Some remarks on the free group factors

IMJ Paris, September 2023

Sorin Popa

▲ ヨト ▲ 御 ト

The free group factors conundrum

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

The free group factors conundrum

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II₁ factors arising from various data (such as groups and their action on spaces), a large number of basic questions concerning the free group factors remained open. Most notably: are the $L(\mathbb{F}_n)$, $2 \le n \le \infty$, non-isomorphic?

The free group factors conundrum

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II₁ factors arising from various data (such as groups and their action on spaces), a large number of basic questions concerning the free group factors remained open. Most notably: are the $L(\mathbb{F}_n)$, $2 \le n \le \infty$, non-isomorphic?

• This problem gave rise, directly or indirectly, to a huge amount of mathematics, a multitude of concepts and insightful techniques: approximation properties (compact, weak amenability, the Λ -invariant), absorption/repelling/branchy behavior of $L\mathbb{F}_n$ as bimodule over its amenable subalgebras, free probability methods (random matrix models and free entropy), deformation/rigidity/intertwining methods, W*-boundary methods (bi-exactness and proper proximality), thin&tight decomposition methods, L^2 -cohomology attempts, bounded generation, ...

• It is evident by now that the structure and classification of the free group factors $L\mathbb{F}_n$ involves some extremely fine, elusive phenomenology, still far from being understood.

• It is evident by now that the structure and classification of the free group factors $L\mathbb{F}_n$ involves some extremely fine, elusive phenomenology, still far from being understood.

• The difficulty seems to come from the very nature of $L\mathbb{F}_n$: a subtle mixture between "mild rigidity" (due to spectral gap of $\mathbb{F}_n \curvearrowright L\mathbb{F}_n$ and "branchyness") and a multitude of deformation properties (free malleability, compact c.p., finite rank c.b.). An information that's "spread out" inside $L\mathbb{F}_n$ in a random manner!

• It is evident by now that the structure and classification of the free group factors $L\mathbb{F}_n$ involves some extremely fine, elusive phenomenology, still far from being understood.

• The difficulty seems to come from the very nature of $L\mathbb{F}_n$: a subtle mixture between "mild rigidity" (due to spectral gap of $\mathbb{F}_n \curvearrowright L\mathbb{F}_n$ and "branchyness") and a multitude of deformation properties (free malleability, compact c.p., finite rank c.b.). An information that's "spread out" inside $L\mathbb{F}_n$ in a random manner!

• My perception of a free group factor $L\mathbb{F}_n$ is that it is like mud, a homogeneous mixture of earth and water without "points d'appui" !

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ iff n = m.

▲ 臣 ▶ ▲ 御 ▶

- (1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ iff n = m.
- (2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

- (1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ iff n = m.
- (2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?
- (3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

- (1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ iff n = m.
- (2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?
- (3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?
- (4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$. Notably for B abelian.

- (1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ iff n = m.
- (2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?
- (3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?
- (4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$. Notably for B abelian.
- (5) vN-type problem: $L\mathbb{F}_n \hookrightarrow M$ for any non-amenable II₁ factor M?

- (1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ iff n = m.
- (2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?
- (3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?
- (4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$. Notably for B abelian.
- (5) vN-type problem: $L\mathbb{F}_n \hookrightarrow M$ for any non-amenable II₁ factor M?

(6) Characterize factors/groups embeddable into $L\mathbb{F}_n$. Is any II₁ factor $N \subset L\mathbb{F}_n$ iso to either R or $L\mathbb{F}_t$, $1 < t \leq \infty$? If $N \subset L\mathbb{F}_n$ subfactor with finite index then $N \simeq L\mathbb{F}_t$, where $t = 1 + [L\mathbb{F}_n : N](n-1)$.

▲ 臣 ▶ ▲ 郡 ▶

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse implies must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse implies must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse implies must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter! Thus settling the PT+coarseness conjecture.

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse implies must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter! Thus settling the PT+coarseness conjecture.

• Big problem though: for any freely complemented $Q \subset L\mathbb{F}_n$ one already knows both PT and coarseness hold true, and there are no known examples of maximal amenable $Q \subset L\mathbb{F}_n$ that are not FC!

Recall that any diffuse amenable $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse (Popa 1982).

• Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

Recall that any diffuse amenable $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse (Popa 1982).

• Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

• Is the radial MASA $L_n \subset L\mathbb{F}_n$, $2 \le n < \infty$, defined by $L_n = \{\sum_{i=1}^n (u_i + u_i^*)\}^{\prime\prime}$ freely complemented? (NB: L_n is known to be maximal amenable by Cameron-Fang-Ravichandran-White 2010).

Recall that any diffuse amenable $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse (Popa 1982).

• Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

• Is the radial MASA $L_n \subset L\mathbb{F}_n$, $2 \le n < \infty$, defined by $L_n = \{\sum_{i=1}^n (u_i + u_i^*)\}''$ freely complemented? (NB: L_n is known to be maximal amenable by Cameron-Fang-Ravichandran-White 2010).

• If $\{B_i\}_i$ are diffuse amenable vN in $M = L\mathbb{F}_n$ with B_i freely complemented and $B_i \not\prec_{L\mathbb{F}_n} B_j$, $\forall i \neq j$, then $B = \bigoplus_i u_i p_i B_i p_i u_i^*$ is maximal amenable in M by (P1982) for any $p_i \in \mathcal{P}(B_i)$ and $u_i \in \mathcal{U}(M)$ satisfying $\sum_i u_i p_i u_i^* = 1$. Is $B \subset M$ freely complemented ?

• Cases of interest for the BP examples: (a) when $M_j = A(s_j) \otimes R$, $\forall j \in J$, where $A(s_j) = \{s_j\}'' \subset M_j$; (b) when $M_j = A(s_j) \rtimes \Gamma_j$, where Γ_j is an amenable group and $\Gamma_j \curvearrowright A_j$ is a trace preserving action, $\forall j \in J$; (c) any situation where M_j is "much bigger" than $A(s_j)$, for instance when M_j abelian non-separable, like $M_j = (L\mathbb{Z})^{\omega}$, $\forall j$.

• Cases of interest for the BP examples: (a) when $M_j = A(s_j) \otimes R$, $\forall j \in J$, where $A(s_j) = \{s_j\}'' \subset M_j$; (b) when $M_j = A(s_j) \rtimes \Gamma_j$, where Γ_j is an amenable group and $\Gamma_j \curvearrowright A_j$ is a trace preserving action, $\forall j \in J$; (c) any situation where M_j is "much bigger" than $A(s_j)$, for instance when M_j abelian non-separable, like $M_j = (L\mathbb{Z})^{\omega}$, $\forall j$.

• Noticing that if $M = A^{*n}$ with A non-separable (ns), then A(t) are all separable, it "looks like" in some sense the only ns MASAs in such M are the $A_k = 1 * ... * A * ...1$ (*k*th position), which would show that rank n is "remembered" by M!

• Cases of interest for the BP examples: (a) when $M_j = A(s_j) \otimes R$, $\forall j \in J$, where $A(s_j) = \{s_j\}'' \subset M_j$; (b) when $M_j = A(s_j) \rtimes \Gamma_j$, where Γ_j is an amenable group and $\Gamma_j \curvearrowright A_j$ is a trace preserving action, $\forall j \in J$; (c) any situation where M_j is "much bigger" than $A(s_j)$, for instance when M_j abelian non-separable, like $M_j = (L\mathbb{Z})^{\omega}$, $\forall j$.

• Noticing that if $M = A^{*n}$ with A non-separable (ns), then A(t) are all separable, it "looks like" in some sense the only ns MASAs in such M are the $A_k = 1 * ... * A * ...1$ (*k*th position), which would show that rank n is "remembered" by M!

• I actually tend to believe that any maximal amenable $B \subset L\mathbb{F}_n$ is FC! This would be an amazing structural property of the free group factors.

Theorem (Boutonnet–Drimbe-Ioana-Popa 03/2023)

Let A be an ns-abelian vN algebra. Then $A^{*n}, 2 \le n \le \infty$, are mutually non-isomorphic, with $\mathcal{F}(A^{*n}) = 1$ whenever $n < \infty$.

Theorem (Boutonnet–Drimbe-Ioana-Popa 03/2023)

Let A be an ns-abelian vN algebra. Then $A^{*n}, 2 \le n \le \infty$, are mutually non-isomorphic, with $\mathcal{F}(A^{*n}) = 1$ whenever $n < \infty$.

• We actually show that the ns-free group factors A^{*n} have a special structure that makes them strikingly rigid!

• Recall that given a tracial vN (M, τ) , a weakly closed abelian *-subalgebra $A \subset M$ is *singular* if it has no non-trivial self-intertwiner in M: if $\xi \in 1_A M 1_A$ satisfies $A\xi = \xi A$ then $\xi \in A$. Equivalently, $Ap_1 \not\prec_M Ap_2$, $\forall p_1 \perp p_2 \in \mathcal{P}(A)$. We refer to such subalgebras as *singular abelian*.

• Recall that given a tracial vN (M, τ) , a weakly closed abelian *-subalgebra $A \subset M$ is *singular* if it has no non-trivial self-intertwiner in M: if $\xi \in 1_A M 1_A$ satisfies $A\xi = \xi A$ then $\xi \in A$. Equivalently, $Ap_1 \not\prec_M Ap_2$, $\forall p_1 \perp p_2 \in \mathcal{P}(A)$. We refer to such subalgebras as *singular abelian*.

• We often view a singular abelian $A \subset M$ as its class modulo unitary conjugacy in M.

• Recall that given a tracial vN (M, τ) , a weakly closed abelian *-subalgebra $A \subset M$ is *singular* if it has no non-trivial self-intertwiner in M: if $\xi \in 1_A M 1_A$ satisfies $A\xi = \xi A$ then $\xi \in A$. Equivalently, $Ap_1 \not\prec_M Ap_2$, $\forall p_1 \perp p_2 \in \mathcal{P}(A)$. We refer to such subalgebras as *singular abelian*.

• We often view a singular abelian $A \subset M$ as its class modulo unitary conjugacy in M.

• Two singular abelian $A_1, A_2 \subset M$ are *disjoint* if $A_1 \not\prec_M A_2$. This means there are no non-zero projections $p_i \in \mathcal{P}(A_i)$ such that A_1p_1, A_2p_2 are unitary conjugate in M (so it is equivalent to $A_2 \not\prec_M A_1$).

• Recall that given a tracial vN (M, τ) , a weakly closed abelian *-subalgebra $A \subset M$ is *singular* if it has no non-trivial self-intertwiner in M: if $\xi \in 1_A M 1_A$ satisfies $A\xi = \xi A$ then $\xi \in A$. Equivalently, $Ap_1 \not\prec_M Ap_2$, $\forall p_1 \perp p_2 \in \mathcal{P}(A)$. We refer to such subalgebras as *singular abelian*.

• We often view a singular abelian $A \subset M$ as its class modulo unitary conjugacy in M.

• Two singular abelian $A_1, A_2 \subset M$ are *disjoint* if $A_1 \not\prec_M A_2$. This means there are no non-zero projections $p_i \in \mathcal{P}(A_i)$ such that A_1p_1, A_2p_2 are unitary conjugate in M (so it is equivalent to $A_2 \not\prec_M A_1$).

• Let S(M) be the set of families $\{A_i\}_i$ of mutually disjoint (classes of) singular abelian in a II₁ factor M. For two such families one has $\{A_i^1\}_i \leq \{A_j^2\}_j$ if $\forall i$ and $p \in \mathcal{P}(A_i^1)$, $\exists j$ s.t. $A_i^1 p \prec_M A_j^2$. They are equivalent if one has both \leq and \geq This amounts to: each one can be obtained from the other by unitary conj. + cutting&glueing.

• Taking the II_{∞} factor $M \otimes \mathcal{B}(\ell^2 I)$ with I sufficiently large, one can view any $\{A_i\}_i \in \mathcal{S}(M)$ as one single (class of) singular abelian $\bigoplus_i A_i^0$, where $A_i^0 \sim A_i$. In this "unfolded form", equivalence amounts to unitary conjugacy and \leq amounts to one being equivalent to a reduced of the other. This is the **unfolded form** of $\mathcal{S}(M)$. • Taking the II_{∞} factor $M \otimes \mathcal{B}(\ell^2 I)$ with I sufficiently large, one can view any $\{A_i\}_i \in \mathcal{S}(M)$ as one single (class of) singular abelian $\bigoplus_i A_i^0$, where $A_i^0 \sim A_i$. In this "unfolded form", equivalence amounts to unitary conjugacy and \leq amounts to one being equivalent to a reduced of the other. This is the **unfolded form** of $\mathcal{S}(M)$.

• $S(M)/\sim$ clearly inductively ordered with respect to \leq and in fact it has a unique maximal element, which we call the **singular abelian core** of Mand denote it \mathcal{A}_M . Its unfolded form is thus the (unique up to unitary conjugacy!) singular abelian $\mathcal{A} \subset \mathcal{M} = M \otimes \mathcal{B}(\ell^2 I)$ generated by finite projections with the property that any weakly closed abelian *-subalgebra $B \subset \mathcal{M}$ with $Tr(1_B) < \infty$ and $B \subset 1_B \mathcal{M} 1_B$ singular, satisfies $B \prec_{\mathcal{M}} \mathcal{A}$. • Taking the II_{∞} factor $M \otimes \mathcal{B}(\ell^2 I)$ with I sufficiently large, one can view any $\{A_i\}_i \in \mathcal{S}(M)$ as one single (class of) singular abelian $\bigoplus_i A_i^0$, where $A_i^0 \sim A_i$. In this "unfolded form", equivalence amounts to unitary conjugacy and \leq amounts to one being equivalent to a reduced of the other. This is the **unfolded form** of $\mathcal{S}(M)$.

• $S(M)/\sim$ clearly inductively ordered with respect to \leq and in fact it has a unique maximal element, which we call the **singular abelian core** of Mand denote it \mathcal{A}_M . Its unfolded form is thus the (unique up to unitary conjugacy!) singular abelian $\mathcal{A} \subset \mathcal{M} = M \otimes \mathcal{B}(\ell^2 I)$ generated by finite projections with the property that any weakly closed abelian *-subalgebra $B \subset \mathcal{M}$ with $Tr(1_B) < \infty$ and $B \subset 1_B \mathcal{M} 1_B$ singular, satisfies $B \prec_{\mathcal{M}} \mathcal{A}$.

• The size $d(\mathcal{A}_M)$ of the singular core \mathcal{A}_M is the trace of its support in unfolded form. Alternatively, if \mathcal{A}_M is given in folded form as a family $\{A_i\}_i$ of disjoint singular abelian in M, then $d(\mathcal{A}_M) = \sum_i \tau(1_{A_i})$. Note: by P2019 if M separable, then $d(\mathcal{A}_M) = 2^{\aleph_0}$.

> < ≣ ► < ♂ ► 10/14

The sans-core and sans-rank of a II_1 factor

• If $A \subset M$ is singular abelian with Ap non-separable $\forall p \in \mathcal{P}(A)$, then we call it a sans-subalgebra.

The sans-core and sans-rank of a II_1 factor

• If $A \subset M$ is singular abelian with Ap non-separable $\forall p \in \mathcal{P}(A)$, then we call it a sans-subalgebra.

• We obviously have the same considerations for the set $S_{ns}(M)$ ($\subset S(M)$) of families of disjoint sans-algebras as for the S(M). We call the (unique) maximal element in $S_{ns}(M)/\sim$ the *singular abelian non-separable core* (sans-core) of the II₁ factor M and denote it \mathcal{A}_M^{ns} . As with the singular abelian core, we view it in either "folded" or "unfolded" form.

The sans-core and sans-rank of a II_1 factor

• If $A \subset M$ is singular abelian with Ap non-separable $\forall p \in \mathcal{P}(A)$, then we call it a sans-subalgebra.

• We obviously have the same considerations for the set $S_{ns}(M)$ ($\subset S(M)$) of families of disjoint sans-algebras as for the S(M). We call the (unique) maximal element in $S_{ns}(M)/\sim$ the *singular abelian non-separable core* (sans-core) of the II₁ factor M and denote it \mathcal{A}_M^{ns} . As with the singular abelian core, we view it in either "folded" or "unfolded" form.

• The iso-class of the (unique up to unitary conjugacy) sans-core inclusion $\mathcal{A}_{M}^{ns} \subset \mathcal{M} = M \otimes \mathcal{B}(\ell^{2}I)$ is an iso-invariant of M. So its size $d(\mathcal{A}_{M}^{ns}) := \sum_{A \in \mathcal{A}_{M}^{ns}} \tau(1_{A})$ is an iso-invariant of M as well.

The sans-core and sans-rank of a II_1 factor

• If $A \subset M$ is singular abelian with Ap non-separable $\forall p \in \mathcal{P}(A)$, then we call it a sans-subalgebra.

• We obviously have the same considerations for the set $S_{ns}(M)$ ($\subset S(M)$) of families of disjoint sans-algebras as for the S(M). We call the (unique) maximal element in $S_{ns}(M)/\sim$ the *singular abelian non-separable core* (sans-core) of the II₁ factor M and denote it \mathcal{A}_M^{ns} . As with the singular abelian core, we view it in either "folded" or "unfolded" form.

The iso-class of the (unique up to unitary conjugacy) sans-core inclusion *A^{ns}_M* ⊂ *M* = *M* ⊗ *B*(ℓ²*I*) is an iso-invariant of *M*. So its size d(*A^{ns}_M*) := ∑<sub>*A*∈*A^{ns}_M τ*(1_{*A*}) is an iso-invariant of *M* as well.
We call the size d(*A^{ns}_M*) of the sans-core the sans-rank of the II₁ factor
</sub>

M and denote it $r_{ns}(M)$.

< E > < Ø >

The sans-core and sans-rank of a II_1 factor

• If $A \subset M$ is singular abelian with Ap non-separable $\forall p \in \mathcal{P}(A)$, then we call it a sans-subalgebra.

• We obviously have the same considerations for the set $S_{ns}(M)$ ($\subset S(M)$) of families of disjoint sans-algebras as for the S(M). We call the (unique) maximal element in $S_{ns}(M)/\sim$ the *singular abelian non-separable core* (sans-core) of the II₁ factor M and denote it \mathcal{A}_M^{ns} . As with the singular abelian core, we view it in either "folded" or "unfolded" form.

The iso-class of the (unique up to unitary conjugacy) sans-core inclusion *A^{ns}_M* ⊂ *M* = *M* ⊗ *B*(*ℓ*²*I*) is an iso-invariant of *M*. So its size d(*A^{ns}_M*) := ∑<sub>*A*∈*A^{ns}_M τ*(1_{*A*}) is an iso-invariant of *M* as well.
We call the size d(*A^{ns}_M*) of the sans-core the sans-rank of the II₁ factor
</sub>

• We call the size $d(\mathcal{A}_M^{ns})$ of the sans-core the sans-rank of the II₁ factor M and denote it $r_{ns}(M)$.

• One obviously has $r_{ns}(M^t) = r_{ns}(M)/t$, $\forall t > 0$!

• For an abelian vN algebra A we denote $p_{ns}(A)$ the maximal projection p of A with the property that Ap has no separable summands.

• For an abelian vN algebra A we denote $p_{ns}(A)$ the maximal projection p of A with the property that Ap has no separable summands.

Theorem (BDIP 2023)

• Let A_0, A_1, \ldots be a (possibly finite) sequence of two or more diffuse abelian vN algebras. Then the sans-core of the II₁ factor $M = A_0 * A_1 * \ldots$ is given by $\{A_k p_{ns}(A_k)\}_{k \ge 0}$ (folded form), with its sans-rank given by $r_{ns}(M) = \sum_{k \ge 0} \tau(p_{ns}(A_k))$.

• For an abelian vN algebra A we denote $p_{ns}(A)$ the maximal projection p of A with the property that Ap has no separable summands.

Theorem (BDIP 2023)

• Let A_0, A_1, \ldots be a (possibly finite) sequence of two or more diffuse abelian vN algebras. Then the sans-core of the II₁ factor $M = A_0 * A_1 * \ldots$ is given by $\{A_k p_{ns}(A_k)\}_{k \ge 0}$ (folded form), with its sans-rank given by $r_{ns}(M) = \sum_{k \ge 0} \tau(p_{ns}(A_k))$.

• If $M = M_1 * M_2...$ is a free product of II₁ factors then the sans-core of M is given by $\mathcal{A}_M^{ns} = \bigcup_k \mathcal{A}_{M_k}^{ns}$ and sans-rank given by $r_{ns}(M) = \sum_k r_{ns}(M_k)$.

• For an abelian vN algebra A we denote $p_{ns}(A)$ the maximal projection p of A with the property that Ap has no separable summands.

Theorem (BDIP 2023)

• Let A_0, A_1, \ldots be a (possibly finite) sequence of two or more diffuse abelian vN algebras. Then the sans-core of the II₁ factor $M = A_0 * A_1 * \ldots$ is given by $\{A_k p_{ns}(A_k)\}_{k \ge 0}$ (folded form), with its sans-rank given by $r_{ns}(M) = \sum_{k \ge 0} \tau(p_{ns}(A_k))$.

• If $M = M_1 * M_2...$ is a free product of II₁ factors then the sans-core of M is given by $\mathcal{A}_M^{ns} = \bigcup_k \mathcal{A}_{M_k}^{ns}$ and sans-rank given by $r_{ns}(M) = \sum_k r_{ns}(M_k)$.

Corollary

• Let $A_0, A_1, A_2, ...$ be diffuse abelian vN algebras, with A_k non-separable if $k \ge 1$, and for each $n \ge 1$ denote $M_n = A_0 * A_1 * ... * A_n$. Then M_n are mutually non-isomorphic II₁ factors, with $\mathcal{F}(M_n) = 1$, $\forall n$.

• In particular, if A is ns-abelian vN then $A^{*n}, 2 \le n \le \infty$, are non-isomorphic, with $\mathcal{F}(A^{*n}) = 1$ if $n < \infty$.

About the proof

• The phenomenology behind these results: any singular abelian $A \subset M_1 * M_2$ that's "transversal" to both M_1, M_2 must be separable.

• The phenomenology behind these results: any singular abelian $A \subset M_1 * M_2$ that's "transversal" to both M_1, M_2 must be separable.

More generaly, we have:

Lemma 1

Let M_1, M_2 be diffuse vN algebras and denote $M = M_1 * M_2$. If $B \subset M$ is a weakly closed *-subalgebra such that $B \not\prec_M M_i$, i = 1, 2, then $B' \cap 1_B M 1_B$ is separable. • The phenomenology behind these results: any singular abelian $A \subset M_1 * M_2$ that's "transversal" to both M_1, M_2 must be separable.

More generaly, we have:

Lemma 1

Let M_1, M_2 be diffuse vN algebras and denote $M = M_1 * M_2$. If $B \subset M$ is a weakly closed *-subalgebra such that $B \not\prec_M M_i$, i = 1, 2, then $B' \cap 1_B M 1_B$ is separable.

Lemma 2

With $M = M_1 * M_2$ as above, let $A \subset M$ be singular abelian purely non-separable. Then there exist projections $p_1, p_2 \in A$ such that $p_1 + p_2 = 1_A$ and Ap_i unitary conjugate into M_i , i = 1, 2.

(4) ≥ (+) < (-) </p>

What about the "classic" free group factor problem?

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. Note however hat if $M = A^{*n}$ with A non-separable, then there exists an increasing net of subfactors $N_i \nearrow M$ such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

What about the "classic" free group factor problem?

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. Note however hat if $M = A^{*n}$ with A non-separable, then there exists an increasing net of subfactors $N_i \nearrow M$ such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• By results of Dykema and Radulescu (1992) using Voiculescu's free probability methods, $ng(L\mathbb{F}_{\infty}) = \infty$ (so the solution to (3)) implies $L\mathbb{F}_n$, $2 \le n \le \infty$, non-isomorphic and $\mathcal{F}(L\mathbb{F}_n) = 1$, $\forall n < \infty$. So (1) and (2) would follow as well.

What about the "classic" free group factor problem?

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. Note however hat if $M = A^{*n}$ with A non-separable, then there exists an increasing net of subfactors $N_i \nearrow M$ such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• By results of Dykema and Radulescu (1992) using Voiculescu's free probability methods, $ng(L\mathbb{F}_{\infty}) = \infty$ (so the solution to (3)) implies $L\mathbb{F}_n$, $2 \le n \le \infty$, non-isomorphic and $\mathcal{F}(L\mathbb{F}_n) = 1$, $\forall n < \infty$. So (1) and (2) would follow as well.

• Tightness conjecture states that if a II_1 factor M has stably bounded number of generators, $\sup_t ng(M^t) < \infty$, then M is *tight*, i.e., $\exists R_0, R_1 \subset M$ such that $_{R_0}L^2M_{R_1}$ is irreducible. In particular, if M is finitely generated and $\mathcal{F}(M) = 1$, then M would follow tight. Since $\mathcal{F}(L\mathbb{F}_{\infty}) \neq 1$ (Voiculescu 1988, Radulescu 1991), this would show that if $ng(L\mathbb{F}_{\infty}) < \infty$ then $L\mathbb{F}_{\infty}$ is tight, contradicting Ge-Popa 1996. Thus, tightness conjecture implies $ng(L\mathbb{F}_{\infty}) = \infty$, more generally $\exists 1 \geq c > 0$ such that $n \geq ng(L\mathbb{F}_n) \geq cn$, $\forall n$. Thus, by remarks above, the tightness conjecture solves (1) - (3).