The free group factors conundrum

UCLA, Nov 2024

Sorin Popa

Background

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

Background

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II₁ factors arising from various data (such as groups and their action on spaces), a large number of basic questions concerning the free group factors remained open. Most notably: are the $L(\mathbb{F}_n)$, $2 \le n \le \infty$, non-isomorphic?

Background

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II₁ factors arising from various data (such as groups and their action on spaces), a large number of basic questions concerning the free group factors remained open. Most notably: are the $L(\mathbb{F}_n)$, $2 \le n \le \infty$, non-isomorphic?

• This problem gave rise, directly or indirectly, to a huge amount of mathematics, a multitude of concepts and insightful techniques: approximation properties (compact, weak amenability, the Λ -invariant), absorption/repelling/tree-like behavior of $L\mathbb{F}_n$ as bimodule over its amenable subalgebras, free probability methods (random matrix models and free entropy), deformation-rigidity/intertwining methods, W*-boundary methods (bi-exactness and proper proximality), thin&tight decomposition methods, L^2 -cohomology attempts, bounded generation, ...

• It is plainly evident that problems and results related to the structure and classification of the free group factors $L\mathbb{F}_n$ involve some extremely fine phenomena, still far from being fully understood.

• It is plainly evident that problems and results related to the structure and classification of the free group factors $L\mathbb{F}_n$ involve some extremely fine phenomena, still far from being fully understood.

• The difficulty seems to come from the very nature of $L\mathbb{F}_n$: a subtle mixture of "mild rigidity" (due to spectral gap of $\mathbb{F}_n \curvearrowright L\mathbb{F}_n$ and "tree-ness") with a multitude of deformation properties (free malleability, compact c.p., finite rank c.b.). With both features "spread out" inside $L\mathbb{F}_n$ in a random manner!

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

- (1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?
- (2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?
- (3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

(3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

(4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$? Notably for B a MASA.

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

(3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

(4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$? Notably for B a MASA.

(5) vN-type problem: $L\mathbb{F}_n \hookrightarrow M$ for any non-amenable II₁ factor M?

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter! Thus settling the PT+coarseness conjecture.

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter! Thus settling the PT+coarseness conjecture.

• One hitch about all this: for any freely complemented $Q \subset L\mathbb{F}_n$ one already knows both PT and coarseness hold true (Popa 82), and there are no known examples of maximal amenable $Q \subset L\mathbb{F}_n$ that are not FC!

Recall that for any *B* diffuse amenable, $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse.

(a) Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

Recall that for any *B* diffuse amenable, $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse.

(a) Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

(b) Is the radial MASA $L_n \subset L\mathbb{F}_n$, $2 \le n < \infty$, defined by $L_n = \{\sum_{i=1}^n (u_i + u_i^*)\}^{\prime\prime}$ freely complemented? (NB: L_n is known to be maximal amenable by Cameron-Fang-Ravichandran-White 2010).

Recall that for any *B* diffuse amenable, $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse.

(a) Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

(b) Is the radial MASA $L_n \subset L\mathbb{F}_n$, $2 \le n < \infty$, defined by $L_n = \{\sum_{i=1}^n (u_i + u_i^*)\}^{\prime\prime}$ freely complemented? (NB: L_n is known to be maximal amenable by Cameron-Fang-Ravichandran-White 2010).

(c) the Boutonnet-Popa examples (2022): Let $\{(M_j, \tau_j)\}_{j \in J}$ be tracial vN algebras, with $s_j \in M_j$ semicircular, $\forall j$. Denote ℓ_*^2 the set of square summable *J*-tuples/ \mathbb{R} with at least two non-zero entries. For each $t = (t_j)_j \in \ell_*^2$ denote by A(t) the abelian vN generated in $M = *_{j \in J} M_j$ by $s(t) := \sum_j t_j s_j \in M$. Then A(t) is maximal amenable in M, $\forall t \in \ell_*^2$, with $A(t) \prec_M A(t')$ iff $t, t' \in \ell_*^2$ proportional.

Recall that for any *B* diffuse amenable, $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse.

(a) Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

(b) Is the radial MASA $L_n \subset L\mathbb{F}_n$, $2 \le n < \infty$, defined by $L_n = \{\sum_{i=1}^n (u_i + u_i^*)\}^{\prime\prime}$ freely complemented? (NB: L_n is known to be maximal amenable by Cameron-Fang-Ravichandran-White 2010).

(c) the Boutonnet-Popa examples (2022): Let $\{(M_j, \tau_j)\}_{j \in J}$ be tracial vN algebras, with $s_j \in M_j$ semicircular, $\forall j$. Denote ℓ_*^2 the set of square summable *J*-tuples/ \mathbb{R} with at least two non-zero entries. For each $t = (t_j)_j \in \ell_*^2$ denote by A(t) the abelian vN generated in $M = *_{j \in J} M_j$ by $s(t) := \sum_j t_j s_j \in M$. Then A(t) is maximal amenable in M, $\forall t \in \ell_*^2$, with $A(t) \prec_M A(t')$ iff $t, t' \in \ell_*^2$ proportional.

(d) If $\{B_i\}_i$ are diffuse amenable vN in $M = L\mathbb{F}_n$ with B_i freely complemented and $B_i \not\prec_{L\mathbb{F}_n} B_j$, $\forall i \neq j$, then $B = \bigoplus_i u_i p_i B_i p_i u_i^*$ is maximal

weak FC conjectures

• This latter "re-assembling test case" has in fact been recently settled by Boschert-Davis-Hiatt in the most important case when B_i are abelian. We will hear Patrick explain this to us this Wednesday in his talk.

weak FC conjectures

• This latter "re-assembling test case" has in fact been recently settled by Boschert-Davis-Hiatt in the most important case when B_i are abelian. We will hear Patrick explain this to us this Wednesday in his talk.

• I think it is possible that the FC problem has a positive answer, i.e., that any maximal amenable $B \subset L\mathbb{F}_n$ is FC. This would of course be a rather amazing structural phenomenon about the free group factors! I have speculated for some time that the following weaker version does hold true:

The weak FC conjectures

• Given any amenable $B \subset M = L\mathbb{F}_n$ there exists a Haar unitary $u \in M$ that's free independent to B.

• Let $F_B := \{x \in M \mid \{x, x^*\} \text{ free to } B\}$. If B is maximal amenable, then $\overline{sp}BF_BB = M \ominus B$.

weak FC conjectures

• This latter "re-assembling test case" has in fact been recently settled by Boschert-Davis-Hiatt in the most important case when B_i are abelian. We will hear Patrick explain this to us this Wednesday in his talk.

• I think it is possible that the FC problem has a positive answer, i.e., that any maximal amenable $B \subset L\mathbb{F}_n$ is FC. This would of course be a rather amazing structural phenomenon about the free group factors! I have speculated for some time that the following weaker version does hold true:

The weak FC conjectures

• Given any amenable $B \subset M = L\mathbb{F}_n$ there exists a Haar unitary $u \in M$ that's free independent to B.

• Let $F_B := \{x \in M \mid \{x, x^*\} \text{ free to } B\}$. If B is maximal amenable, then $\overline{sp}BF_BB = M \ominus B$.

• As we will hear in the Wed talk, Boschert-Davis-Hiatt have shown first conj. holds true in the above examples (a), (b), (c).

• The B-P examples and the proofs involved naturally led to the problem of whether any purely non-separable (singular) MASA *B* in $M = A^{*n}$, with *A* purely non-separable is "made up" of pieces of $A_k := 1 * ... * A * ...1$ (*k*th position), a fact that would imply that *n* is "remembered" by the iso-class of A^{*n} ! Indeed one has: • The B-P examples and the proofs involved naturally led to the problem of whether any purely non-separable (singular) MASA B in $M = A^{*n}$, with A purely non-separable is "made up" of pieces of $A_k := 1 * ... * A * ...1$ (*k*th position), a fact that would imply that n is "remembered" by the iso-class of A^{*n} ! Indeed one has:

Theorem (Boutonnet–Drimbe-Ioana-Popa 03/2023)

Let A be a non-separable tracial vN algebra. Then $A^{*n}, 2 \le n \le \infty$, are mutually non-isomorphic, with $\mathcal{F}(A^{*n}) = 1$ whenever $n < \infty$.

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. But note hat if $M = A^{*n}$ with A purely ns, then $\exists N_i \nearrow M$ subfactors such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. But note hat if $M = A^{*n}$ with A purely ns, then $\exists N_i \nearrow M$ subfactors such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• By results of Dykema, Radulescu (1992) using Voiculescu's free probability, if $ng(L\mathbb{F}_{\infty}) = \infty$ (so if (3) holds true) then $L\mathbb{F}_n$, $2 \le n \le \infty$, non-iso and $\mathcal{F}(L\mathbb{F}_n) = 1$, $\forall n < \infty$. So (1) and (2) would follow as well.

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. But note hat if $M = A^{*n}$ with A purely ns, then $\exists N_i \nearrow M$ subfactors such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• By results of Dykema, Radulescu (1992) using Voiculescu's free probability, if $ng(L\mathbb{F}_{\infty}) = \infty$ (so if (3) holds true) then $L\mathbb{F}_n$, $2 \le n \le \infty$, non-iso and $\mathcal{F}(L\mathbb{F}_n) = 1$, $\forall n < \infty$. So (1) and (2) would follow as well.

• Tightness conjecture states that if a II₁ factor M has stably bounded number of generators, i.e. $\sup_t ng(M^t) < \infty$, then M is R-tight: $\exists R_0, R_1 \subset M$ such that $_{R_0}L^2M_{R_1}$ is irreducible. In particular, if M is finitely generated and $\mathcal{F}(M) \neq 1$, then M would follow R-tight. Since $\mathcal{F}(L\mathbb{F}_{\infty}) \neq 1$ (Voiculescu 1988, Radulescu 1991), this would show that if $ng(L\mathbb{F}_{\infty}) < \infty$ then $L\mathbb{F}_{\infty}$ is tight, contradicting Ge-Popa 1996.

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. But note hat if $M = A^{*n}$ with A purely ns, then $\exists N_i \nearrow M$ subfactors such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• By results of Dykema, Radulescu (1992) using Voiculescu's free probability, if $ng(L\mathbb{F}_{\infty}) = \infty$ (so if (3) holds true) then $L\mathbb{F}_n$, $2 \le n \le \infty$, non-iso and $\mathcal{F}(L\mathbb{F}_n) = 1$, $\forall n < \infty$. So (1) and (2) would follow as well.

• Tightness conjecture states that if a II₁ factor M has stably bounded number of generators, i.e. $\sup_t ng(M^t) < \infty$, then M is R-tight: $\exists R_0, R_1 \subset M$ such that $_{R_0}L^2M_{R_1}$ is irreducible. In particular, if M is finitely generated and $\mathcal{F}(M) \neq 1$, then M would follow R-tight. Since $\mathcal{F}(L\mathbb{F}_{\infty}) \neq 1$ (Voiculescu 1988, Radulescu 1991), this would show that if $ng(L\mathbb{F}_{\infty}) < \infty$ then $L\mathbb{F}_{\infty}$ is tight, contradicting Ge-Popa 1996.

• Thus, tightness conjecture implies $ng(L\mathbb{F}_{\infty}) = \infty$, more generally $\exists 1 \ge c > 0$ such that $n \ge ng(L\mathbb{F}_n) \ge cn$, $\forall 2 \le n \le \infty$. So by the remarks above, the tightness conjecture solves (1), (2), (3). • Recall that by Olshanski (1980) there exist non-amenable groups Γ such that: (1) any $g \in \Gamma$ has torsion; (2) if $h \in \Gamma$ is not a power of g, then g, h generate the whole group Γ . Thus, such Γ cannot contain \mathbb{F}_2 , answering in the negative the "classic vN problem". But its II₁ factor version (5) remains open.

• Recall that by Olshanski (1980) there exist non-amenable groups Γ such that: (1) any $g \in \Gamma$ has torsion; (2) if $h \in \Gamma$ is not a power of g, then g, h generate the whole group Γ . Thus, such Γ cannot contain \mathbb{F}_2 , answering in the negative the "classic vN problem". But its II₁ factor version (5) remains open.

• An obvious "test case" is the group factor $L\Gamma$ with the Γ as above. Other examples to try are crossed products by Γ , such as $M = L^{\infty}(X, \mu) \rtimes \Gamma$, or $M = R \rtimes \Gamma$, where $\Gamma \curvearrowright (X, \mu)$ free ergodic p.m.p. and $\Gamma \curvearrowright R$ free.

• Recall that by Olshanski (1980) there exist non-amenable groups Γ such that: (1) any $g \in \Gamma$ has torsion; (2) if $h \in \Gamma$ is not a power of g, then g, h generate the whole group Γ . Thus, such Γ cannot contain \mathbb{F}_2 , answering in the negative the "classic vN problem". But its II₁ factor version (5) remains open.

• An obvious "test case" is the group factor $L\Gamma$ with the Γ as above. Other examples to try are crossed products by Γ , such as $M = L^{\infty}(X, \mu) \rtimes \Gamma$, or $M = R \rtimes \Gamma$, where $\Gamma \curvearrowright (X, \mu)$ free ergodic p.m.p. and $\Gamma \curvearrowright R$ free.

• Note that in case Γ acts on (X, μ) or on R by Bernoulli shifts, then the corresponding M does contain $L\mathbb{F}_2$ (Gaboriau-Lyons 2011).

A side remark

• Note that given any Γ and any free action $\Gamma \curvearrowright R$, there is a Galois correspondence between subgroups $H \subset \Gamma$ and intermediate subfactors $R \subset N \subset M = R \rtimes \Gamma$ (Choda 78). In particular, between maximal amenable subgroup $H \subset \Gamma$ and maximal amenable subfactors $N \subset M$ that contain R, $\Gamma \supset H \mapsto N_H \subset M$, $N \mapsto H_N \subset \Gamma$.

• Note that given any Γ and any free action $\Gamma \curvearrowright R$, there is a Galois correspondence between subgroups $H \subset \Gamma$ and intermediate subfactors $R \subset N \subset M = R \rtimes \Gamma$ (Choda 78). In particular, between maximal amenable subgroup $H \subset \Gamma$ and maximal amenable subfactors $N \subset M$ that contain R, $\Gamma \supset H \mapsto N_H \subset M$, $N \mapsto H_N \subset \Gamma$.

• Given any $n \ge 1$, an appropriate choice of $H_0 \subset \Gamma$ with H_0 amenable, gives example $R_0 = R \rtimes H_0 \subset R \rtimes \Gamma = M$ of hyperfinite subfactors $R_0 \subset M$ with exactly n maximal amenable $R_0 \subset N \subset M$.

• Note that given any Γ and any free action $\Gamma \curvearrowright R$, there is a Galois correspondence between subgroups $H \subset \Gamma$ and intermediate subfactors $R \subset N \subset M = R \rtimes \Gamma$ (Choda 78). In particular, between maximal amenable subgroup $H \subset \Gamma$ and maximal amenable subfactors $N \subset M$ that contain R, $\Gamma \supset H \mapsto N_H \subset M$, $N \mapsto H_N \subset \Gamma$.

• Given any $n \ge 1$, an appropriate choice of $H_0 \subset \Gamma$ with H_0 amenable, gives example $R_0 = R \rtimes H_0 \subset R \rtimes \Gamma = M$ of hyperfinite subfactors $R_0 \subset M$ with exactly n maximal amenable $R_0 \subset N \subset M$.

• In case Γ is the Olsanski group, any maximal amenable $H_0 \subset \Gamma$ is a finite cyclic group and the corresponding maximal amenable $R \rtimes H_0 = N \subset M = R \times \Gamma$ is quasi-regular in M, and is in fact "super-maximal", in that there are no proper subfactors between N and M.

A class of "small" non-amenable II₁ factors [P94]

• Let C be a non-degenerate commuting square of tracial multi-matrix algebras $(P_{00} \subset P_{01}) \subset (P_{10} \subset P_{11})$ with all inclusion bipartite graphs irreducible. By iterating the basic construction "horizontally" one gets a sequence of commuting squares with the limit $P_{0\infty} \subset P_{1\infty}$ being a hyperfinite subfactor with Jones index equal to $||G||^2$, where G is the bipartite graph of the "initial" vertical inclusion $P_{00} \subset P_{10}$.

Let $T(\mathcal{C}) \subset S(\mathcal{C})$ be the symmetric enveloping inclusion of II₁ factors associated with this subfactor (as defined in [P94]: describe!). Then

- $T \simeq R \otimes R^{op}$.
- $T \subset S$ is quasi-regular (crossed-product type inclusion).

• If $4 < ||G||^2 < 2 + \sqrt{5}$ then: *S* is non-amenable, $T \subset S$ has no intermediate subfactors (in particular *T* is maximal amenable in *S*). Also, *S* has Haagerup property relative to *T* ([PV2016]).

• The underlying C*-algebra C*(P, e_N, P^{op}) $\subset \mathcal{B}(L^2P)$ is quasi-diagonal, where $P = \bigcup_n P_{1n}$.