩ Mk)σ) < ∞ then σst is periodic, ∀σ ∈ Aut(Mα, Nα),

i.e., (σst)n = id for some n < ∞, (σst)k properly outer for 0 < k < n.

Proof (i) If σst,0 is inner on M ′ ∩ Mk (equivalently, σst inner on all N ′
k−1 ∩ M)

then it acts trivially on its center. If ΓN,M is a tree then M ′ ∩ Mk+1 = sp(M ′ ∩
Mk)ek+1(M

′ ∩ Mk) ⊕ Bk+1, with Bk+1 abelian. Since σ(ek+1) = ek+1, Bk+1 ⊂
Z(M ′ ∩ Mk+1) and σ|Z(M ′∩Mk+1) = id, we obtain that σ|M ′∩Mk

= id implies
σ|M ′∩Mk+1

= id.
Then (ii) is trivial by (i), since for distinct (sk)k, (tl)l, σ is forced to act trivially

on the center of M ′ ∩ Mk, ∀k.
To prove (iii) note first that if Nst ⊂ M st are factors and if for some k0 we have

ax = σst(x)a, x ∈ Nst
k , a ∈ M st, then given any ε > 0 there exists m such that

a ∈
ε

Nst ′
m ∩ M st. Thus, if a 6= 0 then for x ∈ Nst

m we have ‖[x, a]‖2 ≤ 2ε‖x‖ and

‖x − σst(x)‖2 < f(ε)‖x‖ with f(ε) → 0 as ε → 0. Thus σst is inner on Nst
m for m

large enough (cf. e.g. [Ch]), say σst
Nst

m
= Adu, u ∈ Nst

m . But σst = (Adu∗σ)st for

u ∈ Nst
m ⊂ Nst, so that σst = id on Nst

m . Since σst(e−i) = e−i, ∀i ≥ 0, it follows
that σst = id, unless a = 0.

Now, if dimZ((M ′ ∩ Mk)σ) is uniformly bounded then by (1.1 in [Po7]), (M ′ ∩

Mk−1)
σ ⊂ (M ′ ∩ Mk)σ

ek+1

⊂ (M ′ ∩ Mk+1)
σ is a basic construction for k large

enough and the support of ek+1 in (M ′ ∩ Mk+1)
σ is 1. Thus the support of ek+1

in M ′ ∩ Mk+1 is also 1 and N ⊂ M has finite depth (cf. e.g. 1.1 in [Po7]), in
particular it is extremal and Nst ⊂ M st are factors (e.g. by [Po4]). Also, we have
a sequence of commuting squares

M ′ ∩ Mk−1 ⊂ M ′ ∩ Mk

ek+1

⊂ M ′ ∩ Mk+1

∪ ∪ ∪

(M ′ ∩ Mk−1)
σ ⊂ (M ′ ∩ Mk)σ

ek+1

⊂ (M ′ ∩ Mk+1)
σ

in which ek+1 implements a basic construction on both rows (for k large enough).

Also (M ′ ∩ M∞)σ = (∪
k
(M ′ ∩ Mk)σ) is a factor (e.g., by [Po4, 5], [We]) and by

([GHJ]), if T is the inclusion matrix of (M ′ ∩Mk−1)
σ ⊂ M ′ ∩Mk then [M ′ ∩M∞ :

(M ′ ∩ M∞)σ] = ‖T‖2.
By the arguments above, we see that if (σst)n is inner for some n then (σst)n = id

on Nst and thus on all M st. Thus, either (σst)n = id and (σst)k is outer for
0 < k < n, where n is the period of σst, or σst acts freely on M st. In the latter

case though the fixed point algebra (M st)σst

would have infinite index in M st (cf.
e.g. [Lo1]), a contradiction. Q.E.D.
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COROLLARY. (i) If ΓN,M is a tree then ker(st) contains the connected compo-
nent of the identity in Aut(M, N).

(ii) If σ : G → Aut(M, N) is a continuous action of a connected group G and
either ΓN,M is a tree, or if sup dimZ((M ′ ∩ Mk)σ) < ∞, then σst = id.

Proof. (i) If σ is in the connected component of the identity in Aut(M, N) then
σst
|N ′

k
∩M is inner ∀k and part (i) of the previous proposition applies.

(ii) If ΓN,M is a tree then part (i) applies. Also, since G is connected, if for some
k σst

|N ′

k
∩M 6= id then there exists g ∈ G such that σst(g)n 6= id ∀n (even on N ′

k∩M),

which contradicts (iii) in the previous proposition. Q.E.D.
1.5. Proper outerness for actions on inclusions. In order to be able to prove

that the standard invariant of an equivariant inclusion is a complete invariant, we
need the actions to satisfy some proper outerness condition.

Definition 1. An automorphism σ of a II1 inclusion N ⊂ M is called properly
outer if for any k and any choice of the tunnel M ⊃ N ⊃ · · · ⊃ Nk we have the
implication:

(*) If a ∈ M is such that ax = σ(x)a, ∀x ∈ Nk, then a = 0.

An automorphism σ of a II∞ inclusion N∞ ⊂ M∞ is properly outer if the
corresponding automorphism of its associated II1 inclusion is properly outer.

Remarks. 1◦. If Nα = Mα then the above condition coincides with the usual
definition of proper outerness of an action on the single algebra Mα.

2◦. If σ is a properly outer action on Nα ⊂ Mα then it is properly outer on both
Nα and Mα, more generally, if Mα ⊃ Nα ⊃ · · · ⊃ Nα

k is a tunnel and u ∈ U(Nα)
is so that AduNα

j = Nα
j , j ≤ k, then Aduσ is properly outer on each Nα

j , j ≤ k.
3◦. The above definition doesn’t depend on the outer conjugacy class of σ, i.e.,

if σ satisfies the above condition and u ∈ U(Mα) is so that AduNα = Nα (e.g., if
u ∈ Nα or if u ∈ Nα′ ∩ Mα) then Aduσ satisfies it. Also if p ∈ Nα is a nonzero
projection then σ is properly outer iff σp is properly outer.

4◦. If the implication (*) in the above definition holds true for some k and some
choice of the tunnel up to k then it holds true for any j ≤ k and any choice of the
tunnel up to j. Thus, in order for σ to be properly outer it is sufficient that there
exists a tunnel Mα ⊃ Nα ⊃ · · · such that if for some k ≥ 0 and a ∈ M we have
ax = σ(x)a, ∀x ∈ Nk, then a = 0.

PROPOSITION. Let θ be a cocycle action of a discrete group G on Nα ⊂ Mα.
The following conditions are equivalent:

(i) θ(g) is properly outer on Nα ⊂ Mα, ∀g 6= e.
(ii) There exists a tunnel Mα ⊃ Nα ⊃ · · · such that Nα′

k ∩ (Mα ⋊θ G) =
Nα′

k ∩ Mα for all k ≥ 0.
(ii′) For any tunnel Mα ⊃ Nα ⊃ · · · and any k, Nα′

k ∩ (Mα ⋊G) = Nα′
k ∩Mα.

Moreover, if Nα ⊂ Mα is extremal, then these conditions are also equivalent to
the following:

(iii) Mα′ ∩ (Mα
k ⋊ G) = Mα′ ∩ Mα

k , ∀k.
(iii′) Mα′ ∩ (Mα

∞ ⋊ G) = Mα′ ∩ Mα
∞.

Proof. (i) ⇒ (ii). If X = Σxgug ∈ Mα
⋊ G is so that [X, Nα

k ] = 0 for some k
and if xg 6= 0 for some g 6= e then xgθ(g)(x) = xxg for all x ∈ Nk. Thus θ(g) for
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that g will not be properly outer.
(ii) ⇒ (i). If θ(g) is not properly outer then for some k and a ∈ Mα, a 6= 0, we

have aσ(x) = xa, ∀x ∈ Nα
k . Thus X = aug ∈ Nα′

k ∩ (Mα ⋊θ G) but X /∈ Nα′
k ∩Mα.

(ii) ⇔ (ii′) is trivial.
(ii) ⇔ (iii). By 1.2(v) there exists an antiisomorphism of Nα′

2k−1∩(Mα ⋊G) onto
Mα′ ∩ (Mα

2k ⋊ G) carrying Nα′
2k−1 ∩ Mα onto Mα′ ∩ Mα

2k.
(iii) ⇔ (iii′). If Mα′ ∩ (Mα

∞ ⋊ G) = Mα′ ∩ Mα
∞ then by the commuting square

relation we have Mα′

∩ (Mα
k ⋊ G) = EMα

k
⋊G(Mα′ ∩ (Mα

∞ ⋊ G)) = EMα
k

⋊G(Mα′ ∩
Mα

∞) = Mα′ ∩ Mα
k . Q.E.D.

Definition 2. A cocycle action θ of a discrete group G on Nα ⊂ Mα is properly
outer if the equivalent conditions in the above proposition are satisfied. A faithful
action θ of a locally compact group G on an extremal inclusion Nα ⊂ Mα is
properly outer if Mα′ ∩ (Mα

k ⋊ G) = Mα′ ∩Mα
k , ∀k, ∀. (It has been pointed out to

us by Y. Kawahigashi that a similar property has been independently considered
by M.Choda and H. Kosaki in [ChK]).

In ([EvKa]) there are examples of periodic automorphisms on N ⊂ M that are
properly outer on both N and M but not on N ⊂ M in the sense of the above 2
definitions. There in fact do exist aperiodic ones as well:

Example. Let Pα be a type II1 or II∞ factor and σ = (σ1, . . . , σn) some n au-
tomorphisms acting on Pα. Let Mα = M(n+1)×(n+1)(P

α) and Nα = {Σjσj(x)ejj |
x ∈ Pα}, where σ0 = id and {eij}0≤i,j≤n is a matrix unit for M(n+1)×(n+1)(σ)
(see [Po5]). An automorphism θ of Mα fixing {eij} will leave Nα globally invari-
ant iff θ commutes with all σi. It is easy to see that such a θ acts properly outer
on Nα ⊂ Mα iff θ doesn’t belong to the group generated by the σi’s and IntPα

in AutPα. In particular, if we take n = 1 and σ1 = θ aperiodic, one obtains an
example of an automorphism which is aperiodic on Mα but is not properly outer
on the inclusion Nα ⊂ Mα that was first pointed out by Y. Kawahigashi (private
communication).

1.6. Sufficient conditions for proper outerness. We will now show that in certain
situations an action on an inclusion follows automatically properly outer once it is
properly outer on one of the algebras. But first, we will introduce an invariant that
measures the “distance” from proper outerness.

LEMMA. Let θ be a cocycle action of a discrete group on the inclusion Nα ⊂ Mα

and assume that the action is properly outer on each of the algebras Nα, Mα (in

the usual sense). If {Nα
k }k≥1 is a choice of a tunnel then the algebras {Nα′

k ∩
(Mα ⋊ G)}k≥−1 are finite dimensional and there exists a unique normalized trace

τ0 on ∪
k
(Nα′

k ∩ (Mα ⋊θ Z)) such that EMα
⋊G

Nα
k

(x) = τ0(x)1, for all k ≥ −1 and all

x ∈ Nα′

k ∩ (Mα ⋊G). Moreover, the sequence of inclusions C = Mα′

∩ (Mα ⋊G) ⊂

Nα′

∩(Mα⋊G) ⊂ · · · and respectively the trace τ0 are described by a pointed matrix
(or pointed bipartite graph) Γθ and its transpose and respectively a positive vector
→
s θ satisfying ΓθΓ

t
θ

→
s θ = [Mα : Nα]

→
s θ. Also, up to trace preserving isomorphism

this sequence of inclusions (and thus Γθ, sθ) doesn’t depend on the choice of the
tunnel.
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Proof. Let R∞ be a copy of the hyperfinite type II∞ factor and let θ′ be an action
of the group G0 = G/ ker(modθ) on R∞ such that modθ′(π(g)) = modθ(g)−1, g ∈
G, where π : G → G0 is the quotient map. Let θ0 : G → AutR∞, θ0(g) ∈ θ′(π(g)).
Then θ ⊗ θ0 : G → Aut(Mα ⊗ R∞, Nα ⊗ R∞) is a cocycle action that will still be
properly outer on each algebra and modθ ⊗ θ0(g) = 1 for all g. Also the higher
relative commutants and the state τ0 do not change if we replace θ by θ ⊗ θ0. So
we may assume from the beginning that θ is trace preserving and then, by splitting
off some B(H), that (Nα ⊂ Mα) = (N ⊂ M) are type II1 factors. The trace τ0 is
then simply the restriction of the unique trace on the type II1 factor M ⋊ G. Since
M ′ ∩ (M ⋊ G) = C and since N ′

k ∩ (M ⋊ G) ⊂ N ′
k+1 ∩ (M ⋊ G) has [PiPo1] index

≤ [M : N ] (cf. e.g., [Po3]), the algebras are indeed finite dimensional. The fact that
the inclusions are determined by a unique pointed matrix and an eigenvector follows
then by ([Po7], §1.2). Obviously, all this is independent on the tunnel. Q.E.D.

Definition . The weighted graph (Γθ, sθ) of the above lemma is called the stan-
dard graph of the action θ. Note that, by ([Po7]), ‖Γθ‖2 ≤ [M : N ] and that if
Γθ is finite we have equality, by the Peron-Frobenius theorem. Note also that θ is
properly outer iff Γθ = ΓN,M . In general, this may not be the case though (see [Ka]
for examples). However we have:

THEOREM. Let θ be a cocycle action of a discrete group G on an extremal
inclusion of type IIα factors Nα ⊂ Mα. If one of the following conditions 1◦ − 4◦

holds true, then the action θ is properly outer on Nα ⊂ Mα.
1◦ α = ∞ and θ is trace scaling, i.e., Trθ(g) 6= Tr, g 6= e (so that necessarily

G ⊂ R).
2◦ Nα ⊂ Mα has finite depth, G is torsion free and the action θ is properly outer

on either Mα or on Nα.
3◦ Γθ is a tree (i.e., it has only multiplicities 0 and 1 and it has no cycles), G

is torsion free and the action θ is properly outer on Mα.
4◦ The standard vectors (sk)k, resp. (tl)l, have distinct entries and θ is properly

outer on Mα.
5◦. α = 1 and (N ⊂ M) = (Nst ⊂ M st) is a standard inclusion of type II1

factors and θ = θst is a nontrivial standard action on it such that θ is properly
outer on M st.

Moreover, in the case α = 1, we have:
6◦. If M ′∩Nω is nontrivial, and if σ ∈ Aut(M, N) is properly outer on M ′∩Nω,

then σ is properly outer on N ⊂ M . If in addition N ⊂ M is strongly amenable
then, conversely, if σ is properly outer on N ⊂ M then it is properly outer on
M ′ ∩ Nω .

Proof. To prove 1◦, it is clearly sufficient to treat the case θ is a single auto-
morphism. Let λ = modθ, i.e. Trθ = λ Tr, λ 6= 1. Assume there exists k ≥ 0 and
0 6= a ∈ M∞ such that θ(x)a = ax, x ∈ N∞

k . By conjugating if necessary with a
unitary u ∈ N∞ we may suppose θN∞

k = N∞
k . Thus θ(N∞′

k ∩M∞) = N∞′
k ∩M∞.

Taking polar decomposition of a, it follows that there exists a partial isometry
0 6= v ⊂ M∞ such that θ(x)v = vx, x ∈ N∞

k . Also, v∗v, vv∗ ∈ N∞′
k ∩ M∞. If

p ≤ v∗v, q ≤ vv∗ are minimal projections in N∞′
k ∩ M∞ such that qvp 6= 0, then,

by multiplying the equation θ(x)y = vx by q on the left and p on the right, we may
suppose q = v∗v, p = vv∗ are minimal projections in N∞′

k ∩ M∞.
10



Since N∞ ⊂ M∞ is extremal, N∞
k ⊂ M∞ is extremal (cf. [PiPo2]) so that

by [PiPo1], [qM∞q : N∞
k q]EN∞

k
(p) = [pM∞p : N∞

k p]EN∞

k
(q). But since θ(x)v =

vx, x ∈ Nk, we have Nkv = vNk, so that (N∞
k q ⊂ qM∞q) = v(N∞

k p ⊂ pM∞p)v∗.
Thus [qM∞q : N∞

k q] = [pM∞p : N∞
k p] and we get EN∞

k
(p) = EN∞

k
(q).

It follows that if f ∈ N∞
k , T rf < ∞, then Tr(pf) = Tr(qf) = (Trf)EN∞

k
(q) =

(Trf)EN∞

k
(p). Thus we get for λ = modθ

λTr(fp) = λTr(f)EN∞

k
(p) = Tr(σ(f))EN∞

k
(q)

= Tr(σ(f)q) = Tr(σ(f)vv∗)

= Tr(vfv∗) = Tr(fv∗v) = Tr(pf).

This contradiction shows that a must be zero and thus θ acts properly outer on
N∞ ⊂ M∞.

To prove 2◦, it is sufficient to prove the case G = Z. To this end, denote
Pk = Nα′

k ∩(Mα⋊Z) and Qk = Nα′
k ∩Mα. Reasoning as in the proofs of the previous

lemma and of Lemma 1.2, it is sufficient to prove the case (Nα ⊂ Mα) = (N ⊂ M)
is of type II1.

Let θ̂ be the action of T = Ẑ on M ⋊θ Z dual to θ and note that θ̂(Pk) =

Pk, θ̂|Qk
= id. Since M = (M ⋊θ Z)θ̂ we also have Qk = P θ̂

k , by commuting

squares. Since T is simply connected, θ̂ acts innerly on each Pk and thus trivially
on Z(Pk). Thus, sup dim

k
Z(Qk) ≥ sup dim

k
Z(Pk), so that if N ⊂ M has finite depth

then Γθ is finite. Thus, for k large enough, the commuting square

Pk ⊂ Pk+1

∪ ∪

Qk ⊂ Qk+1

is just the basic construction of

Pk−1 ⊂ Pk

∪ ∪

Qk−1 ⊂ Qk

so that by [GHJ] or [We1], we have [P∞ : Q∞] < ∞, where P∞ = ∪
k
Pk, Q∞ = ∪

k
Qk.

Since P
bθ
∞ = Q∞, if we can show that Q′

∞ ∩ P∞ = C we will get a contradiction,
unless Q∞ = P∞. In turn, this equality implies θ is properly outer, by Proposition
1.5.

If x ∈ Q′
∞ ∩ P∞ then let ε > 0, k0 ≤ 0 and xk0

∈ Pk0
= N ′

k0
∩ (M ⋊ Z) be so

that ‖x − xk0
‖2 < ε. Thus ‖uxk0

u∗ − x‖2 < ε, u ∈ U(Q∞). Since sup dim
j

Z(N ′
j ∩

(M ⋊ Z)) < ∞ we have sup dim
i,j

Z(N ′
j ∩ (Mi ⋊ Z)) < ∞ (see e.g. the proof of the

previous Proposition). Thus, there exists ℓ large enough such that N ′
j+1 ∩ (Mℓ ⋊Z)

is the basic construction of N ′
j ∩(Mℓ ⋊Z) by N ′

j−1∩(Mℓ ⋊Z) with Jones projection
ej , for all j. Thus xk0

∈ N ′
k0

∩ (M ⋊ Z) ⊂ N ′
k0

∩ (Mℓ ⋊ Z) = sp(N ′
k0−1 ∩ (Mℓ ⋊

Z))e−k0+1(N
′
k0−1∩(Mℓ⋊Z)). But since N ⊂ M has finite depth Nk0+1 ⊂ Nk0+2 has
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finite depth, so that if Qj,∞ = ∪
i
(N ′

i ∩ Nj) then EQ′

j,∞
∩Q∞

(e−j) ∈ C. Averaging

over u ∈ Qj,∞, j = k0 + 1, k0 + 2, . . . in the relation ‖uxk0
u∗ − x‖2 < ε, we obtain

recursively that there exists x0 ∈ ∩
j≤k0−1

(N ′
j ∩ (Mℓ ⋊ Z))∩M = M ′ ∩M = C1 such

that ‖x0 − x‖2 < ε. Since ε > 0 was arbitrary, x ∈ C1.
To prove 3◦, it is again sufficient to consider the case G = Z and we can use the

same notations as above. Also, note that if Γθ is a tree for the G action, then it
is a tree for the Z action as well. In this case, Pk+1 is obtained from Pk by the
basic construction (obtained with the Jones’ projection which is in M and thus on

which θ̂ acts trivially) adding in direct sum an abelian algebra. By induction, since

P0 = C, we get by the triviality of θ̂ on Pk and Z(Pk+1) that θ̂ acts trivially on
Pk+1, thus Qj = Pj for all j and θ follows properly outer by Proposition 1.5.

To prove 4◦, we may assume θ is a single automorphism, which is outer on
Mα. We may also clearly assume α = 1. If for some k and 0 6= a ∈ Mk we
have θ(x)a = ax for all x ∈ M , then taking the polar decomposition of a we may
assume a = v is a partial isometry with the right and left supports being minimal
projections in M ′∩Mk. By the hypothesis, it follows that these supports are in the
same direct summand of M ′∩Mk. This implies that the normalizer of Mp in pMkp
is non-trivial, where p is a minimal projection in that direct summand of M ′ ∩Mk.
But this implies that (sk) has an entry sk = 1 for some k 6= ∗, a contradiction.

Part 5◦ has already been proved in the first part of the proof of (iii) in Propo-
sition 1.4.

To prove 6◦, let N ⊂ M be an inclusion of type II1 factors such that M ′ ∩Nω 6=
C1, i.e., N contains nontrivial central consequences of M . Note that by arguing
as in [McD], it follows that M ′ ∩ Nω has no atoms. Let θ ∈ Aut(M, N). Then
θ(M ′ ∩ Nω) = M ′ ∩ Nω. Since M ′ ∩ Nω has no atoms, if θ is properly outer
on M ′ ∩ Nω then by Connes’ local Rohlin lemma ([C2], see also [P2]), given any
ε > 0 there exists a partition {pi} of 1 with projections in M ′ ∩ Nω such that
‖Σpiθ(pi)‖2 < ε. If θ(x)a = ax for all x ∈ Nk, for some k ≥ 0 and a ∈ M , then,
since [pi, a] = 0 and pi ∈ Nω

k (because pi ∈ Nω and [pi, ej] = 0, j ≥ 0), we get
Σ
i
θ(pi)pia = Σapi = a, while ‖Σ

i
θ(pi)pia‖2 ≤ ε‖a‖. Since ε > 0 was arbitrary a = 0.

Thus θ is properly outer on N ⊂ M .
Conversely, if we assume N ⊂ M is a strongly amenable inclusion and if θ is

properly outer on N ⊂ M then let M
e0

⊃ N
e−1

⊃ N1 ⊃ · · · be a tunnel such that
N ′

k ∩ M ր M and let p ∈ P(M ′ ∩ Nω), p 6= 0. Since p ∈ Nω and [p, ek] = 0, k ≥
0, p ⊂ ∩

k
Nω

k . Thus we may assume p is represented by a sequence p = (pn)n,

with pn ∈ P(Nk)n and kn → ∞. Note that, since N ′
kn

∩ M ր M , any sequence
x = (xn) with xn ∈ Nkn

is in M ′ ∩ Nω. Since θ is properly outer on N ⊂ M , the
proof of the Rohlin lemma in [Po2] shows that given any ε > 0 and any n there
exists δ = δ(ε) (independent on n!) and qn = P(Nkn

), qn ≤ pn, τ(qn) ≥ δτ(pn),
such that ‖θ(qn)qn‖2 < ε‖qn‖2. But then q = (qn) is in M ′ ∩ Nω, 0 6= q ≤ p and
‖θ(q)q‖2 < ε‖q‖2. Thus θ is properly outer on M ′ ∩ Nω. This proves the converse
implication in 6◦. Q.E.D.

We mention that the finite depth case of part 6◦ in the above theorem was also
shown independently by Y. Kamahigashi ([Ka2]). Thus, all the examples in [EvKa]
of actions of finite groups on N ⊂ M that act trivially on M ′ ∩Nω (i.e., which are
“centrally trivial”) are also examples of non-outer automorphisms of N ⊂ M .
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2. Classification of trace scaling actions on type II∞ subfactors. We
will prove in this section that a trace-scaling action of Zn on a strongly amenable
inclusion of type II∞ factors splits into the tensor product between its standard
part (as defined in 1.2) and a trace-scaling action on a common type II∞ factor.
More precisely we will prove:

2.1. THEOREM. Let N∞ ⊂ M∞ be a strongly amenable inclusion of type
II∞ factors. Let θ be a properly outer action of Zn on N∞ ⊂ M∞ such that
modθ(g) 6= 1, if g 6= e = (0, . . . , 0). Assume there exists a partition of the unity
{eg}g ∈ Zn with finite projections in N∞ such that θ(h)eg = ehg, h, g ∈ Zn. Then
there exists an isomorphism α from M∞ onto M st⊗R∞, with α(N∞) = N st⊗R∞,
such that αθα−1 = θst ⊗ σ, where R∞ is a copy of the hyperfinite type II∞ factor
and σ is an action of Zn on R∞ with modσ(g) = modθ(g), g ∈ Zn.

When applied to the case n = 1, i.e., for actions by one automorphism that scale
the trace, by using Connes’ theorem showing that all automorphisms acting on the
hyperfinite type II∞ factor and scaling the trace by the same number are conjugate,
we get:

2.2. COROLLARY . Let N∞ ⊂ M∞ be a strongly amenable inclusion of type
II∞ factors and θ a properly outer automorphism on N∞ ⊂ M∞, scaling the trace
(i.e., θN∞ = N∞, modθ 6= 1). Then there exists an isomorphism α of M∞ onto
M st ⊗ R∞, with α(N∞) = N st ⊗ R∞, such that αθα−1 = θst ⊗ σ0, where R∞

is a copy of the hyperfinite type II∞ factor and σ0 is the model action on R∞,
with modσ0 = modθ. Moreover, if N ⊂ M is extremal then the proper outerness
condition is automatically satisfied.

2.3. COROLLARY . Let N ⊂ M be an inclusion of hyperfinite IIIλ factors,
0 < λ < 1. Assume there exists a conditional expectation of finite index from M
onto N which has discrete decomposition, i.e., if N∞ is the II∞ core of N and φ
is a normal semifinite weight on N whose centralizer is N∞, then the centralizer
of φ ◦ E is the II∞ core of M, M∞. Let (N ⊂ M) = (N∞ ⋊ σ ⊂ M∞ ⋊ σ) be
the associated discrete decomposition. Assume also that N∞ ⊂ M∞ has strongly
amenable graph. Then (N ⊂ M) ≃ (Nst ⊗R∞ ⋊σst ⊗σ0 ⊂ M st ⊗R∞ ⋊σst ⊗σ0),
where σst is the action implemented by σ on the model II1 inclusion Nst ⊂ M st

associated with N∞ ⊂ M∞ and σ0 is a λ-scaling automorphism of the hyperfinite
II∞ factor R∞.

We will prove 2.1 by building a tunnel for M∞ ⊃ N∞ that is invariant to all θ(g),
g ∈ Zn, and so that the algebra of higher relative commutants splits its commutant
in N∞, being a hyperfinite type II∞ factor containing the “diagonal” {eg}g∈Zn .

To do this we need a technical lemma, which uses the noncommutative local
Rohlin theorem ([Po1,2,7]) and some maximality arguments inspired from ([C3]).
We will consistently denote by multiplication the operation in a discrete group,
including Zn.

2.4. LEMMA. Assume modθ(g) > 1 if g 6= e = (0, . . . , 0) and g has only
nonnegative entries. Let vi, 1 ≤ i ≤ n, be partial isometries in N∞ such that
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viv
∗
i = ee, v∗

i vi ≤ eδi
, 1 ≤ i ≤ n, where δi = (0, . . . , 1, 0, . . . , 0), 1 appearing

only on the i’th entry. Let m ≥ 0 and denote by Km = {g ∈ Zn | 0 ≤ gi ≤ m}.
Let ε > 0 and X ⊂ eeM

∞ee be a finite set. Then there exist unitary elements
w0

i ∈ eδi
N∞eδi

, and a partition of the unity {q0
g}g∈Km

with projections in eeN
∞ee

of trace 1/|Km| such that

1. ‖w0
i − eδi

‖1,Tr ≤ 3/m, 1 ≤ i ≤ n.
2. Ad(viw

0
i )θ(δi)(q

0
g) = q0

si(g), 1 ≤ i ≤ n, g ∈ Km, where si(g) = δig, if the i’th

entry gi of g is less than m and si(g) = (g1, . . . , gi−1, 0, gi+1, . . . , gn) if gi = m.
3. ‖x −

∑
g q0

gxq0
g‖2 < ε, x ∈ X.

Proof. Let F be the set of all (n + |Km|)-tuples ((wi)1≤i≤n, (qg)g∈Km
) in which

(qg)g∈Km
are mutually orthogonal, mutually equivalent projections in eeN

∞ee and
wi are unitary elements in eδi

N∞eδi
such that

(i) ‖wi − eδi
‖1,Tr ≤ 3/mTr(θ(δi)(

∑
g qg)), 1 ≤ i ≤ n.

(ii) Ad(viwi)θ(δi)(qg) = qsi(g), 1 ≤ i ≤ n, g ∈ Km.

(iii) ‖(x − (1 −
∑

g qg)x(1 −
∑

g qg)) −
∑

g qgxqg‖2
2,Tr ≤ εTr(

∑
g qg), x ∈ X .

We define on F a (strict) order < by letting ((wi)i, (qg)g) < ((w′
i)i, (q

′
g)g) if

qg ≤ q′g, ∀g ∈ Km,

∑
qg 6=

∑
q′g,

wi = w′
iθ(δi)(

∑

g

qg)

‖w′
i − wi‖1,Tr ≤ 3/mTr(θ(δi)(

∑

g

(q′g − qg))), ∀1 ≤ i ≤ n.

Then (F , <) is clearly inductively ordered. Let ((w0
i )i, (q

0
g)g) be a maximal element

in F . Assume
∑

g qg 6= ee and let s = ee −
∑

g q0
g . Note that Ad(viw

0
i )θ(δi)(s) = s.

To prove the lemma we only need to show that the assumption s 6= 0 leads to a
contradiction.

For each g ∈ Km let vg be a partial isometry in N∞ with vgv
∗
g = s, v∗

gvg ≤
θ(g)(s) ≤ eg.

Let ε0 > 0. Since sN∞s is hyperfinite, there exists a finite dimensional subfactor
B0 ⊂ sN∞s such that:

a) θ(g)−1(v∗
gvg) ∈

ε0

B0, g ∈ Km.

b) θ(δig)−1(v∗
δig

viw
0
i θ(δi)(vg)) ∈

ε0

B0, g ∈ Km, 1 ≤ i ≤ n.

Since B′
0 ∩ sN∞s ⊂ B′

0 ∩ sM∞s is strongly amenable, given any ε′0 > 0 there
exists a tunnel M∞ ⊃ N∞ ⊃ N∞

1 ⊃ · · · ⊃ N∞
k such that s ∈ Nk, B0 ⊂ sNks, and

such that one has the estimates

c) θ(g)−1(vgxv∗
g) ⊂ε′

0
B0 ∨ ((sN∞

k s)′ ∩ sM∞s), g ∈ Km.

Next let ε1 > 0. By the noncommutative local Rohlin theorem ([Po1,2,7]) from
the proper outerness condition 1.3 on θ it follows that there exists a partition of
the unity {rj}j with projections in B′

0 ∩ sN∞
k s such that

14



d)
∑

g 6=g′∈Km

∥∥∥
∑

j θ(g)(rj)v
∗
gvg′θ(g′)(rj)

∥∥∥
2

2,Tr
< ε4

1

∥∥∥
∑

j rj

∥∥∥
2

2,Tr
.

It follows by d) that the set J1 of all the j’s for which

(1)
∑

g 6=g′

‖vgθ(g)(rj)v
∗
gvg′θ(g′)(rj)v

∗
g′‖2

2,Tr < ε2
1‖rj‖

2
2,Tr

satisfies Tr(
∑

j∈J1
rj) ≥ (1 − ε2

1)Tr(s).

Moreover, for each g ∈ Km, by a) we have:

(2)
∑

j

Tr
(
vgθ(g)(rj)v

∗
g − vgθ(g)(rj)v

∗
gvgθ(g)(rj)v

∗
g

)

= Tr
(
θ(g)(s)v∗

gvg

)
− ‖

∑

j

θ(g)(rj)v
∗
gvgθ(g)(rj)‖

2
2,Tr

≤ Tr(v∗
gvg) − ‖θ(g)(EB′

0
∩sP∞s(θ(g)−1(v∗

gvg))‖
2
2,Tr

≤ Tr(s)−‖θ(g)(θ(g)−1(v∗
gvg))‖

2
2,Tr+‖θ(g)(θ(g)−1(v∗

gvg)−EB′

0
∩sP∞s(θ(g)−1(v∗

gvg))‖
2
2,Tr

= ‖θ(g)(θ(g)−1(v∗
gvg) − EB′

0
∩sP∞s(θ(g)−1(v∗

gvg))‖
2
2,Tr

≤ ε2
0modθ(g)Tr(Σjrj).

This shows that if J2 denotes the set of all j’s for which

(3)
∑

g

‖vgθ(g)(rj)v
∗
g − (vgθ(g)(rj)v

∗
g)2‖1,Tr < ε0Trrj

then Σj∈J2
Trrj ≥ (1 − ε0

∑
g modθ(g))Trs. Indeed, for if not then Σj∈J2

Trrj ≥

(1 − ε0

∑
g modθ(g))Trs, so

Σj 6∈J2
Trrj > ε0(

∑

g

modθ(g))Trs

which together with the inequality

∑

j 6∈J2

∑

g

‖vgθ(g)(rj)v
∗
g − (vgθ(g)(rj)v

∗
g)2‖1,Tr ≥ ε0

∑

j 6∈J2

Trrj

implies ∑

j 6∈J2

∑

g

‖vgθ(g)(rj)v
∗
g − (vgθ(g)(rj)v

∗
g)2‖1,Tr

≥ ε0Σj 6∈J2
Trrj > ε2

0(
∑

g

modθ(g))Trs

15



contradicting the inequality (2).
Also by first applying the Cauchy-Schwartz inequality and then a), we get:

∑

j

|Tr(vgθ(g)(rj)v
∗
g) − Tr(rj)|

=
∑

j

|Tr(θ(g)(rj)(v
∗
gvg − Eθ(g)(B0)(v

∗
gvg))θ(g)(rj))|

≤ ‖
∑

θ(g)(rj)(v
∗
gvg − Eθ(g)(B0)(v

∗
gvg))θ(g)(rj)‖1,Tr

≤ ‖
∑

j

θ(g)(rj)(v
∗
gvg − Eθ(g)(B0)(v

∗
gvg))θ(g)(rj)‖2,Tr‖

∑

j

θ(g)(rj)‖2,Tr

≤ ‖v∗
gvg − Eθ(g)(B0)(v

∗
gvg)‖2,Tr‖θ(g)(s)‖2,Tr ≤ ε0modθ(g)

∑

j

Trrj .

Thus, reasoning exactly as above, it follows that if J3 denotes the set of all j’s
for which

(4)
∑

g

∣∣Tr(vgθ(g)(rj)v
∗
g) − Tr(rj)

∣∣ < ε
1/2
0 Trrj

then
∑

j∈J3
Trrj ≥ (1 − ε

1/2
0

∑
g modθ(g))Trs.

Further, we have for all g ∈ Km for which δig ∈ Km:

∑

j

∥∥Ad(viw
0
i )θ(δi)(vgθ(g)(rj)v

∗
g) − vδigθ(δig)(rj)v

∗
δig

∥∥2

2,Tr
=

=
∑

j

Tr((viw
0
i θ(δi)(vg)θ(δig)(rj)θ(δi)(v

∗
g)w0∗

i v∗
i )2) +

∑

j

Tr((vδigθ(δig)(rj)v
∗
δig

)2)

− 2Tr(θ(δig)(rj)(v
∗
δig

viw
0
i θ(δi)(vg))θ(δig)(rj)(θ(δi)(v

∗
g)w0∗

i v∗
i vδig))

=
∥∥EA′

0
(θ(δi)(v

∗
g)w0∗

i v∗
i viw

0
i θ(δi)(vg))

∥∥2

2,Tr

+
∥∥EA′

0
(v∗

δig
vδig)

∥∥2

2,Tr
− 2

∥∥EA′

0
(v∗

δig
viw

0
i θ(δi)(vg))

∥∥2

2,Tr

where we denoted by A0 ⊂ θ(δig)(B′
0∩sN∞

k s) the algebra generated by the partition
{θ(δig)(rj)}j . But then b) shows that this last term is majorized by:

‖θ(δi)(v
∗
g)w0∗

i v∗
i viw

0
i θ(δi)(vg)‖

2
2,Tr

+ ‖v∗
δigvδig‖

2
2,Tr − 2‖v∗

δigviw
0
i θ(δi)(vg)‖

2
2,Tr + 4ε0(modθ(δi)Tr(s)

= ‖vδigv
∗
δig − viw

0
i θ(δi)(vgv

∗
g)w0∗

i v∗
i ‖

2
2,Tr + 4ε0(modθ(δi)

= ‖s − s‖2
2,Tr + 4ε0modθ(δi)Tr(s) = 4ε0modθ(δi)

∑

j

Trrj .

Thus, if we denote by J4 the set of all the j’s for which

(4)
∑

g

‖Ad(viw
0
i )θ(δi)(vgδ(g)(rj)v

∗
g) − vδigθ(δig)(rj)v

∗
δig‖

2
2,Tr < ε

1/2
0 Trrj

16



then
∑

j∈J2
Tr(rj) ≥ (1 − 4ε

1/2
0 modθ(δi))Trs.

Finally, c) shows that if ε′0 is sufficiently small then

∑

x∈X

∑

g∈Km

‖v∗
gxvg −

∑

j

θ(g)(rj)v
∗
gxvgθ(g)(rj)‖

2
2,Tr < ε2

0Tr
(∑

rj

)
.

Thus, if we denote by J5 the set of all j’s for which

(5)
∑

x

∑

g

‖(θ(g)(s)− θ(g)(rj))v
∗
gxvgθ(g)(rj)‖

2
2,Tr < ε0Trrj

then Tr
j∈J5

rj ≥ (1 − ε0)Trs.

From all this, we see that if ε0, ε1 are chosen sufficiently small then
5
∩

i=1
Ji 6= ∅.

Let j ∈ ∩
i
Ji be fixed. Let ag = vgθ(g)(rj)v

∗
g , g ∈ Km. If α = ε1 + 2ε

1/4
0 then by

(1) − (5) we get:

(1′) ‖agag′‖2,Tr < α‖ag‖2,Tr, ∀g, g′ ∈ Km, g 6= g′.

(2′) ‖a2
g − ag‖1,Tr < α‖ag‖1,Tr, ∀g ∈ Km.

(3′) |Tr(ag) − Tr(ae)| < αTrae, ∀g ∈ Km, e = (0, . . . , 0).

(4′) ‖Adviw
0
i θ(δi)(ag) − aδig‖2,Tr < α‖αg‖2,Tr, g ∈ Km, 1 ≤ i ≤ n, δig ∈ Km.

(5′)
∑

g ‖[sxs, ag]‖2
2 < α‖ag‖2,Tr, ∀x ∈ X .

But then a standard perturbation argument shows that (1′) − (3′) imply the
existence of mutually orthogonal projections {pg}g∈Km

in sN∞s such that ‖pg −
ag‖2,Tr < f0(α)‖pg‖2,Tr, Trpg = Trpe, g ∈ Km, where f0(α) → 0 as α → 0 (m is
fixed!). By (5′) we will then have for any x ∈ X the estimate:

∣∣∣
∣∣∣
(
sxs −

(
s −

∑
pg

)
x
(
s −

∑
pg

))
−
∑

pgxpg

∣∣∣
∣∣∣
2

2,Tr
≤ f1(α)

∣∣∣
∣∣∣
∑

pg

∣∣∣
∣∣∣
2

2,Tr
,

with f1(α) → 0 as α → 0.
By (4′) it follows the existence of unitary elements w′

i in θ(δi)(s)N
∞θ(δi)(s) =

θ(δi)(sN
∞s) such that

Ad(viw
0
i w′

i)θ(δi)(pg) = pδi
g , g ∈ Kmwith δig ∈ Km

‖w′
i − θ(δi)(s)‖1,Tr < f2(α)Tr

(
∑

g

θ(δi)(pg)

)

where f2(α) → 0 as α → 0.
Since the set {g ∈ Km | δig /∈ Km} has cardinality |Km|/m it follows that there

exist unitary elements v′
i in sN∞s such that ‖v′

i − s‖1,Tr < 2/mTr(
∑

pg) and such
that Ad(v′

iviw
0
i w

′
i)θ(δi)(pg) = psi(g) (with si(g) the bijection on Km defined in the

statement of the Lemma). But then, w
′∗
i w0∗

i v∗
i v′

iviw
0
i w′

i can be completed to a
unitary w′′

i in θ(δi)(sN
∞s), by defining it to be the identity on the complement of

17



its support. This unitary will still satisfy ‖w′′i − θ(δi)(s)‖1,Tr ≤ 2/mTr(
∑

pg) <
2/mTr (θ(δi)

∑
pg). If we thus define wi = w′

iw
′′
i + (eδi

− θ(δi)(s)) then we have:

Adviw
0
i wiθ(δi)(pg) = psi(g), g ∈ Km;

‖wi − eδi
‖1,Tr < (f2(α) + 2/m)Tr(

∑

g

θ(δi)(pg));

where the inequality follows from the estimate

‖w′
iw

′′
i − eδi

‖1,Tr ≤ ‖w′
iw

′′
i − w′

i‖1,Tr + ‖w′
i − eδi

‖1,Tr

= ‖w′′
i − eδi

‖1,Tr + ‖w′
i − eδi

‖1,Tr < (f2(α) + 2/m)Tr(
∑

g

θ(δi)(pg)).

Thus, if α is sufficiently small then ‖wi − eδi
‖1,Tr < 3/mTr(

∑
g θ(δi)(pg)).

Define w1
i = w0

i wi and q1
g = q0

g + pg , 1 ≤ i ≤ n, g ∈ Km. Then by the definitions
we have:

(i) Adviw
1
i θ(δi)(q

1
g) = q1

si(g), g ∈ Km, 1 ≤ i ≤ n.

(ii) ‖wi − eδi
‖1,Tr ≤ ‖w0

i wi − wi‖1,Tr + ‖wi − eδi
‖1,Tr ≤ 3/mTr(θ(δi)(

∑
q1
g)).

(iii) w1
i

∑
g q0

g = w1
i (1 − s) = w0

i .

(iv) ‖w1
i − w0

i ‖1,Tr = ‖wi − eδi
‖1,Tr ≤ 3/mTr(θ(δi)(

∑
q1
g −

∑
q0
g)).

(v)

∣∣∣
∣∣∣
(
x −

(
ee −

∑
q1
g

)
x
(
ee −

∑
q1
g

))
−
∑

q1
gxq1

g

∣∣∣
∣∣∣
2

2,Tr

≤
∣∣∣
∣∣∣
(
x −

(
ee −

∑
q0
g

)
x
(
ee −

∑
q0
g

))
−
∑

q0
gxq0

g

∣∣∣
∣∣∣
2

2,Tr
+

+ ||(sxs −
(
s −

∑
pg

)
x
(
s −

∑
pg

))
−
∑

pgxpg ||2,Tr ≤ εTr(
∑

g

q1
g).

But this shows that ((w1
i )i, (q

1
g)g) is in F and majorizes ((w0

i )i, (q
0
g)g), thus

contradicting the maximality of the latter. Q.E.D.

We can now obtain the existence of equivariant tunnels for which the higher
relative commutant approximate well a given finite set of elements.

2.5. LEMMA. Let N∞ ⊂ M∞ be a strongly amenable inclusion of type II∞
factors, θ : Zn → Aut(M∞, N∞) an action scaling the trace and {eg}g∈Zn ⊂ N∞

a partition of the unity like in the hypothesis of 2.2. Let X ⊂ M = eeM
∞ee be a

finite set, A0 ⊂ eeN
∞ee = N be a finite dimensional factor and wi ∈ N∞ be partial

isometries such that wiw
∗
i = ee, w∗

i wi ≤ eδi
. Given any δ > 0 there exist a choice

of the tunnel M
e0
0

⊃ N ⊃ · · ·
e0
−ℓ+1

⊃ Nℓ−1 ⊃ Nℓ, up to some ℓ, for M ⊃ N , and a finite
dimensional subfactor B0 ⊂ Nℓ containing A0 such that if e−j =

∑
g θ(g)(e0

−j) then

(i) x ∈
δ

B0 ∨ (N ′
ℓ ∩ M) , x ∈ X .

(ii) wi ∈
δ

N∞
ℓ , 1 ≤ i ≤ n, where N∞

ℓ = {e0, e−1, . . . , e−ℓ+1}′ ∩ N∞.
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Proof. By Lemma 2.4, if ε > 0 then there exist m > 3ε−1, unitary elements
ωi ∈ eδi

N∞eδi
, 1 ≤ i ≤ n, and a partition of the identity with mutually orthogonal,

mutually equivalent projections (qg)g∈Km
in eeN

∞ee such that

(1) Ad(wiωi)θ(δi)(qg) = qsi(g), g ∈ Km, 1 ≤ i ≤ n.

(2) ‖ωi − eδi
‖2,Tr ≤ ε, 1 ≤ i ≤ n.

(3) ‖x −
∑

g qgxqg‖2,Tr ≤ ε, x ∈ X or x = eij ∈ A0, with {eij} a fixed matrix
unit of A0.

Note that (1) and the fact that {qg}g have equal traces implicitly means that
[θ(δi)(qg), ω∗

i w∗
i wiωi] = 0 and Tr(θ(δi)(qg)ω

∗
i w∗

i wiωi) = Tr(qg) = Tr(qe), for all
g ∈ Km, 1 ≤ i ≤ n.

For each g ∈ Km let wg ∈ N∞ with wgw
∗
g = qg, w∗

gwg ≤ θ(g)(qe) and we = e.
Like in the proof of the previous lemma, given any ε0 > 0 there exists a finite
dimensional subfactor B ⊂ qeN

∞qe such that:

(a) θ(g)−1(w∗
gwg) ⊂ε0

B, g ∈ Km.

(b) θ(δig)−1(w∗
δig

wiωiθ(δi)(wg)) ∈
ε0

B, g ∈ Km ∩ δ−1
i Km.

By a small perturbation depending only on ε0 it follows that there are partial
isometries w′

g in N∞ such that:

(a′) w′∗
g w′

g ∈ θ(g)(B), w′
gw

′∗
g ≤ qg, ‖w′

g − wg‖2,Tr ≤ f ′
0(ε0), g ∈ Km.

Moreover, by enlarging if necessary B, we will also have:

(a′′) qgeijqg ∈
f ′

0
(ε0)

Adw′
gθ(g)(B), g ∈ Km, eij ∈ A0.

It then follows that there are partial isometries ω′
i,g ∈ qδigN

∞qδig such that:

(b′) bi,g = w
′∗
δig

ω′
i,gwiωiθ(δi)(w

′
g) is a partial isometry in θ(δig)(B) and we have

the estimates

ω′
i,gω

′∗
i,g ≤ Ad(wiωi)θ(δi)(w

′
gw

′∗
g ), omega′

i,gω
′∗
i,g ≤ w′

δig
w

′∗
δig

‖ω′
i,g − qδig‖2,Tr ≤ f ′′

0 (ε0) , g ∈ Km ∩ δ−1
i Km

where f ′(ε0), f
′′(ε0) → 0 as ε0 → 0.

Now, since Ne = B′ ∩ qeN
∞qe ⊂ B′ ∩ qeM

∞qe = M e, and more generally
(w′

gθ(g)(B)w
′∗
g )′ ∩ (w′

gw
′∗
g N∞w′

gw
′∗
g ) ⊂ (w′

gθ(g)(B)w
′∗
g )′ ∩ (w′

gw
′∗
g M∞w′

gw
′∗
g ) are

strongly amenable and also since

(w′
gθ(g)(B)w

′∗
g )′ ∩ (w′

gw
′∗
g N∞w′

gw
′∗
g ) = Adw′

gθ(g)(Ne),

(w′
gθ(g)(B)w

′∗
g )′ ∩ (w′

gw
′∗
g M∞w′

gw
′∗
g ) = Adw′

gθ(g)(M e)

it follows that given any ε1 > 0 there exists a choice of the tunnel up to some ℓ,

M e
ee
0

⊃ Ne
ee
−1

⊃ Ne
1 ⊃ · · ·

ee
−ℓ+1

⊃ Ne
ℓ−1 ⊃ Ne

ℓ , for M e ⊃ Ne, so that to have:

(c′) w′
gw

′∗
g Xw′

gw
′∗
g ⊂

ε1

Adw′
gθ(g)(B) ∨ Adw′

gθ(g)(Ne′

ℓ ∩ M e).

Put pe = ee −
∑

g w′
gw

′∗
g and let {e′−j}0≤j<ℓ be a set of Jones projections in

peM
∞pe, with e′0 projecting on the scalar [M∞ : N∞]−1pe when expected onto

peN
∞pe and with e′1, . . . , e′ℓ−1 ∈ peN

∞pe.
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Then define e0
−j

def
=
∑

g∈Km
Adw′

gθ(g)(ee
−j) + e′−j and e−j

def
=
∑

g∈Zn θ(g)(e0
−j),

N∞
j

def
= {e0, . . . , e−ℓ+1}′ ∩ N∞. Since

∑
g∈Km

Adw′
gθ(g)(B) ⊂ eeN

∞
ℓ ee it follows

that given any ε2 > 0 there exists a finite dimensional subfactor B0 ⊂ eeN
∞
ℓ ee such

that {qg}g∈Km
⊂ B0, B ⊂ qeB0qe, Adw′

gθ(g)(B) ⊂
ε2

B0, ∀g ∈ Km.

Since by (a′) we have ‖ee −
∑

g w′
gw

′∗
g ‖2,Tr ≤ |Km|f ′(ε0), with |Km|f ′(ε0) → 0

as ε0 → 0, and since by (3) we have X ⊂
ε

∑
g qgXqg, it follows by (c′) and by the

definition of B0 that if we let ε, ε0, ε1, ε2 sufficiently small then condition (i) of
the statement is satisfied.

To show that (ii) is also satisfied note that if we let

q′
def
=

∑

g∈Km∩δ−1

i
Km

w′
gw

′∗
g ∈ eeN

∞ee,

q′′
def
=

∑

g∈Km∩δ−1

i
Km

ω′
i,gω

′∗
i,g =

∑
wδigbi,gb

∗
i,gw

∗
δig

,

ω′
i =

∑

g∈Km∩δ−1

i
Km

ω′
i,g,

then [q′, e−j ] = 0, [q′′, e−j ] = 0. By (b′) we then have:

Ad(ω′
iwiωi)θ(δi)(q

′e−j) =
∑

g∈Km∩δ−1

i
Km

Ad(ω′
iwiωiθ(δi)(w

′
g))θ(δig)(ee

−j)

=
∑

g∈Km∩δ−1

i
Km

Ad(w′
δig

bi,g)θ(δig)(ee
−j)

=
∑

g∈Km∩δ−1

i Km

Adw′
δig(θ(δig)(ee

−j)bi,gb
∗
i,g)

=e−jq
′′.

Thus, since θ(δi)(e−j) = e−j , it follows that

(q′′ω′
iwiωiθ(δi)(q

′))e−j = e−j(q
′′ω′

iwiωiθ(δi)(q
′)).

Since q′′ is close to ee, θ(δi)(q
′) is close to eδi

, ω′
i close to ee and ωi close to eδi

,
it follows that there exist w′

i(= q′′ω′
iwiωiθ(δi)(q

′)) in N∞ that is arbitrarily close
to wi, say ‖w′

i −wi‖2,Tr < δ, so that [w′
i, e−j ] = 0, 0 ≤ j < ℓ, i.e., so that w′

i ∈ N∞
ℓ .

This shows that for appropriately small ε, ε0, ε1, ε2 condition (ii) of the statement
will also be satisfied.

Still, the condition A0 ⊂ B0 is not yet achieved. But by the way B0 was defined,
condition (a′′) shows that A0 ⊂

α
B0 with α as small as we please. Since both A0,

B0 ⊂ eeN
∞ee it follows by [Ch] that there exists a unitary element u0 ∈ eeN

∞ee

close to ee so that Adu0(B0) ⊃ A0. But then, if we conjugate spatially all the
previous choices, {e−j}0≤j≤ℓ−1, {N∞

j }1≤j≤ℓ, by Adu, where u =
∑

g∈Zn θ(g)(u0),

then for α small enough the estimates (i), (ii) will still hold true. Q.E.D.
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Proof of Theorem 2.1. By changing if necessary the positive cone of Z
n we may

assume Trθ(g) ≥ Tr for all the g having only nonnegative coordinates.
Let {xn}n be a sequence of elements in eeM

∞ee, dense in the strong operator
topology in eeM

∞ee. We construct recursively an increasing sequence of integers,

i1 < i2 < ...., continuations of the tunnel M∞
e0

⊃ N∞
e−1

⊃ N∞
1 ⊃ · · ·

e−ik

⊃ N∞
ik

· · ·
and an finite dimensional factors Bk ∈ N∞

ik
= {e0, e−1, ..., e−ik

}′ ∩ N∞, such that:

(i) xj ∈
2−k

Bk ∨ ee(N
∞′

ik
∩ M∞)ee, 1 ≤ j ≤ k.

(ii) ‖wi
k − wi

k−1‖2,Tr ≤ 2−k, wi
kwi∗

k = ee, wi∗
k wi

k ≤ eδi
, 1 ≤ i ≤ n.

Assume we made this construction up to some k.
By [C3] there exists δ′ > 0 such that if P∞ ⊂ N∞

k is a subfactor containing
the projections {eg}g∈Zn and if bi ∈ P∞ are so that ‖bi‖ ≤ 1, bi = eebieδi

, ‖wi
k −

bi‖2,Tr < δ, then there exists partial isometries w′
i ∈ P∞ such that w′

iw
′∗
i = ee,

w
′∗
i w′

i ≤ eδi
, ‖wi

k − w′
i‖2,Tr ≤ 2−k−1.

Also, there exist a finite subset X ⊂ eeN
∞
ik−1ee and a δ′′ > 0 such that if

N∞
ik−1

e−ik+1

⊃ N∞
ik

⊃ · · · ⊃ N∞
ik+1

is a continuation of the tunnel up to some ik+1

such that Bk ⊂ N∞
ik+1

, {eg}g∈Zn ⊂ N∞
ik+1

and if X ⊂
δ′′

Bk+1 ∨ ee(N
∞′

ik+1
∩ N∞

ik−1)ee,

for some finite dimensional subfactor Bk+1 ⊂ eeN
∞
ik+1

ee with Bk+1 ⊃ Bk, then

xj ∈
2−k−1

Bk+1 ∨ ee(N
∞′

ik+1
∩ M∞)ee, 1 ≤ j ≤ k + 1. Indeed if one takes {mj}j

to be an orthonormal basis of eeNik−1ee over eeN
∞
ik

ee then one may construct

an orthonormal basis {mk
i }i of eeM

∞ee over eeN
∞
ik

ee as words in the mj ’s and

in e0, e−1, . . . , e−ik+1 (see [PiPo1,2]). Writing x1, . . . , xk+1 in the basis {mk
i }i of

eeM
∞ee over eeN

∞
ik

ee we obtain a finite set X ⊂ eeN
∞
ik

ee which for suitably small
δ′′ will yield the above estimates.

If we now take δ = min{δ′, δ′′} and apply Lemma 2.5 for N∞
ik

⊂ N∞
ik−1 (as

N∞ ⊂ M∞), Bk ⊂ eeN
∞
ik

ee (as A0), the restriction of θ to N∞
ik−1 and the above X

and δ then we get the ik+1 the θ-equivariant continuation of the tunnel up to ik+1,
the algebra Bk+1 and the partial isometry wk+1 satisfying (i), (ii) for k + 1.

Now, since all N∞
ik

contain the projections {eg}g∈Zn , we have {eg}g ⊂ ∩
j
N∞

j . By

condition (ii) we have {wi
k}k is Cauchy in the norm ‖ ‖2,Tr and if wi = limwk

i then

wi are also contained in ∩
j
N∞

j . Moreover ∪
k
Bk ⊂ ∩

j
eeN

∞
j ee and if P = ∪

k
Bk then

by (i) we have eeM
∞ee = P ∨ ee(N

∞′

k ∩ M∞)ee. Thus ee(∩
j
N∞

j )ee = P so that

ee(∩
j
N∞

j )ee and all θ(g)(ee ∩ N∞
j ee) = eg(∩N∞

j )eg are type II1 factors. But then

the fact that the wi (and thus all θ(g)(wi)) are in ∩N∞
k shows that the projections

{eg}g∈Zn ⊂ ∩
j
N∞

j are comparable (in the Murray-von Neumann sense) in ∩
j
N∞

j .

Thus ∩
j
N∞

j is a type II∞ factor.

It follows that if we denote by R∞ = ∩
j
N∞

j , M st = ∪
j
(N∞′

j ∩ M), Nst =

∪
j
(N∞′

j ∩ N∞) then all the conditions in the theorem are satisfied. Q.E.D.

3. Classification of actions on type II1 subfactors. In this section we will
use ([Po7]) and noncommutative ergodic theory techniques to prove that a properly
outer cocycle action θ of a discrete amenable group G on a strongly amenable
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inclusion of type II1 factors N ⊂ M is (cocycle) conjugate to the tensor product
of the canonical action θst on Nst ⊂ M st and a commonly splitted properly outer
model cocycle action σ of G on a single hyperfinite type II1 factor R0. When applied
to the case N ⊂ M = M2×2(C), for which the standard part of any action is trivial,
this shows that any properly outer cocycle action of G on a hyperfinite II1 factor
R0 is cocycle conjugate to a cocycle action of the form id ⊗ σ. Altogether, this
gives:

3.1. THEOREM. Let N ⊂ M be a strongly amenable inclusion of type II1
factors and G a countable discrete amenable group. Let θ : G → Aut(M, N)
be such that θ(g) is properly outer on N ⊂ M for each g 6= e and such that
θ(g)θ(h) = Ad(u(g, h))θ(gh), for g, h ∈ G, where u(g, h) ∈ U(N) satisfy

u(g, h)u(gh, h′) = θ(g)(u(h, h′))u(g, hh′)

u(e, g) = u(g, e) = 1.

If R0 is a copy of the hyperfinite type II1 factor and σ0 is a properly outer action
of G on R0, then (N ⊂ M, θ) is cocycle conjugate to (N st⊗R0 ⊂ M st⊗R0, θst⊗σ0),
i.e., there exists an isomorphism α : M → M st⊗R0 such that α(N st⊗R0) = N and
such that Adv(g)θ(g) = α−1(θst(g)⊗ σ0(g))α, for all g ∈ G and for some unitaries
v(g) ∈ U(N).

The rest of this section is devoted to the proof of this theorem. The idea is to

construct a tunnel of subfactors M
e0

⊃ N
e−1

⊃ N1 ⊃ · · · with unitaries vk(g) ∈ U(Nk)
such that ‖vk(g) − 1‖2 < 2−k, for g ∈ Fk ⊂ G, with Fk finite sets satisfying Fk ⊂
Fk−1, ∪Fk = G, and Ad(vk(g)...v0(g))θ(g)(e−k) = e−k, for all g ∈ G, and such that

S = ∪(N ′
k ∩ N), ∪

k
(N ′

k∩M) = R splits N ⊂ M , i.e., S′∩N = R′∩N = R′∩M and

(N ⊂ M) = (S∨(R′∩M) ⊂ R∨(R′∩M)). Then v(g) = lim
k

vk(g) · · ·v0(g), (Nst ⊂

M st) ≃ (S ⊂ R), θst(g) = Adv(g)θ(g)|R, R0 = R′ ∩ M, σ(g) = Adv(g)θ(g)|R0

will be of the form θst ⊗ σ0 on (Nst ⊂ M st) ⊗ R0, with σ0 an action of G on R0.
Moreover, we will construct this split off of θ so that AdvθR0

is a prescribed model
properly outer cocycle action of G on the hyperfinite II1 factor R0.

3.2. Some model cocycle actions. To construct the above perturbations vk(g)
and prove the Theorem, we first need to introduce some notations. We will then
construct a “model” for properly outer cocycle actions of amenable groups on the
hyperfinite II1 factor.
Notations.

(1) Let G be a countable discrete amenable group. For each finite subset F ⊂ G
and ε > 0 we choose a finite (Folner) set K ⊂ G, K = K(F, ε), with the
property that |FK△K| < ε|K|. Moreover, for each h ∈ G we choose once
for all a permutation sK(h) of the set K, such that for g ∈ K with hg ∈ K
we have sK(h)(g) = hg.

(2) Let {Fn}n≥1 be an increasing sequence of finite dimensional subsets of G
with G = ∪Fn and Kn = K(Fn, 2−n). Denote by wn(h) the unitary ele-
ment on ℓ2(Kn) defined on the orthonormal basis {δg}g∈Kn

of ℓ2(Kn) by
wn(h)δg = δsKn(h)(g), h ∈ G, g ∈ Kn.
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(3) Let R = ⊗n≥1B(ℓ2(Kn), τn) be the hyperfinite type II1 factor realized as
an infinite tensor product with respect to the unique normalized traces τn

of the finite dimensional factors B(ℓ2(Kn)). For each k ≥ 1 and h ∈ G
let θk(h) ∈ AutR be defined as the product type automorphism θk(h) =
Ad(1⊗ · · ·⊗ 1⊗wk(h)⊗wk+1(h)⊗ · · · where wk(h) appears exactly at the
k’th position.

LEMMA. For each k ≥ 1 and h, g ∈ G, the element

uk(h, g)
def
= 1 ⊗ · · · ⊗ 1 ⊗ wk(g)wk(h)wk(gh)−1 ⊗ wk+1(g)wk+1(h)wk+1(gh)−1 ⊗ · · ·

is a unitary in R and θk : G → AutR is a properly outer cocycle action of G with
2-cocycle uk.

Proof. Due to the condition |gKn\Kn| < 2−n|Kn|, |hKn\Kn| < 2−n|Kn| for
h, g ∈ Fn, it follows by the definition of sKn

(g), sKn
(h), sKn

(gh) that sKn
(gh) co-

incides with sKn
(g)sKn

(h) on “most” of Kn, more precisely ‖wk(g)wk(h)wk(gh)−1−
1‖2

2 < 2−n+2. This shows that uk(g, h) are all unitaries, k ≥ 1, g, h ∈ G, and that
lim

k→∞
‖uk(g, h) − 1‖2 = 0, g, h ∈ G.

Clearly we have Aduk(g, h) = θk(g)θk(h)θk(gh)−1 and uk(g, e) = uk(e, g) = 1
and the identity:

uk(g, h)uk(gh, h′)

= 1 ⊗ · · · ⊗ 1 ⊗ wk(g)wk(h)wk(gh)−1wk(gh)wk(h′)wk(ghh′)−1

= 1 ⊗ · · · ⊗ 1 ⊗ wk(g)wk(h)wk(h′)wk(ghh′)−1 ⊗ 1 ⊗ · · ·

= · · · ⊗ 1 ⊗ wk(g)(wk(h)wk(h′)wk(hh′)−1)wk(g)−1(wk(g)wk(hh′)wk(ghh′)−1) ⊗ · · ·

shows that uk(g, h)uk(gh, h′) = θk(g)(uk(h, h′))uk(g, hh′), and thus uk(g, h) is a
2-cocycle for θk. Q.E.D.

COROLLARY. Let θ : G → R be a cocycle action of the discrete amenable group
G on the hyperfinite type II1 factor R. Given any ε > 0, x1, . . . , xn ∈ R, F ⊂ G a
finite subset and B0 ⊂ R a finite dimensional factor, there exist a finite dimensional
subfactor B ⊂ R containing B0 and unitary elements v(h) ∈ R, h ∈ F , such that

(1) ‖EB(xi) − xi‖2 < ε, 1 ≤ i ≤ n.
(2) ‖v(h) − 1‖2 < ε, h ∈ F .
(3) Adv(h)θ(h)(B) = B, h ∈ F .

Proof. By the previous Lemma and [Oc], there are unitary elements v0(h) ∈ R,
h ∈ G, such that Adv0(h)θ(h) is identical to the cocycle model action θ1(h), h ∈ G,
for some splitting of R in an infinite tensor product, as in (3) above. But then
there exists m large enough so that if B = B(ℓ2(K1)) ⊗ · · · ⊗ B(ℓ2(Km)), then
‖EB(xi) − xi‖2 < δ, 1 ≤ i ≤ n, ‖EB(v0(h)) − v0(h)‖2 < δ, h ∈ F , with δ to be
chosen later. Since θ1(h)B = B, from the last set of inequalities it follows that for
x ∈ B, ‖x‖ ≥ 1, we have:

‖EB(θ(h)(x)) − θ(h)(x)‖2 = ‖EB(v0(h)∗θ1(h)(x)v0(h))

− v0(h)∗θ1(h)(x)v0(h)‖2 ≤ 3δ.
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By [Ch] it follows that if δ is small enough then there exist unitary elements v(h) ∈
R such that Adv(h)θ(h)B = B and ‖v(h) − 1‖2 < ε, h ∈ F . Q.E.D.

3.3. Construction of Rohlin towers. We will first construct partitions of the
unity in N on which small perturbations of a given finite set of automorphisms θg

act by permutations, as in the model action 3.2, i.e., like on a Rohlin tower.

LEMMA. Under the hypothesis of 3.1 and with the notations in 3.2, let ε >
0, X = X∗ ⊂ M , F ⊂ G be finite sets and K = K(F, ε/2). Then, there exist
projections {e0

g}g∈K ⊂ N , with Σe0
g = 1, and unitary elements {v0(h)}h∈F ⊂ N

such that

‖x −
∑

g∈K

e0
gxe0

g‖2 ≤ ε, x ∈ X

‖v0(h) − 1‖1 ≤ ε, h ∈ F

Adv0(h)θh(e0
g) = e0

sk(h)(g), h ∈ F, g ∈ K

Proof. Let F be the set of all |F | + |K| tuples ((v(h))h∈F , (eg)g∈K) in which
(eg)g∈K are mutually orthogonal projections in N and (v(h))h∈F are unitary ele-
ments in N such that

‖(x − (1 −
∑

K

eg′)x(1 −
∑

K

eg′′)) −
∑

K

egxeg‖
2
2 ≤ ε2‖

∑

K

eg‖
2
2

‖v(h) − 1‖1 ≤ ε
∑

τ(eg)

Adv(h)θh(eg) = esk(h)(g), g ∈ K, h ∈ F.

We define on F the (strict) order < given by

((v(h))h∈F , (eg)g∈K) < ((v′(h))h∈F , (e′g)g∈K)

if eg ≤ e′g, g ∈ K, Σeg 6= Σe′g, v(h) = v′(h) Σ
g∈K

eg and ‖v′(h) − v(h)‖n ≤ ετ(Σe′g −

Σeg). Then (F , <) is clearly inductively ordered. Let ((v0(h))h∈F , (e0
g)g∈K) be

a maximal element in F . Assume Σe0
g 6= 1 and let s = 1 − Σ

g∈K
e0
g. Note that

Adv0(h)θh(s) = s.
Now denote sNs = Q, sMs = P and σ : G → Aut(P, Q) the cocycle action

defined by σg = Adv0(g)θg|P for each g ∈ G and note that σhσg = Adw(h, g)σhg for
some unitary elements w(h, g) ∈ Q, g, h ∈ G. By 1.3 σ is properly outer on Q ⊂ P .
Let Y = {σ−1

g (sxs) | x ∈ X, g ∈ K}∪{σ−1
g′ (w(h, g))±1 | h ∈ F, g, g′ ∈ K} and let

δ0 > 0. Since Q ⊂ P has the generating property, there exists a choice of the tunnel
up to some i, P ⊃ Q ⊃ Q1 ⊃ Q2 ⊃ · · · ⊃ Qi such that ‖EQ′

i
∩P (y)−y‖2 < δ0, y ∈ Y .

By 1.2 there are unitary elements w′(g) ∈ Q such that Adw′(g)σg(Qj) = Qj , j ≤
i. It follows by the proper outerness of σ that if we denote by L the crossed product
algebra P ⋊σ G and by ug ∈ L the unitary elements implementing the action σg on
P , then EQ′

i∩L(u−1
g ug′) = 0, g 6= g′.

Given any δ > 0 there exists by (A.1.4 in [Po7]) a projection q ∈ Qi such that

‖qy − EQ′

i
∩P (y)q‖2 < δ0/2‖q‖2, y ∈ Y

‖qu−1
g ug′q‖2 < δ‖q‖2, g, g′ ∈ K, g 6= g′.
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Since Y = Y ∗ the first relation implies

‖[q, y]‖2 < δ0‖q‖2, y ∈ Y

so that one has:

(1) ‖[σg(q), x]‖2 < δ0‖q‖2, x ∈ X ∪ {w(h, g) | h ∈ F, g ∈ K}, g ∈ K.

The second relation implies σ(g)(q), g ∈ K, are δ-mutually orthogonal projec-
tions.

(2) ‖σg(q)σg′(q)‖2 < δ‖q‖2, g, g′ ∈ K, g 6= g′.

When applied to x = w(h, g), (1) implies that

(3) ‖σhσg(q) − σhg(q)‖2 < δ0‖q‖2, h ∈ F, g ∈ K ∩ h−1K.

Since |K\FK| < ε/2|K| and since δ, δ0 are arbitrarily small, it follows that
there exist mutually orthogonal projections eg ∈ Q, g ∈ K, such that

(4) ‖[eg, x]‖2 < f1(δ0)‖eg‖2, τ(eg) = τ(q), g ∈ K;

(5) ‖eg − σg(q)‖2 < f2(δ)‖eg‖2, g ∈ K;

(6) ‖σh(eg) − ehg‖2 < f3(δ)‖eg‖2, h ∈ F, g ∈ K ∩ h−1K;

where fi(ε) → 0 as ε → 0, i = 1, 2, 3.
Thus, if w(h) = Σ

g∈K∩h−1K
ehgσh(eg), then

‖w(h) −
∑

g∈K∩h−1K

eg‖
2
2 < f3(δ)

2‖
∑

g∈K∩h−1K

eg‖
2
2.

Since Σ
g∈K\hK

τ(eg) < ε/2 Σ
g∈K

τ(eg), it follows by letting δ, δ0 very small and

by taking the polar decomposition of w(h) and suitably extending it to a partial
isometry w1(h) from Σ

g∈K
σh(eg) to Σ

g∈K
eg carrying σh(eg) onto ehg when g ∈ K ∩

h−1K and more generally σh(eg) onto es(h)(g), that we have w1(h) ∈ Q = sNs, h ∈
F and

‖w1(h) −
∑

g∈K

eg‖1 ≤ (ε/2 + f(δ0, δ))‖
∑

g∈K

eg‖1.

But then, by ([C3]), there exists a suitable extension of w1(h) to a unitary w0(h)
in Q which will satisfy

‖w0(h) − ‖1 ≤ ε‖
∑

g∈K

eg‖1.

Thus, if we take now the |F | + |K| tuple ((v1(h))h∈F , (e1
g)g∈K), with v1(h) =

((1 − s) + w0(h))v0(h) and e1
g = e0

g + eg, then it is easy to see that it satisfies the

necessary conditions to be contained in F . But ((v1(h))h, (e1
g)g) > ((v0(h))h, (e0

g)g),

which contradicts the maximality of ((v0(h))h∈F , (e0
g)g∈K).

This shows that Σ
g∈K

e0
g = 1 and that v0(h), h ∈ F , are unitary elements satisfying

the requirements. Q.E.D.

3.4. Existence of equivariant Jones projections. We now prove that given any
finitely many automorphisms of a cocycle action of an amenable group, there exist
Jones projections that are almost invariant to all of them.
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LEMMA. Assume the conditions in the hypothesis of 3.1 are satisfied. Let X ⊂
M , F ⊂ G be finite sets and ε > 0. Denote K = K(F, ε|F |−1/4). There exist a

choice of the tunnel up to some i, M
e0

⊃ N
e−1

⊃ N1 ⊃ · · · ⊃ Ni, a partition of the
unity {e0

g}g∈K in Ni and unitary elements {v(h)}h∈F in N such that

(1) ‖v(h) − 1‖2 < ε, h ∈ F
(2) Adv(h)θ(h)(e0

g) = e0
sK(h)(g), h ∈ F, g ∈ K

(3) Adv(h)θ(h)(e−j) = e−j , 0 ≤ j ≤ i − 1, h ∈ G
(4) ‖ENi∨(N ′

i∩M)(x) − x‖2 < ε, x ∈ X .

Proof: By Lemma 3.3, there exist some unitary elements {v0(h)}h∈F ⊂ N and
a partition of the unity by projections {e0

g}g∈K ⊂ N such that

‖v0(h) − 1‖2 < ε/2, h ∈ F

Adv0(h)θ(h)(e0
g) = e0

sK(h)(g), h ∈ F, g ∈ K

‖x −
∑

g

e0
gxe0

g‖2 < ε/2, x ∈ X.

Let {wg}g∈K be partial isometries such that wgθ(g)(e0
e)w

∗
g = e0

g, g ∈ K. For any

δ0 > 0, there exists a finite dimensional factor B0 ⊂ e0
eNe0

e such that if h ∈ F, g ∈
K, and hg ∈ K then ‖(Adwhgθ(hg))−1Adv0(h)θ(h)Adwgθ(g)(x) − x‖2 < δ0/2 for
all x ∈ B′

0 ∩ e0
eNe0

e, ‖x‖ ≤ 1. This is possible because θ is a 2-cocycle action, so
that any product θ(h)θ(g) differs from θ(hg) by an inner automorphism and also
because N (and thus e0

eNe0
e) can be approximated by finite dimensional subfactors.

Let Y = {(Adwgθ(g))−1(e0
gxe0

g)|x ∈ X, g ∈ K} ⊂ e0
eMe0

e. Since the inclusion

B′
0 ∩ e0

eNe0
e ⊂ B′

0 ∩ e0
eMe0

e has the generating property, it follows that there exist
some i and some choice of the tunnel up to i for this inclusion, coming from some

tunnel M
e0
0

⊃ N
e0
−1

⊃ N0
1 ⊃ · · · ⊃ N0

i , with e0
e ∈ N0

i , B0 ⊂ e0
eN

0
i e0

e, such that∑
‖EB0∨(e0

eN ′e0
e∩e0

eMe0
e)(y) − y‖2

2 < 3ε2/4, the sum being taken over all y in Y .

Finally, let e−j
def
=
∑

g∈K wgθ(g)(e0
−je

0
e)w

∗
g , 0 ≤ j ≤ i−1. If B

def
= ΣgAdwgθ(g)(B0)

then e0
g ∈ Ni, B ⊂ Ni and for each x ∈ X we have

‖ENi∨(N ′

i
∩M)(x) − x‖2

2 ≤ ‖EΣgBe0
g∨N ′

i
∩M (x) − x‖2

2

=
∑

g

‖EBe0
g∨(N ′

i
∩M)e0

g
(e0

gxe0
g) − e0

gxe0
g‖

2
2 + ‖x −

∑

g

e0
gxe0

g‖
2
2

≤
∑

g

‖EB0∨(N0
i ∩M)e0

e
((Adwgθ(g))−1(e0

gxe0
g))

− (Adwgθ(g))−1(e0
gxe0

g)‖
2
2 + (ε/2)2 < ε2.

This proves that the tunnel M e0 ⊃ Ne−1 ⊃ N1 ⊃ · · ·
e−i+1

⊃ Ni−1 ⊃ Ni satisfies (4).
Next, due to the choice of B0, we have that Adv0(h)θ(h)Adwgθ(g)|e0

eB′

0
∩Me0

e

differs from Adwhgθ(hg)|e0
eB′

0
∩Me0

e
by an inner automorphism Adu′

h,g with u′
h,g ∈

e0
hgAdwhgθ(hg)(B′

0 ∩ N)e0
hg, ‖u

′
h,g − 1‖2 < f(δ0) and f(δ0) → 0 as δ0 → 0.

We now let u′
h = Σgu

′
h,g, with the sum taken over g ∈ K ′ = ∩h∈F h−1K and

define uh = u′
h + u′′

h, where u′′
h = Σu′′

h,g the sum being taken over all g ∈ K \ K ′,

with u′′
h,g satisfying Adwhgθ(hg)(e0

−j(e
0
e) = Adu′′

h,gAdwgθ(g)(e0
−je

0
e). Then v(h) =
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uhv0(h) is a unitary element in N that satisfies (1) and (3). Since uh lies in
{e0

g}
′
g∈K ∩ N , condition (2) will still be satisfied, since v0(h) satisfies it. Q.E.D.

3.5. Proof of Theorem 3.1. Let {xn}n be a dense sequence (in the norm ‖ ‖2) in
M . Let Fn be an increasing sequence of finite subsets of G such that ∪Fn = G.

We construct recursively an increasing sequence of integers 0 = i0 < i1 < i2 <

· · · < ik < · · · , for each k a choice of the tunnel
e−ik−1

⊃ Nik−1
⊃ · · ·

e−ik+1

⊃ Nik−1 ⊃
Nik

, finite dimensional subfactors {Bk}k≥0, with Bk ⊂ ∩jNj , [Bk, Bk′] = 0, k 6= k′,
and unitary elements {vk(h)}k≥0, h ∈ G, with vk(h) ∈ (B0∨· · ·∨Bk−1)

′∩Nik
, and

satisfying:

(1) ‖xj − EB0∨B1∨···∨Bk∨(N ′

ik
∩M)(xj)‖2 < 2−k, j ≤ k.

(2) Ad(vk(h) . . . v0(h))θ(h)(e−j) = e−j , 0 ≤ ik, h ∈ G.
(3) Ad(vk(h) . . . v0(h))θ(h)(Bk) = Bk, h ∈ G with Bk ≃ B(ℓ2(Kk))⊗Mnk×nk

(C),
where Kk = K(Fk, 2−k−2|Fk|−1) and Ad(vk(h) . . . v0(h))θ(h)ek

g = ek
sKk

(h)(g),

for h ∈ Fk, {ek
g}g∈Kk

being the diagonal of B(ℓ2(Kk)).

(4) ‖vk(h) − 1‖2 < 2−k, h ∈ Fk.

Assume we made this construction up to some k ≥ 0. We claim that there exist

ε > 0 and a finite subset X ⊂ (B0 ∨ · · · ∨ Bk)′ ∩ Nik−1 such that if Nik−1

e−ik

⊃

Nik
⊃ · · ·

e−m+1

⊃ Nm−1 ⊃ Nm is a continuation of the tunnel satisfying B =
B0∨· · ·∨Bk ⊂ Nm and X ⊂

ε
N ′

m∩Nik−1, then xj ∈
2−k−2

Nm∨(N ′
m∩M), ∀j ≤ k+1.

To see this, we argue exactly as in the proof of Theorem 2.1. Thus, we take
{mj}j to be an orthonormal basis of Nik−1 over Nik−1 and note that one can
construct an orthonormal basis {mk

i }i of M over Nik
as words in the mj ’s and in

e0, e−1, . . . , e−ik+1 (see [PiPo1,2]). Writing x1, . . . , xk+1 in the basis {mk
i }i of M

over Nik
we obtain a finite set X ⊂ Nik

which for suitably small ε will yield the
estimates.

We can thus apply Lemma 3.4 to the inclusion B′∩Nik
⊂ B′∩Nik−1, to the above

ε > 0 and X ⊂ B′∩Nik−1, to the automorphisms {Ad(vk(h) . . . v0(h))θ(h)|B′∩Nik−1

}

and to the finite set Fk+1 ⊂ G, to get a continuation of the tunnel up to some

ik+1, . . .Nik−1

e−ik

⊃ Nik
⊃ . . .

e−ik+1+1

⊃ Nik+1−1 ⊃ Nik+1
, with B ⊂ Nik+1

, unitary

elements v0
k+1(h) ∈ B′∩Nik

and a partition of the unity {ek+1
g }g∈Kk+1

in B′∩Nik+1

indexed by the Folner set Kk+1 = K(Fk+1, |Fk+1|−12−k−3), such that

(1′) ‖E((B0∨...∨Bk)′∩Nik+1
∨(N ′

ik+1
∩Nkk−1)(x) − x‖2 < ε, x ∈ X .

(2′) Adv0
k+1(h)vk(h) . . . v0(h)θ(h)(e−j) = e−j , ik ≤ j < ik+1, h ∈ G.

(3′) Adv0
k+1(h)vk(h) . . . v0(h)θ(h)(ek+1

g ) = esKk+1
(h)(g), h ∈ Fk+1, g ∈ Kk+1.

(4′) ‖v′
k+1(h) − 1‖2 < 2−12−k−1, h ∈ Fk+1.

Indeed, in order to be able to apply Lemma 3.4 we only need to show that
Ad(vk(h) . . . v0(h))
θ(h), h /∈ e, are all properly outer when restricted to both Nik−1 and Nik

. To
see this we only need to show that if σ ∈ Aut(M, N), σ, σ|N are properly outer,

M
e0

⊃ N ⊃ N1 is a downward basic construction and v ∈ N is a unitary such that
Advσ(e0) = e0, Advσ(N1) = N1, then Advσ|N1

is also properly outer. But Advσ
properly outer on M and Advσ(e0) = e0 implies Advσ|e0Me0

properly outer and
since e0Me0 = N1e0 ≃ N1, it follows that Advσ|N1

is also properly outer.
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Now, since Nik+1
is hyperfinite, there exists a finite dimensional factor B0

k+1 ⊂

(B0 ∨ . . . ∨ Bk)′ ∩ Nik+1
containing the projections {ek+1

g }g∈Kk+1
such that

(1′′) ‖EB0
k+1

∨(N ′

ik+1
∩Nik−1)(x) − x‖2 < ε, x ∈ X .

But then, by Corollary 3.2, there exist a finite dimensional subfactor Bk+1 ⊂
B′∩Nik+1

containing B0
k+1 and unitary elements v1

k+1(h) ∈ B′∩Nik+1
, h ∈ G, such

that

(3′′) Adv1
k+1(h)v0

k+1(h)θ(h)(Bk+1) = Bk+1, h ∈ G.

(4′′) ‖v1
k+1(h) − 1‖2 < 2−k−2, h ∈ Fk+1.

Thus, if we define vk+1(h) = v1
k+1(h)v0

k+1(h) then, by the above properties of
X, ε, it follows that all the conditions (1) − (4) are satisfied at step k + 1.

We now let R = ∪k(N ′
k ∩ M), S = ∪k(N ′

k ∩ N), R0 = B0 ∨ B1 ∨ . . . , v(h) =
limk(vk(h) . . . v0(h)), σ0(h) = θ(h)|R0

, h ∈ G.

Condition (1) implies that M = R∨R0 ≃ R⊗R0. Condition (4) shows that v(h)
are all unitary elements in N . Then (2) shows that Adv(h)θ(h) restricted to S ⊂ R
(which is isomorphic to Nst ⊂ M st) is nothing but θst(h). Finally, by (3), we have
that Adv(h)θ(h)(R0) = R0 and also that Adv(h)θ(h) is of the form θ0⊗θ1, for some
splitting R0 = R ⊗ R1, with θ0 a model properly outer cocycle action of G on the
hyperfinite II1 factor R, as in Section 3.2. Thus, Adv(h)θ(h)R0

, h ∈ G, is a cocycle
action of G on R0. But then by Ocneanu’s theorem in [Oc], Adv(h)θ(h)|R0

is the
same as the chosen action σ0 on R0, after perturbing if necessary with unitaries in
R0. Q.E.D.
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