The free group factors conundrum

Göteborg, June 19th 2024 to Mikael, on his 65th birthday

Sorin Popa

< ≧ > < @ >

Background

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

Background

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II₁ factors arising from various data (such as groups and their action on spaces), a large number of basic questions concerning the free group factors remained open. Most notably: are the $L(\mathbb{F}_n)$, $2 \le n \le \infty$, non-isomorphic?

Background

• The II₁ factors $L\mathbb{F}_n$, arising from the free groups with *n* generators, $2 \le n \le \infty$, emerged as a fundamental class of objects in non-commutative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II₁ factors arising from various data (such as groups and their action on spaces), a large number of basic questions concerning the free group factors remained open. Most notably: are the $L(\mathbb{F}_n)$, $2 \le n \le \infty$, non-isomorphic?

• This problem gave rise, directly or indirectly, to a huge amount of mathematics, a multitude of concepts and insightful techniques: approximation properties (compact, weak amenability, the Λ -invariant), absorption/repelling/tree-like behavior of $L\mathbb{F}_n$ as bimodule over its amenable subalgebras, free probability methods (random matrix models and free entropy), deformation-rigidity/intertwining methods, W*-boundary methods (bi-exactness and proper proximality), thin&tight decomposition methods, L^2 -cohomology attempts, bounded generation, ...

• It is plainly evident that problems and results related to the structure and classification of the free group factors $L\mathbb{F}_n$ involve some extremely fine phenomena, still far from being fully understood.

• It is plainly evident that problems and results related to the structure and classification of the free group factors $L\mathbb{F}_n$ involve some extremely fine phenomena, still far from being fully understood.

• The difficulty seems to come from the very nature of $L\mathbb{F}_n$: a subtle mixture between "mild rigidity" (due to spectral gap of $\mathbb{F}_n \curvearrowright L\mathbb{F}_n$ and "tree-ness") and a multitude of deformation properties (free malleability, compact c.p., finite rank c.b.). With both features "spread out" inside $L\mathbb{F}_n$ in a random manner!

Given a II₁ factor M, I'll denote by ng(M) the minimal number $2 \le n \le \infty$ of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

Given a II₁ factor M, I'll denote by ng(M) the minimal number $2 \le n \le \infty$ of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

▲ 臣 ▶ ▲ @ ▶

Given a II₁ factor M, I'll denote by ng(M) the minimal number $2 \le n \le \infty$ of selfadjoint elements that can generate M as a vN algebra.

- (1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?
- (2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?
- (3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

Given a II₁ factor M, I'll denote by ng(M) the minimal number $2 \le n \le \infty$ of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

(3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

(4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$? Notably for B abelian.

Given a II₁ factor M, I'll denote by ng(M) the minimal number $2 \le n \le \infty$ of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

(3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

(4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$? Notably for B abelian.

(5) vN-type problem: $L\mathbb{F}_n \hookrightarrow M$ for any non-amenable II₁ factor M?

Given a II₁ factor M, I'll denote by ng(M) the minimal number $2 \le n \le \infty$ of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

(3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

(4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$? Notably for B abelian.

(5) vN-type problem: $L\mathbb{F}_n \hookrightarrow M$ for any non-amenable II₁ factor M?

(6) Characterize factors/groups embeddable into $L\mathbb{F}_n$. Is any II₁ factor $N \subset L\mathbb{F}_n$ iso to either R or $L\mathbb{F}_t$, $1 < t \leq \infty$? If $N \subset L\mathbb{F}_n$ subfactor with finite index then $N \simeq L\mathbb{F}_t$, where $t = 1 + [L\mathbb{F}_n : N](n-1)$?

Given a II₁ factor M, I'll denote by ng(M) the minimal number $2 \le n \le \infty$ of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: $L\mathbb{F}_n \simeq L\mathbb{F}_m$ implies n = m?

(2) The fundamental group problem: $\mathcal{F}(L\mathbb{F}_n) = 1$ when $n < \infty$?

(3) The finite/infinite generation problem: $ng(L\mathbb{F}_{\infty}) = \infty$? $ng(L\mathbb{F}_n) = n$?

(4) The freely complemented (FC) problem: Is any maximal amenable $B \subset L\mathbb{F}_n$ FC in $L\mathbb{F}_n$, i.e. $\exists N$ s.t. $L\mathbb{F}_n = B * N$? Notably for B abelian.

(5) vN-type problem: $L\mathbb{F}_n \hookrightarrow M$ for any non-amenable II₁ factor M?

(6) Characterize factors/groups embeddable into $L\mathbb{F}_n$. Is any II₁ factor $N \subset L\mathbb{F}_n$ iso to either R or $L\mathbb{F}_t$, $1 < t \leq \infty$? If $N \subset L\mathbb{F}_n$ subfactor with finite index then $N \simeq L\mathbb{F}_t$, where $t = 1 + [L\mathbb{F}_n : N](n-1)$?

(7) The derivation/similarity problem for $M = L\mathbb{F}_n$: do there exist non-inner derivations $\delta : M \to \mathcal{B}(L^2M \otimes \ell^2\mathbb{N})$?

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter! Thus settling the PT+coarseness conjecture.

• Are there maximal amenable vN subalgebras in $L\mathbb{F}_n$ that are not FC ? Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if $Q \subset M = L\mathbb{F}_n$ is maximal amenable then any $Q_0 \subset L\mathbb{F}_n$ amenable with $Q_0 \cap Q$ diffuse must be contained Q. Strengthened conjecture by Hayes, Popa (2019): any maximal amenable $Q \subset L\mathbb{F}_n$ is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter! Thus settling the PT+coarseness conjecture.

• One hitch about all this: for any freely complemented $Q \subset L\mathbb{F}_n$ one already knows both PT and coarseness hold true (Popa 82), and there are no known examples of maximal amenable $Q \subset L\mathbb{F}_n$ that are not FC!

Recall that for any *B* diffuse amenable, $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse.

• Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

Recall that for any *B* diffuse amenable, $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse.

• Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

• Is the radial MASA $L_n \subset L\mathbb{F}_n$, $2 \le n < \infty$, defined by $L_n = \{\sum_{i=1}^n (u_i + u_i^*)\}^{\prime\prime}$ freely complemented? (NB: L_n is known to be maximal amenable by Cameron-Fang-Ravichandran-White 2010).

Recall that for any *B* diffuse amenable, $B \subset M = B * N$ is maximal amenable, PT-absorbing and coarse.

• Let $g \in \mathbb{F}_n$ be so that $g^{\mathbb{Z}}$ is maximal abelian in \mathbb{F}_n . Then $A_g = \{u_g\}''$ is maximal amenable in $L\mathbb{F}_n$ (P1982). Is A_g freely complemented in $L\mathbb{F}_n$, even if $g^{\mathbb{Z}}$ is not freely complemented in \mathbb{F}_n ?

• Is the radial MASA $L_n \subset L\mathbb{F}_n$, $2 \le n < \infty$, defined by $L_n = \{\sum_{i=1}^n (u_i + u_i^*)\}''$ freely complemented? (NB: L_n is known to be maximal amenable by Cameron-Fang-Ravichandran-White 2010).

• If $\{B_i\}_i$ are diffuse amenable vN in $M = L\mathbb{F}_n$ with B_i freely complemented and $B_i \not\prec_{L\mathbb{F}_n} B_j$, $\forall i \neq j$, then $B = \bigoplus_i u_i p_i B_i p_i u_i^*$ is maximal amenable in M for any $p_i \in \mathcal{P}(B_i)$ and $u_i \in \mathcal{U}(M)$ satisfying $\sum_i u_i p_i u_i^* = 1$. Is $B \subset M$ freely complemented ? Check this for $L\mathbb{F}_n = B_1 * ... * B_n$. This latter "re-patching" test case has in fact been recently settled:

Theorem (Boschert-Davis-Hiatt 06/2024)

Let $M = A_1 * \cdots * A_n$ with $n \ge 2$ and A_i diffuse abelian tracial vN $\forall i$. Let $p_i \in \mathcal{P}(A_i)$ and $\{u_i\}_i \subset \mathcal{U}(M)$ be such that $\sum_j u_j p_j u_j^* = 1$. Then $B := \sum_i u_j A_j p_j u_i^*$ is freely complemented in M.

▲ ヨト ▲ 母 ト

This latter "re-patching" test case has in fact been recently settled:

Theorem (Boschert-Davis-Hiatt 06/2024)

Let $M = A_1 * \cdots * A_n$ with $n \ge 2$ and A_i diffuse abelian tracial vN $\forall i$. Let $p_i \in \mathcal{P}(A_i)$ and $\{u_i\}_i \subset \mathcal{U}(M)$ be such that $\sum_j u_j p_j u_j^* = 1$. Then $B := \sum_i u_j A_j p_j u_i^*$ is freely complemented in M.

• I think it is possible that the FC problem has a positive answer, i.e., that any maximal amenable $B \subset L\mathbb{F}_n$ is FC. This would of course be a rather amazing structural phenomenon about the free group factors! The following weaker form should definitely hold true:

The weak FC conjecture

Given any amenable $B \subset L\mathbb{F}_n$ there exists a Haar unitary $u \in L\mathbb{F}_n$ that's free independent to B.

<- ≣ > < ₫ >

• Boutonnet-Popa 2022: Let $\{(M_j, \tau_j)\}_{j \in J}$ be tracial vN algebras, with $s_j \in M_j$ semicircular, $\forall j$. Denote ℓ_*^2 the set of square summable *J*-tuples/ \mathbb{R} with at least two non-zero entries. For each $t = (t_j)_j \in \ell_*^2$ denote by A(t) the abelian vN generated in $M = *_{j \in J} M_j$ by $s(t) := \sum_j t_j s_j \in M$. Then A(t) is maximal amenable in M, $\forall t \in \ell_*^2$, with $A(t) \prec_M A(t')$ iff $t, t' \in \ell_*^2$ proportional. Is it FC in M if all M_j amen?

• Boutonnet-Popa 2022: Let $\{(M_j, \tau_j)\}_{j \in J}$ be tracial vN algebras, with $s_j \in M_j$ semicircular, $\forall j$. Denote ℓ_*^2 the set of square summable *J*-tuples/ \mathbb{R} with at least two non-zero entries. For each $t = (t_j)_j \in \ell_*^2$ denote by A(t) the abelian vN generated in $M = *_{j \in J} M_j$ by $s(t) := \sum_j t_j s_j \in M$. Then A(t) is maximal amenable in M, $\forall t \in \ell_*^2$, with $A(t) \prec_M A(t')$ iff $t, t' \in \ell_*^2$ proportional. Is it FC in M if all M_j amen?

• Cases of interest for the B-P examples: (a) when $M_j = A(s_j) \otimes R$, $\forall j \in J$, where $A(s_j) := \{s_j\}'' \subset M_j$; (b) when $M_j = A(s_j) \rtimes \Gamma_j$, where Γ_j is an amenable group and $\Gamma_j \curvearrowright A_j$ is a trace preserving action, $\forall j \in J$; (c) any situation where M_j is "much bigger" than $A(s_j)$, such as when $M_j = A_j$ abelian purely non-separable $\forall j$. • The B-P examples and the proofs involved naturally lead to the problem of whether any purely non-separable (singular) MASA B in $M = A^{*n}$, with A purely non-separable is "made up" of pieces of $A_k := 1 * ... * A * ...1$ (*kth* position), a fact that would imply that n is "remembered" by the iso-class of A^{*n} ! Indeed one has:

• The B-P examples and the proofs involved naturally lead to the problem of whether any purely non-separable (singular) MASA B in $M = A^{*n}$, with A purely non-separable is "made up" of pieces of $A_k := 1 * ... * A * ...1$ (*kth* position), a fact that would imply that n is "remembered" by the iso-class of A^{*n} ! Indeed one has:

Theorem (Boutonnet–Drimbe-Ioana-Popa 03/2023)

Let A be a non-separable tracial vN algebra. Then $A^{*n}, 2 \le n \le \infty$, are mutually non-isomorphic, with $\mathcal{F}(A^{*n}) = 1$ whenever $n < \infty$.

• To prove this result one considers the singular abelian non-separable core (sans-core) \mathcal{A}_M^{ns} of a II₁ factor M, as the maximal singular abelian purely non-separable wo-closed *-subalgebra generated by finite projections in the II_{∞} factor $\mathcal{M} = \mathcal{M} \otimes \mathcal{B}(\ell^2 I)$, where $I = 2^{|\mathcal{M}_h|}$. One easily sees that \mathcal{A}_M^{ns} is unique in \mathcal{M} up to unitary conjugacy. So the trace Tr of the support of \mathcal{A}_M^{ns} in \mathcal{M} is an iso-invariant of M as well, which we call the sans-rank of the II₁ factor M and denote it $r_{ns}(M)$.

 $r_{ns}(M^t) = r_{ns}(M)/t, \forall t > 0$

• To prove this result one considers the singular abelian non-separable core (sans-core) \mathcal{A}_M^{ns} of a II₁ factor M, as the maximal singular abelian purely non-separable wo-closed *-subalgebra generated by finite projections in the II_{∞} factor $\mathcal{M} = \mathcal{M} \otimes \mathcal{B}(\ell^2 I)$, where $I = 2^{|\mathcal{M}_h|}$. One easily sees that \mathcal{A}_M^{ns} is unique in \mathcal{M} up to unitary conjugacy. So the trace Tr of the support of \mathcal{A}_M^{ns} in \mathcal{M} is an iso-invariant of \mathcal{M} as well, which we call the sans-rank of the II₁ factor \mathcal{M} and denote it $r_{ns}(\mathcal{M})$.

• One notices that for any II₁ factor M one trivially has $r_{ns}(M^t) = r_{ns}(M)/t$, $\forall t > 0$

• One then proves that any wo-closed singular abelian $B \subset M := M_0 * M_1$ that's "transversal" to both M_1, M_2 must be separable. And thus any purely non-separable $A \subset M$ must "split" as $A = Ap_0 + Ap_1$, where $p_0, p_1 \in \mathcal{P}(A), p_0 + p_1 = 1_A$, and Ap_i unitary conjugate into $M_i, i = 0, 1$.

< E > < @ >

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. But note hat if $M = A^{*n}$ with A purely ns, then $\exists N_i \nearrow M$ subfactors such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. But note hat if $M = A^{*n}$ with A purely ns, then $\exists N_i \nearrow M$ subfactors such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• By results of Dykema, Radulescu (1992) using Voiculescu's free probability, if $ng(L\mathbb{F}_{\infty}) = \infty$ (so if (3) holds true) then $L\mathbb{F}_n$, $2 \le n \le \infty$, non-iso and $\mathcal{F}(L\mathbb{F}_n) = 1$, $\forall n < \infty$. So (1) and (2) would follow as well.

< E > < @ >

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. But note hat if $M = A^{*n}$ with A purely ns, then $\exists N_i \nearrow M$ subfactors such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• By results of Dykema, Radulescu (1992) using Voiculescu's free probability, if $ng(L\mathbb{F}_{\infty}) = \infty$ (so if (3) holds true) then $L\mathbb{F}_n$, $2 \le n \le \infty$, non-iso and $\mathcal{F}(L\mathbb{F}_n) = 1$, $\forall n < \infty$. So (1) and (2) would follow as well.

• Tightness conjecture states that if a II₁ factor M has stably bounded number of generators, i.e. $\sup_t ng(M^t) < \infty$, then M is R-tight: $\exists R_0, R_1 \subset M$ such that $_{R_0}L^2M_{R_1}$ is irreducible. In particular, if M is finitely generated and $\mathcal{F}(M) \neq 1$, then M would follow R-tight. Since $\mathcal{F}(L\mathbb{F}_{\infty}) \neq 1$ (Voiculescu 1988, Radulescu 1991), this would show that if $ng(L\mathbb{F}_{\infty}) < \infty$ then $L\mathbb{F}_{\infty}$ is tight, contradicting Ge-Popa 1996.

• It doesn't seem possible to use the non-iso of A^{*n} for non-separable A to deduce the non-iso of the $L\mathbb{F}_n$. But note hat if $M = A^{*n}$ with A purely ns, then $\exists N_i \nearrow M$ subfactors such that $N_i \simeq L\mathbb{F}_n$, $\forall i$.

• By results of Dykema, Radulescu (1992) using Voiculescu's free probability, if $ng(L\mathbb{F}_{\infty}) = \infty$ (so if (3) holds true) then $L\mathbb{F}_n$, $2 \le n \le \infty$, non-iso and $\mathcal{F}(L\mathbb{F}_n) = 1$, $\forall n < \infty$. So (1) and (2) would follow as well.

• Tightness conjecture states that if a II₁ factor M has stably bounded number of generators, i.e. $\sup_t ng(M^t) < \infty$, then M is R-tight: $\exists R_0, R_1 \subset M$ such that $_{R_0}L^2M_{R_1}$ is irreducible. In particular, if M is finitely generated and $\mathcal{F}(M) \neq 1$, then M would follow R-tight. Since $\mathcal{F}(L\mathbb{F}_{\infty}) \neq 1$ (Voiculescu 1988, Radulescu 1991), this would show that if $ng(L\mathbb{F}_{\infty}) < \infty$ then $L\mathbb{F}_{\infty}$ is tight, contradicting Ge-Popa 1996.

• Thus, tightness conjecture implies $ng(L\mathbb{F}_{\infty}) = \infty$, more generally $\exists 1 \ge c > 0$ such that $n \ge ng(L\mathbb{F}_n) \ge cn$, $\forall 2 \le n \le \infty$. So by the remarks above, the tightness conjecture solves (1), (2), (3).