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The free group factors conundrum

• The II1 factors LFn, arising from the free groups with n generators,
2 ≤ n ≤ ∞, emerged as a fundamental class of objects in non-commu-
tative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II1 factors arising
from various data (such as groups and their action on spaces), a large
number of basic questions concerning the free group factors remained
open. Most notably: are the L(Fn), 2 ≤ n ≤ ∞, non-isomorphic?

• This problem gave rise, directly or indirectly, to a huge amount of
mathematics, a multitude of concepts and insightful techniques:
approximation properties (compact, weak amenability, the Λ-invariant),
absorption/repelling/branchy behavior of LFn as bimodule over its
amenable subalgebras, free probability methods (random matrix models
and free entropy), deformation/rigidity/intertwining methods,
W∗-boundary methods (bi-exactness and proper proximality), thin&tight
decomposition methods, L2-cohomology attempts, bounded generation, ...
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The free group factors conundrum

• It is evident by now that the structure and classification of the free
group factors LFn involves some extremely fine, elusive phenomenology,
still far from being understood.

• The difficulty seems to come from the very nature of LFn: a subtle
mixture between “mild rigidity” (due to spectral gap of Fn y LFn and
“branchyness”) and a multitude of deformation properties (free
malleability, compact c.p., finite rank c.b.). An information that’s “spread
out” inside LFn in a random manner!

• My perception of a free group factor LFn is that it is like mud, a
homogeneous mixture of earth and water without “points d’appui” !
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Some key problems about LFn

Given a II1 factor M, I’ll denote by ng(M) the minimal number 2 ≤ n ≤ ∞
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LFn ' LFm iff n = m.

(2) The fundamental group problem: F(LFn) = 1 when n <∞?

(3) The finite/infinite generation problem: ng(LF∞) =∞? ng(LFn) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B ⊂ LFn FC in LFn, i.e. ∃N s.t. LFn = B ∗ N. Notably for B abelian.

(5) vN-type problem: LFn ↪→ M for any non-amenable II1 factor M?

(6) Characterize factors/groups embeddable into LFn. Is any II1 factor
N ⊂ LFn iso to either R or LFt , 1 < t ≤ ∞ ? If N ⊂ LFn subfactor with
finite index then N ' LFt , where t = 1 + [LFn : N](n − 1).

4/14



Some key problems about LFn

Given a II1 factor M, I’ll denote by ng(M) the minimal number 2 ≤ n ≤ ∞
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LFn ' LFm iff n = m.

(2) The fundamental group problem: F(LFn) = 1 when n <∞?

(3) The finite/infinite generation problem: ng(LF∞) =∞? ng(LFn) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B ⊂ LFn FC in LFn, i.e. ∃N s.t. LFn = B ∗ N. Notably for B abelian.

(5) vN-type problem: LFn ↪→ M for any non-amenable II1 factor M?

(6) Characterize factors/groups embeddable into LFn. Is any II1 factor
N ⊂ LFn iso to either R or LFt , 1 < t ≤ ∞ ? If N ⊂ LFn subfactor with
finite index then N ' LFt , where t = 1 + [LFn : N](n − 1).

4/14



Some key problems about LFn

Given a II1 factor M, I’ll denote by ng(M) the minimal number 2 ≤ n ≤ ∞
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LFn ' LFm iff n = m.

(2) The fundamental group problem: F(LFn) = 1 when n <∞?

(3) The finite/infinite generation problem: ng(LF∞) =∞? ng(LFn) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B ⊂ LFn FC in LFn, i.e. ∃N s.t. LFn = B ∗ N. Notably for B abelian.

(5) vN-type problem: LFn ↪→ M for any non-amenable II1 factor M?

(6) Characterize factors/groups embeddable into LFn. Is any II1 factor
N ⊂ LFn iso to either R or LFt , 1 < t ≤ ∞ ? If N ⊂ LFn subfactor with
finite index then N ' LFt , where t = 1 + [LFn : N](n − 1).

4/14



Some key problems about LFn

Given a II1 factor M, I’ll denote by ng(M) the minimal number 2 ≤ n ≤ ∞
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LFn ' LFm iff n = m.

(2) The fundamental group problem: F(LFn) = 1 when n <∞?

(3) The finite/infinite generation problem: ng(LF∞) =∞? ng(LFn) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B ⊂ LFn FC in LFn, i.e. ∃N s.t. LFn = B ∗ N. Notably for B abelian.

(5) vN-type problem: LFn ↪→ M for any non-amenable II1 factor M?

(6) Characterize factors/groups embeddable into LFn. Is any II1 factor
N ⊂ LFn iso to either R or LFt , 1 < t ≤ ∞ ? If N ⊂ LFn subfactor with
finite index then N ' LFt , where t = 1 + [LFn : N](n − 1).

4/14



Some key problems about LFn

Given a II1 factor M, I’ll denote by ng(M) the minimal number 2 ≤ n ≤ ∞
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LFn ' LFm iff n = m.

(2) The fundamental group problem: F(LFn) = 1 when n <∞?

(3) The finite/infinite generation problem: ng(LF∞) =∞? ng(LFn) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B ⊂ LFn FC in LFn, i.e. ∃N s.t. LFn = B ∗ N. Notably for B abelian.

(5) vN-type problem: LFn ↪→ M for any non-amenable II1 factor M?

(6) Characterize factors/groups embeddable into LFn. Is any II1 factor
N ⊂ LFn iso to either R or LFt , 1 < t ≤ ∞ ? If N ⊂ LFn subfactor with
finite index then N ' LFt , where t = 1 + [LFn : N](n − 1).

4/14



Some key problems about LFn

Given a II1 factor M, I’ll denote by ng(M) the minimal number 2 ≤ n ≤ ∞
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LFn ' LFm iff n = m.

(2) The fundamental group problem: F(LFn) = 1 when n <∞?

(3) The finite/infinite generation problem: ng(LF∞) =∞? ng(LFn) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B ⊂ LFn FC in LFn, i.e. ∃N s.t. LFn = B ∗ N. Notably for B abelian.

(5) vN-type problem: LFn ↪→ M for any non-amenable II1 factor M?

(6) Characterize factors/groups embeddable into LFn. Is any II1 factor
N ⊂ LFn iso to either R or LFt , 1 < t ≤ ∞ ? If N ⊂ LFn subfactor with
finite index then N ' LFt , where t = 1 + [LFn : N](n − 1).

4/14



The “free complementation” (FC) problem

• Are there maximal amenable vN subalgebras in LFn that are not FC ?
Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if Q ⊂ M = LFn is maximal
amenable then any Q0 ⊂ LFn amenable with Q0 ∩ Q diffuse implies must
be contained Q. Strengthened conjecture by Hayes, Popa (2019): any
maximal amenable Q ⊂ LFn is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain
random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter!
Thus settling the PT+coarseness conjecture.

• Big problem though: for any freely complemented Q ⊂ LFn one already
knows both PT and coarseness hold true, and there are no known
examples of maximal amenable Q ⊂ LFn that are not FC!
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Candidates for non-FC MASAs in LFn

Recall that any diffuse amenable B ⊂ M = B ∗ N is maximal amenable,
PT-absorbing and coarse (Popa 1982).

• Let g ∈ Fn be so that gZ is maximal abelian in Fn. Then Ag = {ug}′′ is
maximal amenable in LFn (P1982). Is Ag freely complemented in LFn,
even if gZ is not freely complemented in Fn?

• Is the radial MASA Ln ⊂ LFn, 2 ≤ n <∞, defined by
Ln = {

∑n
i=1(ui + u∗i )}′′ freely complemented? (NB: Ln is known to be

maximal amenable by Cameron-Fang-Ravichandran-White 2010).

• If {Bi}i are diffuse amenable vN in M = LFn with Bi freely
complemented and Bi ⊀LFn Bj , ∀i 6= j , then B = ⊕iuipiBipiu

∗
i is maximal

amenable in M by (P1982) for any pi ∈ P(Bi ) and ui ∈ U(M) satisfying∑
i uipiu

∗
i = 1. Is B ⊂ M freely complemented ?
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• Boutonnet-Popa 2022: Let {(Mj , τj)}j∈J be tracial vN algebras, with
sj ∈ Mj semicircular, ∀j . Denote `2∗ the set of square summable
J-tuples/R with at least two non-zero entries. For each t = (tj)j ∈ `2∗
denote by A(t) the abelian vN generated in M = ∗j∈JMj by
s(t) :=

∑
j tjsj ∈ M. Then A(t) is maximal amenable in M, ∀t ∈ `2∗, with

A(t) ≺M A(t ′) iff t, t ′ ∈ `2∗ proportional. Are they FC in M?

• Cases of interest for the BP examples: (a) when Mj = A(sj)⊗ R,
∀j ∈ J, where A(sj) = {sj}′′ ⊂ Mj ; (b) when Mj = A(sj)o Γj , where Γj is
an amenable group and Γj y Aj is a trace preserving action, ∀j ∈ J;
(c) any situation where Mj is “much bigger” than A(sj), for instance when
Mj abelian non-separable, like Mj = (LZ)ω, ∀j .
• Noticing that if M = A∗n with A non-separable (ns), then A(t) are all
separable, it “looks like” in some sense the only ns MASAs in such M are
the Ak = 1 ∗ ... ∗ A ∗ ...1 (kth position), which would show that rank n is
“remembered” by M!

• I actually tend to believe that any maximal amenable B ⊂ LFn is FC!
This would be an amazing structural property of the free group factors.
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Non-iso of A∗n for non-separable A

Theorem (Boutonnet–Drimbe-Ioana-Popa 03/2023)

Let A be an ns-abelian vN algebra. Then A∗n, 2 ≤ n ≤ ∞, are mutually
non-isomorphic, with F(A∗n) = 1 whenever n <∞.

• We actually show that the ns-free group factors A∗n have a special
structure that makes them strikingly rigid!
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The singular abelian core of a II1 factor

• Recall that given a tracial vN (M, τ), a weakly closed abelian
∗-subalgebra A ⊂ M is singular if it has no non-trivial self-intertwiner in M:
if ξ ∈ 1AM1A satisfies Aξ = ξA then ξ ∈ A. Equivalently, Ap1 6≺M Ap2,
∀p1 ⊥ p2 ∈ P(A). We refer to such subalgebras as singular abelian.

• We often view a singular abelian A ⊂ M as its class modulo unitary
conjugacy in M.

• Two singular abelian A1,A2 ⊂ M are disjoint if A1 6≺M A2. This means
there are no non-zero projections pi ∈ P(Ai ) such that A1p1,A2p2 are
unitary conjugate in M (so it is equivalent to A2 6≺M A1).

• Let S(M) be the set of families {Ai}i of mutually disjoint (classes of)
singular abelian in a II1 factor M. For two such families one has
{A1

i }i ≤ {A2
j }j if ∀i and p ∈ P(A1

i ), ∃j s.t. A1
i p ≺M A2

j . They are
equivalent if one has both ≤ and ≥ This amounts to: each one can be
obtained from the other by unitary conj. + cutting&glueing.
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• Taking the II∞ factor M ⊗ B(`2I ) with I sufficiently large, one can view
any {Ai}i ∈ S(M) as one single (class of) singular abelian ⊕iA

0
i , where

A0
i ∼ Ai . In this “unfolded form”, equivalence amounts to unitary

conjugacy and ≤ amounts to one being equivalent to a reduced of the
other. This is the unfolded form of S(M).

• S(M)/ ∼ clearly inductively ordered with respect to ≤ and in fact it has
a unique maximal element, which we call the singular abelian core of M
and denote it AM . Its unfolded form is thus the (unique up to unitary
conjugacy!) singular abelian A ⊂M = M ⊗ B(`2I ) generated by finite
projections with the property that any weakly closed abelian ∗-subalgebra
B ⊂M with Tr(1B) <∞ and B ⊂ 1BM1B singular, satisfies B ≺M A.

• The size d(AM) of the singular core AM is the trace of its support in
unfolded form. Alternatively, if AM is given in folded form as a family
{Ai}i of disjoint singular abelian in M, then d(AM) =

∑
i τ(1Ai

).

Note: by P2019 if M separable, then d(AM) = 2ℵ0 .
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The sans-core and sans-rank of a II1 factor

• If A ⊂ M is singular abelian with Ap non-separable ∀p ∈ P(A), then we
call it a sans-subalgebra.

• We obviously have the same considerations for the set Sns(M) (⊂ S(M))
of families of disjoint sans-algebras as for the S(M). We call the (unique)
maximal element in Sns(M)/ ∼ the singular abelian non-separable core
(sans-core) of the II1 factor M and denote it Ans

M . As with the singular
abelian core, we view it in either “folded” or “unfolded” form.

• The iso-class of the (unique up to unitary conjugacy) sans-core inclusion
Ans

M ⊂M = M ⊗ B(`2I ) is an iso-invariant of M. So its size
d(Ans

M ) :=
∑

A∈Ans
M
τ(1A) is an iso-invariant of M as well.

• We call the size d(Ans
M ) of the sans-core the sans-rank of the II1 factor

M and denote it rns(M).

• One obviously has rns(Mt) = rns(M)/t, ∀t > 0 !
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Sans-core&rank of free product factors

• For an abelian vN algebra A we denote pns(A) the maximal projection p
of A with the property that Ap has no separable summands.

Theorem (BDIP 2023)

• Let A0,A1, .... be a (possibly finite) sequence of two or more diffuse
abelian vN algebras. Then the sans-core of the II1 factor M = A0 ∗A1 ∗ ....
is given by {Akpns(Ak)}k≥0 (folded form), with its sans-rank given by
rns(M) =

∑
k≥0 τ(pns(Ak)).

• If M = M1 ∗M2... is a free product of II1 factors then the sans-core of M
is given by Ans

M = ∪kAns
Mk

and sans-rank given by rns(M) =
∑

k rns(Mk).

Corollary

• Let A0,A1,A2, .... be diffuse abelian vN algebras, with Ak non-separable
if k ≥ 1, and for each n ≥ 1 denote Mn = A0 ∗ A1 ∗ .... ∗ An. Then Mn are
mutually non-isomorphic II1 factors, with F(Mn) = 1, ∀n.
• In particular, if A is ns-abelian vN then A∗n, 2 ≤ n ≤ ∞, are non-isomor-
phic, with F(A∗n) = 1 if n <∞.
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About the proof

• The phenomenology behind these results: any singular abelian
A ⊂ M1 ∗M2 that’s “transversal” to both M1,M2 must be separable.

More generaly, we have:

Lemma 1

Let M1,M2 be diffuse vN algebras and denote M = M1 ∗M2. If B ⊂ M is
a weakly closed ∗-subalgebra such that B 6≺M Mi , i = 1, 2, then
B ′ ∩ 1BM1B is separable.

Lemma 2

With M = M1 ∗M2 as above, let A ⊂ M be singular abelian purely
non-separable. Then there exist projections p1, p2 ∈ A such that
p1 + p2 = 1A and Api unitary conjugate into Mi , i = 1, 2.
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What about the “classic” free group factor problem?

• It doesn’t seem possible to use the non-iso of A∗n for non-separable A to
deduce the non-iso of the LFn. Note however hat if M = A∗n with A
non-separable, then there exists an increasing net of subfactors Ni ↗ M
such that Ni ' LFn, ∀i .

• By results of Dykema and Radulescu (1992) using Voiculescu’s free
probability methods, ng(LF∞) =∞ (so the solution to (3)) implies LFn,
2 ≤ n ≤ ∞, non-isomorphic and F(LFn) = 1, ∀n <∞. So (1) and (2)
would follow as well.

• Tightness conjecture states that if a II1 factor M has stably bounded
number of generators, supt ng(Mt) <∞, then M is tight, i.e.,
∃R0,R1 ⊂ M such that R0L

2MR1 is irreducible. In particular, if M is
finitely generated and F(M) = 1, then M would follow tight.
Since F(LF∞) 6= 1 (Voiculescu 1988, Radulescu 1991), this would show
that if ng(LF∞) <∞ then LF∞ is tight, contradicting Ge-Popa 1996.
Thus, tightness conjecture implies ng(LF∞) =∞, more generally
∃1 ≥ c > 0 such that n ≥ ng(LFn) ≥ cn, ∀n. Thus, by remarks above, the
tightness conjecture solves (1)− (3).
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