Some remarks on the free group factors
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2 < n < o0, emerged as a fundamental class of objects in non-commu-
tative analysis (aka operator algebras).

e Despite recent progress in classifying large classes of Iy factors arising
from various data (such as groups and their action on spaces), a large
number of basic questions concerning the free group factors remained
open. Most notably: are the L(F,), 2 < n < oo, non-isomorphic?

e This problem gave rise, directly or indirectly, to a huge amount of
mathematics, a multitude of concepts and insightful techniques:
approximation properties (compact, weak amenability, the A-invariant),
absorption /repelling/branchy behavior of LF, as bimodule over its
amenable subalgebras, free probability methods (random matrix models
and free entropy), deformation/rigidity/intertwining methods,
W*-boundary methods (bi-exactness and proper proximality), thin&tight
decomposition methods, L2—cohomo|ogy attempts, bounded generation, ...
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e It is evident by now that the structure and classification of the free
group factors LI, involves some extremely fine, elusive phenomenology,
still far from being understood.

e The difficulty seems to come from the very nature of LF,: a subtle
mixture between "mild rigidity” (due to spectral gap of F, ~ LF, and
“branchyness”) and a multitude of deformation properties (free
malleability, compact c.p., finite rank c.b.). An information that's “spread
out” inside LF, in a random manner!

e My perception of a free group factor LF, is that it is like mud, a
homogeneous mixture of earth and water without “points d’appui” !
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Some key problems about LF,

Given a Iy factor M, I'll denote by ng(M) the minimal number 2 < n < co
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LF, ~ LF,, iff n = m.
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(2) The fundamental group problem: F(LF,) =1 when n < co?

(3) The finite/infinite generation problem: ng(LFy) = co? ng(LF,) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B C LF, FCin LF,, i.e. AN s.t. LF, = B« N. Notably for B abelian.

(5) vN-type problem: LF, — M for any non-amenable Il; factor M?

(6) Characterize factors/groups embeddable into LF,. s any Il factor
N C LF, iso to either Ror LF;, 1 <t <oo? If N C LF, subfactor with
finite index then N ~ LIF;, where t =1+ [LF, : N](n —1).
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Motivation

e Peterson-Thom conjecture (2011): if @ C M = LF, is maximal
amenable then any Qy C LF, amenable with Qo N Q diffuse implies must
be contained Q. Strengthened conjecture by Hayes, Popa (2019): any
maximal amenable @ C LI, is coarse.

e Hayes (2020) reduced PT/coarseness conjectures to proving a certain
random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

e Belinschi-Capitaine, Bordenave-Collins have recently solved the latter!
Thus settling the PT+-coarseness conjecture.

e Big problem though: for any freely complemented Q C LF, one already
knows both PT and coarseness hold true, and there are no known
examples of maximal amenable Q C LF, that are not FC!
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Candidates for non-FC MASAs in LF,

Recall that any diffuse amenable B C M = B % N is maximal amenable,
PT-absorbing and coarse (Popa 1982).

o Let g € F, be so that gZ is maximal abelian in F,. Then Ay = {ug}" is
maximal amenable in LF, (P1982). Is A, freely complemented in LF,,
even if gZ is not freely complemented in F,?
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PT-absorbing and coarse (Popa 1982).

o Let g € F, be so that gZ is maximal abelian in F,. Then Ay = {ug}" is
maximal amenable in LF, (P1982). Is A, freely complemented in LF,,
even if gZ is not freely complemented in F,?

e Is the radial MASA L, C LF,, 2 < n < oo, defined by

L, ={>"_1(ui + ur)}" freely complemented? (NB: L, is known to be
maximal amenable by Cameron-Fang-Ravichandran-White 2010).

e If {B;}; are diffuse amenable vN in M = LF, with B; freely
complemented and B; A, Bj, Vi # j, then B = @;u;p;B;p;u; is maximal
amenable in M by (P1982) for any p; € P(B;) and u; € U(M) satisfying
> uipiuf = 1. Is B C M freely complemented ?
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e Boutonnet-Popa 2022: Let {(M;, 7j)};c, be tracial vN algebras, with

sj € M; semicircular, Vj. Denote ¢2 the set of square summable
J-tuples/R with at least two non-zero entries. For each t = (t;); € (2
denote by A(t) the abelian vN generated in M = x;c;M; by

s(t) := >, tjsj € M. Then A(t) is maximal amenable in M, Vt € 22, with
A(t) =<m A(t') iff t, t' € £2 proportional. Are they FC in M?
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Vj € J, where A(sj) = {s;j}"" C M;; (b) when M; = A(sj) x T}, where [; is
an amenable group and I'; ~ A; is a trace preserving action, Vj € J;

(c) any situation where M; is “much bigger” than A(s;), for instance when
M; abelian non-separable, like M; = (LZ)%, Vj.

e Noticing that if M = A*" with A non-separable (ns), then A(t) are all
separable, it “looks like" in some sense the only ns MASAs in such M are
the Ay = 1% ...x Ax...1 (kth position), which would show that rank n is
“remembered” by M!

e | actually tend to believe that any maximal amenable B C LF, is FC!
This would be an amazing structural property of the free group factors.

7/14



Non-iso of A*” for non-separable A

Theorem (Boutonnet—Drimbe-loana-Popa 03/2023)

Let A be an ns-abelian vN algebra. Then A*" 2 < n < oo, are mutually
non-isomorphic, with F(A*") = 1 whenever n < oo.
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Non-iso of A*” for non-separable A

Theorem (Boutonnet—Drimbe-loana-Popa 03/2023)

Let A be an ns-abelian vN algebra. Then A*" 2 < n < oo, are mutually
non-isomorphic, with F(A*") = 1 whenever n < oo.

e We actually show that the ns-free group factors A*" have a special
structure that makes them strikingly rigid!
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The singular abelian core of a Il; factor

e Recall that given a tracial vN (M, 7), a weakly closed abelian
*-subalgebra A C M is singular if it has no non-trivial self-intertwiner in M:
if £ € 14M1,4 satisfies A = £A then £ € A. Equivalently, Ap1 Apm Apa,
Vp1 L po € P(A). We refer to such subalgebras as singular abelian.
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Vp1 L po € P(A). We refer to such subalgebras as singular abelian.

e We often view a singular abelian A C M as its class modulo unitary
conjugacy in M.

e Two singular abelian Ay, Ay C M are disjoint if A1 Ap Az. This means
there are no non-zero projections p; € P(A;) such that Aip;, Axps are
unitary conjugate in M (so it is equivalent to Ay Ay A1).

e Let S(M) be the set of families {A;}; of mutually disjoint (classes of)
singular abelian in a ll; factor M. For two such families one has

{Al}; < {Ajg}j if Vi and p € P(A}), Jj s.t. Alp <y AJ?. They are
equivalent if one has both < and > This amounts to: each one can be
obtained from the other by unitary conj. + cutting&glueing.
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e Taking the Il factor M ® B(¢£?1) with I sufficiently large, one can view
any {A;}; € S(M) as one single (class of) singular abelian &;A?, where
A? ~ A;. In this “unfolded form”, equivalence amounts to unitary
conjugacy and < amounts to one being equivalent to a reduced of the
other. This is the unfolded form of S(M).
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A? ~ A;. In this “unfolded form”, equivalence amounts to unitary
conjugacy and < amounts to one being equivalent to a reduced of the
other. This is the unfolded form of S(M).

e S(M)/ ~ clearly inductively ordered with respect to < and in fact it has
a unique maximal element, which we call the singular abelian core of M
and denote it Ap;. Its unfolded form is thus the (unique up to unitary
conjugacy!) singular abelian A ¢ M = M ® B(¢?1) generated by finite
projections with the property that any weakly closed abelian *-subalgebra
B € M with Tr(1g) < oo and B C 1M1 singular, satisfies B < A.

e The size d(Ap) of the singular core Ay is the trace of its support in
unfolded form. Alternatively, if Ay, is given in folded form as a family
{Ai}i of disjoint singular abelian in M, then d(Aym) =>";7(14,).

Note: by P2019 if M separable, then d(Ay) = 2%.
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The sans-core and sans-rank of a Il; factor

e If A C M is singular abelian with Ap non-separable Vp € P(A), then we
call it a sans-subalgebra.
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abelian core, we view it in either “folded” or “unfolded” form.

e The iso-class of the (unique up to unitary conjugacy) sans-core inclusion
Al C M = M ® B(£21) is an iso-invariant of M. So its size
d(Ay) = ZAGA;; 7(14) is an iso-invariant of M as well.

e We call the size d(.A};) of the sans-core the sans-rank of the Il; factor
M and denote it rps(M).

e One obviously has r,s(M*') = rp,s(M)/t, Vt > 0!
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Sans-core&rank of free product factors

e For an abelian vN algebra A we denote p,s(A) the maximal projection p
of A with the property that Ap has no separable summands.
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Sans-core&rank of free product factors

e For an abelian vN algebra A we denote p,s(A) the maximal projection p
of A with the property that Ap has no separable summands.

Theorem (BDIP 2023)

e Let Ag, A, .... be a (possibly finite) sequence of two or more diffuse
abelian vN algebras. Then the sans-core of the Il; factor M = Ag x A1 * ....
is given by {Axpns(Ak)} k>0 (folded form), with its sans-rank given by

I’ns(M) = Zkzo 7—(Pns(’é\k))'

o If M = My xM,... is a free product of Il; factors then the sans-core of M
is given by A7 = U AR and sans-rank given by rps(M) = 3 15s(Mg).

Corollary

e Let Ag, A1, Ao, .... be diffuse abelian vN algebras, with A, non-separable
if k> 1, and for each n > 1 denote M,, = Ag x A1 * .... * A,. Then M, are
mutually non-isomorphic Il factors, with F(M,) =1, Vn.

e In particular, if A is ns-abelian vN then A*",2 < n < 0o, are non-isomor-
phic, with F(A*") =1 if n < 0. 12/14



About the proof

e The phenomenology behind these results: any singular abelian
A C My x M, that's “transversal” to both M, M, must be separable.
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e The phenomenology behind these results: any singular abelian
A C My x M, that's “transversal” to both M, M, must be separable.

More generaly, we have:

Lemma 1

Let My, M, be diffuse vN algebras and denote M = My x M. If BC M is
a weakly closed *-subalgebra such that B Ay M;, i = 1,2, then
B'N1gM1g is separable.

Lemma 2

With M = M; « M, as above, let A C M be singular abelian purely
non-separable. Then there exist projections p1, p» € A such that

p1 + p2 = 14 and Ap; unitary conjugate into M;, i =1, 2.
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What about the “classic” free group factor problem?

e |t doesn't seem possible to use the non-iso of A*" for non-separable A to
deduce the non-iso of the LF,. Note however hat if M = A*" with A
non-separable, then there exists an increasing net of subfactors N; ~* M
such that N; ~ LIF,, Vi.
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non-separable, then there exists an increasing net of subfactors N; ~* M
such that N; ~ LIF,, Vi.

e By results of Dykema and Radulescu (1992) using Voiculescu's free
probability methods, ng(LF.) = oo (so the solution to (3)) implies LF,,
2 < n < o0, non-isomorphic and F(LF,) =1, Vn < co. So (1) and (2)
would follow as well.

e Tightness conjecture states that if a ll; factor M has stably bounded
number of generators, sup, ng(M?") < oo, then M is tight, i.e.,

dRy, R1 C M such that RoLzMR1 is irreducible. In particular, if M is
finitely generated and F(M) = 1, then M would follow tight.

Since F(LF) # 1 (Voiculescu 1988, Radulescu 1991), this would show
that if ng(LF) < oo then LF, is tight, contradicting Ge-Popa 1996.
Thus, tightness conjecture implies ng(LF,) = oo, more generally

31 > ¢ > 0 such that n > ng(LF,) > cn, Vn. Thus, by remarks above, the
tightness conjecture solves (1) — (3). 14/14



