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Motivating the problem

• P 81: intertwiners in M = M1 ∗M2 between subalgebras of M1 stay
within M1. Generalized to M1 ∗B M2 (Ioana-Peterson-P 05)

• P 82: Q diffuse amenable implies Q is maximal amenable in
M = Q ∗M2. Proof also shows that: (a) If Q0 ⊂ M = Q ∗M2 amenable
with Q0 ∩ Q diffuse then Q0 ⊂ Q (PT-absorption); (b) If Q ⊂ M1

maximal amenable then Q ⊂ M1 ∗M2 maximal amenable (amenable
absorption). Generalized to M1 ∗B M2 Boutonnet-Hudayer 16

• Voiculescu free probability 91-94: Structural randomness in LFn,
quantified as free entropy, prevents “thinness around MASAs”: LFn have
no Cartan (V94); LFn is prime (Ge 96); LFn is not thin around arbitrary
AFD (Ge-Popa 96).

• P 01, Ozawa 03, P 06, Peterson 06, Ozawa-P 07,
Ding-Kunnawalkam-Peterson 22: deformation-rigidity and boundary
methods prevent non-amenable Q with “too much structure” from being
embeddable into LFn.
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Motivating the problem

• Jung 07; Shlyakhtenko 07, 17; Hayes 17, 20; Hayes-Jekel-Kunnawalkam
21: a novel free probability approach to “amenable-absorption” in LFn,
based on 1-bounded entropy.

• Peterson-Thom 11: Conjectured that if Q ⊂ M = LFn is maximal
amenable then ∀Q0 ⊂ LFn amenable, Q0 ∩ Q diffuse implies Q0 ⊂ Q.
[N.B.: by Dykema 94 if Q amenable and N0 ' LFk , or amenable diffuse,
then Q ∗ N0 is a free group factor, so ' LFn (n = k + 1, resp. n = 2)].

• Hayes 2020: reduced PT-conjecture to solving a certain random matrix
limit theorem; of which Belinschi-Capitaine announced a solution in 2022!

The problem

Are there any maximal amenable subalgebras in LFn that are not freely
complemented?
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Maximal amenable radial-like MASAs

Theorem (Boutonnet-Popa 2022)

Let {(Mj , τj)}j∈J be tracial vN algebras, with sj ∈ Mj semicircular, ∀j .
Denote `2∗ the set of square summable J-tuples/R with at least two
non-zero entries. For each t = (tj)j ∈ `2∗ denote by A(t) the abelian vN
generated in M = ∗j∈JMj by s(t) :=

∑
j tjsj ∈ M. Then A(t) is maximal

amenable in M, ∀t ∈ `2∗, with A(t) ≺M A(t ′) iff t, t ′ ∈ `2∗ proportional.

Proof uses the II1 subfactor N ⊂ M generated by {sj}j ⊂ M. Note that
N ' LFJ .

If H = H(J) denotes the J-dim Hilbert space/R, we alternatively view N
as the vN generated by s(ξ), ξ ∈ H, on F(H), where F(H) is the full
Fock space of H and s(ξ) ∈ N is the semi-circular operator associated to
the unit vector ξ in H (Voiculescu).
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Non-conjugacy of the A(ξ) in N

We first establish the non-conjugacy of A(ξ) in N, ξ ∈ H, where N is
viewed via the above free Gaussian functor:

Fact 1

Given unit vectors ξ1, ξ2 ∈ H, we have A(ξ1) ≺N A(ξ2) iff A(ξ1) = A(ξ2)
iff ξ1 = ±ξ2.

Recall: A(ξ) ≺N A(η) iff ∃v ∈ N, 6= 0, partial iso such that v∗v ∈ A(ξ),
vv∗ ∈ A(η) and vA(ξ)v∗ = A(η)vv∗ (P 2001).

Also: if ξ ⊥ η then A(ξ),A(η) free in N, so A(ξ) 6≺N A(η) (P81).
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Now note that for unit vectors ξ, η, η′ ∈ H with 〈ξ, η〉 = 〈ξ, η′〉,
∃α ∈ O(H) such that α(ξ) = ξ and α(η) = η′. The associated
automorphism θ = θα of N = LFJ leaves A(ξ) fixed and θ(A(η)) = A(η′).
Thus, if v ∈ N is a partial isometry with v∗v ∈ A(ξ), vv∗ ∈ A(η) and
vA(ξ)v∗ = A(η)vv∗, then

θ(v)A(ξ)θ(v)∗ = θ(vA(ξ)v∗) = θ(A(η)vv∗) = A(η′)θ(vv∗),

implying that w = θ(v)v∗ ∈ N is a partial iso with w∗w = vv∗ ∈ A(η),
ww∗ = θ(vv∗) ∈ A(η′) and satisfying wA(η)w∗ = A(η′)ww∗.

Applying this observation appropriately several times, starting from ξ1, ξ2
with A(ξ1) ≺N A(ξ2) one can get unit vectors ξ, η ∈ H such that ξ ⊥ η
and A(ξ) ≺N A(η), contradiction.
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Background on absorption

Fact 2 (Ioana-Peterson-Popa 2005)

Let B ⊂ P1,B ⊂ P2 be inclusions of tracial von Neumann algebras, with
τP1 |B = τP2 |B , and let P = P1 ∗B P2. If A1 ⊂ P1 is vN such that
A1 ⊀P1 B, then for all A2 ⊂ P1 one has A1 ⊀P A2 iff A1 ⊀P1 A2.

Fact 3 (Popa 1982, Boutonnet-Houdayer 2016)

If Q amenable diffuse, then Q is maximal amenable in Q ∗M2. More
generally, if Q ⊂ M1 is maximal amenable in M1 and Q ⊀M1 B, then Q is
maximal amenable in M = M1 ∗B M2.

Fact 4 (folklore)

Let B ⊂ P, and Q be tracial vN. Then
(B ∗ Q ⊂ P ∗ Q) ' (B ∗ Q ⊂ P ∗B (B ∗ Q)).
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Proof of the Theorem

Sufficient to prove J = {1, 2, ..., n} finite. Denote N0 = N and for i ≥ 1
let Ni = M1 ∗ ... ∗Mi ∗ A(si+1) ∗ ... ∗ A(sn). Note that by Fact 4 we have
(Ni ⊂ Ni+1) = (Ni ⊂ Ni ∗A(si ) Mi ).

Applying Facts 1, 2, 3 and using the above identification of Ni ⊂ Ni+1, we
obtain recursively in i ≥ 0 that A(t) 6≺Ni

A(ξ), if t, ξ are not colinear, in
particular for ξ = sj , ∀j , and that A(ξ) is maximal amenable in Ni , for
each i = 0, 1, 2, ..., n. Since Nn = M, we are done.
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Interesting cases to investigate

• The case Mj = A(sj)⊗ R, ∀j ∈ J, where A(sj) = {sj}′′ ⊂ Mj .

• Mj = A(sj)o Γj , where Γj is an amenable group and Γj y Aj is a trace
preserving action, ∀j ∈ J.

• Mj abelian non-separable, e.g., an ultrapower of L∞[0, 1], ∀j .
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Some related problems

• Let g ∈ Fn be so that gZ is maximal abelian in Fn. Then Ag = {ug}′′ is
maximal amenable in LFn (Popa 1982). Is Ag freely complemented in LFn,
even if gZ is not freely complemented in Fn?

• Is the radial MASA Ln ⊂ LFn, 2 ≤ n <∞, defined by
Ln = {

∑n
i=1(ui + u∗i )}′′ freely complemented? (NB: Ln is known to be

maximal amenable by Cameron-Fang-Ravichandran-White 2010).

• Does any amenable vN subalgebra B ⊂ LFn admit Haar unitaries
u ∈ LFn that are free independent to B.

• Let A be an abelian non-separable tracial vN, e.g. an ultrapower of
L∞[0, 1]. Are the II1 factors A∗n, n = 2, 3, ..., mutually non-isomorphic?
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