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Background

• The II1 factors LFn, arising from the free groups with n generators,
2 ≤ n ≤ ∞, emerged as a fundamental class of objects in non-commu-
tative analysis (aka operator algebras).

• Despite recent progress in classifying large classes of II1 factors arising
from various data (such as groups and their action on spaces), a large
number of basic questions concerning the free group factors remained
open. Most notably: are the L(Fn), 2 ≤ n ≤ ∞, non-isomorphic?

• This problem gave rise, directly or indirectly, to a huge amount of
mathematics, a multitude of concepts and insightful techniques:
approximation properties (compact, weak amenability, the Λ-invariant),
absorption/repelling/tree-like behavior of LFn as bimodule over its
amenable subalgebras, free probability methods (random matrix models
and free entropy), deformation-rigidity/intertwining methods,
W∗-boundary methods (bi-exactness and proper proximality), thin&tight
decomposition methods, L2-cohomology attempts, bounded generation, ...
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Background

• It is plainly evident that problems and results related to the structure
and classification of the free group factors LFn involve some extremely fine
phenomena, still far from being fully understood.

• The difficulty seems to come from the very nature of LFn: a subtle
mixture between “mild rigidity” (due to spectral gap of Fn y LFn and
“tree-ness”) and a multitude of deformation properties (free malleability,
compact c.p., finite rank c.b.). With both features “spread out” inside
LFn in a random manner!
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Some key open problems about LFn

Given a II1 factor M, I’ll denote by ng(M) the minimal number 2 ≤ n ≤ ∞
of selfadjoint elements that can generate M as a vN algebra.

(1) The non-isomorphism problem: LFn ' LFm implies n = m ?

(2) The fundamental group problem: F(LFn) = 1 when n <∞?

(3) The finite/infinite generation problem: ng(LF∞) =∞? ng(LFn) = n?

(4) The freely complemented (FC) problem: Is any maximal amenable
B ⊂ LFn FC in LFn, i.e. ∃N s.t. LFn = B ∗ N? Notably for B abelian.

(5) vN-type problem: LFn ↪→ M for any non-amenable II1 factor M?

(6) Characterize factors/groups embeddable into LFn. Is any II1 factor
N ⊂ LFn iso to either R or LFt , 1 < t ≤ ∞ ? If N ⊂ LFn subfactor with
finite index then N ' LFt , where t = 1 + [LFn : N](n − 1)?

(7) The derivation/similarity problem for M = LFn: do there exist
non-inner derivations δ : M → B(L2M ⊗ `2N) ?
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The “free complementation” (FC) problem

• Are there maximal amenable vN subalgebras in LFn that are not FC ?
Are there maximal amenable MASAs that are not FC?

Motivation

• Peterson-Thom conjecture (2011): if Q ⊂ M = LFn is maximal
amenable then any Q0 ⊂ LFn amenable with Q0 ∩ Q diffuse must be
contained Q. Strengthened conjecture by Hayes, Popa (2019): any
maximal amenable Q ⊂ LFn is coarse.

• Hayes (2020) reduced PT/coarseness conjectures to proving a certain
random matrix limit theorem, a la Voiculescu, Haagerup-Thorbjornsen

• Belinschi-Capitaine, Bordenave-Collins have recently solved the latter!
Thus settling the PT+coarseness conjecture.

• One hitch about all this: for any freely complemented Q ⊂ LFn one
already knows both PT and coarseness hold true (Popa 82), and there are
no known examples of maximal amenable Q ⊂ LFn that are not FC!
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Test cases for the FC problem

Recall that for any B diffuse amenable, B ⊂ M = B ∗ N is maximal
amenable, PT-absorbing and coarse.

• Let g ∈ Fn be so that gZ is maximal abelian in Fn. Then Ag = {ug}′′ is
maximal amenable in LFn (P1982). Is Ag freely complemented in LFn,
even if gZ is not freely complemented in Fn?

• Is the radial MASA Ln ⊂ LFn, 2 ≤ n <∞, defined by
Ln = {

∑n
i=1(ui + u∗i )}′′ freely complemented? (NB: Ln is known to be

maximal amenable by Cameron-Fang-Ravichandran-White 2010).

• If {Bi}i are diffuse amenable vN in M = LFn with Bi freely
complemented and Bi ⊀LFn Bj , ∀i 6= j , then B = ⊕iuipiBipiu

∗
i is maximal

amenable in M for any pi ∈ P(Bi ) and ui ∈ U(M) satisfying∑
i uipiu

∗
i = 1. Is B ⊂ M freely complemented ? Check this for

LFn = B1 ∗ ... ∗ Bn.
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This latter “re-patching” test case has in fact been recently settled:

Theorem (Boschert-Davis-Hiatt 06/2024)

Let M = A1 ∗ · · · ∗ An with n ≥ 2 and Ai diffuse abelian tracial vN ∀i . Let
pi ∈ P(Ai ) and {ui}i ⊂ U(M) be such that

∑
j ujpju

∗
j = 1. Then

B :=
∑

j ujAjpju
∗
j is freely complemented in M.

• I think it is possible that the FC problem has a positive answer, i.e., that
any maximal amenable B ⊂ LFn is FC. This would of course be a rather
amazing structural phenomenon about the free group factors! The
following weaker form should definitely hold true:

The weak FC conjecture

Given any amenable B ⊂ LFn there exists a Haar unitary u ∈ LFn that’s
free independent to B.
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A new test case: the B-P examples

• Boutonnet-Popa 2022: Let {(Mj , τj)}j∈J be tracial vN algebras, with
sj ∈ Mj semicircular, ∀j . Denote `2∗ the set of square summable
J-tuples/R with at least two non-zero entries. For each t = (tj)j ∈ `2∗
denote by A(t) the abelian vN generated in M = ∗j∈JMj by
s(t) :=

∑
j tjsj ∈ M. Then A(t) is maximal amenable in M, ∀t ∈ `2∗, with

A(t) ≺M A(t ′) iff t, t ′ ∈ `2∗ proportional. Is it FC in M if all Mj amen?

• Cases of interest for the B-P examples: (a) when Mj = A(sj)⊗ R,
∀j ∈ J, where A(sj) := {sj}′′ ⊂ Mj ; (b) when Mj = A(sj)o Γj , where Γj is
an amenable group and Γj y Aj is a trace preserving action, ∀j ∈ J;
(c) any situation where Mj is “much bigger” than A(sj), such as when
Mj = Aj abelian purely non-separable ∀j .
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Non-iso of A∗n for non-separable A

• The B-P examples and the proofs involved naturally lead to the problem
of whether any purely non-separable (singular) MASA B in M = A∗n, with
A purely non-separable is “made up” of pieces of Ak := 1 ∗ ... ∗ A ∗ ...1
(kth position), a fact that would imply that n is “remembered” by the
iso-class of A∗n! Indeed one has:

Theorem (Boutonnet–Drimbe-Ioana-Popa 03/2023)

Let A be a non-separable tracial vN algebra. Then A∗n, 2 ≤ n ≤ ∞, are
mutually non-isomorphic, with F(A∗n) = 1 whenever n <∞.
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About the proof

• To prove this result one considers the singular abelian non-separable core
(sans-core) Ans

M of a II1 factor M, as the maximal singular abelian purely
non-separable wo-closed ∗-subalgebra generated by finite projections in the
II∞ factor M = M ⊗ B(`2I ), where I = 2|Mh|. One easily sees that Ans

M is
unique in M up to unitary conjugacy. So the trace Tr of the support of
Ans

M in M is an iso-invariant of M as well, which we call the sans-rank of
the II1 factor M and denote it rns(M).
• One notices that for any II1 factor M one trivially has
rns(Mt) =rns(M)/t, ∀t > 0

• One then proves that any wo-closed singular abelian B ⊂ M := M0 ∗M1

that’s “transversal” to both M1,M2 must be separable. And thus any
purely non-separable A ⊂ M must “split” as A = Ap0 + Ap1, where
p0, p1 ∈ P(A), p0 + p1 = 1A, and Api unitary conjugate into Mi , i = 0, 1.
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What about the “classic” free group factor problem?

• It doesn’t seem possible to use the non-iso of A∗n for non-separable A to
deduce the non-iso of the LFn. But note hat if M = A∗n with A purely ns,
then ∃Ni ↗ M subfactors such that Ni ' LFn, ∀i .

• By results of Dykema, Radulescu (1992) using Voiculescu’s free
probability, if ng(LF∞) =∞ (so if (3) holds true) then LFn, 2 ≤ n ≤ ∞,
non-iso and F(LFn) = 1, ∀n <∞. So (1) and (2) would follow as well.

• Tightness conjecture states that if a II1 factor M has stably bounded
number of generators, i.e. supt ng(Mt) <∞, then M is R-tight:
∃R0,R1 ⊂ M such that R0L

2MR1 is irreducible. In particular, if M is
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