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Background

• The II1 factors LFn, arising from the free groups with n generators,
2 ≤ n ≤ ∞, emerged as a fundamental class of objects in non-commu-
tative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II1 factors arising
from various data (such as groups and their action on spaces), a large
number of basic questions concerning the free group factors remained
open. Most notably: are the L(Fn), 2 ≤ n ≤ ∞, non-isomorphic?

• This problem gave rise, directly or indirectly, to a huge amount of
mathematics, a multitude of concepts and insightful techniques:
approximation properties (compact, weak amenability, the Λ-invariant),
absorption/repelling/tree-like behavior of LFn as bimodule over its
amenable subalgebras, free probability methods (random matrix models
and free entropy), deformation-rigidity/intertwining methods,
W∗-boundary methods (bi-exactness and proper proximality), thin&tight
decomposition methods, L2-cohomology attempts, bounded generation, ...
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Background

• It is plainly evident that problems and results related to the structure
and classification of the free group factors LFn involve some extremely fine
phenomena, still far from being fully understood.

• The difficulty seems to come from the very nature of LFn: a subtle
mixture of “mild rigidity” (due to spectral gap of Fn y LFn and
“tree-ness”) with a multitude of deformation properties (free malleability,
compact c.p., finite rank c.b.). With both features “spread out” inside
LFn in a random manner!
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Some key open problems about LFn

Given a II1 factor M, I’ll denote by ng(M) the minimal number 2 ≤ n ≤ ∞
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LFn ' LFm implies n = m ?

(2) The fundamental group problem: F(LFn) = 1 when n <∞?

(3) The finite/infinite generation problem: ng(LF∞) =∞? ng(LFn) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B ⊂ LFn FC in LFn, i.e. ∃N s.t. LFn = B ∗ N? Notably for B a MASA.

(5) vN-type problem: LFn ↪→ M for any non-amenable II1 factor M?
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The “free complementation” (FC) problem

• Are there maximal amenable vN subalgebras in LFn that are not FC ?
Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if Q ⊂ M = LFn is maximal
amenable then any Q0 ⊂ LFn amenable with Q0 ∩ Q diffuse must be
contained Q. Strengthened conjecture by Hayes, Popa (2019): any
maximal amenable Q ⊂ LFn is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain
random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter!
Thus settling the PT+coarseness conjecture.

• One hitch about all this: for any freely complemented Q ⊂ LFn one
already knows both PT and coarseness hold true (Popa 82), and there are
no known examples of maximal amenable Q ⊂ LFn that are not FC!
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Test cases for the FC problem

Recall that for any B diffuse amenable, B ⊂ M = B ∗ N is maximal
amenable, PT-absorbing and coarse.

(a) Let g ∈ Fn be so that gZ is maximal abelian in Fn. Then Ag = {ug}′′
is maximal amenable in LFn (P1982). Is Ag freely complemented in LFn,
even if gZ is not freely complemented in Fn?

(b) Is the radial MASA Ln ⊂ LFn, 2 ≤ n <∞, defined by
Ln = {

∑n
i=1(ui + u∗i )}′′ freely complemented? (NB: Ln is known to be

maximal amenable by Cameron-Fang-Ravichandran-White 2010).

(c) the Boutonnet-Popa examples (2022): Let {(Mj , τj)}j∈J be tracial vN
algebras, with sj ∈ Mj semicircular, ∀j . Denote `2∗ the set of square
summable J-tuples/R with at least two non-zero entries. For each
t = (tj)j ∈ `2∗ denote by A(t) the abelian vN generated in M = ∗j∈JMj by
s(t) :=

∑
j tjsj ∈ M. Then A(t) is maximal amenable in M, ∀t ∈ `2∗, with

A(t) ≺M A(t ′) iff t, t ′ ∈ `2∗ proportional.

(d) If {Bi}i are diffuse amenable vN in M = LFn with Bi freely
complemented and Bi ⊀LFn Bj , ∀i 6= j , then B = ⊕iuipiBipiu

∗
i is maximal

amenable in M for any pi ∈ P(Bi ) and ui ∈ U(M) satisfying∑
i uipiu

∗
i = 1. Is B ⊂ M freely complemented ? Check this for

LFn = B1 ∗ ... ∗ Bn.
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weak FC conjectures

• This latter “re-assembling test case” has in fact been recently settled by
Boschert-Davis-Hiatt in the most important case when Bi are abelian. We
will hear Patrick explain this to us this Wednesday in his talk.

• I think it is possible that the FC problem has a positive answer, i.e., that
any maximal amenable B ⊂ LFn is FC. This would of course be a rather
amazing structural phenomenon about the free group factors! I have
speculated for some time that the following weaker version does hold true:

The weak FC conjectures

• Given any amenable B ⊂ M = LFn there exists a Haar unitary u ∈ M
that’s free independent to B.
• Let FB := {x ∈ M | {x , x∗} free to B}. If B is maximal amenable, then
spBFBB = M 	 B.

• As we will hear in the Wed talk, Boschert-Davis-Hiatt have shown first
conj. holds true in the above examples (a), (b), (c).
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Non-iso of A∗n for non-separable A

• The B-P examples and the proofs involved naturally led to the problem
of whether any purely non-separable (singular) MASA B in M = A∗n, with
A purely non-separable is “made up” of pieces of Ak := 1 ∗ ... ∗ A ∗ ...1
(kth position), a fact that would imply that n is “remembered” by the
iso-class of A∗n! Indeed one has:

Theorem (Boutonnet–Drimbe-Ioana-Popa 03/2023)

Let A be a non-separable tracial vN algebra. Then A∗n, 2 ≤ n ≤ ∞, are
mutually non-isomorphic, with F(A∗n) = 1 whenever n <∞.
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The “classic” free group factor problems (1), (2), (3)

• It doesn’t seem possible to use the non-iso of A∗n for non-separable A to
deduce the non-iso of the LFn. But note hat if M = A∗n with A purely ns,
then ∃Ni ↗ M subfactors such that Ni ' LFn, ∀i .

• By results of Dykema, Radulescu (1992) using Voiculescu’s free
probability, if ng(LF∞) =∞ (so if (3) holds true) then LFn, 2 ≤ n ≤ ∞,
non-iso and F(LFn) = 1, ∀n <∞. So (1) and (2) would follow as well.

• Tightness conjecture states that if a II1 factor M has stably bounded
number of generators, i.e. supt ng(Mt) <∞, then M is R-tight:
∃R0,R1 ⊂ M such that R0L

2MR1 is irreducible. In particular, if M is
finitely generated and F(M) 6= 1, then M would follow R-tight.
Since F(LF∞) 6= 1 (Voiculescu 1988, Radulescu 1991), this would show
that if ng(LF∞) <∞ then LF∞ is tight, contradicting Ge-Popa 1996.

• Thus, tightness conjecture implies ng(LF∞) =∞, more generally
∃1 ≥ c > 0 such that n ≥ ng(LFn) ≥ cn, ∀2 ≤ n ≤ ∞. So by the remarks
above, the tightness conjecture solves (1), (2), (3).
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finitely generated and F(M) 6= 1, then M would follow R-tight.
Since F(LF∞) 6= 1 (Voiculescu 1988, Radulescu 1991), this would show
that if ng(LF∞) <∞ then LF∞ is tight, contradicting Ge-Popa 1996.

• Thus, tightness conjecture implies ng(LF∞) =∞, more generally
∃1 ≥ c > 0 such that n ≥ ng(LFn) ≥ cn, ∀2 ≤ n ≤ ∞. So by the remarks
above, the tightness conjecture solves (1), (2), (3).
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Does any non-amenable II1 factor contain LF2?

• Recall that by Olshanski (1980) there exist non-amenable groups Γ such
that: (1) any g ∈ Γ has torsion; (2) if h ∈ Γ is not a power of g , then g , h
generate the whole group Γ. Thus, such Γ cannot contain F2, answering in
the negative the “classic vN problem”. But its II1 factor version (5)
remains open.

• An obvious “test case” is the group factor LΓ with the Γ as above. Other
examples to try are crossed products by Γ, such as M = L∞(X , µ)o Γ, or
M = R o Γ, where Γ y (X , µ) free ergodic p.m.p. and Γ y R free.

• Note that in case Γ acts on (X , µ) or on R by Bernoulli shifts, then the
corresponding M does contain LF2 (Gaboriau-Lyons 2011).
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A side remark

• Note that given any Γ and any free action Γ y R, there is a Galois
correspondence between subgroups H ⊂ Γ and intermediate subfactors
R ⊂ N ⊂ M = R o Γ (Choda 78). In particular, between maximal
amenable subgroup H ⊂ Γ and maximal amenable subfactors N ⊂ M that
contain R, Γ ⊃ H 7→ NH ⊂ M, N 7→ HN ⊂ Γ.

• Given any n ≥ 1, an appropriate choice of H0 ⊂ Γ with H0 amenable,
gives example R0 = R o H0 ⊂ R o Γ = M of hyperfinite subfactors
R0 ⊂ M with exactly n maximal amenable R0 ⊂ N ⊂ M.

• In case Γ is the Olsanski group, any maximal amenable H0 ⊂ Γ is a finite
cyclic group and the corresponding maximal amenable
R o H0 = N ⊂ M = R × Γ is quasi-regular in M, and is in fact
“super-maximal”, in that there are no proper subfactors betweenn N and
M.
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A class of “small” non-amenable II1 factors [P94]

• Let C be a non-degenerate commuting square of tracial multi-matrix
algebras (P00 ⊂ P01) ⊂ (P10 ⊂ P11) with all inclusion bipartite graphs
irreducible. By iterating the basic construction “horizontally” one gets a
sequence of commuting squares with the limit P0∞ ⊂ P1∞ being a
hyperfinite subfactor with Jones index equal to ‖G‖2, where G is the
bipartite graph of the “initial” vertical inclusion P00 ⊂ P10.

Let T (C) ⊂ S(C) be the symmetric enveloping inclusion of II1 factors
associated with this subfactor (as defined in [P94]: describe!). Then

• T ' R ⊗ Rop.
• T ⊂ S is quasi-regular (crossed-product type inclusion).
• If 4 < ‖G‖2 < 2 +

√
5 then: S is non-amenable, T ⊂ S has no

intermediate subfactors (in particular T is maximal amenable in S).
Also, S has Haagerup property relative to T ([PV2016]).
• The underlying C∗-algebra C∗(P, eN ,P

op) ⊂ B(L2P) is quasi-diagonal,
where P = ∪nP1n.
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