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ON A CLASS OF TYPE II, FACTORS
WITH BETTI NUMBERS INVARIANTS

SORIN POPA

University of California, Los Angeles

ABSTRACT. We prove that a type II) factor M has at most one Cartan subalgebra

A satisfying a combination of rigidity and compact approximation properties. .In
particular, this shows that the Betfl numbers of A C M, as defined in ([G2]), are
isomorphism invariants for the factors M having such Cartan subalgebras. Examples

of factors with this property are the group measure space algebras associated with
certain actions of the free groups with finitely many generators omn the probability
space, for which the Betti numbers are calculated in ([G2]). As a consequence, we
obtain the first examples of type 17 factors M with trivial fundamental group and
solve a problem formulated in ([K1]}. Also, our results bring some insight into a
recent problem of A. Connes.

0. INTRODUCTION.

We consider in this paper the class of type 1L factors M having maximal
abelian von Neumann subalgebras A with normalizer acting ergodically on it and
so that A ¢ M satisfies both a rigidity property {in the spirit of Kazhdan and
Connes-Jones, [Kaz], [CJ1]) and a compact approximation property (in the spirit
of Haagerup, [H]). We call HT the class of all these factors.

We prove that if M € H7, then any two such maximal abelian subalgebras of M
are conjugate by a unitary element of M. More generally, any isomorphism between
factors M € HT must carry the corresponding maximal abelian s-subalgebras A
one onto the other {modulo perturbation by an inner automorphism). As a result,
for factors M & HT, any isomorphism invariant for the inclusion A C M becomes
an isomorphism invariant for M.
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2 SORIN POPA

In particular, invariants for the measure-preserving countable orbit equivalence
relation Ry induced on the standard probability space (X, u) (for some identifica-
tion A o~ L°°(X, u)) by the normalizer of A in M, are invariants for M € HT.

In a recent paper, D. Gaboriau introduced a notion of £* Betti numbers for ar-
bitrary countable orbit equivalence relations R, {£.(R)}n>0. starting from ideas
of Atiyah ([A]) and Connes ([C4]), which generalizes the notion of Betti numbers
for measurable foliations in {[C4]). This notion also generalizes the more combi-
natorial £2 Betti numbers for discrete groups of Cheeger-Gromov ([ChGr}), 8, (G),
for which he shows that 8,(G) = S,(Rg), for any countable equivalence relation
Re implemented by a free, ergodic, measure-preserving action of the group G on
a standard probability space (X, u) ([G2]).

We define the Betti numbers {5, (M)},>0 of a factor M in the class HT as the
Betti £2- numbers of the corresponding orbit equivalence relation Ras, {Bn(Rar) }n-

Some of the general properties of the Betti numbers for countable equivalence -
relations proved in ([G2]) easily entail similar properties for the Betti numbers
of the factors in the class H7. For instance, noticing that H7T is closed under
amplifications by arbitrary t > 0, it follows from ([G2]) that 8, (M) = ,(M)/t,Vn.
Also, HT is closed under tensor products and a Kiinneth type formula holds for
Bn(My ® M) in terms of the Betti numbers for My, My € HT, as a result of the
similar formula for equivalence relations in Gaboriau's paper ({G2]).

Our main example of a factor in the class HT is the group von Neumann algebra
L{G) associated with G = Z* x SL(2,Z), regarded as the group-measure space
construction L>(T?, p) = Ao C Ag %o SL(2, Z). More generally, we consider cross
product factors of the form A x, SL{2,7Z) with A abelian and ¢ a product of the
action op with other ergodic actions of SL(2,Z). By a recent result of G. Hjorth
([Hj]), based on the notion and results on tree-ability in ([G1]), these factors are
in fact amplifications of group-measure space factors of the form L™ (X, u) x Fy,
where F,, is the free group on n generators, n = 2,3, ....

To prove that M belongs to the class H7", with 4 its “distinguished” maximal
abelian subalgebra, we use Kazhdan’s rigidity of the inclusion Z* C Z?x SL(2,Z)
and Haagerup’s compact approximation property of SL(2,Z). Note that in this
case the algebra A is in fact a Cartan subalgebra of M, i.e., the normalizer of 4 in
M generates all the von Neumann algebra M.

Since the orbit equivalence relation Rs implemented by SL(2,Z) on A has non-
trivial Betti numbers (cf. [G1, 2]), it follows that the factors M = A x, SL{2,Z)
have non-trivial Betti numbers.

Other examples of factors in the class HT are obtained by taking discrete groups
T that can be embedded as lattices in SU(n, 1) or SO(n, 1) and suitable actions o
of such T’ on abelian von Neumann algebras A ~ L(Z¥). Indeed, these groups I
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have the Haagerup approximation property by ([dCaH], [CowH]) and their action
on A can be taken to be rigid by ([Vall).

As a consequence of these considerations, we are able to answer a nurmber of open
questions in the theory of type II; factors. Thus, the factors M = A X, SL(2,7Z)
(more generally, A, with T', o as above) provide the first class of type 1I; factors
with trivial fundamental group, i.e. F(M) def {t > 0| M'~ M} = {1}. Indeed,
we mentioned that £, (M) = B.(M)/t,VYn, so that if £,(M) # 0 for some n then
F(M) = {1}.

In particular, the factors M are not isomorphic to the algebra of n by n matrices
over M, for any n > 2 {(see Kadison’s Problem 3 in [K1]). Also, through appropriate
choice of the action o. we obtain factors of the form M X, SL(2,Z) having the
property I' of Murray and von Neumann, yet trivial fundamental group.

The fundamental group F (M) of a I; factor M was defined by Murray and von
Neumann in the early 40's, in connection with their notion of continuous dimension.
They noticed that F(M) = R} when M is isomorphic to the hyperfinite type 113
factor R, and more generally when M “splits off” R.

The first. examples of type II; factors M with F(M) # R}, and the first oc-
curence of rigidity in the von Neumann algebra context, were discovered by Connes
in (IC1]). He proved that if G is an infinite conjugacy class discrete group with the
property T of Kazhdan then its group von Neumann algebra M = L(G) is a type
11, factor with countable fundamental group. It was then proved in ([Pol}) that this
is still the case for factors M which contain some irreducible copy of L{G). It was
also shown that there exist type 11; factors M with F(M) countable and containing
any presribed countable set of numbers ([Gol], {Po3, 5]). However, the fundamental
group F(M) could never be computed exactly, in any of these examples.

In fact, more than proving that F(M) = {1} for M = A », SL(2,Z), the
calculation of the Betti numbers shows that M? @ M. ® M'" is isomorphic to
M @M*®2... @ M*®n if and only if n = m and t1tg...t, = $152...8,. In particular, all
tensor powers of M, M®" n = 2,3, ..., are mutually non-isomorphic. (N.B. The first
examples of factors satisfying this latter property were constructed in [{C4]; another
class of examples was obtained in [CowH]). Moreover, since M* = L (X, p) Ty, for
t = (12(n—1))""* (cf. [Hj]), it follows that there exists a free ergodic action oy, of Fp,
on the standard probability space (X, p) such that M, = L=(X, u) %5, Fn satisfy
My, @ ... My, ~ M, ®...® M, if and only if n = m and kiko.. .kn = lilo.. .
Moreover, in case n = m, the factors are stably isomorphic for any choice of ki, 1.
Qimnilar results hold true in the case of lattices T' in SO(n,1) or in SU(n, 1). These
classes of factors are non- stably equivalent, for different values of n.

We also prove that the factors M = A x, SL(2,Z), as well as any tensor product
of amplifications of M, have only subfactors of integer Jones index, if finite. In
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particular, they have no subfactors with values in the Jones series 4cos®w/n. except
for n =3.4,6.

As for the “size” of HT, we mention that we do not know of other examples
than the ones mentioned above, namely the factors M of the form A x G, with
G = SL{2,Z) or G a lattice in SU{(n,1).SO(n, 1), their amplifications, tensor
products and certain cross-products. The class HT does not contain the hyperfinite
type II; factor. The factors M € HT cannot contain property T factors and cannot
be embedded into free group factors (due to arguments similar to [CJ1]).

Besides these concrete applications, our results give a partial answer to a chal-
lenging problem recently raised by Alain Connes. on defining a notion of Betti
numbers for type 11 factors, from similar conceptual grounds as in the case of or-
bit equivalence relations (simplicial structure, L?-cohomology, etc). In this respect,
our definition is only for the special class of factors H7T and falls short of being

.conceptual in the above sense. Yet-it already produces significant-applications-and -

emphasizes phenomena that could be used as a test case for the general problem.

‘The paper is organized as follows: In Section 1 we prove a key perturbation result
for maximal abelian von Neumann subalgebras (hereafter abbreviated as m.a.s.a.)
in type II; factors. The proof uses Christensen’s set-up and techniques ([Chr]),
and a careful analysis of the geometry of projections. In Section 2 we consider a
relative version of Haagerup’s compact approximation property. In Section 3 we use
the Connes-Jones idea of translating rigidity in terms of properties of completely
positive maps ([CJ1]), to define the notion of rigid inclusion (or property T pair)
of algebras. by analogy with the case of groups.

In Section 4 we define the class HT of factors M having m.a.s.a.’s A with the
property that A C M is rigid and M has the Haagerup property relative to A. We
prove the main technical result of the paper, showing that such m.a.s.a.’s are unique.
We also prove the stability of H7T with respect to various operations (amplification,
tensor product, finite index induction/restriction, etc). In Section 5 we construct
examples of such factors. In Section 6 we define the Betti numbers {3,(M)}, for
M € HT and use ([G2]) to deduce various properties of this invariant. We end
with applications, as well as some remarks and open questions.

Acknowledgement. It is a pleasure for me to thank Alain Connes, Uffe Haagerup,
Dima Shlyakhtenko and Alain Valette for many fruitful discussions and invaluable
comments, as well as Damien Gaboriau for keeping me informed on his beautiful
recent results. I am very greatful to MSRI and the organizers of the Operator
Algebra year 2000-2001. for their hospitality and for a most stimulating atmosphere.

1. A PERTURBATION RESULT.

In this Section we prove a perturbation result concerning abelian von Neumann
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subalgebras of type II; factors. This result will play a key role in the proof of
Theoremn 4.1, which is the main technical result in this paper.

The proof uses the perturbation techniques from [Chr}, the “pull down” identity
{[PiPo]) and a careful handling of the geometry of projections, including a result
from ({K2}). 7

Since we will also use it in the next Section, let us recall from ([Chr], [J1},
[Po2]) some well known facts about the basic construction for an inclusion of a von
Neumann algebra B into a type II; factor N. Thus, we denote by (N, B) the von
Neumann algebra generated in B(L*(N.7)) by N (regarded as the algebra of left
multiplication operators by elements in N ) and by the orthogonal projection ep of
L2(M,T) onto L*(B. ).

Since egrep = Eg(x)ep,Vz € N, where Ep is the unique 7-preserving con-
ditional expectation of N onto B, it {ollows that spNegNN is a *-algebra with
support equal to 1 in B(LZ(N,7)). Thus. (N, BY = §p"{zepy | z,y € N} and
ep{N,B,)egp = Bep.

One can also readily see that if J denotes the canonical conjugation on the
Hilbert space L2(N, ), then (N, B) = JBJ'. This shows in particular that (N, B)
is semifinite.

We endow (N, B) with the unique normal semifinite faithful trace T'r satisfying
Tr(zepy) = 7(zy),Vz,y € N. Note that there exists a unique N bilinear map @
from spNegN ¢ (N, B) into N satisfying ®(zey) = zy, Yo,y € N,and To® =
Tr. The map ® extends uniquely to a N-bilinear map from L'({N, B),Tr) onto
LY(N,7), still denoted ®. This bilinear map satisfies the “pull down” identity
eX = e®(eX),vX € (N,B) (see [PiPo], or [PoT7]). Note that ®{eX) actually
belongs to L2(N,7) ¢ L}N,1), for X € (N, B).

Let now Uy C N be a subgroup of unitary elements and By = U]} the von
Neumann algebra it generates. If b is an element in (N, B) with Tr(b*b) < oo then
we denote by Ky, (b) = @V {uobuf | uo € Up}. Note that Ky, (b) is also contained
in the Hilbert space L2({N, B),T'r), where it is still weakly closed.

Let h = hy,(b) € Ku(b) be the unique element of minimal norm || {2, 7r in
K, (). Since uKy,(b)u™ = Ky,(b) and luhu*|larr = lBll2rr Yu € Uo, by the
uniqueness of h it follows that whu™ = h,Wu € Uy. Thus h € Uy N (N,B) =
B, N (N, B). Moreover, by the definitions, we see that f 0 <b<1then0< k<1
for all k € Ky (b).

1.1. Theorem. Assume B is a mazimal abelian x-subalgebra in N and Bp is an
abelian von Neumann subalgebra such that Boy & BL NN is abelian (thus Tnazimal
abelian). Then the following conditions are equivalent:

1°. The element hy,(ep), of minimal norm || {27 @ Ky, (ep), is non-zere and
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belongs to By (N, B).

2°. There exists a non-zero projection eqg € By M (N, B) with Tr{ep) < 0.

3°. There exist non-zero praojections qo € BN N, ¢ € B and a partial isometry
v € N such that v*v = qo, v0* = ¢ and vByv* C Bq.

Proof. 3° == 1°. If v satisfies condition 3° then Bygp is contained in v* Bv. Thus,
ep = v egv belongs to B{ N (N, B) and has finite trace.

19 == 2° Let ¢y be the spectral projection of h = hy,{ep) corresponding to
the interval (||h}|/2.00). Then eq % 0 and h > 2eq. Thus,

Trieg) < 2Tr(h) < 2Tr(ep) < .

Thus, eg is a finite projection in Ny = (N, B} and ¢p commutes with By (since
h does). _
2% == 3° Since Byeg is abelian, it is contained in a maximal abelian subalgebra,
B} of GON 1€g.

By a result of Kadison ([K2]), By contains a non-zero abelian projection e; of
N1 (i.e., e3Nje; is abelian). Since ep has central valued (semifinite) trace equal to
1 (it is also a maximal abelian projection in Nj), it follows that e majorizes e;.

Let V € N be a partial isometry such that V*V = e; < ey and VV* < ep.
Moreover V Bie;V* is a subalgebra of egN1eg = Be. Since e; commutes with B,
it follows that if we denote by f’' the maximal projection in By such that fle; =0
and let fo = 1 — f’, then there exists a unique isomorphism ¢ from Bgfy into B
such that ¢(bleg = VBV*.Vb € Bof. Let f = ¢(fo) € B.

It follows that ¢(blegV = egVbh,Vb € Byfy. By applying © to both sides and
denoting a the square integrable operator a = ®(eV') € L*(N,7), it follows that
w(b)a = ab,Vb € By. Since ea = eV =V, it follows that a = 0.

By the usual trick, if we denote by wg € N the unique partial isometry in the
polar decomposition of a such that the right supports of a and vy coincide, then
Po = vgug belongs to the algebra Bj M N = Bgy, which is abelian by hypothesis,
p = voug belongs to (¢(Bo)f) N FNf and ¢(b)vg = veb, Vb € By fo.

But By = B} N N maximal abelian in N implies Bgyfo maximal abelian in
foIN fo. Noreover, since vgBouy = ¢(Bqg)p, if we denote By = vgBg1vg, then by
spatiality we have

.811 = UOBQI'US — 'UQ(B{) M N)’US

= vgBovy M pNp = (By)p’ N pNp.

Thus, the commutant of ¢(Bg)p is abelian. Since any element in pBp commutes
with ¢(Bg)p. it follows that pBp C (@(Bo)p) N pNp = By C (@(Bo)f) N fNF.
Moreover, (p(w(Bo)f) N fNf)p = pBp C {¢(Bo)p)' N"pNp = Bu.
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It follows that if P, denotes the von Neumann algebra generated by p and
(0(Bo)fY 1 fNf > Bf inside fN/, then pPip = (p(¢(Bo)f)' N fNf)p = Bus
is abelian.

Thus, p is an abelian projection in P;. Since P is a finite von Neumann algebra,
there exists a central projection z; of P, under the central support of pin Py, such
that pz; ¢ 0 and such that Pyz; is homogeneous of type n, for some n > 1. Note
that the center of P; is included in Bf the latter being maximal abelian in fNf,
thus in Py C fNf. Thus, =1 € Bf.

Now, since pz; has central trace equal to 1/n in Prz; and Bz Is maximal abelian
in Pz, it follows that there exists a projection fi11 € B f such that f1; is equivalent
to pyrz; in Pyz; (see [K2]). Let vy € Pizy be such that vyv] = fi1,viv1 = p121.
Since pyz; is abelian in Py, f11 is also abelian, thus f11P1f11 = Bfi1. This implies
that v1pz1(@(B) N fNf))pzivy = Bfi1.

“Finally, since pz; < p, @(Bg)p="vgBovy and pz; belongs to o(Bg )y it-folows - -
that vipzivg € Bj. This shows that if we denote v = wyvg. then v is a partial
isometry satsifying v*v € B, vv* = f11 € B and vByv™ C Bvv™. Q.ED.

In Section 4 we will in fact need a consequence of Theorem 1.1. To state it,
recall from ([D1]) that a maximal abelian *-subalgebra (abreviated m.a.s.a.) B
of a von Neumann factor N is called semiregular if the set of unitaries of N that
normalize B, 1.e., N(B) = {u € U(N) | uBu* = B}, generate a factor, equivalently,
N(BYNN = C. Also, B is called regular if this normalizer generetes all the ambient
factor N. Such regular MASA’s were later called Cartan subalgebras in ([FM}), a
terminology that seems to have prevailed and which we will therefore adopt.

1.2. Corollary. Let N be an arbitrary type I, factor. Let B be a semiregular
m.a.s.a. of N and By C N an abelian von Neumann subalgebra such that B{NN is a
semiregular m.a.s.a. of N. If B, Bq satisfy the equivelent conditions in Theorem 1.1
then there exists a unitary elementu € N such that u(ByNN)u® = B. In particular,
this is the case if B, Byn N are Cartan subalgebras of N.

Proof. By Theorem 1.1 there exists a non-zero partial isometry v € N such that
v*v € ByN N,vv* € B,vBow* = Bov*. Thus, v(ByN N)v* = vBogv*’ M vv* Nvv*
contains Bov* Muv* Nuv* = Buv*. Since both are maximal abelian, we get v(ByN
N)v* = Buov*.

Moreover, by cutting v from the right with a smaller projection in By N, we
may clearly assume 7(vo*) = 1/n for some integer n.

Since B, By N N are seriregular, there exist partial isometries vy, U2, ..., U, te-
spectively ws, ws, ..., w, in the normalizing groupoids of B respectively By NN
such that X;v,v] = 1,ijjw;-‘ = 1 and vv; = v'v,wiw; = vu*, Vi, j. But then

j
w = Taw;vvd is a unitary element and u(Bg N N)u* = B. Q.E.D.
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2. Revarive HAAGERUP PROPERTY.

Recall that a type 11} factor N has Haagerup’s compact approximation property
(property H hereafter) if there exists a sequence of compact completely positive,
unital, trace preserving maps @, : N — N such that

Hm {|®,(z) — z|| = 0,Vz € N.
TL— OO0

In this paper we need to introduce a relative version of this property. To this
end, let us first note the following:

2.1. Lemma. Let N be a type II; factor and B C N a von Neumann subalgebra.
Let @ : N — N be a unital, trace preserving, completely positive map satisfying

7 ®(byby) = b1 ®(x)be, YV € N, by, by € B.

Then there exists a unique bounded operator Ty on the Hilbert space L*(N, ) such
that Te{x) = ®{z), for x € N. Moreover this operator lies in B’ N (N, B).

Proof. By Kadison’s inequality, for z € M we have

(Te(2), T (%)) = 7((2)"(z)) < 7(®(z*z)) = 7(z*x), Yz € N.

Thus, {|Tsi] < 1.

If b € B is regarded as operator of left multiplication by & on L*(N, 1), then we
have
bTg(E) = b®(x) = ®(bx) = Te(bZ).

Thus, Tg € B/,
Similarily,
JoJ(Te(2)) = ®lz)b = ®(xb) = Te(JbJ(Z))

showing that Ty € JBJ = (N, B). Q.E.D.
Note that if we take @ to be the r-preserving conditional expectation Eg, of N
onto B, then Ty is the orthogonal projection ep of L2(N, 7). The next Lemma,
which is an immediate extension of a well known result of Haagerup, gives examples
of B-bimodular completely positive maps in the case of cross product inclusions.

2.2. Lemma. Let G be a discrete group and o an action of G on the finite von
Neumann algebra (B, r) by T-preserving automorphisms. Let N = B x, G. Let
@ : G — C be a positive definite function on G with p(e) = 1. Define M, on N
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by My(Egbguy) = Loo(g)byuig- Then M, is a unital, trace preseving, completely
positive map and it is B-bilinear.

Proof. The proof of the case B = C of (1.1 in [H]) works exactly the same in this
case. Q.E.D.
We can now state the cross product version of Haagerup’s result. We will use
the following:
2.3. Definition. 1°. A discrete group G has the property H if there exist positive
definite functions ¢, on G such that ¢,(e) =1, gli}n;o on(g) = 0,¥n, and

lim ¢n{g) = 1,Yg € G.
Ty OC

It should be noted that Gromov calls such groups G a-T-menable.

2°. Let N be a type II; factor and B C N a von Neumann subalgebra. We say
~ that N has the property H relative to B, or that B C N has the property H, if there
exists a sequence of unital, completely positive, trace preserving maps ¢, on N,
with (I’(blﬂi‘bj) = blq)(iﬂ)bz,v.’l? € N,by, by € B, such that

lim || @, (z) —zlle =0,Vz € M
n—red

and such that all the corresponding operators T, defined in 2.1 belong to the ideal
of compact operators of the semifinite von Neumann algebra (N, B).

Note that, following the above remark, one could also use the terminology: The
factor N is a-T-menable relative to B.

2.4. Proposition. Let B, G, o, N be like in Lemma 2.2. Then N has the property
H relative to B if and only if G has the property H.

Proof. Straighforward. Q.E.D.

Let us recall some well known results from ([H], [dCaH], [CowH]), that we need
later:

2.5. Proposition. Let B, G, o, N be like in Lemma 2.2. Assume G is one of the
following:

1°. G = SL(2,Z) or G =Ty, for some 2 < n < 00,

2°. (G is a discrete subgroup of SO(n,1), for some n > 2.

3°. G is a discrete subgroup of SU(n,1}, for some n > 2.

4°. G = G, sy Go for some discrete groups Gy, G2 with the property H, with
H C Gy,H C Gy a common subgroup.

Then B C N has the relative property H.

Proof. Part 1° is a result from ([H]), then 2° is in ([dCaH]) and 3° in ({CowH]}).
Part 4° is also well known. Q.E.D.
We will aiso need the following simple observations:
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2.6. Proposition. 1°. If B C N has the property H and p € B is a projection,
then pBp C pNp has the property H.

2°. If Bo € Ny and By C Ny have the property H then By ® By C Np ©® N1 has
the property H.

3°. If B C N has the property H and B C Ng C N, then B C Ny has the
property H.

4°, If B C By C N and B C By has a finite orthonormal basis then By C N
has H implies B ¢ N has H.

Proof. Immediate by the definitions. Q.E.D.

3. RIGID EMBEDDINGS.

In this section we consider a notion.of rigid m.a.s.a., and more generally of a rigid
embedding of a von Newmann algebra into a type I1; factor, inspired by Kazhdan’s
example of the embedding Z? C Z? x SL(2,Z). Thus, our definition will be the
operator algebraic version of the de la Harpe-Valette notion of property T for pairs
of groups ([dIHVa]), in the same spirit as the Connes-Jones definition of property
T for von Neumann algebras ([CJ1]). To this end, we use Connes’ correspondences
as a set-up, like in ([CJ1]).

First recall the definition for inclusions of groups:

3.1 Definition. An embedding of discrete groups H C G is called rigid if there
exist finitely many elements g1, g2. ..., gn € G and € > 0, such that if 7 : G — U(H)
is a unitary representation of the group G on the Hilbert space H with a unit vector
£ € H such that ||w(g;)€ — &|| < €,¥i, then there exists a non-zero vector § € #H
such that w(h)& = &, ¥h € H. Note that in {[dHVa]}, the terminology used is: the
pair (G, H) has the property T.

The following equivalent characterisation of the condition 3.1 is well known and
thus we omit the proof:

3.2. Lemma. H C G satisfies condition 3.1 if and only if it satisfies the following:
There exist K > 1, ¢1,92,-..9n € G and g9 > 0, such that if 7 : G — U(H) is a
unitary representotion with a unil vector £ € H satisfying ||7(g:)¢ — €| < 8, V4, for
some 0 < €, then |n(h)§ ~ &|| < K§,Vh € H.

3.3. Definition. Let N be a finite von Neumann algebra and B ¢ N a von
Neumann subalgebra. We say that the embedding B C N is rigid (or that the pair
{N, B) has the property T) if there exists a finite subset z1,x9,...,2, € Nand e > 0
such that if H is a N bimodule with £ € H a unit vector such that ||z;£ —£x;|| < &, V4,
then there exist a non-zero vector & € H such that b = b, Vb € B.
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Note that when B = N this notion coincides with the notion of property T for
von Neumann algebras of Connes and Jones in ([CJ1]).

3.4. Remark. In ([Pol]) we defined a notion of relative property T for inclusions
B C N (or property T of N relative to B) which is complementary to the one above.
This notion was also considered independently by Anantharam-Delaroche in ([A-
De)). In the case of groups, the notion corresponds to the situation in which H C G
is so that G is the semi-direct product of the group H by a property T group Go. It
should be noted that both the notion 3.3 considered here and the notion considered
in ([Pol]) are in some sense “relative property T7 for an inclusion B C N, but
while the notion in ([Pol]) means “N has the property T relative to B”, the notion
considered in this paper is a “property T of B relative to its embedding into N”.

3.5. Lemma. H C G is rigid if and only if L(H) C L(G) is rigid.
Proof. The proof is identical to the proof of the case H = G in ([CJ1]) and of the

more general such statements in ([Pol]). QED.

3.6. Lemma. The following conditions are equivalent:

1°. By C N is rigid.

2°. Azq. Loy ..., p € N,& > 0, K > 1, such that if § > 0 and (H,§) is a Hilbert
space with a unit vector satisfying ||x:§ — &zl < 6,Vi then there exists a vector
59 e H such that ngo - Sll S Ké and b&) == f@b,Vb €& BO.

3°. Jx1,29,....,on € Nye > 0,K > 1, such that if § > 0 and N — N isa
normal, completely positive map with 7(®(1)) = 1 and ||®(x;) — xill2 < 0,Vi, then
| ®(b) — blla < K6,¥b € By, {|b]| < 1.

Proof. 1° == 2°. The proof is identical to the proof of 4.1.5 in ({Pol]).

2° = 3°. By using the equivalence between the bimodules and completely
positive maps (Section 1.2 in [Pol]), this becomes a tautology (see also 4.2.1 in
Poll).

3° == 1°. This is immediate from (1.2 in [Pol]). Q.E.D.

The next result lists the main properties of rigid embeddings:

3.7. Proposition. 1°. If By C N is a rigid embedding and N C M then Bo C M
is a rigid embedding. Conversely, if [M : N} < oc and Bp C M is a rigid embedding
then By C N follows a rigid embedding.

2°. If Bo C N is a rigid embedding and B C By then B C N is a rigid embedding.
Conversely, if B has a finite orthonormal basis with respect to Bo and B C N isa
rigid embedding, then By C N is a rigid embedding.

3°. Let B C N and p € P(B) a projection. Assume that there exist finitely many
partial isometries v1, vy, .., Uy € N such that Lvv] =1 and viv; € pBp. Then
B C N is a rigid embedding if and only if pBp C pNp 1s a rigid embedding.
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4°. If (B; € N;) are rigid embeddings for i = 1,2 then (By ® By C Ny ® Ns) is
a rigid embedding.

Proof. 1°. The first part is trivial. The second part has the same proof as (4.1.8 in
[Pol]).
2°. The first part is trivial. The second part has same proof as (4.1.8 in [Pol]).
3°. If pBp C pNp is a rigid embedding then clearly B € N forllows rigid, by the
definitions, and by taking p to be in the critical set for B ¢ N, with ¢ sufficiently
small. The converse has the same proof as (4.1.9 in [Pol]).
4°. This has the same proof as analogue statements in ([Po1]). Q.E.D.
Let us end this Section with some examples of rigid inclusions, following from
results of Kazhdan ([Kaz]) and respectively Valette ([Va)).

3.8. Proposition. 1°. The inclusion Z* C Z* x SL(2,7Z) is rigid. Thus, L{Z*) C
L{Z? x SL(2. 7)) is a rigid embedding of algebras.

2°. For each n > 2 there exist free ergodic measure preserving actions o of Fy,
on A~ L>(X, p) such that A C A x, T, is rigid.

3°. For each n > 2 there exist lattices T in SO(n, 1) (respectively in SU(n,1))
which admit free ergodic measure preserving actions o on A ~ L°(X, u) such that
AC Ax,T is rigid.

Proof. Part 1° is a well known result in ([Kaz]). Part 2° then follows trivially from
1° and by the result of Hjorth, showing that if p € L(Z?) is a projection of trace
(12(n — 1))~ then pL{Z%)p C pL(Z? x SL(2,Z%))p is isomorphic to an inclusion
of the form 4 C A x, F,, for some appropriate free, ergodic, measure preserving
action ¢ of IF, on A ~ L*™°(X, u). The rigidity of this latter inclusion follows by
property 3.7.3°.

Part 3° is a recent result of Alain Valette ([Va]). Q.E.D.

4. HT rACTORS.

In this Section we prove the main technical result of this paper, showing that if
a type II; factor has Cartan subalgebras which have at the same time the property
H (as considered in Sec. 2) and the relative property T (considered in Sec. 3), then

such Cartan subalgebras are unique modulo conjugacy by unitary elements. More
generally, we have:

4.1. Theorem. Let N be a type 11y factor with two abelian von Neumann sub-
algebras B, By. Assume that Bl N N 1is abelian and that both B and B, N N are
semiregular m.a.s.a.’s. Assume further that N has property H relative to B and

that By C N is a rigid inclusion. Then there exists a unitary element u in N such
that wBou* C B, and thus u(B{ N N)u* = B.
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Proof. By Corollary 1.2, if we assume by contradiction that By NN and B are
not unitary conjugate, then by Theorem 1.1, 0 € Ky (ep) C N1 = (M, B). This
implies that given any finite projection f € Ny and any & > 0, there exists a unitary
element u € Uy such that Tr{fuepu®) < €. Indeed, because if for some £g > 0 we
would have Tr(fuepu®) > €o then by taking appropriate convex combinations and
weak limits, we would get that 0 = Tr(f0) > ¢¢, a contradiction,

Let @, : N — N be completely positive, unital trace preserving, B-bimodular
maps tending strongly to the identity.

By the rigidity of the embedding By C N, there exists n large enough such that
d = &, satisfies

(1) |®(v) — vli2 < 1/4,Vv € U(Bo)

On the other hand, since T isin the compact ideal space of Ny, it follows that ..

there exists a finite projection f € Nj such that
(2) ITa (1~ f)lf2 < 1/4

Let then u € Uy satisfy the condition
(3) Tr(fuepu™) < 1/4

Let {m;}; C L*(N,7) be such that mepm} = f. Equivalently, ®;L*(m;B) =
FL2(N,7). Thus, if € N C L*(N,7) then f(z) = ¥;m;Ep(mjz) and lf ()3 =
Zjlim; Ep(mjz)l[3.

1t follows that we have:

Tr{fuepu®) = Tr({(T;mjepm])uepu’) = T;7(m;Ep(mjuju®)
= %, |m;Ep(m}o)|3 = [1f (w3

Taking this into account, by (2) and (3) we have:

1 Ts (w)ll2 < (Ta (1 = HH)llz + [1F (w2

(4) < 3/4
But by (1), this implies:

lufla < [T (u)liz -+ 1®(u) — ull2
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<3/4+1/4=1.

Thus 1 = 7(uu*) < 1, a contradiction.

We conclude that the semiregular m.a.s.a’s B, B, N N must be conjugate by a
unitary element in V. Q.E.D.

4.2. Definition. Let M be a type II; factor. An HT m.a.s.a. of M is a maximal
abelian *x-subalgebra A ¢ M satisfying the conditions:

1°, The normalizer of A in M acts ergodically on A, i.e., A is a semiregular
m.a.s.a. in M,

2°. M has the property H relative to A.

3°. A has a von Neumann subalgebra Ag C A such that A; N M = A and such
that Ay C M is a rigid embedding (equivalently, the pair (M, Ao} has the property
Tj.
If a type IT; factor M has a HT m.a.s.a then we say that M is a HT factor. We
denote by HT the class of HT factors. If M € H7 and A ¢ M is a HT m.a.s.a. of
M then we say that A C M is a HT inclusion, or that (M, A) is a HT pair.

We will often cousider the case when A is a Cartan subalgebra of N (i.e., when
the normalizer of 4 in N generates all N, N(A)" = N), in which case we call A a
HT Cartan subalgebra.

The next 2 Corollaries are unmediate consequences of the Theorem 4.1:

4.3. Corollary. 1°. Any two HT m.a.s.a.’s of a type 11y factor are conjugate by
a unitary element of that factor.

2°. If (Ay € My),(As C M) are HT inclusions and 8 is an isomorphism from
M; onto M, then there exists a unitary element u € My such that uf(Aq)u* = As.

4.4. Corollary. Let A C M be a HT inclusion. Any automorphism of M can be
perturbed by an inner automorphism to an automorphism that leaves A invariant,
L.e.,

AutM/IntM = Aut(M, A)/Int(M, A).

The next two results give some basic properties of the HT inclusions, and thus
of the HT class of factors.

4.5. Theorem. 1°. If M € HT andt > 0 then M* € HT.
20, If My, Ms € HT then M, @M, € HT. More precisely, if (A; © M;),i=1,2,
are HT inclusions then (A1 @ Ay C My ® Ms) is o HT inclusion.

Proof. 1° By 2.6 (respectively 3.7) it follows that if A C M has the relative property
H (resp. is a rigid embedding) and D denotes the diagonal of My = M, x»(C) then
A® D C M, (M) has the property H (resp., is rigid). Then by 2.6 (resp. 3.7)
again, if we cut this latter inclusion by a projection in 4 ® D of trace 7(p) = t/n
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then we get that AM* has both property H and T with respect to an appropriate
“amplification” of A by t. Thus, M*is a HT factor.
2°. This follows by applying 2.6 and 3.7 again. Q.E.D.

4.6. Theorem. 1°. Let N C M be an inclusion of type 11 factors of finile Jones
index. Then N is HT if and only if M s HT.

2°. Let N C M be an irreducible inclusion of finite index. Assume both N, M
are HT factors having HT Cartan subalgebras. Then [M : N} € N,

Proof. 1°. By taking into account that the basic construction N C M C M; has
the property that M is an amplification of N, it follows that it is sufficient to prove
that if N € H7 then M € HT. Let AC N be a HT m.a.s.a. and Ag C Abea
von Neumann subalgebra such that Ag ¢ N is a rigid embedding and Az NN = A.
Then the inclusion A ¢ A’ N M has index < [M : N] by commuting squares and
it also has a finite orthonormal basis (see e.g:; {Po7]}. Thus, by Sections 2-and 3
it follows that A’ N M < M has the relative property H and is rigid. Moreover, by
(Section 1 in [Po7]), there exists a projection p € A'NM such that Ap = p(A'NM)p.
Thus, Ap follows a m.a.s.a. in pMp. Let us show that it is semiregular in pMp.

Let f € A be the support of pin A. Note that Af is semiregular in fNf.
For each u € N{Af) let o, be the automorphism of Af implemented by Adu. It
follows that sigmay{a)u = ua,Va € Af, so that o,(a)pup = pupa,Va € Af. It
follows that the (pu*pup)'/? € Ap (because Ap is maximal abelian) and that the
partial isometry u, in the polar decomposition of pup is in the normalizing groupoid
Gy of Ap in pMp. Thus, (Ap U G,)” contains the linear p(spAN)p. Thus, if there
exists a projection g € (Npup(Ap)) NpMp then ¢ commutes with p(spN)p.

Let Ny denote the von Neumann algebra generated the normalizer of A in N
and N; denote the von Neumann algebra generated by p and Ny in M. Since the
s-algebra spN(4) is weakly dense in Ny it follows from the above that the von
Neumann algebra generated by Ap and G, contains pNop and the von Neumann
algebra it generates, thus it contains pNyp, thus it is equal to pNyp.

It follows that ¢ commutes with pN;p. By (1.2 in [Po]) it follows that there
exists a projection ¢; in Ny’ N M such that ¢ = g1p. But Ny’ N M is contained in
N¢'NM, which is a finite dimensional von Neumanun algebra {because any projection
in Ny’ N M expects on N as a scalar). Let go be a minimal projection in N/ M
under ¢; and denote e = qop. Then e € Ap (the latter being maximal abelian
in pMp) and the normalizing groupoid of Ae in eMe generates a von Neumann
algebra equal to eNje, which since ¢y was minimal in Ny N M follows a factor.

Altogether, this shows that Ae is a semiregular m.a.s.a. in eMe. Alse, by
(Section 1 in [Po7]) it follows that there exists a finite dimensional subalgebra A,
is Ae such that if we denote Ag; = AgeV A; then Ay, NeMe C Ae. But by Section
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3, Age is rigid in eMe, and by applying again Section 3, it follows that Ag; is rigid
in eMe as well.

2°. Tet A C N be a HT Cartan subalgebra of N. Since the normalizer Ny (A)
leaves A’ M invariant and Ny (A4)' nM = C, it follows by (Section 1 in {Po7]) that
the center of A’ N M has uniform munber of points above each point of A and that
A" M is homogeneous of type I,. Thus, there exists a finite orthonormal basis
{m;}; of A" MM over A’ N N = A such that Ea(mjm;) = 1,Vj. By commuting
squares, En(mjm;) = 1 as well. Thus, N has integer index in the factor Ng =
NvANM.

Moreover. like in the proof of part 1°, there exists a projection e € A’ N M such
that Ae is maximal abelian in eMe and Ae is a semiregular HT m.a.s.a. in eMe.
By Theorem 4.1, it follows that Ae is conjugate to the HT Cartan subalgebra of
eMe (which exists by hypothesis). Thus, eN,e must have integer index in eMe
because it containg a Cartan subalgebra of eMe (ef. [Po&]). e QD

4.7. Corollary. IfM € HT has HT Cartan subalgebras and N C M is a subfactor
with finite Jones index then:

1°. [M : N} <4 implies [M : N} € {1,2,3,4}.

2°. For each irreducible M -bimodule H appearing in some L*(M,),n > 0, we
have dim{psHar) € N

5. EXEMPLES OF HT FACTORS.

In this section we provide several examples of HT factors. All these factors have
HT Cartan subalgebras, being obtained via the group measure space construction
using cross products by certain special groups. We begin with the simplest example:

5.1. Exemple. Let (Xg, po) be the 2-dimensional thorus, regarded as the dual
group of Z2, endowed with the Haar measure jp. Note that pg is the same as the
Lebesgue measure on Xg = T?. Let og be the action of SL(2, Z) on X implemented
by the action of SL(2,7Z) on Z2. Let (X1, #1) be a probability space with a measure
preserving ergodic transformation o7 of SL(2,Z) on it. Let ¢ = oy % o1 be the
product action on the probability space (X,p) = (Xo x X1,p0 % #1). Denote
A= L®(X,p) and M = A %, SL(2,Z). Also, denote Ag = L™(Xy, o) and
M() = A{) Herg SL(Q,Z)

Note that we can regard Ag as a subalgebra A, in which case the canonical
unitaries ugy, g € SL(2,Z) C M implementing the action o on A also implement the
action g on Ag. Thus, Mg can be viewed as a subfactor of M. Moreover, we can
view Ag as L(Z2), in which case My is identified with L(Z? » SL(2,Z)).

Given any arbitrary ergodic action oy as in 5.1, the action o and the algebras
defined above have the following properties:
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5.2. Proposition. 1°. The action o is a free, ergodic action of SL(2,Z) on the
probability space (X, p). '

2°. The action og s strongly ergodic. The action o = 0g X 01 is strongly ergodic
if and only if oy s strongly ergodic.

3°. There erist ergodic actions oy of SL{2,Z) that are not strongly ergodic.

4°. My is a non-T type I, factor and Ag C Mg is a Cartan subalgebra of M.
More generally, M is a type 11y factor, A C M is a Cartan subalgebra in M and
M is non-T if and only if oy is strongly ergodic.

5°. When regarded as a subalgebra in M, Ao satisfies A M M = A.

6°. Ag is rigid in M and M has the property H relative to A. Thus, M is a HT
factor and A C M is a HT Cartan subalgebra in M.

Proof. 1°. It is well known that a non-inner automorphism of a group G implements.
a properly outer automorphism on L(G) that preserves the canonical trace of L(G).
Thus, since each non-trivial element g in the group S L(2,Z) implements a non-inner
automorphism of Z? it follows that og(g) is properly outer Vg € SL(2,Z),9 e

Since the tensor product of any properly outer automorphism with an arbi-
trary automorphism is properly outer, it follows that o(g) is properly outer Vg €
SL(2,7),g # e, as well.

Furthermore, the action o is well known to be mixing. More precisely, it is easy
to see that given any finite set FF C SL(2.Z),e & F, there exists g € SL(2,Z) such
that gF N F = 0. But this implies not only that og is ergodiec, but also that its
tensor product with any ergodic action is still ergodic.

9°. The first part is a well known result of Klaus Schmidt ([S1}). The second
part is an immediate consequence of the proof of this result in ([S11).

3°. This is a consequence of a theorem of Connes and Weiss ([CW]), showing
that any discrete group Gy which doesn’t have the property T has a free, ergodic
but not strongly ergodic action oy on a probability space. Thus, one simply applies
this result to G = SL(2,Z), which doesn’t have the property T.

One can in fact avoid using the general result in ([CW]), by noticing that since
SL(2,7) has an infinite amenable group H as a quotient (see e.g., [dHV]), any
ergodic action of H on a non-atomic probability space {(e.g., a Bernoulli shift action
of H) composed with the quotient map G, — H gives an ergodic but not strongly
ergodic action of SL{2,Z) (note that the resulting action of SL(2,Z) is not free

though, in fact not even faithful, but freeness is not necessary in the construction
1.1).

4°. Since SL(2.7) is close to be a free group (see e.g., [dHVY]), it is easy to see
that any central sequences in a type Il factor of the form B x, SL(2,7Z) obtained
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as the cross product of a finite von Neumann algebra (B, 7) by a free, 7-preserving
action o of SL(2,Z) on it must be supported on 5.

5°. Note that if b = Egaguy € M = A ¥, SL(2,Z) commutes with all a € A
and ay # 0 for some g # e then agguy, = aguqa,Va € Ag, implying that aga =
ag04(a),Va € Ag. This in turn contradicts the fact that o, is properly outer on Ag.
Thus, all a, with g 3 0 must be equal to 0, implying that b lies in A.

6°. By ([Kaz]), Z? C Z? x SL(2,Z) is a rigid inclusion of groups. Equivalently,
Ao C M, is rigid, so even more so Ag C M is rigid. Moreover, since A C M is
a cross-product inclusion by an action of SL(2,Z), which has Haagerup compact
approximation property, it follows that M has the property H relative to A. Q.E.D.

5.3. Corollary. Let M be any of the factors constructed in 5.1, with its corre-
sponding HT Cartan subalgebra A C M. For each n > 2 let p, € A be a pro-
jection of trace T(p,) = 1/12(n.= 1). Then (Ap, C pnMp,) is isomorphic to
(L>°([0,1]) € L™(]0,1]) x F,), for some free ergodic action of F, on L*(]0,1}),
and Ap, C p,Mp, are HT inclusions. The corresponding HT factors M, =
L>([0,1]) x F,,.n > 2, are stably isomorphic, namely, if n > m and gom € My,
satisfies T(gnm) = (m — 1}/(n — 1) then ¢nmMmnm =~ My,

Proof. The first part is a consequence of a recent result of G. Hjorth ([Hj]). The
second part is then an immediate consequence of 2.5 and 3.8. Q.E.D.

The second class of examples is based on the result of A. Valette ([Va]), men-
tioned in 3.8, and on ([dCaH], [CowH]), mentioned in 2.5:

5.4. Proposition. For any n > 2 there exists a lattice I in SO(n, 1) (respectively
in SU(n, 1)) for which there exist free, ergodic, measure-preserving actions o on

the standard probability space (X, p) such that A = L*(X,u) is a HT Cartan
subalgebra in M = A x,T.

Our final set of examples shows that for some special classes of HT factors
(the ones obtained by group measure space construction), taking cross products by
certain actions of property H groups, keeps us in the H7 class.

5.5. Proposition. Let Ag C Ag x4, Go be a HT inclusion and Gy a discrete group
with the property H. Let

and still denote by og the action of Gg on this infinite tensor product given by
ao(g)(®nar) = @noelg)ar), Vg € Go. Denote by oy the Bernoulli shift action of
G1 on A Noting that o¢ commutes with oy, let o denote the product action oo X a3
of G =Gy x G on A. Then A C A x, G is a HT inclusion.
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Proof. Since Go.G; have the property H. it follows that G = Gg x G has the
property H. Also, if Agp C Ay is so that ALa MMy = Ag and Ap C My is rigid,
where My = Ag Xg, Go. then by the construction of A and oy, we clearly have
Ao N M = A, where M = A x; G. Q.E.D.

6. BETTI NUMBERS FOR HT FACTORS AND APPLICATIONS.

6.1. Definition. Let M be a HT factor and A C M aHT m.as.a. of M. Let Ry
be the countable measurable orbit equivalence relation (called standard equivalence
relation in [G1,2]) implemented on A by N(A) (cf. [FM]). Let {Bn(Ra)}nzo be

the #2 Betti numbers of Ry, as defined by D. Gaboriau in ({G2]). We denote

Bn(M) def Ba(Ra),n = 0,1,2,... and call them the Betti numbers of M. Note

right away that by ([G2]), Bo(M) is always equal to zero.
From the results in Section 4 and the properties proved by Gaboriau for the
Betti numbers of the standard equivalence relations, one immediately gets:

6.2. Corollary. . 1°. If A C A %, G is a HT inclusion, for some countable
discrete group G acting freely and ergodically on A = Lo(X, ), then Bn(M) is
equal to the n’th £2 Betti number of G, as defined in [ChG]).

2°. If M € HT and t > 0 then B(M?") = B(M)/t,Vn.

3°. If My, My € HT then for each n > 0 we have:

Bn(My & M2) = Hz;::nﬁi(Mz)ﬁj(Mz)

Proof. 1°. By 6.1, we have (M) = B.(Ru)- But Ry = Ra, and by Gaboraiu’s
theorem the latter has Betti numbers 3{Rq) equal to the Cheeger-Gromov #? Betti
numbers 3,(G) of the group G.

2°. By Section 4 we know that the class ‘HT is closed to amplifications and
tensor products. Moreover, it is immedaiate to see that the “amplification” of
a semiregular m.a.s.a. A C M has a normalizer that gives rise to the standard
equivalence relation (Rys)t, as defined in [G2]. Then formula 2° is a consequence
of Gaboriau's similar result for standard equivalence relations.

Part 3° follows similarily, by taking into account that if Ay C My, As C M, are
semiregular m.a.s.a.’s then N (41 ® 4z)" = (N{4A1) © N(As))" (this is a trivial
consequence of 1.2 in [JPo], for instance). Q.E.D.

6.3. Corollary. 1°. If M € HT has at least one non-zero Betl: number, then it
has trivial fundamental group, F(M) = {1},

9°. If M € HT has at least one non-zero Betts number then M* & ... @ Mt is
isomorphic to M5 @ ... @ M°® if and only if n =m and t1...t, = 81...5m-
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Proof. Part 1° is trivial by the formula 8,(M*) = S(M)/t. Part 2° follows from
the fact that if 8., (M,) is the first non-zero Betti number for M;, i = 1,2, (which
thus necessarily satisfies n; > 1), then 8, (M; @ Ms) = 0if n < n1 +n2.  QE.D.

6.4. Corollary. The factors M constructed in 5.1 have the following properties:

1°. For eachn > 2 let p, € A be a praojection of trace 7(py) = 1/12(n—1). Then
(Apn C puMpp) ~ (L2([0,1]) ¢ L>=([0,1]) x F}, for some free ergodic action of
Fn on L>®([0,1]). The corresponding factors M, = L*([0,1]) x F,,n > 2, are
mutually non-isomorphic, but stably isomorphic, namely, if n > m and gnm € My,
satisfies T(Qnm) = (m - 1)/(” - 1) then QHmMmQTLm ~ M,.

2°. Two tensor products M* & ... @ MY and M*®' ® ... ® M®™ are isomorphic
if and only if n = m and t1ts...t, = $159..5m. In particular, F{M) = {1}.

3°. All subfactors of finite index of M, as well as of the tensor products in 2° (in

particular, of the factors M, in1°), are extremal and have integer index. Moreover, .

given any n € N there exist irreducible subfactors N C M, Ng C M such that
[M: N1 =M : No] = m and such that 8,(N) = m8,(M) while 8,(No) = Bn(M),
for alln > 0.

4°. The factor M cannot be embedded into a free group factor. Also, M does
not contain subfactors L(G) with G an infinite property T group.

5°. The action oy in the construction of M can be taken either strongly ergodic
(i.e., without asymptotically invariant sequences), in which case M follows non-T',
or non - strongly ergodic, in which case M has the property T'. Thus, there exist
property I factors with trivial fundamental group.

Proof. 1°,2°, the first part of 3° and 5° have already been proved.

For the last part of 3°, to construct N just take a subgroup of index m in Fgin,
which exists for any m € N. To obtain Ny take the action o on (X7i, 1) so that
to leave invariant a quotient (Y3, A1) of X that has exactly m points in each fiber.

The first part of 4° has the same proof as the similar result in ([CJ1]), as for
instance done in ([Po1]). The second part in 4° has a similar proof to the proof of
4.1 {except easier, in terms of proving a lemma playing the role of 1.1).  Q.E.D.

The examples 5.4, 5.5 give additional, distinct families of type II; factors with
trivial fundamental group:

6.5. Corollary. 1°. Let A, T, o be like in Proposition 5.4, with I' a lattice in
SO(2n,1) or SU(n,1). Let M,, = A x, I". Then F(M,) = {1}, and in fact each
M,, satisfies the same property as in 6.4.2°, ¥Yn. Moreover, the factors M, are
mutuelly non-stably isomorphic, for different n'’s.

2°. Given any group Go which is either tree-able in the sense of ({[Gal]) (e.g.
Go = SL(2,Z) or Gg = F,, for some n > 2), or is equal to some lattice I' like
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in 5.4, and any group G, with the property H, there exists o HT factor M with
Fn(M) = Bn(Go x G1),Yn 2 0.

Proof. By 6.2 and ([G2], [ChG]). each M, has exactly one non-zerc beta number
B (M) # 0 and k,, # ky if n# m. This proves 1°.

Part 2° is a consequence of 5.5. Q.E.D.

6.6. Remarks. 1°. Note that the above Corollaries 6.4 and 6.5 solve Problem
3 from Kadison's Baton Rouge list, providing lots of examples of factors M with
the property that the algebra of n by n matrices over M is not isomorphic to M,
for any n > 2.

2°. In a recent conference at MSRI ([C6]). Connes addressed the question of
contsructiong Betti number invariants for typer Il factors, building on the same
conceptual grounds as in the case of measurable foliations (iC4]), dicrete groups
([ChGr]), and ultimately equivalence relations- ({G2, 3]). Although our results.do.
not quite address the question this way (see remarks 3° — 6° below), they bring
some light to the problem, pointing out a significant phenomenoclogy which we hope
could serve both to obtain further results and as a test case for better definitions
of Betti numbers.

3°. Tt should be noted that, although the notion Betti numbers introduced here
is for global factors M, it is in some sense a “relative” notion, in that it only applies
for factors having certain special m.a.s.a.’s A C M and it reduces to the notion of
Betti numbers for A C M, modulo proving a uniqueness result for such m.a.s.a.’s.
We avoided to complicate the notations and opted for “B, (M)”, thus not indicating
the “relative” aspect of this notion, mostly for convenience of notations.

Thus, if it was to indicate “r” for “relative”, the fact that we take semiregular
m.a.s.a. as the subalgebra “relative to which” we built the theory should also have
been indicated (thus making the notation quite complicated).

This is because in exactly the same spirit as the notion introduced here based
on HT Cartan subalgebras, one can consider the class of factors of the form M =
R %, Go. with R the hyperfinite type I1; factor, GGo a group with the property H
and the actions o chosen so that R € M be a rigid inclusion, as defined in Section 3.
Such actions exist for G = SL(2,Z), by (ICho]), so the class is non-empty. A result
similar to Theorem 1.1 can then be proved for the “HT hyperfinite subfactors”
R and the same proof as for 4.1 shows that a factor M contains a unique such
subfactor R, modulo unitary conjugacy.

4°. The same strategy can of course be played with other invariants than the
Betti numbers considered here, and possibly with respect to other type of subalge-
bras than m.a.s.a.’s (see also the Remark 3° above). In a forthcoming paper, we
will develop an invariant for type Il; factors M obtained from cross products of the
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hyperfinite type II; factor R by Connes-Stormer Bernoulli shift actions of property
T groups G, and use the invariants introduced in ([Po9}) for such inclusions R C M.

5°. It would be very important to extend the class of factors in the “good class™
for which a certain uniqueness result can be proved for some special type of Cartan
subalgebras, beyond the HT factors we considered here. Such generalizations can
go in many directions: by either extending the class of groups Gy for which A C
A %, Gy works, for certain o, or by showing that for the groups Gy we already
considered here (e.g., the free groups) any action ¢ works.

6°. There is of course an analogy between factors of the form A x F,, and the
free group factors L(F,,) that gives room to speculations about the possibility that,
like their cross-product counter-parts, the free group factors are non-isomorphic,
for different n’s. In this respect, there are already many indications from results in
Voiculeseu's free probability that this would indeed be the case (cf. [V1,2], [Ral,
[Dy],{Gel, [Sh], ete.). Note however that such free group factors have no Cartansub--
algebras ([V2]), and that if some formula for Betti numbers is to hold true for group
von Neumann algebras, as in Connes’ problem (]C6]), then according to Voiculescu’s
formula ([V1]) for the number of generators of the amplifications/compressions of
the free group factors (cf. also [Ral, [Dy]), the Betti number 8y (= number of
generators —1) should satisfy a formula of the type S(M?) = S(M)/t* !
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