An introduction to II; factors

Claire Anantharaman

Sorin Popa



2010 Mathematics Subject Classification. Primary

ABSTRACT.



Contents

Part 1.

Chapter 1. A first approach: examples

1.1. Notation and preliminaries

1.2. Measure space von Neumann algebras

1.3.  Group von Neumann algebras

1.4. Group measure space von Neumann algebras

1.5.  Von Neumann algebras from equivalence relations
1.6. Infinite tensor product of matrix algebras
Exercises

Chapter 2. Fundamentals on von Neumann algebras

2.1.  Von Neumann’s bicommutant theorem

2.2. Bounded Borel functional calculus

2.3. The Kaplansky density theorem

2.4. Geometry of projections in a von Neumann algebra
2.5. Continuity and order

2.6. GNS representations

Exercises

Chapter 3. Abelian von Neumann algebras

3.1. Maximal abelian von Neumann subalgebras of B(H)
3.2. Classification up to isomorphisms

3.3. Automorphisms of abelian von Neumann algebras
Exercises

Chapter 4. II; factors. Some basics

4.1. Uniqueness of the trace and simplicity
4.2. The fundamental group of a II; factor

Chapter 5. More examples

5.1. Tensor products

5.2. Crossed products

5.3. Free products

5.4. Ultraproducts

5.5. Beyond factors and abelian von Neumann algebras
Exercises

iii

29
29
31
34
35
40
45
48

o1
o1
53
o4
56

59
99
61

65
65
67
70
75
7
79



iv CONTENTS

Chapter 6. Finite factors 83
6.1. Definitions and basic observations 83
6.2. Construction of the dimension function 85
6.3. Construction of a tracial state 89
6.4. Dixmier averaging theorem 92
Exercises 95

Chapter 7. The standard representation 97
7.1. Definition and basic properties 97
7.2. The algebra of affiliated operators 101
7.3. Square integrable operators 106
7.4. Integrable operators. The predual 111
7.5. Unitary implementation of the automorphism group 117
Exercises 119

Chapter 8. Modules over finite von Neumann algebras 121
8.1. Modules over abelian von Neumann algebras. 121
8.2.  Modules over tracial von Neumann algebras 123
8.3. Semi-finite von Neumann algebras 124
8.4. The canonical trace on the commutant of a tracial von

Neumann algebra representation 127
8.5. First results on finite modules 133
8.6. Modules over II; factors 134
Exercises 135

Chapter 9. Conditional expectations. The Jones’ basic

construction 139

9.1. Conditional expectations 139
9.2. Center-valued tracial weights 143
9.3. Back to the study of finite modules 145
9.4. Jones’ basic construction 146
Exercises 151
Part 2. 157
Chapter 10. Amenable von Neumann algebras 159
10.1. Amenable groups and their von Neumann algebras 159
10.2.  Amenable von Neumann algebras 161
10.3. Connes’ Fglner type condition 166
Exercises 169
Chapter 11. Amenability and hyperfiniteness 173
11.1. Every amenable finite von Neumann algebra is AFD 173
11.2.  Uniqueness of separable AFD II; factors 185
Exercise 188

Chapter 12. Cartan subalgebras 191



CONTENTS

12.1. Normalizers and Cartan subalgebras

12.2.  Isomorphism of Cartan inclusions and orbit equivalence
12.3. Cartan subalgebras and full groups

12.4. Amenable and AFD Cartan inclusions

12.5.  Amenable II; equivalence relations are hyperfinite
Exercises

Chapter 13. Bimodules

13.1. Bimodules, completely positive maps and representations
13.2.  Composition (or tensor product) of bimodules

13.3. Weak containment

13.4. Back to amenable tracial von Neumann algebras
Exercises

Chapter 14. Kazhdan property (T)

14.1.  Kazhdan property (T) for groups

14.2. Relative property (T) for von Neumann algebras

14.3.  Consequences of property (T) for Iy factors

14.4. Rigidity results from separability arguments

14.5.  Some remarks about the definition of relative property (T)
Exercises

Chapter 15. Spectral gap and Property Gamma

15.1.  Actions with spectral gap

15.2.  Spectral gap and Property Gamma
15.3. Spectral gap and full II; factors

15.4. Property Gamma and inner amenability
Exercises

Chapter 16. Haagerup property (H)

16.1. Haagerup property for groups

16.2. Haagerup property for von Neumann algebras
16.3. Relative property (H)

Exercise

Chapter 17. Intertwining-by-bimodules technique

17.1. The intertwining theorem

17.2.  Unitary conjugacy of Cartan subalgebras

17.3. II; factors with two non-conjugate Cartan subalgebras
17.4. Cartan subalgebras of the hyperfinite factor R
Exercises

Chapter 18. A II; factor with trivial fundamental group

18.1. A deformation/rigidity result

18.2. Fundamental group and cost of an equivalence relation
18.3. A II; factor with trivial fundamental group

Exercise

191
198
201
205
208
210

213
213
221
224
231
236

241
241
242
247
250
252
254

257
257
261
266
267
269

273
273
274
275
278

281
281
285
287
288
289

293
293
295
297
299



vi CONTENTS

Chapter 19. Free group factors are prime
19.1. Preliminaries
19.2.  Proof of the solidity of F,
Exercises

Appendix.
A. (C*-algebras
B. Standard Borel and measure spaces

Bibliography

Index

303
303
307
308

311
311
315

317
327



Part 1






CHAPTER 1

A first approach: examples

This chapter presents some basic constructions of von Neumann algebras
arising from measure theory, group theory, group actions and equivalence
relations. All these examples are naturally equipped with a faithful trace
and are naturally represented on a Hilbert space. This provides a plentiful
source of tracial von Neumann algebras to play with. More constructions
will be given in Chapter 5.

The most general von Neumann algebras are obtained from simpler
building blocks, called factors. These are the von Neumann algebras with
a trivial center. We will see that they appear frequently, under usual as-
sumptions. Infinite dimensional tracial factors (II; factors) are our main
concern. We end this chapter with the most elementary example, the hy-
perfinite II; factor, which is constructed as an appropriate closure of an
increasing sequence of matrix algebras.

1.1. Notation and preliminaries

Let H be a complex Hilbert space with inner-product (-,-) (always as-
sumed to be antilinear in the first variable), and let B(#H) be the algebra
of all bounded linear operators from H to H. Equipped with the involu-
tion x — z* (adjoint of x) and with the operator norm, B(*H) is a Banach
«-algebra with unit Idy. We will denote by ||z||, or sometimes |z, the
operator norm of x € B(H). Throughout this text, we will consider the two
following weaker topologies on B(H):

e the strong operator topology (s.o. topology), that is, the locally con-
vex topology on B(#H) generated by the seminorms

pe(x) = [zl £eH,

e the weak operator topology (w.o. topology), that is, the locally con-
vex topology on B(H) generated by the seminorms

peq(T) = |wep(o)], &neEH,

where we ,, is the linear functional = — (£, zn) on B(H).

This latter topology is weaker than the s.o. topology. It is strictly weaker
when H is infinite dimensional (see Exercise 1.1). An important observa-
tion is that the unit ball of B(#) is w.o. compact. This is an immediate
consequence of Tychonoff’s theorem.

3



4 1. A FIRST APPROACH: EXAMPLES

This unit ball, endowed with the uniform structure associated with the
s.o. topology, is a complete space. In case H is separable, both w.o. and
s.0. topologies on the unit ball are metrizable and second-countable. On the
other hand, when H is infinite dimensional, this unit ball is not separable
with respect to the operator norm (Exercise 1.2).

A wvon Neumann algebra M on a Hilbert space H is a *x-subalgebra of
B(H) (i.e., a subalgebra invariant under the x-operation) which is closed in
the s.0. topology and contains the identity operator Idy." We will sometimes
write (M, H) to specify the Hilbert space on which M acts, but H will often
be implicit in the definition of M. The unit Idyg of M will also be denoted
17 or simply 1. We use the letters H, IC, £ to denote complex Hilbert spaces,
while the letters M, N, P, Q will typically denote von Neumann algebras.

Given a subset S of B(H), we denote by S’ its commutant in B(H):

S"'={x € B(H): xy =yux for all y € S}.

The commutant (S”)" of S’ is denoted S” and called the bicommutant of
S. Note that S’ is a s.o. closed unital subalgebra of B(H); if S = S*, then
S’ = (8")* and therefore S’ is a von Neumann algebra on H. We will see
in the next chapter that every von Neumann algebra appears in this way
(Theorem 2.1.3).

The first example of von Neumann algebra coming to mind is of course
M = B(H). Then, M' = CIdy. When H = C", we get the algebra M, (C) of
n X n matrices with complex entries, the simplest example of a von Neumann
algebra.

We recall that a C*-algebra on H is a x-subalgebra of B(H) which is
closed in the norm topology. Hence a von Neumann algebra is a C*-algebra,
but the converse is not true. For instance the C*-algebra IC(#) of compact
operators on an infinite dimensional Hilbert space H is not a von Neumann
algebra on H: its s.o. closure is B(H).

We assume that the reader has a basic knowledge about C*-algebras.
We have gathered in the appendix, with references, the main facts that
we will use. Note that for us, a homomorphism between two C*-algebras
preserves the algebraic operations and the involution?. We recall that it is
automatically a contraction and a positive map, i.e., it preserves the positive
cone (Appendix A).

REMARK 1.1.1. A C*-algebra can be defined abstractly as a Banach *-
algebra A such that ||z*z|| = ||z||* for every 2 € A. A celebrated theorem of
Gelfand and Naimark states that such an algebra is isometrically isomorphic
to a norm closed *-algebra of operators on some Hilbert space.

Similarly, for von Neumann algebras, there are two points of view: the
concrete and the abstract one (see the notes at the end of this chapter).

1We will see in Theorem 2.1.3 that we may require, equivalently, that M is closed in
the w.o. topology.

2In the literature, very often one says *-homomorphism to emphasize the fact that
the involution is also preserved.
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In this monograph, we have chosen to define von Neumann algebras as
concretely represented operator algebras on some Hilbert space (even if this
Hilbert space will not always be explicitly mentioned).

1.2. Measure space von Neumann algebras

Every probability measure space (X, pt) gives rise in a natural way to an
abelian von Neumann algebra.

PROPOSITION 1.2.1. Let (X, u) be a probability measure space. We set
A=L>(X, p).

(i) For f € L*>®(X, ), we denote by My the multiplication operator by
fon L*(X, ), that is, Ms& = f€ for € € L*(X,pn). Then My is a
bounded operator and || M| = || f|| -

(ii) If A is identified with a subalgebra of B(L*(X, 1)) via f — My, then
A = A'. In particular, A is a von Neumann algebra on L*(X, )
and a mazimal abelian subalgebra of B(L*(X, ).

PROOF. (i) Obviously, My is a bounded operator with || M¢|| < || £l
and it is a classical exercise in measure theory to show that ||[My| = |/ f|| .-
(ii) Since A is abelian, we have A C A" Let T' € A’ and set f = T'(1).
Then, for h € L*(X,u), we have T'(h) = TMy1l = MT(1) = hf and
| fhlly < IT|[||R]l5. It follows that f € L*°(X, u) with || f]|, < ||7]| and so
T = M. O

REMARK 1.2.2. Recall that L> (X, p) is the dual Banach space of L' (X, ).
The weak® topology on L (X, p) is defined by the family of seminorms
ag(f) = |[x fgdp|, g € L*(X, n). Equivalently, it is defined by the family

of seminorms
/ fén du‘
X

with &, € L?(X, ). Therefore, the weak* topology coincides with the w.o.
topology on L™ (X, ) acting on L?(X, p).

[ pé,n(f) =

1.3. Group von Neumann algebras

Let G be a group®. We denote by A (or A\g in case of ambiguity) and p
(or pg) the left, and respectively right, reqular representation of G in £*(G),
i.e., for all s,t € G,

)\(8)515 = 5315, ,0(8)515 = (Sts—l,

where (6;)¢ec is the natural orthonormal basis of £2(G).4

3For us G will be a discrete group, unless otherwise stated, and we are mostly inter-
ested in infinite countable groups.

4Given a set X, we denote by &, both the characteristic function of {z} and the Dirac
measure at ¢ € X.
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1.3.1. Definition and first properties. We denote by L(G) the strong
operator closure of the linear span of A(G). This von Neumann algebra is
called the (left) group von Neumann algebra of G. Similarly, one introduces
the strong operator closure R(G) of the linear span of p(G). Obviously,
these two algebras commute: xy = yz for x € L(G) and y € R(G) and
we will see in Theorem 1.3.6 that each one is the commutant of the other.
These von Neumann algebras come equipped with a natural trace, as shown
below.

DEFINITION 1.3.1. A linear functional ¢ on a von Neumann algebra M is
positive if p(x*z) > 0 for every z € M (i.e., p(x) > 0 for > 0). Whenever,
in addition, ¢(z*z) = 0 implies x = 0, we say that ¢ is faithful. If ¢ is
positive with (1) = 1 we say that ¢ is a state’.

A positive linear functional such p(zy) = p(yx) for every z,y € M is a
trace. If moreover it is a state, we call it a tracial state.

We recall that a positive linear functional is norm continuous with ||| =
p(1).

DEFINITION 1.3.2. Given a von Neumann algebra M acting on a Hilbert
space H, a vector £ € H is called cyclic for M if M is dense in H. It is
called separating for M if, for x € M, we have z€ = 0 if and only if x = 0.

We denote by e the unit of G. One easily checks that ¢, is a cyclic and
separating vector for L(G) (and R(G)). We define a faithful state on L(G)
by

T(2) = (Je, x0e).
For s1,s2 € G, we have 7(A(s1)A(s2)) = 1 if 8152 = e and 7(A(s1)A(s2)) =0
otherwise. It follows immediately that 7 is a trace. We observe that this
trace is continuous with respect to the w.o. topology.

Thus, L(G) and R(G) are examples of tracial von Neumann algebras in
the following sense’.

DEFINITION 1.3.3. A tracial von Neumann algebra (M, T) is a von Neu-
mann algebra (M, #H) equipped with a faithful tracial state 7 whose res-
triction to the unit ball is continuous with respect to the w.o. topology
(equivalently, equipped with a faithful normal tracial state, see Proposition
2.5.5). In case of ambiguity, the given trace of M will be denoted by 7.

Since 6, is a separating vector for L(G), the map = — xd. provides a
natural identification of L(G) with a dense linear subspace of 2(G) that we
are going to characterize.

Recall first that for f, fi € £2(G), the convolution product

Li(f1) = f* f1,

SRecall that {z*z : € M} is the cone of all positive elements in M (see Appendix
A.2).
6L°°(X, 1) equipped with the integral 7, : f — fx fdu is of course another example.
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defined by
(F f)#&) =) f(s)fi(s™M),
seG
belongs to ¢>°(G). More precisely, using the Cauchy-Schwarz inequality, we
see that
1S * fillso < M2l F2ll,- (1.1)
We say that f is a left convolver for G if f* f1 € £2(G) for every f1 € £2(G).
Observe that every finitely supported function f is a left convolver and that
Li =Y sea F(5)A(s)-
LEMMA 1.3.4. Let f € %(G).
(i) If f is a left convolver, Ly is a bounded operator on (*(G).
(ii) f is a left convolver if and only if there exists ¢ > 0 such that
| f * k|l < cllk|y for every finitely supported function k on G.

Proor. (i) It is sufficient to prove that L¢ has a closed graph. Let (fy)
be a sequence in ¢?(G) such that lim,, f,, = 0 and lim, L¢(f,) = h in £3(G).
It follows from the inequality (1.1) that

tim [ # fallo = 0

and therefore h = 0.

(ii) Assume the existence of a bounded operator T such that T'(k) = fxk
for every finitely supported function k£ on G. Let h € £2(G) and let (hy,)
be a sequence of finitely supported functions on G' with lim,, ||h — hy||, = 0.
Then we have lim,, ||T'(h) — f * hy||, = 0 and lim,, || f x h — f * h,|| =0, so
that T' = Ly. O

We denote by LC(G) the space of all left convolvers for G. Note that

for f € LC(G) and t € G, we have
Lyop(t)=p(t)oLy.

Since f +— Ly is injective, it follows that we may (and will) view LC(G) as
a subspace of p(G) C B(£*(Q)).

PRrROPOSITION 1.3.5. LC(G) is a von Neumann subalgebra of p(G)'.

PROOF. Let f € LC(G). Then (Lf)* = Lg« where f*(t) = f(t71), so
that LC(G) is stable under involution. Let now fi, fa be in LC(G). For
t € GG, we have

Ly, o Lpy(8t) = Ly, 0 p(t™") 0 Ly, (8e) = p(t71) © Ly, (f2)
= p(t™)(f1  f2) = (fr % f2) % &,

so that, by Lemma 1.3.4 (ii), fi * fo € LC(G) with Ly, Ly, = Ly s f,-

Let us show next that LC(G) is s.o. closed. Let T € B(f3(G)) be

such that there exists a net (f;) of left convolvers with lim; Ly, = T in
the s.o. topology. We put h = T4, € £*(G). Since Ly, 6. = fi, we get

|h = filly = [T6e — Lfi56H2 — 0.
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To conclude, we show that T' = L;,. For f € £?(G), we have
ITf = fix flloo <ITF = fix flly =0

and
1A f = fix flloo < 0= fillallfll; = 0,
and therefore T'f = h* f. Hence, h € LC(G) with Ly =T. O

Since A(G) C LC(G), it follows from the above proposition that L(G) C
LC(G). Similarly, we may introduce the von Neumann RC(G) generated by
the right convolvers Ry for G. It commutes with LC(G), that is, LC(G) C
RC(G)".

We will see that L(G) is exactly the subspace of £2(G) formed by the
left convolvers and prove simultaneously that L(G) = R(G)'.

THEOREM 1.3.6. We have LC(G) = L(G) = R(G) and RC(G) =
R(G) = L(G).

ProoFr. We already know that
L(G) c LC(G) c RC(G) c R(GY'.

Let us prove that R(G)" € LC(G). To this end, we consider T' € R(G)’
and set f = Td.. Then for t € G, we have

T6; = Tp(t )6 = p(t ™ )T6s = f % 6.
It follows that Tk = fxk for every finitely supported function k on G. Then,
by Lemma 1.3.4 (ii), we see that f € LC(G) and T'= Ly.

So, we have proved that LC(G) = RC(G)' = R(G)’. Similarly, we have
RC(G) = LC(GQ)" = L(G)". Now, we use one of the fundamental tools of
the theory of von Neumann algebras, that will be established in the next
chapter, namely the von Neumann bicommutant theorem. It tells us that

every von Neumann algebra is equal to its bicommutant (see Theorem 2.1.3).
It follows that

L(G) = L(G)" = RC(G) = LC(G) = R(G)’
and, similarly,
R(G) = RC(G) = L(G)'.
O

REMARK 1.3.7. Usually, for g € G, we will put v, = A(g) € L(G) and
this unitary operator will be identified with the vector A(g)d. = &, € £2(G).
Therefore, every f € £2(G) is written as f =Y gec fgtg and, in particular,
every x € L(G) is written as

x = Z Tyl (1.2)
geG

Observe that 7(z*z) = 3~ ¢ |acg|2 and that x5 = 7(zuy). In analogy with
developments in Fourier series, the scalars z, are called the Fourier coeffi-
cients of x. The unitaries u, are called the canonical unitaries of L(G). We
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warn the reader that in (1.2) the convergence is in #2-norm and not with
respect to the s.o. or w.o. topology.

Denote, as usually, by C[G] the group algebra of G, that is, the *-
subalgebra of L(G) formed by the elements . x4uq where z, = 0 except
for a finite number of indices. Then L(G) is the s.o. closure of C[G].

ExaMpPLE 1.3.8. Consider the group G = Z of all integers. Since Z
is abelian, L(Z) is an abelian von Neumann algebra which coincides with
R(Z) = L(Z)'.

Let F : (?(Z) — L*(T) be the Fourier transform, where T is the unit
circle in C, equipped with the Lebesgue probability measure m. Then F9,, =
en With e, (2) = 2™ and, for f € LC(Z), we have FL;F ! = = M3 where M5

is the multiplication operator by the Fourier transform f of f. Hence, f is a
multiplier for T, that is, a function ¢ on T such that h +— th is a bounded
operator from L?(T) into itself. It follows that FLC(Z)F ! is the von
Neumann subalgebra of B(L*(T)) formed by the multiplication operators
by these multipliers for T. It can be identified in a natural way with L>°(T).

The canonical tracial state 7 on L(Z) becomes, after Fourier transform,
the integration with respect to the Lebesgue probability measure on T:

m(Ly) = / fdm.

The same observations hold for any abelian group G: the group von
Neumann algebra L(G) is abelian and isomorphic to L>(G,m) where G
is the dual group and m is the Haar probability measure on this compact
group.

However, the most interesting examples for us come from groups such
that L(G) has, in sharp contrast, a center reduced to the scalar operators.
A von Neumann algebra with such a trivial center is called a factor.

ProproOSITION 1.3.9. Let G be a group. The following conditions are
equivalent:
(i) L(G) is a factor;
(ii) G is an ICC (infinite conjugacy classes) group, that is, every non
trivial conjugacy class {gsg*1 tg € G}, s # e, is infinite.

PROOF. Let x be an element of the center of L(G). For ¢t € G we have
0. = AB)z At 1) = MB)zp(t)de = A(t)p(t)(6,).

It follows that x4, is constant on conjugacy classes. Therefore, if G is ICC,
since zd, is square summable, we see that xd, = «ad, with a € C, and
therefore x = aIdy.

Assume now that G is not ICC and let C' C G be a finite non-trivial
conjugacy class. An easy computation shows that the characteristic function
f = 1¢ of C defines an element L of the center of L(G) which is not a scalar
operator. ([l
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There are plenty of countable ICC groups. Among the simplest exam-
ples, let us mention:

[e.e]
e S = U Sy, the group of those permutations of N* fixing all
n=1
but finitely many integers” (S,, is the group of all permutations of
{1,2,--- ,n}) (Exercise 1.7);
e F,, n > 2, the free group on n generators (Exercise 1.8);
e wreath products G = H ! I" where H is non trivial and I' is an
infinite group, as well as many generalized wreath products.

Let us give some details about the third example. Suppose we are given
a non-trivial group H and a group I' acting on a set I. We denote by H()
the direct sum of copies of H, indexed by I, that is, H®) is the group of
all maps € : I — H such that & = e for all but finitely many i. We let I'
act on H by (v€); = §,-1;- The generalized wreath product H 1y T' is the
semi-direct product H) xT'. The wreath product H1T is the particular case
where I = I" on which I' acts by left translations.

ProprosITION 1.3.10. Let H, T" and I be as above. We denote by I'y
the subgroup of elements in I' whose conjugacy class is finite. We assume
that the orbits of I' ~ I are infinite and that the restricted action I'y ~ I
is faithful. Then the group G = H ' is ICC. In particular every wreath
product H1T', where H is non trivial and I' is infinite, is ICC.

PROOF. We denote by e the unit of H) and by ¢ the unit of . Given
g € G and a subgroup K C G we set g& = {k‘gkz‘1 1k € K}

Let g = (&,7) be an element of G distinct from the unit. Assume first
that & # e. Then its support is non-empty and has an infinite orbit under I,
so ¢ and a fortiori g@ are infinite. Assume now that g = (e, ) with v # e.
If v ¢ T'y then of course the conjugacy class of g is infinite. It remains to
consider the case where v € I'y \ {e}. Since I'y acts faithfully on I, there
is an ig € I such that vig # ig. Let & be an element in HD having all its
components trivial except the one of index ig and take go = (§p,&). Then

go_lggo = (50_17(50),7) has an infinite conjugacy class since 50_17(50) # e,
and we see that ¢© is infinite. ([

1.3.2. A remark about L(S). The factor L(S) has a very impor-
tant property that we will often meet later, and already in Section 1.6: it is
the s.o. closure of the union of an increasing sequence of finite dimensional
von Neumann algebras namely the von Neumann algebras L(S,), n > 1.
Indeed, these algebras are finite dimensional since the groups S,, are finite.
Moreover, L(S,) is naturally isomorphic to the linear span of Ag_(S,) in
L(Sw), as a consequence of the following proposition.

In this text N denotes the set of non-negative integers and N* is the set of strictly
positive integers.
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PROPOSITION 1.3.11. Let H be a subgroup of a countable group G. Then

the restriction of A\q to H is a multiple of the left regular representation of
H.

PROOF. Write G as the disjoint union of its right H-cosets: G = UgegH s,
where S is a set of representatives of H \ G. Then (*(G) = @4esl?(Hs). It
is enough to observe that ¢?(Hs) is invariant under the restriction of Ag to
H, and that this restriction is equivalent to the left regular representation
of H. (|

1.3.3. II; factors and type I factors. Until now, we have met two
kinds of factors: the von Neumann algebras B(H) where H is a finite or
infinite dimensional Hilbert space (which are easily seen to be factors) and
the factors of the form L(G) where G is an ICC group. Since we are mainly
interested in the study of these objects up to isomorphism, let us first specify
what we mean by isomorphic von Neumann algebras.

DEFINITION 1.3.12. We say that two von Neumann algebras M and My
are isomorphic, and we write M7 ~ Moy, if there exists a bijective homomor-
phism (i.e., an isomorphism) « : M7 — My.

When M; = My = M, we denote by Aut (M) the automorphism group
of M. If w is a unitary of M (i.e., such that uu* = 1p; = u*u), then Ad (u) :
x € M — uzu® is an automorphism of M called an inner automorphism.
The set of these inner automorphisms is a normal subgroup of Aut (M),
which is denoted by Inn (M). The quotient group Aut (M)/Inn (M) is also
of interest. It is denoted by Out (M) and is called the outer automorphism
group of M.

An isomorphism preserves the algebraic structures as well as the involu-
tion. We recall that it is automatically an isometry (see Appendix A). On
the other hand it is not necessarily continuous with respect to the w.o. or
s.0. topology (see Exercise 1.3) but we will see later (Remark 2.5.10) that
its restriction to the unit ball is continuous with respect to these topologies.

Since we have defined von Neumann algebras as acting on specified
Hilbert spaces, the following stronger notion of isomorphism is also very
natural.

DEFINITION 1.3.13. We say that the von Neumann algebras (M, H1),
(Ma, Hs), are spatially isomorphic if there exists a unitary operator U :
Hi — Ha such that z — UxU™* is an isomorphism (called spatial) from M;
onto Ms.

Two isomorphic von Neumann algebras need not be spatially isomorphic
(see Exercise 1.4). Classification, up to spatial isomorphism, involves in
addition a notion of multiplicity.

Let us now come back to the examples of factors mentioned at the begin-
ning of this section. A basic result of linear algebra tells us that the (finite
dimensional) von Neumann algebra M, (C) of n x n complex matrices has
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a unique tracial state 7, namely 7 = (1/n)Tr where Tr is the usual trace of
matrices®.

On the other hand, it is easily shown that there is no tracial state on
the von Neumann algebra B(#) when # is infinite dimensional. Indeed, we
may write H as the orthogonal direct sum of two Hilbert subspaces H1, Ho
of the same dimension as the dimension of H. If pi,ps are the orthogonal
projections on these subspaces, there exist partial isometries wuy,us with
uiu; = Idy and wu} = p;, © = 1,2. The existence of a tracial state 7 on

B(H) leads to the contradiction
L=7(p1) + 7(p2) = T(uauy) + 7(uguy) = 7(ujur) + 7(ujug) = 2.
Thus, when G is an ICC group, L(G) is not isomorphic to any B(H):

it belongs to the class of II; factors that are defined below, whereas B(H)
belongs to the class of type I factors.

DEFINITION 1.3.14. A II; factor is an infinite dimensional tracial von
Neumann algebra M whose center is reduced to the scalar operators®.

DEFINITION 1.3.15. A factor M is said to be of type I if it is isomorphic
to some B(H). If dim H = n, we say that M (which is isomorphic to M,,(C))
is of type 1. If dimH = oo, we say that M is of type l.

Factors of type I (on a separable Hilbert space) are classified, up to
isomorphism, by their dimension. On the other hand, the classification of
IT; factors is out of reach!'®. Already, given two countable ICC groups G1, Ga,
to determine whether the II; factors L(G1) and L(G2) are isomorphic or not
is a very challenging question.

1.4. Group measure space von Neumann algebras

We will describe in this section a fundamental construction, associated
with an action of a group G on a probability measure space (X, ). The
previous section was concerned with the case where X is reduced to a point.

1.4.1. Probability measure preserving actions. Recall that two
probability measure spaces (Xi,u1) and (Xo,p2) are isomorphic if there
exist conull subsets Y7 and Ys of X; and X, respectively, and a Borel
isomorphism 6 : Y1 — Y3 such that Oupq,, = pa)y, s i-e, (Bup)y, )(E) =
pi1(0~YE)) = po(E) for every Borel subset E of Ys. Such a map @ is
called a probability measure preserving (p.m.p.) isomorphism, and a p.m.p.
automorphism whenever (X1, u1) = (Xa, uz). We identify two isomorphisms

8By convention, 7 will always denote tracial states whereas Tr will denote not neces-
sarily normalized traces.

9We will see later (Theorem 6.3.5) that it is enough to require the existence of a
tracial state: for factors, such a tracial state is automatically faithful and has the desired
continuity property. Moreover, it is unique.

wIndeed, II; factors on separable Hilbert spaces, up to isomorphism, are not classi-
fiable by countable structures [STO09].



1.4. GROUP MEASURE SPACE VON NEUMANN ALGEBRAS 13

that coincide almost everywhere. We denote by Aut (X, u) the group of
(classes modulo null sets of ) p.m.p. automorphisms of a probability measure
space (X, ).

Every element 6 € Aut (X, ) induces an automorphism f +— f o6 of the
algebra L>(X, ;1) which preserves the functional 7, : f — [y fdu, i.e.,

Vf e Lo(X, ), /Xfoedu:/deu.

We will see later that, for nice probability measure spaces (the so-called
standard ones, see Section B.2 in the appendix), every automorphism of
L>(X, ) comes from an element of Aut (X, u) (see Corollary 3.3.3). The
most useful examples of probability measure spaces are the standard ones,
where the measure does not concentrate on a point (see Appendix B). It will
be our implicit assumption in the sequel.

DEFINITION 1.4.1. A probability measure preserving (p.m.p.) action
G ~ (X, ) of a group G on a probability measure space (X, u) is a group
homomorphism from G into Aut (X, ). The action of g € G on w € X will
be written gw.

The most classical examples of p.m.p. actions are Bernoulli actions. Let
(Y,v) be a probability measure space and let X = Y'¢ be equipped with the
product measure pu = v®%. The Bernoulli action G ~ (X, ) is defined by
(92)n = x4-1p, for © = (zp)hec € X and g € G. As a particular case, we
may take Y = {0,1} and v({0}) = p,v({1}) =1 — p, for a given p €0, 1].

1.4.2. Construction of the group measure space algebra. Let
G ~ (X, ) be a p.m.p. action of G on a probability measure space (X, u).
Let A be the von Neumann algebra L>°(X, u), acting by mutiplication on
L?*(X, ). Let o be the unitary representation of G on L?(X, ) defined by
(04f)(w) = f(g~ w). By restriction to L>(X,u) C L?(X, p), this induces
an action of G by automorphisms on L*°(X, u).

We encode this action of G on A through the involutive algebra A[G]
generated by a copy of A and a copy of G, subject to the covariance relation
gag—! = o4(a). More precisely, A[G] is the space of formal sums of the form
deG agg where agz € A and where the set of g € G with a4 # 0 is finite.
The product is defined by

(a19)(azh) = a104(az)gh,
and the involution by
(ag)* = Ug_l(a*)g_l, where a*(w) = a(w).

These operations are consistent with the operations on A and G: a € A — ae
is an injective *-homomorphism from A into A[G] and g € G — 14¢ is an
injective group homomorphism into the unitary group of A[G].}! Of course,

H\When X is reduced to a point, A[G] is just the group algebra C[G].
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A will be identified with the corresponding subalgebra of A[G]. To avoid
confusion, g € G when viewed as the element 149 of A[G] will be written
ug. Thus, a generic element of A[G] is written as

S gy (13)

geG

Fora=3} csaqugand b= 73" . byuy in A[G], we have

( Z agug) ( Z bgug) = Z(a *b)gug

geG geG geG

where a *x b is the twisted convolution product

(axb)g = anon(by-1y). (1.4)

heG

We will complete A[G] in order to get a von Neumann algebra. The first
step is to represent A[G] as a x-algebra of operators acting on the Hilbert
space H = L*(X, u) ® £2(G) by sending a € A C A[G] to L(a) = a® 1 and
ug to L(ug) = 04 ® Ag. Since the algebraic homomorphism rules for A and
G are satisfied, as well as the covariance rule L(ug)L(a)L(ug)* = L(og4(a)),
this gives a x-homomorphism L from A[G] into B(H).

The group measure space von Neumann algebra associated with G ~
(X, ), or crossed product, is the von Neumann subalgebra of B(H) generated
by L(A)U{L(ugy) : g € G}, that is, the s.o. closure of L(A[G]) in B(H). We
denote it by L(A,G), or A x G.

Since L(3_ e gug) (1 @ be) = 3 e ag @ dg we see that L is injective
and we identify A[G] with the corresponding s.o. dense subalgebra of A x G.
We also identify it in an obvious way with a dense subspace of the Hilbert
space L%(X, ) ® 2(G). Note that L*(X, ) ® ¢*(G) is the Hilbert space of
all f =3 cqfg®dq with fg € L?*(X,p) and

Z ||fg||iz(x) < Fo0.

geG
It is convenient to set
foug = fq ® 9y
and thus to write f as the sum deG fyug, with coefficients f; € L*(X, p).
This is consistent with the above identification of a = ) ., aguy € A[G]
with 37 cqag ®dg € L?(X, u) ® %(G). Then we have

(Z ag“g) ( Z fg“g) = Z(a * [)gtg

geG geqG geqG

geG

where a * f is defined as in Equation (1.4)
Similarly, A[G] acts on H by right convolution:

R(aug)(fun) = (fun)(aug) = fon(a)ung,
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and thus
(D faug) (D agug) = Y (f * a)guy.
geG geG geG

We denote by R(A,G) the von Neumann subalgebra of B(H) generated by
this right action R. Obviously, L(A, G) and R(A, G) commute. The vector

=1®J. € H is cyclic for L(A,G) and R(A,G) and therefore is also
separating for these two algebras. In particular, the elements of L(A,G)
may be identified to elements of L?(X, u) ® ¢*(G) by x — wu, and thus are
written (in compatibility with (1.3)) as

x = ngug, (1.5)

geG

with - cq Ha:gHLg ) < to0. Observe that A appears as a von Neumann

subalgebra of L(A, G)
Let 7 be the linear functional on L(A, G) defined by

T(2) = (Ue, TUe) —/ xedp, for x= Za?gug.
X

geG

Using the invariance of the probability measure u, it is easily seen that 7 is a
tracial state (of course w.o. continuous). We also remark that 7 is faithful,

with
=Y [ I an
geG

Following the lines of the proof of Theorem 1.3.6 (which corresponds to
the case A = C), one shows that L(A, G) is the subspace of f = deG fqug €
H = L?(X, 1) ® £*(G) that are left convolvers in the sense that there exists
¢ > 0 with || f = k||,, < c||k[5; for every finitely supported k € H.'? In par—
ticular, for every g € G, we have f; € L>®(X, ) C L*(X, p) with || fg]| . <
One also gets L(A,G) = R(A,G) and R(A,G) = L(A,G)'.

Thus, the coefficients x4 in (1.5) belong in fact to L>°(X, ). They are
called the Fourier coefficients of x. The u,’s are called the canonical uni-
taries of the crossed product. Again, we warn the reader that the conver-
gence of the series in (1.5) does not occur in general with respect to the
s.o. topology.

We now introduce conditions on the action, under which A x G turns
out to be a factor, and so a II; factor.

DEFINITION 1.4.2. A p.m.p. action G ~ (X, ) is (essentially) free if
every g € G, g # e, acts (essentially) freely, i.e., the set {w € X : gw = w}
has p-measure 0.

The action is said to be ergodic if every Borel subset E of X such that
w(gE \ E) = 0 for every g # e is either a null set or a conull set.

12566 Chapter 7, Section 7.1 for a general study of this property.
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We give equivalent formulations, which in particular will allow us later
to extend these notions to group actions on any von Neumann algebra (see
Definition 5.2.2).

LEMMA 1.4.3. Let G ~ (X, ) be a p.m.p. action. The following condi-
tions are equivalent:

(i) the action is ergodic;

(ii) (resp. (i")) the only functions f € L°°(X,p) (resp. f € L*(X,p))
that are fized under the G-action (i.e., o4(f) = f for every g € G)
are the constant (a.e.) functions;

(iii) the only measurable functions f : X — C that are fized under the
G-action are the constant (a.e.) functions.

PROOF. We only prove that (i) = (iii), from which the whole lemma
follows immediately. Let f : X — R be a measurable G-invariant function.
For every r € R, the set E, = {w e X : f(w) <r} is invariant, so has
measure 0 or 1. Set v =sup {r : pu(E,) = 0}. Then for 1 < a < rg, we have
w(Ey,) =0 and pu(E,,) = 1. It follows that f = o (a.e.). O

For the next two results, we will need the following property of standard
Borel spaces: they are countably separated Borel space. This means the
existence of a sequence (FE,) of Borel subsets such that for w; # wy € X
there is some E,, with w; € E,, and wy ¢ E,,.

LEMMA 1.4.4. Let (X, u) be a probability measure space, g € Aut (X, ),
and let o4 be the corresponding automorphism of L*>(X, ). The following
conditions are equivalent:

(i) g acts freely;
(ii) for every Borel subset Y with u(Y') > 0, there exists a Borel subset
Z of Y with u(Z) >0 and ZNgZ = 0;
(ili) if a € L™(X, p) is such that aog(x) = xa for every x € L*=(X, u),
then a = 0.

PRrROOF. (i) = (ii). Let (E,) be a separating family of Borel subsets
as above. Assume that (i) holds and let Y be such that u(Y) > 0. Since
Y=UX N(E,\g 'E,)) (up to null sets) there exists ng such that

p(Y N (En \gilEm))) #0
and we take Z =Y N (Ey, \ g 1 Ey,) -

(i) = (iii). Let a € L*(X,u) such that aoy(z) = za for every x €
L>(X,p). If a # 0, there exists a Borel subset Y of X with x(Y") > 0 such
that, for every x € L°(X, u), we have z(¢~'w) = x(w) for almost every
w €Y. Taking x = 1z with Z as in (ii) leads to a contradiction.

Finally, the easy proof of (iii) = (i) is left to the reader. O

PROPOSITION 1.4.5. Let G ~ (X, u) be a p.m.p. action and set A =
L>(X, ).
(i) AN (A xG) = A if and only if the action is free.
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(ii) Assume that the action is free. Then A X G is a factor if and only
if the action is ergodic.

PROOF. Recall that A is naturally embedded into A X G by a — aue.
Let © =3 cqrgug € AX G. Then for a € A we have

ar = Z argug, and za = Z xg04(a)uy.
geG geG
It follows that x belongs to A’ N (A x G) if and only if axy = z404(a) for
every g € G and a € A. Assertion (i) is then immediate.

To prove (ii), we remark that x belongs to the center of A x G if and
only if it commutes with A and with the uy, g € G. Assuming the freeness
of the action, we know that the center of A x G is contained in A. Moreover,
an element a € A commutes with u, if and only if 64(a) = a. Hence, the
only elements of A commuting with u, for every g are the scalar operators
if and only if the action is ergodic. This concludes the proof ([l

1.4.3. Examples. It follows that when G ~ (X, u) is a free and er-
godic p.m.p. action of an infinite group G, then L>(X, u) X G is a II; factor.
Examples of such free and ergodic p.m.p. actions are plentiful. We mention
below the most basic ones.

First, let G be a countable'® dense subgroup of a compact group X.
Denote by p the Haar probability measure on X. The left action of G onto
X by left multiplication is of course measure preserving. It is obviously free.
It is ergodic since any function in L?(X, 1) which is G-invariant is invariant
under the action of the whole group X (using the density of G) and therefore
is constant.

The simplest such example is X = T and G = exp(i2nZ«a) with «
irrational. For one more nice example, consider X = (Z/(2Z))Y, the group
operation being the coordinate-wise addition, and take for G the subgroup
of sequences having only finitely many non-zero coordinates.

Secondly, let G be any countable group, (Y,v) a probability measure
space and X = Y, equipped with the product measure p = v®%. We
assume, as always, that v does not concentrate on a single point.

PROPOSITION 1.4.6. The Bernoulli action G ~ X is free and ergodic.

PrOOF. We begin by showing that the action is free. Let g # e and
choose an infinite subset I of G such that gI NI = (). Then we have

p({z : gr =a}) < p({z: 241y = ap,Vh € I})
= Hiu({x B l’h}) = 07

hel
since the (v x v)-measure of the diagonal of Y x Y is strictly smaller than
1.

Bgor us, a countable group will implicitly mean countably infinite, whereas countable
sets may be finite
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We now prove a stronger property than ergodicity, that is the mizing
property: for any Borel subsets A, B we have limg_,o t(ANgB) = u(A)u(B).
Using basic arguments appealing to monotone classes, it suffices to prove this
property when A, B are both of the form ngG E, where E, = Y for all
except finitely many g. But then, obviously there is a finite subset FF C G
such that u(ANgB) = u(A)u(B) for g & F. O

REMARK 1.4.7. It is also interesting to deal with generalized Bernoull:
actions. We let G act on an infinite countable set I and we set X = Y/,
endowed with the product measure = v®!. This gives rise to the following
p.m.p. action on (X, i), called a generalized Bernoulli action:

Ve e X,Vge G, (g7); =4,
Ergodicity and freeness of these actions are studied in Exercise 1.12.

As a last example of a free and ergodic action, let us mention the natural
action of SL(n,Z) on (T™, m) where m is the Lebesgue probability measure
on T" (see Exercise 1.13).

1.5. Von Neumann algebras from equivalence relations

We now present a construction that allows one to obtain factors from
not necessarily free group actions.

1.5.1. Countable p.m.p. equivalence relations.

DEFINITION 1.5.1. A countable or discrete equivalence relation is an equi-
valence relation R C X x X on a standard Borel space X that is a Borel
subset of X x X and whose equivalence classes are countable.

Let G ~ X be an action of a countable group G by Borel automorphisms
of the Borel standard space X. The corresponding orbit equivalence relation
is

Ra~x = {(z,g92) : x € X, g € G}.
It is an example of a countable equivalence relation, and is in fact the most
general one (see Exercise 1.15).

Coming back to the general case of Definition 1.5.1, a partial isomor-
phism ¢ : A — B between two Borel subsets of X is a Borel isomorphism
from A onto B. We denote by [[R]] the set of such ¢ whose graph is con-
tained into R, i.e., (z,p(z)) € R for every x € A. The domain A of ¢ is
written D(¢) and its range B is written R(y). This family of partial iso-
morphisms is stable by the natural notions of composition and inverse. It is
called the (full) pseudogroup of the equivalence relation. The pseudogroup
[[Ra~x]] is described in Exercise 1.17.

Given a probability measure pu on X, one defines a o-finite measure v
on R by

v(C) = /X 7| dpz)
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where |C*| denotes the cardinality of the set C* = {(x,y) € C' : yRx}. Simi-
larly, we may define the measure C' — [ |Cy| du(z) where |C;| denotes the
cardinal of the set C;, = {(y,x) € C : yRx}. When these two measures are
the same, we say that R preserves the probability measure p. In this case, we
say that R is a countable probability measure preserving (p.m.p.) equivalence
relation on (X, p). We will implicitly endow R with the measure v.

LEMMA 1.5.2. Let R be a countable equivalence relation on a probability
measure space (X, ). The two following conditions are equivalent:

(i) R preserves the measure fi;

(ii) for every v : A — B in [[R]], we have @.(pa) = p5-
When an action G ~ X of a countable group G is given and R = Ra~x,
these conditions are also equivalent to

(iii) G ~ X preserves p.

PROOF. Obviously (i) implies (ii). Conversely, assume that (ii) holds.
Let E be a Borel subset of R. Since the two projections from R onto X
are countable to one, there exists a Borel countable partition £ = UFE,, such
that both projections are Borel isomorphisms from FE,, onto their respective
ranges, as a consequence of a theorem of Lusin-Novikov (see B.5 in the
appendix). Each E,, is the graph of an element of [[R]], and the conclusion
(i) follows.

When R is defined by G ~ X, it suffices to observe that for every
¢ : A — Bin [[R]], there exists a partition A = Ugeq Ay such that p(x) = gx
for x € A,. O

1.5.2. The von Neumann algebras of a countable p.m.p. equi-
valence relation. To any countable equivalence relation R on X, we as-
sociate an involutive algebra M;(R) generalizing matrix algebras, which
correspond to trivial equivalence relations on finite sets, where all the ele-
ments are equivalent. By definition, My(R) is the set of bounded Borel
functions F' : R — C such that there exists a constant C' > 0 with, for every
z,y € X,

Hze X :F(z,y) #0} <C, and |[{z€ X:F(z,2)#0} <C.

It is easy to see that My(R) is an involutive algebra, when the product and
the involution are given respectively by the expressions

(Fyx By)(z,y) = Y Fiw,2)Fa(z,y),
ZzRx

F(z,y) = Fy, z).
Viewing the elements of My(R) as matrices, these operations are respectively
the matricial product and adjoint. Note also that My(R) contains the al-
gebra By(X) of bounded Borel functions on X: one identifies f € By(X) to
the diagonal function (z,y) — f(x)1a(z,y) where 14 is the characteristic
function of the diagonal A C R. The algebra M;(R) also contains the full
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pseudo-group [[R]] when the element ¢ : A — B of [[R]] is identified with
the characteristic function S, of the set {(p(x),z) : x € A}.

Every finite sum'*
€ y) = Zfs&(x)sgo(mvy)v (1'6)

where ¢ € [[R]] and f, : R(¢) — C is a bounded Borel function, belongs to
My(R). Using again the Lusin-Novikov theorem B.5, it can be shown that
My(R) is exactly the space of such functions (see Exercise 1.14).

Assume in addition that R preserves the probability measure u. We
define a representation L of M,(R) in L?*(R,v) by the expression

Le()(w,y) = (F &)(w,y) = > Flw, 2)&(2,y),
ZRx
for ' € My(R) and ¢ € L?(R,v). We leave it to the reader to check that
F + Ly is a *-homomorphism from the *-algebra M;(R) into B(L?(R,v)).
Moreover the restriction of L to By(X) induces an injective representation

of L*°(X, p), defined by

(Lf&)(x,y) = f(x)§(2,y)

for f € L®(X,u) and ¢ € L?(R,v). Note also that for ¢,% € [[R]], we
have Lg, * Ls, = Lg,,, and (Ls,)" = ngl. It follows that the element
u, = Lg, is a partial isometry: ugu, and u,ug are the projections in
L>®(X, u) C B(L}(R,v)) corresponding to the multiplication by the charac-
teristic functions of the domain D () of ¢ and of its range R((p) respectively.
We have (uyé)(z,y) = (7 (z),y) if 2 € R(p) and (upé)(z,y) = 0 other-
wise.

The von Neumann algebra of the countable p.m.p. equivalence relation R
is the s.o. closure L(R) of {Lg : F' € My(R)} in B(L*(R,v)). Observe that
L>(X, ) is naturally embedded as a von Neumann subalgebra of L(R).
From the expression (1.6) we see that L(R) is the von Neumann algebra
generated by the partial isometries u, where ¢ ranges over [[R]].

Similarly, we may let Mj(R) act on the right by

Rp(§)(z,y) = (£ F)(x,y) = > &(x,2)F(

ZRx
We denote by R(R) the von Neumann algebra generated by these operators
Rp with F € My(R). We may proceed as in Sections 1.3 and 1.4 to prove
the following facts:

e 1, is a cyclic and separating vector for L(R). In particular, T+
T1, identifies L(R) with a subspace of L?(R,v). Note that Lpla =
F for F € Mb(R)

o 7(Lp) = (1a,Lrla) = [y F(x,x) du(x) defines a faithful w.o. con-
tinuous tracial state on L(R).

Manalogous to the expression (1.3)
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We might prove, as we did for group von Neumann algebras, that L(R)" =
R(R) and that the elements of L(R) (resp. R(R)), viewed as functions, are
the left (resp. right) convolvers for R (see Section 7.1 for another proof).

DEFINITION 1.5.3. Let R be a countable p.m.p. equivalence relation and
let A be a Borel subset of X. We denote by [AJr = p1(py 1 (A)) = pa(p; (A))
the R-saturation of A, where pq,p2 are the left and right projections from
R onto X. We say that A is invariant (or saturated) if [A]g = A (up to null
sets). The relation (R, ) is called ergodic if every invariant Borel subset is
either null or co-null.

REMARK 1.5.4. The Borel set A is invariant if and only if 1 gop; = 1 40p9
v-a.e. More generally, a Borel function f on X is said to be invariant if
fop1 = fopy v-a.e. The equivalence relation is ergodic if and only if the
only invariant bounded Borel functions are the constant (up to null sets)
ones.

PROPOSITION 1.5.5. Let R be a countable p.m.p. equivalence relation on
(X, ).
(i) L>®(X,pu) N L(R) = L™(X,u), that is, L>=(X,u) is a mazimal
abelian subalgebra of L(R).
(i1) The center of L(R) is the algebra of invariant functions in L (X, u).
In particular, L(R) is a factor if and only if the equivalence relation
1s ergodic.

PROOF. (i) Let T € L(R) N L>®(X,u). We set F = T1a € L*(R,v).
For every f € L*™°(X, ) we have

LleA = TLf].A = T(lA * f),

where (€ * f)(x,y) = &(x,y) f(y) for € € L?(R,v). Moreover, T commutes
with the right convolution { +— £ * f by f, whence LyF = F x f, that
is f(z)F(x,y) = F(z,y)f(y) v-a.e. It follows that F' is supported by the
diagonal A, and belongs to L>°(X, ) since T' is bounded.

(ii) f € L*>(X, p) belongs to the center of L(R) if and only if

f@)F(x,y) = F(z,y)f(y), v-a.e.,

for every F' € My(R), therefore if and only if fop; = fops v-a.e O

In particular, the von Neumann algebra of an ergodic countable p.m.p.
equivalence relation on a Lebesgue probability measure space (X, u) (i.e.,
without atoms) is a II; factor.

REMARK 1.5.6. When G ~ (X, p) is a free p.m.p. action and R =
Rc~x, the von Neumann algebras L(R) and L*(X, ) X G coincide. In-
deed, the map ¢ : (z,g) — (x, g~ 2) induces a unitary operator V : £ = £o0¢
from L?(R,v) onto L?(X x G,u® \) = L*(X,pn) ® £2(G), where X is the
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counting measure on G. This holds because the action is free, and there-
fore ¢ is an isomorphism from (X x G,p ® A) onto (R,v). We immedi-
ately see that V*(L>®(X,u) x G)V C L(R). In fact L*°(X,u) is identi-
cally preserved, and we have V*u,V = Lg, where S, is the characteris-
tic function of {(gz,z) : 2 € X} C R. Similarly, we see that the commu-
tant of L>°(X,u) x G is sent into the commutant R(R) of L(R), whence
V*(L>®(X,u) x G)V = L(R) thanks to the von Neumann bicommutant
theorem.

1.5.3. Isomorphisms of p.m.p. equivalence relations.

DEFINITION 1.5.7. We say that two countable p.m.p. equivalence rela-
tions R1 and Ro on (X1, 1) and (Xo, pe) respectively are isomorphic (and
we write R1 ~ Rg) if there exists an isomorphism 6 : (X1, p1) — (Xa, u2) (of
probability measure spaces, i.e., 0,11 = pg) such that (0 x 6)(R1) = Ra, up
to null sets, that is, after restriction to conull subsets we have x ~g, vy if and
only if 6(z) ~g, 6(y). Such a 0 is said to induce or implement the isomor-
phism between the equivalence relations. If this holds when R1 = Rq, and
Ro = Rq, we say that the actions G; ~ (X3, 1) and Gy ~ (Xo, uo) are
orbit equivalent. This means that for a.e. x € X, we have (G1z) = G26(z).

Let 0 : (X1, p1) — (X2, u2) as above. Then U : £ — £o(0x0) is a unitary
operator from L%(Ra,v2) onto L?(Rq,v1) such that UL(R2)U* = L(Ry).
Moreover, this spatial isomorphism sends L>°(Xa, p2) onto L (X1, p1). More
precisely, for f € L*°(Xa, p12), we have UL U* = Ly.9. We also observe that
this isomorphism preserves the canonical traces on L(R;) and L(R2).

We deduce from Remark 1.5.6 that when G ~ (Xi,u1) and Go ~
(Xa, o) are free p.m.p. actions that are orbit equivalent through 6 : (X1, u1) —
(X9, u2), the isomorphism f — f o6 from L*(Xs,us) onto L(X7, u1)
extends to a spatial isomorphism from the crossed product von Neumann
algebra L>(Xa, p2) X Ga onto L (X1, p1) X G1. We will study the converse
in Chapter 12 (Corollary 12.2.6).

1.6. Infinite tensor product of matrix algebras

In this section, we describe a way to construct I1; factors, starting from
increasing sequences of matrix algebras.
For any integer n, we embed the matrix algebra M, (C) into M, (C) by

T = z 0
0 = /-
We consider the sequence of inclusions
MQ((C) — M22((C) — ~M2k((C) e
and we set M = Up>1Man(C). Since the inclusions are isometric, we have
a natural norm on M: if x € M, we let ||lz[| be ||z, ), where n is any

integer such that z € My (C). There is also a natural trace defined by
7(z) = T (), where again n is such that z € Man(C) and 7, is the (unique)
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tracial state on Man(C). Obviously, we have 7(x*z) > 0 for every z € M,
and 7(z*x) = 0 if and only if x = 0. We denote by H the completion
of M equipped with the inner product (x,y) = 7(z*y) and by |||, the
corresponding norm. An element x of M, when viewed as a vector in H,
will be written Z. For =,y € M, we set

m(x)y = xy.

Then, we have (for some n),

7 (@)3l7 = 7(y*a*zy) = mu(y*z*y) < ||z|*a(y*y) = l|l2I°[|19]7.
Therefore, 7(z) extends to an element of B(#), still denoted by 7(z). It is
easily checked that 7 : M — B(H) is an injective *-homomorphism and we
will write « for m(x). Let R be the s.o. closure of M in B(H).

This construction of R from (M, 7) is an example of the GNS construc-
tion that we will meet later.

For z € M, we observe that 7(z) = <i,xi>, and we extend 7 to R by
the same expression. Using the density of M into R we see that 7 is still a
tracial state on R. We also note that this tracial state is continuous on R
equipped with the w.o. topology.

Similarly, we may define a *-antihomomorphism 7° : M — B(#H) by:

Vo,y e M, w'(x)§ = yz.

Obviously, 7%(z) commutes with R. We deduce from this observation that
7 is a faithful state. Indeed, assume that z € R is such that 7(z*z) = 0,
that is 1 = 0. Then zj = z7°(y)1 = 7%y)(21) = 0 for every y € M, which
implies that x = 0.

Finally, we show that R is a factor, thus a II; factor. Let x be an element
of the center of R and let x; be a net in M which converges to x in the s.o.
topology. In particular, we have

lign Hxi — @HT = lizm Ha:i — xliHT =0.
Since T is a trace, we see that Huyu*iHT = HyiHT for every y € R and every

unitary element u € R. Therefore, if n is such that z; € Man(C) and if u is
in the group Uan (C) of unitary 2™ x 2™ matrices, we get

HZL‘l - u:l:iu*lHT = Huwu*l —uz;u*l = Hxl — :z?zHT

Let A be the Haar probability measure on the compact group Usn (C). Since
fuzn((C) uz;u* dA(u) commutes with every element of Usn(C), it belongs to

the center of Myn(C), and therefore is a scalar operator «;1. We have
Hazi—aiiHT: Hxi—/ u:mu*d)\(u)H < H:Ui—@HT.
U(Man) T

It follows that lim; H:Ui — O‘iiHT = 0, and therefore z is a scalar operator.
This factor R is called the hyperfinite 11y factor. Since My (C) =
M (C)®* | we write R = My(C)®.
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REMARK 1.6.1. This construction may be extended to any sequence of

inclusions
My, (C) = M, (C) — --- M, (C) — ---

where ny,1 = pgng, and x € M, (C) is embedded into M, (C) by putting
diagonally py. copies of z.!° Like L(Ss), these factors are the s.o. closure
of an increasing union of finite dimensional von Neumann algebras (indeed
matrix algebras here). We will see in Chapter 11 that all these factors
are isomorphic to the above factor R and thus find the explanation for the
terminology “the” hyperfinite II; factor.

Comments. So far, we have now at hand various examples of 1I; fac-
tors. In the sequel, we will meet several constructions giving rise to possibly
new examples (see for instance Chapter 5).

We leave this chapter with many questions. A first one is, since we have
defined von Neumann algebras in a concrete way as operator algebras acting
on a given Hilbert space, what are the possible concrete representations for
a given von Neumann algebra? This will be studied in Chapter 8.

A much more important and challenging problem is the classification of
II; factors, up to isomorphism. Those factors are so ubiquitous that there
is a serious need to detect whether they are isomorphic or not, hence a
serious need of invariants. Among the most useful invariants (up to iso-
morphism) for a II; factor M, we will meet the fundamental group §(M),
the set Z(M) of indices of subfactors (see respectively Definitions 4.2.4 and
9.4.9) and the outer automorphism group Out (M) (Definition 1.3.12). We
will also introduce several invariant properties such as amenability (Chapter
10), the Kazhdan property (T) (Chapter 14), and the Haagerup property
(H) (Chapter 16).

Exercises

EXERCISE 1.1. Let (e,)nen be an orthonormal sequence in a Hilbert
space H. Let z,, be the operator sending ey onto e,, and such that z,,(§) =0
whenever ¢ is orthogonal to eg. Check that lim,, x,, = 0 with respect to the
w.0. topology but not with respect to the s.o. topology.

EXERCISE 1.2. Let H be a separable Hilbert space.

(a) Show that the unit ball (B(H)), of B(H) is metrizable and compact
(hence second-countable) relative to the w.o. topology.

(b) Show that (B (7—[))1 is metrizable and second-countable relative to
the s.o. topology, and complete for the corresponding uniform struc-
ture.

(c) When H is infinite dimensional, show that (B(#)),
relative to the operator norm topology (take H = L2([0,1]) for
instance).

is not separable

15This construction will be generalized in section 5.1.2.
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EXERCISE 1.3. Let H be a separable infinite dimensional Hilbert space
and let a be the isomorphism sending x € B(#H) onto a(x) € B(H®>) with
a(z)((€n)n) = (x&n)n for every (&), € HP*®. Show that a(B(H)) is a von
Neumann algebra on H®>, but that « is not continuous with respect to the
w.o. (or s.0.) topologies®®.

EXERCISE 1.4. Let H be a separable Hilbert space. Let & € N* and
let ay be the isomorphism sending z € B(H) onto ay(x) € B(H®*) with
ar(2)((E)n) = (2€n)n for every (&,), € HE*. Show that the von Neumann
algebras ay, (B(H)) and ag,(B(H)) are spatially isomorphic if and only if
ky = ks.

EXERCISE 1.5. Let (X, u) be a probability space and A = L>=°(X, u). We
view A as a subspace L?(X, u) and as a von Neumann algebra on L?(X).
Show that on the unit ball (A); of the von Neumann algebra A, the s.o.
topology coincides with the topology defined by ||-||,. Show that ((A)1, ||-||5)
is a complete metric space.

EXERCISE 1.6. Let (M;, H;) be a family of von Neumann algebras. Given
(T;) with T; € M; and sup ||T;|| < +o0, let T be the operator acting on the
Hilbert space direct sum H = @®;H; by T((@)z) = (T&);- We denote by
S°% M;, or also by [, M;, the set of such operators T. Show that "% M; is
a von Neumann subalgebra of B(H).

It is called the direct sum, or also the (¢°°-)product of the von Neumann
algebras M; (both terminologies and notation are usual in the literature).
Note that the projections 1y, belong to the center of the direct sum.

EXERCISE 1.7. Let Soo = U2 1S, be the group of finite permutations of
N*. Let o € S, be a non-trivial permutation and let i be such that o (i) # i.
For j > n, denote by s; the transposition permuting 7 and j. Show that

{sjas] Lij> n} is infinite.
EXERCISE 1.8. Show that the free group F,,,n > 2, is ICC.

EXERCISE 1.9. Let G ~ (X, ) be a p.m.p. action of a countable group
G and A = L*(X,u). We keep the notation of Section 1.4.2. Let W be
the unitary operator of H = L?(X, u) ® (?(G) = (*(G, L*(X,p)) defined
by W(f)(s) = o5(f(s)) for f: s f(s) € L*(X,p). For a € L¥(X, p),
we define the operator m(a) on H by (w(a)f)(s) = o4-1(a)f(s). Show that
W(os @A) W* =1® A for s € G, and that W(a®1)W* = 7(a). Therefore
A x G may be (and is often) alternatively defined as the von Neumann
subalgebra of B(H) generated by (7(A) U1 ® A(Q)).

EXERCISE 1.10. Let G ~ (X, 1) be a p.m.p. action of an ICC group G
and set A = L>°(X, ). Show that the commutant of {uy: g€ G} in AxG

169y%c denotes the countably infinite Hilbert space direct sum of copies of ‘H and,
for k € N*, the Hilbert space direct sum of k copies of H is denoted by HP*.
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is the fixed-point algebra A®. Conclude that A x G is a II; factor if and
only if the action is ergodic.

EXERCISE 1.11. Let G ~ (X, ) be a p.m.p. action and A = L*>(X, u).
Let x =) cqogug € AxGand§ =3 ;&ug € L?(X, 1) ®0%(G). We set

2€ =3 cc(2€)guy € L (X, p)@*(G). Show that (2€)y = X peq Thon(€p-1g),
where the convergence holds in L'(X, i), and that

1@l xy < (3 lanllFz) 2 (X l€nlFagn) .

heG he@

EXERCISE 1.12. Let G ~ (X, ) be a generalized Bernoulli action as
defined in Remark 1.4.7.

(i) Show that this action is ergodic if and only if every orbit of the
action G' ~ I is infinite.

(ii) Whenever v has no atom, show that this generalized Bernoulli ac-
tion G ~ (X, p) is free if and only if the action G ~ I is faithful,
that is, for every g # e there exists ¢ € I with gi # i. In case v
has atoms, show that the generalized Bernoulli action is free if and
only if for every g # e the set {i € I : gi # i} is infinite.

EXERCISE 1.13. Show that the canonical action of SL(n,Z) on (T™,m)
is free and ergodic (Hint: to prove ergodicity, use the Fourier transform from
L%(T", m) onto (2(Z")).

Observe that SL(n,Z) can be replaced by any subgroup whose orbits on
Z" are infinite, except the trivial one.

EXERCISE 1.14. Let R be a countable equivalence relation on X.
(i) Let C be a Borel subset of R with

sup |C?] < 400, sup |Cy| < 400.

zeX zeX
Show that there is a partition C' = | |C), into Borel subsets such
that the second projection ps is injective on each C,, and py(Cy,) D
p2(Cy) for m < n. Conclude that there are only finitely many such
non-empty subsets. Show that C is the disjoint union of finitely
many Borel subsets such that both projections from X x X — X
are injective when restricted to them (use Theorem B.5).

(ii) Show that every F' € My(R) may be written as a finite sum
Flo,y) = 3 fo()S,(@,y), where ¢ € [[R] and f, : R(g) — C

is a bounded Borel function.

EXERCISE 1.15. Let R be a countable equivalence relation on X.

(i) Show that there exists a partition R\ A = | | D,, into Borel subsets
such that both projections p;, p2 restricted to each D,, are injective
with p1(Dy) Np2(Dy) = 0.

(ii) Use this partition to construct a countable group of Borel isomor-
phisms of X such R = Rg~x (see [FM77a, Theorem 1)).
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EXERCISE 1.16. Let R be a countable p.m.p. equivalence relation on
(X, ). We identify L(R) to a subspace of L?(R,v) by sending T € L(R)
onto Fr = T1A. Then we denote by L, the operator T

(i) Let F € L(R) and ¢ € L*(R,v). Show that

(Lré)(z,y) = D Flx,2)¢(2,y) for ae. (z,y) € R.
(ll) Let Fl,FQ S L(R) Show that LF1 o LF2 = LF1*F2 where
(Fux Fy)(w,y) = > Fi(z,2)Fa(z,y) a.e.

(iii) Let F' € L(R). Show that (Lr)* = Lp+ where F*(z,y) = F(y, )
a.e.

(iv) Let F € L(R). Show that |F(x,y)| < ||Lr| a.e.

EXERCISE 1.17. Let G ~ (X, p) a p.m.p. action and let (Rg~x, p) be
the corresponding p.m.p. equivalence relation. Show that a Borel isomor-
phism ¢ between two Borel subsets A, B of X belongs to [[Rg~x]] if and
only if there exists a partition A = UgegAy of A into Borel subsets such
that p(x) = gz for a.e. x € A,.

Notes

The main part of this chapter is taken from the founding papers of
Murray and von Neumann [MVN36, MvN37, vIN39, MvN43], where
von Neumann algebras were called rings of operators.

These algebras can also be abstractly defined as C*-algebras that are
duals of some Banach space!”. Indeed, Dixmier [Dix53] proved that every
von Neumann algebra is the dual of a Banach space and Sakai has shown
[Sak56] that if a unital C*-algebra A is the dual of a Banach space F', there
is an injective homomorphism 7 from A into some B(#) such that (7(A), H)
is a von Neumann algebra. Moreover, this predual F' is unique. It is called
the predual of M (see [Tak02, Theorem III.3.5 and Corollary I11.3.9] for
instance). For the case of tracial von Neumann algebras, see Section 7.4.2.

The importance of factors as basic building blocks for general von Neu-
mann algebras was already recognized in the seminal paper [MVIN36| which
is a sequel of von Neumann’s article [vIN30]. In [MVIN36] the first examples
of II; factors were exhibited as crossed products. Soon after, constructions
of factors as infinite tensor products of matrix algebras were investigated by
von Neumann in [vIN39]. Later, group von Neumann algebras were defined
and studied in [MvIN43]. In this paper, among many other outstanding
results, it was shown that the hyperfinite factor R is the unique hyperfi-
nite separable II; factor, up to isomorphism. This will be made precise and
proved in Chapter 11. In particular, Murray and von Neumann discovered
that R is isomorphic to L(Ss) but is not isomorphic to L(Fs).

T hus defined, they are often called W *-algebras.
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Automorphisms of crossed products associated with free ergodic p.m.p.
actions were first studied in the pioneering work of Singer [Sin55]. This
was followed by Dye’s deep analysis of the notion of orbit equivalence of
group actions, in connection with the associated crossed products [Dye59,
Dye63|. The von Neumann algebras of countable measured equivalence
relations are studied in detail in [FM77a, FM77b|. Previously, Krieger
had led the way by showing how the freeness of a group action G ~ X
could be relaxed in order to get a factor [Kri70].



CHAPTER 2

Fundamentals on von Neumann algebras

This chapter contains the most essential notions to start the study of
von Neumann algebras.

We first introduce two key results: the von Neumann bicommutant the-
orem and the Kaplansky density theorem.

Next, we point out that an immediate consequence of the spectral theory
is the abundance of projections in von Neumann algebras. We state some
useful facts to know about the geometry of projections.

We observe that the definition of von Neumann algebras as concretely
represented on Hilbert spaces, although easily accessible, has some draw-
backs. For instance, the w.o. and s.o. topologies are not intrinsic, and so
the notion of continuity for these topologies is not intrinsic either. To get
around this difficulty, we introduce the notion of normal positive linear map,
whose continuity is defined by using the order, and therefore is preserved
under isomorphism.

However, the situation is not so bad. On its unit ball, the w.o. and
s.o. topologies do not depend on the concrete representation of the von
Neumann algebra. A normal positive linear map is characterized by the fact
that its restriction to the unit ball is continuous with respect to either of
these topologies. In the last section we show that a tracial von Neumann
algebra has a natural representation, called the standard representation. We
will highlight later, in Chapter 8, its central role in the classification of the
representations of the algebra.

2.1. Von Neumann’s bicommutant theorem

We begin by showing that, although different for infinite dimensional
Hilbert spaces (see Exercise 1.1), the s.0. and w.o. topologies introduced in
the first chapter have the same continuous linear functionals. Recall that for
&,n in a Hilbert space H we denote by we , the linear functional x — (£, xn)
on B(H). We set we = we¢.

PROPOSITION 2.1.1. Letw be a linear functional on B(H). The following
conditions are equivalent:
(i) there exist &1,...,&n, M1, ..M € H such that w(z) = > | wy, ¢ (@)
for all z € B(H);
(ii) w is w.o. continuous;
(ili) w is s.0. continuous.

29
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PRrOOF. (i) = (ii) = (iii) is obvious. It remains to show that (iii) = (i).
Let w be a s.o. continuous linear functional. There exist vectors £1,...,&, €
H such that, for all x € B(H),

wia) < (Y Jlegil?)">.

=1
ntimes

e N—
Let HO" =H & --- & H be the Hilbert direct sum of n copies of H. We
set &€ = (&1,...,&) € HP" and for x € B(H),

0(x)€ = (z&1,...,x&,).

The linear functional ¢ : §(z){ — w(x) is continuous on the vector sub-
space O(B(H))¢ of H®™. Therefore it extends to a linear continuous func-
tional on the norm closure K of O(B(H)){. It follows that there exists
n=(m,...,nn) € K such that, for x € B(H),

w(x) = BO)E) = (0,0 )yan = 3 (). 0
=1

COROLLARY 2.1.2. The above proposition remains true when B(H) is
replaced by any von Neumann subalgebra M.

ProoOF. Immediate, since by the Hahn-Banach theorem, continuous w.o.
(resp. s.0.) linear functionals on M extend to linear functionals on B(H)
with the same continuity property. ([

In the sequel, the restrictions of the functionals we, and we = wee to

any von Neumann subalgebra of B(?) will be denoted by the same symbols.
Let us observe that every w.o. continuous linear functional is a linear

combination of at most four positive ones, as easily seen by polarization.

Recall that two locally convex topologies for which the continuous linear
functionals are the same have the same closed convex subsets. Therefore,
the s.0. and w.o. closures of any convex subset of B(#) coincide.

The following fundamental theorem shows that a von Neumann algebra
may also be defined by purely algebraic conditions.

THEOREM 2.1.3 (von Neumann’s bicommutant theorem). Let M
be a unital self-adjoint subalgebra of B(H). The following conditions are
equivalent:

(i) M =M";
(ii) M is weakly closed;

(iii) M is strongly closed.

PROOF. (i) = (ii) = (iii) is obvious. Let us show that (iii) = (i). Since
the inclusion M C M” is trivial, we only have to prove that every z € M”
belongs to the s.o. closure of M (which is M, by assumption (iii)). More
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precisely, given € > 0 and &1, ...,&, € H, we have to show the existence of
y € M such that

for 1<i<n, |z&—y&]| <e.

We consider first the case n = 1. Given { € H, we denote by [M¢] the
orthogonal projection from H onto the norm closure M¢ of M¢. Since this
vector space is invariant under M, the projection [M¢] is in the commutant
M’. Hence

x§ = w[MEJE = [ME]ag,
and so we have z& € M¢E. Therefore, given € > 0, there exists y € M such
that [|z§ — y¢l| <e.

We now reduce the general case to the case n = 1 thanks to the following
very useful and basic matrix trick. We identify the algebra B(H®™) with
the algebra M, (B(#)) of n by n matrices with entries in B(#). We denote
by 6 : B(H) — B(H®") the diagonal map

y -+ 0

y—=1: ;

0 - y
We set N = 0(M). Of course, N is s.o. closed. A straightforward compu-
tation shows that the commutant N’ of N is the algebra of n X n ma-
trices with entries in M’. It follows that for every x € M”, we have
O(x) € N”. We apply the first part of the proof to f(x) and N. Given

e>0and & = (£,...,&) € H®", we get an element 6(y) € N such that
16(2)E — 6)E] < &, that s, s — y&ill < for i = 1,....n. O

2.2. Bounded Borel functional calculus

In this section, we deduce some immediate applications of the bicommu-
tant theorem to the Borel functional calculus.

Let x € B(H) be a self-adjoint operator, and Sp(z) C [—|z|,||=|] its
spectrum. The continuous functional calculus defines an isometric isomor-
phism f +— f(z) from the C*-algebra C(Sp(z)) of complex-valued contin-
uous functions on Sp(z) onto the C*-subalgebra of B() generated by x
and 1 (see Appendix A.1). In particular, f(z) is the limit in norm of the
sequence (p,(x)), where (p,) is any sequence of polynomials converging to
f uniformly on Sp(z).

Let us recall briefly how this functional calculus extends to the x-algebra
By(Sp(x)) of bounded Borel functions on Sp(x). First, given &, € H, using
the Riesz-Markov theorem, we get a bounded, countably additive, complex-
valued measure ji¢ , on Sp(x) defined by

/ f ey = (€ F(@))

for every continuous function f on Sp(z). We say that pg, is the spectral
measure of x associated with £, 1. We set pe = ¢ ¢. The simple observation
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that, for a bounded Borel complex-valued function f on Sp(z), the map
&)= [f dpe  is a bounded sesquilinear functional implies, by the Riesz
lemma, the existence of a unique operator, denoted f(x), such that

/ fdpey = (€ f(@)n)

for every &,m € H. In particular, for every Borel subset 2 of Sp(z), if we
denote by 1q the characteristic function of €, then the operator E () =
1q(z) is a projection, called the spectral projection of x associated with €.
The map Q — E(Q) defined on the Borel subsets of Sp(z) is a projection-
valued measure called the spectral (projection-valued) measure of x. The
usual notation

f(z) = /S JwaE

is convenient. It is interpreted as

(&, F (@) = / £(t) A€, Bm)

Sp(x)

for every £, € H, the integral being the Stieltjes integral with respect to the
function ¢t — (£, Eyn), where E is the spectral projection of x corresponding
to ] — 0o, t].! Let us just remind the reader that the Borel functional calculus
f = f(x) is a *-homomorphism from By(Sp(z)) into B(H) with || f(z)| <
| fllo- The operator f(x) is self-adjoint whenever f is real-valued; it is
positive whenever f > 0. Moreover, if y € B(#H) commutes with z, then it
commutes with f(x) for every f € By(Sp(z)). Therefore, the bicommutant
theorem implies the following result.

PROPOSITION 2.2.1. Let x be a self-adjoint element of a von Neumann
algebra (M, H). Then, for every bounded Borel function f on Sp(x), we
have f(x) € M. In particular, the spectral measure of x takes its values in
M.

The continuous and Borel functional calculi have several easy and im-
portant consequences. Let us introduce first some notation®. Given a von
Neumann algebra M,

e M, , is the subspace of its self-adjoint elements,
e M, is the cone of its positive elements,
e U(M) is the group of its unitary elements wu, that is such that
wu = 1y = uu*,
e P(M) is the set of its projections, that is of the self-adjoint idem-
potents.
We have recalled in Appendix A.2 that every element x € M may be
expressed as a linear combination of four positive elements. Moreover, it
follows from the continuous functional calculus that every x € M is the

IFor details on these facts we refer to [RS80, Chapter VII] or [Arv02, Chapter I1].
2We invite the reader to make explicit the sets introduced below when M = L*°(X, u).
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linear combination of at most four unitary operators in M. Indeed, it suffices
to consider the case of a self-adjoint element = with ||z|| < 1. Then 1 — 22
is a positive operator and an immediate computation shows that

w=xz+i(l—z?)?

is a unitary operator in M. Moreover, z = %(u + u*).
Proposition 2.2.1 implies that a von Neumann algebra has plenty of
projections.

COROLLARY 2.2.2. Let M be a von Neumann algebra. The linear span
of P(M) is dense in M equipped with the norm topology.

PROOF. It is enough to show that every self-adjoint element x of M
can be approximated by linear combinations of elements of P(M). Given
e > 0, let Sp(x) = U, be a finite partition of Sp(z) by Borel sub-
sets, such that |t — s| < e for every s,t € Q; and 1 < i < n. We choose
an element t; in each ;. Then we have |z —> " | t;E(%;)] < e since

SUPteSp(z) |t - Z?:l tilQi (t)‘ <e. U

We may even obtain a dyadic expansion of every positive element of
(M)1 in term of projections.

COROLLARY 2.2.3. Let x € M with 0 < x < 1. Then x can be written
as the sum of a morm-convergent series
+o00 1
T = 27pn7
n=1

where the p, are projections in M.

PROOF. Observe that if p; is the spectral projection E([1/2,+o0[) of
we have
0<z-271p <1/2.
We perform the same construction with 2(z—27!p;) and we get a projection
po such that
0<z—2"1p —27%p, <272

By induction, we get the sequence (py)n>1 which satisfies, for all n,

n
0<z—Y 27Fp <2 O
k=1

The polar decomposition is another fundamental tool in operator theory.
Given z € B(H), recall that its absolute value is |x| = (z*x)'/2. There exists
a unique partial isometry?® u such that « = u|z| and Ker u = Ker z = Ker |z|.
In particular, u*u is the smallest projection p € B(#H) such that xp = x, that
is, the projection on (Ker )+ = Imz*.* We denote this projection by s, ().

3226., such that u*u, and thus uu™, are projections.

4As usual, Ker (z) and Im (x) denote the kernel and the image of @ respectively.
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It is called the right support of x. We have Imu = Imz and therefore uu*
is the smallest projection p € B(H) such that px = x. It is denoted by
si(z) and is called the left support of . Whenever x is self-adjoint, we set
s(z) = sp(z) = si().

The factorization x = u|z| is called the polar decomposition of x.

PROPOSITION 2.2.4. Let x be an element of a von Neumann algebra
(M, H).
(i) The left and right supports of x belong to M.
(ii) Let x = ulz| be the polar decomposition of x. Then u and |x| belong
to M.

PrROOF. (i) To prove that s,(x) € M, we check that s,(x) commutes
with every unitary element v of the commutant M’. Since vz = xv, for every
projection p € B(H) satisfying xp = = we have zvpv* = z and therefore
sr(z) < wsp(z)v*. Replacing v by v*, we get s,(z) = vs,(z)v*. The proof
for s;(x) is similar. We may also remark that s;(z) = s, (z*).

(ii) We prove that uw commutes with every unitary element v of the
commutant M’. We have x = vav* = (vuv*)|z|. Since Kervuv* = Kerz,

we get u = vuv® by uniqueness of the polar decomposition. ([

2.3. The Kaplansky density theorem

The following theorem is an important technical result which allows
approximations by bounded sequences.

THEOREM 2.3.1 (Kaplansky density theorem). Let A be a *-subalgebra
of B(H) and M its w.o. closure. The unit ball (A)y of A (resp. the unit ball
of the self-adjoint part Asq of A) is s.o. dense in the unit ball (M)y of M
(resp. the unit ball of Ms.).

ProOF. Obviously, we may assume that A is norm-closed. Using Propo-
sition 2.1.1, we remark first that M is also the s.o. closure of the convex set
A. Moreover, since the map x — %(m + 2*) is w.o. continuous, M, is the
w.0. closure of A, ., and so its s.o. closure, still by convexity.

The continuous function f : ¢t € R +— 1_%—';2 € [-1,1] is a bijection onto
[—1,1] when restricted to [—1, 1]. We set g = (f|[_1’1])_1.

We first consider the case of a self-adjoint element x € M with ||z| < 1,
and put y = g(x) € Ms,. Let (y;) be a net in A, such lim;y; = y in
the s.o. topology. Since f(y;) is in the unit ball of A, ,, it suffices to show
that lim; f(y;) = f(y) = « in the s.o. topology to conclude this part of the
theorem. We have

i) = fly) =201 +y2) ' —2y(1+ %) 7!
=201+ )7 (w0 + %) - L+ 32y) (1 + )7
=204+ 4) M wi— ) A+ ) 20+ ) il — vy + )7
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Since ||(1+ )7 <1 and |[(1+ y?) " wil| <1, we get

ICF(ws) = F@)EN < 2)|(yi — )X+ )]+ 2| (y — wa)y(1 + y*) ¢,

for every vector £ € H. This shows our assertion.
The general case is reduced to the self-adjoint one by using once again
a matrix trick. We consider the inclusions®

My(A) € Ma(M) C My(B(H)) = B(H®?)

and we observe that the s.o. convergence in My(B(H)) is the same as the
s.0. entry-wise convergence. So Mj3(A) is s.o. dense into My(M). Take
x € M with [|z|| <1 and put

~ (0 =
xiaz*O'

Then 7 is a self-adjoint element of Ma(M) with ||Z|| < 1. By the first part of
the proof, there exists a net (y;) in the unit ball of Ms(A)s,, which converges
to Z in the s.o. topology. Writing

o (ai b
Yi = ¢ di)’

we have ||b;]] < 1 and lim; b; = x in the s.o. topology. This concludes the
proof. ([l

As a first application of this theorem we have:

COROLLARY 2.3.2. Let M be a x-subalgebra of B(H), with 1dy € M.
Then M is a von Neumann algebra if and only if its unit ball is compact (or
equivalently closed) in the w.o. topology.

Proor. If M is a von Neumann algebra, its unit ball is w.o. compact,
being the intersection of the w.o. closed set M with the w.o. compact unit
ball of B(H).

Conversely, assume that the unit ball of M is w.o. closed. Let x be an
element of the w.o. closure of M. We may assume that ||z| < 1, and by
the Kaplansky density theorem, there is a net (x;) in the unit ball of M
converging to x in the w.o. topology. Therefore, we have x € M. O

2.4. Geometry of projections in a von Neumann algebra

Let H be a Hilbert space. The set P(B(H)) of its projections is equipped
with the partial order induced by the partial order on the space B(H)s., of
self-adjoint operators: for p,q € P(B(H)), we have p < ¢ if and only if
(&, p€) < (&, q€) (or equivalently ||pg|| < [|¢€]|) for every £ € H. We remark
that this is also equivalent to the inclusion p(H) C ¢(H). Given a set
{pi : i € I} of projections, there is a smallest projection p such p > p; for all
i € I. We denote it by \/, p; (or sup, p;). It is the orthogonal projection on

S5For every von Neumann algebra A, M, (A) denotes the von Neumann algebra of
n X n matrices with entries in A.
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the norm closure of the linear span of (J;c; pi(#H). There is also a greatest
projection p with p < p; for all . We denote it by A, p; (or inf;p;). It is
the orthogonal projection on (), p;H. Thus P(B(H)) is a complete lattice.
This fact is true in any von Neumann algebra M. For the proof, we need
the following proposition which connects the order and the s.o. topology on
the real vector space Mg 4, partially ordered by its cone M, .

THEOREM 2.4.1. Let M be a von Neumann algebra on a Hilbert space
H. Let (x;)ics be a bounded increasing net of self-adjoint elements in M,
i.e., sup; ||zi|| = ¢ < +o00 and x; < x; whenever i < j. Then (x;) converges
in the s.o. topology to some x € M. Moreover, x is the least upper bound of
{zi i €I} in the partially ordered space B(H)s.q. We write x = sup; x;.

PRrROOF. Using the polarization of the sesquilinear functional (£,7n) —
(€, z;m), we see that the net ((£, z;m));er converges for every £, € H. We set
b(&,n) = lim; (&, 2;m). Obviously, b is a bounded sesquilinear functional on
7, and by the Riesz theorem there exists « € B(H) such that b(§,n) = (€, xn)
for every &, € H. It is straightforward to check that x is self-adjoint with
|z]| < c and that z; < x for every i € I. Since 0 < (z — 2;)? < 2c(x — ;)
and since lim; x; = = in the w.o. topology, we get that lim; x; = x in the s.o.
topology, as well.

Of course, x is in M. Now, if y is a self-adjoint element of B(H) with
y > x; for all i € I, we have (§,y&) > (£, x:€) and so (&,y&) > (&, &) for
every £ € H. Hence, y > x. ([l

PROPOSITION 2.4.2. If {p; : i € I} is a set of projections in a von Neu-
mann algebra M, then \/, p; and N\, p; are in M.

PRrROOF. Weset pr = \/;c p;i for any finite subset F'of I. It is easily seen
that pr is the support of ), p;, that is, the smallest projection p € B(H)
with (3 ;cppi)p = X _icp Pi- Therefore pr € M by Proposition 2.2.4. Now,
(pr) where F ranges over the set of finite subsets of I is an increasing net
converging, by Theorem 2.4.1, to \/, p; in the s.o. topology, and therefore
Vz’ D € M.

To show the second assertion, we remark that

/\Pizl—\/(l—Pi)- g

When (p;)icr is a family of mutually orthogonal projections, \/, p; is
rather written ), ;p;. It is the s.o. limit of the increasing net (>, ppi)
where F' ranges over the finite subsets of I.

We introduce now a relation comparing the “sizes” of projections.

DEFINITION 2.4.3. Let p and ¢ be two projections in a von Neumann
algebra M. We say that p and g are equivalent and we write p ~ ¢ if there
exists a partial isometry v € M with v*u = p and uu™ = q. We write p = ¢
if there exists a partial isometry u € M with u*u = p and uwu* < g, i.e., p is
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equivalent to a projection p; € M with p; < q. If p = ¢ but p and ¢ are not
equivalent, we write p < q.

It is easy to see that ~ is indeed an equivalence relation and that the
relation 3 is transitive: p = g and ¢ = 7 implies p = r. It is also a
straightforward exercise to show that if {p; : ¢ € I} and {¢; : i € I} are two
sets of mutually orthogonal projections in M such that p; ~ g; for all ¢ € I,
then Y . ;pi ~ > ;c; ¢- Less obvious is the following.

THEOREM 2.4.4. Ifp 2 q and ¢ = p, then p ~ q.

PROOF. We have p ~ p’ < qgand q ~ ¢’ < p and therefore p’ is equivalent
to a projection e with e < ¢; so p ~ e < ¢ < p. We claim that p ~ ¢'.
Let u be a partial isometry in M such that u*u = p and uu® = e. We set
pon, = u"p(u*)™ and pop+1 = u™¢ (u*)™ and we observe that pg = p, p1 = ¢/,
p2 = e and that up,u* = puye for n > 0, so that the sequence (p,) of
projections is decreasing. We set f = A, pn. Then p is the sum

p=f+(po—p1)+(pP1—p2)+(p2—p3) +(P3 —pa) +--- (2.1)

of mutually orthogonal projections, and similarly

¢ =f+@1—p2)+ (p2—p3)+ (p3—pa) + (pa—ps5) + -,

that we write rather as

¢ =f+2—p3)+ @1 —p2)+(pa—ps)+(3—pa)+---,  (22)
since we immediately see, under this form, that the mutually orthogonal

projections of the decompositions (2.1) of p and (2.2) of ¢’ are two by two
equivalent and so p ~ ¢’. O

PROPOSITION 2.4.5. Let p, q be two projections in M. Then we have
(pVa)—p~q—(pAaq).

Proor. Consider the operator (1 — p)g. The projection on its kernel is
(1 —¢q) + (¢ A p). Therefore the left support of ¢(1 — p), which is the right
support of (1 —p)g, is ¢ — (¢ A p). Similarly, the right support of ¢(1 — p)
is1—(p+(1-pA(1—-q)=1-(p+1-(pVq)) = (Vg —p The
conclusion follows from the fact that the left and right supports of the same
operator are equivalent. [l

We denote by Z(M) the center of the von Neumann algebra M.

LEMMA 2.4.6. Let (M, H) be a von Neumann algebra.

(i) Let p € P(M). There exists a smallest projection z in the center
of M such that zp = p. We call it the central support of p and
denote it z(p). It is the orthogonal projection onto the closure of
span(MpH), the space of linear combinations of elements of MpH.

(ii) For p € P(M), we have z(p) = \/yepy(ar) upu™

(i) If p,q € P(M) are such that p ~ q, then z(p) = z(q).
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PROOF. (i) By definition, z(p) is the infimum of the set of projections
z € Z(M) with zp = p. Since the closed linear span of Mp?H is invariant
under M and M’, the orthogonal projection onto it belongs to Z(M) and is
obviously majorized by z(p), so is z(p).

The other assertions are also very easy to establish and we leave their
proof to the reader. O

LEMMA 2.4.7. Let M be a von Neumann algebra and let p,q be two
projections in M. The following conditions are equivalent:
(i) z(p)z(q) # 0;
(ii) pMq # 0;
(iii) there exist non-zero projections p1 < p and q1 < q that are equiva-
lent.

PROOF. (i) = (ii). Suppose that pMq = 0. Then for every u,v € U(M)
we have upu*vqu* = 0 and so z(p)z(q) = 0 by the previous lemma.

(ii) = (iii). Let x € M such that pzq # 0. Then the right support ¢; of
pxq and its left support p; satisfy the conditions of (iii).

(iii) = (i). Let p1,q1 be as in (iii). Then we have z(p) > z(p1) = z(q1)
and z(q) > z(q1) and therefore z(p)z(q) # 0. O

The following theorem provides a useful tool which reduces the study of
pairs of projections to the case where they are comparable.

THEOREM 2.4.8 (Comparison theorem). Let p,q be two projections

in a von Neumann algebra M. Then there exists a projection z in the center
of M such that pz 3 gz and q(1 — z) I p(1 — 2).

PRrOOF. Using Zorn’s lemma, we see that there exists a maximal (rela-
tive to the inclusion order) family M = {(pi,q) : i € I} where (p;,q;) are
pairs of equivalent projections and the p; (resp. g;), @ € I, are mutually
orthogonal and majorized by p (resp. by ¢). We have Y . ;pi ~ > ,c;qi-
We set po = p— > ;crpi and qo = ¢ — ;7 ¢i- We claim that poMqy =
0 and therefore z(pg)z(go) = 0. Otherwise, taking = # 0 in poMqy, we
have s;(x) ~ s,(x) with s;(x) < po and s,(z) < qo, which contradicts the
maximality of M.

We put z = z(qp). We have

pz= (> _pi)z~ (D a)z<qz

el i€l
and
q(1—=2) qu )(1-2) N(Zpi)(l—z)gp(l—z),
iel el
that is pz = gz and ¢(1 — z) = p(1 — 2). O

We deduce the following important consequence.

COROLLARY 2.4.9. Let M be a factor and let p,q be two projections in
M. Then, either p X q or q 3 p.
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REMARK 2.4.10. Conversely, whenever any two projections are compa-
rable, then M is a factor. Indeed, a non-trivial projection z in the center of
M cannot be compared with 1 — z.

COROLLARY 2.4.11. Let M be a factor with a faithful tracial state® T
and let p,q be two projections in M. Then p 3 q if and only if 7(p) < 7(q)
and therefore p ~ q if and only if T(p) = 7(q).

DEFINITION 2.4.12. A projection p in a von Neumann algebra (M, H) is
said to be minimal if p # 0 and if for every projection ¢ € M with 0 < g < p,
we have either ¢ = 0 or g = p.

A von Neumann M is diffuse if it has no minimal projections.

Note that if p € P(M), then pMp = {pxp:x € M} is a von Neumann
algebra on pH : indeed its unit ball is w.o. compact and then use Corollary
2.3.2. It is called the reduced von Neumann algebra” of M with respect to
p. The projection p is minimal in M if and only if pMp = Cp.

Whenever M = L*°(X, ), its projections are the characteristic func-
tions of Borel subsets of X (up to null sets) and the minimal projections
correspond to atoms. In B(#) the minimal projections are exactly the rank
one projections.

The following proposition tells us that the type I factors are exactly
those having minimal projections.

By definition, a (system of) matriz units in M is a family of partial
isometries (Giyj)i,jej in M such that €ji = (em)* and €; Ll = 5j,k;€i,l for
every 14, j, k,l. For instance the set of elementary matrices in B(¢*(I)) is a
matrix units.

PROPOSITION 2.4.13. A factor M has a minimal projection if and only
if it is isomorphic to B(KC) for some Hilbert space K.

PRrROOF. Assume that M has a minimal projection. Corollary 2.4.9 im-
plies that the minimal projections in M are mutually equivalent and that
for any non-zero projection p € M there is a minimal projection ¢ < p.
Using Zorn’s lemma, we see that there exists a family (e;);c; of minimal
mutually orthogonal projections with ), ;e; = 1. We fix ig € I and for
t € I, let up; be a partial isometry with uaiuo?i = ¢; and UO,iUS,i = €.
We put e;; = ug;uo,; and so €;; = e;. Then (es,) is a matrix units with
Zi eii = 1y. For x € M, let z; ; € C be such that e;xej; = ; je;. We have
eixe; = (e;xeji)e;j = xjje; ;. Then x — [z;;] is an isomorphism from M
onto B(£3(I)). O

Since a diffuse von Neumann algebra is infinite dimensional, the next
corollary follows.

6We will see in Corollary 6.4.2 that any tracial state on a factor is automatically
faithful.

"One also says that pMp is a corner of M. Whenever p is in the center of M, one
says that pMp = pM is a direct summand of M.
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COROLLARY 2.4.14. A tracial factor is isomorphic to some matriz alge-
bra when it is non-diffuse and is a 111 factor otherwise.

Let M be a von Neumann algebra and z be a projection in the center of
M. Then Mz is a two-sided w.o. closed ideal in M. We see below that all
such ideals are of this form Mz. As a consequence, a factor has only trivial
two-sided w.o. closed ideals.

PROPOSITION 2.4.15 (Two-sided ideals). Let I be a two-sided ideal in
a von Neumann algebra M.
(i) I is self-adjoint.
(i) Let x € I1 = IN My and t €]0,4o00[. The spectral projection e; of
x relative to [t,+oo[ belongs to 1.
(ili) Assume in addition that I is w.o. closed. Then there exists a unique
projection z € Z(M) such that I = Mz.

PRrROOF. (i) Given = € I, we have |z| € I. Indeed, consider the polar
decomposition x = u|z|. Then |z| = u*z € I. It follows that z* = |z|u*
belongs to I; hence, the ideal I is self-adjoint.

(ii) Denote by f the bounded Borel function on the spectrum of x with
f(s) =0for s < tand f(s) = s ! for s >t Since sf(s) = 1j 1o0((s) for
every s, the bounded Borel functional calculus results tell us that z f(x) = e;
and so e; belongs to the set P(I) of projections in I.

(iii) The support of x € I, which is \/,. e, belongs to I when I is
w.o. closed. We set z = \/pG'P(I) p. We have z € I, whence Mz C I. But z
majorizes the left support of every « € I, and so I C Mz.

Finally, being a two-sided ideal, I = ulu*, and therefore z = uzu* for
every unitary operator u € M, so that z € Z(M). O

2.5. Continuity and order

As before, without further mention, M is a von Neumann algebra on
a Hilbert space H. Recall that a linear functional w on M is said to be
positive if w(My) C Ry. We introduce a notion of continuity for w which is
expressed in term of the order on the space of self-adjoint elements.

DEFINITION 2.5.1. Let w be a positive linear functional on M. We say
that

(i) w is normal if for every bounded increasing net (z;) of positive
elements in M, we have w(sup, z;) = sup, w(z;);

(ii) w is completely additive if for every family {p; : i € I} of mutually
orthogonal projections in M, we have w(}; pi) = >, w(pi)-

Complete additivity is reminiscent of the analogous property for integrals
in measure theory.

REMARKS 2.5.2. (a) It is a straightforward exercise to show that when-
ever w is normal, every positive linear functional ¢ with ¢ < w is normal.
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(b) Every w.o. continuous positive linear functional is normal (see The-
orem 2.4.1). However, there exist normal positive linear functionals which
are not w.o. continuous. For instance, assume that # is separable and in-
finite dimensional. Let (e,) be an orthonormal basis of H and set w(z) =
o1 Xen, z€y) for & € B(H). Then w is normal but not w.o. continu-
ous. Otherwise, by Proposition 2.5.4 below there would exist 7y, ...,n, € H
with w(z) = Z,’f:l (ni, xn;) for every x € B(H). If p denotes the orthogonal
projection on the linear span of {n; : 1 <i <k} then 1 — p is a non-zero
projection with w(1 — p) = 0. This is impossible, since w is a faithful linear
functional on B(H).

(c) Recall that every w.o. continuous linear functional is a linear com-
bination of at most four positive w.o. continuous linear functionals (hence
normal).

We will provide in Theorem 2.5.5 several characterisations of normality.
Before then, we give the general form of a w.o. continuous positive linear
functional. For that, we need the following elementary Radon-Nikodym type
lemma.

LEMMA 2.5.3. Let w be a positive linear functional on M and & € H
such that w(x) < (€, 2€) for x € My. There exists ' € M/ such that
w(z) = ((2'€), x(2'€)) for all x € M.

Proor. The Cauchy-Schwarz inequality gives, for x,y € M,
w(z*y)* < w@z)wly®y) < =€)y
Therefore, we get a well-defined bounded sesquilinear form on M¢ by setting
(@€|y€) = wlz™y).

Hence, there exists a positive operator z on the Hilbert space M¢ such that
w(z*y) = (x€, zy&). For z,y,t € M, we have

(2, 2ty€) = w(a™ty) = w(("x)"y) = (t"2€, 2y8) = (€, tzyE),

so that tz = zt on M¢. We denote by p the orthogonal projection onto M§E
and we let 2’ be the square root of the positive element zp in M’. Obviously,

w(z) = (&, z2p) = (¢'€, x2'€)
for all z € M. O

PROPOSITION 2.5.4. Let w be a w.o. continuous positive linear functional
on M. Then there exist (i, ...,(, € H such that w = > | we,.

PROOF. By Proposition 2.1.1, w is of the form "7 ; wy, ¢. Thanks to
the classical trick by which we replace H by H®" and M by 0(M) where
0(x)(C1,---5Gn) = (2C1, ..., 2(y), it suffices to consider the case w = wy¢.
But since w is positive, we have, for x € M,

4n,x€) =((n+&),z(n+£) —((n—E),z(n—%))
<{(n+&),z(n+8)).
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The conclusion follows from Lemma 2.5.3. O

THEOREM 2.5.5. Let w be a positive linear functional on M. The fol-

lowing conditions are equivalent:

(1) w is normal;

(2) w is completely additive;

(3) w is the limit in norm, in the dual M* of M, of a sequence of

w.o0. continuous positive linear functionals;
(4) the restriction of w to the unit ball of M is w.o. continuous;
(5) the restriction of w to the unit ball of M is s.o. continuous.

PrROOF. We show that (1) = (2) = (3) = (4) = (5) = (1). The only
non-immediate implication is (2) = (3).

Assume that w is completely additive. Let (p;);c; be a maximal family
of mutually orthogonal projections in M such that, for every i, there exists
& € piH with w(z) = (&, &) on p;Mp;. Note that ||&]| = w(p;)'/2. We put
g = Y_pi. Lemma 2.5.6 below, applied to w restricted to (1 — ¢)M (1 — q),
shows that Y p; = 1. Thanks to the complete additivity of w, we have
> wpi) = w(l) < 400, and therefore the subset Iy of indices i for which
w(p;) # 0 is countable.

By the Cauchy-Schwarz inequality, we have, for x € M,

jw(zpi)| < w(1)Pw(piatep)? = w(1)"/?|2&]). (2.3)

It follows that z:¢; — w(ap;) is a well-defined and bounded linear functional
on M¢;. Hence, there exists n; € M¢&; such that w(zp;) = (n;, 2&;) for x € M.
For every finite subset F' of Iy, we set qr = >, p;i and denote by wr the
positive linear functional z — w(grpzqr) on M. We have, for x € M,

wr(z) =Y wlgrep) = (grni, v&i).
ieF ek
Therefore, wr is w.o. continuous. Moreover, limp |[|[w — wp|| = 0, where the
limit is taken along the net of finite subsets of 1. Indeed,

(@) = wp(@)| < |w(a) - wlear)| + |[wlaer) - wlgragr)|
< |w(@( = ap)| + |w(( = ap)zar)|
< 20(1)V2 e ]lw(1 - gr)/2,
so that [|w — wp|| < 2w(1)1/2w(1 — qp)1/2. But limpw(1 — qp) = 0. O

LEMMA 2.5.6. Let ¢ be a completely additive positive linear functional
on M. There exist a non-zero projection p € M and & € pH such that

o(x) = (&, x€) for every x € pMp.
PROOF. We choose a vector € ‘H such that ¢(1) < (n,n). It suffices to

prove the existence of p such that p(x) < (n,zn) for € (pMp). Then the
conclusion will follow from Lemma 2.5.3. Let (p;) be a maximal family of
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mutually orthogonal projections with ¢(p;) > (n, p;n) for all i. The complete
additivity of ¢ implies that

sO(Zpi) > (n, (Zm)n)-

We put p = 1 — ) . p;. Observe that p # 0 since ¢(1) < (n,1). By the
maximality of (p;), we have ¢(q) < (n,qn) for every non-zero projection
g < p. Using spectral theory, we approximate z € (pMp);, in norm, by
appropriate linear combinations of its spectral projections, with positive
coefficients, and we get ¢(x) < (n,zn), since ¢ is norm continuous. O

REMARK 2.5.7. With more effort®, we can get that the conditions of
Theorem 2.5.5 are also equivalent to the following condition (3’) which is
stronger than (3):

(3) w =X, w5, with T, G’ < +00
Let us give a proof that (2) implies (3’) when w is a trace. We keep the
notation of the proof of (2) = (3) in Theorem 2.5.5. Using the equality
w(zp;) = wipizp;) we get [w(zp;)| < w(py)/?||z&;| instead of the inequality
(2.3) and so now we have ||7;]| < w(p;)*/?. We have

]w(w) = w(zp) "< w(@ = p)a* a1 =D pi))wd =D p)
i€l i€l i€l ieF

< Jzlfo@)wd =) p).

i€EF

Passing to the limit, we get

w(a:) 7 Z <77175U§i>,

i€1lp

with Zielo HmH2 < Zz‘elo w(pi) = Zz‘elo ||sz2 < 400. To conclude that
w = Y we with Y [|G]> < 400, we argue as in the proof of Proposition
2.5.4.

We say that a linear map ® from a von Neumann algebra (M, H) into a
von Neumann algebra (N, K) is positive if (M) C Ny. We say that such
a positive linear map is normal if for every bounded increasing net (x;) of
positive elements in M, we have ®(sup; ;) = sup; ®(xz;).

ProrOSITION 2.5.8. Let ® : M — N be a positive linear map. The
following conditions are equivalent:
(1) ® is normal;
(2) wo @ is a normal positive linear functional on M for every such
functional w on N;
(3) the restriction of ® to the unit ball of M is continuous with respect
to the w.o. topologies.

8see [Dix81, Theorem 1, page 57]
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Whenever ® is a homomorphism, the above conditions are also equivalent
to:

(4) the restriction of ® to the unit ball of M is continuous with respect
to the s.o. topologies.

PROOF. (1) = (2) is obvious. Assume that (2) holds. To show that
the restriction of ® to the unit ball (M); is continuous with respect to the
w.0. topologies, we have to check that 2 — w o ®(x) is w.o. continuous on
(M), for every w.o. continuous linear functional w on N. We may assume
that w is positive. Then w o ® is a normal positive linear functional and the
assertion (3) follows from Theorem 2.5.5.

(3) = (1). We now assume the w.o. continuity of the restriction of ® to
the unit ball of M. Let (x;) be an increasing net of positive elements in the
unit ball of M. Its supremum z is the w.o. limit of (z;) and therefore ®(z)
is the w.o. limit of (®(x;)). But then, ®(x) = sup; ®(z;), and therefore ¥ is
normal.

Assume now that ® is a homomorphism. If lim;x; = x strongly in
(M)y, then lim;(x — z;)*(z — z;) = 0 in the w.o. topology and so, if (3)
holds we have lim; ®((x — x;)*(x — x;)) = 0 in the w.o. topology. Since
O((x —x)"(x — x;)) = P(x — x)*P(x — x;), we see that lim; P(x;) = P(x)
strongly. Therefore (3) implies (4). The proof of (4) = (1) is similar to that
of (3) = (1). O

COROLLARY 2.5.9. Every isomorphism o : M — N is normal and there-
fore its restriction to the unit ball of M is continuous with respect to the
w.o. topologies, as well as with respect to the s.o. topologies.

PRrOOF. Obviously, a preserves the positivity in M, and since it is an
isomorphism, we have a(sup; x;) = sup; a(x;) for every bounded increasing
net (z;) of positive elements in M. (]

REMARK 2.5.10. As a consequence of this corollary, whereas the w.o. to-
pology on a von Neumann algebra depends on the Hilbert space on which
it acts (see Exercise 1.3), the w.o. topology on its unit ball is intrinsic. The
same observation applies to the s.o. topology.

PROPOSITION 2.5.11. Let w and v be positive linear functionals on von
Neumann algebras M and N respectively, and let ® : M — N be a positive
linear map such that i o ® < w. We assume that w and 1) are normal and
that 1 is faithful. Then ® is normal.

PROOF. We set ¢ = 9 o ®. Since ¢ < w, we see that ¢ is normal.
Now, let (z;) be a bounded increasing net of positive elements in M and put
y = ®(sup; ;). We have y > sup, ®(z;) and

sup (i) = p(sup ;) = ¢ o S(sup ;)
=Y(y) > ¢(sgp P(zi)) = Sup Y(P(z;)) = sup (i)

(2
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Since ® is faithful, we deduce that y = sup; ®(z;). O

PROPOSITION 2.5.12. Let w : M — B(K) be a normal unital hormomor-
phism. Then w(M) is a von Neumann algebra on K.

PROOF. Let us show that w(M) is w.o. closed. We first claim that the
kernel of 7 is a w.o. closed two-sided ideal of M. Indeed, let x be in the
w.o. closure of Ker7m with [|z|| < 1. By the Kaplansky density theorem,
there exists a net (z;) in the unit ball of Ker 7 that converges to x in the
w.o. topology. It follows that 7(x) = 0. Proposition 2.4.15 shows that Ker 7
is of the form Mz where z is a projection in Z(M). Now the restriction of
m to M(1 — z) is an injective homomorphism, and so is an isometry. Since
the unit ball of M (1 — z) is w.o.compact, its image under 7, namely the
unit ball of w(M) is also w.o. compact and 7(M) is w.o. closed by Corollary
2.3.2. O

REMARK 2.5.13. Let the abelian von Neumann algebra L (X, u) act
on L2(X, ). Let w =" we,, with 3 [|¢all5 < 400, be a positive normal
linear functional on L(X, ) (see Remark 2.5.7). Setting & = 3. [Ca|* €
LY (X, )4, we see that

w(f) = /X fédp = <§1/2,f€1/2>

for every f € L>°(X, ). It follows that the positive normal linear functionals
on L>®(X, ) are w.o. continuous and that they are exactly the positive
o(L>®(X, ), LY (X, ))-continuous linear functionals. We deduce from this
observation that a positive linear map ® : L (X, ) — L*(Y,v) is normal
if and only if it is continuous with respect to the weak™ topologies defined
by the L'-L> duality.

2.6. GNS representations

Just as L>°(X, 1) has a natural representation on L?(X, i), we will see
that every tracial von Neumann algebra (M, 7) has a privileged normal
faithful representation, called the standard representation.

2.6.1. The GNS construction. Since a tracial von Neumann alge-
bra is given with a specific state, it is natural to study the corresponding
Gelfand-Naimark-Segal representation. We begin by recalling this construc-
tion.

Let M be a von Neumann algebra, or more generally a unital C*-algebra,
and let ¢ be a positive linear functional on M. We define a sesquilinear form
on M by

(z,y), = p(@"y).

Let N, = {x € M : ¢(z*x) = 0}. Using the Cauchy-Schwarz inequality, we
see that N, is the space of all x € M such that (z, y)w =0 for every y € M,
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and therefore it is a linear subspace of M. We define H,, as the completion
of the pre-Hilbert space M /N, with respect to the inner product

(#,9),, = ey,

where # denotes the class of z in the quotient. We set |||, = o(z*z)1/2,

For z,y € M, we put

To(2)§ = TY.
We have
Imo ()35, = 1735 = ¢(y*z*zy)
< |lz*zlle(yy) = ll=*]191%-
It follows that 7, () extends to an element of B(#H,,), still denoted m,(z). It

is easy to check that 7, is a homomorphism from M into B(#,). Moreover,
if we put §, = 1, we have, for z € M,

p(z) = <§<ﬂ777@0($)§<ﬂ>@' (2.4)

We say that (7, Hy, &,) is the Gelfand-Naimark-Segal (GNS) representation
associated with . Note that the vector &, is cyclic for m,(M).

If we start from a faithful state ¢, it follows from Equation (2.4) that
T, is an injective homomorphism and that &, is separating for m,(M). In
this case we will identify M with 7, (M) and write ¢ for m,(x)¢. Also, we
identify x € M with x{, and view M as a dense subspace of H,,. Sometimes,
we will write £ instead of x = x{, to emphasize the fact that z is seen as
an element of H,. If we start from M = L*°(X,u) and ¢ = 7,, then 7w,
is the representation by multiplication on the Hilbert space L*(X,u). For
that reason, in general we write L?(M, ) for the Hilbert space H,, and |-||,
instead of [|-|,.

2.6.2. Normal GNS representations. Returning to the general case,
it is of course important for us to know when (M) is a von Neumann
algebra on H,,.

THEOREM 2.6.1. Let ¢ be a state on a von Neumann algebra M and let
T, Ho, e the construction. e state ¢ is normal if and only 4
o Hop, &p) be the GNS tructi The stat ) Lif and only if
7, is normal. Moreover, in this case m,(M) is a von Neumann algebra on

Ho.

Proor. Obviously, if 7, is normal, so is ¢ by Equation (2.4). Con-
versely, assume that ¢ is normal. Then for a,b € M, the map

T (a{sp,ﬂ@(x)b{@@ = p(a*zb)

is w.0. continuous on the unit ball (M); of M, and thanks to the density of
To(M)E, in Hy,, we see that z +— <£,7I‘<p(l‘)77><p is w.o. continuous on (M),
for every {,n € H,. So m, is normal. Proposition 2.5.12 tells us that in this
case m,(M) is a von Neumann algebra. (]
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DEFINITION 2.6.2. Let (M,7) be a tracial von Neumann algebra. Its
GNS representation on L?(M,7) is called the standard representation’.

REMARK 2.6.3. For a detailed study of this representation, the reader
may go directly to Chapter 7. We only note here that for z,y € M we
have [|7z]l, < [|lz]|..]|7ll5, so that M acts also to the right on L?(M,7) by
yx = yz (see Subsection 7.1.1).

2.6.3. An abstract characterisation. We sometimes meet the situ-
ation where M is a unital C'*-algebra equipped with a faithful tracial state 7
and we want to know whether 7, (M) is a von Neumann algebra on L?(M, 7)
(see for instance Section 5.4). A useful answer is provided by the study of
the metric dp defined by the norm ||z||, = |[z&-||, on the unit ball (M) of
M. Note that since ||zg|. < ||yl llzlly, the topology induced on (M)1 by
the s.o. topology of B(L*(M,T)) is the same as the topology defined by the
metric de. This no longer holds on M (Exercise 2.13).

PROPOSITION 2.6.4. Let M be a unital C*-algebra equipped with a faith-
ful tracial state 7. Then M (identified with w (M)) is a von Neumann
algebra on L?(M,T) if and only if its unit ball (M )y is complete with respect
to the metric dy induced by the norm ||-||,. Moreover, T is normal when this
condition is satisfied.

PROOF. Assume first that M is s.o. closed in B(L*(M,7)). Let (x,) be
a Cauchy sequence in ((M)1,dz). Since

209 = zmll, < lYllcollzn — zmll

whenever y € M, we see that the sequence (z,,9) is convergent in L?(M, 7).
Setting o = lim,, 2,9, we define an element x € B(L?(M, 7)) with ||z| < 1.
Obviously, (z,) converges to x in the s.o. topology, so € M. Of course,
we have lim, ||z, — z|, = 0.

Conversely, assume that (M), equipped with the metric dg, is complete.
Let IV be the closure of M in the s.o. topology. We extend 7 to a normal
tracial state on N by setting 7(x) = (£, z&;) for every z € N. Due to the
inequality [|zg|, < ||yl ||z&-],, which is still valid for z € N and y € M,
we see that 7 is faithful on N. By the Kaplansky density theorem, (M) is
s.0. dense in the unit ball (N); of N. Since the s.o. topology coincides with
the ||-||, topology on (N)i, we see that (M); = (N)i, whence M =N. 0O

2.6.4. Separable tracial von Neumann algebras.

DEFINITION 2.6.5. We say that a von Neumann algebra is countably
decomposable (or o-finite) if every family of mutually orthogonal non-zero
projections is at most countable.

Of course, every tracial von Neumann algebra is countably decompos-
able. We now introduce a stronger form of separability.

IWe will see in Proposition 7.5.1, that this representation does not depend on the
choice of the trace.
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DEFINITION 2.6.6. We say that a von Neumann algebra is separable if
it has a faithful normal representation on a separable Hilbert space.

PROPOSITION 2.6.7. Let (M, T) be a tracial von Neumann algebra. The
following conditions are equivalent:
(i) M is separable;
(ii) The unit ball (M)y contains a s.o. dense sequence (equivalently,
dense in the metric induced by ||-||5);
(iii) L?>(M, ) is a separable Hilbert space.

PROOF. (i) = (ii). Assume that M acts on a separable Hilbert space
H. Then on (M); the s.o. topology is second countable and therefore (M),
contains a s.o. dense countable subset.

(ii) = (iii). Let D C (M); be countable and dense in (M); in the
topology defined by ||-||,. Since M is dense in L?(M, 7) we see that span(QD)
is dense in L?(M, ).

(iii) = (i) is obvious. O

Exercises

EXERCISE 2.1. Let (M, ) be a von Neumann algebra and (z;); € I be a
family of mutually orthogonal projections in Z(M) such that >, ; z; = 1.
Show that (M, ) is (isomorphic to) the direct sum S°7(z; M, z/H).

EXERCISE 2.2. Let M be a finite dimensional von Neumann algebra.
Show that M is isomorphic to a finite direct sum of matrix algebras.

EXERCISE 2.3. Let M and N be two von Neumann algebras on a Hilbert
space H. Show that (M NN) = (M'UN’)"” and conclude that M is a factor
if and only if (M U M')" = B(H).

EXERCISE 2.4. Let e be a projection in M with central support 1 and
let p be a non-zero projection in M. Show that there is a non-zero partial
isometry v € M with v*u < e and uu* < p.

EXERCISE 2.5. Let e be a projection in M and let (f;) be a maximal
family of mutually orthogonal projections in M such that f; =< e for every
i. Show that ), f; is the central support of e.

EXERCISE 2.6. Let M be a von Neumann algebra, p € M a minimal
projection and z(p) its central support. Show that Mz(p) is a type I factor,
i.e., is isomorphic to some B(K).

EXERCISE 2.7. Let M be a II; factor, N a subfactor of type I, and «
an automorphism of M. Show that there is a unitary element u € M such
that a(x) = uzu* for every z € N.

EXERCISE 2.8. Let M be a von Neumann algebra, z € Mg, and t € R.
Denote by A; the ordered set of continuous functions f : Sp(x) — [0, 1] such
that f(s) = 0 for s > ¢. Show that (f(z))fea, converges in the s.o. topology
to the spectral projection E(] — oo, t[) of x (along the net A;).
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EXERCISE 2.9. Let M be a von Neumann algebra on H and let =,y €
M, with y < z. Show that there exists a unique element a € B(#H) with
y'/?2 = az'/? and s,(a) = s(z). Show that a € M.

EXERCISE 2.10. Let I be a two-sided ideal in a von Neumann algebra
M.

(i) Let x € I+ and let y € M with 0 < y < x. Show that y € 1.
(ii) Show that I is linearly generated by I..

EXERCISE 2.11. Let I be a two-sided ideal in a von Neumann algebra
M.

(1) We assume that I~ = M. Let p be a non-zero projection in M.
Show that there is a non-zero projection ¢ € I with ¢ < p.
(ii) Show that T = M if and only if there is an orthogonal family (¢;)
of projections in I such that >, ¢; = 1.
(iii) Assume that T° = M. Show that every = € M, is the least upper
bound of an increasing net of elements of I .

EXERCISE 2.12. Let (M, 7) be a tracial von Neumann algebra, acting on
L2(M,T).
(i) Show that x — x* is s.0. continuous on the unit ball of M.
(ii) Let A be a x-subalgebra of M. Show that A is dense in M in the
s.o0. topology if and only if for every x € M with ||z| < 1, there is
a sequence (ay,) in the unit ball of A such that lim, ||z — a,||, = 0.

EXERCISE 2.13. Find a sequence ( f,,) in L*°([0, 1]) such that limy,, || f, ||, =
0 while (f,,) does not converge to 0 in the s.o. topology.

EXERCISE 2.14. Let o : M — N be an isomorphism between two von
Neumann algebras and let M be a *-subalgebra of M. Show that M is
s.0. dense in M if and only if a(M) is s.o. dense in N (thus, s.o. density of
M is intrinsic).

EXERCISE 2.15. Let (M;,7;), i = 1,2, be two tracial von Neumann
algebras and let M; be a %-subalgebra s.o. dense in M;. Let oo : My — Ms
be a x-isomorphism such that moa(z) = 71 (z) for every x € M;. Show that
there is a unitary operator U : L?(My, 1) — L?(Ms,2) such that UzU* =
a(x) for every x € M and therefore that « extends to an isomorphism from
M onto Ms.

EXERCISE 2.16. Let (M, 1) be a tracial von Neumann algebra. We de-
note by M°P the opposite von Neumann algebra: it is M as a vector space, the
involution is the same, but the multiplication in M°P is defined by z-y = yzx.
If M is a group von Neumann algebra or the von Neumann algebra of a
countable p.m.p. equivalence relation, show that M is isomorphic to M°P.

The first example of a II; factor not anti-isomorphic to itself was found
in [ConT5]
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EXERCISE 2.17. Let My, Ms be two tracial von Neumann algebras such
that there exist increasing sequences (N¥);>1, (N§);>1 of matrix algebras,
S.0.
with N{“ ~ Né“ for every k and UkNl-k = M;, 1 = 1,2. Show that M; and
Ms are isomorphic II; factors.

EXERCISE 2.18. Let G be a group.

(i) Show that L(G) is the unique (up to isomorphism) tracial von Neu-
mann algebra (M, 7) generated by unitary elements (ug)gec such
that ugup = ugy, for all g,h € G and 7(uy) = 0 for all g # e.

(ii) Show that if H is a subgroup of G then L(H) is canonically iso-
morphic to the von Neumann subalgebra of L(G) generated by
{uh che H }

(iii) Let G ~ (X, 1) be a p.m.p. action of G. Show that L(G) is canon-
ically isomorphic to the von Neumann subalgebra of L (X, u) x G
generated by its canonical unitaries {uq : g € G}.

Notes

The content of this chapter is the outcome of advances due to von Neu-
mann, Murray and von Neumann, Dixmier, Dye, Kaplansky and many oth-
ers from 1929 up to the early fifties. The bicommutant theorem 2.1.3 is one
of the main results of the pioneering paper [vIN30] of von Neumann on rings
of operators. The Kaplansky density theorem is proved in [Kap51]. Most
of the results about projections are included in [M'VIN36]|. Theorem 2.5.5
is due to Dixmier [Dix53] where the reader will also find the major part
of our sections 2.5 and 2.6. For these facts, we also refer to Dye’s paper
[Dye52].



CHAPTER 3

Abelian von Neumann algebras

As we will see in this chapter, abelian von Neumann algebras are well
understood, and this subject is nothing but a part of classical measure the-
ory. Of particular importance are the abelian von Neumann algebras acting
on a separable Hilbert space. In this chapter we only consider such algebras,
since the theory is simpler in this case, and covers most of the interesting
applications.

A nice fact is that there exists a unique diffuse separable abelian von
Neumann algebra, up to isomorphism (Theorem 3.2.4).

3.1. Maximal abelian von Neumann subalgebras of B(H)

Let M be a von Neumann algebra on H. Recall that a vector £ € H is
cyclic for M if M¢& = H. We say that £ is separating for M if, for x € M,
we have z€ = 0 if and only = = 0.

LEMMA 3.1.1. A wvector £ € H is cyclic for M if and only if it is sepa-
rating for M'.

PRroOOF. Obviously, if € is cyclic for M it is separating for M’. Con-
versely, assume that ¢ is separating for M’. The orthogonal projection p on
M¢ is in M'. Since (1 — p)§ = 0, we conclude that p = 1. O

Using a maximality argument, H can be written as a Hilbert sum H =
GicrME; of subspaces which are cyclic for M. Moreover, I is countable
whenever H is assumed to be separable.

PROPOSITION 3.1.2. Let A be an abelian von Neumann algebra on a sepa-
rable Hilbert space H. There exists a cyclic vector for A, hence a separating
vector for A.

Proor. We write H = ©,>1A4’&, where the vectors £, have norm-one
and we set £ = 2721 %ﬁn. Let p, € A C A’ be the orthogonal projection
onto A’¢,. We have A’€,, = 2" A'p, & C A’¢ for every n, whence A’¢ = H. O

PROPOSITION 3.1.3. FEvery abelian von Neumann algebra A on a sepa-
rable Hilbert space is generated by a self-adjoint operator.

PRrROOF. Since the unit ball of A equipped with the w.o. topology is
compact and metrizable, it has a countable dense subset. Therefore there is
a countable family {a, : n > 1} of self-adjoint operators in A whose linear

51
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span is w.o. dense in A. For each a, there is a countable subset P, of its
spectral projections such that a, belongs to the norm closure of the linear
span of P, (see Corollary 2.2.3). It follows that one may find a countable
set {en : m > 1} in P(A) whose linear span is w.o. dense in A. Let B be the
C*-subalgebra generated by 1 and the projections e,, n > 1. Since B is w.o.
dense in A, it suffices to show that B is generated, as a C*-algebra, by a
single self-adjoint operator.

The Gelfand transform identifies B with the C*-algebra C'(X) of con-
tinuous functions on the compact spectrum X of B, and each e, with the
characteristic function of a closed and open subset E, of X. We remark
that, since {e, : n > 1} generates B, for every pair of distinct points in X
there exists n such that F, contains one of these points but not the other.
We set Fyy, = Eyp, Fopt1 = X\ E,, and

1
f=> 27(11% —-1).
n>1
To show that f generates B, it suffices to prove that f separates the points of
X and then apply the Stone-Weierstrass theorem. Let s # ¢ be two distinct
points in X. Let ng be the largest integer such that for n < ng both points
either are in F,, or in X \ F,,, and assume for instance that s € F,, and
t & Fy,. We have

F(8) = £(0) = g + 3 o (Ur(3) — 15, (1)) #0. 0

n>ngo

THEOREM 3.1.4. Let A be an abelian von Neumann algebra on a sepa-
rable Hilbert space H. The following conditions are equivalent:

(i) A=A, i.e., Ais a mazimal abelian von Neumann subalgebra of
B(H);

(ii) A has a cyclic vector;

(iii) there exist a compact metric space X, a probability measure
on X and a unitary operator U : L*(X,u) — H such that A =
UL>® (X, p)U* (where L (X, u) is viewed as a von Neumann sub-
algebra of B(L*(X, 1)), as in Proposition 1.2.1).

PROOF. (i) = (ii) is an immediate consequence of Proposition 3.1.2.

(ii) = (iii). Let & be a cyclic vector for A with [|£]] = 1. Let = be a
self-adjoint operator which generates A and let E be the spectral measure
of . We denote by ¢ (= pee) the probability measure  — (&, E(2)§)
on the Borel subsets of the spectrum X of x. Let f € By(X) be a Borel
bounded function on X. We have ||f(z)¢|| = HfHLz(X’M&), so that the map
f — f(z)€ extends to an isometry U from L?(X,pe) into H. This iso-
metry is surjective since £ is cyclic for A. A straightforward computation
shows that f(z) = UM;U* for every f € L*>(X, p¢), where M is the mul-
tiplication operator by f. In particular, ® : My — f(x) is an isometric
w.0. continuous homomorphism from L> (X, u¢) into A. Since L>(X, u¢) is
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a maximal abelian subalgebra of B(L?(X, u¢)) and since ® is a spatial ho-
momorphism, ®(L>(X, pe)) is a maximal abelian von Neumann subalgebra
of B(H), whence ®(L>(X, ue)) = A.

(iii) = (i) is proved in Proposition 1.2.1. O

Note that the space X may be taken as a compact subset of R.

REMARK 3.1.5. Let € B(H) be a self-adjoint operator. Let { € H
be a cyclic vector for x, i.e., such that the set {z"¢ : n € N} is total. The
proof of the previous theorem includes the classical spectral theorem: there
exists a unitary operator U from H onto L?*(Sp(z), yi¢) such the UzU* is the
multiplication operator by the function ¢ € Sp(z) — ¢.

3.2. Classification up to isomorphisms

We have seen in the proof of the previous theorem that if an abelian
von Neumann algebra A on a separable Hilbert space H has a cyclic vector
&, then it is spatially isomorphic to L*°(X, u¢) acting by multiplication on
L*(X, pe). If € is only separating, the next theorem shows that A is still
isomorphic to L*°(X, y1¢), but the isomorphism needs not be spatial.

THEOREM 3.2.1. Let A be an abelian von Neumann algebra on H. Let
x be a self-adjoint operator generating A and set X = Sp(x). We choose
a separating vector § and denote by p = pe the spectral measure on X
associated with £. Then the Gelfand map f — f(x) extends uniquely to an
isomorphism from L>°(X, ) onto A.

PROOF. Let @ : By(X) — A be the x-homomorphism defined by the
bounded Borel functional calculus. For f € By(X), we have || f]| L2(Xp) =
| f(x)¢||. Tt follows that f(x) = 0 if and only if f = 0, a.e. Therefore, ®
defines an injective homomorphism from L>®(X, ) into A.! In particular,
® is an isometry.

Since (£, ®(f)&) = [y fdp, we deduce from Proposition 2.5.11 that ®
is normal. Then, Proposition 2.5.12 tells us that ®(L*°(X,u)) is a von
Neumann algebra. Now, since ®(L>(X, u)) contains x which generates A
as a von Neumann algebra, we see that ®(L>*(X, u)) = A.

The uniqueness of ® follows from the fact that the unit ball of C(X) is
weak® dense (or equivalently, w.o. dense by Remark 1.2.2) in the unit ball
of L*°(X, ), combined with the continuity of ® on the unit ball relative to
the w.o. topologies. O

COROLLARY 3.2.2. Let A be an abelian von Neumann algebra on a sepa-
rable Hilbert space and let T be a normal faithful state on A. There exist a
probability measure p on a compact subset X of R and an isomorphism «
from A onto L*°(X, ) such that 7,00 =T.

1t follows that the class of w1 is independent of the choice of the separating vector &.
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PRrROOF. By the previous theorem and Proposition 3.1.2, there exists an
isomorphism « : A — L*°(X,v) where v is a probability measure on some
compact subset X of R. For every Borel subset E of X, we set u(F) =
7oa !(1g). In this way, we get a probability measure on X, which is
equivalent to v since 7 is faithful. It follows that L>(X,v) = L*°(X, u) and
T OoQ=T. U

REMARK 3.2.3. It is not difficult to see that if 3 and ps are two
probability measures on X such that there exists an isomorphism from
L>*(X, pu1) onto L>(X, u2) which is the identity on the subalgebra C(X),
then p is equivalent to po, and the isomorphism is the identity map of
L>®(X, pu1) = L*=(X, u2) (see [Dou98, Theorem 4.55)).

We can go further in the classification of abelian von Neumann algebras.
We refer to the appendix B for the results used below. Every probability
measure p on X can be uniquely written as u = p. + g where . is contin-
uous and pg4 is discrete. Therefore L (X, u) is isomorphic to the product of
L>®(X\ T, u.) by L®(T, pg) where T is the support (necessarily countable)
of pg. Of course, L*°(T, uq) is isomorphic to the algebra £5° of bounded
sequences indexed by a set of cardinality n equal to the cardinality |T'| of T
So it remains to consider the case where p is continuous.

Recall that a von Neumann algebra A is diffuse if for any non-zero
projection p € A, there is a non-zero projection ¢ € A with ¢ < p and ¢q # p.
When A is isomorphic to L>(X, i), this is equivalent to the continuity of
1b.

THEOREM 3.2.4. Any diffuse abelian von Neumann algebra A on a sepa-
rable Hilbert space is isomorphic to L*([0, 1], X), where X is the Lebesgue
measure on [0,1]. Moreover, if a faithful normal state T is given on A, we
may choose the isomorphism « such that T = Tyoa :a fol aa)dA.

ProoF. We apply Corollary 3.2.2 and observe that p is a continuous
probability measure since A is diffuse. Since (X, u) is a standard probability
measure space, the conclusion follows from Theorem B.7 in the appendix.

O

3.3. Automorphisms of abelian von Neumann algebras

We study in this section the pointwise realization of isomorphisms be-
tween separable abelian von Neumann algebras, when viewed as algebras of
bounded measurable functions. In the course of the proof of the next theo-
rem, we will use the following observation: every isomorphism between two
measure space algebras L>(X, ) and L*°(Y,v) equipped with the weak™®
topologies (defined by the duality with the corresponding L'-spaces) is con-
tinuous (see Remark 2.5.13). As already mentioned, these topologies are
also the w.o. topologies relative to the representations of these algebras on
the corresponding L2-spaces.
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THEOREM 3.3.1. Let (X, u) be a standard probability measure space.

(i) Let 6 be a Borel isomorphism between two co-null subsets of X,
which preserves the measure class of u. Then f — f o0 is an
automorphism of L (X, p).

(ii) Conversely, let « be an automorphism of L*°(X, ). There ezists a
(unique, up to null sets) isomorphism 6 between two co-null subsets
of X which preserves the measure class of i and is such that a(f) =
f o0 for every f € L>®(X, pn).

PROOF. (i) is obvious. Let us show (ii) in the interesting case where
is continuous. We are reduced to consider the case (X, ) = ([0,1], A). Let
us denote by ¢ the function ¢ +— t defined on [0,1]. We set § = a(¢). Since
« is positive, 0 is a measurable function from [0, 1] into itself.

Let us show that [ fd @\ = [ a(f)dA for every bounded Borel function
f on [0,1]. We will use the weak™ density of the unit ball of C([0,1]) into
the unit ball of its bidual (which is the dual of the Banach space of bounded
measures on [0,1]) and will identify the space By([0, 1]) of Borel bounded
functions on [0, 1] with a subspace of C([0,1])**. We deduce from these ob-
servations that for every f € By([0, 1]) there exists a net (g;);er of continuous
functions on [0, 1] such that ||g;||, < ||f]. for all ¢ and lim; [ g;dv = [ fdv
for every bounded measure v on [0,1]. In particular, if we consider for v
the bounded measures that are absolutely continuous with respect to A,
we see that lim; g; = f in L*°([0,1], \) equipped with the weak* topology.
Therefore we have lim; a(g;) = a(f) in the weak™ topology.

Since a(t) = ¢ 06, it follows from the Stone-Weierstrass theorem that
a(g) = g o 6 for every continuous function g on [0, 1], and thus

/a(g) d/\:/goﬁ d)\:/g d 6.\,

So, we get [a(f)d\ = [ f db.X for every f € By([0,1]). In particular,
taking f to be the characteristic function of a Borel subset E of [0, 1], we
see that A(E) = 0 if and only if (6.\)(E) = 0, since A(F) = 0 if and only if
a(1g) = 0. Therefore, the measures A and 6, are equivalent.

Let f € L*(]0,1],\) and let (g;) be a bounded net of continuous func-
tions on X such that lim; g; = f in the weak* topology, as above. Since
a(gi) = gi o 0 for every i, we conclude that a(f) = f o 6.

Similarly, there is a measurable function p from [0, 1] into itself such that
a~l(f) = fop for every f € L>([0,1],)). We have

t=aloal)=a (@) =pobh

and similarly ¢ = 0 o p. Therefore, 6 is a Borel isomorphism between two
co-null subsets of X . O

REMARK 3.3.2. It follows that every isomorphism « from L*°(X, i) onto
L>(Y,v) is of the form f — fo#, where 6 :Y — X is a Borel isomorphim
such that 6,v is equivalent to pu.
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Let 7, be the integral map f — [y fdp on L®(X, ;) and denote by
Aut (L*(X, p), 7,) the group of automorphisms of L>(X, ) which preserve
Tu. We recall that Aut (X, p) is the group of p-preserving Borel automor-
phisms of X.

COROLLARY 3.3.3. The map 0 — g, where ag(f) = fo07', is a group
isomorphism from Aut (X, ) onto Aut (L™°(X, p), 7).

ProOOF. Immediate. O
In the same way we have:

THEOREM 3.3.4. Let (X, u) and (Y,v) be two standard probability mea-
sure spaces and o« @ L>®(X,u) — L>®(Y,v) be a homomorphism such that
fya(f)dv = [ f du for every f € L™(X, ). Then there is a unique (up
to null sets) Borel map 0 :' Y — X such that 0,v = p and o(f) = f o8 for
every f € L>®(X, ). Moreover 0 is onto, modulo a set of measure 0, and 0
is an isomorphism if and only if a is a von Neumann algebra isomorphism.

PROOF. The ideas are the same as in the previous proof. The main
points to mention are that, since « preserves the integrals, it is injective
and, above all, it is continuous for the weak* topologies (see Proposition
2.5.11). O

REMARK 3.3.5. Two separable abelian von Neumann algebras A ~
L>*(X,u) and B ~ L*(Y,v) are thus isomorphic if and only there is a
class measure preserving isomorphism between the spaces X and Y.

Now assume that A and B are represented on separable Hilbert spaces H
and K respectively. Recall that a spatial isomorphism is an isomorphism « :
A — B of the form a — UaU* where U : H — K is a unitary operator. The
classification of abelian von Neumann algebras, up to spatial isomorphism,
involves, in addition to a measure class, a multiplicity invariant as we will
see in Chapter 8.

Exercises

EXERCISE 3.1. Let z € B(H) be a self-adjoint operator. Show that
there exist a probability measure space (X, i), a unitary operator U : H —
L*(X, 1) and a bounded real-valued function f on X such that UzU* = M;.

EXERCISE 3.2. Let A be a separable abelian diffuse von Neumann alge-
bra and 7 be a normal faithful state on A.
(i) Show that there is an increasing family (p;)¢c[,1) of projections in
A with 7(p;) =t for every t.
(ii) Show that there is a unitary operator u in A with 7(u") = 0 for
every n # 0 and such that lim,,—, 4. ©™ = 0 in the w.o. topology.

EXERCISE 3.3. Let (M, 7) be a diffuse tracial von Neumann algebra (for
instance a II; factor).

(i) Show that every maximal abelian subalgebra A of M is diffuse.
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(ii) Assuming moreover that M is separable, show that there exists a
family (pt)o<t<1 of projections in M with p; < p; for s < t and
T(pt) =t for every t.

Notes
The main results of this chapter are due to Halmos and von Neumann

[HvIN42] and are continuations of earlier works due to von Neumann [vIN32a,
vIN32b].






CHAPTER 4

II; factors. Some basics

Among the tracial von Neumann algebras, 11 factors are at the opposite
of abelian von Neumann algebras. We show that they are simple with a
unique tracial state.

In the second section, we introduce a first invariant for these factors,
their fundamental group.

4.1. Uniqueness of the trace and simplicity

Given an abelian von Neumann algebra L*°(X,u), the functional 7, :
f= [ dp is a faithful normal tracial state. Of course, in this situa-
tion, it is easy to construct many other such traces. We also observe that
the w.o. closed ideals of L (X, i) are in bijective correspondence with the
measurable subsets of X (up to null sets).

Let us now consider the case of a tracial von Neumann factor!. Recall
that such a factor is either isomorphic to some matrix algebra M, (C) or
is of type II;, depending on its dimension? or, equivalently, depending on
whether or not it has a minimal projection (see Corollary 2.4.14). It is a
classical result of linear algebra that M, (C) has only one tracial state and
is simple, i.e., has no non-trivial two-sided ideal. We now prove that these
facts hold for any tracial factor.

We need a preliminary lemma.

LEMMA 4.1.1. Let M be a diffuse factor and let p # 0 be a projection in
M. There exist two projections p1,ps € M with p1 ~ p2 and p1 + p2 = p.

Proor. We first claim that for any non-zero projection e in M there
exist two non-zero equivalent orthogonal projections e, eo with e; + e < e.
Indeed, since e is not minimal, there exists f € P(M) with f < e, f #0
and f # e. We have z(f)z(e — f) = 1 because M is a factor and our claim
follows from Lemma 2.4.7.

Now, we consider the set F of families (p;, q;)ics of pairs of equivalent
projections, majorized by p and such that {p;,q; : i € I} are mutually or-
thogonal projections. Let (p;, ¢i)ier be a maximal family in F and put
P1 = Y ;1 Pis P2 = > ;cr ¢i- Then py and po are equivalent. Moreover, using
the maximality of the family, and applying the first part of the proof to
p — (p1 + p2) if this projection is non-zero, we see that p; + p2 = p. O

ILater, such factors will be called finite factors (see Chapter 6).
2Recall that a II; factor is an infinite dimensional, tracial factor.

59
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COROLLARY 4.1.2. Let M be a diffuse factor. For every integer n > 1
there are mutually orthogonal and equivalent projections pi,...,pon Such
that 212;1 p; = 1. In particular, if M carries a tracial state T, we have
T(pi) =27",

Proor. Obvious. (]

PROPOSITION 4.1.3. A von Neumann factor M has at most one tracial
state>.

PRrROOF. It is enough to consider the case where M is diffuse. Let q €
P(M), q # 1, and consider p,...,pan as in the previous corollary. Thanks
to the comparison result 2.4.9, we see that there is a unique integer k such

that
E < E )
igkpqu-< i§k+1pz'

It follows that for every tracial state 7 on M we have

k+1
Therefore, the real number 7(q) does not depend on the choice of 7. This
prove the uniqueness of 7, because the linear span of P(M) is dense in M
with respect to the norm topology (see Corollary 2.2.2). O

PROPOSITION 4.1.4. Let (M, T) be a tracial von Neumann algebra. Then

M is a factor if and only if T is the unique normal faithful tracial state on
M.

PROOF. The uniqueness when M is a factor is proved in the previous
proposition. Now, assume that M is not a factor and let z be a non-trivial
central projection. Let o be any number in ]0,1[ with o # 7(z) Then 7
defined on M by

~ o 11—«
= ¢ = 1
7(z) T(Z)T(xz) +t1o T(Z)T(x( 2))
is a normal faithful tracial state with 7 # 7. O

PROPOSITION 4.1.5. A tracial factor (M, T) contains no non-trivial two-
sided ideal.

PROOF. Let I # 0 be a two-sided ideal and let x be a non-zero positive
element in I. We take t > 0 small enough so that the spectral projection
e of x relative to [t,+oo[ is non-zero. We have e € I (see Proposition
2.4.15). Since the normal tracial state 7 on M is faithful we have 7(e) # 0,
and thus any maximal family of mutually orthogonal projections in M,
all equivalent to e, is finite. Therefore, we can find mutually orthogonal
projections p; = e, po,...,pr With 1 = Zlepi, p; ~ e fori<kand p; 3e.
There exist partial isometries uy, ug, ..., u; in M with u; = w;e and u;u; = p;
fori=1,...,k. It follows that p; € I for all 7, whencel € T and I = M. O

3As already said, it is also automatically normal and faithful, but this is much more
difficult to show (see Theorem 6.3.5).
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We have seen in Corollary 2.4.11 that any two projections of a tracial
factor (M, ) are equivalent if and only if they have the same trace. If M
is isomorphic to M, (C), then 7(P(M)) = {0,1,...,n}. For II; factors, we
have:

PROPOSITION 4.1.6. Let M be a Il factor and T its tracial normal state.
Then p — 7(p) induces a bijection from the set of equivalence classes of
projections in M onto [0, 1].

PROOF. We only need to show that for that for every ¢ €]0,1[ there
is a projection p € P(M) with 7(p) =t. Let t = >, 27" be the dyadic
expansion of t. Using the comparison theorem of projections in a factor and
the fact that M has projections of trace 27" for every n since it is diffuse,
we construct by induction a sequence of mutually orthogonal projections
P1,D2,- -+ Dk, - . such that 7(py) = 27" for every k. We set p = >, pp.
Since 7 is normal, we get 7(p) = t. O

The number 7(p) is viewed as the “dimension of p”. It is a very important
feature of II; factors that their projections have a continuum of dimensions.

4.2. The fundamental group of a II; factor

Let M be a von Neumann algebra on a Hilbert space H. Given a projec-
tion p € M, we have already introduced the reduced von Neumann algebra
pMp = {pxp:x € M}. If q is a projection in M’ then Mgq is a von Neu-
mann algebra on ¢H, since x — zq is a normal representation of M on qH
(see Proposition 2.5.12). It is called the induced von Neumann algebra of M
with respect to q. When M is a factor, then pMp and Mq are factors, as a
consequence of the following facts.

ProPOSITION 4.2.1. Let M and p as above. Let e be a projection in
Z(pMp). Then e = z(e)p where z(e) is the central support of e in M. It
follows that Z(pMp) = Z(M)p.

PROOF. We have (p — e)Me = (p — e)pMpe = 0 and therefore
(p — e)ueu™ =0

for every u € U(M). It follows, by Lemma 2.4.6, that (p —e)z(e) = 0, hence

e = z(e)p.
The inclusion Z(pMp) C Z(M)p is then a consequence of Corollary
2.2.3. The opposite inclusion Z(M)p C Z(pMp) is obvious. O

PROPOSITION 4.2.2. Let M be a von Neumann on a Hilbert space H.

(i) Let p be a projection in M. Then the commutant (pMp)' of pMp
in B(pH) is pM' .

(ii) Let q be a projection in M'. Then the commutant (Mq)" of Mq in
B(qH) is gM'q.
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PROOF. (i) We have obviously pMp C (M'p)’. Let x € (M'p)" C B(pH),
and set & = xp = pxp € B(H). For y € M', we have

yT = ypxp = (zp)(yp) = xpy = Ty
and so T € M. It follows that x = pZp € pMp and therefore we have

(M'p)’ C pMp. The bicommutant theorem 2.1.3 gives (pMp) = M'p.
(ii) is a consequence of (i), after replacing M by M’ and p by g. O

For every integer n > 1, we may as well enlarge the Hilbert space H and
introduce the algebra M, (M) of n x n matrices with entries in M, acting on
H®™. A routine proof shows that M, (M) is a von Neumann algebra, whose
commutant is the algebra of diagonal matrices with equal diagonal entries in
M'. Writing H®" as the Hilbert tensor product C" @ H, the algebra M,, (M)
appears as the algebraic tensor product M, (C) ® M. Embedding M, (M)
into M, 4+1(M) (as (n 4+ 1) x (n 4+ 1) matrices with coefficients 0 placed in
the last line and the last column), we introduce the x-algebra

M(M) = UnZan(M)-

We may view the elements of M (M) as matrices [m; ;i j>1 such that there
exists n with m;; = 0 whenever i > n or j > n. This algebra acts on
HP>® = (2(N*) ® H in an obvious way. It is not w.o. closed. Its closure is
the von Neumann tensor product B(¢£?(N*))@M to be defined in the next
chapter.

From now on in this section, M will be a II; factor and, as usual, 7 is
its trace. We observe first that each M, (M) is a II; factor. We denote by
Tr, ® 7 its (non-normalized) trace defined by (Tr, @ 7)([z;;]) = >, 7(xi ;)
and by Tr® 7 the trace on M (M) whose restriction to M, (M) is Tr,, ® 7 for
every n. Since any two projections p, g € M(M) belong to some M, (M), we
see that there exists u € M(M) such that uv*u = p and wu* = ¢ if and only
if (Tr®7)(p) = (Tr® 7)(¢g). It follows that the spatial isomorphism class
of pM(M)p = pM,(M)p only depends on the real number ¢ = (Tr @ 7)(p).
We set M! = pM,,(M)p, which is, as such, well defined up to isomorphism.
Usually, M,,(C) ® M is called an amplification of M, and so, more gene-
rally, we will say that any M! is an amplification of M. Moreover, since
{(Tr @ 7)(p) : p projection € M, (M)} = [0,n] for every n, we see that M®
is defined for every t > 0.

Given two von Neumann algebras M and N, recall that we write M ~ N
whenever they are isomorphic.

LEMMA 4.2.3. Let M be a 11 factor and s,t be two real numbers > 0.
Then (M?®)t ~ M*t.
PRrOOF. We take M* = pM,,(M)p with
p € P(Mm(M)), (Trp @ 7)(p) = s,
and (M?*)t = q(M,(M?®))q with
q € P(Mn(M?)), (T, ©75)(q) =1,
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where 75 = (1/s)(Trp, ® 7)),,,- We view g as a projection in M, (C) ®
M, (C) ® M smaller than 1y, ) ® p. Then (M®)" = ¢qMym(M)g with
(Trpm @ 7)(q) = st. O

DEFINITION 4.2.4. Let M be a II; factor. We denote by F(M) the
subset of R% formed of the positive real numbers ¢ such that M t~ M.
The previous lemma shows that F(M) is a subgroup of RY. It is called the
fundamental group of M.

It is immediate that F(M) is the set of 7(p)/7(g), where p and ¢ run
over the non-zero projections in M such that pMp and ¢M q are isomorphic.
The computation of this invariant (up to isomorphism) is one of the major
problems in the theory of II; factors.

The next proposition shows that M ~ M, (C) @ M/",

PROPOSITION 4.2.5. Let M be a 11y factor and let p € P(M) with T(p) =
1/n. Then M is isomorphic to M, (pMp) ~ M, (C) ® (pMp).

ProOF. Using the comparison theorem of projections, we find mutu-
ally orthogonal and equivalent projections p1,ps,...,pn, With p1 = p and
S ipi=1. Let u;, i = 1,...,n, be partial isometries such that ufu; = p;
and w;u; = p;. Then

x> [ujzuglicij<n
is an isomorphism from M onto M, (pMp). Note that (uiu;)lgi,jgn is a set
of matrix units in M.

O

PROPOSITION 4.2.6. The hyperfinite I1; factor R can be embedded as a
von Neumann subfactor of any 11y factor M.

PRroOF. Using the previous proposition we construct an increasing se-
quence (@) of subalgebras of M such that @, is isomorphic to Man(C)
for every m. Then the s.o. closure of U,>1@)y, is isomorphic to R (Exercise

2.17). O

Notes

The fundamental group is one of the three invariants introduced by
Murray and von Neumann in [MvIN43] in order to distinguish between II;
factors. They proved that the fundamental group of the hyperfinite factor R
is R (see Remark 11.2.3) but the existence of II; factors with fundamental
group distinct from R* was only established in 1980 by Connes [Con80a]
(see Section 14.3). It is only in 2001 (results published in [Pop06a]) that the
first explicit computations were achieved, providing examples with funda-
mental groups reduced to {1} (see Chapter 18). Notice that such examples
M are not isomorphic to M, (M) for any integer n > 2.






CHAPTER 5

More examples

We have now the sufficient background to introduce new constructions of
tracial von Neumann algebras, and in particular II; factors: tensor products,
general crossed products, free products and ultraproducts.

We will need later to have some basic knowledge of the structure of tra-
cial von Neumann algebras beyond the now familiar case of abelian ones and
factors. In the last section of this chapter we provide elementary informa-
tions on this subject and examples.

5.1. Tensor products

Given two abelian von Neumann algebras L™ (X, u;), i = 1,2, the clas-
sical notion of product in measure theory gives rise to the abelian von Neu-
mann algebra L>°(X; x Xa, p1 X pe). This construction is extended to the
general setting of von Neumann algebras in the following way.

5.1.1. Tensor product of two von Neumann algebras. Let (M, H;)
and (Ma,H2) be two von Neumann algebras. The algebraic tensor product
M; ® My of My and My acts on the Hilbert tensor product Hi ® Ho as
follows:

Vai € My, V6 € Hii=1,2, (21 ® 22) (6 ® &2) = (#161) ® (2262).
The s.o. closure of M7 ® Ms is denoted M1®&@Ms and (M1@Ms, Hi ® He) is
called the von Neumann tensor product of (My,H;) by (Ma, Hs).

One may wonder how the von Neumann tensor product Mi1®@Msy de-

pends on the given spatial representations. In fact, it is intrinsic, up to
isomorphism (see Exercise 8.14 for the case of II; factors).

EXAMPLES 5.1.1. (a) Starting from (M;, H;) = (L>(X;, i), L* (X, i),
1 =1,2, one gets

(Mi®Ma, Hi @ Ha) = (L°(X1 x Xo, 1 X p2), L (X1 x Xo, pu1 X pi2)).

(b) We take M; = B(¢*(N)) and My = M acting on H. Then the von
Neumann tensor product B(¢?(N))®M acts on £2(N)@H = HP>. We denote
by u; : H — HP® the isometry sending £ € H onto the sequence (&,) with
&, = 0 for all n but n = i where & = £. Any bounded operator T' on H®>®
may be written as the infinite matrix [T; ;; jen with T;; = uTu; € B(H).
The set N of all bounded operators with entries in M is w.o. closed because
T +— T; ; is continuous with respect to the w.o. topology. A decomposable

65
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operator [t; ;] ® z € B(*(N)) ® M is identified to the matrix [t; j] and so
belongs to N. Clearly, the *-algebra M (M) consisting in the matrices [7; ;],
with entries in M and such that there exists some integer n with T; ; = 0
whenever i > n or j > n, is contained in B(¢*(N)) ® M and is s.o. dense in
N. From these observations we deduce that N = B(¢£?(N))@M.

Obviously, N can be replaced by any set I and so ¢?(N) can be replaced
by any Hilbert space K. Note in particular that B(K)QB(H) = B(K @ H).

The simplest case is I = {1,...,n}. Then, for any von Neumann algebra
M, the von Neumann tensor product M,,(C)®M coincides with the algebraic
tensor product (denoted M, (C)® M rather than M, (C)® M) and with the
von Neumann algebra M, (M) of n x n matrices with entries in M.

Let (M1, H1) be a von Neumann algebra and Hsy a Hilbert space. We
leave as an exercise to check that (M;®B(Hs2)) = M ® Idy, and that
(My @ 1dy,) = M{®B(Ha)."

Clearly, for M1®M5 to be a factor, each component needs to be a factor.
Conversely:

PROPOSITION 5.1.2. (M1®@Ms, H1 ® H2) is a factor when (My,Hi) and
(My,Ha) are factors.

Proor. We claim that
(O1EMLY N (MEM,) ) = BH)EB(Ha) = B(H: @ Ha).
The left handside contains M;®Idy, and M{®Idy, and so it contains
(M U M7)"®Idy, = B(H1)®1dy,.

Similarly we see that it contains Idy, ® B(H2).
Since B(H1)®Idyy, Uldy, @ B(H2) generates B(H1)RB(Hz), our claim is
proved. O

When (M, 1) and (Ma, m2) are two tracial von Neumann algebras, we
implicitly consider them as represented on L?*(Mj, 1) and L?(Ms,3) re-
spectively, in order to define their von Neumann tensor product.

PROPOSITION 5.1.3. With the above assumptions, M1®Ms is in a natu-
ral way a tracial algebra: it carries a unique tracial normal state T such that
T(z1 @ x2) = 11 (21)T2(22) for 1 € My, x9 € Ma, and this trace is faithful.
Moreover the Hilbert spaces L*(My, 1) ® L?*(Ma, 72) and L?>(M1®Ms, T) are
canonically isomorphic. We write 7 = 11 ® To.

When My, My are tracial factors and at least one of them is of type 111,
then M1®@Ms is a 11y factor.

More generally, given (M1, H1) and (M2, H2), it is true that (M1®@M2) = M{QMs;.
In this generality it is a deep result that was obtained in the 1960s, using Tomita’s theory
of modular Hilbert algebras (see [Tak70] for details and history and [Tak02, Theorem
5.9] for a simplified proof).
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PRrOOF. The vector 1y, ® 1y, € L?(My, 1) ® L?(Ma, ) is cyclic for
Mi®M,. This vector is also cyclic for the right action of My ® Ms and
therefore separating for M1®M,. It defines the faithful tracial normal state
of the above statement. The rest of the proposition is also obvious. O

PROPOSITION 5.1.4. The von Neumann tensor product (M, 1) of (M1, 1)
by (Ma, o) is characterized, up to isomorphism, in the following way: it is
the unique tracial von Neumann algebra (M,T) containing My ©® Ms as a
s.o. dense subalgebra, and such that T(x1 @ x2) = T1(z1)m2(T2) for every
x1 € My, x9 € M>.

PRrROOF. Let (M ,7) be another tracial von Neumann algebra with the
same properties. Then there is a unitary operator

U:L*(M,7) — L*(My, 1) ® L*(Ms, 1)

that induces a spatial isomorphism from (M, 7) onto (M1@Ma, 7 ® 72) (see
Exercise 2.15). O

5.1.2. Infinite tensor products. The construction of Section 1.6 rela-
tive to infinite tensor products of matrix algebras is easily extended to the
case of tracial von Neumann algebras. So let (M;,7;);eny be a sequence of
such algebras. We set (N, pr) = (@?ZOMi, ®F_7;) and we embed N}, into
N1 in the obvious way. Then M = UgenNy is equipped with the unique
trace 7 such that 7(x) = ¢r(z) for any k such that x € Ni. As in Section
1.6 we introduce the completion H of M with respect to the inner product
(x,y) = 7(z*y) and we denote by 7 the corresponding representation of
M on H. It is obviously injective and the s.o. closure of (M) is written
®ienM;. Again, exactly as in Section 1.6, we see that 7 extends in a unique
way to a normal faithful tracial state on ®;enyM;. The tracial von Neumann
algebra (®;enM;, 7) is called the infinite tensor product of (M;, T;)ieN-

It remains to check that ®;enyM; is a factor whenever each component
is so. To that purpose, we claim that 7 is the unique normal faithful tracial
state on ®;enM; (see Proposition 4.1.4). This is an immediate consequence
of the fact that each Ny is a factor and so its tracial state is unique (Propo-
sition 4.1.3).

Given a finite subset F' of N, the von Neumann tensor product ®;cpM;,
when viewed as a von Neumann subalgebra of ®;enM;, will be denoted
(®ierM;) ® Id®MF,

5.2. Crossed products

In the first chapter, we introduced the group measure space von Neu-
mann algebra associated with a probability measure preserving action G ~
(X, p), or equivalently, a trace preserving action of the group G on (L*°(X, p1), 7,,).
This construction extends easily to the case of a trace preserving action of
G on any tracial von Neumann algebra.
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Let (B, 7) be a tracial von Neumann algebra and let Aut (B, 7) be the
group of automorphisms of B which preserve 7. We observe that every
a € Aut (B, 7) extends to a unitary operator of L?(B, ), still denoted a,
such that -

Ve e B, «a(Z)=a(zx).
A trace preserving action G ~ (B, 7) is a group homomorphism o from G
into Aut (B, 7). The crossed product B x G associated with this action is
defined exactly as in Section 1.4. We introduce the algebra B[G] of finitely

supported formal sums
Z bytig

geG
with b, € B, the product and involution being defined by

(biug)(baun) = biog(ba)ugn, (bug)” = og-1(b")ug-1.
Of course, B will be identified with the subalgebra Bu, of B[G]. We repre-
sent B[G] in the Hilbert space
H = L*(B,7) ® *(G) = (*(G,L*(B,T))
by the formula

(bug)(§ © 6n) = (boy(£)) © dgn-

Again, we find it convenient to write uy, instead of £ ® ép, € H, so that the
previous formula becomes

(b“g)(fuh) = bUg(f)Ugh-

The s.o. closure of B[G] in B(H) is B x G, by definition. We may similarly
let B[G] act to the right on H by

(Eun)(buy) = Eop(b)ung.

Let us state briefly the main properties of this construction, which are
proved exactly as in the commutative case. The vector u, = 1 ® d, is
cyclic and separating for B x (G. Therefore, the map x — xu. identifies
B x G with a subspace of L?(B,T) ® £?(G). So we write = under the form
> geG Tgllg € L*(B,7) ® ?(G).2

The trace 7 on B extends to a trace on B x (G, which we will still denote
by 7, by the formula

T(z) = <Ueaxue>7.¢ =71(ze) for z= Z Tgug € B 1 G.
geG
This trace is normal and faithful. Note that

T(@'e) =Y r(@hwe) = Y gl apr = 1260280
geG geG

2The notation £u, for £ ® 8, is compatible with the inclusion of BI[G] into L*(B,7)®
22(@).
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Again the x, are called the Fourier coefficients of x and the ugy are the cano-
nical unitaries of the crossed product. The convergence of the expansion
T =3 ,cq Tglg holds in L?(B, 1) ® (*(G) with its Hilbert norm.

We end this section with the definitions of the non-commutative ana-
logues of freeness and ergodicity.

DEFINITION 5.2.1. Let B be a von Neumann algebra and a an automor-
phism of B. We say that « is free or properly outer if there is no element
y € B, other than 0, such that ya(z) = xy for every = € B.

The reader will easily check that whenever B is a factor, « is properly
outer if and only if it is outer (i.e., not inner, that is, not of the form
x — uzu* for some unitary operator u € B).

DEFINITION 5.2.2. Let ¢ be a homomorphism from a group G into the
group Aut (B) of automorphisms of a von Neumann algebra B. We say that
the action o is

(a) ergodic if Cl1gp = {x € B : 04(x) = z,Vg € G}.
(b) free or properly outer if for every g # e, the automorphism oy is
properly outer.

Here is the non-commutative version of Proposition 1.4.5, whose proof
is similar.

PROPOSITION 5.2.3. Let (B, 1) be a tracial von Neumann algebra, and
let 0: G~ (B, 1) be a trace preserving action.
(i) B'N (B x G) = Z(B) if and only if the action is properly outer.
(ii) Assume that the action is properly outer. Then B x G is a factor
(and thus a 11y factor) if and only if the action on the center of B
1s ergodic.

EXAMPLE 5.2.4. Let G be a countable group and let (N, 7) be a tracial
von Neumann algebra. Let (B = ®gegNg,T®G) be the tensor product of
copies of N indexed by G. The Bernoulli action on B is well defined by

(04(2))n = Zgn

for every = = (®,erzy) © Id®A\F | F finite subset of G.

This action is ergodic. Even more, it is mizing: for xz,y € B, we have
limg_yo0 7(x04(y)) = 7(x)7(y). This is easily seen by approximating x,y by
elements in some (RgecpNg) ® Id®C\ where F is a finite subset of G.

Moreover, for every g # e, the automorphism o, is properly outer. In-
deed, let b € B with ||bl|, = 1 and boy(y) = yb for every y € B. We fix a
non-trivial projection p in N. Given € > 0, there exists a finite subset F' of
G and V' € (QperNg) @ 1A%\ with ||b — V||, < e. Then we have

[V'ag(y) —yt'||, < 2¢
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for every y in the unit ball (B); of B. Let h ¢ F U gF, and let y be the
element of B whose only non-trivial component is p in the position h. Then
we have

4% > ||Vog(y) — |5 = |0/ (og(y) — v)|5 = 2[|V'|5(r () — 7(p)?),

with ||t']l, > 1 —e. It follows that 7(p) — 7(p)? < 2e2(1 — ¢)~2 for every
e €0, 1], hence 7(p) € {0,1}, a contradiction.

5.3. Free products

5.3.1. Free subalgebras. Given two groups GG1, G2, the von Neumann
algebra associated with their product G1 x G» is the tensor product:

L(G1 X Gg) = L(GQ@L(GQ)

There is another familiar and useful construction in group theory, namely
the free product G = G1 * G2. Recall that G is generated by G and Go
and is such that, given any group H and any homomorphisms f; : G; - H,
i = 1,2, there is a (unique) homomorphism f : G — H with f|Gi = fi.
Every element s in G \ {e} is an irreducible word s = sj--- sy, that is,
si € Gy, \ {e} with k; # ki for i = 1,...n — 1. The product is defined
by concatenation and reduction. We are interested in the construction of
L(G1 * G2) from L(G;) and L(G2). Let 7 be the canonical tracial state on
L(G). Let z1,...,zy, in L(G) be such that z; € L(Gy,), with k; # ki1 for
i=1,...,n—1, and 7(z;) = 0 for all i. A straightforward computation
shows that 7(z1z2---x,) = 0. This means that L(G;) and L(G2) sit as
freely independent subalgebras of L(G) in the following sense (compare with
the tensor product L(G1)®L(G2)).

DEFINITION 5.3.1. Let My, Ms be two von Neumann subalgebras of a
von Neumann algebra M equipped with a faithful normal state ¢. We
say that My, My are free with respect to ¢ if p(z1x9---x,) = 0 whenever
x; € My, with ky # kg # --- # ky and ¢(z;) = 0 for all i. We say that two
elements a1, as of M are free with respect to ¢ if the von Neumann algebras
they generate are free.

PROPOSITION 5.3.2. Let My, Ms be two von Neumann subalgebras of M
that are free with respect to a faithful normal state . We assume that M
is generated (as a von Neumann algebra) by My U Ms.

(i) ¢ is completely determined by its restrictions to My and M.
(ii) If each restriction is a trace, then ¢ is a trace.

Proor. Given z; € My, with ki # ko # .-+ # ky, we claim that
o(x122 -+ xy) is uniquely determined. This will conclude the proof of (i)
since the linear span M of such products is a w.o. dense *-subalgebra of M

and ¢ is normal. We proceed inductively on n. We write z; = p(x;)1+ 7.
Note that gp(%l) = 0. Replacing each x; by its expression, expanding, and
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using the fact that gp(:%lgzg :%n) = 0, we see that we are reduced to
computations involving at most n — 1 products.

Assume now that the restrictions of ¢ to M7 and Ms are tracial. It
suffices to show that the restriction of ¢ to M is a trace, and even, by
linearity, that p(xy) = ¢(yz) for x = x129 -+ 2, and y = y1y2 - - - Yy, where
ri € My,, y; € My; with ky # ko # -+ F ky, i #Fl2 # -+ # 1, n <m, and
o(z;) = 0= p(y;) for all 4, 5.

First, we obviously have that ¢(xy) = 0 whenever k,, # l;. Assuming
km =11 we get

o(zy) = o1 Tm-1(@my1 — P(@my1))y2 - yn) +
O(Tmy1) (1 Tm—1Y2 -+ Yn)
= p(Tmy)e(T1- - Tm_1Y2 - Yn)-

Iterating this computation we see that p(zy) = 0, except possibly when
n=m and k; = ly,,—;+1 for every 4, and then we have

o(ry) = o(T1Yym)P(T2Ym—1) * - (Tmy1)-

Similarly, we see that ¢(yz) = 0 except possibly in the same conditions as
above and then we have

o(yr) = o(y12m) e (Worm-1) - - - ©(Ym1).

The conclusion follows from the tracial property of the restrictions of ¢ to
M1 and MQ. O

PROPOSITION 5.3.3. Let (My,11), (M2, 72) be two tracial von Neumann
algebras. There exists (up to isomorphism) at most one triple ((M, 1), ¢1, P2),
where T is a normal faithful tracial state and ¢; : M; — M, i = 1,2, are
homomorphisms, satisfying the following properties:

(i) i=7od¢; fori=1,2;
(ii) ¢1(My), p2(My) sit in M as free von Neumann subalgebras with
respect to T and M is generated by ¢1(My) U po(Ma).

PRrOOF. Note first that every homomorphism ¢; satisfying Condition (i)
is normal by Proposition 2.5.11 and so ¢;(M;) is a von Neumann subalgebra
of M by Proposition 2.5.12.

Let (M, 7p) and (N, 7n) be two solutions. We denote by ¢; : M; — M
and v¢; : M; — N the trace preserving inclusions (i = 1,2). Let M and
N be the x-algebras generated by ¢1(M;) U ¢o(Ms) and 1 (M7) U ho(Ma)
respectively.

There is a well defined *-homomorphism « from M onto A such that
a(pi(x)) = ¢i(x) for x € M;, i = 1,2. Indeed, for y = ¢g, (z1) - - - ¢k, (n)
with ; € My,, we set a(y) = g, (x1) - - - Yg, (), and whenever y is a linear
combination of such terms we extend a by linearity. Of course, such an
expression of y is not unique. If y = Y] and y = Y5 are two such expressions,
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to see that a(Y7) and «(Y3) defined in this way coincide, we first observe
that, by Proposition 5.3.2 (i), we have

TN (Y, (21) - Yk, (T0) = Tar (O, (21) - Pr, (T10))

whenever z; € My,, ¢ =1,...,n. It follows that
0=7u((Y1—Y2)" (V1 — ¥2)) = 7v ((a(Y1) — a(Y2))"(a(Y1) — a(Y2))).

Since the trace 7y is faithful, we conclude that a(Y7) = «(Y3).
Finally, since 7, o @ = 73y on M, it follows that « extends (uniquely)
to a trace preserving isomorphism from M onto N (Exercise 2.15). O

DEFINITION 5.3.4. Let (Mj, 1), (M2, 12) be two tracial von Neumann
algebras and let ((M, ), ¢1,d2) be such that the conditions (i) and (ii) of
the previous proposition are satisfied. Then we say that (M, ) is the free
product of (My, 1) and (M2, o) and we write (M, 7) = (M1, 71) * (M2, 72)
or simply M = Mj x Ms. Usually, we identify M7 and Ms with their ranges
in M.

For instance, (L(G1),71) and (L(G2),72) (with their canonical tracial
states) satisfy the conditions of Proposition 5.3.3 with respect to L(G1 *G2)
equipped with its trace 7 and so (L(G1*G2), T) is isomorphic to (L(G1), 1) *
(L(Gg), 7'2).

We now prove the existence of (M, 71) * (Ms, 72) for any pair of tracial
von Neumann algebras.

5.3.2. Construction of M; * M. For i = 1,2 we set H; = L>(M;, 7;)
and & = 1py,. The first step is to represent My and M5 on the Hilbert space
free product of (H1,&1) by (Ha, &2).

o

We denote by H; the orthogonal complement of C¢; in H;. The Hilbert
space free product (H1,&1) * (He,&2) is (H, &) given by the direct hilbertian

sum
o o
nH=cto@Pp( B Hio-H,),
n>l d1FiaFEFin
where £ is a unit vector. We set

o o
Hi) =CcaP( P HuooH, ),
n>1  iyFig#Fin
i1
and we define a unitary operator V; : H; ® H;(i) — H as follows:

LGRE—E

o ]
§1®77*_>777 Vn EHl'l ®®Hln>Z1 #Z

o
n@E >, Vi €M,

o o ]

nen =y, Ynety,n ety @@ Hy,, i1 # 1.
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Similarly, we set

H)=Cco@P( B Huo-oH, ),
n>1 iy Fig# o Fin
ini
and we define the corresponding unitary operator W; : H,. (i) @ H; — H.
We faithfully represent M; on H by

and similarly, we represent faithfully the commutant M, of M; (in B(H,;))
by
pi(x) = Wi(ldy, i) @ ©)W;.
A straightforward computation shows that \;(z)p;(y) = p;(y)Ai(x) for
every © € M;,y € M]{, i,7 € {1,2}. So, if we set M = ()\1(M1) U )\Q(MQ))H,

and N = (p1(Mj) U pQ(Mé))”, we see that these von Neumann algebras
commute. We will see in Subsection 7.1.3 (d) that N = M.

o o o
We set M ;= ker ;. Note that H; is the norm closure of M;&;. Moreover,

o
we have A\;j(x){ = x& whenever x €M;, and an easy induction argument
shows that

(Mg (1) -+ Ay (20))E = 218, @ -+ @ T, €HEy @+ @ Hp,,  (5.1)

o
for x; €My, with ki # ko # --- # k,. It follows that & is cyclic for M.
Similarly, it is cyclic for N, and finally we get that £ is cyclic and separating
for both algebras.

In particular, the vector state we is faithful on M. We claim that
((M,we), A1, A2) satisfies the conditions stated in Proposition 5.3.3. Since
V¢ = & ®¢&, a straightforward computation shows that we o A\; = 7;. More-
over, we deduce immediately from Equation (5.1) that the von Neumann
algebras A\i(M7) and A\y(My) are free with respect to we. Since we is a tra-
cial state (by Proposition 5.3.2), we denote it by 7. Hence (M, 7) is the free
product of \;(M7) and A2(M3) we were looking for.

REMARK 5.3.5. Since ¢ is separating for M, the map x € M +— x£ is
injective and so we may identify M with a subspace of H. In particular, we
o o

identify Ak, (z1) -+ Mg, () With 21 ® - - - @ 2, EM g, ® - - ® My, , thanks to
(5.1). We set

o o
M:C1@@< D MZ-1®~--®M%). (5.2)
n>1 i1 Aia#-Fin
Then M is a x-subalgebra of M, w.o. dense, called the algebraic free product
of M1 and Ms. We observe that the components of the decomposition of M
in (5.2) are mutually orthogonal with respect to the inner product defined
by 7.
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We end this section by giving a sufficient condition for the free product
of two tracial von Neumann algebras to be a factor. We make use of the
notion of conditional expectation defined in Chapter 9 and the reading of
the proof of the next lemma may be postponed.

LEMMA 5.3.6. Let (My,71), (Ma,T2) be two tracial von Neumann alge-
bras and set (M, 1) = (My,11) * (M, T2). Let Q be a diffuse von Neumann
subalgebra of My. Then Q' N M C M. In particular, M is a II; factor
whenever M7 is so.

Proor. We denote by Ejy, the trace preserving conditional expectation
from M onto M; (see Theorem 9.1.2). Let (u,) be a sequence of unitary
operators in @ such that lim,, u, = 0 in the w.o. topology (see Exercise 3.2).
We claim that for z,y € M such that Ey, () = Ep, (y) = 0, we have

limy, || Ea, (zuny)l, = 0. (5.3)

o
A crucial observation is that Ej, (z) = 0 whenever z ¢ M is an alternated

product? of elements in M i~ This follows from the fact that 71 (miEn, (2)) =
T(my1z) = 0 for every m; € M, where the latter equality results from
straightforward computations.

Let us prove (5.3). Using the Kaplansky density theorem (and the obser-
vation preceding Proposition 2.6.4), we see that z is the limit in ||-||,-norm
of elements of M. Moreover, since Ey, (x) = 0 and Eyy, is ||-||,-continuous

o
we may assume that these elements have no component on C1& M= M;.
The same argument apphes to y and finally it suffices to consider the case

where x,y are in some MZl Mzn, i1 Fdg £ F# zn, n>2, or in M2 So
we write © = x1ab and y = dcy;, where b,d € {1}U Ml, a c €M27 and x1
(resp. 1), if # 1, is an alternated product of elements in M i, ending (resp.

o
beginning) with some element in M ;. Then, we have

rupy = (r10)(bund)(cyr)
= (z1a) (bund — Tl(bund)l) (cy1) + 11(bupd)(xz1acyr).

We set v = bunpd — 71(bupd)l and note that Eyp (xjavey;) = 0 by our
previous observation. It follows that Eyp (zuny) = 71(bund)Eyy, (z1acyy).
But lim,, 71 (bu,d) = 0, and our claim (5.3) is proved.
Now let x € Q'NM. Subtracting Eyy, (z), we may assume that Eyy, (z) =
0. Then, we have
En (xunx™) = up By (z2*)

and ||un Enr, (z2*)]|y = || En, (x2*)]],. Together with (5.3), this implies that
Epn (zz*) = 0 and thus = 0 since Eyy, is faithful. O

o
3An alternated product is of the form x1 ... 2, with xx €My, , i1 # 2 # -+ # in.
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REMARK 5.3.7. The same proof applies to the case where 1g # 1p: if
Q C M, is diffuse, then Q' N 1gM1g C M;.

COROLLARY 5.3.8. Let (My, 1), (Ma,72) be two tracial von Neumann

algebras. We assume that My is diffuse and that Ms is non-trivial. Then
(M, 1) = (My,71) * (Ms,72) is a 11y factor.

PRrROOF. We keep the notation of Section 5.3.2. By the previous lemma,
we have Z(M) C Z(My). Let z € Z(M) with 71(z) = 0 and let y be a
non-zero element in My with 75(y) = 0. We have on the one hand |[zy€||, =
1 2&1 |5 ]|y€2ll by (5.1) and, on the other hand,

l=y€lls = (y*="2y) = 7(="y"2y) = 0.
It follows that z&; = 0 and thus z = 0. Therefore we get Z(M) =C1. O

5.4. Ultraproducts

As we will see later, the technique of ultraproducts is a very useful
tool when studying the behaviour of families of sequences. We fix a free
ultrafilter w. Recall that w is an element of SN\ N, where SN is the Stone-
Cech compactification of N, i.e., the spectrum of the C*-algebra ¢>°(N). For
any bounded sequence (c¢,) of complex numbers, lim, ¢, is defined as the
value at w of this sequence, viewed as a continuous function on SN.

Let (M, ) be a sequence of tracial von Neumann algebras. The pro-
duct algebra [],~; My is the C*-algebra of bounded sequences x = (zp)n
with x,, € M, for every n, endowed with the norm ||z|| = sup,, ||z,||. The
(tracial) ultraproduct ], M, is the quotient of [[,~; My by the ideal I,
of all sequences (), such that lim, 7,(z}z,) = 0. It is easily seen that
I, is a normed closed two-sided ideal, so that [[ M, is a C*-algebra. If
x,, denotes the class of x € [[,,~; M,, then 7,(z,) = lim, 7,(z,) defines
without ambiguity a faithful tracial state on [], M,. We set yllaw =
70 (y*y)'/? whenever y € [, M.

When the (M, 7,) are the same tracial von Neumann algebra (M, 1),
we set M =[] M, and we say that (M¥,1,) is the (tracial) ultrapower of
(M, 1) along w.

ProposITION 5.4.1. ([[, My, 7w) is a tracial von Neumann algebra.

Moreover, if the M, are tracial factors such that lim, dim M,, = +oo, then
[, My is a1l factor®.

PROOF. For simplicity of notation, we deal with the case M*, the proof
in the general case being the same. We use the characterisation given in
Proposition 2.6.4, and show that the unit ball of M“ is complete for the

4This factor is not separable in general. It is the only example where we really need
to work with non separable II; factors in this monograph.
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metric induced by |[-[|5,,. Let (z(p)), be a sequence in M* such that, for
every p

2(P)lloe <1, Nzlp+1) — 2(p)lly,, < 2”@+,

We choose inductively a representing sequence (zn(p))n for z(p) such that

sup ||z, (p)|| < 1, sup |lza(p + 1) — 24 (p)l, < 2”@+,
n n

Then, for each n € N, the sequence (x,,(p)), is a Cauchy sequence in the unit
ball (M); of M equipped with the ||-||, metric, and therefore converges to
some z,, € (M);. Now, we have ||z, — z,(p)||; < 27P, whence, if 2 denotes
the class of the sequence (xy,)n,

|2 = 2(P)llg = lim [l2n — 2n(p)lly <277,

Assume now that M is a factor. We claim that any two projections
p,q € MY are comparable and so M“ is a factor (see Remark 2.4.10). Indeed,
using the lemma to follow, we choose representatives (p,) and (¢,) of p, ¢
respectively, consisting in sequences of projections such that 7(p,) = 7,(p)
and 7(g,) = 7,(q) for every n. Assume that 7,(p) < 7,(q). Since M
is a factor, there exists a partial isometry w, in M with u,u, = p, and
upu) < @n. Let u, be the class of the sequence (uy),. Then we have
usu, = p and u,ul, < q. O

LEMMA 5.4.2. Let (M, 1) be a tracial von Neumann algebra, w a free
ultrafilter and p a projection in MY .

(i) There exists a representative (py) of p such that py, is a projection
for every n.

(ii) Ifin addition M is a factor, we may choose the py, such that (py) =
Tw(p) for every n.

PROOF. (i) Let (x,) be a representative of p such that 0 < z,, <1 for
every n. We have lim,, Hazn — x%HQ = 0. We may assume that chn — x%HQ =
dn < 1/4 for every n. Let p, be the spectral projection of z,, relative to the
interval [1 — 52, 1). Then lim,, ||z, — ppll, = 0 by Lemma 5.4.3 below.

(ii) We only consider the case where M is a II; factor, the case of matrix
algebras being trivial. We set 7,,(p) = A. Let ¢ be a projection in M with
7(q) = A. We have either ¢ 3 p,, or p,, = q. We choose a projection g, € M
with 7(¢,) = A and either ¢, < p, or p, < g,. Then we have

lgn = Palz = I7(gn = pa)| = |A = 7(pn)|
and so limy, ||gn, — pnlly = 0. O

LEMMA 5.4.3. Let 0 < xz < 1 be an element of a tracial von Neumann
algebra such that Hx — 332H2 = < 1/4. Let p be the spectral projection of x

relative to [l —/5,1]. Then we have ||z — pl|, < (36)'/2.



5.5. BEYOND FACTORS AND ABELIAN VON NEUMANN ALGEBRAS 7

PrOOF. Let u be the spectral probability measure of z associated with
the vector 1 € L?(M, 7). We have

1 1
/ (t—t*)?dp(t) = / (t—t3)2d(1, ) = ||z — 22| = 62
0 0
Put §; = §/2. We have

1—-6;
= /5 (t = t*)?du(t) > (1 = 67)*u([01,1 1)),

1

hence u([01,1 — 61]) < §(1 — 61)2. Tt follows that

61 1-61 1
o=l = [ Paut+ [ Raun+ [ a-02aue

1 1-6;
<204 (1 —61)%u([61,1 — 1)) < 36. O

REMARK 5.4.4. Let M be a separable II; factor. One may wonder
whether the ultraproduct M“ depends on the free ultrafilter w. Ge and
Hadwin proved that, assuming the Continuum Hypothesis, all these ultra-
products are isomorphic [GHO1]. It has been proved more recently by
Farah, Hart and Sherman that, conversely, if all these ultraproducts are
isomorphic then the Continuum Hypothesis holds [FHS13].

5.5. Beyond factors and abelian von Neumann algebras

A tracial factor is either isomorphic to some matrix algebra or is of
type II; depending on the existence or not of a minimal projection (see
Corollary 2.4.14). In the non-factor case, the distinction is made via the
existence of non-zero abelian projections, which generalize the notion of
minimal projection.

DEFINITION 5.5.1. Let M be a von Neumann algebra. A projection
p € M is called abelian if p # 0 and the reduced von Neumann algebra pMp
is abelian.

A useful feature of abelian projections is the following one.

PROPOSITION 5.5.2. Let p,q be two projections in a von Neumann al-
gebra M. We assume that p is abelian and that p < z(q) where z(q) is
the central support of q. Then we have p = q. In particular, two abelian
projections with the same central support are equivalent.

PROOF. Since there exists a central projection z such that zp 3 zq and
(1—2)q 2 (1 —2)p, it suffices to show that (1 — z)g ~ (1 — z)p. So, we may
assume that ¢ ~ ¢1 < p < z(q).

Since p is abelian, we have ¢ = pe where e € Z(M) (see Proposition
4.2.1). Then we have

e>z(q) = z(q) = 2(p)
and so p = pe = ¢q;. O
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DEFINITION 5.5.3. We say that a von Neumann algebra is of type I if
it has an abelian projection whose central support is 1. A von Neumann
algebra is said to be of type II; if it is finite (i.e., its unit is not equivalent
to a strictly smaller projection, see the next chapter) and does not have any
abelian projection.

REMARK 5.5.4. For factors, abelian projections are the same as minimal
projections. The above definitions are compatible with the definitions of
type I and type II; given in the case of factors (see Theorem 6.3.5 for II;
factors).

There is almost no loss of generality to deal with tracial von Neumann
algebras instead of finite ones. Indeed, finite von Neumann algebras are
direct sums of tracial von Neumann algebras and, in the countably decom-
posable case, they are exactly the tracial von Neumann algebras (Exercise
6.2).

EXAMPLES 5.5.5. (a) For instance, any tensor product L (X, u)@B(H)
is easily seen to be of type I. Such an algebra M is said to be d-homogeneous
where d is the dimension of H. The cardinal d only depends on M (see
Exercise 5.5 for countable cardinals).

More generally, every product of the form [[,.; A;®B(H;) where the
A;’s are abelian is still of type I.

(b) Let (N, 7) be a II; factor and L>°(X, ) an abelian von Neumann
algebra. Then M = L®°(X,u)®N is a type II; von Neumann algebra.
Indeed, assume that M has an abelian projection p. Let (e, ) be a decreasing
sequence of projections in N such lim, 7(e,) = 0. Since the central support
of 1 ® ey is 15 (Exercise 5.4 (ii)), we deduce from the previous proposition
that p 2 1® ey, and so

(Tu @7)(p) < (T @7)(1 @ €n) = 7(en)

for every n, in contradiction with the fact that p # 0.
More generally, every product [, ; A;®N; where the A;’s are abelian
and the N;’s are II; factors is a type II; von Neumann algebra.

REMARK 5.5.6. Every type I von Neumann algebra can be written as
[Lic; Ai®B(H;) where the A;’s are abelian(see [Tak02, Theorem V.1.27]).
Finite type I von Neumann algebras are exactly those with dim H; < +o0
for all 4.

On the other hand, not every type II; von Neumann algebra is of the
form [[;c; Ai®N; where the A;’s are abelian and the N;’s are II; factors,
but separable II; von Neumann algebras are direct integrals of II; factors
(see [Dix81, Chapitre II, §3 and §5]).

THEOREM 5.5.7. Every von Neumann algebra M has a unique decompo-
sition as a direct sum My & My where My is a type I von Neumann algebra
and My is without abelian projection (with possibly one of the two compo-
nents degenerated to {0}).
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PROOF. Assume that M has at least an abelian projection (otherwise
there is nothing to prove). Let (p;)ic; be a maximal family of abelian pro-
jections p; in M whose central supports z(p;) are mutually orthogonal and
set p = > icrPi» 2 = D ;cr2(pi). Then p is an abelian projection whose
central support is z. Moreover, thanks to the maximality of (p;);cs, we see
that M (1 — z) has no abelian projection. So M = (Mz) & (M(1 — z)) is a
decomposition of M as a direct sum of a type I von Neumann algebra by a
von Neumann algebra without any abelian projection.

Let M = (Mz1) & (M(1— 21)) be another such decomposition. We have
z1 < z. Indeed, let p; be an abelian projection having z; as central support.
If z1(1 — 2z) # 0, then p;21(1 — 2) is an abelian projection in M (1 — z), but
this cannot occur. Similarly, we see that z < z;. O

We have seen in Corollary 4.1.2 that in any diffuse factor, for all n > 1
every projection is the sum of 2" equivalent projections. This result extends
to any von Neumann algebra without abelian projections.

PropPOSITION 5.5.8. Let M be a von Neumann algebra without abelian
projection. Then any projection in M is the sum of two equivalent orthogonal
projections and therefore is the sum of 2" equivalent orthogonal projections
for allm > 1.

Proor. It suffices to show that for any non-zero projection e in M there
exist two non-zero equivalent orthogonal projection e, es with e; + €2 < e.
Then the end of the proof will be exactly the same as that of Lemma 4.1.1.

The crucial observation is that eMe is not abelian. So, there is a projec-
tion f in eMe but not in Z(eMe). Therefore we have fM(e— f) # 0. Then,
it follows from Lemma 2.4.7 that there exist non-zero projections e; < f and
eo < e — f that are equivalent. O

Exercises

EXERCISE 5.1. We keep the notation of Example 5.1.1 (b).

(i) Prove the assertions stated in this example.

(ii) Let T" = [T;;] be a matrix with coefficients in M. For every n
we denote by T'(n) the matrix with T'(n); ; = T;; if 4,j < n and
T(n);; = 0 otherwise. Show that 7' € B(¢*(N))®@M if and only if
the sequence (||T'(n)||)y is bounded.

(iii) Extend these results, when N is replaced by any set I.

EXERCISE 5.2. Let M be a von Neumann algebra and let (p;)ic; be a
family of mutually equivalent projections such that ), ; p; = 1. Show that
M is isomorphic to B(¢?(I))®(pi, Mpi,) with i € 1.

EXERCISE 5.3. Let M7 and Ms be two factors. Show that
(1, @Mo) N (M1@Ms) = M @1y, .
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EXERCISE 5.4. Let (X, i) be a probability measure space and (N, H) a
factor.
(i) Show that the commutant of L (X, u)®1p) in B(L*(X, 1) @ H)
is L®(X, n)@B(H).
(ii) Show that the center of L*°(X, u)®N is L=(X, n)®1y.
More generally, one shows that the center of a tensor product of two von

Neumann algebras is the tensor product of their centers (see [Tak02, Corol-
lary IV.5.11]).

EXERCISE 5.5. Let M be a von Neumann algebra and let (e;)icr, (f})jes
be two countable families of abelian projections having 1 as central support
and such that ), ;e; =1 = Z]EJ fj. Show that all these projections are
equivalent and that card I = card J.

EXERCISE 5.6. We set (2, = ¢2(N*) and ¢? denotes the canonical Hilbert
space of finite dimension i. Let I, .J be two subsets of N*U{oo} and (A4;);er,
(Bj)jes be two families of abelian von Neumann algebras. Let

a: Z SABB(L) —>Z _B;®B(6)

be an isomorphism. Show that I = J and that o(A,@B((?)) = B,@B({?)
for every i € 1.

EXERCISE 5.7. When M is a factor, show that a € Aut (M) is inner if
and only if their exists a non-zero element y € M such that ya(z) = xy for
every x € M.

EXERCISE 5.8. Let (B, 7) be a tracial von Neumann algebra and o :
G ~ B a trace preserving action of a group G. Show that B x G is spatially
isomorphic to the von Neumann algebra of operators on H = L?(B,7) ®
%(G) = *(G, L*(B, 1)) generated by {m(B)}U{l® )\, : g € G} where 7(b)
is defined by (7(b)f)(g9) = 04-1(b)f(g) for b € B and f € H (see Exercise
1.9 for the case where B is abelian).

EXERCISE 5.9. Let (B, 7) be a tracial von Neumann algebra and o : G ~
B a trace preserving action of a group G. Show that the crossed product
Bx (@ is the unique (up to isomorphism) tracial von Neumann algebra (M, 1)
generated by a trace preserving copy of B and unitary elements (ug)geq
satisfying the following properties:

ugbuy = 04(b) for all g € G,b € B, ugup = ugy, for all g, h € G,
T(bug) =0 for all b€ B,g #e.

EXERCISE 5.10. Let G be an ICC group and let 0 : G ~ (B, T) be a
trace preserving action. We identify L(G) in the obvious way with a von
Neumann subalgebra of B x G (i.e., the von Neumann subalgebra generated
by the ug4, 9 € G).

(i) Show that L(G) N (B x G) = BY (the algebra of G-fixed elements
in B).
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(ii) Show that B x G is a factor (and so a II; factor) if and only if the
G-action on the center of B is ergodic.

EXERCISE 5.11. Let G be a finite group and ¢ : G ~ B a properly outer
trace preserving action on a tracial von Neumann algebra (B, 7). For g € G,

we denote by v, the unitary operator on L?*(B,T) defined by v,@ = o4(x)
for every z € B. Let M be the *-subalgebra of B(L?(B, 7)) generated by
BU{vy:9€ G} Let ¢ : Bx G — M by defined by ¢(3_ cqbgug) =
ZgEG bgvg.
(i) Show that ¢ : B x G — B(L?(B, 7)) is a normal homomorphism.
(ii) Show that ¢ is injective (use the fact that the center of B x G is

contained in Z(B)).
(iii) Conclude that M is a von Neumann algebra isomorphic to B x G.

EXERCISE 5.12. Let M be a II; factor and w a free ultrafilter on N.

(i) Let f',...,f* be mutually orthogonal projections in M¥. Show
that we can find, for i = 1,...,k, a representative (f)nen in
(N, M) of f* 5 such that for every n, the f., i = 1,... k, are
mutually orthogonal projections in M. Show that these projec-
tions can be chosen mutually equivalent whenever one starts with
mutually equivalent projections in M.

(ii) Let u be a partial isometry in M* and set f! = u*u, f? = uu*.
Choose representatives (f!),en of fi, i = 1,2, such that for every
n the projections f} and f? are equivalent. Show that u can be
lifted into a sequence (uy), satisfying u}u, = f} and u,u’ = f2
for every n.

(iii) Show that every matrix units in M“ can be lifted to a sequence of
matrix units in M.

EXERCISE 5.13. Let M be a von Neumann algebra. Show the equivalence
of the following two conditions:
(i) M is of type I;
(ii) every non-zero projection of M majorizes an abelian projection.

Notes

The tensor product of two von Neumann algebras was introduced in the
first joint paper of Murray and von Neumann [MVN36]. Infinite tensor
products of von Neumann algebras were defined by von Neumann [vIN39]
very soon after. The notion of crossed product for a group action on an
abelian von Neumann algebra goes back to the pioneering work of Mur-
ray and von Neumann [MIVN36]. The setting of group actions on tracial
von Neumann algebras was originated by the Japanese school of operator
algebras in the late fifties. ([Tur58, Suz59, N'T58] to cite a few)

The notion of free product of two von Neumann algebras appears for
the first time in [Chi73], but was developed and used in its full strength by
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Voiculescu, his students and others. It gave rise in the eighties to the very
active and powerful theory of free probability (see [Voi85] for the beginning).

Ultraproducts constructions appeared in model theory in the fifties.
However, they are already implicit in the operator algebra setting in Wright’s
paper [Wri54] and later in Sakai’s notes [Sak62] although these authors do
not use the ultrapower terminology. Ultraproducts are a crucial ingredi-
ent in McDuff’s characterisation of those II; factors M that are isomorphic
to M®R (the so-called McDuff factors [McD70]), in Connes’ characteri-
sation of full factors [Con74] (see Chapter 15) and in his celebrated work
on the classification of injective factors [Con76]. Ultraproduct techniques
are nowadays a classical useful tool when one wants to replace approximate
properties by some precise version.



CHAPTER 6

Finite factors

It is now the time to clarify the definition of II; factors. We have in-
troduced them in term of the existence of an appropriate trace. The main
purpose of this chapter is to give an equivalent definition, which relies on
the behaviour of the projections: an infinite dimensional factor is of type II;
if and only if its unit is not equivalent to a strictly smaller projection. The
notion of dimension function will be the key of the proof of the equivalence
of the two definitions. We will also see that whenever a factor has a tracial
state, this trace is automatically normal and faithful. It is also unique, as
already shown in Chapter 4.

We end this chapter by a general averaging result for factors which, when
applied to a finite factor, gives a nice description of the trace.

6.1. Definitions and basic observations

DEFINITION 6.1.1. A projection p in a von Neumann algebra M is finite
if p is not equivalent to a projection ¢ strictly smaller than p. In other terms,
p is finite if for every partial isometry v € M with v*u = p and uu* < p,
then uu* = p.

If p is not finite, we say that p is infinite.

Every projection ¢ € M smaller than a finite projection p € M is also
finite. Indeed, if there exists a partial isometry v € M with v*u = ¢ and
uu* < q then v = u + (p — ¢) will be a partial isometry with v*v = p and
vu* < p, a contradiction. In particular, when the unit element 1 of M is a
finite projection, every projection in M is finite.

DEFINITION 6.1.2. We say that a von Neumann algebra M (in particular
a factor) is finite if 1 is a finite projection. Otherwise, we say that M is
infinite.

Obviously, abelian von Neumann algebras are finite. Every von Neu-
mann algebra which has a faithful tracial state 7 is finite. Indeed, let u be a
partial isometry in M such that v*u = 1. Then 7(1 —uu*) = 7(1 —u*u) = 0,
so that 1 = uu* since 7 is faithful.

Whenever p ~ g, it is not true in general that 1 — p ~ 1 — ¢q. This can
be observed for instance in the von Neumann algebra B(¢?(N)).

On the other hand, when 1 is finite we have:

LEMMA 6.1.3. Let M be a finite von Neumann algebra.

83
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(i) Letp,q € M be two projections such that p ~ q. Then1—p ~ 1—q.
In particular, there exists a unitary u € M with upu® = q.

(ii) Let v € M be a partial isometry. There exists a unitary operator u
with v = u(v*v).

PROOF. (i) The comparison theorem 2.4.8 tells us that there exists a
projection z € Z(M) with (1-p)z 3 (1—¢)z and (1—q)(1—2) 3 (1—p)(1—=2).
By considering separately the situations in Mz and M (1—z), we may assume
for instance that 1 —p 31 —¢q. f 1 —p ~r <1 — ¢, we have

1>g+r~p+(1-p =1

so that g+7r =1, whence 1 —p~1—gq.

Let v € M be a partial isometry with v*v = p, vv* = g and let w € M
be such that w*w =1 —p, ww* =1 —¢q. Then u = v + w is a unitary that
has the required property.

(ii) is immediate from (i). O

In contrast with the case of finite projections, any infinite projection in
a factor can be cut up in two pieces equivalent to itself.

PROPOSITION 6.1.4. Every infinite projection p in a factor M can be
written as p = p1 + p2 where p1, p2 are projections in M such that py ~ p ~

p2-

Proor. Replacing M by the factor pMp we may assume that p = 1.
Let e; € P(M) be such that e; ~ 1 with e; # 1 and let u € M be such that
u*u=1and uu* = e;. Weput ey =1, e, = u"(u")* forn > 0. Then (ey,)n>0
is a strictly decreasing sequence of projections which are all equivalent to 1.
Morever the projections f,, = e, — ep+1, n > 0, are equivalent, since, if we
set v, = u(e, — ept1), we have viv, = e, — ept1 and vV} = €p41 — €pt2.

Let (g;)ier be a maximal family of mutually orthogonal and equivalent
projections, which contains the sequence {f, : n € N}. Since M is a factor,
the maximality of the family implies that ¢ =1—-3",.; ¢; 3 ¢;- We consider
a partition I; Ul of I into two subsets of the same cardinal as I and we put
P1= D ier, 9> P2 = D _icr, % + q- We have p1 +pa = 1 and due to the fact
that the cardinal of I is infinite, we immediately see that p; ~ps ~ 1. [J

We remark that, by using a partition of I into a countable family of
subsets of the same cardinality, we even get p = -, p, where the p, are
all equivalent to p. -

It follows from this proposition that an infinite factor has no tracial
state. Indeed, if 1 is infinite, we may write 1 = p; + po where p;,ps are
two projections equivalent to 1. Assuming that M has a tracial state 7, we
obtain the contradiction

L =7(p1) +7(p2) = 2.
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6.2. Construction of the dimension function

The aim of the next two sections is to prove that a finite factor carries
a normal tracial state. Since a finite factor that has a minimal projection
is isomorphic to some matrix algebra M, (C) (see Proposition 2.4.13) we
only have to deal with finite diffuse factors. The first step is to construct a
function that, like tracial states, measures the dimension of projections. We
begin by the introduction of a kind of dyadic expansion for projections.

PROPOSITION 6.2.1. Let M be a diffuse factor. There exists a sequence
(Pn)n>1 of mutually orthogonal projections in M such that

n+1
Pyl ~ 1 — Zpi for n>0. (6.1)

i=1
PrOOF. By Proposition 4.1.1 we find two equivalent projections p1, g1 €
M with p; + ¢ = 1. By the same argument, we find two equivalent projec-
tions po, g2 with po + g2 = 1 — p1 and therefore 1 — p; — p2 ~ pa2. Repeating
this process, we get a sequence (pp)n>1 of projections with the required
properties. U

REMARK 6.2.2. We observe that 1 is the orthogonal sum of two pro-
jections equivalent to p; and that every p, is the orthogonal sum of two
projections equivalent to pp41.

‘We now turn to the case of finite factors.

PROPOSITION 6.2.3. Let M be a diffuse finite factor and let (p,) be as
i Proposition 6.2.1.
(i) Let p € P(M) be such that p = pp for everyn > 1. Then p = 0.
(i) We have 312 pr, = 1, and therefore S_0°% . pp ~ pp forn > 1.
(iii) If p is a non-zero projection in M, there exists an integer n such
that p, 3 p.

PROOF. (i) Suppose p # 0. We have p ~ ¢, < p,, for all n. Setting

q= Z qn and q/:ZQTw

nodd n>1

we have ¢ ~ ¢’ and ¢ < ¢/, in contradiction with the fact that ¢’ is finite.
(i) If we put p = 1 — >/ pr, we get from (6.1) that p = p, for every
n and so p = 0.
(iii) follows immediately from (i). O

DEFINITION 6.2.4. A projection p € M which is equivalent to one of the
above constructed projections p,,n > 1, is called a fundamental projection.
We denote by FP(M) the set of fundamental projections in M.

The (equivalence classes of) fundamental projections play, for projec-
tions, the role of dyadic rationals for numbers in [0, 1].
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PROPOSITION 6.2.5. Let M and (p,) be as above and let p € M be a
non-zero projection. There exists a unique increasing sequence ni < ng <
s <y < --- of integers and a sequence (p%k)@l of mutually orthogonal
projections in M with the following properties:

(i) pn, ~ Pny for every k > 1;
(ii) p= Z;r:o? p;u"
PROOF. We first observe that condition (ii) is equivalent to

k
p— z:pilz 2 pn, for k>1. (i")
i=1
Indeed, (ii’) implies that
00 k
P=Y Do <P Dy 3Dy 3Dk
i=1 i=1

for all k, and so p = ., p;,. by Proposition 6.2.3 (i). Conversely, if (ii)
holds, then we have, for all k,

k o)
P=Y Phi~ D P 3P
=1

i=ng+1

We may assume that p # 1 since for 1 = ZZS pi the only possible
choice is ny = k for all k. By Proposition 6.2.3 we see that there exists
n such that p, = p, and we define n; to be the smallest integer with this
property. Let p, ~ pp, be such that p), < p. We have p — p},, < pny,
otherwise we would have p,, < p — p;,,, and n; would not be the smallest
integer with p, 2 p. In case p — p,, = 0, we have, by Proposition 6.2.3,

o
p= > D
k=ni1+1
where the projections are mutually orthogonal, with pj. ~ p for every k >
n1 + 1. We easily see that it is the only possible infinite expansion, up to
equivalence of projections'.

If p— p;,, # 0, we repeat the process and we choose ng to be the smal-
lest integer with pn, < p — py,,. By induction, we get a strictly increasing
sequence (ng)g>1 of integers and a sequence (p},, ) of mutually orthogonal
projections with the required properties (i) and (ii’), where we make the
convention that if we get at some stage the equality p = Zle p;w then we
choose the expansion of the form

k—1 00
P=)Y At Y P
i—1 i—npt+1

1This choice of an infinite decomposition is similar to the convention of choosing the
infinite expansion of a dyadic rational number instead of the finite one.
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with p) ~ p; for every i > ny + 1.
The uniqueness of the sequence (ng);>1 is also easily checked by induc-
tion. U

By a slight abuse of language, we will say that p = >, Py, is the dyadic
expansion of p.

We now define the notion of dimension function and prove its existence
and uniqueness.

DEFINITION 6.2.6. Let M be a diffuse finite factor. A dimension function
on M is amap A : P(M) — [0,1] such that
(i) A1) =1;
(i) p ~ ¢ = A(p) = Ag);
(iii) A(p+ q) = A(p) + A(q) for every pair (p, q) of orthogonal projec-
tions.

LEMMA 6.2.7. Let A be dimension function on a diffuse finite factor M .
Then we have
(i) A(p) =0 if and only if p=0;
(i) p 3 q if and only if A(p) < A(g);
(iii) A is completely additive, i.e., for any family (¢;)icr of mutually
orthogonal projections in M, we have A(Y ;i) = > ier A(Gi)-

Proor. (i) If p # 0, by Proposition 6.2.3 (iii) there exists a fundamental
projection p, with p, 3 p. We have A(p,) = 27" (see Remark 6.2.2),
whence A(p) # 0.

(ii) is immediate. It remains to show the complete additivity. Let (¢;)icr
be a family of mutually orthogonal projections in M and set ¢ = >, ¢;.
For every finite subset F' of I we have ..~ A(¢g;) < A(g) and hence
> icr A(gi) < A(g). Since the sum ), ; A(g;) is finite, the set of indices 4
with ¢; # 0 is countable and we may assume that I = N*.

Assume that > -, A(gn) < A(g) and choose an integer k with

275+ Algn) < Alg)-
n>1

Let r € P(M) with A(r) = 27%. We construct, by induction, a sequence
(rn)n>0 of mutually orthogonal projections with ro ~ r, 7, ~ ¢, for n > 1
and r, < ¢ for n > 0. First, since A(r) < A(q), there is ro ~ r with 79 < gq.

Suppose now that we have constructed rg,71,...,r,_1. We have
n—1 n—1 o)
Aa=3"r) = A) = S A = S Alg) > Alga).
i=0 i=0 i=n
Thus we have
n—1
I Zq— D T
i=0

and therefore there exists r, ~ ¢, with r,, < g — Z:‘L;ol ;.
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Finally, we obtain

o0 o0 o0
q:ZQiNZTi<ZHSq
=1 =1 i=0

which is impossible since ¢ is a finite projection. U

THEOREM 6.2.8. Let M be a diffuse finite factor. There exists a unique
dimension function A : P(M) — [0,1]. It is defined by A(0) = 0 and for
p # 0 by the expression

Alp) =D 2,11 (6.2)

i=1
where p = ;2 py, is the dyadic expansion of p.

PROOF. We first prove the uniqueness of A. We keep the notation of
Proposition 6.2.1. Using Remark 6.2.2, we see that we must have A(p,) =
27" for every n. Therefore, using the complete additivity of A, we obtain
that A(p) must be given by the expression (6.2) if p # 0..

So, we define A by this expression. Obviously, we have A(p) = 0 if and
only if p = 0.

We check first that whenever p = ¢, then A(p) < A(q). Let p =
Yooy Py 4 = D 5oy G, be the dyadic expansions of p and ¢. Assume that
A(p) > A(g). Then we denote by ip the smallest integer i with n; # m;.
We have n;, < m;,. By Proposition 6.2.3 (ii), we get

o) )
p%io ~ Pny, Z mei ~ Z q;m

=10 =10

and we deduce the contradiction p > q.

Let us show now that A is a dimension function. Condition (ii) of
Definition 6.2.6 is immediate. We claim that A(p+ q) = A(p) + A(q) when
pq = 0. We first consider the case where p is a fundamental projection,
say p ~ pp. Let ¢ = Y772, qp,, be the dyadic expansion of ¢q. Then either
n & {m; : 4> 1} and then p+ 377, ¢, is the dyadic expansion of p + ¢ and
we get immediately the additivity, or there is m;, with n = m;,. In this case,
p+ q7/m0 ~ pp—1 and we iterate the argument with (p + qjmo) + Z#io U -
In a finite number of steps we get the dyadic expansion of p+ ¢, from which
we again deduce the additivity.

We now study the general case where p has the dyadic expansion ) 2, p;i.
For every k, we write p = Zle Py, +7% and ¢ = Zle qy,, + 7}, and we notice
that r, 3 pj, < pe and vy 23 gy, 3 Pk, so that 7y + 1) 2 pr_1. From the
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above observations, we see that

Alp+q) = (anﬂrzczn Tk+7“k))

M?r

+ZA N+ A(rg + 1)

T= .
I
_

with 0 < A(ry, +73,) < 5=t
It follows that

Alp+q) = ZA +ZA A(p) + A(q).

It is now easy to prove (2). Assume that A(p) < A(q) and that g ~ ¢’ <
p. Then A(p) = A(q) + A(p — ¢'), so that p = ¢’ and p ~ q. O

6.3. Construction of a tracial state

We keep the assumptions and notations of Theorem 6.2.8. We show that
the dimension function extends in a unique way to a normal faithful tracial
state on M.

LEMMA 6.3.1. Let ¢ and i be two non-zero completely additive maps
from P(M) into Ry. We assume that ¢ is faithful, i.e., p(e) # 0 whenever
e # 0. Given e > 0, there is a non-zero fundamental projection p € FP(M)
and a constant 0 > 0 such that for every projection q < p, we have

0p(q) < ¥(q) < 0(1+¢2)p(q). (6.3)

PROOF. We may assume that ¢(1) = ¥ (1) # 0. We first show that
there exists a fundamental projection e such that p(e;) < ¥(e;) for every
fundamental projection e; < e.

Suppose, on the contrary, that for every e € FP(M) there exists e; €
FP(M) with e; < e and ¢(e1) > ¢(e1). Take a maximal family (e;)ier
of mutually orthogonal fundamental projections such that ¢(e;) > (e;).
Using Proposition 6.2.3 (iii) we see that ), ;e; = 1, whence

=Y wle) >y (e = (1),
el el
thanks to the complete additivity of ¢ and ).
Therefore there exists e with the required property. We set

0 = sup {n : np(e1) < Y(e1),Ver <e,er € FP(M)}.

We have 6 € [1,+oo[ and Op(e1) < ¢(ey) for e; € FP(M) and e; < e.
Let us assume now that for every projection p € FP(M) with p < e
there exists a fundamental projection e; < p with

(1 +c)p(er) < Pler).
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Using a maximality argument as above, but in the von Neumann algebra
pMp, this would imply that 0(1 + ¢)p(p) < ¥(p), in contradiction with the
definition of 6.

Hence there exists a fundamental projection p < e such that 6(1 +
e)p(e1) > (eq) for every fundamental projection e; < p, and the inequality
Op(e1) < 1(eq) is of course satisfied. Thanks to the dyadic expansion of any
projection ¢ < p and the complete additivity of ¢ and 1, we get (6.3). O

LEMMA 6.3.2. Let ¢ be a positive linear functional on M and e > 0 such
that

Vg e P(M), Ag) <(q) < (1+¢e)A(q).
Then for every x € My and every unitary operator u in M, we have
bluzu®) < (1+)p(a). (6.4)
PRrROOF. For ¢ € P(M), we have
P(ugqu®) < (1+e)Augqu’) = (1+2)A(q) < (1+e)i(q).

By Corollary 2.2.3, every x € M, is the sum ) 27"g, of a series which
converges in norm, with g, € P(M). The inequality (6.4) follows immedi-
ately. (I

A positive linear functional ¢ is called an e-trace if it satisfies the in-
equality (6.4) for every z € M and u € U(M). Note that we have then

Vye M, Y(yy*) < (1+e)v(y'y), (6.5)

because the polar decomposition of y and Lemma 6.1.3 imply that y may
be written as y = u|y| with v € U(M). Then

Wlyy") = luly*u’) < (1+ (") = (1+ ) (yy).
Conversely, the property (6.5) easily implies that v is an e-trace.

LEMMA 6.3.3. Let M be a diffuse finite factor and let A be its dimension
function. Then for every € > 0 there is a normal e-trace 1. such that

A(g) < ¢:(q) < (1+¢)*A(q) (6.6)

1+e
for all g € P(M).

ProoFr. We apply Lemma 6.3.1 with ¢ = A and 9 a non-zero normal
linear functional w. Replacing w by 6~ 'w we obtain the existence of a non-
zero fundamental projection p such that for any ¢ € P(M) with ¢ < p, we
have

Alg) Swl(q) < (1+¢e)A(g). (6.7)

Applying Lemma 6.3.2 to the diffuse factor pMp instead of M, we see that
w restricted to pMp is a normal e-trace. Now, since p is a fundamental
projection, there exists an integer n and fundamental projections q1, .. ., gan
such that Z?il ¢ =1, g = p and ¢; ~ p for every 7. Let w; be a partial
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n

isometry with wfw; = p and w,w} = ¢;. We set ¢ (z) = Z?le(w;‘xwi).
Then we have, for y € M,

2”
%(yy*) Z w Yy ij y wz
=1

27’L
= > w((wiyw)) (wiyw;)*)
ij=1
277/
<(1+e) Y w((wiy w)(wiyw)))
ij=1
= (L+&)ve(y"y),
and therefore 1) is an e-trace. Moreover 1. # 0 since 1:(p) = w(p) > A(p).
It remains to show that the inequalities (6.6) are satisfied. Let ¢ €
P(M) and let ¢ = > ;5 pj,, be its dyadic expansion. By comparing the
fundamental projections p;“ with the fundamental projections g; we first
see that there is a unitary operator u € M such that up;%u* commutes with
q; for every i,j. We set ¢’ = ugu*. This projection commutes with each
q;. Then w;fq’ wj is a projection in pMp and furthermore, the projections
w;q'w; and ¢'q; are equivalent via the partial isometry ¢'w;. The inequality
(6.7) gives

A(q'qj) = A(wjq'w;) < w(wjq'w))
< (L+e)A(wjq'w;) = (1 +)A(d'q;),
and after addition,
Ald) < ¥=(¢) < (1 +2)A(d).
Since 1. is an e-trace, we get
Ve(q) < (L+e)=(d) < (1+)*A(d) = (1 +)*Ala),

and ) )
00) 2 Trveld) 2 1A = 1A) =

THEOREM 6.3.4. Let M be a diffuse finite factor. Its dimension function
extends in a unique way to a normal faithful tracial state on M.

PROOF. Let (g,) be a decreasing sequence of positive real numbers with
lim, e, = 0. By Lemma 6.3.3, there is a sequence of normal &,-traces ¥,
such that

A0 < ¥n(e) < (14 20)*Ag)

for every g € P(M). In particular, we have lim,, 1, (q) = A(q). In fact, this
sequence (), converges uniformly on the unit ball of M. Indeed, writing
any z of the unit ball of M as z = (21 —x2)+i(x3—x4) where the 0 < z; <1,
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it suffices to consider the case 0 < x < 1. By Corollary 2.2.3, we can write
T asasum y o Z%Qn with ¢, € P(M) for all n. Then we have, for n > m,

o0

|¢n($) - ¢m<m)’ < Z 2

|~

‘wn(Qk) - ¢m<Qk)‘

e
Il
—

ES

1
2k

M)+ en) = 1)

M

B
Il
—

1
< (U tem) =72 )
m

It follows that (1)) is a Cauchy sequence and therefore converges in norm
to a linear functional 1) on M.

We easily check that ¢ is a normal tracial state. Let us show that
is faithful. Let z € M, with ¢(xz) = 0. For every real number ¢ > 0, we
denote by e; the spectral projection relative to the interval [t, +oo[. Since
te; < x, we get A(er) = 1(e) = 0 and so e; = 0. Hence, we have z = 0.

The uniqueness of the extension of the dimension function follows from
the expansion z = > %qn of every 0 < x < 1, obtained in Corollary
2.2.3. O

THEOREM 6.3.5. Let M be a factor. The following conditions are equiv-
alent:

(i) M has a normal tracial state;
(ii) M has a (norm continuous) tracial state;
(iii) 1 s a finite projection (i.e., M is finite).
Moreover, the tracial state, when it exists is unique and faithful.

Proor. It suffices to consider the case where M is diffuse.

(i) = (ii) is obvious and (ii) = (iii) is an immediate consequence of
Proposition 6.1.4. That (iii) = (i) follows from the previous theorem.

The uniqueness of the tracial state has been proved in Proposition
4.1.3. The faithfulness of the tracial state 7 follows from Theorem 6.3.4,
but can also be shown directly. Indeed, if 7 is a tracial state, the set
{r € M :7(z*z) =0} is a two-sided ideal, which is reduced to zero (see
Proposition 4.1.5). O

Thus, for an infinite dimensional factor, to say that it is of type II; or
finite is the same.

6.4. Dixmier averaging theorem

Let M = M,,(C) be a matrix algebra. We observe that its unique tracial
state 7 can be obtained by averaging over the compact group U, (C) of
unitary n X m matrices, with respect to its Haar probability measure, that
is,

T(z)l = / uzy” du. (6.8)
Un(C)



6.4. DIXMIER AVERAGING THEOREM 93

Consider now a IIy factor M. We will extend formula (6.8) to this
setting, in an appropriate way (see Corollary 6.4.2).
For z € M, we denote by C, the ||-||,-closed convex hull of

{uzu* :u e U(M)}

in L?(M, 7). We may assume that ||z||,, < 1. Then by Proposition 2.6.4,
C, is contained in the unit ball of M. Let y € M be the unique element of
C, with smallest ||-||,-norm. This element commutes with the unitary group
of M, and so is scalar, say y = al. Since the tracial state 7 is constant on
C,, we see that o = 7(z). Therefore, we have C; NC1 = {7(x)1}.

In fact, we have a stronger useful result, where the ||-||,-closure of the
convex hull of {uzu* : u € U(M)} is replaced by its ||| -closure, a smaller
set that we denote by K.

THEOREM 6.4.1 (Dixmier averaging theorem). Let M be a factor
and let x € M.

(i) Given € > 0, there are unitaries ui,...,u, € U(M) and a € C

such that
1 — .
— g uizu; — al
n <
i=1

(ii) The set K; NC1 is not empty.

<e.

o0

PRrROOF. (i) We first consider the case # = z* and we may of course
assume = ¢ C1. We denote by Sp(z) its spectrum and set

c¢c=minSp(zx), C =maxSp(z), t=(c+C)/2.

We introduce the spectral projection p = E(] — 00, t]) of x. We remark that
since ¢ # C', we have 0 < p < 1. By the the comparison theorem 2.4.9, we
have either p S 1—por 1—p = p. Let us assume for instance that p X 1—p,
the other case being treated similarly.

Let v be a partial isometry in M such that p = v*v ~ vv* <1 —p. We
set p’ = vv* and

w=v+v*+(1-p—p).

Then w is a unitary operator. The main point in the proof is the evaluation
of the diameter diam Sp(Ty,(x)) of the spectrum of the self-adjoint operator
Tyw(z) = 3(z + wrzw*). We claim that

diam Sp(Ty (x)) < Zdiam Sp(x) = %(c o). (6.9)

Since T, (z) < C1, it suffices to show that x + waxw* > (¢t + ¢)1. Using the
functional calculus, we see that

ep<zp<tp and t(1—p)<z(l-p) <C(1l-Dp).
We will also use the facts that w = w* and wpw* = p’, so that

wl—p—pluw*=1-p—p.
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It follows that
z 4+ wrzw* > (t(1 —p) + cp) + (wepw* + tw(l —p —p' + p')w*)
=t(l-p)+ep+ecp +t(L—p—p)+tp
=({t+e)p+(t+o)p +2t(1—p—p)
> (t+ )1,

which proves our claim.
We now put wy = w and choose n such that (2)"diamSp(z) < e. By
applying the preceding process n times, we get unitaries wi,...,w, such

that

diam Sp(Tw,, - - - T, (7)) < (g)ndiam Sp(z) <e.

We put
1 &
y="Ty, Tw(x)= 2‘nZuzxuf
i=1

and a = 5(min Sp(y) + maxSp(y)) € R. Then we have
ly — a1, < diamSp(y) <e.
Let now = be an arbitrary element of M. Applying the first part of the

proof to R(z) = 1(z + 2*) and /2, we get unitaries wy, ..., wx in M and
a € R with

1 k

— Z wiR(z)w; —all| <e/2.

k i=1 0o

We set y = %Zle w;S(z)w;, where §(z) = £ (z — z*), and apply the

first part of the proof to the self-adjoint element y and £/2, to get unitaries

wy,...,w; and o € R. Since z = R(z) + iY(x), we finally obtain
1Lk
HZZw}wmwf(w})*—(a—i—ia/)l <e/24+¢/2=c¢. O
j=1i=1 -

(ii) For every m > 1, there exist y, € K, and a, € C such that
lyn — anlll, < 1/n. The sequence (ay) is clearly bounded, so we may
assume that it converges to some o € C. Then, (y,) is a Cauchy sequence,
and so it converges to an element y € K, and of course y = al. Therefore,
we have K, NC1 # (.

COROLLARY 6.4.2. Let 7 be a tracial state on a von Neumann factor M.
Then, for every x € M, we have

K,NCl={r(x)1}.

ProOF. We remark that since 7 is tracial and norm continuous, it takes
the constant value 7(z) on K. It follows that K, N Cl = {7(z)1}. O
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Note that this gives another proof of the uniqueness of a tracial state on
a factor.

REMARK 6.4.3. The previous results of this section can be extended
without assuming that M is a factor. In particular, we still have K, N
Z(M) # 0 (see [Dix81, Chapter III, §5]).

When M is finite, instead of the existence of a tracial state one shows
the existence of a center-valued conditional expectation F : M — Z(M)
(see Definition 9.1.5), and one has K, N Z(M) = {E(z)}.

Theorem 6.3.5 is replaced by the following one:

THEOREM 6.4.4. Let M be a von Neumann algebra. The following con-
ditions are equivalent:

(i) M has sufficiently many normal traces, i.e., for every non-zero
x € M, there is a normal trace T on M with T(x) # 0;
(i) M has a center-valued conditional expectation;
(iii) M is finite.
A proof of this result is given in [Dix81, Chapter III, §8]. For an ele-
gant proof of the fact (iii) implies (i), using the Ryll-Nardzewski fixed point
theorem, see [Yea71].

Exercises

EXERCISE 6.1. Let 7 be a normal trace on a von Neumann algebra M.
Show that
{r e M:1(z*z) =0}
is a w.o. closed ideal of M, hence of the form Mz where z is a projection
in the center of M. Check that z is the largest projection p in M such that
7(p) = 0. The projection 1 — z is called the support of 7.

EXERCISE 6.2. Let M be a von Neumann algebra.

(i) If M is a direct sum of tracial von Neumann algebras, show that
M is finite.

(ii) If M is finite, show that there is a family (p;);c; of mutually orthog-
onal projections in Z(M) such that ", ;p; = 1 and each p;M is
tracial, so that M is a direct sum of tracial von Neumann algebras
(Hint: consider a maximal family of normal traces with mutually
orthogonal supports, and use Theorem 6.4.4).

(iii) If M is finite, show that M is countably decomposable if and only
if it is tracial.

EXERCISE 6.3. Let M be a finite factor and F' a finite subset of M.
Given € > 0, show that there exist unitaries ui,...,u, in M such that

1 n
— E wizu; —7(z)l|| <e
n

i=1

for x € F.
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Notes

The main arguments for the proof of Theorem 6.3.5 come from [MVIN36,
MvN37]. Later, this theorem was extended as Theorem 6.4.4, by Dixmier
[Dix49], to the case of any von Neumann algebra. The theorem 6.4.1, and

more generally the result mentioned in Remark 6.4.3, were also established
in [Dix49].



CHAPTER 7

The standard representation

In this chapter, we show that a tracial von Neumann algebra (M, 7)
behaves in many respects as any commutative one (L>(X,pu),7,). The

set M of closed densely defined operators affiliated with M on L*(M, 1)
forms a x-algebra analogous to the *-algebra of complex-valued measurable
functions on X. The Hilbert space L?(M,7) is embedded into M as the
space of square integrable operators. We also introduce the Banach space
LY(M, 1) of integrable operators, whose dual is M. Classical results such as
the Holder inequalities or the Radon-Nikodym theorem are extended to this
setting and we prove the Powers-Stgrmer inequality, which is specific to the
non-commutative case.

Finally, we show that the group Aut (M) of automorphisms of M has
a canonical implementation by unitaries in B(L?(M, 7)), a generalisation of
the Koopman representation in the commutative case.

7.1. Definition and basic properties

One of the main features of the representation of (M,7) in L?(M,T)
that we study below is that it makes M anti-isomorphic to its commutant.
It plays a crucial role in the study of all normal representations of M, as we
will see in the next chapter.

7.1.1. The standard representation. The GNS representation
(77, LQ(Ma 7),&7)

of the tracial von Neumann algebra (M, 7) has been introduced in Section
2.6. It is called the standard representation of (M, 7). We also say that
M is in standard form on L?>(M, 7). We recall from Section 2.6 that 7, is
a normal faithful representation. In particular, Theorem 2.6.1 implies that
7-(M) is a von Neumann algebra on L?(M, 7). We will identify 2 € M and
() and write x for m-(z)€. Also, we identify = with z&; and view M as
a dense subspace of L?(M, 7). Finally, we use the notation # when we want
to stress the point that x is considered as an element of L?(M, 7). Its norm
7(x*z)Y/? will be written ||z|,, ||Z[ly, [|2]|, or even ||Z|, . depending on the
context. ’

Since for z,y € M, we have 7 (z)§ = Zy, it is natural to view 7. ()
as the operator of multiplication to the left by x and to denote it by L.

97
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Similarly, the map ¢ — g is continuous:

15215 = 7(z"y"yz) = T(yza*y”) < ||lz]*]9l5-
We denote by R, the extension of this operator to L?(M, 7). Then x + R, is
an injective homomorphism from the opposite algebra M°P into B(L*(M, 7)).
We usually write £z instead of R,£. The ranges of L and R are respectively
denoted by L(M) and R(M). Clearly, these two algebras commute. Note
that L(M) = m.(M) = M.

The operator J : & — z* is an antilinear isometry from M onto itself,
which extends to an antilinear surjective isometry of L?(M,7) still denoted
by J (or Jys in case of ambiguity). We say that J is the canonical conjugation
operator on L?(M, 7). A straightforward computation shows that JL,J =
R~ for every x € M, whence JL(M)J = R(M). We will prove that L(M) =
R(M)" and give simultaneously another description of these algebras L(M)
and R(M).

Let £ € L?*(M, 7). We define the following two operators from M into
L3(M,T):

L)) = Ry(§) = &y,
RY() = Ly (&) = y&.

These operators are not bounded in general, but they are closable. Let
us show for instance this property for Lg. Let (z,,) be a sequence in M such

that lim, z, = 0 and lim,, Lg(@) = 1. Then, for y € M, we have, on one
hand,

(0. ) = lim (LY(F2). 9)
and, on the other hand,

(L), 9)

= (Ro, &0 = | (. B2, )
= [(&.ven)| < ligllsllysll,

< l€llallylloollznlly = €l lloo I Zally-

It follows that lim,, <L2(§;), Q> = 0, whence (n,3) = 0 for every y € M and
son=0."!

We will denote by L¢ and R¢ the closures of Lg and Rg respectively.
Whenever L¢ is a bounded operator, we say that L¢ (or &) is a left convolver
or that the vector & is left bounded. The set of left convolvers is denoted by
LC(M). Similarly, we define the set RC(M) of right convolvers. We have
the following generalisation of Theorem 1.3.6. It tells us in particular that
JM.J = M’, hence M and its commutant in B(L?(M, 7)) “have the same
size”.

10ne may also observe that M is contained in the domain of (L)*.
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THEOREM 7.1.1. Let (M, 7) be a tracial von Neumann algebra. Then
L(M)=LC(M)=R(M)
JL(M)J = R(M) = RC(M) = L(M)".

In particular, for ¢ € L>(M, ), the closed densely defined operator Le¢ (resp.
R¢ ) is bounded if and only if £ € M.

PROOF. We have obviously L(M) C LC(M) and R(M) C RC(M). Let
us show that L¢ o Ry, = R, o L¢ for £ € LC(M) and n € RC(M). Let ()
and (y,) be sequences in M such that lim,, z,, = £ and lim,, y,, = 7. Then
for a,b € M, we have

(b,wniyy) = ( Rows Lafi )-
s0 that limy, o0 <z§, :Undyp> — (Ry(JE), L(a)y). But
lim <13, xn&yp> = lim <B, Rayp:z;>
- <13, Raypg> - <z§, Lg(@> - <L§B, Lagjp>
and therefore we have

li/;n lign <l3, xndyp> = <Lzl;, Rnd>.

Similarly, we get

lim lim <B,mnayp> - <R;;B, L5&>.

n

It follows that
(b, LeRya) = (b RyLea)
and we conclude that L¢ and R, commute. Hence we have
L(M)c LC(M) C RC(M) c R(M)
and R(M)C RC(M)cC LC(M) c L(M)'.

Let us show that R(M)" ¢ LC(M). We take T € R(M)’ and put & = T1.
Then for z € M, we have

T#=TR,1 = R,T1= R.{ = (o = La.

Hence T = Lg on M and therefore T = L¢ since T' is bounded and L is
the closure of its restriction to M. Thus we have shown that LC (M) =
R(M) = RC(M)" and similarly we have RC(M) = L(M) = LC(M)’'. We
conclude the proof, using the bicommutant theorem, as we did in the proof
of Theorem 1.3.6. O
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7.1.2. The standard bimodule. We now introduce the notion of bi-
module over a pair of von Neumann algebras. As we will see in the sequel,
this is nowadays an essential tool in the study of these algebras.

DEFINITION 7.1.2. Let M and N be two von Neumann algebras.

(i) A left M-module is a Hilbert space H, equipped with a normal
unital homomorphism 7; : M — B(H).

(ii) A right N-module is a Hilbert space H, equipped with a normal
unital anti-homomorphism 7, : N — B(#) (i.e., a normal unital
representation of the opposite algebra N°P).

(iii) A M-N-bimodule is a Hilbert space H which is both a left M-
module and a right N-module, such that the representations
and 7, commute.

We will sometimes write p;H, Hy and pyHy to insist on the side of the
actions. Usually, for € € H, x € M and y € N, we will just write z€y instead
of (), (y)€.

The Hilbert space L?(M, 7) is the most basic example of M-M-bimodule.
It is called the trivial (or identity) or standard M -M -bimodule. Its structure
of M-M-bimodule is given by:

Vr,y € M,V¢ € L*(M,7), xfy= L,R,&=aJy*JE.

7.1.3. Examples of standard representations. Let (M, 7) be a tra-
cial von Neumann algebra and let m be a normal representation on a Hilbert
space H, and suppose that there exists a norm-one cyclic vector & in H
such that we, om = 7. Then = is naturally equivalent to the standard repre-
sentation. More precisely, let U be the operator from 7(M)&y into L*(M, )
sending 7(z)&y onto . Then U extends to a unitary operator, still denoted
by U, from H onto L*(M, 7) such that Un(x)U* = 7, (x) for every x € M.
Viewed as acting on H, the canonical conjugation operator is defined by
Jm(x)§o = m(z*)&o-

In particular, we remark below that the main examples of von Neumann
algebras given in Chapter 1 were indeed in standard form. We keep the
notation of this chapter.

(a) First, let us consider the case of the group von Neumann algebra
L(G) acting by convolution on ¢?(G) (see Section 1.3). The natural tracial
state 7 on L(G) is defined by the cyclic and separating vector d. € £2(G).
Therefore, L(G) is in standard form on ¢2(G). In this example, J is defined

by JE(t) = £(t71) and, for every t € G, we have JA(t)J = p(t). It follows
that JL(G)J = R(G) and we retrieve the fact that R(G) = L(G)'.

(b) Second, let M be the crossed product L>®(X,u) x G = L(A,G)
relative to a probability measure preserving action G ~ (X, u), where we
put A = L>®(X, u). We use the following convenient notation introduced in
Section 1.4: for f € L?(X, u),

Jug=f®d4 € L*(X, 1) @ £2(G).
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The vector u, = 1 ® 4§, is cyclic for M and defines the canonical trace on M
which is therefore in standard form on L?(X,u) ® ¢?(G). The conjugation
operator J is defined by

Jfug =041 (f)ug-1.

and it is also straightforward to check that

JL( Z agug)J = R( Z uyay) = R( Z ag(az,l)ug).

geG geG geG

This shows that L(A,G) = R(A, G).
When L%(X, p) ® £2(G) is identified with L2(X x G, u ® \) (where A is
the counting measure on G), we have

Jg(ZC, t) = §(t_11‘> t_l)'

For group actions which are free, this is the formula given in the next para-
graph, after identification of X x G with the graph of the orbit equivalence
relation.

(c) Let us consider now the case of a countable probability measure
preserving equivalence relation R on (X, u). With the notation of Section
1.5.2, the representation of L(R) on L?(R,v) introduced there is standard
since 1A is a cyclic vector which defines the canonical trace on L(R). For
¢ € L?(R,v) we have J¢(x,y) = £(y,x) and, given F € My(R), one sees
that JLpJ = Rp~. Therefore we obtain the equality L(R)" = R(R).

(d) For our last example, we keep the notation of Section 5.3.2. Let
(M, 71), (M3, 12) be two tracial von Neumann algebras. The representation
of (M,7) = (My,71) * (M2, 72) on the Hilbert space H constructed in this
section is standard since there is a vector £ € H which induces the trace 7
and is cyclic.

The canonical conjugation operator J is defined by J¢ = £ and

J(@1&ry @ -+ @ Tnék,) = Tk, @ -+ - @ Ty,

o
for x; e My, with ky # ko # -+ # ky. For x € M;, we have J\;(x)J =
pi(JizJ;), where J; is the canonical conjugation operator on L?(M;, 7;). It
follows that M’ = JM.J is the von Neumann algebra N defined in Section
5.3.2.

7.2. The algebra of affiliated operators

Let (M, T) be a tracial von Neumann algebra on a Hilbert space H. We
show in this section that the closed densely defined operators on H affiliated
with M behave nicely.
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7.2.1. Closed densely defined operators. We recall here a few im-
portant facts concerning unbounded operators and the spectral theory of
(unbounded) self-adjoint operators?.

Let x be a self-adjoint operator on a Hilbert space H, that is, a densely
defined operator (possibly unbounded) such that z = z*. Its spectrum Sp(z)
is a closed subset of R. The bounded Borel functional calculus defines an
algebraic *-homomorphism f — f(z) from the algebra B, (Sp(z)) of bounded
Borel complex-valued functions on Sp(z) into B(H).

This functional calculus enables the construction of the spectral measure
E:Q — E(Q) = 1g(z) of z, defined on the Borel subsets of Sp(x). As in
Section 2.2, setting E} = E(] — 00, t]), we use the notation

f(x) = /S Jwas,

The functional calculus may be extended to the algebra B(Sp(z)) of all
Borel complex-valued functions on Sp(z), as follows. Let f € B(Sp(z)).
Then f(x) is the operator with domain

Dom (f(z)) = {77 €EH: IF (&) dln, Em) < +OO}, (7.1)

Sp(z)
and defined, for £ € H and n € Dom (f(z)) by

(&, Flaym) = / £(t) A€, Evn).

Sp(z)
We get a closed densely defined operator, which is self-adjoint whenever f is
real-valued. Again, we write f(z) = fsp(x) f(t) dE;. In particular, we have
T = fsp(x) t dE;. It is useful to have in mind the following formula:

¥ € Dom (f(2)), |If(z)nll” :/s ( )If(t)lzd(n,Em% (7.2)
p(z

We say that y € B(H) commutes with an unbounded operator z if yz C
zy, that is, Dom (yz) C Dom (zy) and zy = yz on Dom (yz). Equivalently,
we have y(Dom (z)) C Dom (z) and 2y = yz on Dom (z). An operator
y € B(H) commutes with a self-adjoint operator z if and only if it commutes
with all its spectral projections F(£2), and if so, it commutes with f(z) for
every f € B(Sp(x)).

As in the bounded case, the polar decomposition is a useful tool.

PROPOSITION 7.2.1. Let x be a closed densely defined operator on H.
Then

(i) =*x is a positive self-adjoint operator;
(ii) there exists a unique partial isometry u such that r = u|x| and
Ker z = Keru where, by definition, |z| = (z*z)'/2.

2For details we refer to [RS80, Chapter VIII].
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The expression x = wu|z| is called the polar decomposition of x. The
delicate part of the proof is to show that z*z is a self-adjoint operator?.
Morever z*x is positive, that is (§,z*z{) > 0 for £ € Dom (z*x). Then
|z| is defined via the functional calculus, and the rest of the proof is easy™.
We recall that u*u is the projection s,(x) on (Kerz)! and that uu* is the
projection s;(x) on the norm closure of Imz. These projections s,(z) and
si(x) are called respectively the right and left support of x.

Note also that an operator y € B(H) commutes with z if and only if it
commutes with u and |z|.

7.2.2. Operators affiliated with a tracial von Neumann algebra.

DEFINITION 7.2.2. Let M be a von Neumann algebra on a Hilbert space
H. We say that an (unbounded) operator x is affiliated with M, and we
write x € M, if for every unitary operator u € U(M'), we have uxr = xu.

This means that the operators uz and xu have the same domains and
coincide on this common domain. In particular, we have

u(Dom (z)) = Dom (z)

for every u € U(M'). Since every y € M’ is a linear combination of four
unitary operators in M’, we see that x € M if and only if z commutes with
every y € M'. .

We denote by M the set of all closed densely defined operators affili-
ated with M. Let us record the following consequence of the bicommutant
theorem and of the results recalled in the previous section.

ProrosiTiON 7.2.3. Let M be a von Neumann algebra on H. Let x
be a closed densely defined operator on H and let x = u|z| be its polar

decomposition. Then x € M if and only if u and the spectral projections of
|z| are in M.

In particular, when = € M, its left and right supports s;(z) and s,(z)
belong to M.

We now consider the case where M is equipped with a faithful normal
tracial state 7. We will see that, under this assumption, M behaves nicely.

PROPOSITION 7.2.4. Let (M, T) be a tracial von Neumann algebra on H
and let x,y € M be such that x Cy. Then z = y.

PROOF. Recall that x C y means that Dom (z) C Dom (y) with x =
YlDom (z)- Let G(x) = {(§,2€) : £ € Dom (z)} be the graph of z. Note that =
is a closed operator precisely when G(x) is a closed subspace of H&H = HP2.
Similarly, we introduce the graph G(y) of y. Let [G(z)] and [G(y)] be the
orthogonal projections of 2 onto G(z) and G(y) respectively.

3See for instance [Yos95, Theorem 2, p. 200].
4For another proof see [RS80, Theorem VIII.32].
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The algebra Ma(M) of two by two matrices with entries in M is a von
Neumann subalgebra of B(H®?). Its commutant is

My(M) = {(8 2) La€ M’}.

We claim that the projections [G(x)] and [G(y)] are in My(M). Indeed,
since x € M, for every u' € U(M') we have u'z = zu/, from which we get

(5 o)icwi=cwi(y 1)
It follows that [G(x)] € Ma(M)"” = My(M) and similarly for [G(y)].

(1) 8) € My(M). Then p; is the left support of p1[G(x)] and
[G(z)] is its right support. The same observation holds for [G(y)]. It follows
that, in Ma(M),

Set p1 = <

[G(2)] ~ p1 ~ [G(y)].
Now, since x C y, we have G(z) C G(y) and therefore [G(z)] < [G(y)].
Since My(M) has a faithful tracial state, we conclude that [G(x)] =
that is, G(z) = G(y), whence = = y.

Let z, y be two closed densely defined operators on H. Then
Dom (z + y) = Dom (z) N Dom (y).
In general this space is not dense in H and can even be reduced to 0 (see

Exercise 7.3). When z,y € M , we will see that « 4 y is a densely defined

closable operator and we will be able to define an addition in M. Similarly,
we will define a product. These facts rely on the following lemmas.

LEMMA 7.2.5. Let x € M. Then, for every € > 0, there exists a projec-
tion p € M such that pH C Dom (x) and 7(1 —p) < e.

PROOF. Let x = u|z| be the polar decomposition of z and denote by p,
the spectral projection of || relative to [0, n]. Then, we have p,H C Dom (z)
and lim,, 7(p,) = 1. We choose n large enough so that 1 — 7(p,,) < e. O

LEMMA 7.2.6. Let V' be a vector subspace of H such that for every e > 0,
there exists a projection p € M with pH C V and 7(1 —p) <e. Then V is
dense in H

PROOF. It suffices to construct an increasing sequence (g,) of projec-
tions with \/, ¢, = 1 and ¢,{ C V. For every integer k > 1, we choose a
projection p, € M such that ppH C V and 7(1 — pi) < 27%. We put

gn = /\ Dk
k>n
Then we have ¢, H C V and

P =7 (V- p0) < Y- p < T2k =2

k>n k>n k>n
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by Lemma 7.2.7 below. Since 7 is normal, we get 7(1 —\/,, ¢») = 0, whence
\/n qn = 1' l:'

LEMMA 7.2.7. Let (p;)ier be a family of projections in (M, 7). Then

(\/p) <D 7o), (7.3)

il icl
PRrOOF. Given two projections p,q € M, by Proposition 2.4.5 we have

T(pVg—p)=7(@—pAq),

and therefore 7(p V q) < 7(p) + 7(¢q). By induction, we get the inequality
(7.3) when [ is a finite set, and the general case uses the normality of 7 and

the fact that
\/Pi = \/( \/ pi)

icl F icF
where F' ranges over the finite subsets of I. O

THEOREM 7.2.8. Let (M,7) be a tracial von Neumann algebra on a
Hilbert space H.

(i) Let x € M. Then z* € M.
(ii) Let z,y € M. Then z + y and xy are closable and densely defined,
and their closures belong to M.
(iii) M, equipped with the three above operations, is a *-algebra.

PROOF. (i) is obvious. Let us show that if z,y € M, then z + y is
densely defined. To that purpose, we show that Dom (z + y) satisfies the
condition stated in Lemma 7.2.6. Given € > 0, let p,q € P(M) be such that
pH C Dom (z), ¢H C Dom (y), and 7(1 —p) < ¢e/2, 7(1 — q) < ¢/2. Then
we have

(pAq@H =pHNgH C Dom () N Dom (y) = Dom (z + y),
and

Tl=pAg)=7((1-p)V(l-q)
<7t7(1l-p)+7(1—9q) <e.

Hence = + y is densely defined and of course affiliated with M. Since
x* and y* are also affiliated with M, we get that x* 4+ y* is densely defined.
Since x+y C (z* +y*)*, we see that x +y is closable. We denote by z+vy its
closure. It is a routine verification to check that the closure of an operator
afiliated with M retains the same property. Therefore, x+y € M.

To prove that xy is closable, we consider the projections p,q as above.
The operator yq is closed and everywhere defined, hence bounded. Let r
denote the projection on the kernel of (1 —p)yq. Then rH C Dom (zyq) and
thus (¢ Ar)H C Dom (zy). Note that 1 —r 31 —p. It follows that

Tl=(gAr)=7(1-¢)v(Q-r) <7(l-g)+7(l-p) <e
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Thus, zy is densely defined, and we conclude as for z +y that zy is closable.
Its closure 'y belongs to M. s

It remains to show that these operations give to M the structure of a *-
algebra. Let us explain for instance how to prove the distributivity property
z (y+2) = (z'y)+(2"2). From the inclusion xy + 22 C z(y + 2), we deduce
that (zy)+(z2) C ' (y+2). Then we use Proposition 7.2.4 to deduce the
equality. O

For simplicity of notation, in the sequel, we will often write x +y instead
of x4y, and similarly for the product.

EXAMPLE 7.2.9. Let M = L*°(X, u) where (X, p1) is a probability mea-
sure space and take for 7 the integral with respect to u. We consider the
standard representation of M on L?(M,u). Let f : X — C be a mea-
surable function. Denote by My the multiplication operator by f, with
Dom (My) = {€ € L*(M,p) : f§ € L*(M,p)}. Then My is closed, densely
defined, and affiliated with M. Conversely, every closed densely defined
operator affiliated with M is of this form®. Therefore, M can be identified
with the *-algebra of complex-valued measurable functions on X (modulo
null sets).

In particular, the spaces LP(X, u), p € [1,+00], are canonically embed-

ded in M. This property still holds for any tracial von Neumann algebra.
We will study this fact for L? in the next section.

7.3. Square integrable operators

In this section, (M, ) is a tracial von Neumann algebra represented in
standard form on L?(M, 7).

7.3.1. Square integrable operators.

DEFINITION 7.3.1. A closed densely defined operator x on L?(M,7) is
said to be square integrable if it is affiliated with M and is such that 1 €
Dom ().

Given ¢ € L?(M,7), we have introduced in Section 7.1.1 the closed
densely defined operator L¢ and proved (Theorem 7.1.1) that this operator

is bounded if and only if £ € M c L?(M,7). In the general case, the
operator L¢ has the following characterisation.

THEOREM 7.3.2. For every € € L*(M,T), the operator L¢ is square
integrable. Moreover, the map £ — L¢ is a linear bijection from L?(M,T)
onto the space of square integrable operators.

PROOF. Let & € L2(M, 7). Every unitary operator in M’ = R(M) is of
the form R,, where u € U(M). Then, for x € M, we have

RuLe(Ry)*# = RyLezu* = RyRpy-€ = Ryuruf = Rof = Lei.

5See for instance [KR97, Theorem 5.6.4].
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Since M is an essential domain of both operators RyL¢(Ry)* and L, they
coincide. Therefore, L¢ is affiliated with M. Moreover, 1 is in the domain
of L¢, and so L¢ is square integrable.

Let us show that the map § — L¢ is linear. For §,n € L?(M,7), we have

L¢pn = L+ Ly C LetLy,

and therefore the closure L¢y, of Lg 4y is such that Leyy C L¢+Ly,. Then,
Proposition 7.2.4 implies the equality.

The map § — L¢ is obviously injective since § = Lgi. It remains to show
the surjectivity. Let T" be a square integrable operator, and set £ = T1. Then
for x € M, we have

L¢i = R,T1=TR,1 =T4.
We deduce that Lg C T and again L¢ = T', thanks to Proposition 7.2.4. [

We will freely consider the elements of L?(M,7) as operators. Under
this identification, for x € M and ¢ € L?(M,7), we may view z€ and £z
as the product of two operators in M. The adjoint corresponds to the
conjugation operator J introduced in Section 7.1.1: for & € L?(M, 1), we
have (L¢)* = Lje. Indeed, let z,y € M. Then,

(& Lef) = (@ By6) = (o0",)
= (J&.ya* ) = (RoJE,§) = (Lyed, §).

We deduce that Lje C (L¢)*, whence Lje = (L¢)* by Proposition 7.2.4.
It is therefore natural to write J&¢ = £* and to say that £ is self-adjoint
if £ = J¢, or equivalently if Le = (L¢)*.

PROPOSITION 7.3.3. Let &€ € L?>(M,7). The following conditions are
equivalent:
(i) € is self-adjoint;
(ii)) (&, 2) € R for every x € Mg q;
(iii) there exists a sequence (xy) in Msq such that limy, ||z, — £, = 0.

PROOF. For & € L2(M, 1) and z € M, 4, we have

(6, 2) = (J&, )
from which we immediately deduce the equivalence between (i) and (ii).
Let us now show that (i) = (iii). Let £ = J¢ € L?(M, 7). There exists a
sequence (zy,) in M such that lim,, ||z, — &||, = 0. We put y, = (zp+2z},)/2 €

Ms.,. Since ‘ s — J§H2 = ||z, — &||5, we see that limy, ||y, — ||, = 0. The
converse is also straightforward. ([

Hence, the real subspace L?(M, 7)s., of self-adjoint elements is the norm
closure of M,,.



108 7. THE STANDARD REPRESENTATION

We say that an element ¢ € L?(M, 7) is positive if the corresponding ope-
rator L¢ is self-adjoint and positive, i.e., (n, Lgn) > 0 for all n € Dom (Lg).
We will denote by L?(M, ) the subset of such &.

PROPOSITION 7.3.4. Let ¢ € L?>(M,7). The following conditions are
equivalent:

(i) & is positive;
(ii) (z,&) > 0 for every x € M, ;
(iii) there exists a sequence (xy) in My such that lim,, ||z, — ||, = 0.

PrOOF. We remark that ¢ is positive if and only if (&, L¢z) > 0 for every
x € M. We write z € M, as x = yy*, and get

(#,8) = (9, Led),

from which we deduce the equivalence between (i) and (ii).

Let us prove that (iii) = (i). Suppose that there exists a sequence (z,,)
in M, such that limy, ||z, — £||, = 0. Then we have £ = J¢ by the previous
proposition. Morever, if we write z,, as x,, = y,y, we have, for every x € M,

(T, 2n®) = (YT, Yn®) > 0,
and
(@,LS@ = (%, Rx&) = lim (&, R, @y,) = lim (%, x,&) > 0.

It remains to show that (i) = (iii). Assume that £ is positive and for
n € N, denote by e, the spectral projection of ¢ relative to [0,7]. Then
ené € M, and we have lim, |e,§ — £||, = 0. O

We remark that the polar decomposition & = u|€| allows us to write
any element in L?(M,7) as the product of a partial isometry in M and
an element of L?(M, 7). Let us observe also that if & € L2(M,7) is self-
adjoint, then &, = %(]5\ +¢) and £ = %(]f\ — ¢) are in L2(M,7),. Thus,
every element of L?(M) is a linear combination of four elements in L%(M) .

REMARK 7.3.5. Let € M and let E be the spectral measure of |z].
Then z is square integrable if and only if 1 € Dom (|z|), that is, if and only

if
/W dr(E;) = / 1t d(1, B 1) < +oo,
R R

and then, after having identified = with 21, we have

]2 = /R 2 dr(E) (7.4)

(see (7.1) and (7.2)).



7.3. SQUARE INTEGRABLE OPERATORS 109

7.3.2. The Powers-Stgrmer inequality. For a € M, we will denote
by 7, the linear functional = + 7(ax) defined on M. Note that 7, = wy ;. If
a € M., then 7, is a positive linear functional and we have 7, < ||a||, since

7a(2) = 7(¢'az'?) < J|a|7(x)
for every x € M. We have the (easy) Radon-Nikodym type converse.

ProprosITION 7.3.6 (Little Radon-Nikodym theorem). Let ¢ be a
positive linear functional on M and assume the existence of A € Ry such
that o < At. Then there exists a unique a € M with ¢ = 7,, and we have
0<a<AlL

PrROOF. We may assume that A = 1. We define a linear functional ¢ on
M by ¥ (&) = ¢(x). By the Cauchy-Schwarz inequality, we have

(@) < p(Dp(az) < r(a*z) = || &5,

and so ¢ extends to a continuous linear functional on L?(M, 7), still denoted
by 9. Therefore, there exists ¢ in L?(M,7) such that 1 (n) = (¢, n) for every
n € L?(M, ), and in particular ¢(x) = (¢,2). Using Proposition 7.3.4, we
see that ¢ is positive. Similarly, we have

(I-¢i)=1(2)—p(z) 20
for all z > 0, and so 1 — & > 0. Since 0 < &€ < 1, we get that £ = G with
a € M and 0 < a <1, whence ¢ = 7,.

Assume that ¢ = 7, for another b € M. We get 7((a — b)(a — b)*) =0,
and therefore a = b. O

The element « is called the Radon-Nikodym derivative of ¢ with respect
to 7.

For ¢ € L?(M,T), recall that we is the positive linear functional x
(&, z€) on M. The following very useful result is a substitute for the obvious
fact in the commutative case, saying that whenever &£, are two positive
functions, then |£ — 77|2 < ‘§2 — 772‘.

THEOREM 7.3.7 (Powers-Stgrmer inequality). We have

1€ = 1ll3 < llwe = wnll < 1€ = nllall€ + 7l (7.5)
for every &,n € L*(M, 7).

PrOOF. The right hand side inequality follows immediately from the

identity
we = wy = (1/2)(We—pe1n + Wesne—n)-
Let us prove the left hand side inequality. We begin by the study of the case
where { = a and 1 = b with a,b € M. Then wg = 7,2, w, = 72 and we
have to prove that
la = b]13 < 72 — 72 .

Let p, g be the spectral projections of @ — b corresponding respectively to the
intervals [0, +oo[ and | — 00, 0[ so that a —b = (p — ¢)|a — b|.
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Since ||p — ¢|| < 1, we get the inequality
[7((@® = 0*)(p = )| = (722 = 12) (0 — D)| < 702 = 72
The goal of the rest of the proof is to establish the inequality
la = Bl13 < |7 ((a® = 6*)(p - @))]-
We first claim that
7((a* = b*)p) > 7((a — b)?p). (7.6)
Indeed we have
7'((&2 — b2)p) — T((a — b)2p) = T(b(a — b)p) + T((a — b)bp)
=27 (b"(a — b)pb/?) > 0,

since (a — b)p > 0.
Similarly, we get

7((b* — a?)q) > 7((b - a)*q). (7.7)

Adding up (7.6) and (7.7), we obtain

7((a* = 0*)(p — q)) = 7((a® = V*)p) + 7((* = a*)q)
>7((p+a)a—0)?) =7((a—b)?) = la—bl3.

We now consider the general case. We chose sequences (ay,) and (by,) in
M such that lim, ||a, — £||2 = 0 and lim, ||b, — 1|2 = 0. Passing to the
limit in the inequality

lan — ball3 < llwa — wyll
gives the first inequality of (7.5). O

The following theorem says that any normal positive linear functional
on M is canonically written as a vector state.

THEOREM 7.3.8. The map & + we is a homeomorphism from L3(M,7)4
onto the cone of all normal positive linear functionals on M.

PROOF. The injectivity is a consequence of the left inequality in (7.5).
Let us prove the surjectivity. Let ¢ be positive normal linear functional on
M. We first claim that for every € > 0, there is @ € M such that ||p—w;|| <
e. Indeed, by Theorem 2.5.5 (3) there exist &1, ...,&, in L?(M, 7) such that
lo—> i, we, || < e/2 and so we see that we may find ay, ..., an € M with

m
o= wal < e

k=1

But > " wa = 7 with b = >3 agaj > 0. To conclude our claim it
suffices to put a = b/2.
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Now, we take a sequence (by,) in M such that lim, w;~ = ¢. Thanks to

~

the Powers-Stgrmer inequality, we see that (b,) is a Cauchy sequence which,
therefore, converges to an element ¢ € L?(M,7)y, and then ¢ = we.

The fact that { — w¢ is a homeomorphism follows from Theorem 7.3.7.

O

As a consequence, a positive normal linear functional is w.o. continuous
on M in standard representation, (and not only when restricted to its unit
ball). For the abelian case, see Remark 2.5.13.

PROPOSITION 7.3.9. Let (M, 1) be a tracial von Neumann algebra and
let Z be its center. The restriction of the trace to Z is still denoted by 7. We
identify L*(Z,7) to a subspace of L*(M, 7). The map & € L*(Z,7)+ — we
s a bijection onto the cone of normal traces on M. In particular, if 7 and
To are two mormal traces on M with the same restriction to Z, then 7 = T».

PROOF. For & € L?(M, 1), the functional we is a trace if and only if
the positive (possibly unbounded) operator ¢ commutes with M. One only
needs to observe that, for x € M and u € U(M),

we(uru®) = wyreu()

with u*zu € L?(M, 7). The proposition follows immediately. O

7.4. Integrable operators. The predual
Still, (M, 7) is a tracial von Neumann algebra represented in standard
form on L?(M, 7).

DEFINITION 7.4.1. Let 2 € M and let E be the spectral measure of ||
We say that z is integrable if

/ ] dr(Ey) = / 1 d(1, B 1) < +o0,
R R
where E; = E(] — 00, t]) as always.

We denote by L'(M,7) the set of integrable operators. More generally,
for p > 1, we may define LP(M, 7) as the set of 2 € M with Sz [P dr(Ey) <
+oo. Of course, we set L>°(M,7) = M. These LP-spaces behave as in the
commutative case. In the previous section, we have studied the case p = 2.
The additional case p = 1 will be enough for our needs. Obviously, we have

M c L*(M,T) C L*(M, 7).

We will see that L!(M,7) is a Banach space whose dual is M.
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7.4.1. Integration on MJr. First, we extend Thar, to a map 7 from the

cone M+ of positive elements of M into [0, +00], by the formula

r(z) = / tar(E,) = / rd(i, B,
Ry Ry
where E is the spectral measure of x.
LEMMA 7.4.2. For x,y € M+ and A > 0, we have
T(x+y)=7()+7(y), 7(Ax)=A(2).
Moreover, for every x € M, we have
T(z*z) = T(xx™). (7.8)

ProOOF. We denote by e, the spectral projection of x + y corresponding
to the interval [0,n]. Then we have

T(z+y) =lim7((x + y)e,) = lim (e e, + enyen).

But the operators e, ze, and e, ye, are bounded and both sequences (7(e,zey))n,
(T(enyen))n are increasing. Thus

T(z+y) = 1111111(7(6”336”) + 7(enyen))
= lim7(epzey,) + im 7(epyey)
n n

2 2
+ lim ‘xl/QeAnH .
2 n 2

‘xl/QeAn

= lim
n
When 7(z) < 400 then /2 € L?(M, 7) and we get

2 2
lim ‘ = Hxl/zHQ = 7(x).

’x1/2é7\1

2

Therefore we see that 7(x + y) = 7(z) + 7(y) when 7(z) < +o0 and 7(y) <
+00. Whenever 7(z) = 400 we claim that lim,, 7(e,xe,) = +00. Otherwise,
(z'/26,) is a Cauchy sequence in L?(M, 1), thus converging to some . Since
272 is a closed operator, we deduce that 1 is in its domain with z1/21 = &,
a contradiction. Then, since

T(en(x 4+ y)en) > T(enxey),

we get that 7(x + y) = +o0 = 7(z) + 7(y).

The proof of 7(Az) = Ar(z) is immediate. Finally, given z = u|z| € M
where u € U(M) (by Lemma 6.1.3), to see that 7(z*z) = 7(xz*), or equiv-
alently that 7(|z|*) = 7(ulz|?u*), it suffices to observe that Ej(u|z|*u*) =
wEy(|z|*)u*, where Ey(k) is here the spectral projection of k € M, relative to
| — 00, t]. Tt follows that 7(Ey(u|z[*u*)) = 7(uE,(|z[*)u*) = 7(E(|z]?). O
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We set
n= {1‘ eM: T(z*x) < +oo},

n
= {szyz P, Yi € ﬂ}'
i=1

LEMMA 7.4.3. Let 7: M, — [0, 4+00] as above. Then
(a) n and m are linear self-adjoint subspaces of M which are stable
under left and right multiplications by elements of M ;
(b) mNM; = {a? eM, :7(zx) < +oo} and m is linearly generated by
mn M+ 5 N
(c) the restriction of T to m N M extends in a unique way to a linear
functional on m (still denoted ) and we have T(x*) = 7(x) for

every r € m;
(d) 7(zy) = 7(yx) if either z,y € n orxz € M and y € m.

PRrROOF. (a) Let z,y € n. We have
(+y) (@ +y)+ @ -y)(@—y) = 2"z +y"y),

whence 7((x + y)*(z + y)) < +oo. Thus, n is a linear subspace of M, of
course self-adjoint. Obviously, ux € n for every u € U(M), and so, n is a
M-bimodule. The corresponding assertion for m is immediate

(b) Let z =37, x}y; with x;,y; € n. Since

n 3
Z Zz (5 + i) (x; + i*y;)

7=1k=0

we see that m is linearly spanned by m N M+. Whenever z is self-adjoint,

we get,
n n

4z =Y (i +y) (@ + ) — Y (w5 — yj)*(wj — y5)-
j=1 Jj=1

So z is the difference of two elements of m N MJ,_. Moreover we have

n
2 <Y (@4 ) (2 + ),
j=1
and it follows that m N M/_A'_ - {x € ]TJ; (T(x) < —i—oo}. The opposite inclu-
sion is obvious.
(c) Every element x € m is written as x1 — x2 + i(x3 — x4), where the z;
are in m N M,. Then we set 7(z) = 7(21) — 7(22) +i(7 (23 — 7(24)). Since 7
is additive on M+, we see that this definition is not ambiguous. Moreover,
this extension 7 is linear and self-adjoint.



114 7. THE STANDARD REPRESENTATION

(d) The equality 7(zy) = 7(yz) for x,y € n is deduced from (7.8), by
polarization. Finally, for x € M and y1,y2 € n, we get

T(x(y1y2)) = T((vy1)y2) = 7(y2(zY1)
= 7((y22)y1) = T(y1(y27)) = 7((y192) 7).

The second assertion of (d) follows by linearity. O

REMARK 7.4.4. We could have observed from the beginning that n =
L?(M, 1), showing in this way that n is a M-bimodule linearly generated by
its positive cone. Indeed, this observation follows immediately from Remark
7.3.5 and the definition of 7(z*z) = 7(|z|*), since E;(|z|) = Ep2(|z|*), where,
for s > 0 and y € My, we denote by E,(y) the spectral projection of y
relative to | — oo, s].

So, when § € L*(M,7), we have €], = [[¢]l, = 7(6°)/2 and by
polarization we get

v§7 ne LQ(Mv T)v T(f*m N <§7 77>L2(M) (79)

In particular, wg , is the linear functional x € M — 7({*xn).
On the other hand, we see that

m={zeM:r(a]) < +oo} = L{(M,7),

after writing z as x = (u\:(:|1/2)(|ac]1/2). Moreover, L'(M,7) is the set of
products of two elements of L*(M, 7).

7.4.2. The predual of M. Given a € L' (M, 1), we set ||a|; = 7(|al).
Moreover, we denote by 7, the linear functional = — 7(ax) defined on M.
This is compatible with the definition of 7, previously introduced when
a € M. We also observe that we, = 7+ for every &, € L?*(M,7). In

1/2

particular, 7, = we, with £ = [a|/” and n = u]a\lﬂ is w.o. continuous.

THEOREM 7.4.5. Let (M, 7) be a tracial von Neumann algebra acting on
L*(M,T).
(i) The map a +— 7, is linear, injective, from L*(M,T) onto the space
M, of w.o. continuous linear functionals on M in standard form,
and we have

I7all = 7(lal) = llall;- (7.10)

Moreover, the linear form 1, is positive if and only if the operator
ais in LY(M, 7).

(ii) (LY(M,7),|]-|l;) is a Banach space whose dual is M when x € M
is viewed as the functional a — 7(azx).

(iii) The topology o (M, M.,) is the w.o. topology associated with the stan-
dard representation.
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PROOF. (i) Let us prove Equality (7.10), which will imply the injectivity
of the map a — 7,. Let a = u|a| be the polar decomposition of a. For x € M,
the Cauchy-Schwarz inequality gives

|7a(z)| = ‘T(‘a|1/2<m‘a’1/2>)‘ _ <\a|1/2,xuya\1/2>
< ||ia 2| |feulal™], < 7(al 2l r(la) 2
< 7(la))]|2l o

whence ||7,]| < 7(|a|). Taking x = u* we get 7,(u*) = 7(|al), and so the
equality in (7.10).

The map is surjective since every positive element in M, is of the form
we = Te2 with § € L*(M,7)4+ (see Theorem 7.3.8) and since M, is lincarly
generated by its positive elements (by polarization).

The last assertion of (i) is immediate.

(ii) We will identify M, and L'(M, 7). Using the polar decomposition
a = ula|, we observe that every ¢ = 7, € M, may be written ¢ = we, with

1/2 1/2 1/2
¢ = la'/?,n = ula]'’? and so ||¢]l, = 1], = [ol">.

We claim that M, is closed in M*. Let w be in the norm closure of M,.
We have w = 372 | ¢ where ¢y, is w.o. continuous and ||| < 27 for k >
2. So, by the above observation, we get w = 3", we, n, With 3, [|€k]3 < +o0
and 3", [|7k]|3 < +o00. By polarization, we see that w is a linear combination
of positive normal linear functionals, and so w € M, (by Theorem 7.3.8).
As a consequence, M, is complete and so is L'(M, 7).

Finally, we prove that M is the dual of L'(M, ), or of M,. For x € M
let z be the linear functional w — w(z) defined on M,. It is easily checked
that ||| = ||| for € M. Now, let v € (M,)*. The map (§,n) — (v,wey)
is sesquilinear and continuous and therefore there exists an operator = €
B(L?(M, 7)) such that

<U7w£777> = <§7 3377>
for every &,n € L?(M, 7). Given y € M, the functionals induced on M by
We,yn and wys¢ , are the same. It follows that z commutes with y, whence

x € M, and finally 7 = v.
(iii) is obvious. O

REMARK 7.4.6. Note that M is naturally embedded in L'(M, 7). Since
M is the dual of L'(M, ), to show the density of this embedding, it suffices
to check that if © € M satisfies 7,(x) = 0 for all a € M, then x = 0. This
is obvious, because 7 is faithful: taking a = z*, we get 7(z*z) = 0 and so
r = 0. So L'(M,7) may be defined abstractly as the completion of M for
the norm ||||;.

REMARK 7.4.7. Observe that M, is the subspace of M* linearly gener-
ated by the positive normal linear functionals, which coincide in the standard
representation with the w.o. continuous positive ones. Since normality only
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depends on the ordered cone M, we see that M, does not depend on the
choice of 7. It is called the predual of M.

More generally, for any von Neumann algebra M we may introduce
the subspace M, of M™* linearly generated by the positive normal linear
functionals. One of the basic results in the subject states that M is cano-
nically identified to the dual of M,, that M, is a closed subspace of M* and
that M, is the unique predual of M, up to isomorphism [Dix53, Sak56].
In addition to the example of tracial von Neumann algebras just studied,
we mention the well-known fact that the von Neumann algebra B(H) is the
dual of the Banach space S'(H) of all trace-class operators, i.e., operators
T on H such that Tr(|T'|) < 400, where Tr is the usual trace on B(H)y (see
[Ped89, Section 3.4]).

REMARK 7.4.8. It is a classical fact that the unit ball of M, is weak*-
dense in the unit ball of its bidual M*. Moreover, every (norm continuous)
state 1) on M is the weak™ limit of a net of normal states. Indeed, if ¢ in not
in the closure of the convex set C' formed by the normal states, the Hahn-
Banach separation theorem implies the existence of a self-adjoint element
x € M and a real number a such that ¢ (z) > « and ¢(z) < « for every
¢ € C. But then z < al, so that ¢¥(z) < a, a contradiction.

The general non-commutative version of the Radon-Nikodym theorem is
contained in the statement of Theorem 7.4.5. Let us spell out this important
result.

THEOREM 7.4.9 (Radon-Nikodym theorem). Let (M, 7) be a tracial
von Neumann algebra. For every ¢ € M, there is a unique a € L*(M,T)
such that ¢ = 7,. The operator a is called the Radon-Nikodym derivative of
© with respect to T.

For further use, we also record in another form the Holder inequalities
(Exercise 7.6):

Va € LY(M,7),Ye € M, |r(az)| < |laz|, < |al |2/, (7.11)
vé,n e LX(M,7), [r(&m)] < [lgnlly < 1€llslnll,, (7.12)

and the Powers-Stgrmer inequality:
Ve e LAM, )y, € —all; < 1€ =, < llE=nllolé+nll,  (7.13)

(recall that for £ € L?(M ), we have we = 7¢2).
Finally, note that given &,n € L?(M,7), the classical inequality

1€l = [nlllz < 1€ =l

is no longer true in the non abelian case, but is replaced by the following
one:

LEMMA 7.4.10. For &,m € L*(M, 1) we have
2
1€l = Tnlllz < 2max([[€]ly, [l 1€ = nll,-
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PROOF. As a consequence of the Powers-Stgrmer inequality we get

2 2 2
gl = 1l < {16 = 1r?
= llwge = e
< llg+nllyll€ = nl:

the last by (7.5), whence the wanted inequality. O

7.5. Unitary implementation of the automorphism group

7.5.1. Uniqueness of the standard form. The following theorem
shows that the standard form of a tracial von Neumann algebra is unique,

up to a canonical isomorphism. In particular, this is why we will often write
L?(M) instead of L?(M, ).

PRrOPOSITION 7.5.1. Let 71 and 1o be two normal faithful tracial states
on a von Neumann algebra M. There exists one, and only one, unitary
operator U from L?>(M, 1) onto L?(M,Ts) with the following properties:

(i) U is M-M linear (with respect to the structures of M -M -bimodules)
and intertwines the canonical conjugation operators Ji and Jo rela-

tive to T and To respectively;
(ii) U(LA(M, 1)), = L*(M,72)+.

Proor. The Radon-Nikodym theorem implies the existence of a positive
element h in L'(M, 1) such that 7 = 73(h-) and since 71 is a trace, we see
that h is affiliated with the center Z(M) acting on L?(M, 7).

Let U : M — L*(M,73) be defined by U(m) = h'/?m. We have
7y, = Hh1/2mH27T2, and so U extends to an isometry from L*(M, )

into L?(M, 7). The space h'/2M is stable under the right action of M
and therefore is of the form pL?(M, ) for some projection p € M. Since
(1—p)h =0, we get 71(1 —p) = 0, whence p =1 and U is an isometry from
L*(M, ) onto L*(M, ).

Obviously, U is M-M linear. Moreover, for m € M, we have

U o Ji(m) = h?m* = m*hY? = Jo 0 U(m),

whence Uo J; = Joo U.

We claim that U(LQ(M, 7'1)+) = L?(M, 7). Indeed, using Proposition
7.3.4 we get U(M;) C LA(M,75)4 and then U(L2(M, 7)1 C L2*(M, 7).
This proposition also gives U* (LQ(M, T2>+) C L*(M, 1) because (U*¢,m) =
(¢,Um) >0 for £ € L2(M,79)y and m € M.

Finally, let V' be a unitary operator with the same properties. Then
V*U = W is a unitary operator in the center of M. The equality J; o W =
W o Jp gives W = W*. In addition, W is a positive unitary operator since
Wie L?(M, 7). Tt follows that W = 1. O
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7.5.2. Unitary implementation of Aut (M). We recall that Aut (M)
is the group of automorphisms of M.

PROPOSITION 7.5.2. Let (M, T) be a tracial von Neumann algebra. There
exists a unique group homomorphism o — u,, from Aut (M) into the unitary
group of B(L*(M, 7)) such that, for every o € Aut (M),

(i) a(x) = uqzu}, for every x € M;
(ii) wad = Jua, and ua(L*(M,7)4) = L*(M,7)4.

The map « +— uy is called the unitary implementation of Aut (M).

PROOF. Let u, v be two unitary operators that satisfy conditions (i) and
(ii) above. Then v*u € M’, and since Jv*uJ = v*u, we also have v*u € M.
Moreover, v*u(L*(M,7);) = L*(M,7)+ and thus u = v by Proposition
7.5.1.

Now, given o € Aut (M), let v : L2(M, Toa) — L?(M,7) be the unitary
operator such that v(m) = a(m) and let w : L?(M,7) — L*(M,T o a) be
defined in Proposition 7.5.1 with 7 = 7 and 79 = 7 0 a. It is a routine
verification to check that vw fulfills the above conditions (i) and (ii). O

REMARK 7.5.3. More generally, let (M, ) and (Ma, 2) be two tracial
von Neumann algebras and let « be an isomorphism from M; onto Ms.
There exists a unique unitary U : L?(My, 1) — L?*(Ma, 73) such that a(x) =
UxU* for xz € M1, UJi = JoU and U(L2(M1,T1)+) = LZ(M27T2)+.

REMARK 7.5.4. The unitary implementation is an isomorphism from
Aut (M) onto the subgroup of unitary operators u on L?(M,7) such that
uMu* = M, uJ = Ju, and u(L?*(M,7);) = L*(M,7)4. The subgroup
Aut (M, 1) of trace preserving automorphisms is sent on those unitaries
which in addition satisfy ul = 1. We observe that for a € Aut (M, 1),

the unitary operator u, is defined, for m € M, by uy(m) = a(m). We also
note that the subgroups of U(B(L?*(M,7))) corresponding to Aut (M) and
Aut (M, 7) are closed with respect to the s.o. topology (or the w.o. topology).

REMARK 7.5.5. Let M = L°°(X, u) equipped with its canonical tracial
state 7,. Given any Borel automorphism ¢ of X such that 6, is equivalent
to p, the map o : f € L°(X, u) — fo# is an automorphism of M and every
automorphism of M is of this form (see Theorem 3.3.4). If r denotes the
Radon-Nikodym derivative df,u/du, we immediately see that u,& = /1 £0f
for ¢ € L?(X,u). This unitary implementation of Aut (M) is sometimes
called its Koopman representation.

7.5.3. Aut (M, 1) is a Polish group when M is separable. We equip
Aut (M, 7) with the topology for which a net («;) € Aut (M, 7) converges
to « if for every x € M we have

lim [las () — a(z)], = 0.

Then Aut (M, 1) is a topological group.
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As seen above, the unitary implementation of o — ug of Aut (M, 7) is an
an isomorphism onto a closed subgroup of the unitary group of B(L?(M)),
equipped with the s.o. topology. Moreover, for a, 8 € Aut (M, 7) and x € M
we have

lez) = B(@)ly = lluat — upi]l,,
and therefore o — u, is a homeomorphism.
Recall that a Polish group is a topological group whose topology is Polish,
that is, metrizable, complete and separable. In particular, the group U(H)
of unitary operators on a separable Hilbert space H, equipped with the s.o.

topology is a Polish group. Indeed, let {¢,} be a countable dense subset of
the unit ball of H. Then

1
d(u,v) = Y o (lun = véa| + [|u*€n — v"6nl))

is a metric compatible with the s.o. topology on U(#), and U(#H) is complete
and separable with respect to this metric. As a consequence, Aut (M, 1) is
a Polish group when M is separable.

Exercises

EXERCISE 7.1. Let G ~ (B, T) be a trace preserving action of a count-
able group on a tracial von Neumann algebra. Show that M = B x G is on
standard form on L?(B,7) ® £2(G). Spell out the conjugation operator .J
and the right action of M.

EXERCISE 7.2. Show that a vector ¢ € L?(M,7) is separating for M if
and only if it is cyclic.

EXERCISE 7.3. Let H = L?([~1/2,1/2],A) (where ) is the Lebesgue mea-
sure) equipped with the orthonormal basis (e, )nez, with e, (t) = exp(2mint).
Let x be the function on [—1/2,1/2] such that x(¢) = —1if t € [-1/2,0]
and x(t) = 1 otherwise. We denote by u the multiplication operator on H
by x. Finally, let 2 be the self-adjoint operator such that ze, = exp(n?)e,
for n € Z.

(i) Show that Im (') Nu(Im (z~')) = 0 (Hint: if

Z eXp(_n2)an€n =X Z exp(—nZ)Bnen,
n n

consider the entire functions f(z) = Y, exp(—n?)anen(z) and g(2)

= >, exp(—n?)Bpen(z) and compare their restrictions to [—1/2,1/2]).
(ii) Show that the intersection of the domains of the self-adjoint ope-

rators x and uxwu is reduced to 0.

EXERCISE 7.4. Show that M is separable if and only if L'(M,7) is a
separable Banach space.
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EXERCISE 7.5. Let (M, 7) be a tracial von Neumann algebra. Show that
every normal trace 71 on M is of the form 7(h-) where h € LY(M,7)4 is
affiliated with Z(M).

EXERCISE 7.6. Let (M, 7) be a tracial von Neumann algebra, a € L'(M, 1),
reM,§&ne L2(M,T).
(i) Show that [|laz||, < [lal;[[z[lc, [zall, < |lz]lllal;-
(i) Show that [[gnl, < [I€lly/nll,-

EXERCISE 7.7. Let (M, 7) be a tracial von Neumann algebra. Show that
that the topology on Aut (M, 7) defined in Section 7.5.3 is also defined by
the family of semi-norms « — || o || where ¢ ranges over M,.

EXERCISE 7.8. Let (Mj,71) and (Mas,72) be two tracial von Neumann
algebras and set M = MMy, 7 =11 ® 2.
(i) Show that the Hilbert spaces L?(M, 1) and L?(My, 1) ® L*(Mz, 72)
are canonically isomorphic.
(ii) Given two other tracial von Neumann algebras (N, 71), (N2, 72)
and isomorphisms «; : M; — N;, i« = 1,2, show that there is a
unique isomorphism « : M — N such that a(x; ® z2) = aq(z1) ®
ag(xz2) for 1 € My and x9 € Ms.
This isomorphism « is called the tensor product of the isomorphisms a1 and
ag and is denoted by a1 ® ae. Such tensor products can be defined for any
pair of von Neumann algebras (see [Tak02, Corollary 5.3]).

EXERCISE 7.9. Let Mj, My be two II; factors and a; € Aut (M;), i =
1,2. Show that a1 ® as is inner if and only if both automorphisms «; are
inner.

Notes

The subject of this chapter dates back to the seminal paper [MVIN36]
of Murray and von Neumann, which contains many of the results pre-
sented here, and in particular the fact that the set of all closed densely
defined operators affiliated with a II; factor is a x-algebra. The theory of
non-commutative integration was developed by many authors, among them
Dixmier [Dix53] and Segal [Seg53] for finite or semi-finite von Neumann
algebras. The Radon-Nikodym theorem 7.4.9 is due to Dye [Dye52]. Nowa-
days, the subject goes far beyond (see [Tak03, Chapter IX] for instance).

The notion of standard form has been extended to the case of any von
Neumann algebra in [Haa75]. The very useful Powers-Stgrmer inequality
was proved in [PS70] for Hilbert-Schmidt operators and in [Ara74, Haa75]
in the general case.



CHAPTER 8

Modules over finite von Neumann algebras

We now study the right (or equivalently the left) modules H over a tracial
von Neumann algebra (M, 7).} They have a very simple structure: they
are M-submodules of multiples of the right M-module L?(M). It follows
that, up to isomorphism, there is a natural bijective correspondence between
them and the equivalence classes of projections in B(¢£2(N))®M. This latter
algebra is not finite in general, but belongs to the class of semi-finite von
Neumann algebras, that we study succintly.

The set B(H ) of operators which commute with the right M-action on
‘H is a semi-finite von Neumann algebra, equipped with a canonical semi-
finite trace 7, depending on 7. In the particular case M = C, then B(Hys) =
B(#) and 7 is the usual trace Tr.

In the general case, T may be defined with the help of appropriate or-
thonormal bases, made of M-bounded vectors, generalising the usual or-
thonormal bases of a Hilbert space. The dimension of H as a M-module is
by definition 7(1) which, unfortunately, is not intrinsic, except when M is
a factor, where 7 is unique. In this case, a M-module is determined, up to
isomorphism, by its dimension, which can be any element in [0, +oc] and
there is in particular a well understood notion of finite M-module. The
general case will be studied in the next chapter.

8.1. Modules over abelian von Neumann algebras.

Let M be a von Neumann algebra. Recall that a left M -module (resp. a
right M -module) (w,H) is a Hilbert space H equipped with a normal unital
homomorphism (resp. anti-homomorphism) 7 of M. When 7 is faithful, we
say that (m,H) is a faithful M-module.

DEFINITION. We say that two left M-modules (m;, H;), i = 1,2, are
isomorphic (or equivalent) if there exists a unitary operator U : Hi — Ho
such that Unq(x) = me(x)U for every z € M.

Our purpose is to describe the structure of these modules (assumed to be
separable), up to isomorphism, for separable tracial von Neumann algebras.

1Except in Section 8.3, for simplicity of presentation, we implicitely limit ourselves to
the separable case: von Neumann algebras as well as modules will be separable. The
reader will easily see where these assumptions are not necessary and then make the
straightforward appropriate modifications. We will mention explicitly where separability
is indispensable.

121
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We first consider the classical case of abelian von Neumann algebras, which
amounts to the multiplicity theory for self-adjoint operators.

Let M be a separable abelian von Neumann algebra. We have seen in
Theorem 3.2.1 that M is of the form L (X, u) where (X, p) is a standard
probability measure space. For every Borel subset Y of X, the Hilbert space
L?(Y, ) is obviously a M-module, when equipped with the representation
by multiplication of functions. We may add such representations. A more
general way to construct M-modules is as follows. Let n : X — N* U {co}
be a measurable function and set X, = {t € X : n(t) = k}. If £2 denotes
the canonical Hilbert space of dimension k, then the direct Hilbert sum
H(n) = S5 (2 ® L*(Xy, p)) has an obvious structure of M-module. We
say that n is the multiplicity function of the module H(n). In fact, this is
the most general construction of M-modules.

THEOREM 8.1.1. Let (w,H) be a M-module where M = L*(X,pu).
There ezists a unique (up to null sets) measurable functionn : X — NU{oco}
such that H is isomorphic to H(n).

ProOF. Consider first the case where (7, H) is a cyclic M-module, i.e.,
there exists £ € ‘H with 7(M){ = H. Let E be the Borel subset of X such
that kerm = 15L°°(X, p) and set Y = X \ E. The restriction 7y of 7 to
LY, 1) is faithful. We choose a cyclic vector & such that ||€]|* = u(Y) and
so we have wgomy (1) = pu(Y). The L>(Y, p)-modules L?(L>®(Y, ui), we omy)
and H are isomorphic and thus we deduce from Proposition 7.5.1 that the
M-modules L?(Y, u) and H are isomorphic.

In the general case, the M-module H is a Hilbert sum of cyclic mod-
ules and is therefore isomorphic, as a M-module, to some Hilbert sum
2%1 L?(Yy, 1), where the Y are Borel subsets of X, not necessarily dis-
joints. We may assume that 7 is faithful. We can build a partition (X}) of
X, to the price of introducing multiplicity, in order to show that H is of the
form Y755 (2 @ LA( X, p)). We set

X = U (Ve \Uj2eY5), Xo= U (Ve N Y2) \ Ujr jt V) 5 - - -
k (KAL)
We leave the details as an easy exercise.

Let us show that H(n) is completely determined by its multiplicity
function. Let n,n’ : X — N* U {oo} be two multiplicity functions and
U:(m,H(n)) = (7', H(n')) be an isomorphism between the two correspon-
ding L>=(X, p)-modules. We write H(n) as > 1s, (2@ L*(Xy, 1)) and H(n')
as Y1, (2 ® L*(X}, ). Then AdU induces an isomorphism between the
commutants of the two L (X, u) actions, i.e., from > %, B(£2)RL®(Xy, 1)
onto S°F, B(2)®L> (X}, ). But then, for every k we have

AdU (BEYEL*(Xy, 1)) = BUR)BL® (X}, 1)
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(see Exercice 5.6). Moreover, we have Un(f) = «'(f)U for f € L>(X, ).
Taking f = 1x,, it follows that for £ € fﬁ ® L*( Xk, 1),

W/(lxk,)Uf = U§ = Uw(le)é = Wl(lxk)Uf = Fl(lkaxk,)Uf,
and therefore Xy C Xj. Similarly, we get the opposite inclusion. O

REMARK 8.1.2. Let x be a self-adjoint operator on a Hilbert space H,
and let M be the abelian von Neumann algebra generated by . By Theorem
3.2.1, we have M = L*°(X, p) for some probability measure on the spectrum
X of x. Then the structure theorem 8.1.1 for the M-module H gives the
classical spectral multiplicity structure theorem for the self-adjoint operator
x (see for instance [RS80, Theorem VII.6] for a precise statement). Con-
versely, since every abelian von Neumann algebra (on a separable Hilbert
space) is generated by a self-adjoint operator (see Proposition 3.1.3) the
classification of self-adjoint operators, up to unitary equivalence, provides
Theorem 8.1.1. In this case, n(t) expresses the “multiplicity” of ¢ in the
spectrum of x. As a particular case, if 2 has a finite spectrum the com-
plete invariant is, of course, the multiplicity function k& € X — n(k) of the
eigenvalues of .

8.2. Modules over tracial von Neumann algebras

Let (M, T) be a separable tracial von Neumann algebra. We have seen in
the previous chapter that L2(M) is a left M-module (and a right M-module
as well). We will use here the notation L, for € and R, for £x and denote
by L(M) and R(M) the ranges of L and R respectively. Recall that R(M)
is the commutant of L(M ). We keep for the moment these notations L(M)
and R(M) in order to avoid confusion with M and M’ respectively when M
is concretely represented on some Hilbert space H, other then L?(M). The
direct sum of countably many copies of L?(M) is still a left M-module, in
an obvious way. It is denoted by £2(N)® L?(M). Given a projection p in the
commutant B((¢*(N))@R(M) of 1,2y ® L(M) in B({*(N) ® L*(M)), the
restriction to p(¢2(N) ® L?(M)) of the left action of M defines a structure of
left M-module on this Hilbert space. We will see now that this is the most
general type of separable left M-module. As in the proof of Theorem 8.1.1,
we first consider the case of a cyclic module.

LEMMA 8.2.1. Let m : M — B(H) be a normal unital representation.
with a cyclic vector &. There exists an isometry U : H — L*(M) such that
Un(z) = L U for every x € M. If we set UE =0, the range Mn of U is of
the form pL*(M) with p € R(M) = L(M)'.

PROOF. We define a normal positive functional on M by setting p(z) =
(¢, m(x)€). By Theorem 7.3.8, it is is of the form ¢ = w, for some 7 €
L*(M),. Then U : w(z)¢ — Lyn extends to an isometry with the required
properties. [l
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PROPOSITION 8.2.2. Let m : M — B(H) be a normal unital repre-
sentation. There exists an isometry U : H — (2(N) ® L?(M) such that
Urn(x) = (Idgz(N) ® Lx)U for every x € M.2 Moreover, we may choose U
such that the projection on the range of U is of the diagonal form @xpy with
Pr € R(M)

PROOF. We write (7, H) as a the direct sum of cyclic sub-representations
(7, Hy, &), k € N. For each k, we define Uy : Hy, — ppL?(M) as in the
previous lemma. Then, the partial isometry

U:H=a&pH, = &,(ppl*(M)) C A(N) ® L*(M)

defined in the obvious way intertwines 7w and the diagonal left representation

of M on (?(N) ® L*(M). O

PROPOSITION 8.2.3. Let m : M — B(H) be a normal unital representa-
tion. There is a projection p in B(((*(N))®@R(M) such that H is isomorphic,
as a left M-module, to p({*(N)® L?(M)). This correspondence defines a bi-
jection between the set of left M-modules, up to equivalence, and the set of
projections of the commutant of Idg2 ) ® L(M), up to equivalence classes of
projections in this commutant.

Proor. With the notation of Proposition 8.2.2, it suffices to set p =
UU*. The second part of the statement is immediate. O

To go further, we will need tools to detect when two projections of
B((F*(N))®R(M) are equivalent. This algebra belongs to the class of semi-
finite von Neumann algebras that we briefly introduce now.

8.3. Semi-finite von Neumann algebras

8.3.1. Semi-finite tracial weights. Recall first that the cone B(H)
of all positive operators on H comes equipped with a trace Tr (or Try in
case of ambiguity) defined as follows. Let (¢;) be any orthonormal basis of
H. For every x € B(H)+, we put Tr(z) = >, (¢j, v¢;) € [0,+00]. This
element is independent of the choice of the orthonormal basis and is called

the trace of x. It is a faithful normal semi-finite trace in the following sense.

DEFINITION 8.3.1. Let M be a von Neumann algebra. A map Tr :
My — [0,400] is called a trace® if it satisfies the following properties:
(a) Tr(z +y) = Tr(z) + Tr(y) for all z,y € M;
(b) Tr(Az) = ATr(x) for allz € M, and A € R, (agreeing that 0-+o00 =
0);
(¢) Tr(x*z) = Tr(xzzx*) for all z € M.
It is called semi-finite if, in addition,
2Without the separability assumption, N has to be replaced by some (not necessarily

countable) set I.
3We sometimes say tracial weight to insist on the fact that it is not necessarily finite.
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(d) for every non-zero x € M there exists some non-zero y € My with
y <z and Tr(y) < +o0.

If

(e) Tr(sup; z;) = sup,; Tr(x;) for every bounded increasing net (z;) in
M, we say that Tr is normal.

It is called faithful if, for x € M,
(f) Tr(x) = 0 if and only if x = 0.

Whenever Tr(1) < +oo then, since M is linearly generated by My, Tr
extends uniquely to a linear functional on M, which is a trace in the usual
sense.

DEFINITION 8.3.2. A von Neumann algebra M is said to be semi-finite
if there exists on M, a faithful, normal, semi-finite trace Tr.

The class of semi-finite von Neumann algebras encompasses finite von
Neumann algebras.

Factors with a minimal projection are isomorphic to some B(H) (see
2.4.13), hence semi-finite. They form the class of type I factors. Diffuse semi-
finite factors split into two classes: we find those such that Tr(1) = +o0,
called type Il factors, and those such that Tr(1) < 400, our now familiar
I1; factors®.

Let us give a basic way to construct semi-finite non-finite von Neumann
algebras. Let (N,7) be a tracial von Neumann algebra on H and I an
infinite set. Consider the von Neumann tensor product M = B(¢*(I))@N
on (2(I) @ H. As usually, we write its elements as matrices [m; ;] with lines
and columns indexed by I and entries in N. The diagonal entries of the
elements of M, are in Ny. Let Tr be the usual normal faithful semi-finite
trace on B(¢%(I))+. For m = [m; ;] € My, we set

Too(m) = (Tr@ 7)(m) = > _ 7(miy). (8.1)
i€l

Then 7 is a normal faithful semi-finite trace on My with 75,(1) = +00. The
two first conditions of Definition 8.3.1 are obvious. Using matrix multiplica-
tion, we also easily check that 7o, (mm*) = 7oo(m*m) and that 7o (m*m) =0
if and only if m = 0. Furthermore, 7, is semi-finite. Indeed, denote by p;
the projection on the subspace Cd; ® H. Given a non-zero m € My, there
is ¢ € I such that p;mp; # 0. Then, we have

1/2 1/2
7—00(771 / bim / ) = Too(pimpi) < 00,
with m'/2p;m!/? < m and m'/?p;m!/2 # 0.
4This definition is not ambiguous since the faithful, normal, semi-finite trace Tr on a

semi-finite factor is unique, up to multiplication by a positive real number (see Propositions
4.1.3 and 8.3.6).
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Finally, let (m) be an increasing net of elements in My with \/, m, =
m. We easily get that 7o(m) = sup,, Teo(m) by observing that for every ¢ €
I, the net of diagonal entries (p;m,p;) is increasing with p;mp; as supremum.

If in addition N is a factor, then M is a Il factor. Exercise 8.1 shows
that every Il factor is of this form.

ProposiTION 8.3.3. Let M be a tracial von Neumann algebra on a
Hilbert space H. Then M’ is a semi-finite von Neumann algebra.

PROOF. We may assume that H = p(¢*(I) ® L?(M)) where p is a pro-
jection in B({*(I))@R(M), so that M’ = p(B(¢*(I))®R(M))p. Then we
observe that the reduction of a semi-finite von Neumann algebra remains
semi-finite. O

We end this section with some basic facts on Il factors.

LEMMA 8.3.4. Let M be a factor with a normal faithful semi-finite trace
Tr. Let p,q € P(M), such that Tr(p) = 400 and 0 < Tr(q) < +oo. There
exists a family (q;)icr of mutually orthogonal projections in M with q; ~ q
for every i, > .crqi = p. The set I is infinite and whenever M is separable
it is countable.

PROOF. Obviously, we have ¢ = p. Using a maximality argument, we
see that there exists (¢;);cr, where the projections ¢, are mutually orthogonal
and equivalent to ¢, with ¢} < p for every ¢ and p — Y el ¢ 2 g. Since the
set I is infinite, the projections p and ), ; ¢, are equivalent. Indeed, if we
set po =p— Y ;c; ¢ and fix ig € I, using the existence of a bijection from I
onto I\ {ip}, we get

P=Y _d+p~ > d+p3> d.

icl iel\{io} i€l

Let u be a partial isometry in M such that v*u = p and vu* =3, ; ¢;. To
conclude, we set ¢; = u*qlu for i € I. O

We may write I = I1 Uls, where I; and I are disjoint and have the same
cardinal as I. Then p is the sum of the two mutually orthogonal projections
D= ic 1; &> j = 1,2, which are equivalent to p. In particular, p is infinite.
We easily deduce the following corollary.

COROLLARY 8.3.5. Let M be a factor with a normal faithful semi-finite
trace Tr. A projection p € M is infinite if and only if Tr(p) = +oo.

ProprosITION 8.3.6. Let M be a Il factor and Tr a normal faithful
semi-finite trace on M.
(i) We have {Tr(p) : p € P(M)} = [0, +00].
(ii) Let Try be another normal semi-finite faithful trace on My. There
exists a unique A > 0 such that Try = XTr.
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PRrOOF. (i) Let ¢ be a projection such that 0 < Tr(q) < +o0co. Then
gMgq is a factor (see Proposition 4.2.1) which is diffuse and finite and so

{Tr(p) : p € P(¢Mq)} = [0, (]
where ¢ = Tr(q), by Proposition 4.1.6. Since 1 is the sum of infinitely many
projections equivalent to ¢, we easily deduce the statement of (i).

(ii) Let p be a projection such that Tr(p) = 1 and set A = Tri(p). Then,
by uniqueness of the tracial state on pMp, we have Tri(x) = ATr(z) for
every x € (pMp)4. Let g be the sum of finitely many projections equivalent
to p. For z € My we have

Try (22q2'/?) = Try (qug) = ANTr(qzq) = ATr(z'/2qz!/?),

since ¢M g is isomorphic to some pMp ® M, (C). Using the normality of the
traces, and Lemma 8.3.4, we get the conclusion. ([l

DEFINITION 8.3.7. Let M be a type Il factor and Tr a normal faithful
semi-finite trace on M. Given 6 € Aut (M), the number A > 0 such that
Tr o6 = ATr (independent of the choice of Tr) is called the module of § and
denoted by mod(6).

PROPOSITION 8.3.8. Let M be a separable type Il factor and let Tr be
a normal faithful semi-finite trace on M. Let p,q € P(M). Then p = q if
and only if Tr(p) < Tr(q).

PROOF. Clearly, if p X ¢ then Tr(p) < Tr(g). Conversely, assume that
Tr(p) < Tr(q). The only non trivial case to consider is when both p and
q have an infinite trace. But then, given any non-zero projection e € M
with Tr(e) < 400, we see from Lemma 8.3.4 that there exist two sequences
(Pr)ren and (gr)ren of projections equivalent to e with p = ), -y px and
q = Y _pen Qx> Whence the equivalence of p and ¢. The fact that we get here
sequences follows from the separability, which is a crucial assumption. [J

This proposition solves the comparison problem of projections in a sepa-
rable semi-finite factor. In the non-factorial case, we need more sophisticated
tools (see Proposition 9.2.4).

REMARK 8.3.9. So far, we have introduced the following types of factors:
I, IT; and II,,. There are factors which do not belong to these classes, those
which do not carry any normal non-zero semi-finite trace. They are called
type III factors. They will not be considered in this monograph.

8.4. The canonical trace on the commutant of a tracial von
Neumann algebra representation

In the rest of this chapter, (M, 7) is a tracial von Neumann algebra. Until
now, we have only considered left M-modules. We may study, equivalently,
right M-modules, which are nothing else than left M°-modules. In the fol-
lowing we will more often consider right M -modules since we are rather inter-
ested in the commutant (that we let act to the left) of the right structures.
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The commutant of Iy ® R(M) in B(/*(N) @ L*(M)) is B(6*(N))@M,
the von Neumann algebra of operators which, viewed as infinite matrices,
have their entries in M (identified with L(M)). The analogue of Proposi-
tion 8.2.3 provides a bijective correspondence between the set of equivalence
classes of right M-modules and the set of equivalence classes of projections
in B(/2(N))@M.

Given two right M-modules H and K, we denote by B(Has, Kar) the
space of right M-linear bounded maps from H into . We set B(Hy) =
B(Har, Har). This semi-finite von Neumann algebra (Proposition 8.3.3) is
a generalisation of B(?) which corresponds to M = C. It carries a specific
tracial weight 7 (equal to Tr when M = C), depending on 7, that we define
now.

8.4.1. First characterisation of 7. Let H be a right M-module. Ob-
serve that, given S, T in B(L?(M)ys, Har), we have S*T € M and TS* €
B(Hu).

LEMMA 8.4.1. The linear span F(Hnr) of
{TS*:T,5 € BIL*(M)n, Hum)}
is an ideal of B(Har), dense in the w.o. topology.

PROOF. The elements of F(Hjys) are analogous, for M-modules, to fi-
nite rank operators for Hilbert spaces. The only non trivial fact is the
density of F(Hps). Let z be the projection of the center of B(Hjs) such
that F(Har) = B(Ha)z. Then (1 — 2)H is a right M-module. Assume
that there exists £ # 0 in (1 — z)H. By Lemma 8.2.1, the M-module (M
is isomorphic to pL?(M) for some projection p € M. After identification of
these two modules, we see that the map m — pm extends to a non-zero el-
ement T € B(L?(M) s, Hay) with 27 = 0. Tt follows that TT* is a non-zero
element of F(Hys) with 27'T* = 0, a contradiction.

O

PROPOSITION 8.4.2. Let H be a right M-module. The commutant B(H )
is a semi-finite von Neumann algebra which carries a canonical normal faith-
ful semi-finite trace T characterized by the equality

T(TT*) =7(T*T) (8.2)
for every right M -linear bounded operator T : L*(M) — H.

PROOF. Let U : H — (2(N) ® L?(M) be a right M-linear isometry. For
x € B(Har)+ we set

T(z) = (Tr@ 7)(UzU"),

where Tr is the usual trace on B(¢?(N));. Then, 7 is a normal faithful
semi-finite trace. Moreover, if V : H — ¢*(N) ® L?(M) is another M-linear



8.4. THE CANONICAL TRACE ON THE COMMUTANT 129

isometry, we have
(Tr@7)(UzU*) = (Tr @ ) (UV*)V2VH(VUY))
= (Trer)(VaV*(VU*)(UV)) = (Trer)(VaV™).

Hence, 7 is independent of the choice of U.
Let us prove Equation (8.2). We may assume that

H = p(*(N) ® L*(M)),

where p is a projection in B(¢2(N))@M. Let T € B(L*(M)r, Har) and write
Ti = Zkzl O ® &k. For m € M, we have

2 ~ 12 211112
> lgemllz = |1 TRI* < [T)|Iml5-
keN

Theorem 7.1.1 implies that & = my, € M. Moreover we have

S mimi < 1711

keN
where the convergence is with respect to the w.o. topology. Straightforward
computations show that T*T = %, m;my, and that TT* is the matrix
[mim7l; ;. It follows that 7(T1*) = 7(1*T'). By polarization, we get that
7(TS*) = 7(S*T) for every S, T € B(L*(M)yr,Har). That 7 is characterized
by (8.2) follows from its normality, together with Lemma 8.4.1 and Exercise
2.11. O

We leave it to the reader to check that 7 is the usual trace Tr on B(H)
when M = C. We note that Tr is defined via any orthonormal basis of H.
Likewise, there is a useful notion of orthonormal basis with respect to a M-
module, which can be used to define the canonical trace on the commutant.
We need first the notion of bounded vector.

8.4.2. Bounded vectors.

DEFINITION 8.4.3. Let (M, 7) be a tracial von Neumann and H a right
M-module. A vector £ € H is said to be left (M-)bounded® if there exists
¢ > 0 such that ||(z|| < c[|z||, for every € M. In other words, the map
T — &z extends to a bounded operator L¢ from L*(M) into H.

We denote by H° the set of left bounded vectors. Obviously, & L¢ is
a bijection from H® onto B(L?(M ), Har). We have seen in Theorem 7.1.1
that L2(M)? = M.

PROPOSITION 8.4.4. Let H be a right M-module. Then H° is a dense
linear subspace of H which is stable under the actions of M and of its com-

mutant B(Hyr). Moreover, for € € H°, x € M and y € B(Hu) we have
Lyew = yLex - m — y(§xm).

5We warn the reader that this notion, and therefore the notion of orthonormal basis
defined in the next section, depends on the choice of 7.
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PROOF. We only prove the density of H°, the rest of the statement being
obvious. Let £ € H. We have seen in Lemma 8.2.1 that the M—m/Q\dule EM
is isomorphic to pL?(M) for some projection p € M. The space pM is made
of left bounded vectors and is dense in pL?(M). O

We now observe that for &, € H°, the operator Lan commutes with
the right M-action on L?(M) and so belongs to M. We set LiLy = (§,n)
since, as we will see now, this operation behaves like an inner-product, but
with value in M.

LEMMA 8.4.5. Given &,1 € H°, we have

(i) (€,&)p =0 and (£,€),; =0 if and only if € =0

(i) (&ma)™ = s
(iii) (¢, nx> = (& mpws (Ex,m) = ™€ m)yy for every x € M;
(iv) (€ m2) ) = (E,yna)y for everyx & M and y € B(Har);

(V) (Le)*(zn) = (& xn)yy for every x € B(Hu).
PRrROOF. Straightforward verifications. O

Given a left M-module K, we may similarly introduce the space °K
of right bounded vectors. It satisfies the properties stated in Lemma 8.4.5
translated to left modules. More precisely, if n € °K, we denote by R,
L*(M) — K the corresponding bounded right M-linear operator and, for
&,m € K, we set J(RERy)J =m(&,n). Note that (§,n) = (€, n) is linear
with respect to the first variable and antilinear with respect to the second
one.

LEMMA 8.4.6. Given &,n € °KC, we have

(1) m(§,€) >0 and p(&,§) =0 if and only if £ = 0;

(i) (d&m)* = mln, €);
(111) <$£ 77> - :EM<£7 >} M<£,33‘77> = M<£777>$* fOT' every T € M)‘
(iv) T(mlzly,m)) = (n, x€y) for every x € M and y € B(uK).

8.4.3. Orthonormal bases.

DEFINITION 8.4.7. Let H be a right M-module over a tracial von Neu-
mann algebra (M, 7). An orthonormal basis (or Pimsner-Popa basis) for
this M-module is a family (&;);cr of non-zero left bounded vectors such that

> &M =H and (&,&5),, = 0ijp; € P(M) for all 4, 5. Hence, H = @; &M
Note that [ is countable under the separability assumption on .

Let ¢ € H? such that (£,&),, = LiL¢ = p € P(M). Then ¢ = {p and
Lng is the orthogonal projection on the M-submodule £ M. The verification
is straightforward. The following consequence is immediate.

LEMMA 8.4.8. Let (&) be a family of left bounded vectors. Then (&) is
an orthonormal basis if and only if (§;,&;),, = 0ijpj € P(M) for alli,j and

S Le L, = 1dyy.
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LEMMA 8.4.9 (Polar decomposition). Every left bounded vector £ in
a right M -module H can be written in a unique way as & = &'(€, §>}v/[27 where

¢’ is left bounded and is such that (£',£') ,, is the range projection of (€, f)}\//ﬁ
Moreover &M = M.

PROOF. Let L¢ = u(é, 5)]1\//12 be the polar decomposition of Lg viewed as

a bounded operator from L?(M) into EM. We set £ = u(1). The end of the
proof is immediate. U

The decomposition & = &'(€, §>}V/[2 is called the polar decomposition of £.

LEMMA 8.4.10. Assume that H = nM. Then there exists a left bounded
vector & such that (§,£),, € P(M) and H =M.

PROOF. Indeed, let U be an isomorphism of M-modules from H onto a
sub-module of L?(M), say pL?(M) with p € P(M) (see Lemma 8.2.1). It
suffices to set £ = U~ (pl). O

ProrosiTiON 8.4.11. FEvery right M -module H has orthonormal bases.

ProoF. Let {&} € H° be a maximal family with the property that
(§i,&5)py = 0ijp; € P(M) and set K =3, M. If K # H, by the previous
lemma the rlght M-module K+ contains a non-zero left bounded vector
¢, which can be chosen such that (£,&),, € P(M). This contradicts the
maximality of the family {;}. O

REMARK 8.4.12. An orthonormal basis (&;) is indeed a basis in the fol-
lowing sense: every n € H° has a unique expression as

n= Z &m;
where m; € p; M and the series convelrges in norm. Indeed, we have
n=> LeLin=> &l& )y (8:3)
i i
Moreover, if n = ). &m; then
&mar = szLnT = ngn = Z (&3> &) pyma = pymy.
i

LEMMA 8.4.13. Let H be a right M-module and let (&) be an orthonor-
mal basis. Let &1 be two left bounded vectors. Then the series

PR DIICRDIY:

is convergent in M with respect to the s.o. topology and we have

(€ma = LeLy = ZLgL&L& 0= {&&) &y

A

PRrROOF. Obvious since ZZ L, Li, = Idy. O
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REMARK 8.4.14. As already mentioned in Lemma 8.4.1, the linear span
F(Hur) of the set of operators LeLy, §,m € 10 is a w.o. dense two-sided
ideal of B(Hs). It is the ideal of finite rank operators in case M = C1. So,
in the general case, it is useful to view the elements of F(Hjys) as “finite
rank” operators.

8.4.4. Second characterisation of 7. We may now state our second
characterisation of 7.

PrROPOSITION 8.4.15. Let ‘H be a right module over a tracial von Neu-
mann algebra (M, 1) and let (&)icr be an orthonormal basis of this module.
Then, for every non-negative element x € B(Hys), we have

Fla) = 7 ati)y) = D (& 1&g (8.4)

[ n

Proor. We set p; = (&,&),,- Let U be the isometry from H into
?*(I) ® L*(M) such that, for m € M and all i,

U(§m) = 6; @ pim = 6; @ L, (§m).
We know that for = € B(Har)+,
7(z) = (Tro7)(UzU*) = ZT((UJEU*)M),
and we have (UzU");; = Lg (2&) = (§ir 2&i) py- O

REMARK 8.4.16. From Lemma 8.4.13 and the expression (8.4) we get
another proof that 7 is a trace. Indeed, given x € B(Hs) we have

T(a'w) = Z (&, x&i) ar) = ZT(<x§i7§j>M<fjvx€i>M)

Z (a6, 61) (€ 2765) ) = ().

PROPOSITION 8.4.17. Let &, be two left bounded vectors. We have
T(LeLy) = 7((n,&)pr) = T(LyLe) = (0, &) (8.5)
ProoOF. We have

T(LeLy) = Z (&, (LeLp)6i), = > <Lz€i’L;&>L2(M)

[

—Z (€ &) ars (05 &0 ar) p2ary = T ) ) = 7(Lyy L)
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8.5. First results on finite modules

DEFINITION 8.5.1. Let (M, ) be a tracial von Neumann algebra. We

say that a right M-module H is finitely generated if there exists a finite set
{m,...,nn} of elements of H such that H =3, n; M.

The following orthonormalisation process will imply that {n,...n,}
may be chosen to be an orthonormal basis.

LEMMA 8.5.2 (Gram-Schmidt orthonormalisation). Let ni,...,n,
be some elements of a right M-module. There exists an orthonormal family
£1,..-,&n (i-e., such that (§;,&;) ,, = 0ijpj € P(M)) such that {n1,...,n.} C
Dica &M

Proor. Using lemma 8.4.10, we may assume that the n; are left M-
bounded. Let 1 = &my be the polar decomposition of 11 and set n}, = 79 —
&1(&1,m2) - We have (&1,75),, = 0. We consider the polar decomposition
ny = &mg of 5. Then no € &M + &M and (€1,&2),, = 0 since 0 =

(€1,62) yym2 and thus 0 = (§1,82) 3,(€2,62) = (€1,€2) - Iterations of this
process prove the lemma. U

PROPOSITION 8.5.3. Let ‘H be a right module over a tracial von Neumann
algebra M. The following conditions are equivalent:
(i) H is finitely generated;

(ii) there exist n € N and a projection p € M, (C) @ M = M, (M) such
that H is isomorphic to the right M-module p({? @ L?(M));

(iii) there exist n € N and a diagonal projection p € M,(C) @ M =
M, (M) such that H is isomorphic to the right M-module p({2 ®
12(01));

(iv) the M-module H has a finite orthonormal basis;

(v) F(Ha) = B(Hum)-

PROOF. (iv) = (iii) = (ii) = (i) are obvious and (i) = (iv) is a conse-
quence of the previous lemma.

(iv) = (v). Let (&1,...,&,) be an orthonormal basis of H. Then Idy =
2imr Le; L, € F(Hu)-

(v) = (i). Assume that Idy = Y 71" L¢, Ly, . Then, for £ € H we have

€= Le(Ly ()
i=1

and therefore H is finitely generated, since L¢,(Ly. (§)) € & M. O

DEFINITION 8.5.4. Let (M, 7) be a tracial von Neumann algebra and H
a right M-module. The M -dimension of H is the number 7(Idy) or, equiv-
alently the number (Tr ® 7)(p), where p is any projection in B(¢*(N))®M
such that H is isomorphic to p(¢2(N) ® L?(M)). Tt is denoted by dim(H).
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One defines similarly the dimension dim(3/K) of a left M-module K. In
particular, dim(L?(M)ys) = 1 = dim(y, L?(M)).
The right module H is said to be finite if dim(# ) is finite.

Note that dim(Hs) depends on the choice of 7 and so the notation may
be, unfortunately, misleading.

Given an orthonormal basis (;) of the module #, or more generally any
family (¢;) of left bounded vectors such that >, L¢, Lg, = Idy, we have

dim(Har) = 3 7({€r g Z €13 (8.6)
Indeed, this follows from Proposition 8.4.17, since 7(Idy) = >, 7(Le¢, L§))-
In particular, if H and K are two right M-modules and H @ K is their
Hilbert direct sum, we have

dim((H & K)ar) = dim(Hyy) + dim(KCpy).

PrROPOSITION 8.5.5. Let H be a module on a tracial von Neumann alge-
bra M. Consider the following conditions:
(i) H is finitely generated;
(i) dim(Har) < +00;
(ili) the commutant B(Har) of the right representation is a finite von
Neumann algebra.

Then we have (i) = (i) = (iii).
Proor. Obvious. O

In the non-factor case, the situation is quite subtle. The three above
conditions are not equivalent (see Exercise 8.13). Moreover, the number
dim(#Hr) does not determine the isomorphism class of the corresponding
right module. These questions will be clarified in the next chapter. We only
consider below the easy case where M is a II; factor.

8.6. Modules over II; factors

PRrROPOSITION 8.6.1. When M is a factor, the three conditions of Propo-
sition 8.5.5 are equivalent.

PrOOF. Immediate, since B(Hys) is a factor. Indeed, whenever B(H ;)
is a finite factor, it is isomorphic to some p(B(¢*(N))®@M )p with (Tr®7)(p) <
+00; so p is equivalent to a projection in some M, (C) ® M and Condition
(ii) of Proposition 8.5.3 holds. O

For the next result, the separability assumptions are essential.

PROPOSITION 8.6.2. Let M be a separable 111 factor. The map Hyr —
dim(Hr) induces a bijection from the set of equivalences classes of separable
right M -modules onto [0, +00].
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PROOF. We observe that p(¢2(N)®L?(M)) and q(¢>(N)®L?(M)) are iso-
morphic if and only if the projections p and g are equivalent in B(¢?(N))®@M,
thus if and only if (Tr ® 7)(p) = (Tr ® 7)(¢) (see Proposition 8.3.8).

Finally, the M-dimension can be any element of [0, +oc] since

{(Tr@m)(p) : p € P(BIP(N)EM)} = [0, +oc].
O

REMARK 8.6.3. Let M be a II; factor on a Hilbert space H such that M’
is also finite. In [M'VIN36, Theorem 10|, Murray and von Neumann proved
the deep fact that the number 7/ ([M'E])/mpr ([ME]) is independent of the
choice of the non-zero vector £ € H (where 7)s and 7y are the tracial states
on M and M’ respectively). They used this number as a tool to compare
M and M’. Tt is called the coupling constant (between M and M’).

We leave it as an exercise to check that this coupling constant is equal
to dim( MH)

Exercises

EXERCISE 8.1. Let M be a Il factor and Tr a normal faithful semi-finite
trace on M. Let p € P(M) be such that Tr(p) < +oo.
(i) Show that pMp is a II; factor.
(ii) Show that there exists a family (p;)icr, where I is an infinite set
of indices, of mutually orthogonal projections, equivalent to p and
such that 3, ;p; = 1.
(iii) Show that M is isomorphic to B(¢2(1))®(pMp).
(iv) Show that I is countable if and only if M is countably decompos-
able.

EXERCISE 8.2. Let M be a von Neumann algebra and let Tr be a trace
on M,. We set
n={zxeM:Tr(z"z) < +o0}

n
m= {Zfﬂzyzu’ﬂuyz Gﬂ}-

=1

and

Prove the following assertions:

(i) n and m are two-sided ideals of M.
(ii) mN My = {z € My : Tr(z) < 400} and m is linearly generated by
mn M+.
(ili) the restriction of Tr to m N M, extends in a unique way to a linear
functional on m (still denoted by Tr).
(iv) Tr(zy) = Tr(yx) if either z,y € nor x € M and y € m.
The proof is similar to that of Lemma 7.4.3. One says that m is the
ideal of definition of Tr. When Tr is the trace on B(#)+, then m and

n are respectively the ideals of trace class operators and Hilbert-Schmidt
operators.
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EXERCISE 8.3. Let M be a von Neumann algebra and let Tr be a trace
on M+.
(i) Show that Tr is semi-finite if and only if n (or m) is w.o. dense in
M.
(ii) Assume that Tr is normal. Show that for m € m,, the positive
linear functional x — Tr(zm) is normal on M.

EXERCISE 8.4. Let M be a von Neumann algebra and let Tr be a normal
semi-finite trace on My. Show (with the help of Exercise 2.11) that there
exists a family (a sequence when M is separable) (¢;) of positive normal
linear functionals on M such that Tr(z) = ), ¢i(x) for x € M. Conclude
that Tr is lower semi-continuous in the sense that for every ¢ > 0 the set
{z € My : Tr(z) < ¢} is w.o. closed.

EXERCISE 8.5. Let M be a von Neumann algebra and let Tr be a normal
faithful semi-finite trace on My. On the two-sided ideal

n={zxe M:Tr(z"z) < +o0},

we define the inner product (x,y) = Tr(z*y). We denote by L?(M,Tr) the
corresponding completion of n. Show that L?(M, Tr) has a natural structure
of M-M-bimodule. Observe that whenever M = B(H) with its usual trace,
L?(M,Tr) is the space S?(H) of Hilbert-Schmidt operators on H.

EXERCISE 8.6. Let H be a right M-module on a II; factor M. Assume
that dim(#Hys) = ¢ with n < ¢ < n+ 1. Show that # is isomorphic, as a
M-module to L*(M)®" @ pL?(M) with p € P(M) and 7(p) = ¢ — n.

EXERCISE 8.7. Let (M, 7) be a tracial von Neumann algebra and let

H = C"® L*(M) be a right M,,(M)-module in the obvious way. Show that

EXERCISE 8.8. Let H be a right M-module on a II; factor M such that
dim(Hjps) < +oo. Let p be a projection in the commutant B(Hys) of the
right action. Show that dim((pH)n) = 7B(21,,)(P) dim(Hus), where 13¢5,
is the unique tracial state on B(H ).

EXERCISE 8.9. Let M be a II;-factor, H a right M-module and let p be
a projection in M. Show that dim(Hs) = 7(p) dim((Hp)pap)-

EXERCISE 8.10. Let H be a right M-module on a II; factor M such that
dim(Has) < +oc. Show that dim(H ) dim(gey, H) = 1.

EXERCISE 8.11. Let M be a II; factor and let H be a right M-module.

(i) Show that H has a cyclic vector if and only if dim(H ) < 1.
(ii) Show that H has a separating vector if and only if dim(H;) > 1.

EXERCISE 8.12. Let M be a II; factor on a Hilbert space H such that
M’ is also finite. Show that the coupling constant between M and M’ is
equal to dim(pH).
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EXERCISE 8.13. Let f : [0,1] — N be a Borel function such that f €
LY([0,1],\) but f & L>(]0,1], ), where X is the Lebesgue measure on [0, 1].
For each integer n we chose a projection p, of rank n in B(¢£?(N)). Let p be
the projection in L>([0, 1], \)®B(¢*(N)) defined by p(z) = py if f(z) = n.
Show that the right module p(L?([0,1], \) ®£*(N)) over L>([0,1], A) is finite
but is not finitely generated.

EXERCISE 8.14. Let My, Ms be two II; factors and m; : M; — B(H;), i =
1,2, be normal representations. Recall that the von Neumann tensor product
(M1®M>, L?(My, 1) ® L?(M2,73)) has been defined in Section 5.1.1. Show
that there is a unique isomorphism 7 from M;®M; onto 1 (M7)Rma (M)
(represented on H; ® Hsa) such that w(z; ® x2) = m1(x1) ® m2(x2) for every
x1 € My, x9 € My (use the structure result about M-modules).

EXERCISE 8.15. Let M be a separable I1; factor. Let 7 be the canonical
normal faithful semi-finite trace on M, = M®@B(£*(N)). Recall from Section
4.2 that the fundamental group §(M) of M is the set of 7o (p) where p runs
over the set of projections p € M, such that M and pM..p are isomorphic.
Show that F(M) = {mod(f) : 0 € Aut (M)}.

EXERCISE 8.16. We keep the notation of the previous exercise and we
set Aut 1 (M) = {0 € Aut (M) : mod(#) = 1}. Let pg be the rank one
projection on the first vector of the canonical basis of £2(N).

(i) Show that there is a unitary u € U(M) and o € Aut (M) such
that Ad (u) o 8(z ® po) = a(z) @ py for every x € M. Show that
the class of @ in Out (M) is well defined. We denote it by ag.

(ii) Show that é — ap is a homomorphism from Aut 1 (M) into Out (M)

which defines, by passing to the quotient, a homomorphism from
Aut 1 (M )/Inn (Ms) into Out (M).

Notes

The study of the structure of modules over factors goes back to [MVIN36,
MvN43]. In particular, the coupling constant, or in other terms the dimen-
sion of a module, had be investigated in details in [MVIN36].

Since the eighties, this subject has been developed by many authors,
mainly in view of the study of subfactors and of the ergodic theory of group
actions and their associated crossed products. A major impetus is due to
the influential work of V.F.R. Jones on the index of subfactors [Jon83b].
A large part of the above exercises is borrowed from this paper. The idea
of using orthonormal bases to compute dimensions of modules comes from
[PP86] where indices of subfactors were computed in terms of Pimsner-Popa
bases (see Propositions 9.4.7 and 9.4.8 in the next chapter).






CHAPTER 9

Conditional expectations. The Jones’ basic
construction

In this chapter, we consider a tracial von Neumann algebra (M, ) and
a von Neumann subalgebra B. We study in details the right B-module
L?(M)pg. An important tool is the trace preserving conditional expectation
Ep : M — B that we introduce first.

Having this notion at hand, we focus on the conditional expectation Ey
where Z is the center of M. It is tracial and intrinsic, and we call it the
center-valued trace. When M is only assumed to be semi-finite, there is a
more technical notion of center-valued tracial weight, which is essentially
unique and plays the same role as Ez. We use this notion to clarify the
relations between the various possible definitions of a finite module over a
tracial von Neumann, like B, which is not necessarily a factor.

Then we come back to the case of L?(M)p. The von Neumann algebra
B(L?*(M)p) of operators commuting with the right B-action is the so-called
algebra of the basic construction for B C M which plays an important role
in many contexts. In this framework we translate the general results about
modules obtained in the first part of this chapter and in the previous chapter.

9.1. Conditional expectations

We extend to the non-commutative setting the notion of conditional
expectation which is familiar in measure theory.

DEFINITION 9.1.1. Let M be a von Neumann algebra and B a von Neu-
mann subalgebra. A conditional expectation from M to B is a linear map
E : M — B which satisfies the following properties:

(i) B(My) C B ;
(ii) E(b) =b for b € B;
(iii) E(bizbe) = biE(x)by for by,by € B and x € M.

Hence F is a positive projection from M onto B, and is left and right
B-linear. Moreover, for x € M we have

It follows that E(z)*E(z) < E(z*z) and, since z*z < |z||*1, we have

|E()|? < |E(z*z)| < ||z||*. Hence E is a norm-one projection from M
onto B. All this holds as well in the setting of C*-algebras.

139
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Conversely, every norm-one projection is a conditional expectation (see
Theorem A.4 in the appendix).

9.1.1. Existence of conditional expectations.

THEOREM 9.1.2. Let (M, T) be a tracial von Neumann algebra and let B
be a von Neumann subalgebra. There exists a unique conditional expectation
Ep from M onto B such that T o Eg = 7. Moreover, Eg is normal and

faithful'.

PRrOOF. We remark that L?(B,7|p) is a Hilbert subspace of L?(M,T).
For simplicity of notation, we denote these spaces by L?(B) and L?(M)
respectively. We denote by ep the orthogonal projection onto L?(B). Of
course, we have eB(l;) = b for b € B. Thanks to Proposition 7.3.4 we see
that eg(L?(M),) C L*(B)y. Now, given x € M with 0 < z < 1, we get
0 < ep(Z) < 1, whence ep(Z) € E’;, and thus we deduce the inclusion
eB(M\) C B. We identify M and M and define Ep to be the restriction of
eg to M. For b € B and x € M, we have 7(zb) = 7(Ep(x)b). It follows
that Ep is a conditional expectation with 7 o Ep = 7. In particular, Ep is
faithful.

We now show the uniqueness of Ep. If E is another conditional expec-
tation with 7 o ¥ = 7, then for x € M and b € B, we have

T((:c — E(a:))b) = T(E((x - E(a;))b) =0,

e, & — E/(\x) and B are orthogonal. Hence, E has to be the orthogonal
projection from M C L?(M) onto B C L?(B).
The normality of Ep follows from Corollary 2.5.11. O

REMARK 9.1.3. Note that Ep(x) is the unique element y in B such that
7(xb) = 7(yb) for every b € B. Another way to introduce Ep is to use the
Radon-Nikodym theorem 7.3.6 (see Exercise 9.1). We also remark that Ep
is the restriction to M of the orthogonal projection eg from L?(M) onto
L*(B), when M and B are identified to subspaces of L?(M) and L*(B)
respectively.

9.1.2. Examples. Of course, Fp depends on the choice of the trace 7.
Usually, this choice is implicit and we do not mention it.

(1) Take M = M,(C) and let B be the subalgebra of diagonal matrices.
Then Ep is the application sending a matrix x to its diagonal part.

More generally, let (M, 7) be a tracial von Neumann algebra, and let B =
>, Ce; be generated by non-zero projections eq, ..., e, with Y 1" ; e¢; = 1.
Then, for z € M,

Ep(z) = Z Mei.

prlAC)

Hp case of ambiguity, we will write EY for Fp.
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(2) We keep the same notations. Then
n
Epnyp(z) = Z €;Te;.
i=1

(3) Let (ei;)1<ij<n be a matrix units of a von Neumann subalgebra B
of (M, ) (so that B is isomorphic to M, (C)). Then

Ep(z)= ) nr(zejeis.

1<ij<n

(4) Let G ~ (B, ) be a trace preserving action and set M = B x G.
Let 7 still denote the natural tracial state on M defined by

T( Z 379“9) = 7(Te)
geG
(see Section 5.2). Then EB(deG xgug) = z.. It follows that the Fourier
coefficient xg of x = 3 ; wgug is given by x4 = Ep(zuy).

(5) Let R be a p.m.p. countable equivalence relation on (X, ). We
keep the notation of Section 1.5.2. We have seen that the von Neumann
algebra L(R) may be identified with a subset of L?(R,v). Its natural trace
7 is defined by

T(F)z/XF(a;,x) dp(z).

Recall that B = L*°(X, 1) embeds into L(R), as its diagonally supported
elements. For F' € L(R), we readily check that Eg(F) is the restriction of
F to the diagonal subset of R.

9.1.3. Extensions of conditional expectations to L'-spaces. Let
(M,T) be a tracial von Neumann algebra and let B be a von Neumann
subalgebra. For b € B and m € M, we have

[T(bEp(m))| = [r(om)| < [|b]lc[Iml];,
whence | Eg(m)||; < [[m||;. It follows that Ep extends to a norm-one projec-
tion from L'(M) onto L'(B), still denoted Eg. Observe that 7(bEg(£)) =
7(b€) for every £ € LY (M) and b € B.2

By definition, Eg : M — B extends to the orthogonal projection ep :
L?*(M) — L*(B), that we also denote by Ep, for consistency reasons.

LEMMA 9.1.4. Let (M, 1) and B as above.
(i) The restriction of Eg : L*(M) — LY(B) to L?>(M) is the projection
EB =e€ep: L2(M) — LQ(B),'

2In other terms, when L' (M) and L'(B) are identified to M. and B. respectively
(see Theorem 7.4.5), then Ep is the map sending a functional in M, to its restriction to
B.
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(i) Ep(LP(M)1) = LP(B); and so Ep(€") = Ep(€)* for € € LP(M),

p=12;

(iii) Ep(b€) = bEB(E), Ep(Eb) = Ep(§)b for b € B and § € LP(M),
p=12

(iv) Bp(né) = nEg(), Ep(én) = Ep(&)n forn € L*(B) and € €
L*(M);

(v) Whenever D is a von Neumann subalgebra of B, we have Ep =
Epo Ep.

PROOF. We leave the straightforward proofs to the reader. O

9.1.4. Center-valued traces.

DEFINITION 9.1.5. A center-valued trace on a von Neumann algebra M
is a conditional expectation E from M onto its center Z(M) such that
E(xy) = E(yz) for every x,y € M.

PROPOSITION 9.1.6. Let (M, 1) be a tracial von Neumann algebra and
Z = Z(M) its center. Then Eyz is a center-valued trace. It is normal and
faithful, and it is the only normal center-valued trace on M.

PRrOOF. Given z € Z, we have

T(2Ez(zy)) = 7(zay) = 7(x2y) = 7(2y2) = 7(2E2(y2)),

whence Ez(xy) = Ez(yz).

Let E be a normal center-valued trace on M. Then 7o F is a normal trace
on M which has the same restriction to Z as 7. It follows from Proposition
7.3.9 that 7 = 7 o F and therefore £ = E. O

REMARK 9.1.7. More generally, any finite von Neumann algebra carries
a unique faithful center-valued trace. Moreover this center-valued trace is
normal (see [Tak02, Chapter V, Theorem 2.6]).

The following result generalizes the corollary 2.4.11.

PROPOSITION 9.1.8. Let E be the normal center-valued trace on (M, T).
Given two projections p, q in M, we have p 3 q if and only if Ez(p) < Ez(q).

PROOF. Assume that Ez(p) < Ez(q) and that there exists a projection
z in Z such that gz < pz. Since E is faithful, we have

Ez(q)z = Ez(qz) < Ez(pz) = Ez(p)2,

in contradiction with the fact that Ez(p) < Ez(q). It follows that pz < gz
for every projection z € Z, and the comparison theorem for projections
implies that p = q. O
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9.2. Center-valued tracial weights

A von Neumann algebra which carries a faithful normal center-valued
trace is finite since it has obviously sufficiently many normal traces in the
sense of Theorem 6.4.4. For semi-finite von Neumann algebras we may use,
instead, center-valued tracial weights, which generalize both center-valued
traces and tracial weights.

In this section and the following one, we only consider separable von
Neumann algebras acting on separable Hilbert spaces.

Let M be a (separable) von Neumann algebra. We identify its center Z
with L>°(X, u) where (X, p) is a standard probability measure space. We
denote by Z+ the cone of measurable functions from X into [0, +o00], where
two functions which coincide almost everywhere are identified. This set has
an obvious order, which extends the natural order on L®(X, 1), C Z4. In
2+ every increasing net has a least upper bound.

DEFINITION 9.2.1. A center-valued tracial weight on M, is a map Tryz :
My — Z\Jr such that
(a) Trz(z +y) = Trz(x) + Trz(y) for z,y € My ;
(b) Trz(zx) = 2Trz(x) for z € Z, and v € My ;
(c) Trz(z*z) = Trz(xza*) for x € M.
It is called semi-finite if, in addition,
(d) for every non-zero x € M, there exists some non-zero y € M,
with y <z and Trz(y) € Z;.
If
(e) Trz(sup; ;) = sup; Trz(z;) for every bounded increasing net (z;)
in M., we say that Trz is normal.

The notion of faithful center-valued tracial weight is defined in the ob-
vious way. Whenever Trz(1) € Z (or equivalently Trz(x) € Z for every
x € M), one says that Tryz is finite. In particular, if Trz(1) = 1, then Tryz
extends uniquely to a center-valued trace on M.

It is easily seen that a von Neumann algebra M which admits a normal,
faithful, semi-finite center-valued tracial weight is semi-finite. Conversely,
we have:

THEOREM 9.2.2. Let M be a semi-finite von Neumann algebra and Z =
L®(X, u) be its centers.

(i) There exists a normal faithful semi-finite center-valued tracial weight
on M.

(ii) Let Trzy and Trzz be two such center-valued tracial weights. There
exists a unique (up to null sets) Borel function f : X — (0,4+00)
such that Trz1 = fTrzs.

3The assertions to follow, which only involve properties up to null sets, do not depend
on this choice.
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PROOF. (i) Let Tr be a normal faithful semi-finite tracial weight on M.
For y € My, we denote by Tr, the map z — Tr(yz) from Z into [0, +o0].
We write Tr as a sum ) ¢, of finite normal functionals (see Exercise 8.4).
The classical Radon-Nikodym theorem applied to z — ¢, (zy) gives fn(y) €
LY(X, p)+ such that ¢, (2y) = [ fu(y)z du for every z € L%(X, 11). We set
®(y) =, fn(y). Then we have:

Vze Zy, Tr(zy) = / O(y)zdu.
X

It is a routine exercise to check that ® is a normal faithful semi-finite center-
valued tracial weight on M.

(ii) Set Tri(z) = [y Trzi(x)dp for x € My, i = 1,2. Then f is the
Radon-Nikodym derivative of Tr; with respect to Try (see Exercise 9.6 for the
only case we will need, where one of the center-valued weights is finite)?. [

EXAMPLE 9.2.3. Let (M,7) be a tracial von Neumann algebra with
center Z and let Ez be its center-valued trace. We identify the center

Idp2 ) ® Z of B(£*(N))@M with Z. For x € (8(52(N))®M)+, we set

(Tr® Eg)([zi;]) = Y Bz(i3) € Zy.
€N
It is easily checked that Tr® Ez is a normal faithful semi-finite center-valued
tracial weight on (8(62(N))@M)+.

Given a faithful normal semi-finite tracial weight Tr on a separable semi-
finite von Neumann algebra M, we may have Tr(p) = Tr(q) despite the fact
that the projections p and ¢ are not equivalent. In contrast, center-valued
tracial weights prove to be a useful tool in the classification of projections.
The next result generalizes Proposition 8.3.8.

PROPOSITION 9.2.4. Let Trz be a normal faithful semi-finite center-

valued tracial weight on a separable semi-finite von Neumann algebra M
and let p,q € P(M). Then p = q if and only if Trz(p) < Trz(q).

PROOF. When one of the two functions Trz(p) or Trz(q) is finite almost
everywhere, the proof is similar to that of Proposition 9.1.8. We admit the
general case, that we do not really need in this monograph®. U

PROPOSITION 9.2.5. We keep the notation of the previous proposition.
A projection p € M s finite if and only if Trz(p) < +00 almost everywhere.

PROOF. Assume that Trz(p) < 400 almost everywhere and that p ~
p1 < p. Then Trz(p —p1) = 0 and so p = p;. Conversely, assume that p
is finite. We identify the center pZ of pMp with ¢Z, where q is the central
support of p. The restriction of 7rz to (pMp)4+ has its range into q2+ and

4We refer to [Dix81, Chapter III, §4]) for a complete proof.
5For the general case we refer the interested reader to [Dix81, Chapter III, §4, Exer-
cise 4] combined with [Dix81, Chapter III, §1, Exercise 15].
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is a center-valued normal faithful semi-finite tracial weight. Replacing M
by pMp, we may assume that p = 1. Let Ez be the center-valued trace
on the finite von Neumann algebra M. By Theorem 9.2.2 (ii) we have
Tryz = fEz where f is finite almost everywhere, hence the conclusion since

f="Trz(1). O

COROLLARY 9.2.6. Let p, q be two finite projections in a semi-finite von
Neumann algebra. Then pV q is a finite projection.

9.3. Back to the study of finite modules

We have seen that the modules H over 11I; factors are classified by their
dimension 7(1) where 1 = Idy and 7 is the canonical tracial weight on the
commutant of the representation. Here 7 is intrinsic.

In the general case of a tracial von Neumann algebra (M, 7), we must
replace the tracial weight 7, which depends on the choice of 7, by a center-
valued tracial weight in order to get a complete invariant for M-modules.
Let Z = L*°(X, u) be the center of M, where p comes from the restriction
of 7 to Z, and let Ez be the trace-preserving conditional expectation from
M onto Z. Given a right M-module H, let U : H — (2(N)® L?(M) be a M-
linear isometry. Then we define a normal, faithful, semi-finite center-valued
tracial weight Ez on B(Has)4 by the formula

Ez(z) = (Tr® Ez)(UaU*) € Zy.

We easily see, as in the proof of Proposition 8.4.2, that EZ does not
depend on the choice of U. Furthermore, EZ does not depend on 7 since
E 7 is intrinsic.

The same proof as that of Proposition 8.4.2 gives

Ey(TT*) = Ez(T*T) (9.1)

for every bounded, right M-linear operator T : L?(M) — H.
Note that, for x € B(Hu)+,

Flz) = /X Ez(z)dp. (9.2)

The function Ez(1) = (Tr ® Ez)(UU*) = (Tr ® Ez)(p), where p is any
projection in B(¢*(N) @ L?(M)) such that H is isomorphic to p(¢*(N) ®
L?(M)), should be considered as the “dimension” of the module H. It is
independent of 7 and is a complete invariant (under our separability as-
sumptions): two projections p and ¢ in B(¢?(N) ® L*(M)) are equivalent if
and only if (Tr ® Ez)(p) = (Tr ® Ez)(q), by Proposition 9.2.4.

REMARK 9.3.1. When M has no abelian projection then, for every z €
Z,, there is a projection p € B(¢*(N))®@M such that Ez(p) =z (see Exercise
9.5). In this case, right M-modules (up to isomorphism) are thus in bijective
correspondence with 2+. When M is a II; factor, this result applies with
Zy = [0,+00).
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On the other hand, when M = L*(X, ), the element Ez(1) of Z,
corresponding to the M-module H = @y, (2 ® L*(X, pt)), where (Xj) is a
partition of X, is the multiplicity function n : X — [0, +-00] such that n(t) =
k for t € X} (which is thus a complete invariant, as already observed in
Theorem 8.1.1). In this case, the M-modules are in bijective correspondence
with the elements of Z,. taking their values in NU{oc} (sce Theorem 8.1.1).

We now clarify the statement of Proposition 8.5.5, in term of the be-
haviour of the “dimension” Ez(1).

PROPOSITION 9.3.2. Let H be a right M-module. We set Z = L= (X, p),
where p is the probability measure defined by 7. Let d = Ez(1) € Z.

(i) H is a finitely generated M-module if and only if d € L (X, u).
(ii) M is a finite right M-module if and only if [ d(t)du(t) < 400
(i.e., d € LY(X,p)).
(iii) The commutant B(Hyr) of the right representation is finite if and
only if d < +00 a.e.

PRroOOF. (i) Obviously, d is bounded whenever # is finitely generated.
Conversely, assume that d < n. For simplicity we consider the case n = 1.
By Proposition 8.2.2, we may take H = @yprL?(M) with p, € P(M) for all
k and we have ), Ez(py) = d < 1. Using Proposition 9.1.8, we see that we
may choose the projections p; to be mutually orthogonal in M. Then the
right module H is isomorphic to gL?(M), where ¢ = > & Pk, and is therefore
generated by ¢.

(ii) is obvious since (Tr®7)(p) = [ d(t) du(t) and (iii) is a consequence
of Proposition 9.2.5. O

Observe that only the property stated in (ii) depends on the choice of 7.
A finitely generated M-module is finite. The converse is not too far from
being true.

COROLLARY 9.3.3. Let H be a finite right M -module. There is an in-
creasing sequence (zp) of projections in Z such that lim, z, = 1 in the
s.0. topology and such that Hz, is a finitely generated right M-module for
every n.

PROOF. Take d as in the previous proposition and let z, by the charac-
teristic function of {t € X : d(t) < n}. Since z,d is bounded, the M-module
Hzy, is a finitely generated. Moreover, lim, z, = 1 in the s.o. topology
because d is p-integrable (in fact, d < 400 a.e. would be enough). O

9.4. Jones’ basic construction

In this section, we are given a tracial von Neumann algebra (M, 7) in
standard form, i.e., M C B(L?*(M)), and a von Neumann subalgebra B.
Then L2(M) has an obvious structure of right B-module, which will be our
object of study.
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9.4.1. Definition and first properties.

DEFINITION 9.4.1. Let (M, 7) be a tracial von Neumann algebra and
let B be a von Neumann subalgebra. The von Neumann algebra (M, ep)
generated by M and the projection ep in B(L?(M)) is called the extension
of M by B, or the von Neumann algebra of the (Jones’) basic construction
for BC M.

We give below a list of some fundamental properties of this basic con-
struction. Recall that J is the canonical conjugation operator on L2(M).
Assertion (4) states that (M, ep) is the commutant B(L?(M)pg) of the right
B-action.

PROPOSITION 9.4.2. Let B C M be as above. Then

) eprep = Ep(x)ep for every x € M;

2) JeB = eBJ;

3) B=Mn {GB},;

4) (M,ep)=JB'J = (JBJ);

5) the central support of ep in (M,eg) is 1;
6)

7)

(1
(
(
(
< w.o

(6) (M,ep) = span{zepy : x,y € M}

(7) B 2 b+ bep is an isomorphism from B onto eg(M,ep)ep.

PROOF. The proof of statements (1) to (4) is straightforward and left to
the reader. The central support of ep in (M, ep) is the orthogonal projec-
tion from L?(M) onto (M, eg) eBLZ(M)”.H2 which is obviously L?(M). So,
assertion (5) is immediate.

Using (1), it is easily seen that span{zepy: x,y € M} is a x-subalge-
bra of (M,ep) and a two-sided ideal of the x-algebra generated by M U
{ep}. Thus, I = span{zepy :z,y € M} is a w.o. closed two-sided ideal
of (M,ep). Since I contains ep whose central support is 1, we get (6) (see
Proposition 2.4.15).

Finally, to prove (7), we observe that B 5 b + bep is a normal homo-
morphism from B into eg(M,ep)ep by (3). It is injective since bep = 0

implies 0 = begl = b. Moreover, for z,y € M, we have eg(zepy)ep =
Ep(x)Ep(y)ep, so the surjectivity is a consequence of (6). O

Since (M, ep) is the commutant of the right action of B, it is a semi-
finite von Neumann algebra equipped with its canonical normal semi-finite
faithful center-valued tracial weight EZ and its tracial weight 7, where Z
is here the center of B and where the restriction to B of the trace on M
is still denoted by 7. Let us make explicit these objects. Given xz € M,
denote by L, LQ(B) — L2(M) the right B-linear bounded operator such
that L (b) — zb for b € B. We have (Ly)*(m) = ep(z*m) for m € M and
thus

Va,y € M, LoL};=uwepy*, L;L,=E}(yx).
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It follows from the equality (8.2) that
T(zepy) = T(xy) (9.3)
whenever z,y € M. By item (6) of the previous proposition, this characte-
rizes T.
Similarly, using the equality (9.1), where now, as already said, Z is the
center of B (assumed to be separable), we get

Ez(zepy) = EF o B} (xy) = EY (ay), (9.4)

since EZB o E]g = Eg/[

We now translate the results of Sections 8.5 and 8.6 in the setting of
the right B-module L?(M)p. The elements of M are left B-bounded but
the space (L?(M)g)° of left B-bounded vectors can be strictly larger. Let
¢ € (L*(M)p)° and denote by L¢ : L?*(B) — L?*(M) the corresponding
operator. Then we have, for n € L?(M),

Li(n) = Ep(£™n). (9.5)
Indeed, for b € B, we have

<LZ(77)7?)\>L2(B) = <n7§b>L2(M) = <777 Jb*J£>L2(M) = <b*‘]‘£a Jn>L2(M)
= (") p2apy = T(E0N") = T(n*Eb) = T(EB(n"E)D).
It follows that for &,n € (L%(M)g)?,

(&;mp=L¢ly=Ep({™n) € B, (9.6)
LyLi =noepof, (9.7)

where o ep o &* € (M, ep) is the bounded operator on L?(M) such that
noepo&*(m)=nEp(£*m) for every m € M.

As said in Remark 8.4.14, the operators Lan may be viewed as “finite
rank” operators, and therefore the elements of the norm closure Zo((M, eg))
of the vector space they generate are “compact” operators. We will come
back to this subject in Section 16.3.

PROPOSITION 9.4.3. The space Zo((M,ep)) defined above is the norm-
closed ideal of (M, ep) generated by ep.

PROOF. Observe first that Zy((M, ep)) is a norm-closed ideal which con-
tains eg = L1L]. On the other hand, L¢ L} = (Leep)er(Lyep)* sits in the
ideal generated by ep, since L¢ep and Lyep belong to (M, ep). This con-
cludes the proof. O

PROPOSITION 9.4.4. Let (M,7) and B as above and let (&) be an or-
thonormal basis of L*>(M)p.

(i) We have dim(L*(M)g) = 7(1) = 3, €1l 7200y = 20 166 1 11 (ary-
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(ii) We have dim(L?(M)p) < +oo if and only if the series >, &&F is
convergent in LY(M). Then >, &EF is the Radon-Nikodym deriv-
ative of 7|, with respect to T and so is affiliated to the center of
M.

PROOF. (i) is Formula (8.6).
(ii) Assume that the series >, &&F is convergent in L!'(M). By Propo-
sition 8.4.15 we have, for m € M,
F(m) =) (&, m&i) 12 (v = D r(m&g) = T(m(d_&E)).
It follows that 7 is finite and that ), &£ is the Radon-Nikodym derivative
of 7},, with respect to 7. This operator is affiliated to the center of M since
7 is tracial. O

9.4.2. Case where M is a II; factor.

PRroPOSITION 9.4.5. Let M be a 113 factor and B C M a von Neumann
subalgebra such that dim(L?(M)p) < +oco. For every x € (M,ep) there
exists a unique m € M such that reg = mep.

PROOF. Our assumption is that 7 is a normal faithful finite trace on
(M,ep). Wesetd =7(1). Then7),, = dr. Let E) be the unique conditional
expectation from (M, ep) onto M such that 7o Eyy = 7. For m € M, we
have

dr(mEy(ep)) = T(mep) = 7(m),
whence dEy(eg) = 1.

If zep = mep with m € M, we get m = dEj;(xep), hence the unique-
ness of m. Let us prove its existence. We first consider the case x = miegmao,
with mq,mo € M. Then, we have

miepmoep = mi1Eg(ma)ep

which proves our assertion in this case. The conclusion for any x follows from
(6) in Proposition 9.4.2 and the continuity property of Fj; with respect to
the w.o. topology. ([l

COROLLARY 9.4.6. Let M be a 111 factor and B C M a von Neumann
subalgebra such that dim(L?*(M)p) < +oc. The set of left B-bounded vectors
in L?>(M)p coincides with M.

PROOF. Let £ be a left B-bounded vector. Then L¢ep belongs to
(M,ep), and by the previous proposition, there exists m € M such that

Leep = mep. It follows that ¢ = Leep(1) = mep(1) = m. O

This fact non longer holds in general (see Exercise 9.11).
As a consequence of the corollary, we see in the next proposition, that
whenever M is a factor with dim(L?(M)pg) < +o0, the elements &; of Propo-

sition 9.4.4 are in M.
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PROPOSITION 9.4.7. Let M be a 111 factor and B C M a von Neumann
subalgebra. Then d = dim(L?(M)g) < +oo if and only if there exists a
family (m;) in M such that

(i) Eg(mm;j) = 6;p; € P(B) for alli,j;
(ii) >, miepm} =1 (convergence in the w.o. topology);

(iii) Y=, mym; converges in L'(M).

Whenever these conditions hold, we have ), m;ym; = d1. In particular,
the convergence of this series also holds in the w.o. topology. Moreover,
L*(M)p = ®;m; B (orthogonal Hilbert sum).

PROOF. Assume the existence of a family (m;) € M satisfying conditions
(i), (ii) and (iii) of the above statement. It is an orthonormal basis. In
particular, since the projections m;egm; are mutually orthogonal with range
m; B, we have L*(M)p = @;m; B.

By Proposition 9.4.4, we get that ) . m;m; is a scalar operator d 1 with
dim(L?(Mp)) = d < +oo. But then, d1 is the least upper bound in M of
the family of finite partial sums of the series, whence the convergence in the
w.0. topology.

Conversely, assume that dim(L?(Mp)) = d < +o0. Then the “only if”
part follows from Proposition 9.4.4 and Corollary 9.4.6. O

PROPOSITION 9.4.8. Let M be a 11y factor and B C M a von Neumann
subalgebra. Then L*(M)p is finitely generated if and only if there exists
mi,...,my € M such that

(i) Ep(mim;) = b;;p; € P(B)for all i, j;

(ii) Zlgign miepm; = 1.
Whenever these conditions hold, we have Y, ... m;m} = dim(L*(M)p)1
and x =3, c.c, miEp(mix) for everyx € M.

PROOF. Assume that L?(M)p is a finitely generated B-module. By
Proposition 8.5.3, we know that it has a finite orthonormal basis. We con-
clude thanks to Corollary 9.4.6. The converse is obvious.

If these conditions hold, recall from Remark 8.4.12 that every x € M

has a unique expression of the form x =Y.' | m;b; with b; € p; B, and that
bi = <mi,m)B :EB(m;kx). O

The family (m;)1<i<n is called a Pimsner-Popa basis.

DEFINITION 9.4.9. In case B is a subfactor of a separable II; factor M,
the Jones’ indea® of B in M is the number

[M : B] = dim(L*(M)p).

It is finite if and only if (M, eg) is a II; factor and also if and only if L?(M)p
is finitely generated (see Proposition 8.6.1). We set

J(M)={[M : B] : BC M, subfactor of finite index}.

6For an explanation of the terminology, see Exercise 9.13.
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REMARK 9.4.10. We observe that since L?(B) C L?(M), we have [M :
B] > 1 and [M : Bl =1 if and only if M = B. It is also easy to see that
{n?:n>1,ne€N} CI(M) (see Exercise 9.14). A remarkable result is that

J(M) C {4cos(n/n)* :n € N;n >3} U4, +oo[=T(R), (9.8)
where R is, as always, the hyperfinite II; factor.

9.4.3. An example. Let 0 : G ~ (B, 7) be a trace preserving action
of a countable group G and let M = B x G be the corresponding crossed pro-
duct. We keep the notation of Section 5.2. We observe that M is in standard
form on H = L?(B) ® ¢*(G), which is therefore also written L?(M). This
was noticed in Section 7.1.3 whenever B is commutative, and the general
case is dealt with similarly.

We want to describe the extension (M, ep). Recall that the canonical
unitary ug € M is identified with 1® 0y and that we write {uy for £ ® d,.
Now, we note that

§ug =E® 0y = (£ @ 0e)ug = ug(0y-1€ ® ).

This allows us to write L?(M) as the Hilbert direct sum >_geG L*(B)uy, as
we did until now, but also as }_ ugL?(B). The latter decomposition is

more convenient to study the structure of right B-module of L?(M). Indeed,
(ug)ge is an orthonormal basis of the B-module L?(M)p. The right action
of B is diagonal and so, clearly BRB({*(G)) is the commutant (M, eg) of B
acting to the right on L?(M). Furthermore, ep is the matrix y with entries
equal to 0 except y. . = 1p. It is also easy to check that the canonical trace
on (M, eg) is 7 ® Tr, where Tr is the usual trace on B(£*(G)).

Note also that since (uy)g4e¢ is an orthonormal basis of L?(M) g, we get
that dim(L?(M)p) is the cardinal of G.

Exercises

EXERCISE 9.1. Let (M, 7) be a tracial von Neumann algebra. Given
x € M, consider the linear positive functional ¢ : b+ 7(bx) defined on B.
Show that Ep(x) is the Radon-Nikodym derivative of ¢ with respect to the
restriction of 7 to B.

EXERCISE 9.2. Let (M, 7) be a tracial von Neumann algebra. Given
x € M, we denote by C, the |[|-||,-closed convex hull of {uzu* : v € U(M)}.
Show that C, N Z = {Ez(z)}.

EXERCISE 9.3. Let (M, 7) be a tracial von Neumann algebra with center
Z and let p be a projection in M. Show that whenever Ez(p) is a projection
we have p = pEz(p) = Ez(p) and conclude that Ez(p) is a projection if and
only if p € Z.
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EXERCISE 9.4. Let (M, 7) be a tracial von Neumann algebra, A a von
Neumann subalgebra of M and p a projection in M. Show that the set
of projections ¢ in A such that ¢ = p has a maximal element (Hint: use
Proposition 9.1.8).

EXERCISE 9.5. Let (M, T) be a separable tracial von Neumann algebra
with center Z. We assume that M does not have abelian projections. Show
that for every z € Z, there is a projection p € B(f2(N))@M such that
(Tr ® Ez)(p) = z (use [Dix81, Chapter III, §4, Exercise 1]).

EXERCISE 9.6. Let M be a separable tracial von Neumann algebra and

Z = L*>®(X,u) its center. Let Ey be its center-valued trace and let Try

be a normal faithful semi-finite tracial weight on M. For x € M, we set
Tr(z) = [ Trz(z) du(x) and 7(z) = [ Ez(x)dp(z) = 7, 0 Ez(x).
(i) Show that Tr is a normal faithful semi-finite trace on M.

(ii) Let (pn) be an increasing sequence of projections in M with \/ p,, =

1 and Tr(p,) < +oo for every n. Let ¢, € P(Z) be the central

support of p,. Show the existence of f, € L'(X,u), with (1 —

Gn) fn = 0 such that

Tr(pn$pn) = /anEZ(pnl'pn) d:u

for every x € M.
(iii) Deduce the existence of a mesurable function f : X — [0, 4+00] such
that, for x € M,

Tr(z:):/XfEZ(m) dp.

(iv) Show that Trz(z) = fEz(z) and that 0 < f < +oo almost every-
where.

EXERCISE 9.7. Let ‘H be a right module on a separable tracial von Neu-
mann algebra (M, 7). We denote by Zo(B(Har)) the norm closure of the
ideal F(Has) (defined in Lemma 8.4.1) into B(Har). We set Z = Z(M) =
L>(X, u). Let p be a projection in B(H ).

(i) Show that p is finite if and only if Ey (p) < +oo almost everywhere.

(ii) Show that 7(p) < +oo if and only if Ex(p) € L*(X, ).
(iii) Show that p € Zo(B(Har)) if and only if Ez(p) € Z.

EXERCISE 9.8 (Compact operators). Let (M, Tr) be a von Neumann
algebra equipped with a faithful normal semi-finite trace. Let Z(M) (resp.
J(M)) be the norm-closed two-sided ideal of M generated by the finite
projections (resp. the projections p with Tr(p) < 4+00) of M.

(i) Let p € P(M). Show that p € Z(M) (resp. J(M)) if and only if p
is finite (resp. Tr(p) < +00).
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(ii) Show that = € M belongs to Z(M) (resp. J(M)) if and only if the
spectral projections es of |x| relative to [s,+oo[, s > 0, are finite
(resp. such that Tr(es) < +00).

EXERCISE 9.9 (Compact operators). We keep the notation of Exercise
9.7. Let Z(B(Har)) (resp. J(B(Har))) be the norm-closed two-sided ideal
of B(Hr)) generated by the finite projections (resp. the projections p with
T(p) < +00) of B(Hu).

(i) Show that x € B(Har) belongs to Zo(B(Has)) if and only if the
spectral projections eg of |z| relative to [s,+oo[, s > 0, are in
Zo(B(Hm)).-

(ii) Show that Zo(B(Har)) C J(B(Har)) € Z(B(Har)).

When M = C, these three ideals are the same, namely the usual ideal of
compact operators.

When B is a von Neumann subalgebra of a tracial von Neumann algebra
(M, 7) then Zo(B(L*(M)g) = (M,ep) (Proposition 9.4.3). Therefore, we
have (M, eg) C J(B(L?*(M)g)) C Z(B(L*(M)g)).

EXERCISE 9.10. Let (&) be an orthonormal basis of a right M-module H
and let Fz be the canonical center-valued tracial weight on B(Hjs). Show
that Ez<1) = Z,L EZ(LEZL&)

EXERCISE 9.11. Let ¥ = {neN:n>1} and X =Y x {0,1}. We
endow X with the probability measure v such that v({n,1}) = (1/n)27"
and v({n,0}) = (1 — 1/n)27™ and let p be the image of v under the first
projection.

(i) Show that the L>(Y, u)-module L?(X,v) is finitely generated, and
compute its dimension.

(ii) Show the existence of L>(Y, p1)-bounded vectors which are not in
L>®(X,v).

EXERCISE 9.12. Let 0 : G ~ (B, 7) be a trace preserving action of a
countable group G and set M = B x G. Let £ = deG ugny be an element
of L} (M) = Py ugL?(B). Show that ¢ is left B-bounded if and only
if ny € B for every g and ) e NgMg converges in B with respect to the
s.o. topology.

EXERCISE 9.13. Let H be a subgroup of a countable group G. Show
that dim(¢*(G) ) = [G : H].

EXERCISE 9.14. Let M be a II; factor. Recall (Proposition 4.2.5) that
for any integer n > 1 there is a II; factor N such that M is isomorphic to
N®M,(C).

(i) Show that [N®M,(C) : N ® 1] = n?.
(ii) Conclude that {n?:n € N*} C J(M).
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EXERCISE 9.15. Let N C M be an inclusion of II; factors and let H
be a finite right M-module. Show that dim(Hy) < +oo if and only if
[M : N] < +o0 and that in this case

dim(Hy) = [M : N]dim(H ).

EXERCISE 9.16. Let N C M be an inclusion of II; factors with [M :
N] < 400 and let p be a non-zero projection in N’ N M. Show that

[pMp : Np| = [M : N]ra(p)7nr(p)

where N’ is the commutant of N acting on L?(M) and 7y, Ty are the
normalized traces on M and N’ respectively (Hint: use Exercises 9.15, 8.8
and 8.9).

EXERCISE 9.17. Let N C M as in the previous exercise and let p1,...,pn
be pairwise orthogonal non-zero projections in N'NM such that > ;" | p; = 1.
Show that

[M: N = 7n(pi) ' [piMpi : Npil,
=1

and conclude that [M : N| > n?.

EXERCISE 9.18. Let M be a II; factor and r be in the fundamental
group §(M) of M. Let t = t(r) be the unique element of ]0,1[ such that
t(1 —t)~t = r (so M* and M'~! are isomorphic) and let p € P(M) with
7(p) = t. We consider an isomorphism 6 from pMp onto (1 — p)M (1 — p)
and we introduce the subfactor N = {z 4 0(x) : = € pMp}. Show that

[M:N]=1/t+1/(1—1).

This defines an injective map from F(M)N|0, 1] into J(M). Therefore
(M) is countable whenever J(M) is countable.

EXERCISE 9.19. Let B be a subfactor of a II; factor M, such that [M :
B] = d < +00. Let n be the integer part of d. Show that there exists an
orthonormal basis my,...,m,1 of L*(M)g such that Eg(m!m;) = 1 for
i <n and Eg(m;,mny1) is a projection with trace d — n.

Notes

Conditional expectations in tracial von Neumann algebras were intro-
duced in [Umeb54] as non-commutative extensions of the usual notion in
probability theory. A related notion was studied in [Dix53]. Center-valued
traces and tracial weights have been investigated in [Dix49, Dix52].

The basic construction appears in [Ska77, Chr79]. Given a subfactor
B of a II; factor M, Jones [Jon83b| made the crucial observation that the
index of B in M is the same as the index of M in (M, ep). His deep analysis
of this fact allowed him to prove his celebrated result (9.8), stated in Remark
9.4.10, on the restriction of the possible values of the index. This is quite
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suprising, compared with the continuum of possible values (i.e., |0, +00]) of
dimensions for general B-modules.

The result stating that the index of B in M is finite if and only if M
is a finitely generated projective module on B is due to Pimsner and Popa
[PP86], as well as the computation of the index from any basis of this
module.
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CHAPTER 10

Amenable von Neumann algebras

The most tractable groups are certainly the so-called amenable ones.
We briefly recall their definition and give, for a group G, a condition on its
von Neumann algebra L(G) equivalent to the amenability of G. This is the
starting point for the definition, in full generality, of an amenable tracial
von Neumann algebra. We give several equivalent characterisations of this
notion, analogous to well-known equivalent definitions of amenability for a
group: existence of a hypertrace and a Fglner type condition, in particular.
The main results are Theorems 10.2.9 and 10.3.1.

10.1. Amenable groups and their von Neumann algebras

10.1.1. Amenable groups. Recall that a group G is amenable if there
exists a left invariant mean m on G, that is a state m on £*°(G) such that
m(sf) = m(f) for every s € G and f € (*°(G), where (sf)(t) = f(s't) for
allt € G.

ExaMPLES 10.1.1. (1) Every finite group G is amenable. Indeed, the
uniform probability measure m on G (i.e., the Haar measure) is an invariant
mean.

(2) Let G be a locally finite group, that is, be the union G = U,G,, of
an increasing sequence of finite subgroups G,. Then G is amenable. To
construct a left invariant mean on G we start with the sequence (m,) of
Haar measures on the subgroups and we take an appropriate limit of the
sequence. To this end, we fix a free ultrafilter w. Recall that, for any
bounded sequence (cy,) of complex numbers, lim,, ¢, is defined as the value
at w € BN\ N of this sequence, viewed as a continuous function on the
Stone-Cech compactification SN of N. Given f € £*°(G), we set

m(f) = limm, (flc,).

It is easily checked that m is an invariant mean on G.

A basic example is the group S, of all finite permutations of N.

(3) The simplest example of non-amenable group is the free group Fy
with two generators a and b. Indeed, for x € {a, ba™ !, b_l} let us denote by
E, the set of reduced words beginning by the letter x. We have Fy = {e} U
E,UE,UE,-1UE,-1, together with Fo = E,UaFE,-1 and Fo = Ey UbEj,-1.
This makes impossible the existence of a left invariant mean.

159
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A remarkable fact is that amenability admits many equivalent charac-
terisations. We recall below several of them®.

ProposiTIiON 10.1.2. Let G be a group. The following conditions are
equivalent:

(i) G is amenable;
(ii) there ewists a net (&) of unit vectors in £2(G) such that, for every
g€egq,
lim A (0)€: — &, = 0

(iii) there exists a net of finitely supported positive definite functions on

G which converges pointwise to 1;

(iv) there exists a net (E;) of finite, non-empty, subsets of G such that,

for every g € G,

. |gEi AR
hgn 5| 0.

Condition (ii) means that the left reqular representation A of G almost
has invariant vectors in the sense of Definition 13.3.4, or in other terms,
that the trivial representation tq of G is weakly contained in the left reqular
representation \g (see Proposition 13.3.5). The notion of positive definite
function on a group is recalled in Section 13.1.3. A net satisfying Condition
(iv) is called a Fglner net. This condition means that in (ii) we may take
for &; the normalized characteristic function |Ei\1/ 1p,.

10.1.2. The von Neumann algebra of an amenable group.

PropoOSITION 10.1.3. Let G be a group and M = L(G). Then G is
amenable if and only if there exists a conditional expectation E from B(L*(M))
onto M.

PROOF. As always, the ug, s € G, are the canonical unitaries of L(G).
Assume first the existence of E. Given f € (*°(G), we denote by M; the
multiplication operator by f on ¢2(G). We set m(f) = 7(E(Mjy)), where 7
is the canonical trace on M. Since usMu; = M _ s for every s € G, we see
that the state m is left invariant.

Conversely, assume that G is amenable, and let m be a left invariant
mean on £>*(G). Given &1 € (2(G), and T € B(L?*(M)), we introduce the
function defined by

fén(s) = (& p(s)To(s™)m)
where p is the right regular representation of G. Obviously, ffT , is a bounded
function on G with

&< ITIEN 71

IFor details, see for instance [BAIHVO08, Appendix G]. Of course, when G is coun-
table, nets can be replaced by sequences.
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We define a continuous sesquilinear functional on ¢2(G) by the formula

(& m) =m(fL,)-
It follows that there is a unique operator, denoted by E(T'), with

(& B(T)n) =m(fL,)

for every &,m € £2(G).

The invariance property of m implies that p(s)E(T)p(s™!) = E(T) for
all s € G. Therefore, E(T) commutes with p(G), whence E(T) € L(G). It
is easily checked that F is a conditional expectation. ([

10.2. Amenable von Neumann algebras
The previous proposition motivates the next definition.

DEFINITION 10.2.1. We say that a von Neumann M is amenable, or
injective, if it has a concrete representation as a von Neumann subalgebra of
some B(#) such that there exists a conditional expectation® E : B(H) — M.

Injectivity is a more usual terminology. This is justified by the following
proposition which also shows that the definition is independent of the choice
of H. For basic facts related to the notion of completely positive map used
below see Section A.3 in the appendix.

PROPOSITION 10.2.2. Let M be a von Neumann algebra. The following
conditions are equivalent:
(i) M is injective;

(ii) for every inclusion A C B of unital C*-algebras, every unital com-
pletely positive map ¢ : A — M extends to a completely positive
map from B to M;

(iii) for any B(H) which contains M as a von Neumann subalgebra,
there is a conditional expectation from B(H) onto M.

PROOF. (i) = (ii). Assume that M is a von Neumann subalgebra of
B(H) and that there exists a conditional expectation E : B(H) — M. We
extend ¢ to a completely positive map ¢ : B — B (#H), using Arveson’s exten-
sion theorem, which says that B(#) is an injective object in the category of
C*-algebras with completely positive maps as morphisms (see Theorem A.5
in the appendix). Then E o qg : B — M is a completely positive extension
of ¢.

(ii) = (iii). Let M C B(#H). We apply (ii) with A = M, B = B(H)
and the identity map Idy;. Then there exists a completely positive map
¢ : B(H) — M whose restriction to M is Idy;. Such a map is automatically
a conditional expectation (see Theorem A.4).

(iii) = (i) is obvious. O

2or equivalently a norm-one projection, by Theorem A.4
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We will rather use the name amenable for such von Neumann algebras to
emphasize the analogy with amenability for groups. Indeed, by the previous
section, a group G is amenable if and only if its von Neumann algebra L(G)
is amenable.

REMARKS 10.2.3. (a) As a consequence of Propositions 10.1.3 and 10.2.2,
if G is a non-amenable ICC group, for instance G = F,,, n > 2, the II; factor
L(G) is not isomorphic to the II; factor L(Ss).

(b) Let G ~ (X,pn) be a p.m.p. action. Then the crossed product
L>(X,u) x G is amenable if and only if the group G is amenable (Exercice
10.6).

10.2.1. Example: the hyperfinite II; factor.
THEOREM 10.2.4. The hyperfinite factor R is amenable.

PROOF. By definition, R = U,>1Q,"", with @, = M (C). Let J be
the conjugation operator in L2(R). For n > 1 and T € B(L?(R)) we set

E.(T)= J(/ uJT Ju*™ du)J,
Usn

where du is the Haar probability measure on the (compact) group Usn of
unitary 2" x 2™ matrices. Then (F,(T)), is a norm bounded sequence of
operators in B(L?(R)). Note that whenever T' € R, this sequence is constant,
with value 7.

We will construct a conditional expectation E : B(L?(R)) — R by taking
the limit of the sequence of maps FE,, along a free ultrafilter w. Using the
Riesz representation theorem, we check that there exists a unique bounded
operator, that we denote by F(T'), such that

(& BE(T)n) =lim (€, E,(T)n), V¢,n € L*(R).
Since E,(T) € JQ,,,J for n > ng, we see that
E(T) € ﬂnozlJQ;mJ = R.

We have E(T) = T if T € R. It is also obvious that E(T) > 0 if T €
B(L?(R))y and that E(zT) = zE(T), E(Tz) = E(T)x for + € R and
T € B(L*(R)). O

As for groups, amenability of von Neumann algebras can be defined in
many equivalent ways. This is the matter of the rest of this chapter and we
will come back to this subject in Section 13.4.

10.2.2. Hypertraces. Let (M, 7) be a tracial von Neumann algebra.
A state ¥ on B(L?(M)) is called a hypertrace (for (M, 7)) if (2T = o (Tx)
for every € M and T € B(L?*(M)) and 1|y = 7. Note that this latter
condition is automatic when M is a II; factor. A hypertrace can be viewed
as the analogue of an invariant mean on an amenable group.
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PrROPOSITION 10.2.5. Let (M,7) be a tracial von Neumann algebra.
Then M is amenable if and only if it has a hypertrace.

ProoF. If E : B(L?(M)) — M is a conditional expectation, then 7o F
is a hypertrace.

Conversely, suppose that 1 is a hypertrace. Given T' € B(L?(M))y, we
define a positive linear functional ¢ on M by ¢(z) = ¢(Tx). For z € M,
we have

o(@)? = |0 2T 2)| < (2T ) ()
< IT)24 ().

Since 9|, = 7, we get p(z) < ||[T||7(z) for z € M. In particular, ¢ is
normal. Using the Radon-Nikodym theorem 7.3.6, we see that there is an
element E(T") € My such that, for every x € M,

$(Tx) = 7(E(T)a).

Then, it is easily seen that F extends to a conditional expectation from
B(L?(M)) onto M. O

10.2.3. Another characterisation. We will prove in Theorem 10.2.9
the analogue for von Neumann algebras of the property (ii) in Proposition
10.1.2. This will be made more specific later in Section 13.4.

In order to establish this new characterisation of amenability, we need
two preliminary results.

Let ‘H be a Hilbert space. Recall that the predual of B(H) is isometric
to the Banach space S'(H) of trace-class operators: each T € S'(H) is
identified to the linear functional ¢, : © € B(H) — Tr(Txz) where Tr is the
usual trace on B(#H). We denote by S(B(H)) the state space of B(H), i.e.,

S(BH)) ={p e B(H)": ¢ > 0,0(1) = 1}.
We will often write B instead of B(#) for simplicity.

LEMMA 10.2.6. We denote by Ky the set of ¢, where T' runs over the
convez set of positive finite rank operators on H with Tr(T') = 1. Then Ky is
contained in S(B(H)) and is dense in S(B(H)) in the weak* topology (i.e.,
the o(B*,B) topology).

PRrROOF. The closure Ky of Ko in the o(B*, B)-topology is a o(B*, B)-
compact convex subset of S(B). Assume that there is an element ¢ € S(B)
which does not belong to Ky. By the Hahn-Banach separation theorem,
there is an a > 0 and a o(B*, B)-continuous linear functional on B*, that
is an element z € B, with R(z,¢) > a and R(z,v) < « for all ¥ € K.
Replacing « by its real part, we may assume that x = z*. Hence, we have
o(x) > a and Tr(zT) < « for every positive finite rank operator 7' on H
such that Tr(T") = 1.
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Taking T to be the rank one projection n — (£, 7)€ where £ is a norm-one
vector in H, we get

VEeH, gl =1, (§x8) <a,
and therefore z < aIdy, so that

p(r) < ap(ldy) = a,
which is a contradiction. O

The second result we need it the original Powers-Stgrmer inequality.
Given a Hilbert-Schmidt operator T', we write ||T'[|y p, = Te(T*T)"/? its
Hilbert-Schmidt norm.

THEOREM 10.2.7. Let T,S be positive finite rank operators in B(H).
Then
2
1T = S|I5,7, < || THT? ) = THS? )| = ||, — 2 |-

The proof is similar that of Theorem 7.3.7. At the same time, we also
record here the following more general inequality, that we will be useful in
the next chapter>.

THEOREM 10.2.8 (Powers-Stgrmer inequality). Let (M, Tr) be a
semi-finite von Neumann algebra equiped with a normal faithful semi-finite
trace. Let z,y be two elements of My with Tr(x?) < +o00 and Tr(y?) < +oo0.
Then we have

2
Iz = yll5, 7 < || Ti(2® ) = Tr(y? ).

The theorem below uses two main ingredients in order to show its condi-
tion (2) assuming the existence of a hypertrace: the above Powers-Stgrmer
inequality and a convexity argument due to Day in the framework of groups.

THEOREM 10.2.9. Let (M, 7) be a tracial von Neumann algebra. The
following conditions are equivalent:
(1) M is amenable;

(2) for everye > 0 and every finite set F' of unitaries in M there exists
a positive finite rank operator T on L*(M) with | T[lg, 4 = 1 such

that
max ||uTl — Tul|y . <€ and (10.1)
uek ’
sup }Tr(:cTQ) - T(:E)| <eg; (10.2)
zEM,||z||<1

(3) for everye > 0 and every finite set F' of unitaries in M there exists
a Hilbert-Schmidt operator T on L*(M) with Tl 7 = 1, which
satisfies (10.1) and

max | Tr(T*uT) — 7(u)| < e.
uek

3Both Theorems 7.3.7 and 10.2.8 are particular cases of [Haa75, Lemma 2.10].
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PrOOF. We still set B = B(L?(M)).

(1) = (2). Let ¢ be a hypertrace and consider ¢ > 0 and a finite set
F = {ui,...,up} of unitaries in M. We identify the dual of (B)" x M.,
with B™ x M by

n+1
<(<P1, SERE) (10?1+1)7 (Tla v 7Tn+1)> = Z SOZ(T:L)
i=1

We set

C = {((urpu} = @),.... (unpus — @), (plpr — 7)) 1 ¢ € Ko},

where (upu*)(x) = @(u*zu) and Ky is as in Lemma 10.2.6. Using this
lemma, we see that there is a net (¢;) of elements in K such that lim ¢; = 1
in the o(B*, B)-topology. But then, for every u € U(M) we have

lim up;u™ = wpu™ = ¢ = lim ;.
K3 (2
It follows that (0,...,0) is in the o((Bx)™ x My, B™ x M) closure of C. The
crucial observation is that C' is a convex subset of (B,)" x M, and so this

closure is the same as the norm closure. Hence, there is a positive finite
rank operator S on L?(M) with Tr(S) = 1 and

max [lupu” — gl <€, loglu -7l <e.
uel

Now, we set T = S/2. Since (uSu*)"/? = uTu*, we get from the Powers-
Stgrmer inequality that for u € F,

2
T~ T3 5, < e — 5l = lupgu’ = o <.

(2) = (3) is obvious. Let us show that (3) = (1). Let (7;) be a net of
Hilbert-Schmidt operators with || T;[|y 1, = 1, such that for every u € U(M),
we have

lim [[uT; — Thully p, =0,  lim Te(T; uT;) = 7(u).
1 ’ [

For i € I, we introduce the normal state ¢; :  — Tr(TzT;) on B. Let
1 € B* be a cluster point of the net (p;) in the weak* topology. Obviously,
T is the restriction of ¥ to M. Moreover, for u € U(M) and = € B, we have

Y(uzu®) —Y(z) = im Tr(T; wruw*T;) — lim Tr(7; 2T;) = 0
7 1
since, using the Cauchy-Schwarz inequality, we get

T(T}weu™T) — Te(T7aT)| = |(u* Ty, 2u* Ty, — (T, 2o
< 2flel Ty — Tyl

So, ¥ is a hypertrace. O
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10.3. Connes’ Fglner type condition

10.3.1. Fglner type characterisation of amenable II; factors. In
this section we assume that M is a II; factor. Note that in this situation,
Condition (10.2) is unnecessary in the statement of Theorem 10.2.9, since
the restriction to M of any hypertrace is the unique tracial state on M.
The next theorem is an important step in the proof that an amenable II;
factor is hyperfinite (see Chapter 11). It says that in Condition (10.1), we
may take T to be the normalization of a finite rank projection. This result
corresponds to the Fglner characterisation of amenable groups

Given a positive operator = and t > 0, in the rest of this section, Ef(x)
will denote the spectral projection of x relative to the interval (¢, +00).

THEOREM 10.3.1. A 11y factor is amenable if and only if for every e > 0

and every finite set F' of unitaries in M, there is a finite rank projection
P € B(L*(M)) such that

max |[uPu* — Plla. 1 < €l|Plly - (10.3)
ueF ’

PrOOF. Assume that M is amenable. Let 0 < 1 < 1 be given. By
Theorem 10.2.9, we know that there exists a positive finite rank operator T'
on L?(M) such that

max [[uTu" = Tll2 e < nl|T|5 -
uel ’

We have to show that we can replace T' by a projection. This relies on the
so-called Connes’ trick, proved below in Theorem 10.3.4, which implies the
existence of a t > 0 with

max || Ef (uTu") — B (T)lgz, < (3n) 2 B (T) g,

where n is the number of elements in F'.
Clearly, we have Ef(uTu*) = uEf(T)u*. We take n < £2/(3n) and set
P = E{(T) to get (10.3). O

REMARK 10.3.2. Let H be a Hilbert space and H' be a dense vector
subspace. Given a finite rank projection P € B(H) and £ > 0, there exists
a finite rank projection @ with QH C H' and ||P — QHZTr < e. Indeed, let
(&1,...,&,) be an orthonormal basis of PH. We can approximate each &
by a vector 1, € H' and we can do so that the projection @) on the linear
span of the ny,...,n, satisfies the required inequality. We leave the details
to the reader.

In particular, for H = L2(M), this observation applies to the dense
subspace M. Tt f(lllows that in the previous theorem, we may choose P such
that PL?(M) C M.

‘We now turn to the statement of Connes’ trick.
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10.3.2. Connes’s trick. It is a non-commutative version of a trick due
to Namioka, that we first explain.

Let 1 ) denote the characteristic function of the interval (¢, +00). The
main point in Namioka’s trick is the following elementary observation:

\V/81, So € R, / ll(t,oo)(sl) — 1(t,oo)<32)‘ dt = |81 — 82‘.
R

Now, given a o-finite measure space (X, p) and f,g € L'(X, p), using Fu-
bini’s theorem, we get

If —gll, = /R VES(f) — Ef(g)| dt

where, in analogy with spectral theory, we write Ef(f) = 1(; )0 f. Applied
with g = 0, this gives

11, = /R |ES(F)l dt.

In particular, if f, g are such that ||f — g||; < €| f||; for some € > 0, we at
once deduce the existence of a ty5 € R with

1% (F) = By ()]l < ell B (Dl

and so Ef (f) #0ife < 1.

We want to obtain a non-commutative version of this Namioka’s obser-
vation. The first task is to reduce computations of Hilbert-Schmidt norms
of operators to computations of L?-norms of functions.

ProrosiTioN 10.3.3. Let H be Hilbert space and let x,y be two positive
finite rank operators on H. There exists a positive Radon measure v on Ri

such that for every pair f,g of Borel complex-valued functions on Ry with
f(0) =0=g(0) one has

1f(x) — g(y)

B = [, 1) = 9(®) dvta. )

+
PrRooOF. We write

m n
=1 =1

where the \;’s are the distinct strictly positive eigenvalues of x and the e;’s
are the corresponding spectral projections (and similarly for y). We put
eo=1->" e fo=1-377", fj, and Tr is the usual trace on B(H)+.

X = (Sp(z) x Sp(y)) \ {(0,0)},
and we define a measure v on X (and therefore on R%) by setting
v({(Ni, 1) }) = Tr(eifs)
v({(X:,0)}) = Tr(ei fo)
v({(0,15)}) = Tr(eof;)-
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Let f, g be two real-valued Borel functions on R4 with f(0) =0 = ¢(0).
Then

F@)=> " fMei gy) = g(u)f;
i=1 j=1
are still finite rank operators. We have

Tr(f(x)g(y) = [ fl@)g(B)dv(a, B),

&
(@) = [ Fla)dvlap). Te*w) = [ | #6)dvla.).
and therefore '

I1£@) - 90 ln. = [, 1F@) ~ g dv(e,p). (104)

+

We are now ready to prove the following non-commutative version of
Namioka’s trick, that is formulated for n elements.

THEOREM 10.3.4 (Connes’ trick). Let x1,...,x, be positive finite rank
elements in B(H) and 0 < € < 1 such that, fori=1,--- ,n,
i — 21|y, 7 < llzally, 7 -
Then there is a tyg > 0 with

125, () — By (@1) 5., < (3ne) /2| Ef, (21 1<i<n.

)HQ,TT’

PrROOF. We apply (10.4) with f =g = 1412 4oc)- Then for every pair
x,y of positive finite rank operators we have

£ () — fl/Q(y)H%,Tr = /IR{Q ‘1(t1/2,+oo)(a) - 1(t1/2,+oo)(ﬁ)‘ dv(a, B),

+
and therefore

o0
/0 VB o () — B (9) |31y

/2
R+

— [, lo? = #lav(a. )

R

( /O L1/5100) (@) = Lo 4oy (B)] ) i, B)

— AR du(a, )" a+ B2 dv(a, B))
s(/m\a B dv(a, B)) (/RQ! + 81 dv(a, 8))

+
= || — szTny + Z/H2,Tr )

after having again applied (10.4).
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By assumption, for ¢ < 1, we have [|z; + 21|y, < 3[[21][y 5, It follows
that

oco N
2
| S IB (e = sl Bt < 3nclar |,
=1

o
:m/ﬂ%mmh%
0

Hence, there is a tg > 0 with
n
D B (@) — Efy (z1) 3.0, < 3ne]| Ef (z1) 130,
i=1

O

This theorem holds true for any semi-finite von Neumann algebra (M, Tr)
instead of (B(H), Tr). For later use we record the following particular case.
The details are left to the reader®.

PROPOSITION 10.3.5. Let (M, T) be a tracial von Neumann algebra. Let
€,m be two elements of L*(M)y. There exists a positive Radon measure v on
Ri such that for every pair f,g of Borel complex-valued functions on R,
with f(0) = 0 = g(0) and f(&),g9(n) € L*>(M), the functions (a, B) — f(a)
and (a, B) — g(B) are square integrable and

1£(&) — g3 :/Rz |f(@) = g(B) dv(a, ).

+

THEOREM 10.3.6. Let (M,7) be a tracial von Neumann algebra. Let
£1,...,&, be elements of L>(M)y. Let 0 < e < 1 be such that

& = &illy < elléally, 1<i<n
Then there is a ty > 0 with
HEfo(ﬁz) - Efo(fl)Hg < (3n5)1/2HE§0(§1)‘

9 1< <n.

Exercises

EXERCISE 10.1. Let M be a finite factor such that there exists an in-
creasing sequence (Pp)p>1 of matrix subalgebras P,, of M containing 17, of
type Ik, , with UnP,” " = M. Show that M is isomorphic to the hyperfinite
factor R.5

EXERCISE 10.2. Let (M, #) be a von Neumann algebra.

(i) Let p € P(M). Show that pMp is amenable whenever M is
amenable.

4See [ConT6, Section 1.1].
SWe will prove in the next chapter (Theorem 11.2.2) the much more general and
difficult result saying that all separable AFD II; factors are isomorphic.
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(ii) If M is amenable, show that M ®B(K) is amenable for any Hilbert
space K (Hint: consider first the case where K is finite dimensional
and conclude by approximation).

EXERCISE 10.3. Let (M,H) be a von Neumann algebra and let (7, H)
be a representation of an amenable group G such that 7(g)Mn(g)* = M for
every g € G. Denote by M© the von Neumann subalgebra of fixed points of
M under this action. Show that there exists a conditional expectation from
M onto M and that M© is amenable whenever M is so.

EXERCISE 10.4. Show that abelian von Neumann algebras are amenable.

EXERCISE 10.5. Let (M,#) be an amenable von Neumann algebra.
Show that M’ is amenable (Hint: assume that M is tracial and consider
first the case where (M, #) is a standard form; then use Proposition 8.2.2
to deal with the case of a non-standard representation. If M is not tracial,
the proof is the same but requires the general notion of standard form for
which the interested reader may look at [Haa75].).

EXERCISE 10.6. Let G ~ (X,pu) be a p.m.p. action on a standard
probability measure space. Show that the crossed product L™>(X, u) x G is
amenable if and only if the group G is amenable.

EXERCISE 10.7. Let M be a von Neumann algebra and let p be a pro-
jection having 1 as central support. Show that M is amenable if and only if
pMp is amenable.

EXERCISE 10.8. Show that every von Neumann algebra M has a unique
decomposition as a direct sum Mq @ My where M is amenable and Ms has
no amenable corner.

EXERCISE 10.9. Let M7 and My be two von Neumann algebras such
that M1®Ms is amenable. Show that M; and My are amenable.

EXERCISE 10.10. A von Neumann (M, ?H) is said to have Property (P)
if for every T € B(H) the w.o. closed convex hull of {uTu* : u € U(M)} has
a non-void intersection with M.

(i) Let (M, H) be a von Neumann algebra and suppose that there exists
an increasing sequence (M,,) of finite dimensional subalgebras, with
the same unit as M, such that (UM,)"” = M. Show that (M, H)
has the property (P) of Schwartz.

(ii) Show that the hyperfinite factor R has the property (P).

Notes

The main results and techniques presented in this chapter are borrowed
from Connes’ seminal paper [Con76].

The early stage towards the notion of injective von Neumann algebra is
Property (P) of J.T. Schwartz [Sch63]. In this case, Schwartz proved the
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existence of a conditional expectation from B(H) onto M'. He showed that
a group von Neumann algebra L(G) has Property (P) if and only if G is
amenable.

Later, Hakeda and Tomiyama [HT67] introduced the extension property
for (M,H) by the existence of a norm-one projection from B(#H) onto M.
This condition, which is now known as amenability or injectivity, is a priori
weaker than Property (P) (by Exercise 10.5). It has many advantages in
comparison with Property (P): it is easier to establish, is independent of
the Hilbert space on which the von Neumann is represented and enjoys
remarkable stability properties. We will show in the next chapter that, for
tracial von Neumann algebras, amenability implies hyperfiniteness which in
turn is weaker than Property (P) (Exercise 10.10). So, finally, amenability
is equivalent to Property (P). More generally, this is still true for any von
Neumann algebra acting on a separable Hilbert space [ConT76].






CHAPTER 11

Amenability and hyperfiniteness

In this chapter, two fundamental results are established. First, any
amenable finite von Neumann algebra can be approximated by finite dimen-
sional algebras, a deep fact due to Connes. Such algebras are said to be
approximately finite dimensional (AFD) or hyperfinite. Second, we show
the theorem due to Murray and von Neumann asserting that there is only
one separable hyperfinite II; factor, up to isomorphism.

11.1. Every amenable finite von Neumann algebra is AFD

DEFINITION 11.1.1. Let M be a finite von Neumann algebra. We say
that M is approximately finite dimensional (AFD) or hyperfinite if for every
finite subset F' = {x1,...,x,} of M, every normal tracial state 7 and every
€ > 0, there exist a finite dimensional x-subalgebra () C M with 1;; € @ and
Yi,---»Yn in @ such that ||lz; —yill,, < efori=1,...,n, where [z, =
7(z*z)Y/? (although [|[l2, needs not be a norm).

When M has a faithful normal tracial state 7, the above definition is
equivalent to the next one, and does not depend on the choice of the faithful
normal tracial state 7. We use the following notation. If (M, 7) is a tracial
von Neumann algebra, the metric defined by the norm |||, is denoted by
dy. Given € > 0 and two subsets C, D of M, we write C' C%? D if for every
x € C we have da(z, D) < e.

DEFINITION 11.1.2. We say that a tracial von Neumann algebra (M, 7)
is approximately finite dimensional (AFD) or hyperfinite if for every finite
subset F' of M, there exists a finite dimensional *-subalgebra () C M with
1y € @, such that F c®2 Q.

The goal of this section is to show the following celebrated theorem.
THEOREM 11.1.3. Every amenable finite von Neumann algebra is AFD.

In the rest of this chapter we limit ourself to the case of a von Neumann
algebra M equipped with a normal faithful tracial state 7. The proof of the
above theorem in the general case follows from the exercise 11.1. Moreover,
for simplicity of presentation, we will assume that M is separable.

The hardest step is to prove Theorem 11.1.5 which states that a tracial
amenable von Neumann algebra M has the local approximation property as

173
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defined below. Then a classical maximality argument will imply that M is
AFD (Theorem 11.1.17).

DEFINITION 11.1.4. We say that (M, 7) has the local approxzimation pro-
perty if for every € > 0, every non-zero projection e € M and every finite
subset F' C U(eMe), there exists a non-zero finite dimensional matrix alge-
bra Q in eMe with unit ¢ such that for v € F,

(@) [llg, vllly < ellglly;
(b) da(quvg, Q) < ellqll,-

11.1.1. Amenability implies the local approximation property.

THEOREM 11.1.5. A tracial amenable von Neumann algebra (M, T) has
the local approximation property.

Since eMe is still amenable for every e € P(M), it is enough to take
e = 1 and to prove the following claim.

Claim: given € > 0 and a finite subset {v,...,v;} of unitaries in M there
exists a non-zero finite dimensional matrix algebra () with unit ¢ such that
for 1 <k<lI,

g, vellly <eligll, and  da(queg, Q) < eligll,- (1L.1)

Strategy of the proof. We choose a maximal abelian von Neumann subal-
gebra A of M. We will first apply to (M, e4) the Connes’ non-commutative
version of the Day and Namioka arguments as in the previous chapter, in
order to find a finite projection p € (M, e4) almost invariant under the uni-
taries v,.! After a first approximation, we will show that this projection
can be associated to a finite family z1,...,z,, of elements in M that are
orthonormal with respect to the conditional expectation E4. A local Rohlin
type lemma followed by a technical deformation will allow to construct, from
these elements x1,...,x,,, a matrix units which generates a matrix algebra
(. Condition (11.1) will be a consequence of the almost invariance of p and
of the local Rohlin type lemma. The maximality of A is only used in the
proof of this local Rohlin type lemma.
We first state a few facts relative to the Jones’ basic construction.

Two formulas in (M, e4). Until Lemma 11.1.11, we only assume that A
is an abelian von Neumann subalgebra of (M, 7). We recall that (M, ey)
is semi-finite and we endow it with the normal faithful semi-finite trace
7 introduced in Section 8.4 (see also Section 9.4). Since (M, ey) is the
commutant of JA.J, we observe that JAJ is the center of (M, e4).

Given a left A-bounded vector ¢ € L?(M),, we denote, as in Section
8.4.2, by L¢ the corresponding A-linear operator from L?(A) 4 into L?(M) .
Let p¢ be the orthogonal projection onto the A-submodule EA of L2(M) 4.
We will need to compute 7(JaJpe) for a € A. To that end, we consider

IRecall that (M, e) is the Jones’ basic construction for A ¢ M



11.1. EVERY AMENABLE FINITE VON NEUMANN ALGEBRA IS AFD 175

the polar decomposition ¢ = £'(¢, §>114/2 of £ (see Lemma 8.4.9). Then, with
the notations of Section 8.4.3, we see that p; = pg = Lﬁ'LZ" Using the
fact that A is abelian and Lg is A-linear, we get Ja*JLg = Lerqy and thus
Ja*JLE/Lg, = L(&'/a)Lzl. It follows from Proposition 8.4.17 that

T(Jadpe) = T(<§/,§/a*>A).

But (¢/,&') 4 is the range projection of ({,f)i‘m (see Lemma 8.4.9), that is,
the support s((¢,€) 4) of (£,€) 4. Thus we get
T(JaJpg) = T(a*s((§,€) 4))- (11.2)
We note that whenever £ € M C L*(M), then (&,€) 4 = Ea(£*€) (see Section
9.4.1).2
We will also need the following fact: given x,y € M such that F(z*x)
and F4(y*y) are projections in A, then
PaPyPz = JEA( y)Ea(y*z)Jps. (11.3)
This is a straightforward computation using the commutativity of A and
the fact that p,(m) = zE4(z*m) for m € M and z =z or z = y.
11.1.1.1. A Falner type condition.

LEMMA 11.1.6. Assume that M is amenable. Given ' > 0, there exists
a projection p € (M, en) such that T(p) < +oo and

% ’
12/?%(1 Ip = vkpvilla 2 < Elpllgz

PRrOOF. The proof is similar to that of Theorems 10.2.9 and 10.3.1. We

set
C = {(vupv] —¢,...,upv] — )}
where ¢ runs over the normal states on (M,e4) of the form 7(c-) with
c € (M,eq), and T(c) = 1. Using the existence of an hypertrace, we see
that (0,...,0) is in the weak closure of the convex set C. Then, given
0 > 0, the same Day’s convexity argument as in the proof of Theorem 10.2.9
provides a ¢ € (M,ea), with 7(c) =1 and
7 (vrevi) =7 ()|l < 6
for 1 < k < 1. Weset b = c¢'/2. By the Powers-Stgrmer inequality (see
Theorem 10.2.8) we get
* 2 ~ * ~ 2
lobvi = bll5 5 < [F(vkevys) = 7(e)|| < 82[[bll3 4

Now using Theorem 10.3.6, we find a spectral projection p of b such that,

— K 1/2 A
max [lp = vkpvilla < (318)" %Pl

We choose § = (£')?/3l. O

2We identify M to a subspace of L?(M).
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In the next step, we show that we may take p of the form >, p,, where
the x; € M satisfy Ea(zfx;) = 6;pi € P(A).

11.1.1.2. Approzimation of finite-trace projections in (M, e,).

LEMMA 11.1.7. Let p be a projection in (M,e4) such that T(p) < +oo.
Given €' > 0, there exist x1,..., Ty in M with Ex(zfz;) = 0;;p; € P(A)

for every 1,7 and
m
=1

PROOF. We first observe that there exists an increasing sequence (z,) of
projections in the center of (M, e,4) such that lim, z, = 1 in the s.o. topol-
ogy and pz,L?(M) is a finitely generated right A-module for every n (see
Corollary 9.3.3). So, replacing p by pz, for n large enough, we may as-
sume that pL?(M) is finitely generated. By Proposition 8.5.3, we know
that p = 3", pe, where &1,...,&y, is an orthonormal basis of the right A-
module pL?(M). The elements §; are left A-bounded, but are not necessarily
in M. Our technical task is to show that we may replace &1, ...,&, by an
orthonormal basis made of elements in M. We proceed by induction on m.

We set & = 0, 29 = po = 0. Given 0 < ¢ < 1/4, we assume that
we have found o, ...,xp—1 in M such that E(afz;) = 6;;p; € P(A) for

0<i,j<k-—1and HZ?;&pgi — Z;:Olpxi > < 6. We want to show that
there exists x;, € M such that E4(zjay) is a[projection, E(xjx;) = 0 for

i < k and HZ?:OP&' N Zf:opxi
consequence.

We view &, as an operator affiliated to M. It follows that there exists an
increasing sequence (g, ) of projections in M such that ¢,& € M for every
n and lim,, ¢, = 1 strongly. We have

< €.
24

< 262, The lemma is then an easy
2,7

IPgner — Pells < 2Pgne, — npe,nlls + + 2llanpe,an — pe,lls
and
IPgue, — GnPecdnlls 2 = T(Pane) — 27(nPerdn) + T(dnPe, 4nDe,an)
< T(Pgngy.) — T(anpe,an)

)

since pg, ¢, nPey, = nPg-
Moreover, by (11.2), we get

T(Pgntr) = T(5((@n&ks ank) 4)) < T(s((Ek> €k a)) = T (Pg,)-

But limy, 7(gnpe,an) = T(pg,) and limy, [|gnpe,gn — pe, llo » = 0 and so, given
8’ > 0, we can choose n/ such that Hpqn/&c —png2 2 < 5.

We set y = quér, %0 = Yio Pr;(y) and y1 = y — yo. We have
Ex(xfy1) = 0for 0 < i < k—1, but @ = E4(yjy1) may not be a pro-
jection. So, we will need later to modify slightly y;. But before, we want
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to evaluate [|py, — pyll, ;- We set f = Zf;ol Pz; + Py, and fr_1 = Zf:_ol Das; -
We have p, < f and so f(fx—1 +py) = fe—1 + py. Then

1f = (Fer+p )52 = T(F) = T (a1 +py) + 270y fr1)

k—1 k—1
=7(f) = A(fo1 + py) + 27((py — pe) feo1) + 27(pe, O _pes — > _1e,))
1=0 1=0

< T(py,) — T(py) + 2kY26" + 2,

where, to get the last inequality, we have used the Cauchy-Schwarz inequality

and the fact that || fr—1[ly; < kY2 and [Pe,lly» < 1. We remark that

T(py) = 7(s(Balyin))) < 7(s(Ea(y*y))) = T(py)-

It follows that

Py, = pullz- = IF = (fao1 +py)ll3. < 26128 + 26,

Now, let us explain how we modify y;. Let e, be the spectral projection
of a = EA(yfy1) corresponding to the interval (1/n,4o00). We put xp =
yrena” /2. Then we still have Ea(xfzg) =0 for 0 <i <k —1 and morever
E4(xjxy) = e, is now a projection. Observe also that p;, = pye,. Using
again (11.2), we see that

[Py _pyleanf = [|py, — JenJPyng,+
= T(py,) —7(JenIpy,)
= 7(s(a)) — 7(ens(a)),

where s(a) is the support of a. With n sufficiently large, we can make
|[Py; — Payll, » arbitrary small.

Finally we get that HZLO Pe; — Z?:o Dz

is smaller than
2,7

k—1
pri — fr—1 + Hp&g - pyHQ,-} + ||py — Dyy Hgﬁ + ||py1 - pxk”Qﬁ-
1=0 2,7

<640+ (2k"26" +26)' + |Ipy, — puly 5
<0+ + (2kY28 +26)1/2

for a sufficiently large n. Whenever § < 1/4, we can find ¢’ sufficiently small
such that § 4+ &' + (2k1/26" + 26)1/2 < 261/2, O

Our two last steps before proceeding to the proof of Theorem 11.1.5 are
the local Rohlin type lemma 11.1.11 and the deformation lemma 11.1.12.
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11.1.1.3. A local Rohlin type lemma. We need to show first the ele-
mentary fact that every abelian von Neumann algebra is AFD.

LEMMA 11.1.8. Let (A, 7) be an abelian separable von Neumann algebra.
There exists an increasing sequence (Ay) of finite dimensional von Neumann
subalgebras of A such that UpA,"" = A.

PROOF. Let (a,) be a sequence in the unit ball (A); of A which is dense
in (A)1 equipped with the |[|-||,-metric (see Proposition 2.6.7). We construct
the algebras A, by induction. First, there exist projections eq,...,e; and

al — E?:l ajej‘ < 1/2.
A fortiori we have the same inequality with respect to the [|-||,-norm. We
denote by A; the algebra generated by the projections eq,...,e;. Observe
that ||a1 — Ea,(a1)|l, < 1/2 and that ||Ea,(a1)| < 1.

Assume that we have constructed finite dimensional algebras A1, ... A,
such that A C Ay, C --- C A, and

scalars aq, ..., ay in C such that Z§:1 ej = 1 and ‘

|ai = Ea,(ai)]], <277 for 1<i<j<m. (11.4)
As above, for i = 1,...,m + 1 we can find projection eé- and scalars ozz- such
that
ki
a; — Za;ez < 2~ (m+1)
j=1

Let A,,4+1 be the algebra generated by A,, and the projections 6;-. Then
(11.4) is satisfied with m + 1 instead of m.

We conclude that the unit ball of U, A, is dense in the unit ball of A
with respect to the ||-||,-metric, that is, with respect to the s.o. topology. [

We also need the following continuity property for conditional expecta-
tions.

LEMMA 11.1.9. Let (M, T) be a tracial von Neumann algebra and (B,,) a
decreasing sequence of von Neumann subalgebras. We set B =N, B,,. Then,
for every x € M we have

lim || Ep, (z) — Ep(2)], = 0.

PROOF. The sequence (ep, ) of orthogonal projections eg, : L?(M) —
L?(B,) is decreasing. We set e = Apep,. We have obviously ep < e, and it
remains to show that e < ep. Givenz € M, we have lim,, e, (Z) — e(Z)||, =
0. On the other hand, (Ep, (z)) is a sequence bounded in norm by |z||.
Therefore there is a subsequence (EB% (x))r which converges to some xg €
M in the w.o. topology. It is easily seen that x¢p € B and that

lim (e, (2),7) = (@,7)

for every y € M. It follows that e(Z) = g € B, hence e < ep. O



11.1. EVERY AMENABLE FINITE VON NEUMANN ALGEBRA IS AFD 179

REMARK 11.1.10. The same result holds for an increasing sequence (B,,)
and B = U,B, . We leave it as an exercise.

LEMMA 11.1.11 (Local Rohlin type lemma). Let A be a mazimal abe-
lian subalgebra of (M, 7). Let f € A be a non-zero projection, yi,...,Ym €
M, and & > 0. There exists a projection e € A with e < f and

max. leyie — Xielly < €'lle]],

where \; = 7(ey;e)/T(e).
PROOF. Since A is abelian, using the spectral decomposition of the

EA(y;)’s, we find a non-zero projection f' € A with f* < f, such that
for all 4,

[EaCya) f' = Nif|| < €'/2

for some scalar X, € C.
Let (A;) be an increasing sequence of finite dimensional subalgebras of
Af’ such that U, A, = Af’. Note that

Nu(A,NfMfY=Af'nfMf = Af

since Af’ is a maximal abelian subalgebra of f'M f’. By Lemma 11.1.9 we
have limy, || Earqparg (2) — Eag(z)||, = 0 for every = € f/Mf’. It follows
that there is an integer ng such that

m
ZHE‘AQLOmf’Mf’(f/yif) Eap(f' yzf) < (/22 ||f H2
i=1

If we denote by eq,...,es the minimal projections of A,,,, we get

2
s

Z (ejyie; — Ea(yi)ej|| < (5//2)2Hf/|@

=1 ||j=1 9

(see Example 9.1.2 (2) and since Eap (f'yif') = Ea(y;)f') and therefore, by
Pythagoras’ theorem,

S

m S
> llesyies — Baliesls < (£//2)* Y llesl-

i=1 j=1 j=1
It follows that for some 7, and for all ¢, we have
lejyie; — Ea(yielly < ('/2)llejlly

and thus |ejyie; — Nejlly < €'|lejll,-
Since (7(e;yiej)/7(ej))e; is the orthogonal projection of e;y;e; onto Ce;;,
we see that e = e; satisfies the statement of the lemma. O
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11.1.1.4. A deformation lemma.

LEMMA 11.1.12. Let (M, T) be a tracial von Neumann algebra. For n
sufficiently small, C > 0 and m € N, there exists 6(n,C,m) (that we simply
write 6(n)) with lim, 0 d(n) = 0 such that, given yi,...,Ym in M and e €
P(M) satisfying

leyiyie = digell, < nllelly
for all 1 <i,j < m and max; ||y;|| < C, then there exist partial isometries
Ul ..., Uy and a projection € in M with ¢’ < e, uju; = d; j¢' and
le = ¢'ll, < a@)lle’]l,,
Vi, lyee” —will, < sm)|€']],:
REMARK 11.1.13. Note that
e — sl < e = €l + e’ — ], < (€ + D],

so we will have (and indeed use) the same result with ||y;e — u;||, in place
of ||yie’ — ;|5 in the second inequality of the lemma.

The proof of this lemma is by induction on m and uses the next lemmas.

LEMMA 11.1.14. Let e be a projection in M and x € (eMe)y such that
le —z||y < €'|lelly with 0 < &’ < 1. Denote by €' the spectral projection of x
corresponding to the interval (1 — V&', 1+ V/€'). Then we have

¢ <e |e- €/H2 < Vellell, (11.5)
| — ze'|| < Vel (11.6)

PRrROOF. Observe that if 7. denote the trace 7/7(e) on eMe then, for
y € eMe, one has |y||, = 7'(6)1/2”2;“277_6. Therefore it suffices to consider the
case e = 1. The inequality (11.6) is obvious. To prove the second inequality
of (11.5), we consider the spectral probability measure of = associated with
the vector 1 € L2(M). We have

1 =€ |2 = u(Re \ (1 = VE, 1+ V) < / 11—t du(t) < ()2
R+
O
LEMMA 11.1.15. Let e be a projection in M and x € M such that x*x €

eMe and ||z*x —e|| < &' < 1. If x = u|z| is the polar decomposition of x,
then ||z —ul| <1— (1 -2 < Ve and u*u = e.

PRrROOF. Again, it suffices to consider the case e = 1. We observe that
|z — ul| < |||z| — 1|| and that the spectrum of |#|* = z* is contained in the
interval (1 —¢’,1+¢&'). O

Putting these two lemmas together we get:
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LEMMA 11.1.16. Let e be a projection in M and © € Me such that
|z*x — €|, < €'|le]ly, where e’ < 1. There exist a projection € < e and a
partial isometry u, namely the isometry given by the polar decomposition of
xe' such that v*u = €' and

ol < VElela, e~ ul < )
from which it follows that
lelly < (1= V)~ H|e]]
and
e’ = ull, < [lze’ = ull[|e]l, < ) le'],

Denoting by ¢ the function t — t'/*(1 — \/t)~' we thus have

le=¢€ll, < @@y and [lze’ = ull, < @()]|e'[],-

Proor oF LEMMA 11.1.12. As said, we proceed by induction on m.
The step m = 1 follows from the previous lemma where we take x = yje
and &’ = 1.

Assume now that we have found a projection e, € P(M) and partial
isometries uq, ..., uy such that

ujuj = 0; e, for 1<4,5<k, (11.7)
lyser — willy < Su(lleally for 1<i <k, (11.8)
le —exlly < dr(n)llerlly; and e <e, (11.9)

where 05, only depends on 7, C, k, and lim,dx(n) = 0. We set ¢
L- Zle uju; and ych = qYk+1. We have
k

[ srek — vkrrerly < D Nuiverierlly
pa

k

< O uf = enyyrraerlly + D llewys vrsrell,
i—1 i—1

< k(M) l|yk+1llllexlls + En(L + 6x(n))llexl

< k(Cok(n) +n(1+ k(n))llexll2-

From this, straightforward computations show that

Jex(Yha1) Yarer — exlly < Gemllerll

where again lim,_,o d;.(n) = 0.

Using anew Lemma 11.1.16 we find a projection exy1 < er and a partial
isometry upq1 such that uy upr1 = exs1, llex — ergills < ©(0, () ller+1lls
and ||yp 1 €rt1 — ki, < @(0%(0))llextally: We observe that quyy 1 = gy
and so, replacing u; by u;ex1, we easily see that Condition (11.7) is fulfilled
at the step k + 1, as well as Conditions (11.8), (11.9) with an appropriate
function dgy1. O
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We are now ready to prove Theorem 11.1.5

PrROOF OF THEOREM 11.1.5. We have to prove the claim which follows
the statement of the theorem. We assume here that A is maximal abelian.
Let 0 > 0 be given. By Lemmas 11.1.6 and 11.1.7, there exist x1,..., 2y in
M with Ex(z}z;) = 6, ;fi € P(A) for every 4, j and

2
1122)(1 llp — UkpUkHQ # (5/l)||p”2,%7

where p =" p,,. For y € (M, e4) we have

m m
2 2 2 2
24 = ||pyH277. = Z Hpmiy||2,»? 2 Z HpmiypIiHQﬁ—'
i=1 i=1

Using (11.2) and (11.3), it follows that

lp — vkpv,’;H; Z Pz, — Py 0kPVEDe, |15 5 7

=1
m m

2
Z ’le Z xzpvkxijiHQ,%
i=1 j=1
m m

> Nfi = Y Ealafopa;) Ea(xfvpa) fill3-
i=1 j=1

Hence, we get

I m ‘
2 ZT((fi - ZEA(ﬂfkaafj)EA(arjv;imi)fi)Q) <dllpllE, =637

k=1 i=1 j=1 i=1

3

Since A is abelian, we have an inequality between integrals and therefore
there exists a non-zero projection f € A such that, for every k,

Z ZEA x ’L)kl‘J)EA(:L‘ VLT fl 2 < 52]} (11.10)
i=1 j=1

Moreover, again because A is abelian, there is a non-zero projection f’ € A,
smaller than f, such that, for every j, either f'f; = f' or f'f; = 0, with
f'fi # 0 for at least one i. Cutting (11.11) by f’, and keeping only the
indices i such that f'f; = f’, we may assume that

ST =Y Ea(ajopa)) Ea(aivfa:) f)? < méf, (11.11)

i=1 j=1

with f;f = f for all .
Now, we use the local Rohlin type lemma 11.1.11 to the family

{zjzj,zjopx; 11 <i,5 <m,1 <k <I}.
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Given 7 > 0, there exists a projection e € A, with e < f and

lexizje — digelly, <nllelly, (11.12)

lewfunzze — Aiguelly < nllell: (11.13)

The deformation lemma 11.1.12, the remark 11.1.13 and Equation (11.12)
provide a projection e’ € M, ¢’ < e, partial isometries uq, ..., u,; in M and

a fonction ¢ : RY — R satisfying lim, o d(n) = 0 such that for every 1, j,
uju; =6 5¢,  |le— e'Hz < 5(7])“6/“2 and ||zie — ui|y < 5(17)”6'“2.
We use Equation (11.13) to approximate in |[|-||,-norm
Es(zjvpxj)e = Exlexivgpaje)
by exfvpxje since it implies ||E4(ex]vgpxje) — exfupzjelly, < 2nllel|y. In turn,
ex;vpxje is approximated by wjviu;.
Therefore, if 7 is chosen sufficiently small, we get from (11.11), where f
is first replaced by e, and then e is approximated by €', that
m m
Z 7((¢' - Z u;kvkuju;‘-v,tuif) < mdr(e), (11.14)
i=1 j=1
and moreover we get from (11.13) that
2 2
Juons; — Aesnel < (6l (1115
We set e;; = wiu;, ¢ = > v, € and we denote by @ the matrix algebra
generated by the matrix units (u; ;).
By Pythagoras’ theorem and (11.15), and since
lei.ivres; — Aigreilly = [Jui(uivru; — Nijre )uj]], = [Juivig — Xijwe'|],,

we get

2
qVkq — Z Aijkeij|| = Z lesivres s — Nijweislly
i’-j 2 7’7.7
2 2
< mdlle|[, = dllallz,
and so
da(queg, Q) < 52| g, (11.16)
It remains to estimate ||g — vrqu|l,. We have, by (11.14),
2
q— Z €i,iVkqULCii

i

= " lleis — eivrguiells
i

2

and so
2

q— Zei,ivkquei,z‘ = Z Hel - u;-*vkqv}iuz-Hﬁ < 5m||e’H§ = 5HQH%-
i i

(11.17)

2



184 11. AMENABILITY AND HYPERFINITENESS

An immediate computation shows that

2
*
E €i,iVEqULE; 5

i

2

2 2
= llvwqugllz = llall2
2

+
2

quvif; - Z ei,ivkquei,i

i

so that
2

* *
Vg qUy, — § €3,iVkqUL€; i

? 2

Z €i,iVkqULEi,i

i

g ei,ivkquei,i

i

) (llall, - ‘

)

= (llall, +

2 2

< (2llqllo) (5" ll,),
thanks to (11.17). It follows that

lg — vkgvilly < (82 + 2261 4) gl (11.18)
Chosing 0 sufficiently small, (11.16) and (11.18) give our wanted inequalities
(11.1). O

11.1.2. The local approximation property implies the AFD pro-
perty.

THEOREM 11.1.17. Let (M, ) be a tracial von Neumann algebra which
has the local approximation property. Then M is AFD.

Proor. We fix € > 0 and a finite subset I’ of the unit ball of M. We
set & = 371/2¢. Recall that every element of M is a linear combination of
at most four unitary elements. So, since M has the local approximation
property, there exists a finite matrix algebra ) with unit ¢ such that

llg.all, < llall, and da(azq. Q) < gl (11.19)

for every x € F.

We denote by Eq the trace preserving conditional expectation from gMgq
onto Q). For z € F, we deduce from (11.19) and from Pythagoras’ theorem,
first that

lgrq — Eq(qzq)lly < dllglls
and next, since gx(1 — q) + (1 — q)zq is orthogonal to ¢M ¢, that
(@ = (1 = 9)2(1 — q)) — Eq(qzq)ll3
= llgzq — Eq(gzq)|5 + lgz(1 — q) + (1 — g)zqll3
= llgzq — Eq(qzq)l5 + llala, 2] + [x, dlqll3
< lazq — Eq(azq)ll5 +2ll[z, q]ll3 < €*all3.

Let us consider the set S of all families {Q;},.; of matrix subalgebras
(); whose units g; are mutually orthogonal and are such that

2
Ve e, o —(1- el —q) - Boo(qeg|> < lal}  (11.20)
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where ¢ = ), G-

By the first part of the proof, S is not empty. Using Remark 11.1.10, a
“passing to the limit argument” easily implies that S is inductively ordered
by inclusion. We take a maximal element {Q;},.; in S with corresponding
set {qi};c; of units.

We want to show that ¢ = ) ;.; ¢; = 1. Suppose, by contradiction, that
g # 1. We apply the first part of the proof to (1 — ¢)M (1 — ¢), which has
the local approximation property, and to the set {(1 —¢)z(1 —¢q) : x € F'}.
There exists a non-zero finite dimensional algebra P C (1—¢q)M (1 —gq), with
unit p such that

11— q)z(1—q) — (1 —q—p)z(1 —q—p) — Ep(pzp)|3 < *|Ipl3,
for all x € F. Adding this inequality to (11.20) we get
|z — (1 —q—p)z(1 — ¢ —p)—E,0ner((a+p)za+p)l3
< &lg+pll5

after having observed that

E,qnepr((¢ +p)v(q+p)) = Es,qQ,(qzq) + Ep(prp)
and using again Pythagoras’ theorem.
This contradicts the maximality of {Q;};;, and so we have ¢ = 1.
Hence F is well approximated by elements of @, ; Qi, but @, ; Qi is not
finite dimensional when I is infinite. In this case, given £; < €2, we choose a
finite subset Iy of I such that 7(1=>_,.; ¢;) < &1 and [ —Eg,, @,(2))[|2 <
2¢ forx € F. Weset f=1-3,.; ¢ and

N=Cfoa
i€l

For x € F', we have

lz = Exn(@)lly < lle = ) Eq.(giza)ll2 +
i€l
<24 /g1 < 3e.

HT(fwf)f

7(f)

2

It follows that F' 3¢ N, where N is a finite dimensional unital subalgebra
of M and this concludes the proof. O

11.2. Uniqueness of separable AFD II; factors

When M is a Il; factor, the following lemma shows that, in the definition
of an AFD factor, we may assume that @) is a matrix algebra of type Ion for
some 1.

LEMMA 11.2.1. Let M be an AFD II; factor. Given € > 0 and a finite
subset F' C U(M), there exists, for some n, a type Ian subalgebra N of M,
with 15 = 157 such that F C° N.
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PROOF. By definition, there exists a finite dimensional subalgebra @
with 1o = 1p and F' C° Q. We have Q = > /", Q; where each Q; is
isomorphic to some k; x k; matrix algebra (see Exercise 2.2). We denote by
¢; the unit of ); and we choose mutually orthogonal minimal projections

1 ki

€,...,€  in @, so that their sum is ¢;. We fix an integer n. Dyadic

approximations of the numbers 7(e}), i = 1,...,m, allow to build mutually
1

orthogonal projections fij, 1 <i<m1 < j < n; with ff < e; and

7(f]) = 27" for all 4, j, and which are such that
Uz )
Tlef =Y fy<27"
j=1

We select partial isometries wﬁ €Q;, 1 <1<k, 1<i<m,such that
(wh)*wl = e} and wl(wl)* = €. We consider the projections w!f; (w!)* for
all possible 7, 7,1 and get in such a way a family of mutually orthogonal
projections, each of trace 27". We complete this family by appropriate
orthogonal projections, of trace 27", in such a way that the sum of all the
projections of trace 27" we have built is 1. These projections are minimal
projections of a subalgebra N of type Ion. In order to define N we have
the freedom of the choice of the partial isometries relating these minimal
projections. We do so that this IV contains the partial isometries wﬁ fi for

all 4, 7,1. We set vézZ}ilwl«fg, 1 <1<k 1<i<m. Then wé—vl is a

) 7

partial isometry with e} — 2?2:1 fij as right support. It follows that

-

2 LI
1 —
j=

and so dg(wf(wé-)*,N) < 21=n/2,

Since the wﬁ(wé)* generate linearly @), it is a routine exercise to see that
if n is large enough, we have F C?* N. O

THEOREM 11.2.2. Let M be a separable 11y factor. The following condi-
tions are equivalent:

(1) M is amenable;

(2) M is AFD;

(3) there exists an increasing sequence (Qy) of finite dimensional *-
subalgebras of M , with the same unit as M, such that (UQ,)" = M;

(4) there exists in M an increasing sequence (Qn) of matriz algebras
M, of type Igk, , with the same unit as M, such that (UQ,)" = M;

(5) M is isomorphic to the hyperfinite 11, factor R.

PRrROOF. (5) = (4) = (3) = (2) is immediate and (5) = (1) has been
proved in the theorem 10.2.4. Theorem 11.1.3 states that (1) = (2). Let
us show (2) = (4). Let {x, : n > 1} be a countable, s.o. dense subset of
the unit ball of M. For every n, Lemma 11.2.1 provides a 2F» x 2¥» matrix
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algebra ),, with 1;; € @,, such that
|zi — Eq, (zi)|l2 <27, for 1<i<n.

The main difficulty is that the matrix algebras @Q),, obtained in such a way
are not in increasing order. Therefore, we will construct them inductively.
Assume that we have constructed ()1 C --- C @, such that

lzi — Eq, (zi)||2 < 24“, for 1<i<k, k<n,
each @; being a matrix algebra of type L,x;. We will construct Q41 of type
Lk, With @, C Qny1 and
|zi — Eg, .y ()|l < 27T for 1<i<n+1. (11.21)

Then, we will have
Y~ S.0
M= U;.Lo:1Qn .
We consider a matrix units (e; ;) of @), and we set e = eq 1. Since eMe

is amenable, hence AFD, given £ > 0, we can find a 2* x 2* matrix algebra
N C eMe with e € N, and elements x; ;. in N such that

levizjert — ijully < €27, (11.22)
forl<j<n+1landl<ik< 2k,
Let (e,}’j)lgi,jSQk be a matrix units of N. Then

{eivle}c,lel,j L 1<i <2 1<ki< 2’“}

is a matrix units which generates a 2f7+1 x 25241 matrix algebra Q, 11 with
knt1 = kn + k. Obviously, @, is diagonally embedded into Q1.
It remains to check Condition (11.21). Setting

2kn
yi= Y €i1Tijkeik € Qnit,
i k=1
we have
2kn
2 2
;= wills = > llesiziern — ez jrerl-
ik=1
Since

2
2

lesizjenk — einzijrerily < llevizjens — ik
we get, thanks to the inequalities (11.22),
2 kn —o—(n+1)\2
e il < (2bne 0+,
So, if we choose € = 27 we obtain

Hl’j — EQn+1(xj)H2 < H:L'] — yjH2 S 2—(n+1) fOI" 1 S 7 S n + 1.

This completes the proof (2) = (4).

To finish the proof of the theorem, let us now show that (4) = (5).
Note that M and R are of the form M = (UP,)” and R = (UQ,,)"” where
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(P,) and (@) are increasing sequences with P, ~ M (C) ~ Q,. Then
there exists an isometric *-isomorphism ® from the x-algebra M = U, P,
onto R = U, @, which preserves the traces: 7g o @ = Tps|p. Since M\ and
R are dense in L2(M) and L%(R) respectively, there is a unique unitary

operator U : L?(M) — L?(R) such that Uz = a(z) for every x € M. Then
x — UxU* defines an isomorphism from M onto R which extends a. [l

REMARK 11.2.3. Every von Neumann subalgebra of an amenable tracial
von Neumann algebra is amenable. Therefore, it follows from the theorem
11.2.2 that every infinite dimensional subfactor of R is isomorphic to R.
Hence R is the smallest 1I; factor in the sense that every II; factor con-
tains a subfactor isomorphic to R (see Proposition 4.2.6) and that every II;
subfactor of R is isomorphic to R.

Similarly, by Theorem 11.2.2 we get that eRe is isomorphic to R for any
non-zero projection of R. Hence, R? is the fundamental group of R.

Finally, we observe that R appears in many ways, among them as:

e infinite tensor products of matrix algebras;

e L(G) for every ICC amenable countable group G;

e L>®(X) x G for every free ergodic p.m.p. action of an amenable
countable group G (see Exercise 10.6).

We say that a separable factor M is approximately finite dimensional
(AFD) if there exists an increasing sequence (@) of finite dimensional *-
subalgebras of M, with the same unit as M, such that (U,Q,)”" = M. Such
an algebra is amenable (this can be shown as in Theorem 10.2.4, using a
standard form of M).

COROLLARY 11.2.4. There is a unique separable AFD type Il factor,
up to isomorphism.

PROOF. We observe first that RRB((?(N)) is a separable AFD type
11, factor. Now let M be such a factor, which is therefore amenable. By
Exercise 8.1, we know that M is isomorphic to some N®B(¢*(N)) where
N is a II; factor. Let p be any finite rank projection in B(¢?(N)). Then
(1 ®p)(N®B(*(N)))(1 ® p) = N®B(pl*(N)) is amenable, and since there
exists a norm-one projection from N®B(pf?(N)) onto N ® 1 (for instance
the trace preserving one), we get from Theorem 11.2.2 that N is isomorphic

to R. |

Exercise

EXERCISE 11.1. Let M be a finite von Neumann algebra and write M =

© (M;,7;) as a direct sum of tracial von Neumann algebras (see Exercise

el
6.2).
(i) Show that M is amenable if and only if each M; is amenable.

(ii) Show that M is AFD if and only if each M; is AFD.
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Notes

The notion of approximately finite dimensional (AFD) II; factor was
introduced by Murray and von Neumann® in [MvN43], therefore in the
early '40s. The equivalence between conditions (2) to (5) in Theorem 11.2.2
was proved in this paper, where it is also shown that the crossed product
associated with a free ergodic p.m.p. action of a locally finite group is AFD,
as well as the group von Neumann algebra of any ICC locally finite group.
In [Dye63], Dye established that free ergodic p.m.p. actions of groups with
polynomial growth also give rise to this AFD factor. For abelian groups this
had been stated by Murray and von Neumann.

Some 30 years after Murray and von Neumann breakthrough, Connes
obtained ([Con76]) the other major achievement developped in this chap-
ter by showing the remarkable fact that an injective (i.e., amenable) von
Neumann algebra is AFD (the converse being immediate). The simplified
proof that we give in this chapter is borrowed from [Pop86b].

3They rather used the terminology of “approximately finite factor”.






CHAPTER 12

Cartan subalgebras

A central problem in the theory of von Neumann algebras is the clas-
sification, up to isomorphism, of the group measure space von Neumann
algebras L>°(X) x G for free p.m.p. actions of countable groups, in terms of
G and of the group action. The von Neumann subalgebra L>°(X) plays a
crucial role in the study of L (X) x G. It is a Cartan subalgebra (Definition
12.1.11), a notion that has attracted increasing attention over the years.

In the first section we study the abstract properties of Cartan inclusions
A C M, where M is a tracial von Neumann algebra.

In the second section, we address the classification problem of group
measure space von Neumann algebras, and more generally of von Neumann
algebras of countable p.m.p. equivalence relations. We have already ob-
served in Section 1.5.3 that the isomorphism class of L>°(X) x G only de-
pends on the equivalence relation given by the orbits of G ~ X. However
we may have L*°(X;) x G; ~ L(X3) x Gy without the corresponding
equivalence relations being isomorphic (see Section 17.3). One of the main
result of Section 12.2 is that two free p.m.p. actions G; ~ (X, 1) and
Ga ~ (Xg, o) are orbit equivalent if and only if the corresponding tracial
Cartan inclusions L (X;) C L*°(X;) x G1 and L™ (Xy) C L*®(X2) x G
are isomorphic (Corollary 12.2.7).

In Section 12.3 we highlight an alternative to the notion of equivalence
relation for the study of Cartan subalgebras, namely the notion of full group:
there is a functorial bijective correspondence between the classes of tra-
cial Cartan inclusions (up to isomorphism) and the classes of full groups
equipped with 2-cocycles (Theorem 12.3.8). In particular, for G ~ (X, u)
the full group [G] generated by G encodes all the information on the orbit
equivalence class of the action (Corollary 12.3.10).

Finally, in the last section we use the background on Cartan subalgebras
developped in the first section and techniques already applied in proving
that amenable tracial von Neumann algebras are AFD (previous chapter)
to give an operator algebraic proof of the fact that every amenable countable
p.m.p. equivalence relation (hence every free p.m.p. action of any amenable
countable group) is hyperfinite.

12.1. Normalizers and Cartan subalgebras

12.1.1. Preliminaries on normalizers of an abelian subalgebra.
Given a von Neumann algebra M and a von Neumann subalgebra A, the

191
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normalizer of A in M is the group Ny (A) of unitary operators u € M such
that uAu* = A. Note that N (A) contains the unitary group U(A) as a
normal subgroup.

When A is abelian, it is useful to introduce the notion of normalizing
pseudo-group, more general than the group of normalizers.

DEFINITION 12.1.1. Let M be a von Neumann algebra and A an abelian
von Neumann subalgebra. The normalizing pseudo-group of A in M (or
quasi-normalizer) is the set GNr(A) of partial isometries v € M such that
vAv* C A and v*Av C A.

Note that if v € GNy(A), then vo* and v*v are two projections in A
and vAv* = Avv*, v*Av = Av*v. The map = — vzv* is an isomorphism
from Av*v onto Avv*. The set GN)s(A) is stable under product and adjoint.
So, the linear span of GNys(A) is an involutive subalgebra of M. The link
between Ny (A) and GNys(A) is described in the next lemma.

LEMMA 12.1.2. Let (M, 1) be a tracial von Neumann algebra and A an

abelian von Neumann subalgebra. A partial isometry v belongs to GNy(A)
if and only if it is of the form uq with u € Ny (A) and ¢ = v*v € A.

PROOF. We may assume that GNy(A)” = M. Given v € GNys(A), let
(vi)ier be a maximal family of elements in GN7(A) such that {vvf : i € I}
and {vfv; :i € I} are both consisting of mutually orthogonal projections,
with v, = v for some i € I. Weset e =1—> " v;vf and f=1—> viv;.
Then e and f are two projections in A which are equivalent in the finite
von Neumann algebra M since 1 — e and 1 — f are equivalent. We claim
that e = f = 0. Otherwise, let w be a partial isometry with ww* = e and
w*w = f. We choose € > 0 such that ¢ < ||w|,. Let Aq,..., A, in C and
UL,y Upy in G (A) such that

o3, <
j=1

We have Hw — Z?Zl )\jeuijQ < ¢, so that at least for one j we have eu; f #
0. Then w' = eu;f belongs to GN(A) and is such that ew’ = w' = w'f.
But this contradicts the maximality of (v;)ier.

To conclude, we set u =), v;. O

The von Neumann generated by Nys(A) is the w.o. (or s.0.) closure
of the linear span of Njs(A). It is also the closure of the linear span of

GNum(A).

12.1.2. Case of a maximal abelian von Neumann subalgebra.
We begin by a property of maximal abelian *-subalgebras.

PROPOSITION 12.1.3. Let A be an abelian von Neumann subalgebra of a
tracial von Neumann algebra (M, T) and let (A,) be an increasing sequence
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of von Neuman subalgebras of A such that U, A, is w.o. dense in A. Then
A is mazimal abelian if and only if, for every x € M,

lirrln HEAQIQM(@") — Ea, (x)H2 = 0.
Moreover, in this case we have, for x € M,

lim || Eag o () — Ea@)]], = 0.

PROOF. Observe first that A/, N M is a decreasing sequence of von Neu-
mann algebras whose intersection is A’ N M. Then by Lemma 11.1.9 and
Remark 11.1.10 we have, for every x € M,

lim | Ear o (2) = Earane(2)]|, = 0 and lim || B, (x) = Ea(z)[l, = 0.
Then, the statement follows immediately since A is maximal abelian if and
onlyif A=A"NnM. O

COROLLARY 12.1.4. Let A be a maximal abelian von Neumann subal-
gebra of a separable tracial von Neumann algebra (M, 7). Then, there is a
sequence (e} )1<k<mn, " > 1, of partitions of the unit in A such that for
every x € M,

=0
2

lim
n

Mn
Z epxey — Fa(z)
k=1

PrOOF. Let (A,) be an increasing sequence of finite dimensional *-
subalgebras of A whose union is w.o. dense in A (see Lemma 11.1.8). By
the previous proposition we have

lim || Eag o () — Ea@)]], = 0.

We denote by e}, kK = 1,...,my, the minimal projections of A,,. It suffices
to observe that Eq ar(z) = Do efxel. O

We now turn to the description of some useful properties of GNj(A).
In the rest of this section (M, ) will be a tracial von Neumann algebra and
A will be a maximal abelian *-subalgebra (m.a.s.a.) of M. For simplicity of
notation we assume the M is separable. The reader will easily check that
this assumption is not really needed.

PROPOSITION 12.1.5. Let v € GNy(A). Then there exists a non-zero

projection f € A such that either fvf = 0 or fuf is a unitary element in
Af.

PROOF. Assume first that E4(v) # 0 and write E4(v) = ve as in Lemma
12.1.6. Then eve = ve is a unitary in Ae and we take f = e.

Assume now that F4(v) = 0. By the previous corollary, there exists a
partition (ef)1<g<m of the unit in A such that

m m
> llerverly = || Y exvey
k=1 P

2
<1/2.
2
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It follows that there is at least an index k such that ejvey is not a unitary
in Aeg. Then, f = e, — egverv*e; is a non-zero projection in A such that
fvf=0. O

Recall that we denote by e4 the orthogonal projection from L?(M) onto
L?(A). More generally, if v € GNys(A) the space vL?(A) is closed and
we will denote by e, the corresponding orthogonal projection. We have
epa = veav* € (M,es) N A" and vL2(A) = L?(A)v.

Recall also that 7 denotes the canonical normal faithful semi-finite trace
on (M,e,) and that T(e,a) = 7(vv*) (see Section 9.4.1).

The restriction of e4 to M is the conditional expectation E4 from M
onto A (see Remark 9.1.3). Similarly, the restriction of e, 4 to M is the map
x — vE4(v*z) since x — vE4(v*z) is orthogonal to vA. We set Ey4(x) =
vEA(v*z). We establish below some features of these maps F,4 and €,4.

LEMMA 12.1.6. Let vg,v € GNy(A). There exists a unique projection
e € A such that Eyya(v) = ve with e < v*v. In particular Ey,(v) is a
partial isometry.

PROOF. We consider first the case where vg = 1. Let E4(v) = wa
be the polar decomposition of E4(v) and set e = w*w. Then we have
e < v*v since v*v is greater that the right support of E4(v). For b € A
we have E4(v)b = (vbv*)E4(v), that is wab = (vbv*)wa. It follows that
wb = (vbv*)w and therefore v*wb = bv*w. Thus v*w is a partial isometry
which belongs to A since A is maximal abelian. Moreover, we have

w*v = Ex(w™v) = w Ex(v) = w*wa = a.

We see that a is a positive partial isometry, hence a projection. It follows
that a = e and w = ve.
Let us consider now the general case. By the first part, we have

Eyoa(v) = voEa(vgv) = vo(vgv) f
where f € A is a projection such that f < v*vgvgv. Thus
Ey,a(v) = v(v*vovgo) f

and we set e = (v'vougv) f = f.
The uniqueness of e is obvious. O

LEMMA 12.1.7. Let vi,va,v € GNy(A) and suppose that viA and v2 A
are orthogonal. Then the left (respectively right) supports of E, a(v) and
E,,4(v) are orthogonal.

PrROOF. We have E,, 4(v) = ve; and E,, 4(v) = vey with e; < v*v and
eo < v*v. Since v1 A and vy A are orthogonal, we have

0 =7(e1v*ves) = 7(e1e2),

so that 0 = ejes. O
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Let (v;)ier be a family of partial isometries in GNjs(A) such that the
subspaces v; A are mutually orthogonal. We set

Z’UZ‘A = {x cEM:xz= Zviai,ai € A,Z Hviang < —i—oo}.
icl icl icl

We observe that such an expression, if it exists, is unique as long as we
require that v}v;a; = a; for every i since a; = E4(v]x) in this case.

LEMMA 12.1.8. The space ), ;v;A is closed in M equipped with the
||-ly-norm. Moreover, for everyv € GNa(A) there exists a unique projection
e € A with e < v*v such that ve € ), ;v;A and v — ve is orthogonal to

Zie[ ’UZ‘A.

PROOF. The closure of _;.; v;A in L*(M) is ®;crv;L?(A). Let z € M.
Its orthogonal projection on @;ev;L%(A) is @icrviEa(vix). Tt follows that

MnN (@iel UiLZ(A)) = ZviA.
i€l
Let now v € GNy(A). Using the two previous lemmas, we get that
E,;a(v) = ve; for a unique projection e; € A such tha e; < v*v and that
these projections e; are mutually orthogonal. Therefore e = }°._;¢; is a

projection in A. We have ve =}, ;ve; € >, v;A and v—wve is orthogonal
to > e viA. O

Let A be the von Neumann algebra generated by A U JAJ. It is an
abelian von Neumann subalgebra of (M,es) N A’

LEMMA 12.1.9. Let v € GNp(A). Then eya € A. Moreover, we have
Aeys = Aeyq = Aeya.

PROOF. Let us first recall a notation: given a von Neumann subalgebra
N of B(L?(M)) and ¢ € L?(M), then [N¢] € N is the orthogonal projection
on N¢. Thus eq = [A1] and for v € GN);(A) we have [JAJv] = eya.

Case v = 1. Let x € M. Using Corollary 12.1.4, we see that there is
a sequence (e})i<k<m,, n > 1, of partitions of the unit in A such that we
have

lim =0.
n

Mn
Z eprer — Ea(T)
k=1 2

If we set P, = Yy epJeld € A, we get lim, ||P,(z) — ea(z)|, = 0 for
every x € M. It follows that the sequence (P,), of projections converges to
e4 in the s.o. topology and so eq € A C A'.

We have e4 < [Al] < [A’l], and finally all three projections are the
same since [A’1] is the smallest projection p € A such that p(1) = 1.

Note that Ae, is a maximal abelian subalgebra of B(L?(A)). Since Aex
is abelian and contains Ae4 we get that Aey = Aey is maximal abelian and
and therefore Aeyq = A'e4.
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General case v € GNy(A). We set e = v*v and f = vv*. Since v
commutes with JAJ and belongs to the normalizing pseudo-group of A, we
see that = +— vzv* is an isomorphism from Ae onto Af. In particular, we
have e 4 = veaqv* € A. The rest of the statement also follows by spatial
isomorphism. O

REMARK 12.1.10. Given b € A there exists a unique a € A such that
avv* = a and be,q4 = aey,a. Moreover we have ||a|| < ||b]|. To see this
inequality we take a; € A with ajes = (v*bv)es. We have |la1| < ||b]|. To
conclude, we observe that a = vajv*.

12.1.3. Cartan subalgebras.

DEFINITION 12.1.11. Let (M, 7) be a tracial von Neumann algebra. A
Cartan subalgebra is a maximal abelian von Neumann subalgebra A of M
such that the normalizer N (A) generates M as a von Neumann algebra.
Then we will also say that A C M is a tracial Cartan inclusion, or simply a
Cartan inclusion.

Note that in this case, the linear span of Mjs(A) and the linear span of
GN(A) are dense in M in the norm ||[|,.

ProPOSITION 12.1.12. If A is a Cartan subalgebra of a tracial von Neu-
man algebra (M, T), then A is a mavimal abelian subalgebra of B(L*(M)).

PRrROOF. Since A is a Cartan subalgebra of M the linear span N of
N (A) is dense in L2(M). Tt follows that L?(M) = Vuenu (4) uAll2 and
sol= \/ueNM(A) eua. Since A'eyq = Aeya € A we see that A’ = A. O

REMARK 12.1.13. When A is a Cartan subalgebra of a separable tracial
von Neumann algebra M, we get that the A-A-bimodule L?(M) has a cyclic
vector (see Theorem 3.1.4).

We now show the existence of an orthonormal basis of M over A made
of elements of GNj;(A) when A is a Cartan subalgebra.

PROPOSITION 12.1.14. Let A be a Cartan subalgebra of a tracial von
Neuman algebra (M, 1). There is a family (v;);cr of non-zero partial isome-
tries in GNas(A) such that the subspaces v; A, i € I, are mutually orthogonal
and M =3 ;1 viA.

PROOF. Let (v;);c; be a maximal family of non-zero partial isometries
in GNys(A) such that the subspaces v;A, i € I, are mutually orthogonal.
Suppose that >, ;v;A # M. Since the linear span of GNy(A) is [|-]|,-
dense in M, there exists v € GNa(A) such that v & >, ;v;A. Let e
be a projection in A such that ve € ), ;v;A and v — ve orthogonal to
Y icr ViA. Then v — ve is a non-zero partial isometry in GNy(A) and (v —
ve) A is orthogonal to v;A for every ¢ € I. This contradicts the maximality
of ('Ui)iel O
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Note that (v;)scr is an orthonormal basis of the right A-module L?(M),
of course countable when M is separable. We will say that (v;);c; is an
orthonormal basis over A.

COROLLARY 12.1.15. Let A be a Cartan subalgebra of a separable tracial
von Neumann algebra M and let (v,)n>1 be an orthonormal basis over A as
in the previous proposition. Then

A = ZanevnA ap € Avpul ) sup |lag|| < 400
n>1 "

Moreover, the above decomposition of every element of A is unique.

Proor. This is immediate since e,, 4 € A for every n, and ) < €y, 4 =
1. It suffices to use Lemma 12.1.9 and Remark 12.1.10. B O

12.1.4. Basic examples of Cartan inclusions. In this section, (X, )
will be a standard probability measure space and A = L*°(X, p).

The typical example of a Cartan inclusion is provided by the group mea-
sure space construction. Let M = L*(X,u) X G where G ~ (X, p) is a
free p.m.p. action. As seen in Chapter 1, L>°(X, ) is a maximal abelian
von Neumann subalgebra of M and M is generated by L*°(X,u) and the
set {ug : g € G} of canonical unitaries. Observe that these unitaries u, nor-
malize L>(X, p) and thus L*°(X,u) is a Cartan subalgebra of M. Such
Cartan subalgebras are called group measure space Cartan subalgebras. Ob-
serve that in this case, Proposition 12.1.14 is obvious: every = € M has a
unique expression as T = > Ugag with 37 ||ag||g < 400.

A more general example is given by p.m.p. equivalence relations. Let R
be a countable p.m.p. equivalence relation on (X, ). Then A = L>®(X, u)
is a Cartan subalgebra of M = L(R). Indeed, we know that A is a maximal
abelian subalgebra of M (Proposition 1.5.5). Moreover, L(R) is generated,
as a von Neumann algebra, by the partial isometries u,, where the ¢’s
are partial isomorphisms between measurable subsets of X, whose graph is
contained into R (see Section 1.5.2). Recall that w, is the partial isometry
defined by (u,€)(z,y) = (e~ (z),y) if x is in the domain D(p~!) of ¢=*
and (ux€)(z,y) = 0 otherwise. For f € A, we have uy fuj, = 1p(,-1)fo o1
and therefore u, belongs to GNj/(A).

We keep the notation of Section 1.5.2. Recall that the elements of L(R)
may be viewed as elements of L?(R,v) via the identification T = T'1.

LEMMA 12.1.16. Every u € Ny(A) has a unique expression as fug,
where f € U(A) and ¢ € Aut (X, ) is such that © ~g @(x) for a.e. x € X.

PROOF. Let ¢ be the automorphism of (X, u) induced by the restriction
of Ad(u) to A. Viewing u as an element of L?(R,v), we have, for every
a€ A,

u(z,y)aly) = a(p Y x))u(z,y), for ae. (z,y) € R.
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Since u is a unitary operator, it follows that for almost every x € X there is
y ~r = with u(x,y) # 0 (by Exercise 1.16) and therefore we have p(z) ~g .

Moreover, since Ad (u)j4 = Ad (uy)ja we see that uju € U(A). This
concludes the proof, the uniqueness of the decomposition being obvious. [

In the setting of equivalence relations, Proposition 12.1.12 has an easy
proof, as shown below.

PrRoOPOSITION 12.1.17. Let R be a countable p.m.p. equivalence rela-
tion on (X,pn). We set M = L(R) and A = L>®(X,u). Then the von
Neumann algebra A generated in B(L?*(M, 7)) by AU JAJ is the von Neu-
mann algebra of multiplication operators by the elements of L>°(R,v) on

L*(M, 1) = L*(R,v).
PRrOOF. We remark that for a € A and ¢ € L?(R,v) we have
(a&)(x,y) = a(x)é(x,y), and (JaJ§)(z,y) = a(y)(z,y),

whence the inclusion A C L*(R,v). We claim that A is a maximal abelian
von Neumann subalgebra of B(L?(R,v)). To this end, by Theorem 3.1.4,
it suffices to show that 4 has a cyclic vector. Let £ be a bounded strictly
positive measurable function on R which belongs to L'(R,v) and therefore
to L?(R,v) as well. Let n € L?(R,v) be a function orthogonal to A&. We
may assume that X = [0, 1] with its canonical Borel structure. We have

[ e @ty =0
[0,1]x[0,1]

for every continuous functions f, g on [0, 1], where we view §ydv as a bounded
measure on [0, 1] x [0, 1]. It follows that n = 0 a.e. on (R,v).
This shows our claim and consequently the lemma. ([l

We leave it to the reader to translate Proposition 12.1.14 in the setting
of equivalence relations.

12.2. Isomorphism of Cartan inclusions and orbit equivalence
Let us begin by recalling some definitions.

DEFINITION 12.2.1. Let R; and Ro be two countable p.m.p. equivalence
relations on (X1, 1) and (Xg, uo) respectively.

(i) Let 0 : (X1, p1) — (X2, pu2) be an isomorphism of probability mea-
sure spaces. We say that § induces an isomorphism from R onto
Rz (or by abuse of langage that 6 is an isomorphism from R onto
Ra) if (6 x 6)(R1) = R2 (up to null sets). Then we say that R;
and Ro are isomorphic.

(ii) Assume that R; = Ra,~x, and Ra = Rg,~x, for p.m.p. actions
G1 ~ (Xy,p1) and Gy ~ (Xao, pe) of countable groups. We say
that the actions are orbit equivalent if there exists an isomorphism
0 from R; onto Ra (i.e., such that for a.e. x € X;, we have
0(G1x) = G26(x). Then 0 is called an orbit equivalence.
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12.2.1. Isomorphisms. Let R and R2 be two countable p.m.p. equi-
valence relations on (X1, p1) and (Xo, uo) respectively. Let 6 : (X, 1) —
(X2, p2) be an isomorphism of probability measure spaces. We denote by 6,
the induced isomorphism f + fof~! from L>(X;) onto L>(X3). We have
observed in Section 1.5.3 that 6, extends to an isomorphism from the von
Neumann algebra L(R1) onto L(R2) whenever 6 induces an isomorphism
from R onto Rs. The converse assertion holds true.

THEOREM 12.2.2. Let Ry and R2 be as above and let 6 : (X1,u1) —
(X, p2) be an isomorphism of probability measure spaces. The two following
conditions are equivalent:

(i) 0 induces an isomorphism from Ry onto Ra;
(ii) O, extends to an isomorphism from the von Neumann algebra L(R1)
onto L(Ra).

PROOF. It remains to prove that (ii) = (i). We put A; = L*°(X;) and
M; = L(R;), i = 1,2. We denote by 7; the canonical tracial state on M;. We
recall from Section 7.1.3 (c) that we may identify L?(M;, ;) with L*(R;, v;),
where v; is the o-finite measure on R; defined by ju;. For & € L?(R;, v;), the
canonical conjugation operator J; satisfies J;¢(z,y) = £(y, x).

Let a be an isomorphism from M; onto My which extends #,. Let
U: L*(My,7) — L?(Ms,73) be the unitary implementation of a: we have
UmU* = a(m) for every m € M; and U o J; = Jy 0 U (see Remark 7.5.3).

We denote by A; the von Neumann subalgebra of B(L?(R;,v;)) gene-
rated by A; U J;A;J;. For a € Ay, and € € L?*(Ma, ) = L*(Ra,10) we
have

(UaU"€)(z,y) = (a(a)§)(z,y) = a(0™' (2))E(x, y),

and
(UJICLJIU*g)(x7 y) = (JQUQU*J2§)(x’ y)
= (UaU*J2¢)(y, x)

= mf(x, y) = (JQe*aJ2§)(x7 y)

By Proposition 12.1.17, we know that A; = L*°(R;,v;). Then, ob-
viously we have UL (R1,v1)U* = L*(R2,12). Next, by Remark 3.3.2,
we see that there is an isomorphism © : Ry — Ro with ©.11 equiva-
lent to v9 and UMpU* = Mp,g-1 for every F' € L®(Rq1,1v1), where Mp
denotes the multiplication operator by F. Whenever F(z,y) = a(x)b(y)
with a,b € L>®(X1, 1) we have F(©~!(x,y)) = F(0~1(x),07(y)). Since
Aj U B; generates L>(Ri,v;) as a von Neumann algebra, we see that
O~ Yz,y) = (07 1(x),07 1 (y)). Therefore, § is an isomorphism from R; onto
Ro. O

DEFINITION 12.2.3. We say that two tracial Cartan inclusions A1 C M;
and Ay C My are isomorphic if there exists an isomorphism « from M; onto
My such that a(A;) = Az and 79 0w = 71. Then we say that A; and As are
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conjugate. If My = M and if « is an inner automorphism, we say that Aj,
As are conjugate by an inner automorphism or unitarily conjugate.

COROLLARY 12.2.4. Let R1 and Ry be two countable p.m.p. equivalence
relations on (X1, u1) and (Xa, pa) respectively. The two following conditions
are equivalent:

(i) the equivalence relations are isomorphic;
(ii) the tracial Cartan inclusions L*(X;, i) C L(R;), i = 1,2, are
isomorphic.

PROOF. Let o : L(R1) — L(R2) be a trace preserving isomorphism
sending L>°(X7) onto L*°(X32). Since « is trace preserving its restriction to
L>®(X7) is of the form f + fof~! where 0 : (X1, 1) — (X2, u2) is a p.m.p.
isomorphism. Then we apply the theorem 12.2.2. U

COROLLARY 12.2.5. Let R1 be a countable ergodic p.m.p. equivalence
relation on (X1, p1) such that L>(X1) is the unique Cartan subalgebra of
L(R1), up to conjugacy. Then, for any countable ergodic p.m.p. equivalence
relation Ro on some (X2, 2), the von Neumann algebras L(R1) and L(R2)
are isomorphic if and only if the equivalence relations are isomorphic.

PROOF. Let o : L(R2) ~ L(R1) be an isomorphism (automatically trace
preserving since the von Neumann algebras are factors). Then a(L*°(X2)) is
a Cartan subalgebra of L(R1) and therefore there is an automorphism S of
L(R1) such that o «a(L>®(X3)) = L*>°(X7). Then the equivalence relations
are isomorphic by Corollary 12.2.4. ([

We now state these results for group actions.

COROLLARY 12.2.6. Let G1 ~ (X1, p1) and Go ~ (Xa, ug) be two free
p.m.p. actions of countable groups, and let 0 : (X1,p1) — (Xo,u2) be an
isomorphism of probability measure spaces. The two following conditions
are equivalent:

(i) 0 is an orbit equivalence between the actions;
(ii) 04 extends to an isomorphism from L (X1)xGy onto L™°(X2)xGs.

Proor. This follows immediately from Theorem 12.2.2, after having
identified L*>(X;) x G; with L(Rq,~x,) (see Section 1.5.7). O

COROLLARY 12.2.7. Let G1 ~ (X1, p1) and Go ~ (X2, u2) be two free
p.m.p. actions of countable groups. The two following conditions are equi-
valent:

(i) the actions are orbit equivalent;
(ii) the tracial Cartan inclusions L>=(X;) C L>=(X;) x G4, i = 1,2, are
isomorphic.
COROLLARY 12.2.8. Let G1 ~ (X1, 1) be a free ergodic p.m.p. action

such that L*(X1) x G1 has L*>(X1) as unique group measure space Car-
tan subalgebra, up to conjugacy. Then, for any free ergodic p.m.p. action
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Go ~ (X2, po) with Gy countable, the corresponding crossed products are
isomorphic if and only if the actions are orbit equivalent.

12.2.2. The automorphism group of an equivalence relation.
Let R be a countable ergodic p.m.p. equivalence relation on (X, u). We set
M = L(R) and A = L*>*(X) and we denote by Aut (M, A) the subgroup of
automorphisms o € Aut (M) such that o(A) = A. We denote by Aut (R)
the subgroup of automorphisms 6 € Aut (X, p) such that (6 x 6)(R) = R.
Let o € Aut (M, A). Its restriction to A induces an element of Aut (R) by
Theorem 12.2.2. Moreover, this homomorphism 7 from Aut (M, A) into
Aut (R) is surjective since every 6 € Aut(R) comes from ap : Lp —
Lpo(-1x9-1), where Lp is the convolution operator by F' (defined in Sec-
tion 1.5.2). On the other hand, 7 is not injective. Indeed, let ¢ be a 1-
cocycle, that is, a Borel function from R into T such that ¢(x,z) = 1 and
c(x,y) = c(z, z)c(z,y), up to null sets. Let U be the multiplication by ¢ on
L*(R,v). Then ULpU* = L.r and therefore Lp + L.r is an element of
Aut (M, A) whose restriction to A is trivial, and so an element of the kernel
of 7.

Note that Aut (R) acts on the abelian group Z'(R, T) of those 1-cocycles
by 0.c = co(#~! x0~1). Exercise 12.2 shows that ker 7 is canonically identi-
fied to Z1(R,T) and that Aut (M, A) is the semi-direct product Z(R, T) x
Aut (R).

Let Inn(R) be the normal subgroup of Aut(R) consisting of all ¢ €
Aut (R) such that p(x) ~g x for almost every x € X. The outer automor-
phism group of R is Out (R) = Aut (R)/Inn (R).

The group Inn (R) plays a key role in the study of R and of its von
Neumann algebra. It is called the full group of R and is more usually
denoted by [R]. It follows from Lemma 12.1.16 that the group Ny (A)/U(A)
is canonically isomorphic to [R]: to u € Ny(A) we associate the unique
¢ € [R] such that Ad (u) = Ad (u,) when restricted to A, and then we pass
to the quotient.

In the next section we introduce the abstract notion of full group of
measure preserving automorphisms and apply it to the general construction
of Cartan inclusions.

12.3. Cartan subalgebras and full groups

In this section (X, ) is still a standard probability measure space and
A = L*°(X, p), equipped with the trace 7 = 7,.

12.3.1. Full groups of probability measure preserving automor-
phisms.

DEFINITION 12.3.1. Let G C Aut (X, 1) be a group of automorphisms of
(X, p). We say that G is a full group if whenever 6 € Aut (X, u) is such that
there exist a countable partition (X,) of X into measurable subsets, and
0, € G such that the 0,(X,) are disjoint with 0|x,, = 0, x,, then € G.
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When G is viewed as a subgroup of Aut (A, 7), the notion of full group
can be expressed in this setting: if § € Aut (A, 1) is such that there exist a
countable partition of 1 by projections p, € A and automorphisms 6, € G
such that the 6,(p,) are mutually orthogonal with 6(a) = )", 0, (apy) for
a € A, then 6 € G. We will equally use the two formulations.

ExXAMPLE 12.3.2. Assume that A is a Cartan subalgebra of a tracial
von Neumann algebra M. Then {Ad (u):u € Ny(A)} is a full group. It
is denoted by [Ns(A)]. Note that this group is canonically isomorphic to
Nt (A) JU(A).

In the case where A = L>®°(X) C M = L(R), then [N (A)] is canoni-
cally isomorphic to [R].

REMARK 12.3.3. There is also a natural notion of full pseudo-group of
partial measure preserving isomorphisms of (X, ut). In the case of a countable
p.m.p. equivalence relation R on (X, u), the pseudo-group [[R]] of such
isomorphisms whose graph is contained in R is an example of full pseudo-
group.

LEMMA 12.34. Let G be a subgroup of Aut (A, 7). We denote by [G]
the set of automorphisms 6 € Aut (A, T) with the property that there exist a
countable partition of 1 by projections p, € A and automorphisms 0, € G
such that the 0, (pn) are mutually orthogonal with 6(a) = Y, On(apy) for
a € A. Then [G] is a full group and it is the smallest full group that contains
G.

ProoOF. Immediate. ([l
The group [G] is called the full group generated by G.

REMARK 12.3.5. Let M = L>®(X,u) X G where G ~ (X, ) is a free
p.m.p. action. Then [G] = [Ny(A)]. We use the fact that every element
of [NMar(A)] is of the form Ad (ug) with 6 € [Rg~x], in order to see that
WNar(4)] C [G]-

12.3.2. Equivalence relations, full groups and Cartan inclu-
sions. A natural problem is to understand what is the most general con-
struction of tracial Cartan inclusions. There are two approaches of this
problem.

12.3.2.1. From equivalence relations to Cartan inclusions. Let R be a
countable p.m.p. equivalence relation on (X, x). The construction of L(R)
can be generalized by including a twist by a 2-cocycle. For n > 1, we
denote by R(™ c X™*1 the Borel space of all (n + 1)-tuples (zq,...,z,) of
equivalent elements. We equip R with the o-finite measure v(™ defined
by

v(C) = [ Iy (@) 0 Clan),

where C is a Borel subset of R(™ and mo(Zo, ..., Tn) = Tp.
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A 2-cocycle for (R, 1) is a Borel map ¢ : R(®) — T such that
c(x1, e, x3)c(x0, 71, 3) = (20, T2, T3)C(T0, T1,X2), a.e. (12.1)

We assume that c is normalized, that is, it takes value 1 as soon as two of its
three variables are the same. Two 2-cocycles c, ¢ are cohomologous if there
exists a Borel map h : R — T such that h(z,z) =1 a.e. and

d(z,y,2) = h(z,y)h(z, 2)  h(y, 2)c(z,y, 2), a.e. (12.2)

We fix a 2-cocycle ¢ and keep the notations of Section 1.5.2. Then, given
F € My(R), we define a bounded operator L% on L*(R,v) by

Li(©),y) = 2 Flw, 2)¢(zy)e(, 2p)-

ZRx

It is straightforward to check that the von Neumann algebra L(R,c) gene-
rated by these operators L%, F' € My(R), retains exactly the same proper-
ties as L(R). In particular, A = L*°(X) is a Cartan subalgebra of L(R,c).
It is also immediately seen that, whenever ¢, ¢ are cohomologous as in (12.2),
there is a spatial isomorphism from L(R,c) onto L(R, ), induced by the
unitary W : & — h&, which preserves the Cartan subalgebra L>°(X). We
have L(R,1) = L(R).

We get in this way the most general example of a pair (M, A) formed
by a separable tracial von Neumann algebra and a Cartan subalgebra. We
will sketch a proof by using the alternative construction via full groups.

12.3.2.2. From full groups to Cartan inclusions. Let us first translate
the previous construction in terms of the full group G = [R]. We identify
@ € Aut(X,p) with ¢, € Aut(A4,7). For ¢ € G, we denote by ps €
P(A) the characteristic function of the set {z € X : ¢(x) = z}. Given a €
A, we set ¢(a) = ao ¢! For ¢,9p € G and z € X, we set v, p(x) =
c(z, o~ (x), o (@)

Then v is a map from G x G to U(A) which satisfies the following proper-
ties, for all p, 1, @, p1, 02 € G:

UppUop,s = P(Vp,) Vi, (12.3)
Poroy V1 = Py oyt Vo2 w(psﬂupg_l)vw’@l - w(pwlgo;l)vlﬁm’ (12.4)
PeVpyp = Py P(y) Vo = P(Py), PopVey = Poy- (12.5)

The equations in (12.5) are the translation of the fact that ¢ is norma-
lized.

Moreover, if v, v’ are associated with two cocycles ¢, then we easily
check that ¢, ¢’ are cohomologous if and only if there exists w : G — U(A)
which satisfies the following conditions, for all ¢, ¥, 1,2 € G:

1We, W, (12.6)

Py = Porpy

vfp’w = wcpgp(wzp)v%wwf;w. (12.7)
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DEFINITION 12.3.6. A 2-cocycle for a full group G on (A, 7) is a map
v: G xG — U(A) which satisfies the conditions (12.3) and (12.4). The
cocycle v is normalized if it satisfies the conditions (12.5). Two cocycles
v,v" are cohomologous if there exists w : G — U(A) which satisfies the
conditions (12.6) and (12.7), and then we write v ~ v'.

Every 2-cocycle is cohomologous to a normalized one.

Starting now from a general full group G of automorphisms of (A, 7) to-
gether with a normalized 2-cocycle v let us briefly describe the construction
of the attached Cartan inclusion. We consider the vector space M of finite
sums Z@ ayu, wWith a, € A and ¢ € G. On M we define the product and
involution by

(apup)(ague) = app(ag)vp sty (apue)” =@~ () uy1.
We define a linear functional 7 on M by 7(aj,u,) = 7(ayp,) and a sesquili-

near form by (x,y), = 7(z*y). We easily see that this form is positive. We
denote by #H the Hilbert space completion of M /Z where

I={xeM:7(z"z)=0}.
Observe that M is represented on H by left multiplications.
Finally, we define M = L(G,v) to be the weak closure of M in this

representation. Then 7 defines a normal faithful tracial state on M and
A C M is a Cartan inclusion.

REMARK 12.3.7. Assume that G is the full group generated by a coun-
table group G of automorphisms of (A, 7). Let R be the equivalence relation
implemented by the orbits of G. Equivalently, we have z ~5 y if and only
if Gx = Gy. Then R is a countable p.m.p. equivalence relation. If ¢ is the
2-cocycle for R such that vy 4 (z) = c(z, o (z), ¢ 1o~} (x)) for a.e. = then
we check that A C L(G,v) = A C L(R,¢).

12.3.2.3. From Cartan inclusions to full groups. We now start from a
Cartan inclusion A C M where M is a tracial von Neumann algebra. We
set G = [Nar(A4)]. The main problem is to choose a good section ¢ + u,
of the quotient map Nps(A) — [Na(A)]. We write G as a well ordered set
{¢i 11 € I} with Id4 as a first element. We choose ujq, = 1. Let J be an
initial segment of I in the sense that whenever j € J then every smaller
element is in J. We assume that we have chosen u,; implementing ¢; for
j € J, in such a way that if 4,j € J and ¢ € P(A) are so that ¢; and ¢,
agree on Ag, then uy,q = uyp,q. Let k be the first element of I\ J. There
is a maximal projection p € P(A) such that the restriction of ¢; to Ap
does not agree with any ¢;, j € J, on Aq for any ¢ € P(Ap). It follows
that o = @je 7 PilAq; D Pr|Ap for some mutually orthogonal projections
q; € P(A) with ZjGJ ¢; = 1—p. Then we set u,, = ZjeJ Uyp;qj +wp where
w € Ny(A) is any unitary that implements y.

In this manner, we have obtained unitaries u,, ¢ € G such that uyq, = 1,
Ad (uy) = ¢, and u,q = uypq for every projection ¢ € P(A) with ¢,
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agreeing on Aq. We set vy, = u@uwu;w for ¢, € G. It is straighforward to
check that v is a 2-cocycle for the full group G, due to the fact that our choice
of the u, has been carried out in such a way that pg,-1 uwu;1 = Puoyp1-
Moreover, the choice of v is unique up to the relation ~.

Thus, we just have defined a functor from the category of tracial Cartan
inclusions, with morphisms given by isomorphisms, into the category of pairs
(G ~ (A, 7),v/~) consisting of a full group G on an abelian von Neumann
algebra (A, 7) and the class of a 2-cocycle v : GxG — U(A), with morphisms
given trace preserving automorphisms of the abelian algebras that carries
the full groups (resp. the class of 2-cocycles) onto each other.

The functor is one to one and onto, the inverse having been constructed
in the subsection 12.3.2.2. This is summarised in the following theorem.

THEOREM 12.3.8. To every tracial Cartan inclusion A C M is associated
the full group G = [Nar(A)] and the class of a 2-cocycle v: G x G — U(A).
Conversely every pair (G ~ (A, T),v/~) gives rise to a tracial Cartan inclu-
sion. After passing to quotients, we get a functorial bijective correspondence
between the set of isomorphism classes of tracial Cartan inclusions A C M
and the set of isomorphism classes of pairs (G ~ (A, T),v/~).

We can now complete the theorem 12.2.2 as follows.

THEOREM 12.3.9. Let R1 and Ro be two countable p.m.p. equivalence re-
lations on (X1, 11) and (X, pe) respectively, and let 6 : (X1, u1) — (Xo, u2)
be an isomorphism of probability measure spaces. The following conditions
are equivalent:

(1) 6 induces an isomorphism from R1 onto Ra;
(ii) O, extends to an isomorphism from the von Neumann algebra My =
L(R1) onto My = L(Ra);
(iii) O[R1]0~ = [Ra).

Proor. We apply Theorem 12.3.8 with trivial 2-cocycles. (]
Similarly, Corollary 12.2.6 is completed as follows.

COROLLARY 12.3.10. Let G ~ (X1, p1) and Go ~ (Xa, ua) be two free
p.m.p. actions of countable groups, and let 6 : (X1, 1) — (Xo, p2) be an
isomorphism of probability measure spaces. The following conditions are
equivalent:

(i) 0 is an orbit equivalence between the actions;
(ii) O, extends to an isomorphism from L (X1)xGy onto L*°(X2)xGa;
(iii) O[G1]0~! = [Ga).

12.4. Amenable and AFD Cartan inclusions

Let A be a Cartan subalgebra of (M,7) and let A = (AU JAJ)"” . We
let Nar(A) act on A by x — Ad (u)(z) = uzu*. Recall that Ad(u) is an
automorphism of A and fixes each element of JAJ.
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DEFINITION 12.4.1. We say that a tracial Cartan inclusion A C M is
amenable if there exists a state on A that is invariant under the action of
Nu(A).

If (M,7) is a tracial amenable von Neumann algebra (for instance the
hyperfinite factor R), then every Cartan subalgebra A of M is amenable: it
suffices to consider the restriction to A of an hypertrace.

We also observe that if e is a non-zero projection of A, then ede C eMe
is an amenable Cartan inclusion when A C M is so.

REMARK 12.4.2. Let R be a countable p.m.p. equivalence relation on
(X, n) and take M = L(R) and A = L*>°(X, u). We have A = L*°(R,v). For
f € L®(R,v) and ¢ € [R] we set f¢(z,y) = f(p 1 (x),y). Then A C M
is amenable if and only if there exists a state ® on L*°(R,r) such that
O(f?) = d(f) for every f € L®(R,v) and ¢ € [R]. In this case we say that
the equivalence relation is amenable.

DEFINITION 12.4.3. We say that a tracial Cartan inclusion A C M is
approximately finite dimensional (AFD) if for every finite subset F' of M and
every € > 0, there exist matrix units (eﬁj)1§¢7j§nk, 1 <k < m, with eﬁj S
GN(A) for every i, j, k, where the m projections ZKKM efii, 1<k<m,
form a partition of the unit in A, such that if () denotes the finite dimensional
von Neumann algebra generated by the ei-“’ ; then ||z — Eg(z)||, < ¢ for every

zeF.

Of course if the Cartan inclusion A C M is AFD, then M is amenable
and the inclusion is amenable. The aim of this section is to prove the
converse.

THEOREM 12.4.4. Every amenable Cartan inclusion is AFD.

We follow the main steps of the proof that an amenable finite von Neu-
mann algebra is AFD (see Theorem 11.1.3). The principal step is to estab-
lish a local approximation property. For simplicity we assume that M is
separable.

DEFINITION 12.4.5. We say that a Cartan inclusion A C M has the local
approximation property if for every € > 0, every non-zero projection e € A
and every finite subset F' = {uq,...u;} C Nepe(eA) there exists a matrix
units (e; j)1<ij<m in GNepre(eA), such that, if we set ¢ = >, €;4, and if N
denotes the algebra generated by Ag and the e; ;, then qu;q € Q and

2 2
> lasusl < <llall3.
J

REMARK 12.4.6. Let us keep the notation of the previous definition.
Then every element x of () has a unique expression of the form x = ZZ ; @i €5
with a;j € Aej,j'

THEOREM 12.4.7. An amenable Cartan inclusion has the local approxi-
mation property.
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We begin with the proof of a Fglner type condition.

LEMMA 12.4.8. Let F = {us,...w} be a finite subset in Nys(A) and let
e > 0. There exists a projection p € A such that T(p) < +o0 and

2 2
Yl = wipl; - < ellpll3 -
J
ProoOF. We proceed as in the proof of Lemma 11.1.6, replacing now
(M, ea) by A, and using the existence of an invariant state under the action
of Nay(A) on A instead of the existence of an hypertrace. O

PROOF OF THEOREM 12.4.7. Since Ae C eMe is an amenable Cartan
inclusion, it suffices to prove that the statement of Definition 12.4.5 holds
with e = 1.

Let p € A with 7(p) < 400 such that

> lp— Uij;H;f <ellpll3 -
J

We have p = > ane,,a where a, < v,v;; is a projection in A (by Corol-
lary 12.1.15). Since ané€y,4 = €q,0,4, if We set w, = apv, we see that
p = Y, €w,a Where (wy,) is an orthogonal system in GNj/(A), that is
Ex(wiw;) = 0 if i # j. Since T(p) < +o00, by approximation we may
assume that p is a finite sum > ;. €w, A

Thanks to Proposition 12.1.5, we see that there exists a partition of the
unit (s, )n>1 in A such that s, (w;ujwy)s, is either equal to 0 or is a unitary
element in As,, for all 4, j, k,n and such that the s, (w;wy)s, have also the
same property. Using Pythagoras’ theorem, we get

Z ZH —up}) Jsn |, -) <sZ||sznJ||27.

It follows that there exists at least an index n such that

We choose such a n and set s = s,,. We observe that e4JsJ = seys and
therefore
pJs = ZwkseAsw;;.
k
Moreover, for every k we have either wys = 0 or s(wjwg)s = s. Thus,
after a suitable relabeling, we may assume that p in (12.8) is of the form
P =Y, wgeaw; with w;-‘wk = 0; s and wiujwy € As for all ¢, j, k. For this
p we have
2 2
>l —upis ;5 < ellpll3~
J
We set ey; = wpw] and ¢ = ) ey, and we denote by @ the algebra
generated by the matrix units (ey;) and Ag. Then, qujq € Aq for every j.
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We have
Ipll3 7 =70 wreaw;) = T(wpwi) = 7(q)

and
Hp — ujpu;H;? =2 Z T(p) — 2 Z?(wieAw;‘ujwkeAw;;u’;)
ik
=27(q) — 2 _ F(wiEa(wiujwg)eawju)
ik
=27(q) — 2 Z 7 (wiw; ujwgwpu;) = g — ujqu’;H;
ik
Thus we have
D Ml = el < ellalls. (12.9)
] [l

PROOF OF THEOREM 12.4.4. Let F' = {uy,...w} be a finite subset in
Nur(A). We proceed as in the proof of the theorem 11.1.17. First, we
observe that the inequality (12.9) implies the following one:

Z luj — (1 = @)u;(1 = q) = quigll; < <[lall;-

Then, we consider the set S of all families (Q;)ier of subalgebras with mu-
tually orthogonal units g; where each @); is generated by Ag; and a matrix
units (e}k) in GN(A), such that giujg; € Q; for all j, which satisfies

2
< €HqH27

—(1=qu(1-q) — Zqzung

J
where ¢ = > ;.7 ¢;- This set S is not empty and it is inductively ordered
by inclusion. We take a maximal element (Q;);e; with corresponding set
of units (g;)icr. We put ¢ = > _,.;¢;. Using the same arguments as in the
proof of Theorem 11.1.17 we see that ¢ = 1.

The set I needs not to be finite, but we can find a finite subset Iy of I
such that if f =1-3",.; ¢ and if N = CAf © P Qi then |lu; — En(uy)ll,
can be made small enough (see again the proof of Theorem 11.1.17).

Finally, we observe that each N; (and Ny = Af) is finite dimensional
over A with an appropriate basis made of elements of GAN)y/(A) (see the
remark 12.4.6). O

12.5. Amenable II; equivalence relations are hyperfinite

DEFINITION 12.5.1. Let R be a countable p.m.p. equivalence relation
on the Lebesgue probability measure space (X, u).
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(i) We say that R is hyperfinite if there exists an increasing sequence
(Rn)n of subequivalence relations, with finite orbits, such that
UpRy =R, up to null sets.

(b) We say that R is of type II; if it is ergodic.

If R is a II; hyperfinite countable p.m.p. equivalence relation, then L(R)
is the hyperfinite II; factor, and therefore R is amenable (as defined in the
remark 12.4.2). We will see that the converse is true, as a consequence of
the following theorem.

THEOREM 12.5.2. Let M be a separable 111 factor.

(i) M is isomorphic to the hyperfinite factor R if and only if M has
an amenable Cartan subalgebra.

(ii) If Ay and Az are two Cartan subalgebras of R there exists an au-
tomorphism 0 of R such that (A1) = As.

PROOF. (i) Suppose that M has an amenable Cartan subalgebra A.
Then the theorem 12.4.4 implies that A is AFD. By suitably modifying the
matrix units (eﬁ ;) of Definition 12.4.3, with arguments similar to those that
we used in the proofs of Lemma 11.2.1 and of (2) = (4) in Theorem 11.2.2,
we construct an increasing sequence of 2 x 2%» matrix algebras @Q,, whose
union is s.o. dense in M. It follows that M is isomorphic to R.

Moreover we can do so that each @, has a matrix units (f];)1<; j<okn
satisfying:

(a) f7}; € GNm(A) and 3, f1 = 1;
(b) every f'; is the sum of some flnf ! (property arising from a diagonal
embedding of @, into Qp+1).

(ii) Let A be a Cartan subalgebra of R and let us keep the above nota-
tion. We denote by Ay the von Neumann subalgebra of R generated by the
projections fl’?l with 1 < ¢ < 2F» > 1. Then Ay is abelian maximal in
UnQn’ = R and since Ag C A we get Ag = A. This shows the uniqueness
of A up to automorphism: there is an automorphism 6 of R which sends A
on D®® defined in the exercise 12.1. O

COROLLARY 12.5.3. Ewery II; amenable countable p.m.p. equivalence
relation is hyperfinite. Moreover, there is only one 111 hyperfinite countable
p.m.p. equivalence relation, up to isomorphism.

PRrROOF. We have already observed that R is a II; factor defined by a
hyperfinite equivalence relation. Then the assertions of this corollary follow
immediately from the previous theorem together with Corollary 12.2.4. [J

COROLLARY 12.5.4. Any two ergodic p.m.p actions of countable ame-
nable groups on Lebesgue probability measure spaces are orbit equivalent.

ProOOF. Let G; ~ (X;,ui), © = 1,2, be two such actions. Then the
equivalence relations Rg,~x, are amenable (Exercise 12.5) and ergodic,
hence isomorphic. O
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Exercises

EXERCISE 12.1. Let (M,,7,) be a sequence of tracial von Neumann
algebras, and for every n, let A, be a Cartan subalgebra of M,,. Show that
®nenAy is a Cartan subalgebra of ®,enM,,.

When M,, = M for all n, we set M®>© = Q®nenM,. In particular, if D
denotes the diagonal subalgebra of M (C), then D®> ig a Cartan subalgebra
of M(C)®°,

EXERCISE 12.2. We keep the notation of Section 12.2.2.

(i) Show that Z1(R,T) is the kernel of = (Hint: let o € ker m and let
U be its unitary implementation. Show that U is the operator of
multiplication by a Borel function ¢ : R — T. Show that ¢(z,y) =
c(y,x)~! and that c(z, z)c(z,y) does not depend on z. Conclude
that ¢ or —c is a cocycle.)

(ii) For ¢ € ZY(R,T) (resp. # € Aut(R)) we denote by a. (resp. ay)
the automorphism Lp + Lep (vesp. Lr = Lpgg-1x9-1)) of L(R).
Show that (¢,6) — «. o ay is an isomorphism from the group
ZYR,T) x Aut (R) onto the group Aut (M, A).

EXERCISE 12.3. We keep the notation of the previous exercise. We let
[R] act on U(A) by ¢(f) = fop ! where f : X — TisinU(A) and ¢ € [R].
Show that (f,¢) — fu, is an isomorphism from the semi-direct product
U(A) x [R] onto Np(A).

EXERCISE 12.4. We still set M = L(R) and A = L*(X) as above.
We denote by Out (M, A) the image of Aut (M, A) into Out (M). Let
BY(R,T) be the subgroup of Z!(R,T) consisting of the function of the
form (z,y) — f(x)f(y)~! where f : X — T is Borel, and set H'(R,T) =
ZYR,T)/BY(R,T).

(i) Show that the action of Aut(R) on Z!(R,T) gives by passing to
the quotient an action of Out (R) on H(R,T).

(ii) Show that the isomorphism from Z(R, T)xAut (R) onto Aut (M, A)
gives, by passing to the quotient, an isomorphism from H!(R,T) x
Out (R) onto Out (M, A).

EXERCISE 12.5. Let G ~ (X, ) be a measure preserving action of a
countable amenable group. Show that the equivalence relation Rg~x is
amenable.

Notes

The interest of maximal abelian subalgebras was emphasized in [Dix54],
where Cartan subalgebras are called regular maximal abelian subalgebras.
In the pioneering paper [Sin55], Singer highlighted the importance of Cartan
subalgebras in the study of group measure space von Neumann algebras and
obtained in particular the useful corollary 12.2.7. This led Dye to develop



EXERCISES 211

a comprehensive study of group actions up to orbit equivalence [Dye59,
Dye63]|. He emphasized the crucial role of the full group associated with
a group action. In fact, he proved more than what is stated in Corollary
12.3.10: its condition (iii) is indeed equivalent to the algebraic isomorphism
of the full groups. This result is known as Dye’s reconstruction theorem.
Dye’s ideas, as well as the construction of Krieger [Kri70] of von Neumann
algebras associated with non necessarily freely acting groups, were later
carried on by Feldman and Moore [FM77a, FM77b| who provided an
exhaustive study of countable non-singular equivalence relations and their
von Neumann algebras. The notion of Cartan algebra was also considered
by Vershik [Ver71].

The group Aut (M, A), where A is a Cartan subalgebra of a II; factor
M was studied by Singer for group actions and by Feldman and Moore for
equivalence relations in their above mentioned papers. The results obtained
in the first section of this chapter come from [Dye59, Dye63, Pop85].

As mentioned above, the bases of orbit equivalence theory were laid by
Dye. In his seminal paper [Dye59], he proved that a countable p.m.p. equi-
valence relation R is hyperfinite if and only if it is isomorphic to some Rz~ x
for a p.m.p. action of the group Z of integers. Moreover, he proved that two
ergodic p.m.p. actions of Z are orbit equivalent, hence the uniqueness of the
ergodic type II; hyperfinite equivalence relation up to isomorphism. In the
paper [Dye63], Dye established that any p.m.p. action of an infinite abelian
group (even of a group with polynomial growth) gives rise to a hyperfinite
equivalence relation. This was extended much later by Ornstein and Weiss
[OWS80] to the case of actions of any countable amenable group. Therefore,
any two ergodic p.m.p. actions of amenable groups are orbit equivalent.

As for the relations with operator algebras, in [MivIN43] Murray and
von Neumann established the hyperfiniteness of the group measure space
II; factors arising from free ergodic p.m.p. actions of locally finite groups.
In [Dye63], Dye proved that this is the case for any free ergodic action of
any group giving rise to hyperfinite equivalence relations. It was known at
the end of the '60s that for any free p.m.p. action G ~ (X, p), the von
Neumann algebra L>°(X) x G has the Schwartz property (P) if and only if
G is amenable [Sch67, Gol71]. Zimmer extended this study to the case
of equivalence relations, for which he defined a notion of amenability. He
showed that a countable p.m.p. equivalence relation R is amenable if and
only if L(R) is an injective von Neumann algebra [Zim77a, Zim77b]'. He
also observed [Zim78] that for a free p.m.p. action G ~ X, the group G is
amenable if and only if Rg~ x is amenable.

Finally, this circle of results was beautifully completed by Connes, Feld-
man and Weiss [CFW81] who proved that a countable p.m.p. equivalence
relation is amenable if and only if it is hyperfinite!. As a consequence, for an

n fact, these results are proved in the more general framework of non-singular equiv-
alence relations.
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ergodic p.m.p. equivalence relation R, the II; factor L(R) is hyperfinite if
and only if R is hyperfinite, and the uniqueness of the hyperfinite II; factor is
the operator algebra analogue of the uniqueness of the II; hyperfinite equiv-
alence relation. The operator algebraic proof of the above Connes-Feldman-
Weiss result presented in Section 12.4 is taken from [Pop85, Pop07c].



CHAPTER 13

Bimodules

As seen in Chapter 8, the study of M-modules gives few information
on the tracial von Neumann algebra (M, 7). In contrast, the set of M-N-
bimodules that we introduce now has a very rich structure. These modules
play the role of generalized morphisms from M to N, in particular they are
closely connected to completely positive maps from M to N as we will see
in Section 13.1.2.

Particularly useful is the study of the set of (equivalence classes of)
M-M-bimodules. It behaves in perfect analogy with the set of unitary
representations of groups. We observe that to any unitary represention
of a countable group G is associated a L(G)-L(G)-bimodule. The bimo-
dules corresponding to the trivial and the regular representation are easily
identified. The usual operations on representations have their analogues in
the setting of bimodules, as well as the notion of weak containment. As a
consequence, any property of G involving this notion has its counterpart for
tracial von Neumann algebras. For instance, in the last section, the notion of
amenable von Neumann algebra is interpreted in the setting of bimodules, as
well as relative amenability. In Chapter 14, we similarly will use bimodules
to define the very useful notion of relative property (T).

13.1. Bimodules, completely positive maps and representations
13.1.1. Definition and first examples.

DEFINITION 13.1.1. Let M and N be two von Neumann algebras. A
M-N-bimodule is a Hilbert space H which is both a left M-module and a
right N-module, and is such that the left and right actions commute (see
Definition 7.1.2). We will sometimes write p/Hy to make precise which
von Neumann algebras are acting, and on which side, and denote by mys,
mner the corresponding representations, in case of ambiguity. Usually, for
x € M,y € N,& € H, we write x€y instead of mps(z)mnor(y)E.

We say that two M-N-bimodules H; and Ha are isomorphic (or equiv-
alent) if there exists a unitary operator U : H; — Hz which intertwines the
representations.

A M-N-bimodule introduces a link between the von Neumann algebras
M and N. It is also called a correspondence between M and N.

EXAMPLE 13.1.2. Let us begin with the case M = L*(X,p1) and
N = L*°(Xg, ua), where (Xj, i), i = 1,2, are standard probability measure
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spaces. Let v be a probability measure on X7 x Xo whose projections are
absolutely continuous with respect to p1 and uo. Let

n:X1XX2—>NU{OO}

be a measurable function and denote by H(n) the L*>°(X; x Xy, r)-module
with multiplicity n (see Section 8.1). Then H(n) becomes a M-N-bimodule
by setting

fég=(fop)(gop)s, VfeM,ge N,{cHn)

where p1, po denote the projections on X; and X respectively.

This construction provides the most general example of a separable M-
N-bimodule. Indeed, let H be a separable M-N-bimodule and denote by
L*>(X, p) the von Neumann subalgebra of B(#) generated by the images of
M and N. A generalisation of results mentioned in Remark 3.3.2 implies
that, for ¢ = 1,2, there exists a Borel map ¢; : X — X, such that g;.u is
absolutely continuous with respect to u;, and which induces the (normal)
canonical homomorphism from L*(X;, u;) into L*>(X, ). To conclude, it
suffices to introduce the image v of u under ¢; X gs : X — X7 x X5 and to use
Theorem 8.1.1. The measure v represents the graph of the correspondence
from M to N defined by the bimodule and n is its multiplicity'.

In the rest of this chapter, M and N will always be tracial von Neumann
algebras with trace denoted by T, or Tar, TN if necessary.

EXAMPLES 13.1.3. L?(M) is the most basic M-M-bimodule, called the
standard or identity or trivial M-M -bimodule. As seen in Chapter 7, it is
independent of the choice of the tracial normal faithful state on M, up to
isomorphism. From it, many interesting bimodules can be built.

(a) The Hilbert tensor product L?(M)®L?(N) equipped with its obvious
structure of M-N-bimodule is called the coarse M -N -bimodule:

@)y = (x) ® (ny), Vo€ M,ye N,§ € L*(M),ne L*N).

When M and N are abelian as in the previous paragraph, this bimodule has
multiplicity one and v = p ® po.

Let us denote by S%(L?*(N), L?>(M)) the Hilbert space of the Hilbert-
Schmidt operators from L?(N) into L2(M), that is, of the bounded operators
T : L*(N) — L*(M) with Tr(T*T) < +oo. It is a M-N-bimodule with
respect to the actions by composition:

tTy=zo0Toy, Vo € M,y € N,T € S*(L*(N), L*(M)).

The map £ ®1 + 0, ¢, where 05, ¢ is the operator 1 € L*(N) — (Jn,m)¢&,
induces an equivalence between the M-N-bimodules L?(M) ® L?(N) and
S*(L*(N), L*(M)).

I1See [Con94, V. Appendix BJ.
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(b) To any normal homomorphism « from M into N is associated the
M-N-bimodule H(«), which is the Hilbert space a(1)L?(N) endowed with
the following actions:

7 (2)mnor ()€ = a(z)éy, Vo e M,y € N,& € a(l)L*(N).

When M and N are abelian and a : L> (X, pu1) — L*(Xa, pu2) is defined
by 6 : X5 — X1, then H(a) can be viewed as L?(X; x X, v), where v is the
image of po under the graph map zo — (6(x2), x2).

Going back to the general situation, it is easily seen that H(a;) and
H(az) are isomorphic if and only if there is a partial isometry v € N with
w*u = ag(l), uu* = az(1) and uai(x)u* = ag(x) for all x € M.

Specially important is the case where a belongs to the automorphism
group Aut (M) of M. We get that the quotient group Out (M) of Aut (M)
modulo the inner automorphisms embeds canonically into the space of (iso-
morphism classes of) M-M-bimodules.

(c) More generally, let p be a projection in B(£*(I))®N and let «
be a unital normal homomorphism from M into p(B(¢*(I))&N)p. Then,
p(EQ(I) ® LQ(N)) is a M-N-bimodule, when equipped with the actions

x8y = a(x)§y Ve M,y e N,
the right action being the restriction of the diagonal one. We denote by
H(«) this bimodule.

Proposition 8.2.2, applied to right N-modules instead of left M-modules,
implies that this is the most general example of M-N-bimodule.

DEFINITION 13.1.4. A M-N-bimodule H is said to be of finite (Jones’)
index, or bifinite, if it is both a finite left M-module and a finite right N-
module, i.e., dim(yH) < 400 and dim(Hy) < +o0.

The terminology comes from the fact that the M-N-bimodule y; L?(M)y
(or equivalently the N-M-bimodule yL?(M)ys) has finite index if and only
if [M : N] < +o0 when N C M is a pair of separable II; factors. More
generally, we have:

PropoSITION 13.1.5. Let M, N be 11y separable factors. Then a sepa-
rable M-N-bimodule H is of finite index if and only if it is isomorphic to
H(c) for some normal unital homomorphism a : M — p(B({2) @ N)p =
pM,(N)p, some n and some projection p € M, (N), such that [pM,(N)p :
a(M)] < 4+o00. Moreover, in this case we have

dim(Hy) = (Tre7v)(p) and dim<MH):[p]‘f"T§fo];)O(‘;f)‘”

where Tr is the usual trace on M, (C).

Proor. It follows Propositions 8.5.3 and 8.6.1 that the M-N-bimodule
H is finite as right N-module if and only if it is of the form H(«) for some
normal unital homomorphism « : M — pM,(N)p, some n and some pro-
jection p € M, (N). By definition, we have dim(Hy) = (Tr ® 75)(p). Let
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us prove the other equality. We apply the result of Exercise 9.15 to the left
pM,,(N)p-module p(¢£2 ® L*(N)) and the subfactor (M) of pM,,(N)p. This
gives

dim(yrH) = dim (ap(2 © L(N)))
— [PMo(N)p : a(M)]dim (par, (npp(E2 © LA(N))).

Finally, we have dim (pMn(N)pp(E% ®L*(N))) =1/(Tr@7n)(p) by Exercises
8.9 and 8.7. O

13.1.2. Bimodules and completely positive maps. The previous
examples already give an indication that bimodules may be viewed as gene-
ralized morphisms between von Neumann algebras. This will be made more
precise now.

— From completely positive maps to bimodules. Let (M, 1pr), (N, 7n)
be two tracial von Neumann algebras. Let ¢ : M — N be a normal com-
pletely positive map?. We define on the algebraic tensor product Ho =
M ® N a sesquilinear functional by

(T1 @Y1, 22 @ y2)y = TN (Y1 O(T122)y2), Vo1, w2 € M,y1,y2 € N.

The complete positivity of ¢ implies the positivity of this functional. We
denote by H(¢) the completion of the quotient of Hy modulo the null space
of the sesquilinear functional.

We let M and N act on Hg by

n n
(D m@u)y =) i @ yiy.
=1 =1

Using again the complete positivity of ¢, we easily obtain, for & € Hg, and
xr €M,y e N, that

(@, 38) 5 < 1211P(€,€) g0 (€0, 004 < IWIP(E )y

For instance, the first inequality is a consequence of the fact that in M, (M)
we have [ziz*zx); ; < ||o|[xiz;)i; for every @y, ..., xp,x € M.

It follows that the actions of M and NN pass to the quotient and extend
to representations on H(¢). Moreover, these representations are normal,
thanks to the fact that ¢ is normal.

Let « : M — N be a normal homomorphism. The reader will check
that the map * ® y — a(z)y gives an identification of the bimodule H(«)
we have just constructed with the bimodule constructed in Example 13.1.3
(b), so that the notations are compatible.

Another important particular case is when ¢ is the trace preserving
conditional expectation Fy from M onto a von Neumann subalgebra N.
Then the map sending z ® y to Ty gives rise to an isomorphism between the
M-N-bimodules H(Ey) and 5 L?(M) .

2For basic facts related to completely positive maps see Section A.3 in the appendix.
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Let us go back to the general case H(¢). This bimodule comes equipped
with a special vector, namely the class of 13; ® 1y, denoted ;. Note that

|l2€611% = v (d(x*2)) and [|€yl5 = mn (" $(1)y) < [6(1)ll7v (y"y)-
In particular, &4 is left N-bounded. In addition this vector is cyclic in the
sense that span M{yN = Hg. We also observe that ¢(x) = (Lg,)*wLg,
where Lg, : L?(N) — H(¢) is the operator defined by the bounded vector
gqb A pair (H, &) consisting of a bimodule H and a non-zero (cyclic) vector
&o is called a pointed (cyclic) bimodule.

— From bimodules to completely positive maps. Conversely, let us
start from a pointed M-N-bimodule (#,&p) where &y is left N-bounded.
Let T = Lg, : L*(N) — H be the bounded N-linear operator associated
with &. Then ¢ : z — T*mp(2)T is a completely positive normal map from
M into N.

In case & is cyclic, the pair (H(¢),&s) constructed from this ¢ is iso-
morphic to (H,&p) under the unitary operator U : H(¢) — H sending x ® y
onto x&py.

Observe also that if we had started from (#, &) = (H(¢),Es) for some
¢, then we would have retrieved ¢ from this latter construction.

DEFINITION 13.1.6. Let H be a M-N-bimodule. A (right) coefficient of
‘H is a completely positive map ¢ : M — N of the form z — LZmLE where

€ is a left N-bounded vector®.

— Subtracial and subunital completely positive maps. Subtracial vec-
tors. These notions will be very useful later, in the study of Property (T)
and of the Haagerup property for tracial von Neumann algebras.

DEerFINITION 13.1.7. Let ¢ : M — N be a completely positive map. We
say that ¢ is subtracial if Ty 0 ¢ < 7y and that ¢ is subunital if ¢(1) < 1.

We say that ¢ is tracial if 73 o ¢ = 7pr. Whenever ¢(1) = 1, then ¢ is
unital.

Note that a subtracial completely positive map is normal (by Proposition

2.5.11) and that a subunital completely positive map is equivalently defined
by [|¢|l = ||¢(1)|| < 1. The proof of the following lemma is straightforward.

LEMMA 13.1.8. Let (H,&) be a pointed M-N-bimodule with & left N -
bounded. Denote by ¢ : M — N the corresponding coefficient, i.e., ¢(x) =
LixLe for x € M.

(i) ¢ is subtracial if and only if ({,x&) < Tar(x) for every x € M.
(ii) ¢ is subunital if and only if (€,&y) < T~ (y) for every y € N;.

When (i) and (ii) are statisfied, we will say that the vector & is subtracial.
A tracial vector is a vector & such that (£, z§) = mps(x) for every x € M and

3Similarly, we could consider left coefficients 1 : N — M.
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(&, &y) = Tn(y) for every y € N. Note that £ is tracial if and only if the
corresponding completely positive map is tracial and unital.

The following result is a generalisation of the Radon-Nikodym type
Lemma 2.5.3.

LEMMA 13.1.9. Let ¢ and v be two completely positive maps from M

to N such that v — ¢ is still a completely positive map. We assume that
P(x) = szLg where £ is a left N-bounded vector in some M -N -bimodule
H. Then there is a left N-bounded vector n € H such that ¢(x) = LyxLy
for every x € M. More precisely, n = S§ where S : H — H is a M-N-linear
contraction.

ProoOF. We may assume that ¢ is a cyclic vector in the M-N-bimodule
‘H. We observe that 1, and hence ¢, are normal. We define a M-N-linear
contraction T" from H onto H(¢) by

Indeed, we have, since ¥ — ¢ is completely positive,

2
Z mzfd)ni = Z (mz RN, My @ nj>
7: ‘1j
= ZTN n; ¢(mim;)n;) ZTN (nj Lg(mimyg)Leng)
’.7 7]

Z ngnz

We set S = |T'| and n = S¢. This vector is left N-bounded and we have, for
reM,

< Z 7'N mlénZ mjﬁn]

LyxLy = LiSxSLe = LiT*2TLe = L, xLe, = (),

since S and 1" are M-N linear and T§ = &,.
O

COROLLARY 13.1.10. Let C be the convex set of all subunital completely
positive maps from M to M. Endowed with the topology of pointwise weak
operator convergence, it is compact. Moreover, Idas is an extremal point of
this compact convex set.

PROOF. The first assertion is immediate. Now, suppose that Idy; =
Ap1 + (1 — X)p with ¢1,¢2 € C and A €]0,1]. We note first that ¢;(1) =
1 = ¢2(1). Next, we apply the previous lemma with H = L?(M), N = M,
¢ = Idys and therefore &€ = 1 € L2(M). We get \p1(x) = LyxLy for every
x € M, where 1 belongs to the center of M. Thus, we see that A¢1(x) = z21,
where z7 is in the center of M. But then A = z; and ¢ = Id,,. O

The next lemma allows to approximate vectors by subtracial ones.
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LEMMA 13.1.11. Let ‘H be a M-N-bimodule and & € H. Let Ty €
LY(M, 7))y such that (&,2€) = Ta(xTy) for every x € M and let Sy €
LY(N,7n) such that (€, &y) = T (ySo) for everyy € N. We set T = f(Tp)
and S = f(So) where f(t) = min(1,t=1/2) for t > 0. Then the vector
& =TES is subtracial and we have

2
€ =€ < 2)1To — 11l + 2[1S0 — 1],
PROOF. Given x € M., we have, since S < 1 and TyT? < 1,
(& 28y < (6, TaT€) = Ty (TxTTy) < Tar ().

Similarly, we get the other condition for £ to be subtracial.
Moreover, we have

€ — €17 < 2lle — Te|f? + 2] — €S|
<27 ((1 = T)?Ty) 4 27n((1 — S)2S)
< 2| To — 1|, + 2180 — 1)
O

REMARK. Note that if £ belongs to a M-N-submodule of H, the same
holds for £’.

13.1.3. Bimodules from representations of groups. As shown a-
bove, bimodules may be seen as generalized morphisms between von Neu-
mann algebras. We now point out that they also play the same role as
unitary representations in group theory. We remind the reader that a uni-
tary representation (m, ) of a group G is a group homomorphism from G
into the unitary group U(B(H)). The trivial representation i is the homo-
morphism s — (g(s) =1 € C.

— Bimodules and representations. Let G be a countable group and let
M = L(G) be the corresponding tracial von Neumann algebra. Recall that
?(G) = L*(M), where the M-M-bimodule structure of L?(M) comes from
the left and right regular representations of G: given s,t € (G, we have

us fury = As)p(t™") f,  Vf € 2(G).

Let 7 be a unitary representation in a Hilbert space K. The Hilbert space
H(7) = %(G) ® K, is equipped with two commuting actions of G defined
by

us(f @ Eup = (usfug) @ w(s)E, Vs, t € G, f e l?(G),€ e K.

These actions extend to L(G) and give to H(7) a structure of M-M-bimodule.
This is clear for the right G-action. On the other hand, the left G-action is
equivalent to a multiple of the left regular representation since the unitary
operator defined on £%(G) ® K, by

U((St ® 5) = 5t ® W(t)*€7 vt € Gaé € ’Cﬂ'v
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satisfies
U(us @ 7(s))U* = us @ Idg,, Vs e G,

Obviously, the equivalence class of H(m) only depends on the equiv-
alence class of the representation m. The trivial M-M-bimodule L?(M)
is associated with the trivial representation of G and the coarse bimodule
L*(M) ® L*(M) corresponds to the left regular representation (Exercise
13.12).

This construction can be easily extended to crossed products. Let (B, T)
be a tracial von Neumann algebra and let o be a group homomorphism from
G into Aut (B, 7). Now we set M = B x G and keep the notations of Section
5.2. We have L?(M) = (*(G) ® L*(B). Consider again a representation 7
of G. This time, the corresponding M-M-bimodule is

H(m) = *(G) ® L*(B) ® Ky,
equipped with the commuting actions that are well-defined by
(IR8y=y&=290¢& VreM{ekKy,ye M;
b(ERE =bi®E=br®E, VoeMEEK,beDB;
us(T @ &) =us @m(s)é =usx @m(s)¢, Vere M,£e€Ky,s€QG.

— Completely positive maps and positive definite functions. We have
seen in the previous section that cyclic pointed M-N-bimodules (H, &) (with
&o left N-bounded) are in bijective correspondence with normal completely
positive maps from M to N (up to isomorphism). This is analogous to
the well known fact that positive definite functions on groups correspond to
equivalence classes of unitary representations equipped with a cyclic vector
(i.e., pointed cyclic unitary representations).

Recall that a a complex-valued function ¢ defined on a countable group
G is positive definite (or of positive type) if, for every finite subset {s1,...,s,}
of G, the n x n matrix [go(si_lsj)] is positive, that is, for every Ay,..., A\, € C,
we have EZ]’:l XAjgp(sflsj) > 0. Obviously, given a unitary represen-
tation 7 in a Hilbert space H, any coefficient of m, that is any function
s = (&, m(s)€) with € € H, is positive definite. Conversely, given a posi-
tive definite function ¢ on G there is a unique (up to isomorphism) triple
(Hyp,mp,&p) (called the GNS construction) composed of a unitary represen-
tation and a cyclic vector, such that ¢(s) = (&, m,(5)&,) for all s € G.
These two constructions are inverse from each other?.

Completely positive maps on group von Neumann algebras, and more
generally on crossed products, are closely related to positive definite func-
tions.

PROPOSITION 13.1.12. Let G be a countable group, (B, T) a tracial von

Neumann algebra and o : G ~ (B,T) a trace preserving action. We set
M =B xG.

4See for instance [BAIHV08, Theorem C.4.10].
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(i) Let ¢ : M — M be a completely positive map. Then ¢ : s —
T(p(us)ul) is positive definite.

(ii) Let o be a positive definite function on G. There is a unique normal
completely positive map ¢ : M — M such that ¢(bus) = o(s)bus for
everyb € B and s € G. More precisely, let (Hy,7s,6,) be the GNS
construction associated with ¢ and let H(w,) be the corresponding
M -M -bimodule. The vector &y = 1/1\\/1 ® &, 18 left bounded, and the
completely positive map ¢ : M — M associated with (H(my), o)
satisfies ¢p(bus) = p(s)bus for every b € B and s € G.

(iii) Let H be a M-M-bimodule and & a left bounded vector. We asso-
ciate the unitary representation m of G in K = span{uséou; : s € G}
defined by

(s)n = usnus, Vne K.
If ¢ is the positive definite function on G defined by (K, 7, &y) and
if ¢ : M — M is the completely positive map defined by (H, o) we

have ¢(s) = Tar(P(us)ul) for every g € G.

PROOF. We leave the easy verifications as an exercise. O

13.2. Composition (or tensor product) of bimodules

The parallel between group representations and bimodules can be carried
on further. The classical operations on representations have their analogues
for bimodules. First, the addition (or direct sum) of M-N-bimodules is
defined in an obvious way. Second, given a M-N-bimodule H, the contra-
gredient bimodule is the conjugate Hilbert space H equipped with the actions

y-€-x=a*y* Ve M,yeN.

The most interesting operation is the composition, or tensor product of
bimodules, which corresponds to the tensor product of representations. For
the notations and properties of bounded vectors used below, we refer to
Section 8.4.2.

13.2.1. Definition of the tensor product.

ProrosiTiON 13.2.1. Let M be a tracial von Neumann algebra, let H
be a right M -module and let IC be a left M -module. The formula

(&1 ®@m, 8 @n2) = (M, (€1,82) pre) i (13.1)

defines a positive sesquilinear form on the algebraic tensor product H° ® IC,
where H° is the subspace of left M-bounded vectors.

PROOF. We have to show that, for ", & ®n; € HO © K, the quantity

<Zfi ®%Z§j ®77j> = Z (i (& &) p 77j>;c
i=1 j=1

ij=1
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is non-negative, or equivalently that the matrix [(&;, &) /J1<ij<n € My (M)
is positive. Viewing [(&,&;),,]1<ij<n as an operator acting on L*(M)®" it
is enough to check that

n

ij=1
for x1,...,xy, € M. But this is immediate because
n n n
> (6 5 = (326 Y15 )
t,j=1 i=1 j=1 K

O

We denote by H ®j; K the Hilbert space deduced from H° ® K by
separation and completion relative to the sesquilinear form defined in (13.1).
The image of £ @ € HO K in H ®); K will be denoted by £ @ 7.

We may perform the analogous construction, starting from H ® °/C. As
such, we obtain Hilbert spaces that are canonically isomorphic, so there is
no ambiguity in the definition.

ProposSITION 13.2.2. Let M be a tracial von Neumann algebra, let H
be a right M-module and let IC be a left M-module. The restrictions to
HO @ OK of the sesquilinear forms defined on H° ® K and H ® °K coincide.
Moreover, the three Hilbert spaces obtained by separation and completion
from these spaces are the same.

PROOF. It suffices to show that for &1, & € H? and 11,12 € °K, we have

(11, (€15 E2dprme) o = (€1 nalmn, M), §2) -

Using Lemmas 8.4.6 and 8.4.5, we get

(1, (€1 E2)nme) e = T(((€xs §2)ppmzy ) = T(C1, Eadar mlmzs )
= (&1, &2 mlm2, M)y = (§1 M1, m2), €2) -

This proves our claim. The second part of the statement follows from the
density of #° and ° in H and K respectively. O

ProPOSITION 13.2.3. Let M, N, P be three tracial von Neumann algebras
and let H be a M-N-bimodule and K a N-P-bimodule. Then H Qn K is a
M -P-bimodule with respect to the actions given by

z(E@nn) = (@) @nn (E@nvny=EanN (ny),

forxz e M,ye P,6 M ne K.
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PrOOF. We only consider the left action, the other case being dealt with
similarly. Given &1,...,&, € H? and 1 ...,n, € °KC, we have

n 2 n
Z(wfz) N M| = Z <77ia <33§z‘737§j>N77j>1c
i—1 ij=1
J i )
<=l Y_ & @nmi|

i=1

since [(z&;, €;)y] < ||:c||2[<§i,§j>N] in M, (N)4. It follows that the left mul-
tiplication by x extends to a bounded operator on H @y K. To see that
the representation of M is normal, we remark that, for £, 7 € H°, the map
z = (§,zn) y = LizLy from M into N is w.o. continuous. O

DEFINITION 13.2.4. The M-P-bimodule H ®xn K is called the composi-
tion or (Connes) tensor product of the bimodules yyHy and yKp.

13.2.2. Properties of the tensor product. Below, M, N, P, () are
tracial von Neumann algebras.

PROPOSITION 13.2.5 (Associativity). Let H be a M-N-bimodule, K a
N-P-bimodule and L a P-Q-bimodule. The M-Q-bimodules (H&nK)®@p L
and H @n (K ®@p L)are canonically isomorphic.

PROOF. One easily shows that the map U : (£@n)®@u — £R(n®@u), with
e HO,neK,ue L, extends to an isomorphim of the above mentioned
M-Q-bimodules O

The distributivity of the tensor product with respect to the direct sum
is easy to establish, as well as the canonical isomorphisms

M(H@N L*(N))n ~ uHy ~ m(LP(M) @y H)n.

PROPOSITION 13.2.6. Let Hi, Hso be two right N-modules and IC1, Ko be
two left N-modules. Let S : Hy — Ho and T : K1 — Ko be two bounded N -
linear maps. There exists a unique bounded operator SQNT : H1 Qn Ho —
K1 ®@n Ko such that (S @y T)(€ ®@n n) = SE @y Tn for every & € HY
and n € "“Hy. Moreover, if Hi,K1 are M-N-bimodules, Ha, Ko are N-P-
bimodules, and if S, T intertwine the actions, then S Qn T is M-P-linear.

PrOOF. The straightforward proof is left to the reader. O

ProPOSITION 13.2.7. Let H be a M -N -bimodule and IC a N-P-bimodule.
Then the map TRE — &€ @ n defines a linear application from K @n "H into
H @n K which extends to an isomorphism of P-M-bimodule from K @nx H
onto Hen K.

PRrROOF. Again, the proof is a straightforward computation. O
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13.3. Weak containment

Given a group G, assumed to be countable for simplicity, the set Rep(G)
of equivalence classes of unitary representations of G in separable Hilbert
spaces contains a lot of informations relative to G. Therefore, given two
tracial von Neumann algebras M and N, it is tempting to study the space
Bimod (M, N) of equivalence classes of M-N-bimodules®, which plays the
same role as Rep(G). We develop further the similarities between these two
spaces and describe below the analogue for bimodules of the notion of weak
containment of group representations. We first give a quick survey for the
case of group representations.

13.3.1. Weak containment for group representations.

DEFINITION 13.3.1. Let (7, H) and (p, K) be two unitary representations
of G. We say that 7 is weakly contained in p, and we write ™ < p, if every
coefficient of 7 can be approximated by finite sums of coefficients of p. More
precisely, m < p if for every £ € H, every finite subset F' of G and every
e > 0, there exist 7y, ...,n, € K such that

n
&m(@)8) =D (minplg)m)| < e
i=1
forall g € F.

If m < pand p < 7, we say that m and p are weakly equivalent and denote

this by m ~ p.

Note that 7 < p if and only if every normalized® coefficient ¢ of =
is the pointwise limit of a sequence of convex combinations of normalized
coefficients of p.

Of course, any subrepresentation of p is weakly contained in p. We also
observe that a representation is weakly equivalent to any of its multiples.

REMARK 13.3.2. Although we will not need this result, we mention the
following equivalent formulation of the notion of weak containment. Remark
first that every unitary representation (m,H) gives rise to a representation
of the involutive Banach algebra ¢*(G) by

Viet@), w(f)=>_ flgn(g)
geG
It is a straightforward exercise to deduce from the definition that, whenever
™ < p, we have

vfed(G), lx(HIl < (£l

The converse is true. See for instance [Dix77, Chapter 18] about this fact.

5Strictly speaking, we have to fix a huge cardinal and consider bimodules on Hilbert
spaces whose dimension does not exceed it, in order to avoid paradoxically large sets. This
restriction will be implicit.

6p: g (£, m(g)€) is said to be normalized if p(e) = ||£]|*> = 1.
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When 7 is irreducible, the definition may be spelled out in the following
simpler way.

PropPOSITION 13.3.3. An drreducible representation m of G is weakly
contained in p if and only if every coefficient of w is the pointwise limit of a
sequence of coefficients of p.

SKETCH OF PROOF. First, we observe that on the unit ball of (*°(G)
the weak™ topology coincides with the topology of pointwise convergence.
Denote by @ the set of normalized coefficients of p and let C' be the closure
of the convex hull of @) in the weak* topology. Note that C' is a compact
convex set.

Assume that 7 < p and let ¢ : g — (£, 7(g)€) be a normalized coefficient
of . Then ¢ belongs to C. Since 7 is irreducible, its normalized coefficients
are extremal points of the convex set of all normalized positive definite
functions”. In particular, ¢ is an extremal point of C. To conclude, it
suffices to use the classical result in functional analysis which tells us that
the weak™ closure of the generating set @ of C' contains the extremal points

of C.8 O

Observe that the trivial representation ¢c of G is contained in (p, K)
if and only if p has a non-zero invariant vector. Similarly, we have the
following simple description of the weak containment of ¢ in (p, ) based
on the notion of almost having invariant vectors, that we recall first.

DEFINITION 13.3.4. Let (m,#) be a unitary representation of a group
G.
(i) Given a finite subset F' of G and € > 0, a vector £ € H is (F,¢)-
invariant if maxgep ||7(g)¢ — & < €[|€]|-
(ii) We say that (m,H) almost has invariant vectors if m has (F,¢)-
invariant vectors for every finite subset F' C G and every € > 0.

ProposITION 13.3.5. The following conditions are equivalent:

(i) tg is weakly contained in p, i.e., tq < p;
(ii) there exists a net of coefficients of p converging to 1 pointwise;
(iii) (p, ) almost has invariant vectors.

PROOF. Obviously, we have (ii) = (i). The equivalence between (ii) and
(iii) is a consequence of the two following classical inequalities: for every unit
vector &,

lp(9)€ = €11* = 21 = R(E, p(9)€)| < 2[1 = (€, p(9)€)), (13.2)
1= (& p(9)&)] = (6, € = p(9)&)] < [lp(9)€ —£ll. (13.3)

"See for instance [BAIHV08, Theorem C.5.2).
8See [Con90, Theorem 7.8, Chapter V] for instance.
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Let us show that (i) = (iii) (without using Proposition 13.3.3). Assume
that (iii) does not hold. There exist € > 0 and a finite subset F' of G such
that

> lnlg)€ = €17 = eliel?

ger
for every & € K. This inequality is still valid when the representation p
is replaced by any of its multiple. It follows that there is no sequence of
coefficients of a countable multiple of p which converges to 1 pointwise, and
thus tg is not weakly contained in p ([

— The Fell topology on Rep(G). The notion of weak containment is
closely related to the Fell topology on Rep(G), defined as follows. Let (7, H)
be a unitary representation of G. Given € > 0, a finite subset F' of G, and
&1y, &n € H, let V(m;e, F, &1, ...,&,) be the set of (p,K) € Rep(G) such
that there exist nq,...,n, € K with,

These sets V(m; e, F, &, ...,&,) form a basis of neighbourhoods of 7 for a
topology on Rep(G), called the Fell topology.

When (7,H) has a cyclic vector £, meaning that the linear span of
m(G)€ is dense in H, then m has a basis of neighbourhoods of the form
Vim;e, F,€). Indeed, any & € H is as close as we wish to a linear combina-
tion Y, Apm(gr)€. Hence, given V(m;e, F, &1, ..., &), we easily see that it
contains some V (m; &', F', §).

Obviously, a representation 7 is weakly contained in p whenever it be-
longs to the closure of {p}. In fact, we have m < p if and only if 7 is in the
closure of the infinite (countable) multiple p®> of p.” This is obvious if 7
has a cyclic vector £ and in the general case, one uses the fact that « is a
sum of representations having a cyclic vector.

However, we note that whenever  is irreducible!?, we do have m < p if
and only if 7 € m This follows from Proposition 13.3.3 and from the fact
that £ has cyclic vectors.

This last observation also shows that the trivial representation ¢ has a
base of neighbourhoods of the form W’(i;¢, F) with € > 0, F finite subset
of G, where W'(1;¢, F) is the set of representations (m, H) such that there
exists a unit vector ¢ € H satisfying

a —&|| Le.
max [w(g)¢ = £l <
13.3.2. Weak containment for bimodules. Among several equi-

valent definitions, we choose to introduce this notion via the Fell topology
on Bimod (M, N).

9See [Fel62, Theorem 1.1].
10T his applies in particular to the trivial representation tqa.
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— The Fell topology on Bimod (M, N). This topology is defined by
the assignement of the following basis of neighbourhoods

V(H;e, B, F,5)
of each H € Bimod (M, N), with ¢ > 0 and where E, F, S = {&,...,&.}

range over all finite subsets of M, N and H respectively: V(H;e, E, F,S) is
the set of all M-N-bimodules K such that there exist ny,...,n, € K with

(&> 2&5y) — (ni» znjy)| < e
foreveryx e E,ye F,1<1i,j <n.

— Neighbourhoods of the trivial bimodule. When H has a cyclic vec-
tor &, it is easily seen that it has a basis of neighbourhoods of the form
V(H;e, E, F,{¢}). This applies in particular, when M = N to the trivial
M-M-bimodule L?(M), where we take ¢ = 1. In this case we may take
E = F and we set

V(L*(M);e, F) = V(L*(M);e, F, F, {1}).
Note that V(L?(M);e, F) is the set of M-M bimodules K such that there
exists n € IC with

— < €.
ﬁg};lT(azy) (n,eny)| < e

Moreover, by taking F' with 1;; € F, we may assume that [|n|| = 1.

As we will see in the sequel, it is very important to understand what it
means that L?(M) is adherent to a given bimodule, with respect to the Fell
topology. So it may be useful to have at hand different kinds of neighbour-
hoods of L?(M). We now describe another basis.

Given € > 0 and a finite subset F' of M, we define

W(L*(M);e, F)

to be the set of M-M-bimodules ‘H such that there exists £ € H with ||£]| =1
and

|lz€ = &xl| <e, [& x&) —T1(x)] <e.

for every x € F.

LEMMA 13.3.6. The family of sets W (L?*(M); e, F), where F ranges over
the finite subsets of M, and € > 0, forms a basis of neighbourhoods of L*(M).

PROOF. Setting E = {z,z*,z*z,za* : x € F} U {15}, we check that
(with e < 1),
V(L*(M);e%/4,E) c W(L*(M);e, F).
Therefore, W(L?(M);e, F) is a neighbourhood of L?(M).
Conversely, given € > 0 and a finite subset F of the unit ball of M, we
have
W(L*(M);e/2,F) C V(L*(M);e, E)
with F' = E U E?, due to the inequality, for ||£]| < 1,

(& x€y) — (xy)| < (&, 2y€) — 7(2y)| + [|z[l[ly§ — &yll-
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Now, let
W'(L*(M);e, F)
be the set of M-M bimodules H such that there exists £ € H with [|£]| =1

and ||z€ —&x| < € for all x € F. When M is a factor this family of sets
forms a simpler basis of neighbourhoods of L?(M).

ProproOSITION 13.3.7. Let M be a 11y factor. The family of sets
W/(L*(M);e, F),

where F' ranges over the finite subsets of M, and € > 0, forms a basis of

neighbourhoods of L*(M).

Proor. It suffices to show that, given € > 0 and a finite subset F' of
the unit ball of M, there exist £; > 0 and a finite subset F} of M such that
W/(L2(M); €1, Fl) C VV(L2(]\4)7 g, F)

Let H be a M-M-bimodule and ¢ € H with ||¢|| = 1. We first observe
that for z1,z9 € M we have

(& m1228) — (&, wam1§)| < [[will([[228 — Exall + 258 — Easl)).  (13.4)

Second, using the Dixmier averaging theorem (see Theorem 6.4.1 and
Exercise 6.3), given 6 > 0, there are unitary elements uq, ..., u, in M such
that

<4 (13.5)

1 n
- Z; wizu; — 7(x)1as
1=

for all z € F'. We set
F :FU{ul,...,un}.

If ¢ € H with ||£]| = 1 is such that ||z — £z|| < 0 for every x € F, we have,
for x € F,

(6 wizui§) — (&, x8)| < 20,

by taking z1 = u;x and zo = v} in (13.4).
Then, it follows from (13.5) that, for z € F,

|T(1:) - <§,$€>| < 357
and therefore

W/'(L*(M);e/3, F1) C W(L*(M);e, F).
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— Weak containment. Given a M-N-bimodule K, we denote by K&
the Hilbert direct sum of countably many copies of /.

DEFINITION 13.3.8. Let ‘H and K be two M-N-bimodules. We say that
H is weakly contained in K, and we write H < K, if H belongs to the closure
of K% in Bimod (M, N).

REMARK 13.3.9. A M-N-bimodule H gives rise to a representation 7y of
the involutive algebra M ® N° on H. The analogue of the result mentioned
in Remark 13.3.2 holds: one has # < K if and only if |7y (x)| < |7 ()|
for every x € M © N (see [AD95] for instance).

When K is a M-M-bimodule, then L?(M) < K is equivalent to the
following property: for every € > 0 and every finite subset F' of M, there
exists a vector n € K¥® with

IT(zy) — (0, 2ny)| < €,

for every x,y € F (and by Lemma 13.3.6 we may, if we wish, require that
maxgep ||zn — nzll < ).
The weak containment property of L?(M) can also be read as follows.

ProposITION 13.3.10. Let K be a M-M-bimodule. The following con-
ditions are equivalent:

(i) L?(M) is weakly contained in K;

(ii) (resp. (it')) for every e > 0 and every finite subset F' of M there
exists a subtracial and subunital completely positive (resp. a com-
pletely positive) map ¢ : M — M such that

(a) maxeer [6(z) — l, < e
(b) ¢ is a finite sum of coefficients of K.

Let 1 be a left M-bounded vector of a M-M-bimodule H (for instance a
subtracial vector) and denote by ¢ : x — LyxLy, the associated completely
positive map. In the proof of the above proposition, we will use repeatedly
the following equality (see Lemma 8.4.5)

Va,y € M, (n,xny) = 7(¢(x)y). (13.6)

PRrROOF. Obviously (ii) = (ii’). Let us show that (ii’) = (i). Let € > 0
and F' be given and let ¢ : M — M be a completely positive map sat-
isfying the conditions (a) and (b). There exists a left bounded vector
n = (M,...,nn) in K for some integer n, such that ¢(z) = LyxLy for
every x € M. Then we have, for z,y € I,

7 (zy) = (n, any))| = [T (zy) — 7(¢(2)y)] < [l = ¢(@)1llyll, < max 1Yll2e-

Therefore, we have L?(M) < K.
(i) = (ii) Assume that L?(M) < K and let ¢ > 0 and F be given. We
set Fi = FUF*U{z*z:x € FUF*}. Given ¢; > 0 and using the next
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lemma, we find a subtracial vector 1 in some finite direct sum of copies of
K such that

[T(x) = (n,2n)| <e1 and  [lan —nz| < e

for x € F}.
Let ¢ be the completely positive map defined by 7. For z € F', we have

l¢(x) — 23 = T(¢(x)*b(2)) + 7(z"x) — T(¢(x)"x) — 7(2" P(x))
< 27(x%z) — 7(d(x)" ) — T(27¢(2))
< |r(@*z) — (n, 2" nz)| + |7 (a"x) — (n, ana”)|
< |r(a"x) = (n,z"zn)| + [|z[|[|[zn — nz||
+|r(@2”) — (n, zz™n)| + ||lz||[|z*n — nz”|]
<21+ max llz|)-

It suffices to take €1 such that 2e1(1 + maxzer ||z]|) < € to get (ii). O

In the lemma below, we use the following notation: given a M-M-
bimodule H and n € H, we denote by wa the functional x +— (n,xn) and by
wy the functional  — (n, nx).

LEMMA 13.3.11. Let K be a M-M-bimodule and let (n;) be a net in K>
such that for all x € M,

limwgi (z) = 7(x) = limw; (), (13.7)
lim ||xn; — nx|| = 0. (13.8)

Then there exists a net (n}) of subtracial vectors in K& such that

‘zOzlim’

lim Hwél_ —T wyr = 7| (13.9)
1 T 7

lim Hxng —niz|| =0, Vze M.
K3

Moreover, if n; € ICE‘)BOO for all i, where Ko is a subbimodule of KC, then the
n, may still be taken in K.
If M is separable, we may replace nets by sequences.

PROOF. We first claim that in (13.7), we may replace the weak conver-
gence of the nets ((,ufh)Z and (wy,); by the [|-[|-convergence. Indeed, given a
finite subset F' of M and ¢ > 0, our assumption implies that (0, 0) belongs to
the o(M?2, M?) closure of the set of (T—w%, 7 —wy) where 7 runs over the set
of elements such that max,cr |[|[zn — nz|| < e. By a classical convexity argu-

ment, we see that there is a convex combination (> ,_, )\kwfhk Dy /\kw;ik)



13.4. BACK TO AMENABLE TRACIAL VON NEUMANN ALGEBRAS 231

such that
n n
|7 - Z)\kwﬁhk |<e ||r— Z)\kw;ik | <e,
k=1 k=1
max lzni, —mi x| <e, k.
1/2 1/2 . .
We denote by np. the element (A" "n;,,..., A\ "m;,), viewed as a vector in
K®>°. Then we have
HT_wéF‘,s S 87 HT_WZF,EH S 8’
max ||znpe — nrex| < €.
zel
So, we may now assume, for (7;), the ||-||-convergence as in (13.9). We

set wﬁh = 7(-T;) and wy = 7(-S;) with T3, S; € LY(M,7)4. Then we have
lim; [|T; — 1]]; = 0 = lim; ||S; — 1]|;. Therefore, by Lemma 13.1.11, we may
assume that the 7;’s are subtracial. The second assertion is a consequence
of the remark following Lemma 13.1.11.

Finally, let us assume that M is separable. Let D be a countable subset
of the unit ball (M);, dense in this ball with respect to the |[|-||,-topology.
Since the 7;’s are subtracial, it is easily seen that Condition (13.8) holds for
all x € M if and only if it holds for all x € D. It follows that we may replace
nets by sequences. ([

13.4. Back to amenable tracial von Neumann algebras

13.4.1. Amenability and asymptotically central nets. Recall that
a countable group G is amenable if and only if its left regular representation
A¢ almost has invariant vectors, or in other terms if and only if its trivial
representation i is weakly contained in Ag. In the dictionary translating
group representations into bimodules, ¢ corresponds to the trivial bimo-
dule and Ag corresponds to the coarse bimodule (see Section 13.1.3). We
can reformulate Theorem 10.2.9 as follows.

THEOREM 13.4.1. Let (M, T) be a tracial von Neumann algebra. The
following conditions are equivalent:

(i) M is amenable;
(ii) arL2(M) s belongs to the closure of p L?(M)®L? (M) with respect
to the Fell topology;
(iii) pL*(M)ar < mLA(M) @ L2(M) .

PROOF. (i) < (ii) We identify the coarse bimodule L?(M) ® L?(M)
to the M-M-bimodule S%(L?(M)) of Hilbert-Schmidt operators on L?(M).
Then L?(M) belongs to the closure of S?(L?(M)) with respect to the Fell
topology if and only if there exists a net (T;); of Hilbert-Schmidt opera-
tors with [|Tj[yq, = 1 for every 4, such that lim; ||2T; — Tiz[ly , = 0 and
lim; Tr(T;«T;) = 7(x) for every € M. This is exactly the content of
Property (3) in Theorem 10.2.9.
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(ii) = (iii) is obvious. Let us show that (iii) = (i). Denote by H the
Hilbert direct sum of countably many copies of 3y L?(M) ® L?(M )y, that
we view as a left B(L?(M))-module. Assume that (iii) is satisfied. There
exists a net (1;);er of unit vectors in H such that lim; ||zn; — nz|| = 0 and
lim; (n;, zn;) = 7(z) for all x € M. Let ¢ € B(L?(M))* be a cluster point of
the net of states T+ (n;, T'n;) in the weak™® topology. We have ¢ (z) = 7(x)
for 2 € M. Moreover, for every unitary element v € M and T € B(L?*(M))
we have

Y(uTu*) = lim (n;;, uTu*n;, ) = lim (u*n;,, Tu*n;;)
J J
= lim (i, w”, (T, )u*) = lim iy, Ty ) = (D).
It follows that 1 is a hypertrace for (M, 7) and therefore M is amenable. [

13.4.2. Amenability and approximation of the identity. Another
very useful characterisation of amenability for a group G, recalled in Propo-
sition 10.1.2, is the following one: G is amenable if and only if there exists
a net (¢;) of finitely supported positive definite functions on G which con-
verges pointwise to 1. We now state the analogue for tracial von Neumann
algebras.

THEOREM 13.4.2. Let (M, ) be a tracial von Neumann algebra. The
following conditions are equivalent:

(i) M is amenable;

(ii) there exists a net (¢;) (or a sequence if M is separable) of subunital
and subtracial finite rank completely positive maps from M to M
such that for all x € M,

lin [¢3(2) — 2, = 0.

PROOF. (i) = (ii). Assume that M is amenable. By Theorem 13.4.1 and
Proposition 13.3.10, there exists a net (¢;) of subtracial elements completely
positive maps ¢; : M — M, which are finite sums of coeflicients of the coarse
bimodule L?(M) ® L*(M), such that lim; ||¢;(x) — z|, = 0 for all z € M.
Moreover, by density of L2(M)® M in L?(M) ® L?(M), we may take these
coefficients associated to vectors in L?(M)® M, as observed in the statement
of Proposition 13.3.10.

Therefore, we have to show is that a completely positive map ¢ defined
by a vector n = Y 1_, & @ my € L*(M) ® M has a finite rank. A straight-
forward computation shows that ¢ : z +— LyxL, is given by

n
d(x) = > (&G, x&)mim;.
ij=1
So, we see that ¢ is the composition of the completely positive map z € M +—
[(&,x€5)] € Mp(C) and of the completely positive map [a; ;] € M,(C) —

i Qi gmimg € M.
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To prove the converse, it suffices to show that every subunital and sub-
tracial finite rank completely positive map ¢ : M — M is a coefficient of
L*(M) ® L?(M). This is proved in the next lemma. O

LEMMA 13.4.3. Every subunital and subtracial finite rank completely
positive map ¢ : M — M is a coefficient of L*(M) ® L*(M).

PROOF. Let {y1,...,yn} be an orthonormal basis of ¢(M) C L?*(M).
We have, for x € M,

8(z) = 3 uir(yi 9(a)).

Observe that « — 7(y¢(x)) is ||-||,-continuous since

[T (yi p@)* < T(yiy)r($(2) () < |23,

where the last inequality uses the fact that ¢ is subunital and subtracial.

Let n; € L*(M) such that 7(y;é(z)) = (n;,x) for every z € M. We
set p =) .1 ®y’ and { = 1 ® 1. These vectors are left bounded and
¢(x) = LyzLe. But ¢(z*) = ¢(z)" and therefore LyzLe = LixLy. It follows
that

L¢ipgrLeiny = LixLe + Lya Ly + 2¢(x).

Now, we deduce from Lemma 13.1.9 that ¢ is a coefficient of L?(M) ®
L2(M). a

13.4.3. Relative amenability. Let H be a subgroup of a group G.
The quasi-reqular representation A, g is the unitary representation of G' by
translations in ¢2(G/H). We say that H is co-amenable in G if 1g is weakly
contained in Ag/y. Again, there are many other equivalent definitions,
among them the existence of a G-invariant mean on ¢>°(G/H).! If we set
Q) = L(H) and M = L(G) we note that the M-M-bimodule corresponding
to the representation Ag g is L?(M) ®q L*(M) (Exercise 13.12). It is not
difficult to show that H is co-amenable in G if and only if the trivial M-M-
bimodule L?(M) is weakly contained in L*(M) ®¢q L?(M).*?

More generally, in the setting of tracial von Neumann algebras, there
is a useful notion of relative amenability that is characterized below by
equivalent conditions similar to the characterisations of an amenable tracial
von Neumann algebra given in Chapter 10 and in Theorem 13.4.1. For an
inclusion P C N of von Neumann algebras, we say that a state ¢ on N is
P-central if ¥ (xy) = ¢ (yzx) for every x € P and y € N.

THEOREM 13.4.4. Let P,Q be two von Neumann subalgebras of a tracial
von Neumann algebra (M, 7). The following conditions are equivalent:

(i) there exists a conditional expectation from (M, eq) onto P whose
restriction to M 1s EIJ‘D/I;

HThis notion is studied in detail in [Eym72].
12G¢e [AD95, Prop. 3.5).
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(ii) there is a P-central state ¢ on (M, eq) such that 1), = 7;

(iii) there is a P-central state 1 on (M, eq) such that 1 is normal on
M and faithful on Z(P' N M);

(iv) there is a net (&) of norm-one vectors in L*({M,egq)) such that
lim; ||z& — &x|| = 0 for every x € P and lim; (&, x&;) = 7(x) for
every x € M;

(v) ML*(M)p is weakly contained in pL*(M) ®q L*(M)p.

PROOF. The equivalence between (i) and (ii) is a straightforward gene-
ralisation of Proposition 10.2.5, which is the particular case where @) = C
and P =M.

The implication (ii) = (iii) is obvious. Conversely, assume that (iii)
holds. Let a be the unique element in L'(M), such that 1 (z) = 7(za) for
every x € M. Since v is P-central, we have uau* = a for every u € U(P)
and therefore a € L*(P'N M),. Let I be the directed set of finite subsets
of U(P'NM). For i = {uq,...,up} € I, we set

1 n
a; = n;ukau}’; c LY(P'NnM),,

and for m € N, we set a;,, = Ef/m(a,-)a;l/2 € P'n M, where Ef/m(ai) is
the spectral projection of a; relative to the interval (1/m,+o0). Next, we
introduce the positive linear functionals ¢; ., on (M, eq) defined by

1 & .
Pim(z) = > (uhai maasmu)
k=1
for z € (M, eq). Since a; mur, € P'NM, the functional ¢; p, is still P-central.
Moreover, for x € M, we have ¢; ,(x) = T(&?Ef/m(ai)). Now, let us observe
that, in the s.o. topology,

1ilm linl;n By (a;) = lign s(a;) = lilm \/ s(uau™) = z
uer
where 2 is the smallest projection in Z(P’' N M) such that az = a. Since
Y(1—2) =7((1—2)a) = 0, and ¥ is faithful on Z(P'NM), we see that z = 1.
Hence, the state ¢ = lim;lim,, @; ., is P-central and 7 is its restriction to
M. Thus (ii) is satisfied.

The M-M bimodules L?(M) ®¢g L*(M) and L*({M,eg)) are canoni-
cally isomorphic (see Exercise 13.13). The proof of (iv) < (ii) is similar
to the proof of the equivalence of (3) with the existence of a hypertrace
in Theorem 10.2.9. We just replace the semi-finite von Neumann algebra
B(L%*(M)) by the semi-finite von Neumann algebra (M, eg) and we observe
that L?({M, eq)) plays the role of Hilbert-Schmidt operators. Moreover, we
only consider the right P-action on L2((M, eg)).

Let us prove the equivalence between (v) and the four other conditions.
By Exercise 13.14, jyL?(M)p has a basis of neighbourhoods of the form
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Wi(e,E,F), where E, F are finite subsets of M and P respectively and
W (e, E, F) is the set of M-P-bimodules H such that there exists £ € H
with ||€|| = 1 and

|x€ —€x|| <eforall z € P, |(€,2&) —7(x)| <e forall z € M.

It follows that (iv) = (v). Assume now that (v) holds. Then there is a net
(&) in an infinite multiple of pL?(M) ®¢g L?(M)p such that

lim||z§ — x| =0for all x € P, lim (&, z&;) = 7(z) for all x € M.

We let (M, eq) act on L?(M) ®q L*(M) by z(n ®g 1) = (xn) ®g 1. Let
Y € (M,eq)” be a cluster point of the net of states = +— (&, z&;) in the
weak™ topology. Then 1) satisfies the conditions of (ii). O

DEFINITION 13.4.5. Let P, be two von Neumann subalgebras of a
tracial von Neumann algebra (M, 7). We say that P is amenable relative to
Q inside M if the equivalent assertions of Theorem 13.4.4 are satisfied.

If M is amenable relative to @ inside M (case P = M), one says that
M is amenable relative to ), or that @ is co-amenable in M. In particular,
M is amenable if and only if it is amenable relative to @ = C1.

REMARK 13.4.6. If M is amenable, then P is amenable relative to @
inside M for every pair (P, Q) of von Neumann subalgebras, since there
exists an hypertrace.

As an example, consider a trace preserving action of a group G on a
tracial von Neumann algebra (@, 7). Then @ is co-amenable in M = Q x G
if an only if G is amenable. Indeed, we have observed in Subsection 9.4.3
that (M, eq) is QRB(¢?(G)) and it is shown in [ADT9, Proposition 4.1] that
the existence of a conditional expectation from QRB((*(G)) onto Q x G is
equivalent to the amenability of G (see [Pop86a, Theorem. 3.2.4. (3)] for
another proof).

REMARK 13.4.7. We will need later a slightly more general version of
relative amenability where P is only a von Neumann subalgebra of pMp
for some non-zero projection p of M, that is, p is the unit of P. In this
situation, we say that P is amenable relative to @) inside M if P & C(1 — p)
is amenable relative to @) inside M. The version of Theorem 13.4.4 in this
setting is easily spelled out. In particular this relative amenability property
can be expressed by the following equivalent properties:

(ii) there exists a P-central state 1) on p(M,eq)p such that ¢ (pxp) =
T(pzp)/7(p) for every x € M;

(ili) there is a P-central state 1 on p(M,eq)p such that ¢ is normal on
pMp and faithful on Z(P' N pMp);

(iv) there is a net (&) of norm-one vectors in L*(p(M, eq)p) such that
lim; ||x& — &x|| = 0 for every x € P and lim; (&;, x&;) = 7(x) for
every x € pMp.
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Whenever () is an amenable subalgebra of M, the amenability of a von
Neumann subalgebra P of pMp is equivalent to its amenability relative to
Q inside M (see Exercise 13.16). It is sometimes a handy way to show that
P is amenable. We will see an illustration of this observation in Chapter 19
where we will use the following lemma which provides a useful criterion for
relative amenability.

LEMMA 13.4.8. Let P,Q be two von Neumann subalgebras of a tracial
von Neumann algebra (M, T). We assume that there is a Q-M-bimodule K
and a net (&)ier of elements & in a multiple H of L*(M) ®¢g K such that:

(a) limsup, ||z&|| < ||zl for all z € M;

(b) limsup; [|&]] > 0;

(c) lim; [ly& — &Gyll =0 for ally € P.
Then, there exists a non-zero projection p' € Z(P' N M) such that Pp' is
amenable relative to () inside M.

Proor. We first claim that we may assume, in addition, that
lim [[&]] > 0.

Indeed, let us introduce the set J of all triples j = (F, F,¢), where E C M,
F C P are finite sets and € > 0. This set J is directed by

(E,F,e) < (E,F,Yif ECE ,FCF & <e.

Let us fix j = (E, F,e). Using Conditions (a) and (c) we find ip € [
such that ||z&| < [|z|ly + ¢ and ||y&§ — &yl < e for x € E, y € F and
i > 9. We set § = limsup;, ||&|| > 0. Let ¢ > ip be such that [|&|| > §/2.
Then we define 7; = & for this choice of i. A straightforward verification
shows that limsup; |lzn;|| < [[z[|, for all x € M, liminf; [n;]] > 0, and
lim; |lyn; — n;y|| = 0 for y € P. By taking an appropriate subnet we may
assume that lim; [|n;|| > 0. This proves our claim.

Observe that L2(M)®gK is a left (M, eg)-module. Let 1/; be the normal
state on (M, eq) defined by

() = B H 5 (nj; 215)

and let ¢ : (M,eq) — C be a weak™ limit of a subnet of (1;);c;. Then
1 is P-central and its restriction to M is normal since it is majorized by
a multiple of 7, thanks to Condition (a) and the fact that lim; ||n;|| > 0.
Finally, if p’ denote the minimal projection in Z(P'NM) such that ¢ (p') =1,
we get that the restriction of ¢ to Z((Pp") Np’' Mp') is faithful and it follows
that Pp’ is amenable relative to @ inside M. O

Exercises

EXERCISE 13.1. (i) Let M be a tracial von Neumann algebra. Let H be
a left M-module and let £ € H. Show that there exists a sequence (p,) of
projections in M which converges to the identity in the s.o. topology and
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such that p,¢ is right bounded for every n (Hint: consider the functional
x — (¢, z€) and use the Radon-Nikodym theorem).

(ii) Let M, N be two tracial von Neumann algebras and let H be a
M-N-bimodule. Show that the subspace of vectors which are both right
M-bounded and left N-bounded is dense in K.

EXERCISE 13.2. Let Hy and yK be two modules on a tracial von Neu-
mann algebra N. For any n € N and for either ¢ € H” and n € K or £ € H
and n € °KC, show that £ @y nn = En @ 1.

EXERCISE 13.3. Let ‘H be a M-N-bimodule and K be a N-P-bimodule.

(i) For ¢ € HY, show that the map Lic(¢) : n +— £ @y 1 is bounded and
P-linear from Kp into (H ®y K)p. If in addition, n € K°, show

that £ @y 7 is left P-bounded and that Le¢g, = Lic(§) o Ly.
(ii) Prove the similar statement for right bounded vectors.

EXERCISE 13.4. Let H and K as above. Let (&) (resp. (n;)) be a family
of left bounded vectors in H (resp. K) such that >, Le, Li, = Idy (resp.

Do LmL;;i = Idg). Show that Zz] LEi®N77j(L€i®Nnj)* = Idueyk-
EXERCISE 13.5. Let H be a M-N-bimodule, where M, N are II; factors.
Assume that dim(Hy) < +oo.
(i) Show that every left N-bounded vector is also right M-bounded.
(ii) Let (&)1<i<n be an orthonormal basis of H . Show that the ope-
rator > ', wm(&,&) is scalar, equal to dim(H )1

EXERCISE 13.6. Let N, P be IlI; factors, H a right N-module and K a
N-P-bimodule. Assume that dim(Hy) < 400 and dim(Kp) < 4+o00. Show
that dim((H @n K)p) = dim(Hy) dim(Kp).

We define the Jones’ index of a M -N -bimodule H to be dim(pH) dim(Hy).

It is tempting to consider its square root [p/H | as the dimension of the bi-
module, but this quantity does not have the expected properties: for bimod-
ules over II; factors, we have well [y (H @y K)p] = [MHN][NKp] as shown
in the next exercise, but only [y/(H ® K)n]| > [MHnN] + [MKn]. However,
for a II; factor M, there is a good dimension function (i.e., both addi-
tive and multiplicative) on the set of (equivalence classes) of finite Jones’
index M-M-bimodules, whose value is [psHas] when H is irreducible, and
is extended by additivity on any finite Jones’ index M-M-bimodule (see
[Rob95], [LR97]).

EXERCISE 13.7. Let M, N, P be II; factors. B
(i) Let H be a M-N-bimodule. Show that [y Hn] = [NH -
(ii) Let H and K be two M-N-bimodules of finite index. Show that
(MHN ©m Kn] 2 [mHN] + [MKN].
(iii) Let H be a M-N-module and let  be a N-P-bimodule, both of
finite index. Show that

(MM &N Kp] = [MHN][NEP].
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EXERCISE 13.8. Let a € Aut (M). Show that K(a) = H(a) is canon-
ically isomorphic to the M-M-bimodule L?(M) equipped with the actions

xly = z€a(y).
EXERCISE 13.9. Let «, 8 be two automorphisms of M. Show that the

M-M-bimodules H (S o o) and H(a) ®ps H(B) are canonically isomorphic
(and similarly for (3 o a) and K(8) @ K(a)).13

EXERCISE 13.10. Let M, N, p and « as in Proposition 13.1.5 and let
~Kp be a N-P-bimodule, where P is a II; factor.
(i) Show that the M-P-bimodules . (p(f2 ® L*(N))) ®nKp and
a(M) (p(E?L ® IC))P are isomorphic.
(ii) We now consider a finite index inclusion 5 : N — ¢M,,(P)q and
take yKp =nyH(B)p. Show that yH(«) @ H(B)p is isomorphic
to yH((Idg(2) ® B) o a) p, thus extending the previous exercise.

EXERCISE 13.11. Let M be a II; factor and denote by Bimod; (M) the
set of equivalence classes of M-M-bimodules of index 1.
(i) Show that Bimod; (M) equipped with the tensor product and the
contragredient map is a group.
(ii Show that Bimod; (M) is the set of equivalence classes of bimodules
H () where 1 ranges over the isomorphisms from M onto some
p(M,(C) & M)p.
(iii) Show that () — (Tr®7)(p) induces a well-define homomorphism
from Bimod ; (M) onto §(M) whose kernel is Out (M), so that we
have a short exact sequence of groups

1 — Out (M) — Bimody (M) — F(M) — 1.

EXERCISE 13.12. Let G be a group and M = L(G). Prove that the
following M-M-bimodules are canonically isomorphic:

(i) H(7) and H(m) for every representation m of G;
(ii) H(m ®@m2) and H(m1) @pr H(ms) for every representations 7y, w2 of
G;
(ili) H(Ag i) and (2(G) @) £2(G), where Mg/ is the quasi-regular
representation of G associated with a subgroup H.

EXERCISE 13.13. Let @ be a von Neumann subalgebra of a tracial von
Neumann algebra (M, 7). Show that the map megmi — m ®q m1 induces
an isomorphism from the (M, eq)-(M, eq)-bimodule L?({M, eq), T) onto the
(M, eq)-(M, eq)-bimodule L*(M,7) ®¢ L*(M,T).

EXERCISE 13.14. Let P be a von Neumann subalgebras of a tracial von
Neumann algebra (M, 7). Show 5y L?(M)p has a basis of neighbourhoods of
the form W (e, E, F'), where E, F are finite subsets of M and P respectively

B Therefore, o K(a) behaves better with respect to the composition, and is often
taken as the right definition of the bimodule defined by a.
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and W (e, E, F) is the set of M-P-bimodules H such that there exists £ € H
with ||€|| = 1 and

|z — &x|| < e forall z € F, (£, 2€) — 7(x)| < e for all x € M.

EXERCISE 13.15. Let M, N, P be tracial von Neumann algebras and let
MHN, MKCn, NLp be bimodules.

(i) Show that p;Hy belongs to the closure of ;K in the Fell topology
if and only if for every finite subsets E of M, F of N and S =
{&,...,&} of HO, and for every neighbourhood V of 0 in M with
respect to the w.o. topology, there exist 71, ..., in K such that

(&is2&5y) pp — Misxny) gy €V

for every i, j, every x € E and every y € N.
(ii) Assume that yyHy <p/Kn. Show that

MHN ONLp <MKN N Lp.

EXERCISE 13.16. Let @ be an amenable von Neumann subalgebra of a
tracial von Neumann algebra (M, 7) and let P be a von Neumann subalgebra
of pMp for some non-zero projection of M. Show that P is amenable with
respect to () inside M if and only if P is amenable

Notes

The notion of bimodule was introduced by Connes in the beginning of the
eighties. He was motivated by the need of developing the right framework in
order to define property (T) for II; factors [Con82] (see the next chapter).
The content of his unpublished manuscript notes that were circulated at that
time may be found in his book [Con94, V. Appendix B] where bimodules
are called correspondences. The Fell topology on the space of bimodules is
described in [CJ85].

The subject was further developed in [Pop86a] and nowadays proves to
be unvaluable for the study of the structure of von Neumann algebras and in
particular to translate, in the setting of von Neumann algebras, properties
of groups that are expressed in terms of representations.

Assuming that M is a II; factor, a good point of view is to consider
M-M-bimodules of finite index as generalized symmetries. For instance,
the set Bimod (M) of equivalence classes of such bimodules, equipped with
the direct sum and the tensor product, gives informations on the groups
Out (M) and §(M) (see Exercise 13.11). We have N* C Bimod (M) where
an integer n is identified with the multiple £2 @ L?(M) of the trivial M-M-
bimodule L?(M). Explicit computations of Bimod (M) have been achieved
in [Vae08], with in particular explicit examples for II; factors M for which
Bimod ¢ (M) is trivial, that is, reduced to N*. In this striking case the groups
Out (M) and §(M) are trivial and M has no other finite index subfactor
than the trivial ones of index n?, n > 1.
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The notion of amenability relative to a von Neumann subalgebra was
introduced in [Pop86a]. The more general notion described in Definition
13.4.5 is due to Ozawa and Popa [OP10a] and is very useful, in particular
to study group measure space II; factors (see [OP10a], [Ioal5|, [PV14a],
[PV14b]). Section 13.4.3 comes from [OP10a]. For the lemma 13.4.8, we
have followed the slight modification exposed in [Ioal5, Lemma 2.3].



CHAPTER 14

Kazhdan property (T)

In analogy with Kazhdan property (T) and relative property (T) in
group theory, we introduce and study in this chapter the notions of pro-
perty (T) for a tracial von Neumann agebra (M, 7) and more generally of
relative property (T) for an inclusion B C M. These notions are defined in
terms of rigid behaviours of completely positive maps or bimodules, which
correspond respectively to rigid behaviours of positive definite functions and
unitary representions in case of groups. A crucial and expected feature of
IT; factors with Property (T) is their lack of flexibility. For instance, we will
see that their groups of outer automorphisms and their fundamental groups
are countable. Separability arguments and rigidity are also used to show
that the functor G — L(G) defined on the ICC groups with Property (T) is
at most countable to one and that there is no separable universal II; factor.

14.1. Kazhdan property (T) for groups

We first briefly recall some facts in the group case.

DEFINITION 14.1.1. Let H be a subgroup of a group G. We say that
the pair (G, H) has the relative property (T) (or that H C G is a rigid
embedding, or that H is a relatively rigid subgroup of G) if every unitary
representation 7 of G which almost has G-invariant vectors (i.e., tg < )
has a non-zero H-invariant vector.

We say that G has the (Kazdhan) property (T), if the pair (G, G) has
the relative property (T).

We list below a few other characterisations of relative property (T).

PropoSITION 14.1.2. The following conditions are equivalent:

(a) the pair (G, H) has the relative property (T);

(b) there exist a finite subset F' of G and § > 0 such that if (7w, H) is
a unitary representation of G and & € H is a unit vector satisfy-
ing maxger || 7(9)€ — &|| < 9, then there is a non-zero H-invariant
vector n € H;

(c) for every € > 0, there exist a finite subset F' of G and § > 0
such that if (m,H) is a unitary representation of G and & € H is
a unit vector satisfying maxger ||7(9)€ —&|| < 0, then there is a
H -invariant vector n € H with || —n| <e;

(d) every met of positive definite functions on G that converges point-
wise to the constant function 1 converges uniformly on H;

241
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(e) for every e > 0, there exist a finite subset F' of G and § > 0 such
that if ¢ is a positive definite function satisfying maxger |¢(g) — 1| <
J, then one has suppcp |p(h) — 1| <e.

The equivalence between (a) and (b) as well as the equivalence between
(c), (d) and (e) are easily proved and (c) = (b) is obvious. The hardest part
(when H is not a normal subgroup of G) is (b) = (c).! Condition (b) means
that there exists a neighbourhood in Rep(G) of the trivial representation
of GG such that every representation in this neighbourhood has a non-zero
H-invariant vector.

Examples of groups with Property (T) are plentiful. For instance, lat-
tices in higher rank semi-simple Lie groups and in Sp(1,n) are such groups.
The pair (Z2 x SL(2,7Z),Z?) has the relative property (T) and more gen-
erally, for every non amenable subgroup G of SL(2,Z) (e.g. Fa3), the pair
(Z? x G, Z?) has the relative property (T). References for all these facts are
given in the notes at the end of the chapter.

Let us point out that a discrete amenable group has property (T) only
when finite.

14.2. Relative property (T) for von Neumann algebras

Let (M, 7) be a tracial von Neumann algebra and B a von Neumann
subalgebra of M. Our definition of rigidity for the inclusion (M, B) is mo-
delled on Condition (e) in Proposition 14.1.2. Unlike what we often do, in
this section we do not assume that M is separable. In fact, we will see in the
next section that a IIy factor which has the property (T) is automatically
separable.

DEFINITION 14.2.1. We say that the pair (M, B) has the relative pro-
perty (T) (or that B C M is a rigid embedding, or that B is a relatively
rigid von Neumann subalgebra of M) if for every € > 0, there exist a finite
subset F' of M and § > 0 such that whenever ¢ : M — M is a subunital
and subtracial completely positive map? satisfying max,c ||¢(z) — x|, < 6,
then one has ||¢(b) — b||, < € for every b € B with ||b||,, < 1. Whenever the
pair (M, M) has the relative property (T), we say that M has the property

(T).

REMARK 14.2.2. We have dropped 7 in the definition since it can be
shown that it is in fact independent of the choice of the normal faithful
trace (see [Pop06a, Proposition 4.1]).

In the definition, we may limit ourself to tracial and unital completely
positive maps by replacing, if necessary ¢ by the unital tracial completely

1See [Jol05).
2Recall that ¢ is subunital if ¢(1) < 1 and subtracial if 70 ¢ < 7. In particular, ¢ is
normal by Proposition 2.5.11.
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positive map 5 defined as

3a) = o) + (=TI (1 - 0(1)

(d=¢+ (1 —710¢)Lif ¢(1) = 1). We leave the details to the reader.

We now prove a characterisation of rigidity analogous to (c) in Propo-
sition 14.1.2. We will use the correspondence between completely positive
maps and bimodules described in Section 13.1.2 and in particular the two
following inequalities.

LEMMA 14.2.3. Let H be a M-M-bimodule, ¢ € H a tracial vector® and
¢ the corresponding tracial and unital completely positive map. Then, for
every x € M, we have

¢ — &x)|* < 2l|¢(x) — z[ly ]l (14.1)
[o(x) —xlly < [la€ — 2| (14.2)
PROOF. Recall that ¢(z) = LizL¢ (where L : L2(M) — H is the right
M-linear map defined by &), so that
<¢($)7y>L2(M) = 7(¢(2)"y) = (@€, Ey)y
for every x,y € M. Then we have
¢ — &al|* = [[2€])* + ||z ]|* — 2R(at, Ex)
= 2|25 — 2R7($(2)z") < 2]|b(x) — ||y |z]l,-
The second inequality is given by
l6(z) — 25 = o)l + lzl5 — 2R($(x), z)
< 2|z||5 — 2R(x¢, Ex) = |laf — Eaf|.
O

PROPOSITION 14.2.4. Let (M, T) be a tracial von Neumann algebra and
B a von Neumann subalgebra of M. The following conditions are equivalent:

(i) B C M is a rigid embedding;

(ii) for every & > 0, there exist a finite subset F of M and § > 0
such that for any M-M-bimodule H and any tracial vector &€ € H
satisfying maxgcrp ||z€ — &x|| < 0§, there exists a B-central vector
n € H with [|{ —n|| < €.

PROOF. (i) = (ii). Let &’ > 0 be given and set ¢ = (¢/)2/2. For this e,
consider F' and J as in Definition 14.2.1. Let H be a M-M-bimodule and
¢ € H a tracial vector such that ||z — &z|| < 6 for every z € F. Let ¢ be
the corresponding tracial and unital completely positive map. We have

p(z) — 2|3 < [|lo€ — &x||* < 6%

32'.@., (&, x&) = 7(x) = (&, &x) for every € M.
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It follows that ||¢(b) — b||, < € for b in the unit ball of B. Then, for u € U(B)
we get
€ — ugu(|* =2 — 2Rr(&(u)u’)
=207 ((u — ¢(u))u”) < 2[lu — ¢(u)l; < 2.
Let n € ‘H be the element of smallest norm in the closed convex hull of
{ugu™ :u e U(B)}.

We have unu* = n for every u € U(B), and so 7 is B-central. Morever, we
see that [|€ — | < (2¢)/2 =¢'.

(ii) = (i). Let € > 0 be given and set ¢/ = /2. For this €/, consider
F and ¢ satisfying condition (ii). Let ¢ : M — M be a tracial and unital
completely positive map such that, for z € F,

lp(z) — zlly < &,
with 20’ max,ep ||z||, = 6%. Let (H,£) be the pointed M-M-bimodule asso-
ciated with ¢. For x € F', we have
¢ — &x)* < 2]l d(x) — @[l ], < 6%

Therefore, there exists a B-central vector n € H with || —n|| < ¢’. Then,
for b in the unit ball of B we get

16(b) = blly < [b& - £b]]
< b€ —n) — (€ —n)b|| < 2" =e.
(]

COROLLARY 14.2.5. Let (M, T) be a tracial von Neumann algebra. For

every von Neumann subalgebra B having the property (T), the inclusion
B C M is rigid.

REMARK 14.2.6. The statement of the previous proposition is still true
when Condition (ii) is replaced by the following condition:
(ii’) for every & > 0, there exist a finite subset F' of M and &' > 0
such that whenever H is a M-M -bimodule which admits a vector &
satisfying the conditions

[t = < log =7l < &' mac ot ~ewll <, (149

there exists a B-central vector n € H with ||§ —n|| < &’

Recall that wé and wy are respectively the states z — (&, x€) and x — (€, Ex).

For the proof that Condition (i) (of the previous proposition) implies
(ii’), we observe that we may add in (ii’) the subtraciality of £, by using
Lemma 13.1.11. We keep the outline of the proof of (i) = (ii) in Proposition
14.2.4, with the following changes. Given ¢’ > 0 we keep considering ¢, §
and F as before, and we take &’ > 0 such that (§")%+26'||z||2, < 62 for every
x € F. Let £ € H be a subtracial vector satisfying Condition (14.3). Let
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¢ be still defined by £. Then ¢ is subtracial and subunital, and we get, for
r€eF,

lp(2) — 2|3 < 27(a*x) — (@€, Ex) — (Ex, 2E)
< ||z — &x|® + (7(2*2) — wi(z*2)) + (T(w2”) — i (xz"))
< (8)? 426 ||x])%, < 6°.

It follows that ||¢(b) — bl|, < e for b in the unit ball of B. Then, for u € U(B)
we get

1€ — uu*|* = 2R7((u — d(u))u”) + 2([|€]* ~ 1) < 2e.
We end as in the proof of (i) = (ii).

PROPOSITION 14.2.7. Let H C G be an inclusion of groups. We set
B =L(H) and M = L(G). The following conditions are equivalent:
(i) the pair (G, H) has the relative property (T);
(ii) the pair (M, B) has the relative property (T).

PROOF. (i) = (ii). Given € > 0, we choose F' and ¢ as in Condition
(c) of Proposition 14.1.2. Let ‘H be a M-M-bimodule with a unit vector £
such that |lugé — Euy|| < 6 for g € F. This vector is (F, §)-invariant for the
representation 7 defined by 7(g)(n) = ugnuy for g € G, n € H. Therefore,
there is a H-invariant vector n with || — n|| < e and 7 is obviously B-central.
Observe that here we do not need the traciality of &.

(ii) = (i). We assume that B C M is a rigid embedding and we claim
that Condition (d) of Proposition 14.1.2 holds. Let (p;) be a net of positive
definite functions on G, normalized by ¢;(e) = 1, converging to 1 point-
wise. Let ¢; be the completely positive map associated with ;. Recall that
di(ug) = pi(g)ug for g € G. We get a net of tracial and unital completely
positive maps such that lim; ||¢;(z) — z||, = 0 for every x of the form wu,
and so for every x € M. It follows that lim; sup e . o<1y [|#:(b) — bll, = 0,
from which we immediately deduce the uniform convergence to 1 on H of
the net (¢;). O

EXAMPLE 14.2.8. As already said, the pair (Z2 x SL(2,7),Z?) has the
relative property (T). The action of SL(2,7Z) on Z? yields a trace preserv-
ing action on the von Neumann algebra L(Z?), and by Fourier transform,
on L>(T?). We get the following canonical isomorphisms of pairs of von
Neumann algebras:

(L(Z* x SL(2,Z)), L(Z?)) ~ (L(Z*) » SL(2,Z), L(Z*))
~ (L*(T?) x SL(2,Z), L™(T?)).
So, the pair (L°°(T?) x SL(2,Z), L°°(T?)) has the relative property (T).
More generally, for any non amenable subgroup G of SL(2,7Z), the pair

(L*°(T?) x G, L>(T?)) has the relative property (T) since it is the case for
(7% x G,77).
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ExXAMPLE 14.2.9. The free group F,, does not have the property (7).
Indeed, F, has an infinite abelian quotient, namely Z". But, using for
instance the condition (d) in Proposition 14.1.2, we see that the property
(T) is stable by passing to the quotient, and Z™ does not have this property.

It follows that L(F,), n > 2, is not isomorphic with any factor L(G)
whenever G is ICC and has the property (T), for instance SL(3,7Z).

REMARK 14.2.10. Let M be a II; factor and B a von Neumann sub-
algebra of M. In this context, there is another natural notion of relative
property (T) stated as follows: we say that M has the property (T) relative
to B, or that B is co-rigid in M if there exist a finite subset F' of M and
d > 0 such that every M-M-bimodule H with a B-central unit vector &
satisfying max,cp ||z — x|| < & contains a non-zero M-central vector. In
particular, M has the property (T) if and only if it has the property (T)
relative to B = C1 (see Theorem 14.5.2).

It is easy to see that whenever M = B x (G, then B is co-rigid in M if
and only if G has the property (T). For a normal subgroup H of G, the co-
rigidity of L(H) into L(G) is equivalent to the property (T) of the quotient
group G/H (see [Pop86a, AD87]).

Rigid embeddings have several natural stability properties. We will only
need the following one for factors.

ProroSITION 14.2.11. Let B C M be a rigid embedding. Let p be a
non-zero projection in B. Then pBp C pMp s a rigid embedding.

PRrROOF. We only consider the case where M is a II; factor. We denote
by 7, the tracial state on pMp. Observe that for y € pMp, we have HyHQT =

)2l
Using the comparison theorem about projections, we find partial isome-
tries v1 = p,v,..., v, such that > " v;uf = 1 and viv; < p for every

i. We fix ¢ > 0 and set eg = e7(p)'/2. Let Fy be a finite subset of M
and d9 > 0 such that whenever ¢g : M — M is a subunital and subtra-
cial completely positive map satisfying max,ep, ||¢o(z) — x||277 < dp, then
[¢0(b) — blly,, < €0 for every b in the unit ball of B.

We set F = {vfzv; 12 € Fy,1 <i,j <n} and § = don"27(p)"1/2. Let
¢ : pMp — pMp be a subunital and subtracial completely positive map,
i.e., ¢(p) < p and 7, 0 ¢ < 7, such that

_ <.
max le(w) = ylly,r, <

We define ¢g : M — M by

n

po(z) = Z v (v TV V3.

ij=1
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It is easily checked that ¢g is a subunital and subtracial completely positive
map. Moreover we have, for © € Fp,

lbo(@) = 2y, < D [Jid(viwv;)v; — vvfwvgi]l,

7’7]
< lowiavy) — vizvsll,
0]

< n?7(p)'/%6 = 6y.

It follows that [[¢o(b) —blly, < €o for b in the unit ball (B); of B and
therefore we have [|¢(pbp) — pbpl|, . < ¢ for every b € (pBp)i. O

14.3. Consequences of property (T) for II; factors
In this section, M denotes a II; factor which has the property (T).

14.3.1. Separability. We are going to show the following result.

PrOPOSITION 14.3.1. Every 11y factor which has the property (T) is
separable.

For the proof, we will use the lemma below.

LEMMA 14.3.2. Let (M,7) be a tracial von Neumann algebra and Q a
von Neumann subalgebra. Let 0 < e < 272 be such that

lz = Eq(z)ll, <e

for x in the unit ball (M )1 of M. Then there exists a non-zero projection q €
(M,eq) N M’ such that the right Q-module gL*(M) has a finite dimension.

Proor. Recall that 7 denotes the canonical trace on the basic construc-
tion (M, eq). For uw € U(M), we have

x12 ~ *
leq — uequ™|; - = 27(eq — equequeq)
= 2(1 = 7(Eq(u)Eq(u)"))
2

=2[ju — EQ(u)[l3,, < 22,
Using the averaging lemma 14.3.3 below in the semi-finite von Neumann
algebra ((M,eq),T) with ¢ = eg and with the unitary group of M as G, we
get a positive element h € (M, eq) N M’ such that 7(h) < T(eqg) = 1 and
leg — ||, ~ < V/2e. In particular, we have h # 0 and for g it suffices to take
a non-zero spectral projection of h. Then dim(qL?(M)g) = 7(q) < +oo. O

LEMMA 14.3.3. Let M be a von Neumann algebra equipped with a nor-
mal faithful semi-finite trace Tr. Let ¢ € My be such that Tr(c) < +o00 and
let G be a unitary subgroup of M. The w.o. closed convex hull C C M4 of
{ucu® : u € G} contains a unique element h of minimal |||y 5,-norm. More-
over, we have uhu* = u for every w € G and Tr(h) < Tr(c).
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PRrROOF. For every y € C, we have obviously |ly||,, < |l¢||,, and since
Tr is lower semi-continuous?, we also have Tr(y) < Tr(c). The inclusion of
C into the Hilbert space L?(M,Tr) is continuous when C and the Hilbert
space are respectively equipped with the w.o. topology and the weak topol-
ogy. Indeed, for x1,zo such Tr(zfz;) < +o0, i = 1,2, the linear functional
y = Tr(z122y) = ((2122)",Y) 12(pr) 18 W.0. continuous on C and these z122
generate linearly a dense subspace of L?(M, Tr). Since C is w.o. compact, it
is closed in L?(M, Tr) with respect to the weak topology. Being convex it is
also ||+[| p,-closed. It follows that C contains a unique element % of minimal
|||, y-norm. Since uhu* € C for every u € G and since [[uhu™(|y r, = [|h
we see that uhu* = h.

2,Tr

PROOF OF PROPOSITION 14.3.1. We fix ¢ < 2-1/2 and we choose (F, §)
as in Definition 14.2.1: whenever ¢ : M — M is a subunital and sub-
tracial completely positive map satisfying maxgep [|¢(x) — x|, < 0 then
|lp(z) — x|y < e for every z in the unit ball (M);. Let @ be the von Neu-
mann subalgebra of M generated by F. Since Eg(x) = z for z € F, we
get ||z — Eg(x)||, < € for every x € (M);. Lemma 14.3.2 gives a non-zero
projection ¢ in (M,eq) N M’ with 7(¢) < +oo. Then ¢L*(M) is a M-Q-
bimodule with dim(qL?(M)q) < +o0o. Cutting down, if necessary, qL?(M)
by a projection of the center of (), we may assume by Corollary 9.3.3 that
qL*(M) is finitely generated as a right @Q-module. Then, by Proposition
8.5.3 there is an integer n > 0 and a projection p € M, (C) ® @ such that
qL?(M) is isomorphic, as a right Q-module, to p(¢2® L?(Q)). The structure
of left M-module of ¢L?(M) gives a normal unital homomorphism from M
into p(Mn((C) ® Q)p. This homomorphism is an embedding since M is a
factor. But p(Mn((C) ® Q) p is separable and so M is also separable. O

14.3.2. M is a full factor and the outer automorphism group
Out (M) is countable. Recall that we denote by Inn (M) the normal sub-
group of Aut (M) = Aut (M, 7) formed by the inner automorphisms. We
equip Aut (M) with the topology for which a net (a;) converges to « if for
every x € M we have lim; ||o;(z) — o(z)||, = 0 (see Section 7.5.3) The outer
automorphism group Out (M) = Aut (M)/Inn (M) will be endowed with
the quotient topology.

PROPOSITION 14.3.4. Let M be a 11} factor having the property (T).
Then Inn (M) is an open sugroup of Aut (M).

PrOOF. We will only use the fact that since M has the property (T),
there exist a finite subset F' of M and § > 0 such that if H is a M-M-
bimodule with a tracial vector £ satisfying

max |[z€ — x| < 0,
zeF

4For some of the properties of Tr used in this proof, see Exercises 8.3, 8.4 and 8.5.
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then H contains a non-zero M-central vector. We claim that
V= {a € Aut (M) : max ||a(z) — x|, < 5}
zel

is a neighbourhood of Idys contained in Inn (M). Indeed, for a € V we
have max,cp Ha(m)f—/l\a:HZ < §. Applying our assumption to the M-M-

bimodule H(«) (see Example 13.1.3 (b)), we obtain the existence of a non-
zero vector n € L?(M) such that a(x)n = nz for every x € M. It follows
that n*n is in the center of M, thus is a scalar operator. Hence a(z)u = uz,
where u is the unitary operator of the polar decomposition of 7. O

In particular, Inn (M) is also a closed subgroup of Aut (M). A factor
with such a property is said to be full.

PROPOSITION 14.3.5. Let M be a 11y factor which has the property (T).
Then the group Out (M) = Aut (M)/Inn (M) of outer automorphisms is
countable.

PRrROOF. We have seen in Section 7.5.3 that Aut (M) is a Polish group,
due to the separability of M. Since Inn (M) is open, the group Out (M) is
discrete, and being Polish it is countable. ([

14.3.3. The fundamental group F(M) is countable. Recall that
§(M) is the subgroup of R* consisting of the positive numbers ¢ such that
the amplification M! is isomorphic to M.

PROPOSITION 14.3.6. If the 1y factor M has the property (T), its fun-
damental group §(M) is countable.

PROOF. Assume that (M) is not countable and choose ¢ €]0, 1] such
that F(M) N [c,1] is not countable. For every ¢t € F(M) N [c, 1], we choose
a projection p; with 7(p;) = ¢, and an isomorphism 6; from M onto p;Mp;.
We may choose these projections such that ps < p; whenever s < ¢ (see
Exercise 3.3). Note also that

T>T100 =7(p)T > cCT.

We take (F,¢) corresponding to € = 1/2 in Definition 14.2.1 and write
F={x1,...,z,}. Weset & = (0¢(z1),...,0:(x,)) € H = L>(M)®". Since
H is separable, there are two elements s < t in §(M)N|c, 1] with [|{s — &l <
6c/? and therefore

max [0 (z) = 0u(2)]], < sct/2.

We set ¢ = 9;1(]95) and 0 = 9;1 o fs. We observe that 6 is an isomorphism
from M onto gMq and that 7060 = 7(q)7 < 7.

We have max,cr ||0(z) — x|, < §, and therefore ||6(x) — x|, < 1/2 for
every x in the unit ball of M. Then for u € U(M) we have ||6(u)u* — 1|, <
1/2. By the usual convexity argument, we deduce the existence of a non-
zero element & € L?(M) such that 6(u)éu* = & for every u € U(M). It
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follows that £*¢ is a scalar operator and that # is an inner automorphism,
in contradiction with ¢ < 1. O

REMARK 14.3.7. The separability argument used in the above proof can
be applied in many situations. We will give two other illustrations in the
next section, showing the power of this method.

For the original proof of the proposition 14.3.6 due to Connes [Con80a],
see Exercise 14.3

14.4. Rigidity results from separability arguments

A nice feature of groups having Property (T) is that all their represen-
tations in a IIj-factor are isolated. More precisely, we have the following
result.

PROPOSITION 14.4.1. Let G be a group having the property (T) and let
(M, 1) be a tracial von Neumann algebra. Let (F,0) satisfying the condi-
tion (b) of Proposition 14.1.2 with H = G. Let p1,p2 be two projections
in M and let m; : G — U(p;iMp;) be two group homomorphisms such that
|lm1(g9) — m2(g) ||y < 0llpip2|ly for every g € F. There exists a non-zero par-
tial isometry v € M such that w1 (g)v = vma(g) for every g € G. Moreover,
if M is 11y factor and if, for instance, mo(G) generates M, then v is unitary
and therefore the representations w1 and me are equivalent.

PRrOOF. Consider the representation g — mi(g)Jm2(g)J on the Hilbert
space H = p1 L2(M)py and the vector & = p1ps € H. Then we have

I17(9)€ = &lly = Im1(g)p1p2 — p1p2m2(9)|ls < |I71(g) — 72(g)ll-

It follows that maxgecr ||7(9)€ — €|, < d[[¢]l, and therefore there exists a
non-zero vector 7 € H such that 7(g)n = n for every g € G, that is, 71(g)n =
nma(g) for every g € G. Let n = v|n| be the polar decomposition of 1. Then
|n| commutes with mo(G) and so we get 71 (g)v = vma(g) for every g € G.
The last statement of the proposition follows from the fact that v*v
commutes with m2(G). O

14.4.1. Connes’ rigidity conjecture is true, up to countable
classes. Connes conjectured® that if G1, G4 are two ICC groups with Prop-
erty (T), then the II; factors L(G1) and L(G2) are isomorphic if and only if
the groups are isomorphic. This conjecture is still out of reach, but we have
the following result.

THEOREM 14.4.2. The functor G — L(G) defined on the ICC groups
with Property (T) is at most countable to one.

The proof relies on the following theorem®.

%in [Con82]
6due to Shalom [Sha00]
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THEOREM 14.4.3. Ewvery Property (T) group is a quotient of a finitely
presented group with Property (T).

PROOF OF THEOREM 14.4.2. Assume that M = L(G;) for uncountably
many non isomorphic ICC groups with Property (T). Since the set of finitely
presented groups is countable, we may assume that all these groups are
quotient of the same group G with Property (T). Let w; : Gi — U(M)
be the canonical embedding. We denote by ¢; the quotient homomorphism
G — Gy, and we set m; = u; o g;.

We represent M in standard form on L?(M) and ¢ is the canonical
tracial vector in L?(M). Let (F,d) satisfying the condition (b) of Proposition
14.1.2 with H = G. Since L?(M) is separable and I is uncountable, there
exist distinct 4,7 in I such that maxgecp ||mi(9)¢ — 7;(9)€]l, < 0. It follows
from Proposition 14.4.1 that the representations m; and m; are unitarily
equivalent: there exists v € U(M) such that (u; o ¢;(g))v = v(u; o j(9))
for g € G. This contradicts the fact that the groups G; and G; are not
isomorphic. O

14.4.2. There is no separable universal II; factor.

THEOREM 14.4.4. There is no separable 111 factor M such that every
separable factor is isomorphic to a subfactor of M.

This time the proof uses a deep result of Gromov-Olshanskii’.

THEOREM 14.4.5. There exists a countable group G with Property (T),
which has uncountably many pairwise non isomorphic quotient groups Gj,
1 € I, all of which are simple and ICC.

PROOF OF THEOREM 14.4.4. Assume that there is a separable II; fac-
tor M which contains L(G;) for ¢ € I. As in the proof of Theorem 14.4.2,
we introduce the representations m; = wu; o ¢; of G. We still represent M
in standard form on L?(M) and € is the canonical tracial vector in L2(M).
Since ; is a non-trivial representation and & is separating for M we have
sup,ec |Imi(9)€ — &Il > 0. It follows that there is an integer n > 0 and an
uncountable subset I1 of I such that supgeq [|mi(9)§ — €[ > 1/n foralli € I.

We choose € < 1/2n. There exist a finite subset F' of G and ¢ > 0 such
that if (m,7{) is a unitary representation of G and ¢ € H is a unit vector
satisfying maxgep | 7(9)¢ — ¢|| < d, then there is a G-invariant vector 1 such
that [|( — 7| < e.

Since L?(M) is separable and I; is uncountable, there exist distinct 4, j
in I such that maxgcp [|m;(9) — 7;(9)§]l, < d. It follows that there exists
a non-zero vector n € L?(M) such that m;(g)n = nmj(g) for all g € G
with ||€ —nl||, < e. Let H = {g € G:mi(9)n =n}. Then H is a subgroup
of G which contains the normal subgroups kerm; and kerm;. Since these
normal subgroups are distinct and since the groups G; and G are simple,

"revisited by Ozawa in [Oza04b).
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we see that H = G. It follows that supgcq |[mi(9)§ — €| < 26 < 1/n, a
contradiction. O

14.5. Some remarks about the definition of relative property (T)

We have defined the relative property (T) by translating Conditions (c)
and (d) of Proposition 14.1.2 in the setting of tracial von Neumann algebras,
where in particular a formulation in terms of completely positive maps proves
to be very convenient. The analogue of Condition (b) of Proposition 14.1.2
for a pair (M, B), where M is equipped with a normal faithful trace 7, would
be the following:

e there exists a neighbourhood W of the trivial bimodule L*(M) such
that every M-M -bimodule in W has a non-zero B-central vector.

Using the basis of neighbourhoods of the form W(L?(M); e, F) described
in Section 13.3.2, the above condition reads as

(iii) there exist a finite subset F' of M and &' > 0 such that whenever H
is a M-M -bimodule which admits a unit vector & satisfying

Ve e F, |z€—¢&xll <&, &) —7(x)| <& [(&Ex) —7(2)] <7,

then H has a non-zero B-central vector.

The reader is invited to compare this condition (iii) with Condition (ii’)
in Remark 14.2.6. In (iii), € is not required to be tracial or “almost tracial”
in the sense of Remark 14.2.6. On the other hand, the existing B-central
vector is not required to be close to &, that is, no “continuity constants” are
involved.

In case M is a Il; factor, the tracial condition is not a serious issue.

PROPOSITION 14.5.1. Let B be a von Neumann subalgebra of a 11y factor
M. The following conditions are equivalent:

(i) the pair (M, B) has the relative property (T);

(ii”) for every € > 0 there exist a finite subset F of M and § > 0 such
that for any M-M-bimodule H and any unit vector & € H, with
max,cr |[2€ — x|| < J, there is a B-central vector n with ||£ — n|| <
€.

PROOF. Assume that (ii”) does not hold whereas (i) is satisfied. There
exist ¢ > 0, a M-M-bimodule H and a net (&;) of unit vectors in H such
that lim, ||z& — &a|| = 0 for every € M and [|& — PP&|| > ¢ for every i,
where PP denotes the orthogonal projection on the subspace of B-central
vectors. Then any weak™ limit of the net (wél) of vector states on M is a
trace, and thanks to the uniqueness of the tracial state 7 on M we see that
lim; wéi = 7 in the weak™ topology. Similarly, we have lim; Wg, =T.

Let F be a finite subset of M and ¢ > 0 satisfying Condition (ii’) of
Remark 14.2.6 with respect to &’ = ¢/2. Using a convexity argument as in
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the proof of Lemma 13.3.11, we find a unit vector n = (/\}/2&1, e /\,11/25%),
viewed as an element of H%>°, with A\; > 0, 2?21 A;j = 1, such that

Ir =yl <8 |lr—wpf < 4",

gleagc Hazn — ij <.

It follows that there exists a B-central vector ¢ € HP> such that ||n — (|| <
¢/2. Therefore we have

Z/\jﬂfij - PB&J-HQ < /4,
j=1

in contradiction with the fact that Hfl — PB&H > ¢ for every i. O

Equivalence with definitions of Property (T) without “continuity con-
stants” is much more difficult to obtain. Concerning II; factors, this makes
use of a delicate argument as we will see in the proof of the next theorem.

THEOREM 14.5.2. Let M be a 111 factor. The following conditions are
equivalent:
(a) M has the property (T);
(b) there exists a neighbourhood V. of L?>(M) such that every element
of V' has a non-zero central vector, that is (in the factor case),
there exist a finite subset F' of M and 6 > 0 such that if H is a
M -M -bimodule with a unit vector £ satisfying

max [|z€ — £z <6,
xeF
then H contains a non-zero M -central vector.

Note that the existence of a non-zero M-central vector is equivalent to
the fact that L?(M) is a M-M-submodule of H. So, Condition (b) means
that there exists a neighbourhood V of L?(M) in Bimod (M) such that eve-
ry element of V contains L?(M) as a M-M-subbimodule. It is the original
Connes-Jones definition of Property (T).

PROOF OF THEOREM 14.5.2. Since Condition (ii”) of Proposition 14.5.1
with B = M implies (b), we only have to show that (b) = (ii”) stated with
B = M. If (b) holds, as seen in Proposition 14.3.4, Inn (M) is open and thus
closed in Aut (M). By Theorem 15.3.2 to be proved in the next chapter, M
has spectral gap, that is, there exist a finite subset Fjy of U(M) and ¢ > 0
such that cmax,ep, ||u — Eully > ||€]|y for every € € L*(M) with €1y =0.

Let H be a M-M-bimodule, that we write as H = Ho @ H1 where Hj
is a multiple of L?(M) and #H; has no non-zero central vector. Let F,§ be
given by condition (b). We set F/ = FU Fy. Let £ € H be a unit vector and
put @ = maxgep ||z€ — Ex||. We write & = & + & with & € H;, i = 0, 1.
Observe that max,cp ||z — &12|| < a. So, since H; has no non-zero central
vector we see that ||| < a/d. Now, we write & = & + & where & is a
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central vector and £ is orthogonal to the space of central vectors. In Hy,
which is a multiple of the trivial M-M-bimodule, we have

€61} < e max [Jug — &ul| = cmax ugo — Eoul| < ca

It follows that
2 2
1€ = &l" =l + & < (a/6)* + c*a”.
To conclude, given € > 0, we set 0’ = ¢/k with k = /c? + 1/6%2. We have
found a pair (F”’,¢’) such that whenever H is a M-M-bimodule with a unit
vector ¢ satisfying max,cp ||2€ — £z|| < ', then there is a central vector &

with ¢ — &° < =. O

REMARKS 14.5.3. (a) Whenever M is the von Neumann algebra of a
group G, not necessarily ICC (so M is possibly not a factor), and B = L(H)
where H is a subgroup of G, it is still true that (M, B) has the relative
property (T) if and only if there exists a neighbourhood V of L?(M) such
that every element of V has a non-zero B-central vector [Jol93, Bek06].

(b) More results in the relative case have been obtained in [Pop06a,
Theorem 4.3] and [PPO05] involving, as in the Connes-Jones result 14.5.2,
rather subtle arguments. Let us only mention for example the following
theorem without “continuity constants”. We denote by N/ (B) is the group
of unitaries u € M such that uBu* = B.

THEOREM 14.5.4. Let M be a 11y factor and B a von Neumann subalge-
bra such that BN M C B and Ny (B)' N M = C. The following conditions
are equivalent:

(a) the pair (M, B) has the relative property (T) ;
(b) there exist a finite subset F of M and § > 0 such that if H is a
M -M -bimodule with a unit vector & satisfying

max |o€ - o <3, ||wk =7 <o, wf =] <5,

then H contains a non-zero B-central vector.

Exercises

EXERCISE 14.1. Let B be a von Neumann subalgebra of a tracial von
Neumann algebra M. Show that the pair (M, B) has the relative property
(T) if and only if for every net (¢;);cr of tracial and unital completely positive
maps from M to M such that lim; ||¢;(z) — z||, = 0 for € M (such a net
is called a deformation of the identity), then lim; supye(p), [|¢:(b) — bl = 0.
Moreover, if M is separable, it suffices to consider sequences.

EXERCISE 14.2. Let B be a von Neumann subalgebra of a tracial von
Neumann algebra M.
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(i) Show that for every projection z in the center of B, then zL?(B)
is a B-B-subbimodule of L?(B), and that every B-B-subbimodule
of L?(B) is of this form.

(ii) Let H be a M-M-bimodule. Show that H contains a non-zero
B-central vector if and only if, as a B-B-bimodule, H contains a
non-zero B-B-subbimodule of L?(B).

EXERCISE 14.3. Let M be a II; factor having the property (T). Let ¢ €
F(M) and let 6; € Aut (M@B((*(N)) such that mod(6;) = t (see Exercise
8.15). Let a4 be the unique element of Out (M®M ) corresponding to 6;®6,” !
(see Exercise 8.16). Show that the map ¢ — «y is injective and conclude that
§(M) is countable.

Notes

Property (T) for groups was introduced by Kazhdan in [Kaz67]. Such
discrete groups being finitely generated, this was a handy way to show that
the (Poincaré) fundamental group of some locally symmetric Riemannian
manifolds are finitely generated. The notion of relative property (T) is
implicit in Kazhdan’s work and was made explicit by Margulis, in particular
the fact that (Z% x SL(2,Z),Z?) has the relative property (T) [Mar82] .

Since then, Property (T) proved to be very fruitful in diverse domains,
in particular ergodic theory and operator algebras.

For an exhaustive study of the notion of property (T) for groups and its
applications we recommend the book [BAIHVO08]. A proof, not using Lie
group theory, that some countable groups such as SL(n,Z), n > 3, have
Property (T) was given by Shalom at the end of the 90’s [Sha99]. The fact
that (Z2? x SL(2,Z),Z?) has the relative property (T) is a key result for
his proof, combined with the fact that SL(n,Z) has the so-called bounded
generation property. A nice simpler proof, based on Shalom’s ideas, but
using a weaker bounded generation property is provided in [BOO08, Section
12.1]. The result stating that (Z? x G, Z?) has the relative property (T) for
any non-amenable subgroup of SL(n,Z) is due to Burger [Bur91].

In [Con80a], Connes discovered that II; factors of the form L(G), where
G is an ICC group with Property (T), have the remarkable properties shown
in Section 14.3. This provided the first examples of I1; factors with countable
(Murray-von Neumann) fundamental groups, yet without explicit computa-
tion. Later, Connes [Con82] defined Property (T) for any II; factor in
such a way that L(G) has Property (T) if and only if G has this property.
This was developed by Connes and Jones in [CJ85]. In addition to the fact
that Property (T) factors have countable fundamental groups and outer au-
tomorphisms groups, they showed that they are non-amenable in a strong
sense. For instance they cannot be embedded in a von Neumann algebra
of a free group, as we will see in Chapter 16. Theorem 14.5.2 is also taken
from [CJ85]. Further results on Property (T) for von Neumann algebras
are contained in [Pop86a].
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The notion of relative property (T) for pairs of finite von Neumann al-
gebras was introduced and studied in [Pop06a]. This property was used
in a crucial way to give the first example of a II; factor M with a funda-
mental group §(M) # R* and explicitly computed. Precisely, it is shown
in [Pop06a] that §(M) = {1} for M = L(Z? x F,) (see Corollary 18.3.2).
This breakthrough was followed by the discovery of many other remark-
able applications of rigidity properties in operator algebras and ergodic the-
ory. The versions with and without “continuity constants” as explained
in Section 14.5 have both their interest. In particular, the version with
“continuity constant” is well adapted to show the stability of Property (T)
under various operations such as tensor products, reduction or induction
(see [Pop86a, Pop06a]). Theorem 14.5.4 is Corollary 2 in [PP05].

The method of deriving rigidity statements “up to countable classes”
applied in Section 14.4 grew out of Connes’ initial rigidity paper [Con80a].
It was developed in [Pop86a] and gave rise to many applications not present
in this monograph. For instance, it is shown in [Pop86a, Corollary 4.5.2]
that if a IT; factor has Property (T) then the set J(M) of index values of the
subfactors of M (and thus (M) is countable. Such arguments were revived
at the beginning of the 2000’s, leading to new applications, among them
Theorem 14.4.4, due to Ozawa [Oza04b|, and Theorem 14.4.2 appearing
in the survey [Pop07b] along with other examples. The non existence of
a separable universal II; factor solves Problem 4.4.29 in [Sak98]. An ex-
plicit construction of uncountably many separable II; factors that cannot
be embedded in a fixed separable II; factor is provided in [NPS07].



CHAPTER 15

Spectral gap and Property Gamma

By definition, unitary representations of a Property (T) group G have
the spectral gap property, in the sense that they do not have almost invariant
vectors as soon as they do not have invariant vectors. In particular, every
ergodic trace preserving action of G on a tracial von Neumann algebra (M, 7)
has spectral gap, meaning that the Koopman representation of G' on the
orthogonal in L?(M) of the one-dimensional space of G-invariant vectors
does not have almost invariant vectors. However, even in the absence of
Property (T), any non-amenable group G has such actions, for instance
Bernoulli actions, and therefore displays some weak form of rigidity.

We study in this chapter the spectral gap property for the action of the
unitary group U (M) by inner automorphisms on a IT; factor M. The class of
II; factors having this property plays an important role in the subject. We
show that a factor in this class admits the following remarkable equivalent
characterisations:

(1) by not having the property Gamma of von Neumann (Theorem
15.2.4);

(2) by the property for its group of inner automorphisms to be closed
in its automorphism group, in which case we say that the factor is
full (Theorem 15.3.2).

Historically, Property Gamma was introduced at first to show that the
hyperfinite factor R and the group von Neumann factors relative to the free
groups F,,, n > 2, are not isomorphic. Indeed, R has Property Gamma but
not L(F,), as shown in the last part of this chapter.

In this chapter, unless explicitly mentioned, the groups are not assumed
to be countable.

15.1. Actions with spectral gap

15.1.1. First definitions. We begin by introducing the notion of spec-
tral gap for unitary representations of a group G.

DEFINITION 15.1.1. Let (m,H) be a unitary representation of G. We
will say that w has spectral gap if it does not weakly contain the trivial
representation v, that is, if it satisfies the following (obviously equivalent)
conditions:

257
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(i) there exist a finite subset F' of G and ¢ > 0 such that
— >
max [[m(9)¢ — €l = cll¢]

for every & € H;

(ii) for every bounded net (¢;) in H, one has lim; ||7(g)& — &|| = 0 for
every g if and only if lim; [|&;|| = 0. (When G is countable, it suffices
to consider sequences instead of nets.)

(iii) for every € > 0, there exist a finite subset F' of G and § > 0 such
that, if £ € H satisfies maxger ||7(9)€ — £|| < 9, then [|€]| <e.

REMARK 15.1.2. One often finds in the literature a different definition,
where it is asked the trivial representation not to be weakly contained in
the restriction of 7 to the orthogonal of the subspace of G-invariant vectors.
Our definition is more convenient for our purpose in this chapter. In par-
ticular, a trace preserving action with spectral gap (see Definition 15.1.5) is
automatically ergodic.

Of course, in Condition (i) we may take F' symmetric, that is, F' = F~!.
Then, this condition is easily translated into a property of the spectrum
Sp(h) of the self-adjoint contraction h = (1/n) 3", cp7(g), where n denote
the cardinal of F. More precisely, Sp(h) is always contained in [—1,1] and
we have the following results.

LEMMA 15.1.3. We keep the above notation.
(i) Assume that Sp(h) C [—1,1 — 0] for some § < 1. Then for every

€ € M, we have maxgep |7(9)€ — &]| > V20 ¢]I.
(ii) Assume that there exists ¢ > 0 such that

2 Im(9)€ — &Il = cll¢]l

for every & € H. Then, we have Sp(h) C [-1,1 — ¢?/(2n)].

PROOF. (i) Assume that Sp(h) C [-1,1 — §]. Then for £ € H with
€]l = 1, we have (£, h€) <1 —4. So, there exists g € F' with

R m(9)§) <10,

from which we deduce immediately that ||7(g)& — £|| > v/20.
(ii) Assume that maxger ||7(g)¢ — &|| > ¢ for every norm-one vector £ €
H. Take g € F with ||7(g)¢ — £|| > c. It follows that R(¢, 7(g)€) <1 —c%/2
and then
n—1

(&, hg) <

+ (1/n)R(E, 7(9)€)
1—c%/(2n).

IN

Thus

1h€ — (1 = N[l = (€. (1 = X)E — he) > ¢*/(2n) —
for every A € R. It follows that the operator h — (1 — )IdH is invertible
whenever 0 < A < ¢2/(2n), hence the conclusion. O
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COROLLARY 15.1.4. A representation w of G has spectral gap if and
only if there exists a symmetric finite subset F' of G and 6 < 1 such that
Sp(h) C [=1,1 =], where h = (1/|F|) Y e pm(g).!

15.1.2. Spectral gap for trace preserving group actions on tra-
cial von Neumann algebras. Let 0 : G ~ (M, 7) be a trace preserving
action of a group G on a tracial von Neumann algebra (M, 7). Recall that o
extends to a unitary representation (sometimes called the Koopman repre-
sentation associated with the action) of G on L?(M), well defined by

0yg(T) = og(x)
for g € G and x € M. This representation has T as invariant vector. We de-
note by L2(M) the orthogonal complement of C1 in L?(M) and we identify,
as usual M to the corresponding dense subspace of L?(M).

DEFINITION 15.1.5. We say that o : G ~ (M, 7) has spectral gap if the
restriction of o to L3(M) has spectral gap. A probability measure preserving
action G ~ (X, ) is said to have spectral gap if the corresponding action
G ~ (L*™(X, p), 7,) has this property.

Note that an action with spectral gap is ergodic, that is, the space
L2(M)% of fixed points in L2(M) (or equivalently (see Exercise 15.3), the
space M@ of fixed points in M) is reduced to the scalars.

DEFINITION 15.1.6. Let 0 : G ~ (M, 7) be a trace preserving action.

(i) We say that a net (&;) in L2(M) is asymptotically G-invariant if for
every g € G,

i [y 65) — &l = 0.
(ii) We say that (&;) is asymptotically trivial if

In the context of trace preserving actions, the equivalent properties
characterizing spectral gap in Definition 15.1.1 can be expressed as follows:

(i) there exist a finite subset F' of G and ¢ > 0 such that

Ve € M, max|oy(z)— x|, > cl|lz — 7(x)1],;
geF

(ii) every ||-||,-bounded asymptotically G- invariant net (or sequence if
G is countable) in M is asymptotically trivial;

(iii) for every e > 0, there exist a finite subset F' of G and § > 0 such that
if x € M satisfies maxycp [|og(2) — x|y <6, then ||z — 7(2)1, < e.

"n other term, the spectrum of h does not meet some neighbourhood of 1, hence the
terminology of spectral gap.
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REMARKS 15.1.7. (a) Let us mention that no ergodic probability mea-
sure preserving action of an amenable countable group has spectral gap
and that in fact this property is another characterisation of amenability
([Sch81)).

(b) On the other hand, obviously every unitary representation of a Prop-
erty (T) group has spectral gap. In this case, we even have a uniform spectral
gap property in the sense that there exist a finite subset F' of G and ¢ > 0
such that for every unitary representation (m,H) of G without non-zero in-
variant vector, then maxger ||7(g)§ —&|| > c|§|| for £ € H. For a group
G, the fact that all its ergodic probability measure preserving actions have
spectral gap implies that it has the property (T) ([CW80, Sch81]).

Bernoulli actions of non-amenable groups are the most basic examples
of actions with spectral gap.

PROPOSITION 15.1.8. Let (Y,v) be a standard probability measure space
and let G be a non-amenable countable group. We set X =Y (the product
of copies of Y indexed by G) and p = v®%. Then the Bernoulli action
o: G~ (X, p) has spectral gap.

PRrOOF. For simplicity, we assume that v is diffuse and we take Y =
T with its Haar probability measure. Via Fourier transform, we identify
L2(X, 1) to £2(Z%)) where Z(&) is the group of finitely supported functions
from G to Z. We set I' = Z(©). We let G act by left translations on T
Under the identification we have made, the unitary representation of G on
?2(T) is defined, for g € G and v € T, by

Tg0y = g .

This representation preserves globally the orthonormal set {d, : v € I',y # 0}.
Choose a set E of representatives of the orbits of the left G-action on I'\ {0}.
For v € E, let G, be the stabilizer of v under the G-action. Note that G,
is a finite subgroup of G since, except for finitely many ones, the compo-
nents of v are equal to 0. We now observe that the unitary representation
o restricted to L3(X, p) is equivalent to ®yerAg/q,- Moreover, since G, is
finite the representation the quasi-regular representation A /G, 1s equivalent
to a subrepresentation of A\q.

Assume that (¢ is weakly contained in ©yepAg/q,. Then it is weakly
contained in a multiple of Ag. But since any such multiple is weakly equiv-
alent to \g, we see that g is weakly contained in A\g. This contradicts the
fact that G is not amenable.

When (Y,v) is not diffuse, we start with any orthonormal basis of
L3(Y,v). Tt yields an orthonormal basis of L?(X,u) and we proceed in
a way similar to what we did above with the basis (J)~er. O

More generally, ergodic generalized Bernoulli actions G ~ (YZ,v%%)
(see Definition 1.4.7) of a non-amenable countable group G have a spectral
gap under the assumption that the stabilizers of the action G ~ Z are
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amenable. The proof follows the same lines as the previous one for classical
Bernoulli actions. We leave it as an exercise (Exercise 15.1). It needs the
following result from group representations theory?.

LEMMA 15.1.9. Let G be a non-amenable countable group and (H;)ier a
family of amenable subgroups of G. We denote by Ag/p, the quasi-regular
representation of G in (2(G/H;). Then the trivial representation v of G is
not weakly contained in the Hilbert direct sum @ici g/ H,-

PRrROOF. Our assumption is that the trivial representation ¢p, of H; is
weakly contained into its regular representation Ag,. The corresponding
representations of G obtained by induction are respectively Ag/ g, and Ag.
By continuity of induction of representations, we get that each Ag/y, is
weakly contained into Ag.

Assume that (g is weakly contained in @®;erAg/p,- Then it is weakly
contained in a multiple of Ag, hence in Ag, in contradiction with the fact
that G is not amenable. O

15.1.3. Spectral gap for II; factors. This notion concerns the case
where M is a II; factor and G = U(M) is the unitary group of M when we
let U(M) act on M by (u,z) — Ad(u)(z) = uzu*.

DEFINITION 15.1.10. We say that the Iy factor M has spectral gap if
the action of U(M) on M has spectral gap, which is expressed by the three
equivalent conditions:

(i) there exist a finite subset F' of U(M) (or of M) and ¢ > 0 such that

Ve e M, max|[u,zllly = cllz — 7(2)1]|y;
ueF

(ii) every |-||,-bounded net (z;) in M which asymptotically commutes
with M (i.e., is such that lim; ||[y, z;]||l, = 0 for every y € M) is
asymptotically trivial;

(iii) for every e > 0, there exist a finite subset F' of U(M) (or of M)
and 0 > 0 such that if # € M satisfies max,cr ||[u, z]||, < 6, then
o — 7)1, <.

15.2. Spectral gap and Property Gamma

15.2.1. Property Gamma. This property is the first invariant that
was introduced to show the existence of non hyperfinite I1; factors.

Let M be a II; factor. A ||| -bounded net (z;) in M such that
lim; ||[y, x;]||, = O for every y € M is said to be central.

DEFINITION 15.2.1. We say that M has Property Gamma if there exists
a central net (x;) in M which is not asymptotically trivial.

2Concerning the classical notions of induced representation and weak containment
used in its proof, we refer for instance to [BAIHVO08, Appendix F] and [BAIHVO0S,
Appendix E| respectively (see also Section 13.3.1 for the latter).
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REMARKS 15.2.2. (a) Since ||z, < [|z||, for every x € M, we see that
Property Gamma is stronger than the property of not having spectral gap.

(b) The above definition is equivalent to the following one: there exists
¢ > 0 such that for every finite subset F' of M and every § > 0 there exists
x € (M) with maxzer ||y, z]||, < 6 and ||z — 7(x)1]|, > c.

(c) When M is separable, Property Gamma is equivalent to the existence
of a central sequence (z,) which is not asymptotically trivial. Indeed, take
c > 0 as above let denote by s an element of (M) satisfying the above
conditions relative to (F,d). Since M is separable there exists an increasing
sequence (F},) of finite subsets of (M ); such that UF;, is dense in ((M)1, [|-||5)-
For each integer n we set x,, = z, 1/,- Then the sequence (z,) is central
and not asymptotically trivial.

Property Gamma is easily characterized by the following theorem when
M is separable. Given a free ultrafilter w on N, we recall that the ultrapower
M*¥ has been defined in Section 5.4. We see M as a von Neumann subalgebra
of M%, in an obvious way.

THEOREM 15.2.3. Let M be a separable 111 factor and let w be free
ultrafilter on N. The following conditions are equivalent:

(i) M has Property Gamma;
(i) M' N M* # C1;
(i) M’ N M« is diffuse;
(iv) there exists a central sequence (vy,) in the unitary group of M such
that T(vyn) =0 for all n.

PRrROOF. (i) = (ii). Let (z,) be a central sequence such that for some
¢ > 0 and for every n we have ||z, — 7(x,)1|l, > ¢. Then obviously (x,,). €
M’ N M¥ is not scalar.

(ii) = (iii). Let p € M“N M’ be a non trivial projection and set 7,,(p) =
A €]0,1[. Let (p,) be a representative of p which consists of projections such
that 7(p,) = A for every n (see Lemma 5.4.2). The functional z € M —
To(xp) is a trace and therefore we have lim,, 7(xp,) = A7(z) for x € M.

Let (F,) be an increasing sequence of finite subsets of (M); such that
UpFy, is s.0. dense in (M);. We can choose a subsequence (pg,, ) of (p,) such
that for n > 1 we have

(2) [pn; i lly < 1/n and |7 (papr,) — N[ < 1/n4

(b) maxaep, I[Pk, 2]lly < 1/n.
It follows that (pnpk, ). is a non-zero projection in M N M’ which is strictly
smaller than p. Therefore, p is not a minimal projection.

(iii) = (iv). Since the von Neumann algebra M’ N MY is diffuse, it
contains a projection p such that 7,,(p) = 1/2 (see Exercise 3.3). Let (py,) be
a representative of p consisting of projections p,, in M with 7(p,) = 1/2 for
every n (see Lemma 5.4.2). We set v, = 2p,, — 1. Then (v,) is a sequence
of unitaries in M with 7(v,) = 0 and lim,, ||[z, v,]||, = 0 for every z € M.

(iv) = (i) is obvious. O
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15.2.2. Property Gamma and spectral gap. We now state the
main result of this section.

THEOREM 15.2.4. Let M be a separable 11y factor. Then M has Property
Gamma if and only if it does not have spectral gap.

To prove this theorem, we need some preliminaries about ultrapowers.
Even if M is assumed to be separable, we cannot limit ourself to sequences
in Definition 15.1.10 (ii) and we will have to deal with directed sets. Given
such a set I, a filter F of subsets of [ is said to be cofinal if for every ig €
the set {i € I :i > iy} belongs to F. When I = N, the cofinal ultrafilters
are the free ultrafilters.

Let w be a cofinal ultrafilter on the directed set I and let M be a I3
factor. The ultrapower M¥ along w is defined exactly as we did in Sec-
tion 5.4 for free ultrafilters on N. We will need the following immediate
characterisation of Property Gamma in terms of such ultrapowers.

LEMMA 15.2.5. Let M be a separable 11y factor. The following conditions
are equivalent:

(i) M has Property Gamma;
(ii) there exists a directed set I and a cofinal ultrafilter w on I such
that M*“ N M' # C.

Given a Hilbert space H and a cofinal ultrafilter w on a directed set I we
define the ultrapower H“ as the quotient of £°°(I,H) by the subspace of all
nets (&) such that lim,, ||&;]|,, = 0. For (&) € £°°(1,H) we denote by (&).
its class in H¥. We easily see that H*, endowed with the scalar product
((&)ws (mi)w) = limy, (&, 1m5)4, is a Hilbert space.

Let M be a II; factor and I,w as above. Then M acts to the left in a
natural way on L?(M)“, by setting

Vo€ M, Y(&)w € LX(M)*,  2(&)w = (26
Similarly, M acts to the right on L?(M)“.

The Hilbert space L?(M%) is a closed subspace of L?(M)¥, stable under
the above actions of M. The orthogonal of L?(M¥) in L?(M)“ is denoted by
L3} (M)* © L*(M*). We will denote by L?(M)“ N M’ the space of elements
(&)w in L*(M)¥ such that lim, ||y — &yll, = 0 for every y € M, and
similarly we will use the notation L?(M%) N M.

LEMMA 15.2.6. Let M be a separable 11} factor and let (&), be a self-
adjoint (i.e., & = & for all i) element of L*(M)* & L*(M*). Then (|&]).
is also orthogonal to L*(MY).

PROOF. For every interval J in R we denote by FE;(§;) the spectral
projection of & relative to J. Since (E;(&))., € M*, we see that

(G E(&))ws (1i)w) = T (& By (§0): 1) L2 (ar)
= lim (&, B (&)ni) 12y = ((§)ws (B (€0))w(mi)w) = 0
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for every (n;)., € L?*(M*). Thus (&E;(&;))., is orthogonal to L?(M®).
We have

([&i1)w = (& Elotoo[(§i))w — (&) —00,0((&))w
and therefore (|¢;]),, is orthogonal to L?(M%). O

The following lemma is crucial for the proof of Theorem 15.2.4.

LEMMA 15.2.7. Assume that L*(M)*© L?*(M*) contains a non-zero ele-
ment (&;). which commutes with M. Then for every finite subset F' of U(M)
and every € > 0 there exists a non-zero projection e € M such that 7(e) < e
and maxyep |[u, €], < ellell,.

PrOOF. We may assume that (&), is self-adjoint with ||&|l, < 1 for
every 4, and by the previous lemma we may even assume that & € L?(M)
for every i. Morever, we may take (&;),, with a support as small as we wish.
Indeed, for @ > 0 and n € L?(M), let us denote by E,(n) the spectral
projection of 1 corresponding to the interval [0, a] and by ES(n) its spectral
projection corresponding to Ja, +-0o[. We have lim, (&, &Ea(&)) p2(a) = 0
and therefore limy, ||& — &ES(&)|l; = 0. The support of §ES(&;) is smaller
than ES(&) with 7(ES(&)) < at(&) < a.

For a > 0, we set & o = &ES(&;). Foru € F, we have limy, ||[u, §.4][|, = 0
and limy, [|§;ql|, > 0. Therefore, given ¢’ > 0, there exists i such that

mase | 1,5l < 'l
Now, by Theorem 10.3.6 there exists ty > 0 such that

mae [, 6, (€0l < (3025, (),

2

where n is the cardinal of F'. Observe that 7(Ef (§i4)) < 7(Eg(&)) < a. To
conclude, we first choose a < € and &’ with (3ne’)!/? < ¢, and then we get i

and to and set e = Ef (§iq)- O

PrOOF OF THEOREM 15.2.4. We assume that M does not have spec-
tral gap and want to show that M has Property Gamma. There exists a
||-/l,-bounded net (z;);er of self-adjoint elements of M which asymptotically
commutes with M but is not asymptotically trivial. Therefore there is a
cofinal ultrafilter w on I such that lim, ||[y, z;]||, = 0 for every y € M and
lim,, ||z; — 7(x;)1|| = ¢ > 0. Replacing x; by (x; — 7(x;)1)/||x; — T(:Ei)1||2_l
for i large enough we get a net (z;) of elements of M, with ||a;]|, = 1 for
every i, such that limy, ||[y, z;]||, = O for every y € M and which satisfies
7(x;) = 0 for every i.

We have [[(2;)w|y, = 1 and (4)wy = y(24)., for every y € M. Moreover,
if 1,, denotes the unit of M viewed as an element of L2(M%) c L2(M)“, we

have ((2;)w, L) z2(ar)e = 0.
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Assume by contradiction that M does not have Property Gamma and

therefore

L2(M®)n M' = Cl,.
It follows that (), does not belong to L?(M“). Let f be the orthogonal
projection from L?(M)% onto L*(M¥). Observe that f commutes with M.
Replacing (x;), by (zi)w — f(2;), we may assume that (x;),, is orthogonal to
L?(M%). Using Lemma 15.2.6 we see that there exists a non-zero element,
that we still denote ()., with z; € M, and ||z;||, < 1 for every 4, which
commutes with M and is orthogonal to L?(M¥).

Let us show that given any non-zero projection ¢ in M, for every finite
subset F' of ¢gM¢q and every € > 0 we may find a non-zero projection e in
M with e < g, 7(e) < € and maxyer ||[y, €]l < €llell,. To that purpose we
consider ¢(z;)w = q(x;)nq. It is a positive element in L?(qMq)* N (¢Mq)’
which is orthogonal to L?((¢Mq)¥). Moreover we have q(;),q # 0 since
(@(%i)w, (21)w) = (@) *7(q), due to the fact that y — (y(zi)w, (z:)w) is a
trace on M. Then it suffices to apply Lemma 15.2.7 to ¢(z;).q instead of
(zi)w and ¢Mq instead of M.

Using this fact and a maximality argument, we now show that given
a finite subset F' of My, and € > 0 there exists a projection ¢ € M such
that maxyecr ||[y,¢]|l, < € and 7(¢) = 1/2. Let &€ be the set of projections
e such that maxycr ||[y, ]|l < €llel|, and 7(e) < 1/2. With its usual order,
this set is inductive and therefore has a maximal element ¢q. We claim
that 7(q) = 1/2. Otherwise, we set e1 = 1/2 — 7(¢), 1 = 1 — ¢q and
Fy = {quyq1 : y € F}. Then there exists a non-zero projection p € g1 Mq
such that maxyep [|[y,p]ll, < €llpll, and 7(p) < e1. We set ¢’ = ¢+ p.

Straightforward computations, using Pythagoras’ theorem, show that
whenever y is self-adjoint then

Iy, 41115 = 2]l 'y = |5 = 2]l ay(1 = )|[; + 2[[py (1 = )]I;
= llg, (1 = p)y(1 = p)III5 + Il [P, (1 = @)y(1 = D)][3-
Moreover, since
g, (1 = p)y(1 = p)lI3 = 27 (ay(1 — p)ya) — 27 (yqyq)
we see that ||[q, (1 — p)y(1 —p)]Hg < |llg, y}Hg It follows that

Iy, ¢1||> < er(q) + e2r(p),

and therefore |||y, ¢]|l, < €[l¢’||5, with 7(¢") < 1/2 and this contradicts the
maximality of ¢ in £.

In conclusion, we get a net (g;) of projections in M which asymptotically
commutes with M and is such that 7(g;) = 1/2 for all ¢. This is impossible
since M does not have Property Gamma. ([

REMARK 15.2.8. The result stated in Theorem 15.2.4 is remarkable. It
does not extend to the following classical situation where one considers a
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trace preserving action G ~ (M, 7) of a countable group on a tracial von
Neumann algebra. In this setting, the analogue of not having Property
Gamma is known in the literature as strong ergodicity. It means that every
||| o-bounded asymptotically G-invariant sequence (xy) in M (i.e., such
that, for all g € G, lim, ||o4(2,) — x|, = 0) is asymptotically trivial (i.e.,
limy, ||z, — 7(zp)1]||, = 0).

Every action with spectral gap is strongly ergodic and every strongly
ergodic action is ergodic. However, there are strongly ergodic actions that
do not have the spectral gap property. An example of such a probability
measure preserving action of the free group Fs is given in [Sch81, Example
2.7].

15.3. Spectral gap and full II; factors
In this section, M will still be a separable II; factor.

15.3.1. Fullness and spectral gap. We show below the noteworthy
fact that the spectral gap property can be expressed as a topological property
of the group Aut (M) of automorphisms® of M. Recall that Aut (M) is
endowed with the topology for which a net («a;) converges to « if for every
x € M we have lim; ||a;(x) — a(x)||, = 0. It is a Polish group (see Section
7.5.3).

DEFINITION 15.3.1. We say that M is full if the subgroup Inn (M) of in-
ner automorphisms of M is closed in Aut (M) (and so the group Out (M) =
Aut (M)/Inn (M) is a Polish group).

The terminology is explained by the fact that M is full if and only if
Inn (M) is complete.

THEOREM 15.3.2. Let M be a separable 111 factor. The following condi-
tions are equivalent:
(i) M is a full factor;
(il) M has spectral gap.

PrROOF. We denote by 6 the homomorphism u +— Ad (u) from U(M)
onto Inn (M). The s.o. topology on U (M) is defined by the metric d(u,v) =
|lu — v||, which makes it a complete metric space. Endowed with the quo-
tient topology, the group U(M)/T1, quotient of U (M) by the group T1 of
scalar unitaries, is a Polish group. If [u] denotes the class of u, the quo-
tient metric is d'([u], [v]) = infyer d(Au, v). The homomorphism 6 gives, by
passing to the quotient, a continuous isomorphism 6’ from the Polish group
U(M)/T1 onto the topological group Inn (M).

Let us prove that (i) = (ii). Assume that Inn (M) is closed in the Polish
group Aut (M). Then Inn (M) is itself a Polish group and the open mapping
theorem (see B.4 in the appendix) implies that 6’ is a homeomorphism.
Let w be a free ultrafilter on N. Using the theorems 15.2.4 and 15.2.3, in

3They are automatically trace preserving.
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order to prove (ii) it suffices to show that M“ N M’ = C1. It is enough to
show that every unitary in M* which commutes with M is scalar. Every
unitary in M is of the form (u,), where (u,) is a sequence of unitaries
in M (see Exercise 5.12). If (uy,), commutes with M then lim, Ad (u,) =
Idy, in Inn (M). Since (¢')~! is continuous we see that lim,[u,] = [1] in
U(M)/T1 and therefore there exists a sequence (Ay) of elements of T such
that limy, [Ju, — Ap1|l, = 0.

Let us prove now that (ii) = (i). Assume that M has spectral gap. For
every integer n > 1 there exist a finite subset F,, of M and ¢,, > 0 such that
if u € U(M) satisfies max,ep, ||[u, z]||y < 6, then

d(u, T1) = inf flu— AL, < 1/2"

Let o € Inn (M) and let (vy,) be a sequence of unitaries such that
lim Ad (vy,) = a.
n
We choose this sequence in such a way that for every n we have

-1 _ v,
max [[vyvn, a]]|, = max [ (Ad (v y00)) (2)]], < 6
and so d(v;ilvn,’]l‘l) < 1/2". Then for each n we choose u, € U(M)
such that Ad (u,) = Ad (v,) and ||up41 — unlly < 1/2". It follows that the
sequence (u,) converges in the s.o. topology to an unitary u, and we have
Ad (u) = a. O

15.4. Property Gamma and inner amenability

Let G be a countable group. For f € (*°(G) and s € G we denote by
ads(f) the function t + f(s~!ts). A mean m on (*°(G) is said to be inner
invariant if m oads = m for every s € G. Of course the Dirac measure at e
is such a mean. We say that m is non-trivial if it is supported on G \ {e}.

DEFINITION 15.4.1. We say that G is inner amenable if it carries a non-
trivial inner invariant mean.

Every amenable group G is inner amenable. Indeed, starting from res-
pectively left and right invariant means m; and m, we build a mean m as
follows. Given f € £*°(G) we denote by F' the function s — my(fs), where
(fs)(x) = f(xs). We set m(f) = m,(F). Then m is easily seen to be a
non-trivial inner invariant mean.

The free groups F,, with n > 2 generators are not inner amenable. In-
deed, let ai,...,ag,... be the generators of F,,. Let S be the subset of I,
consisting of the elements which, in reduced form, end by a non-zero power
of a;. We make the following easy observation:

(i) SUaiSa;! =T, \ {e},
(ii) S,a2Sa;", ay'Say are pairwise disjoint.

This immediately implies the non-inner amenability of F,,.
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PROPOSITION 15.4.2. Let G be a countable group and (L(G),T) the cor-
responding tracial von Neumann algebra. Assume that (L(G),T) has Pro-
perty Gamma. Then the group G is inner amenable.

PROOF. Let (v,) be a sequence of unitary operators in L(G) with 7(vy,) =
0 for every n and such that lim,, ||zv, — vpz|y = 0 for every € L(G). In
particular, for every s € G we have

liran |un, — usvpuglly =0,

where the ug are the canonical unitaries in L(G). We view v,, as an element
of £2(@). Note that v, (e) = 7(v,) = 0, where e is the identity of G. We set
€0 = |[n]?. Then (&,) is a sequence of elements in ¢1(G) with &,(e) = 0,
lénll; = 1. Since, by the Powers-Stgrmer inequality and Lemma 7.4.10, we
have

lén — ads(€n)ll < ||8/2 = ady(el/?)]| €2 + ads(e)]
§2H§,1L/2—ad 1/2 H <2\/_||vn—usvnus\|1/2,

we see that lim, ||§, —ad&,||; = 0. It follows immediately that any weak*
cluster point in ¢°°(G)* of the sequence (&) is a non-trivial inner invariant
mean. g

EXAMPLES 15.4.3. (a) The hyperfinite factor R is amenable and has
Property Gamma.

Indeed, let us write R = U, @, where Q,, = M (C). Given ¢ > 0
and x1,...,T, in M, there exists an integer n and 1, ...,y in @, such
that ||z; — yill, < e/2fori=1,...,m. Since Qni1 = Qn @ M>(C), setting
U =1 ® u where u is a unitary in My(C) with trace equal to zero, we get a
unitary U € M with 7(U) = 0 and which commutes with the y;. It follows
immediately that |[Uxz; — z;U||, < ¢ for all 7.

(b) The factor L(Fy,), n > 2, does not have Property Gamma.
This follows from Proposition 15.4.2 since [F,, is not inner amenable.

(c) RRL(F,,) has Property Gamma and is not amenable.

Indeed is easily checked that every II; factor of the form M ® N where
M has Property Gamma retains this property. Therefore the II; factor
R®L(F,), n > 2, has Property Gamma. It is not amenable. Otherwise,
because of the existence of a conditional expectation from R®L(F,) onto
L(F,,) (the trace preserving one for instance), L(IF,,) would be amenable,
which is not the case since the group F,, is not amenable.

(d) Every 11y factor that has Property (T) is full.
This follows from the fact that Inn (M) is an open subgroup of Aut (M)
(see Proposition 14.3.4).

As a consequence, the factors R, L(F,), RRL(F,) are not isomorphic.
A factor with Property (T) is isomorphic neither to R nor to R®L(F,). We
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will see in the next chapter that it is not isomorphic to any factor with the
Haagerup property like L(F,,).

Exercises

EXERCISE 15.1. Let G ~ Z be an action of a countable group G on
a set Z. We assume that G is non-amenable, that the stabilizers of this
action are amenable and that the G-orbits are infinite. Let (Y,v) be a
standard probability measure space. Show that the generalized Bernoulli
action G ~ (Y4, v9%) has spectral gap.

EXERCISE 15.2. Show that the stabilizers of the natural action of SL(2, Z)
on Z?\ {0,0} are amenable and conclude that the action SL(2,7Z) ~ (T2, \)
has spectral gap.

EXERCISE 15.3. Let G ~ (M, 7) be a trace preserving action.

(i) Show that the algebra M% of G-invariant elements in M is dense
in the Hilbert space L?(M)% of G-invariant vectors in L%(M).
(ii) Conclude that G' ~ (M, 7) is ergodic if and only if L?(M)¢ = C1.

EXERCISE 15.4. Let (p,) be a sequence of states on a tracial von Neu-
mann algebra (M, 7). We assume the existence of a sequence (e,,) of projec-
tions in M and of ¢ > 0 such that lim, 7(e,) = 0 and ¢, (e,) > ¢ for every
n. Show that (¢,) has a weak™ cluster point in M* which is a non-normal
state.

EXERCISE 15.5. Let G ~ (M, 7) be a trace preserving action. We as-
sume the existence of a sequence (p,,) of non-zero projections in M such that
lim,, ||pn|l; = 0 and limy, ||[og(pn) — pull;/llPnll; = 0 for every g € G. Show
that M has a non-normal G-invariant state.

EXERCISE 15.6. Let 0 : G ~ (M, T) be a trace preserving action and let
w be a free ultrafilter on N such that (M“)% is diffuse (or more generally
contains non-zero projections of trace as small as we wish).

(i) Show that for every 6 > 0, every ¢ > 0 and every finite subset F’
of G, there exists a non-zero projection p € M such that 7(p) < ¢
and max,er o, (p) — pll, < e7(p) = |-

(ii) If in addition the group G is countable, show that there is a non-
normal G-invariant state on M.

(iii) Show that (ii) does not necessarily hold when G is not countable.

EXERCISE 15.7. Let 0 : G ~ (M, 7) be an ergodic action of a non
necessarily countable group. Show that if the action has spectral gap, there
exists a countable subgroup Gg of G for which 7 is the only Gp-invariant
state (Hint: take F' as in Definition 15.1.1 (i) and let Gy be the subgroup
generated by F. Consider a Gg-invariant state v on M and use a Day’s
convexity argument to fing a net (¢;) of normal states on M that converges
to 1 in the weak™ topology and is such that lim; ||¢; 0 0y — ¢;|| = 0 for t € F.
Use the Powers-Stgrmer inequality to show that lim; ¢; = 7).
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EXERCISE 15.8. Let M be a separable II; factor. Show that M has
Property Gamma if and only if for every countable subgroup Gy of U(M)
there exists a non-normal Gg-invariant state on M under the Ad-action
(equivalently, if and only if for every unital separable (with respect to the
norm ||-|| ) C*-subalgebra By of M there is a non-normal state ¢ on M
such that ¢(zy) = ¢(yz) for every x € M and every y € By).

EXERCISE 15.9. Let G be an ICC group with the property (T) and
let G ~ (X, ) be a p.m.p. ergodic action. Let M = L*°(X) x G be the
corresponding crossed product.

(i) We denote by E the trace preserving conditional expectation from
M onto L*°(X) and by us, s € G, the canonical unitaries. Let (z,)
be a [|-||,-bounded sequence in M such that lim,, ||[zy, us]|, = 0 for
every s € G. Show that lim, ||z, — E(z,)||, = 0.

(ii) Show that the crossed product M = L*°(X) x G does not have the
property Gamma

EXERCISE 15.10. Let R be the hyperfinite II; factor and (N,) be an
increasing sequence of subfactors of type Isn such that (UN,)"” = R. Let
a € Aut(R) and for each n chose a unitary element w,, € R such that
a(x) = upzul, for every x € N, (see Exercice 2.7). Show that for every
x € R, we have lim, ||a(z) — upzu}|, = 0 and conclude that Inn (R) is
dense in Aut (R).*

EXERCISE 15.11. Let M and N be two II; factors.

(i) We assume that M is full. Show that there exist a finite subset
Fy e U(M) and ¢; > 0 such that for every z € M ® N we have

2 2
D @ 1,25 > eillz = En(2)]-
uel
(Hint: write z as z = > ; ; ® y; € M®N where (y;) is orthonor-
mal in (N, [[-[l;))-
(ii) Assume that N is full. Show that there exist a finite subset Fy €
U(N) and ¢z > 0 such that for every z € M ® N we have

Y M Ex(Il3 2 2l En(2) = 7(2)ll3-
ueF>
(iii) Conclude that M &N is full whenever M and N are full.

Notes

The idea of studying the dynamics of a group action by spectral tools
dates back to Koopman’s paper [Koo31] for Z-actions. Since then, it proved
to be a very fruitful technique in ergodic theory.

4The group Out (M) is very big: it contains a copy of every separable locally compact
group [Bla58|.
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The notion of spectral gap is seen as a rigidity property. Recall that
every ergodic p.m.p. action of a group satisfying property (T) has spectral
gap. However, there exist very interesting examples of spectral gap property
under actions of groups which do not have property (T) as pointed out in
[Sch80, Sch81, Jon83a, Pop06b] (see Proposition 15.1.8, Exercises 15.1,
15.2). Thanks to this notion of spectral gap, surprisingly general rigidity
results can be obtained for group actions and their crossed products (see
[Pop08)).

Ultrapowers and central sequences are very useful tools to investigate
the structure of II; factors. They have led to the discovery of new II; fac-
tors in the sixties [Sak69, Chi69, DL69, ZM69], culminating in the final
remarkable proof around 1969 of the existence of uncountably many non
isomorphic separable such factors [McD69a, McD69b, Sak70]. The im-
portance of central sequences was also revealed in another paper of McDuff
[McD70]. For a II; factor M, she proved that M’ N MY is either abelian or
a IT; factor and that the latter case occurs if and only if M and M®R are
isomorphic. In this case, M is now called a McDuff factor.

Later, Connes made further very deep uses of these notions and most of
the main ideas of this chapter are due to him. Theorem 15.2.3 essentially
comes from [Con74], as well as Theorem 15.3.2 (see also [Sak74] for the
latter). Theorem 15.2.4 is borrowed from [Con76]. We have chosen to
express these results in terms of the more recent terminology of spectral gap
(see [Pop08, Popl2]).

Property Gamma is one of the invariants for II; factors introduced by
Murray and von Neumann in [MvN43]. They showed there that R has
property Gamma while L(IF,,), n > 2, has not. The proof we give in Section
15.4 uses the more recent notion of inner amenability due to Effros [Eff75].
Proposition 15.4.2 is taken from Effros’ paper. The question of whether the
inner amenability of the group G implies that L(G) has property Gamma
remained open since then and has been solved only recently in the negative
by Vaes [Vael2].

The fact that R®L(F,) is not isomorphic to R was proved to J.T.
Schwartz [Sch63], by using his so-called property (P) instead of Connes’
notion of injectivity.

The notion of strong ergodicity for a probability measure preserving ac-
tion of a countable group was coined in [Sch81]. Connes and Weiss [CW 80|
proved that a countable group G has property (T) if and only if every er-
godic p.m.p. action of GG on a probability measure space is strongly ergodic,
and Schmidt has shown that this is also equivalent to the fact that every
ergodic p.m.p. action of G has spectral gap. On the other hand, a countable
group G is amenable if and only if no ergodic p.m.p. action of G is strongly
ergodic, and also if and only if no ergodic p.m.p. action of G has spectral
gap [CFW81, Sch81]. This is to be compared with the fact that the group
F3 has an action which is strongly ergodic but without spectral gap ([Sch81,
Example 2.7]).






CHAPTER 16
Haagerup property (H)

We extend to tracial von Neumann algebras the Haagerup property
which, in the setting of groups, was first detected for free groups. Here,
we make use of the similarities between positive definite functions on groups
and completely positive maps on von Neumann algebras. For further ap-
plications to the study of II; factors, we also discuss the notion of relative
Haagerup property.

16.1. Haagerup property for groups

DEFINITION 16.1.1. A group G is said to have the Haagerup property (or
property (H)) if there exists a net (sequence if G is countable) (¢;) of positive
definite functions on G such that lim; ¢; = 1 pointwise and ¢; € ¢o(G) for

1
every 1.

EXAMPLES 16.1.2. Obviously, amenable groups have property (H).

Free groups F with k& > 2 generators are the most basic examples of
non amenable groups with Property (H). This follows from the fact, that
the word length function g — |g| is conditionally negative definite on Fy.
Recall that ¢ : G — R is conditionally negative definite if

(a) ¥(e) =0, ¥(g) =P(g") for every g € G,

(b) for any integer n, any g1, ..., g, € G and any real numbers ¢y, ..., ¢,

with 371 ) ¢; = 0, we have > 71", cicib(g;tg;) = 0.

By Schoenberg’s theorem, this property holds if and only if for every ¢ > 0,
the function exp(—ti)) is positive definite?. Since the length function on
Fy, is proper, we see that ¢, : g — exp(—|g|/n) vanishes to infinity. Thus
(¢n) so defined is a sequence of positive definite functions on Fj such that
lim,, ¢, = 1 pointwise and ¢,, € ¢o(Fy) for every n.

Note that Fj acts properly on its Cayley graph, which is a tree. More
generally, every group that acts properly on a tree has the property (H).
Moreover, Property (H) is stable under taking subgroups, direct or free pro-
ducts. A group that contains a subgroup of finite index with the property
(H) has this property. Therefore, SL(2, Z) has this property since it contains
Fy as a subgroup of index 12.3

1CO(G) denotes the algebra of complex-valued functions on GG, vanishing to 0 at infinity.
2See [BAIHV08, Corollary C.4.19] for instance.
3For a comprehensive treatment of these questions, we refer to the book [CCJT01].
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REMARK 16.1.3. Let G be a group with Property (H). Then it is clear
from the definition and Proposition 14.1.2 (d) that G cannot contain any
infinite relatively rigid subgroup. However, this fact does not characterize
Property (H) as shown in [dCO06].

16.2. Haagerup property for von Neumann algebras

We saw that amenability and Property (T) for groups have their ana-
logues for finite von Neumann algebras. Similarly, Property (H) can be
translated in terms of operator algebras.

Let (M, 7) be a tracial von Neumann algebra. Let ¢ : M — M be a
subtracial completely positive map. For x € M, using Schwarz inequality,
we get [[¢(x)]], < H(le/QHwHQ. It follows that there is a bounded operator
T, on L*(M) such that T(z) = ¢(z) for x € M. We observe that ||T,]| <1
when ¢ is moreover subunital.

DEFINITION 16.2.1. We say that (M, 7) has the Haagerup property or
property (H) if there exists a net (¢;) of subtracial and subunital completely
positive maps ¢; : M — M such that

(a) lim; || Ty, (z) — x|, = O for every & € M;
(b) Ty, is a compact operator on L?(M) for every i.

Of course, when M is separable, one may replace nets by sequences in
this definition.

By Theorem 13.4.2, we see that every amenable tracial von Neumann
algebra has Property (H). Group von Neumann algebras provide examples
of von Neumann algebras with Property (H) as shown by the following
proposition.

PROPOSITION 16.2.2. A group G has the Haagerup property if and only
if L(G) has the Haagerup property.

PROOF. Assume first that G has the Haagerup property. Let (¢;) be a
sequence of positive definite functions as in Definition 16.1.1.We may assume
that o;(e) = 1 for every i. Let ¢; : L(G) — L(G) be the completely positive
map such that ¢;(ug) = @i(g)uy for g € G (see Proposition 13.1.12). It
is straightforward to check that ¢; is tracial and unital. Moreover, since
limgy o0 ¢i(g) = 0, the diagonal operator Ty, is compact. That condition (a)
of the previous definition is satisfied is immediate too.

Conversely, let (¢;) be as in the previous definition. For each i we
introduce ¢; : g — T(di(ug)uy). We get a net (¢;) of positive definite
functions which converges to 1 pointwise. Moreover, for every i, since
©0i(g) = (ug, Ty, (ug)), where Ty, is a compact operator and (ug)geq is an
orthonormal basis of L(L(G)) = ¢*(G), we see that limy_, ¢i(g) =0. O

PROPOSITION 16.2.3. Let M be a 11y factor with the property (H). Then
M contains no diffuse relatively rigid subalgebra B.
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PROOF. Let (¢;) be a net of completely positive maps as in Definition
16.2.1. Assume the existence of a diffuse relatively rigid von Neumann sub-
algebra B. Then there exists i such that |¢;(u) —ull, < 1/2 for every
u € U(B). Since B is diffuse, any maximal von Neumann subalgebra A of
B is diffuse. In particular, there exists a unitary operator v € A such that
7(v") = 0 for n # 0. The family (v"),>0 is orthonormal in L?*(M), and
therefore lim,, .o, v = 0 in the weak topology of L?(M). Using the fact
that T}, is compact, we get limy, ||¢;(v")[|, = limy, || Ty, (v")]|, = 0. Hence,
we have

1/2 > lim [|¢;(v™) — 0", = lim |Jo"]|, = 1,
n n

a contradiction. O

16.3. Relative property (H)

Let (M, 7) be a tracial von Neumann algebra and B a von Neumann
subalgebra of M. We have defined the notions of amenability of M relative
to B and of property (T) relative to B (see Definition 13.4.5 and Remark
14.2.10). Similarly, we introduce in this section the notion of property (H)
relative to B so that property (H) for M is retrieved when B = C1. To that
purpose, we need some preliminaries.

When we replace the algebra of scalar operators by a von Neumann
subalgebra B of M and consider the right B-module L?(M)g, we have to
replace the semi-finite factor B(L?(M)) by the commutant of JB.J, (i.e., the
commutant of the right B-action?), which is the semi-finite von Neumann
algebra (M, ep), endowed with its canonical normal faithful semi-finite trace
7. There are several natural notions of compact operator in (M, eg), which
differ slightly and coincide with the usual notion of compact operator in the
case B = C1 (see Exercise 9.9). Here, we favor the two following ones.

The first one is defined for any semi-finite von Neumann algebra N.
It is the norm-closed two-sided ideal Z(N) of N generated by the finite
projections of N (which play the role of the finite rank projections in the
usual case). We have T € Z(N) if and only if the spectral projections
e:(|T]) of |T'| relative to every interval [t, +o00[, t > 0, are finite (see Exercise
9.8). The second one is the norm-closed two-sided ideal Zy({M,ep)) of
(M, ep) generated by ep (see Proposition 9.4.3). Note that since T(eg) = 1,
the projection ep is finite and so Zy({(M,ep)) C Z({M,ep)). The slight
difference between these two ideals is made precise in the next proposition.

PROPOSITION 16.3.1. Let T' € Z((M,ep)). For every e > 0, there exists
a projection z € Z(B) such that (1 —z) < e and TJzJ € Io({(M,ep)).

Note that (M,ep) = JB'J and therefore JZ(B)J is the center of
(M,ep). For the proof of the proposition, we use the following lemma.

4Recall that J is the canonical conjugation operator on L?(M).
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LEMMA 16.3.2. Let N be a semi-finite von Neumann algebra. Let f € N
be a finite projection and let e € N be a projection whose central support is 1.
Then, for any non-zero projection z € Z(N), there is a non-zero projection
2 € Z(N) and finitely many mutually orthogonal projections ey, ..., e, in
N such that 2’ < z, 2/ = @' je;2' and e;z' < ez’ for everyi.

PRrOOF. Note that ez # 0 whenever z # 0. Without loss of generality, we
may take z = 1. By Theorem 2.4.8, there exists z; € Z(N) with fz; < ez
and e(1—2z1) = f(1—21). If 21 # 0 the proof is finished. Assume that z; = 0,
so that e < f. Let {e; : i € I} be a maximal family of mutually orthogonal
projections, equivalent to e, such that ) ;.;e; < fandset eg = f— ), €.
We take a projection zo € Z(N) such that epzo < ezo and e(1 — z3) =<
eo(l — z2). We claim that eze # 0 and therefore zo # 0. Otherwise, we
would have e < eg contradicting the maximality of {e; : i € I}. We obtain
fzo = Zie 1 €72 @ egza. Moreover, since fzs is a finite projection, and since
the projections e;z2, ¢ € I, are equivalent, we see that the set [ is finite. [

PROOF OF PROPOSITION 16.3.1. We use the previous lemma with N =
(M,ep) and e = ep. Given any finite projection f in (M, ep), we deduce
immediately that there exists a increasing net (z;) of projections in the center
JZ(B)J of (M, ep) with sup; z; =1 and fJzJ € Zo(M,ep) for every n. In
other terms, for every § > 0 there exists a projection z € Z(B) such that
T(1—2) <¢dand fJzJ € Io(M,ep).

Let T'€ Z(M,ep). For every integer n > 1 there is a linear combination
T, of finite projections in (M, epg) such that || — T, || < 27". By the claim
of the first paragraph, there is a projection z, € Z(B) such that 7(1 —
zn) < 27" and T,Jz,J € Zo(M,ep). We set z = Az,. Then we have
T(1—2) <> ,27" <¢eand T,,JzJ € Zo(M,ep). Since |(T —T3,)JzJ]|| <
|T — T,,|| < 27" for every n, we get TJzJ € To(M, ep). O

We say that a completely positive map ¢ : M — M is B-bimodular
if p(bxb’) = bep(x)b for every b,b € B and x € M. If ¢ is subtracial in
addition, then it is clear that T, commutes with the right and left B-actions
on L*(M), and so T,, € (M,eg) N B’

DEFINITION 16.3.3. We say that M has the property (H) relative to B
if there exists a net of subtracial and subunital B-bimodular completely
positive maps ¢; : M — M such that

(i) Ty, € Z((M,ep)) for every i;
(ii) lim; |[¢i(x) — x|l = O for every z € M.

REMARK 16.3.4. In this definition, we may assume as well that Ty, €
Zo((M,ep)). Indeed, given a subtracial, B-bimodular completely positive
map ¢ : M — M, by Proposition 16.3.1, there is an increasing sequence
(zn) of projections in Z(B) such that lim,, z, = 1 in the w.o. topology and
TyJznd € To((M,ep)) for every n. If we set ¥, = ¢(2n - 2n) = 2n02n, We
get Ty, = 2Ty 2nd € To((M,ep)). So it suffices to approximate ¢ by the
sequence (V).
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PROPOSITION 16.3.5. Let o : G ~ (B, T) be a trace preserving action of
a group G on a tracial von Neumann algebra (B, 7). Then M = B x G has
the property (H) relative to B if and only if G has the property (H).

PROOF. Assume first that G has the Haagerup property. Let (¢;) be a
net of positive definite functions in ¢o(G) such that p;(e) = 1 for every i and
lim; ¢; = 1 pointwise. We denote by ¢; the completely positive map from M
to M such that ¢;(bug) = pi(g)bugy for every b € B and g € G (see Propo-
sition 13.1.12). Obviously, ¢; is a trace-preserving and unital B-bimodular
completely positive map. We recall that (ug)geq is an orthornormal basis
of the right B-module L?(M) and we write L2(M) = @®4ecuysL?(B) (see
Example 9.4.3). Moreover, ugepuy is the orthogonal projection from L*(M)
onto ugL?(B). For b € B and g € G, we have

Ty, (ugh) = T, (04(b)ug) = wi(g)og(b)ug = pi(g)ugb.

It follows that Ty, is the diagonal operator }- . wi(9)ugepuy. It be-
longs to Zo((M,ep)) since limg o i(g) = 0. Finally, we observe that
|pi(ug) — uglly = |1 —pi(g)| and thus lim; [|¢;(x) — x|, = 0 when z is a
finite linear combination of elements of the form buy, b € B,g € G. This
still holds for every x € M, thanks to the Kaplansky density theorem and
the fact that on the unit ball of M the s.o. topology is induced by the
|- lnorm.

Conversely, assume that M has the property (H) relative to B an let
(¢i) be a net of subtracial and subunital B-bimodular completely positive
maps satisfying condition (ii) of Definition 16.3.3 and Ty, € Zo((M,ep))
for every i. We set i(g) = 7(¢i(ug)uy) for g € G. Since |pi(g) — 1| =
|7 (¢ (ug) — ug)uy) |, by using the Cauchy Schwarz inequality we see that the
net (p;) of positive definite functions converges to 1 pointwise. It remains
to check that each ; vanishes to infinity. We have

|pi(9)] = [{ug, Tg; (ug))| < [T, (ug)ll5-
The elements of the form LnLg, where &, are left B-bounded in L?(M),
linearly generate a norm dense subspace of Zo((M,ep)) (see Proposition
9.4.3). Therefore it suffices to show that limg_, HL Li( ug)H2 = 0. An

easy exercise (Exercice 9.12) shows that § = > ;ugby where > bibg

converges in B for the s.o. topology. Moreover, we have by = (Ly,)*Le¢, and
so Liug = (bg)*. It follows that

[ L L (ug) |, < 120 l11bg I,
and we conclude by observing that obviously limgeg ||bg||, = 0. O

REMARK 16.3.6. Relative property (H) is not a weakening of relative
amenability: there exist pairs (M, B) such that M is amenable relative to
B whilst it does not have the relative property (H). For instance, consider
any non-trivial group Q). Set H = @,>0@ and let G be the wreath product
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(Bnez®Q) X Z. Then L(G) is amenable relative to L(H) (see [MPO03]), but
it does not have the relative property (H), since H is not almost normal in
G (see Exercise 16.1). A stronger notion of relative amenability, sometimes
called s-amenability relative to B has been considered in [Pop99], which is
indeed a strengthening of the relative property (H). For more comments in
this subject see [Pop06a, Remarks 3.5].

Exercise

EXERCISE 16.1. Let G be a countable group and H a subgroup. We
assume that M = L(G) has the property (H) relative to B = L(H). Let
(¢i) be a net of subtracial and subunital B-bimodular completely positive
maps satisfying condition (ii) of Definition 16.3.3 and Ty, € Zo((M,ep)) for
every i. We set ;(g) = 7(¢i(ug)uy) for g € G.

(i) Show that (;) is a net of H-bi-invariant positive definite functions
which converges to 1 pointwise.
(ii) Show that, viewed as a function on H \ G, each ¢; belongs to
Co(H \ G)
(iii) Conclude that H is almost normal in G, that is, for every g € G,
HgH is a finite union of left, and also of right, H-cosets.

Notes

In order to prove that the reduced C*-algebras of the free groups F,,
n > 2, have the Grothendieck metric approximation property, Haagerup
showed in [Haa79] that these groups satisfy the condition introduced in
Definition 16.1.1. The crucial step was to establish that the word length
function on these groups is conditionally negative definite.

In the context of II; factors, the Haagerup property was defined by
Connes [Con80b] and Choda [Cho83] who proved that a group von Neu-
mann algebra L(G) has the Haagerup property if and only if the group G
has the Haagerup property. In [CJ85], Connes and Jones proved, among
other results, that a II; factor with the Haagerup property cannot contain
any II; factor having the property (T).

In [Jol02] Jolissaint studied in detail the Haagerup property for tra-
cial von Neumann algebras and established in particular that the definition
16.2.1 does not depend on the choice of the faithful normal tracial state.
A relative Haagerup property was introduced by Boca [Boc93] in order to
construct irreducible inclusions of II; factors with the Haagerup property,
of any index s > 4. In [Pop06a], Popa has provided a detailed study of the
relative Haagerup property as defined in 16.3.3. Again, the definition does
not depend on the choice of the faithful normal tracial state. The results of
Section 16.3 are taken from this paper.

Since SL(2,7Z) has the Haagerup property, L(Z?) C L(Z? x SL(2,7Z)) =
L(7Z?) x SL(2,7Z) has the relative Haagerup property. In addition it is a
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rigid inclusion. This also holds for any non amenable subgroup of SL(2,RR)
instead of SL(2,Z), for instance Fa. These two features are the main ingre-
dients in Popa’s proof that the fundamental group of L(Z? x Fs) is the same
as the fundamental group of the orbit equivalence relation defined by the
corresponding action of Fy on the dual T? of Z? (see Section 18.3).






CHAPTER 17

Intertwining-by-bimodules technique

In this chapter we introduce a new powerful tool, called the intertwining-
by-bimodules technique. This technique provides very tractable conditions
allowing to detect whether two subalgebras are intertwined via a partial
isometry. Under suitable conditions, for instance if the two subalgebras are
Cartan subalgebras, it happens even more: the two subalgebras are unitarily
conjugate, that is, conjugate by an inner automorphism.

This method has many applications. As a simple first illustration, in
Section 17.3 we present a family of examples of I factors with two Cartan
subalgebras for which the intertwining-by-bimodules technique provides a
quick proof of their non-conjugacy by an inner automorphism.

Next, at the end of this chapter, it will be applied to show that the
hyperfinite factor R has uncountably many non-unitarily conjugate Cartan
subalgebras (although they are conjugate by automorphisms as shown in
Theorem 12.5.2).

In the next chapter, we will exploit this method in the course of the
study of a II; factor whose fundamental group is trivial. In Chapter 19 it
will be used to show that the factors associated with non-abelian free groups
are prime.

17.1. The intertwining theorem

Let (M, 7) be a tracial von Neumann algebra, and P,Q two von Neu-
mann subalgebras such that there exists u € U(M) with v*Pu C Q. Ob-
viously, H = uL?(Q) is a P-Q-subbimodule of pL?(M)¢g with dim(Hg) =
1 < 4o00.

More generally, the existence of a P-Q-subbimodule of pL?(M)q with
dim(Hg) < 400 is characterized as follows.

THEOREM 17.1.1. Let (M,7) be a tracial von Neumann algebra, f € M
a mon-zero projection, and let P, () be two von Neumann subalgebras of
fMf and M respectively. The following conditions are equivalent:
(i) there is no net' (u;) of unitary elements in P such that, for every
x,y € M, lim; || Eg(x*uiy)||, = 0;
(ii) there exists a non-zero element h € (f(M,eq)f)+ NP with 7(h) <
Foo2

¢ M s separable, it suffices to consider sequences.
2We recall that 7 denotes the canonical normal, faithful, semi-finite trace on (M, eq).

281
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(iii) there exists a non-zero P-Q-subbimodule H of fL*(M) such that
dim(HQ) < +o00;

(iv) there exist an integern > 1, a projection q € M, (C)®Q, a non-zero
partial isometry v € My ,(C)® fM and a normal unital homomor-
phism 0 : P — q(My,(C) ® Q)q such that v*v < q and zv = v0(x)
for every x € P.3

ProOF. (i) = (ii). If (i) holds, there exist ¢ > 0 and a finite subset
F C M such that

Vu € U(P), max | Eq(z uy)ll, > e.

We may assume that x = fx for every z € F'. We set ¢ =) zegz™ and
we denote by C the w.o. closed convex hull of {ucu* : u € U(P)} in (M, eq).
Let h € (f(M,eq)f)+NP’ beits element of minimal ||-[|, ~norm (see Lemma
14.3.3). We have 7(h) < 7(c) == > cp T(z2*) < F00.

It remains to show that h # 0. For m € M, we have

T(eqm*eqmeq) = T(Eq(m)*Eq(m)) = ||Eq(m)|l5,
and so, for u € U(P),

~ 2
> Fleqyucuyeq) = > |Eq(a*uy)|; > €.
yeF z,yeF

Since T(eq - eg) is a normal state on (M, eq), we get

> Fleqyhyeq) > €%,
yeF
whence h # 0.

(ii) = (iii) is obvious: take a non-zero spectral projection ¢ of h such
that 7(¢q) < +oo and consider the bimodule qL?(M).

(iii) = (iv). Cutting down the bimodule H C fL?(M) by an appropriate
central projection of ), we may assume that H is finitely generated as a
right @Q-module (see Corollary 9.3.3). By Proposition 8.5.3, there is an
integer n > 1 and a Q-linear isometry W : H — L%(Q)®". We set ¢ =
WW* € Mp(Q) = M,(C) ® Q. Since H is a left P-module, we get a unital
homomorphism 6 : P — q(M,(Q))q defined by 0(x)W = Wz for x € P. We
define g}, € L?(Q)%" as ¢, = (0, ..., IZ;, ...,0) (1/5\3 in the k-th coordinate)
and set & = W¥ey, for k = 1,...,n. Let £ € H®" C (fL*(M))®" be the
row vector ({1,...,&,). For x € P, we write 6(x) as the matrix [0; j(x)];; €
q(Mn(Q))g. We have

wéj = aWej = W*0(x)e; = Y W0, j(x)e;

= Z W*(ei0; ;(z)) = Z(W*Ez)QzJ(x) = Zﬁﬂi,j(ff),

)

3M17n((C) denotes the space of 1 x n matrices with complex entries.
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since W* is Q-linear. Hence, we get z€ = £0(x) € L?(M)®".
The Hilbert space L?(M,(M)) is canonically isomorphic to the Hilbert
space M,,(L?(M)) with scalar product

-2
<[77i7j]> [771,‘,3']> =n Z <77i,ja 772,‘,j>L2(M)
Z’J
and its obvious structure of M, (M )-M,, (M )-bimodule. For x € P we denote
by Z the element of M, (M) whose entries are equal to zero, except the first

diagonal one which is 2. Define £ € L2(M, (M )) as

s 3
5_ |: Onfl,n :| ’

where 0,1, is the 0 matrix with n — 1 rows and n columns. We have
€ = £0(x) for every x € P. We view ¢ as a closed operator affiliated with
M, (M). Let £ = V|£| be its polar decomposition. It is straightforward
to check that ‘a commutes with f(z) and that V = [ ] with v =
(v1,...,0n) € (M1,(C) ® fM)q. Moreover, we have

V. =Vo(x),

and therefore zv = vf(z) for every z € P.
(iv) = (i). Assume that (iv) holds and let (u;) be a net in U(P). We
have
(Id, ® Eq)(v*ujv) = (Id, ® Eg)(v'v)8(w)) = ((Id, ® Eg)(v*v))8(w;),

and so

On—l,n

1(Idy @ EQ) (v uiv)lly = [|(Idn @ EQ)(v*v)lly # 0.
This shows (i). O

With additional technical tools, we may assume that n = 1 in the state-
ment (iv), provided P is replaced by one of its corners.

THEOREM 17.1.2. The four conditions of Theorem 17.1.1 are equivalent
to

(v) there exist non-zero projections p € P and q € Q, a unital normal
homomorphism 0 : pPp — qQq and a non-zero partial isometry
v € pMq such that zv = v0(x) for every x € pPp. Moreover we
have vv* € (pPp) NpMp and v*v € 8(pPp)’' N qMgq.

For the proof of (iii) in Theorem 17.1.1 implies (v), we will need the
following lemma.

LEMMA 17.1.3. Let P, Q be two tracial von Neumann algebras and H a
P-Q-bimodule such that dim(Hg) < +o00. There exist a non-zero projection
p € P, a non-zero pPp-Q-subbimodule IC of H and a projection qy € Q such
that K is isomorphic to qoL?(Q) as a right Q-module.
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PROOF. As seen in the proof of (iii) = (iv) in Theorem 17.1.1 we may
assume that H is isomorphic, as a right Q-module, to some e(L2(Q)@”) with
e € M, (Q). Moreover, by Proposition 8.5.3 we may even assume that e is a
diagonal projection, say e = Diag(ey,...,e,) with e; € P(Q), i =1,...,n.
We write e as > ;" | &, where g; is the diagonal projection in M, (Q) whose
only non-zero entry is e; at the i-th row and column. Let 6 : P — eM,,(Q)e
be the unital homomorphism deduced from the left P-module structure of
H.

First case: P has no abelian projection. We choose an integer k£ such
that 2¥ > n. By Proposition 5.5.8, there exist 2¥ equivalent orthogonal
projections pi, ..., por in P such that Z?ilpi =1p. Let Bz : Q@ M,(C) —
Z(Q) ® 1 be the normal faithful center-valued trace. Then we have

2"Ez(0(p)) <D Ez(lg ®ej;) = nEz(1g ® e11),
j=1

where (e; ;) is the canonical matrix units of M, (C). It follows from Propo-
sition 9.1.8 that 0(p1) 3 1o ® e1,1 in M, (Q). Therefore, 8(p1)(L?(Q)®") is
a p1 Pp1-Q-subbimodule of ‘H which is isomorphic, as a right )-module, to
some submodule of L?(Q).

Second case: P has an abelian projection p, that is, p # 0 and pPp is
abelian. We choose i such that 0(p)e; # 0. Let [ be the left support of
O(p)e;. We have [ < 0(p) and | S € in eM,(Q)e. Let A be any maximal
abelian von Neumann subalgebra of 0(p)M,,(Q)60(p) which contains 6(pPp).
By Lemma 17.2.1 below, we see that [ is equivalent to a projection I’ € A.
Obviously, we have I’ € 8(pPp)' NeM,,(Q)e. Observe that I’ X €; in eM,,(Q)e
and so the pPp-Q-bimodule I'(L?(Q)®") is isomorphic, as a right Q-module,
to qoL?(Q) where e; > qo € P(Q). O

PROOF OF THEOREM 17.1.2. We show that (iii) in Theorem 17.1.1 im-
plies (v). We consider projections p € P, qp € @ and K as in Lemma 17.1.3
and we introduce the unital homomorphism 0 : pPp — goQqo induced by
the structure of pPp-module of K.

Then, to conclude, it suffices to follow the proof of (iii) = (iv) in Theorem
17.1.1, with n = 1 and pPp instead of P. The last statement of (v) is obvious.

Let us show now that (v) implies the condition (ii) of Theorem 17.1.1.
Let v and 6 be as in (v). Then pPp commutes with vegu*. Let (f;) be a
maximal family of mutually orthogonal projections in P such that f; = p in
P for every i. Then ), f; is the central support of p in P (see Exercise 2.5).

For each 4, let v; be a partial isometry in P such that v;v; < p and
vivy = fi. Weset h =) . v;(vequ*)vy. Then h € (M,eq) commutes with

(2
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P. Indeed, let y € P. We have

( Z vi(ver*)vZ‘)y = ( Z vi(ver*)vf)y(Z Uj“;)

i i J
= vi(vequ™)(vfyu))v;
0]
= Z vi (v yv;) (vequ™)vj = Z yvj(vequ®)v;.
i, J

Moreover, we have

7(h) = Z?(vi(ver*)vf) = Zf(vivv*v;‘) < 7(z(p)) < +oo.

O

DEFINITION 17.1.4. When one of the equivalent conditions of Theorem
17.1.1 is satisfied, we say that a corner of P can be intertwined into Q) inside
M, or simply that P embeds into () inside M, and we write P <s Q.

17.2. Unitary conjugacy of Cartan subalgebras

We will see now that for Cartan subalgebras, the above embedding pro-
perty is equivalent to unitary conjugacy. We need the two following lemmas.

LEMMA 17.2.1. Let A be a maximal abelian von Neumann subalgebra of
a tracial von Neumann algebra (M, 7). Every projection in M is equivalent
to a projection in A.

PRrOOF. The key point is to show that for any non-zero projection p € M
there is a non-zero projection ¢ € A with ¢ 3 p. Once this is established,
let us show how to conclude. Let e a projection in M be given. We take a
maximal projection f € A such that f 3 e (see Exercise 9.4). Let u € U(M)
such that ufu* < e If p = e — ufu” # 0, we apply the key point to
u*pu € (1 — f)M(1 — f): there exists a non-zero projection ¢ € A(1 — f)
such that ¢ = u*pu. Then we have f + ¢ 3 f + u'pu = u*eu ~ e, in
contradiction with the maximality of f. Therefore f and e are equivalent.

Let us sketch the proof of the key point. Recall that Ez denotes the
center-valued trace on M. We choose ¢ > 0 such the spectral projection z
of Ez(p) relative to the interval [c, 1] is non-zero. Truncating everything by
z we may assume that Ez(p) > clps. In particular, the central support z(p)
is equal to 1.

Suppose first that A contains a non-zero projection ¢ which is abelian
in M. Then, we immediately get ¢ < p (see Proposition 5.5.2).

Whenever A does not contain any non-zero abelian projection, we use
several times the Exercise 17.1 to construct non-zero projections 1 = g9 >
q1 >+ > qnin A such that Ez(g,) < 2715 < clps. Then, by Proposition
9.1.8 we get g, =2 p. O
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LEMMA 17.2.2. Let A be a Cartan subalgebra of a 11y factor M and let
p,q be two non-zero projections of A such that 7(p) = 7(q). There exists
u € Na(A) such that upu* = q.

ProOF. We first show that there exist a non-zero projection e € A
and u € Nys(A) such that e < p and weu* < ¢. Indeed, the projection
Vueny (4) upu™ commutes with Np/(A) and therefore with M, and so is the
unit of M. In particular, there exists u € Njy(A) such that upu*q # 0. We
set e = pu*qu.

Now, we consider a maximal family {(e;,u;)} of pairs (e;,u;) € P(A) x
Nar(A) such that each of the two families of projections (e;) and (u;e;u) is
made of mutually orthogonal projections, with > e; < p and ) ue;uf < g.
Then we have Y e¢; = p. Otherwise, we consider the projections p’ = p—>e;
and ¢ = ¢ — > u;e;uf. They have the same trace, and applying the first
part of the proof to them, we contradict the maximality of the family.

Next, we set v = ) u;e;. This partial isometry satisfies v*v = p, vv* = ¢
and vAv* = Aq. The same argument applied to 1 —p and 1—q gives a partial
isometry w such that w*w = 1—p, ww* = 1—q and wAw* = A(1 —q). The
operator u = v + w is in Nys(A) and we have upu* = q. O

THEOREM 17.2.3. Let A and B be two Cartan subalgebras of a 111 factor
M such that A <p; B. Then there exists a unitary element u € M such that
uw*Au = B.

ProOF. By Theorem 17.1.2, there exist non-zero projections p € A, q €
B, a non-zero partial isometry v € pMq and a normal unital homomorphism
0 : Ap — Bgq such that av = vf(a) for every a € Ap. Moreover we have

w* € (Ap) NpMp = Ap and v*v € 0(Ap) NqMyg.
The crucial step is to construct a partial isometry w € pM g such that
Va € Ap, aw = wh(a), ww* € Ap, w*w € Bq. (17.1)

Indeed, assume for the moment that such a w exists. By cutting down w to
the left by an appropriate projection of A we may assume that 7(ww*) = 1/n
for some integer n. We set ey = ww* and f; = w*w. We take projections
€9,...,en in A and fo,..., f, in B, all having the same trace 1/n and such
that > ;" je; =1 =", fi. By Lemma 17.2.2, for i € {1,...,n}, there
exist u; € Ny(A) with uequf = e; and v; € Ny (B) with v; fiof = f;.

We set w = Y1 ; uswv}. Then u is a unitary element of M. Moreover,
we have, for a € A,

urau = E viw U aujwu; = E viw™ (u; auip)wv;
ij i
= E viw* wl(u; au;p)v; € B,
7

whence u*Au C B, and so u*Au = B since u* Au is maximal abelian.
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Let us show how to construct w satisfying (17.1). We set N = 8(Ap)' N
gMgq and f = v*v. By Lemma 17.2.1, f is equivalent in N to a projection
in Bq. So, let v' € N be a partial isometry such that v’(v)* = v*v = f and
(v)*v" € Bq. We set w = vv’. A straightforward computation shows that
the conditions in (17.1) are fulfilled. O

17.3. 1I; factors with two non-conjugate Cartan subalgebras

A Cartan subalgebra A of a 11y factor M is called a group measure space
Cartan subalgebra if there exists a free ergodic p.m.p. action G ~ (X, u) such
that A C M is isomorphic to L*(X) C L>®(X) x G, that is, there exists an
isomorphism « from M onto L>°(X) x G such that a(A4) = L*>°(X). In this
section, we provide a family of examples of II; factors with at least two non
unitarily conjugate group measure space Cartan subalgebras.

Let H be a countable abelian group and H — K a dense and injective
homomorphism from H into a compact abelian group K. We are given an
action a : G ~ H of a countable group G by automorphisms and a free
ergodic p.m.p. action G ~ (X, ). We assume that « extends to an action
by homeomorphisms on K that we still denote by «. Then the semi-direct
product H x G acts on K x X by

h.(k,z) =(h+k,z), g.(k,z) = (og(k), g.),

forall he H g € G,k € K,z € X. This action is free, ergodic and p.m.p.
Dualizing the embedding H — K, we get the embedding K < H of the

dual groups and an action of G by automorphisms of K and H. Then the

semi-direct product K x G acts freely and ergodically on HxX by

r(Gz)=((k+x2),  g.06z)=(x0as1,9.1),

for allnel?,geG,XefI,xeX.

The Fourier transforms on the first and third component of

LA(K)® LA(X)® 2(H) @ (G)
induce (after permutation between ¢2(K) and L2(H )) a unitary operator
from this Hilbert space onto L?(H) ® L*(X) ® ¢*(K) ® £?>(G) which imple-
ments a canonical isomorphism
M=L%KxX)x(HxG)~L°Hx X)x (K xGq).

The Cartan subalgebras L%(K x X) and L®(H x X) are not unita-
rily conjugate. Indeed, let (h,) be a sequence of elements in H going
to infinity. Denote, as usual, by up and w, 4 the canonical unitaries in
L(H) and L*(K x X) x (H x G). We have up,ug, gy = Up,+h,y and so
Eroo (i x) (Uh,, U(h,g)) = 0 whenever n is sufficiently large. It follows that

~

L®(H) = L(H) £ L®(K x X)
(see Exercise 17.3).
A fortiori, L°°(H x X)) cannot be unitarily conjugate to L*°(K x X).
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EXAMPLE 17.3.1. As an example of this situation, we can take G =
SL(n,Z), n > 2, acting on H = Z" and embed Z" into K = Z;, where Z,
is the ring of p-adic integers for some prime number p. In this eximple, one
can show that the two Cartan subalgebras L (K x X) and L*°(H x X)) are
not even conjugate by an automorphism of the ambient crossed product,
and therefore the corresponding equivalence relations awt isomorphic.

Indeed, we first observe that K x SL(n,Z) = lim (Z/p*Z)" x SL(n,Z).
Then

o forn =2, K x SL(2,7Z) has the Haagerup property since it is the
direct limit of groups with the Haagerup property (see [CCJT01,
Proposition 6.1.1]), whereas Z%xSL(2, Z) does not have the Haagerup
property, because Z? is an infinite subgroup rigidly embedded into
72 x SL(2,7Z);

e for n > 3, Z" x SL(n, Z) has Property (T), whereas K x SL(2,7)
does not have this property, as the direct limit of a strictly increa-
sing sequence of groups (see [dIHV 89, page 10]).

But, if two groups have free ergodic p.m.p. orbit equivalent actions and if
one of them has the property (T), the second one also has the property (T)
([Pop86a], [AD87|, [Fur99al, independently). Similarly, the Haagerup
property is stable under such orbit equivalence [Pop06a, Remark 3.5.6°]. It
follows that the group actions (H x G) ~ (K x X) and (K x G) ~ (H x X)
are not orbit equivalent and therefore, by Corollary 12.2.7, the corresponding
Cartan algebras are not conjugate by an automorphism.

REMARK 17.3.2. In some other examples, the two Cartan subalgebras
L®(K x X) and L°(H x X) may be conjugate by an automorphism. This
happens, for instance, when the action G ~ H is trivial. Then L (K x X)x
(H x G) is isomorphic to the tensor product of L>°(X) x G and L (K) x
H ~ Loo(ﬁ ) X K. This latter algebra is the hyperfinite II; factor since
the abelian group H acts freely and ergodically on K. It follows that the
Cartan subalgebras L>®(K) and L*(H) are conjugate by an automorphism
(see Theorem 12.5.2) and therefore L®(K x X) and L>®(H x X) are also
conjugate by an automorphism.

17.4. Cartan subalgebras of the hyperfinite factor R

PRrROPOSITION 17.4.1. The hyperfinite factor R has uncountably many
Cartan subalgebras that are not unitarily conjugate.

PRrROOF. We write R as the infinite tensor product My (C)®> of 2 x 2-
matrix algebras. We denote by D the diagonal subalgebra of My(C). Let
u(f) € M2(C) be the rotation of angle 6§ and set Dy = w(6)Du(6)*. Then
D = D¥> and Dy = Dy"> are Cartan subalgebras of R (see Exercise 12.1)
and we claim that they are not unitarily conjugate whenever 0 ¢ Z(7/2).
To this end, we will construct a sequence (v,) of unitaries in Dy such that
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for every z,y € R, lim, ||Ep(zv,y)|, = 0 and then use Theorem 17.1.1.
Since Ny (D) generates R it suffices to show that lim,, || Ep(zv,)||, = 0 for
every x € M and even, by approximation it is enough to take x = x;,®1 €
M (C)®F®1.

We consider the unitary v = u(#)Diag(1,i)u(f)* € Dy where Diag(1,7)
is the diagonal 2 x 2 matrix with entries 1 and i. A straightforward compu-
tation shows that

Ep(v) = Diag( cos®(9) + isin’(6),sin*(0) + i cos*(0))
and so || Ep(v)||3 = cos*() + sin*(6).
We set v, = v¥"®1 € Dy and Ry, = M(C)®*. For n > k we have
n—k

N

Ep(zv,) = Eg, (230®%) Ep(v) ® - -- ® Ep(v) ®1

and therefore
| Bp(eon)lly = [[Br, (™) (cos'(6) +sin(0)) ",
It follows that lim,, | Ep(zv,)||, = 0 whenever 0 ¢ Z(r/2). 0

Exercises

EXERCISE 17.1. Let (M, 7) be a tracial von Neumann algebra with center
7+ M.

(i) Let p be a projection in M and let z be the spectral projection of
Ez(p) corresponding to the interval 0, 1/2]. Observe that Ez(pz) <
1/2.

(ii) Let A be a von Neumann subalgebra of M with contains strictly
its center Z. Show that there exists a non-zero projection ¢ € A
such that Fz(q) < 1/2 (use Exercise 9.3).

(iii) Let A be a von Neumann subalgebra of M and let gy € A be a
projection with qoZ G qoAgqo. Show that there exists a non-zero
projection g € A such that ¢ < qo and Ez(q) < Ez(qo)/2.

EXERCISE 17.2. Let (M, 7) be a tracial von Neumann algebra and P a
von Neumann subalgebra. Show that P <j; Cl,, if and only if P contains
a minimal projection.

EXERCISE 17.3. Let G ~ (@, 7) be a trace preserving action of a coun-
table group G. We set M = @ x G. Let P be a von Neumann subalgebra
of M. Show that P £j; @ if and only if there exists a net (v;) of unitary
elements in P such that lim; HEQ(v,u;)H , = 0 for every g € G, where the

ug’s are the canonical unitaries in M (that is, for every g € G, the net ((v;),)
of Fourier coefficients of index g of the v;’s goes to 0 in ||-||,-norm).



290 17. INTERTWINING-BY-BIMODULES TECHNIQUE

Notes

The intertwining-by-bimodules technique is a major innovation intro-
duced in [Pop06a, Pop06d] in the early 2000’s. This new technology,
combined with rigidity results, provides an exceptionally powerful tool al-
lowing to solve a wealth of longstanding problems. The results of Section
17.1 come from [Pop06a, Pop06d]|. For our presentation, we have also
benefited from Vaes’ survey [Vae07].

The first example of II; factor with two Cartan subalgebras which are not
conjugate by an automorphism was given by Connes and Jones [CJ82]. In
[Pop86a, Corollary 4.7.2], [Pop90], one finds an example of McDuff factor
with uncountably many non conjugate Cartan subalgebras. More recently,
many new classes of examples of II; factors with more than one Cartan
subalgebra were found [Pop08, OP10b, PV10b, KS13, KV17]. There
even exist II; factors with unclassifiably many Cartan subalgebras in the
sense that the equivalence relation of being conjugate by an automorphism
is not Borel [SV12]. In Section 17.3, we have followed the paper [PV10b]
of Popa and Vaes.

As for Cartan subalgebras of the hyperfinite factor R, Proposition 17.4.1
had been proved by another method in [Pac85].

Some examples of II; factors without Cartan subalgebra are briefly pre-
sented in the comments at the end of Chapter 19. The hard problem con-
cerning the uniqueness of Cartan subalgebras is also out of the scope of
this monograph. It has been solved positively in an amazing variety of
situations. Let us only mention the following striking result of Popa and
Vaes [PV14a, PV14b], after a previous breakthrough of Ozawa and Popa
[OP10a, OP10b]: any free ergodic p.m.p. action of a non-elementary hy-
perbolic group (e.g. a non-abelian free group) or of a lattice in a rank
one simple Lie group, gives rise to a crossed product having a unique Car-
tan subalgebra, up to unitary conjugacy, thus extending Example 18.1.5.
The countable groups with this uniqueness property for any free ergodic
p-m.p. action are called Cartan-rigid. This class also contains all arbitrary
(non trivial) free products [Ioal5, Vael4] and central quotients of braid
groups [CIK15].

The class of Cartan-rigid groups has very powerful properties. For any
free ergodic p.m.p. action of a Cartan-rigid group G on (X, pu) and any
other free ergodic p.m.p. action H ~ (Y, v) of any other group, whenever
L>(X) x G and L*>®(Y) x H are isomorphic it follows that the actions are
orbit equivalent. In fact, this property already holds if G is group mea-
sure space Cartan-rigid in the sense that for every free ergodic p.m.p. action
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G ~ (X,u), the crossed product L*>°(X) x G has a unique group mea-
sure space Cartan subalgebra, up to unitary conjugacy®. This class in-
cludes, in addition to Cartan-rigid groups, certain amalgamated free pro-
ducts [PV10b, HPV13], certain HNN-extensions [F'V12] and many other
groups [Ioal2b, Ioal2al, [CP13], [Vael3].

A notion stronger than orbit equivalence is conjugacy. Two p.m.p. ac-
tions G ~ (X,u) and H ~ (Y,v) are said to be conjugate if there exist
an isomorphism 60 : (X, ) — (Y,v) and a group isomorphism ¢ : G — H
such that 0(gx) = §(g)0(z) for all g € G and almost every z € X. In some
case, it is possible to retrieve the conjugacy of the actions from their orbit
equivalence. A free ergodic p.m.p. action G ~ (X, u) is said to be orbit
equivalence superrigid if it is conjugate to any other free ergodic p.m.p. ac-
tion H ~ (Y,v) as soon as the two actions are orbit equivalent. It is said
to be W*-superrigid if L>°(X) x G remembers the group action in the sense
that for any isomorphism L*(X) x G ~ L>*(Y) x H, the corresponding
actions are conjugate. An action is W*-superrigid if and only if it is orbit
equivalence superrigid and L®°(X) is the unique group measure space Car-
tan subalgebra up to conjugacy. Many examples of orbit equivalence super-
rigidity have been found:[Fur99b], [MS06], [Pop06e, Pop07a, Pop08],
[Kid06, Kid10, Kid11, Kid13], [PV11], [Ioalla], [PS12]. Various re-
markable W*-superrigidity theorems have been proved in [Ioallb], [Pet10],
[PV10b], [ HPV13], [CIK15], [CK15], where the uniqueness of group mea-
sure space Cartan subalgebras could be combined with orbit equivalence
superrigidity. More information on these developments, up to 2012, will be
found in the surveys [Pop07b], [Furll], [Vael0], [Ioal3].

4Indeed, conjugacy would already be enough to get the orbit equivalence.






CHAPTER 18

A II; factor with trivial fundamental group

In this chapter, we will show that factors of the form L>®(T?)xF,, n > 2,
where F,, appears as a finite index subgroup of SL(2,7Z) with its obvious ac-
tion on T2, have a fundamental group reduced to {1}. To that purpose, we
develop in Section 18.1 a deformation /rigidity argument which implies that
L>(T?) is the only rigidly embedded Cartan subalgebra of L>(T?) x F,,
up to unitary conjugacy. The deformation comes from the fact that I,
has the Haagerup property. From the uniqueness of this type of Cartan
subalgebra we deduce that the fundamental group of the crossed product
coincides with the fundamental group of the corresponding equivalence re-
lation Ry, ~72. This latter notion of fundamental group is introduced in
Section 18.2 together with the notion of cost. We show in Section 18.3 that
the equivalence relation Ry 12 has a trivial fundamental group, thanks to
the computation of its cost in Theorem 18.3.3.

18.1. A deformation/rigidity result

The following theorem is one of the many examples where a fight between
a deformation property and rigidity concludes in an embedding.

THEOREM 18.1.1. Let (M, T) be a tracial von Neumann algebra and P,

Q two von Neumann subalgebras. We assume that P is relatively rigid in
M and that M has the property (H) relative to Q. Then P <1 Q.

PrROOF. We will establish that condition (i) of Theorem 17.1.1 holds.
Since P C M is rigid, given ¢ = 1/4, there exist a finite subset F' of
M and 0 > 0 such that whenever ¢ is a subtracial and subunital com-
pletely positive map from M to M satisfying maxgcp ||¢(x) — x|, < 6,
then [|¢(y) —y|l, < 1/4 for every y in the unit ball of P. On the other
hand, since M has Property (H) relative to @, there exists a net (¢;) of
(Q-bimodular, subtracial and subunital completely positive maps such that
Ty, € To((M,eq)) and lim; ||¢;(x) — z||, = 0 for every x € M.> So, there
exists a ()-bimodular, subtracial and subunital completely positive map ¢
such that Ty € Zo((M, eq)) and, for y in the unit ball of P,

lo(y) —yll, < 1/4.

IRecall that Zo((M,eq)) is the norm closure of the two-sided ideal of (M,eq)
generated by eq and also of the linear span of the elements of the form L¢L; with

&ne (LQ(M)Q)O (Proposition 9.4.3).

293
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Then for every u € U(P) we have
[o(w)lly = 3/4.

The conclusion follows from the next lemma. ([l

LEMMA 18.1.2. Let (u;) be a net of unitary elements in M such that
lim; | Eq(x*u;y)||l, = 0 for every x,y € M. Let ¢ : M — M be a subtracial
and subunital completely positive map such that Ty, € Io((M,eq)). Then,
lim; [|¢(u;)||o = 0.

ProoOF. It suffices to show that we have lim; HLgL;;ui
ry €,m € (L2(M)Q)O, and indeed, that lim; HL:‘]uZH2
(LQ(M)Q)O. Recall that Lyu; = Eq(n*u;) (see (9.5) in Section 9.4.1).

Given € > 0, take x € M with ||n — z||, < /2. Then we have

1EQ(n"ui)lly < [[EQ((n* — a)us)lly + [ Eq(a™ui)ll,
< lln—=lly + [ Eq(a™ud)ll
< </2+ | Egleu)ly

H2 = 0 for eve-

= 0 for every n €

So, we conclude that HLTIUZHQ < ¢ for i large enough. O

THEOREM 18.1.3. Let M be a 1l; factor, A, B two Cartan subalgebras of
M. We assume that B is relatively rigid in M and that M has the property
(H) relative to A. Then there exists u € U(M) such that uBu* = A. So
A is also relatively rigid in M and there is only one relatively rigid Cartan
subalgebra of M, up to unitary conjugacy.

PROOF. Immediate consequence of Theorems 18.1.1 and 17.2.3. ([l

COROLLARY 18.1.4. Let G; ~ (X, pi), i = 1,2, be two free ergodic
p.m.p. actions of countable groups. We assume that L*°(X1) is relatively
rigid in L>°(X1) x G1 and that Go has the Haagerup property. Then the von
Neumann algebras L>=(X1) x G1 and L>®(X2) x Go are isomorphic if and
only if the equivalence relations Rg,~x, and Rg,~x, are isomorphic.

PrOOF. Use the previous theorem together with Proposition 16.3.5 and
Corollary 12.2.7. O

ExAMPLE 18.1.5. Let G be any finite index subgroup of SL(2,7Z) and
consider its natural action on Z2. The dual action of G on T? is free and
ergodic. We identify L(Z? x G) to the group measure space von Neumann
algebra M = L*°(T?) x G, through the usual identification of L(Z?) with
A = L>(T?) by Fourier transform (see Example 14.2.8). Then, A is rela-
tively rigid in M since Z2 is relatively rigid in Z2 x G (see Section 14.1 and
Proposition 14.2.7) and M has the relative property (H) relative to A by
Proposition 16.3.5, since G has the Haagerup property. So, by the previous
theorem, A is the unique rigidly embedded Cartan subalgebra of L>(T?)x G
up to unitary conjugacy. For instance we may take G to be any non-abelian
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free subgroup of finite index in SL(2,Z) (e.g. consider the subgroup gene-
rated by the matrices ( (1) ? > and ( ; (1) >, which is free of index 12 in
SL(2,Z) and which contains every free group F,,, n > 2, as a subgroup of
finite index).

Let F,, be embedded as a finite index subgroup of SL(2,Z). Our goal is to
show that the fundamental group of L°°(T?) x F,, is reduced to {1}. To that
purpose, we will compare it with the fundamental group of the equivalence
relation Ry, ~72. We need first to introduce two important invariants for
equivalence relations.

18.2. Fundamental group and cost of an equivalence relation

18.2.1. Fundamental group of an ergodic equivalence relation.
It is defined in analogy with that of a II; factor. Let R be an ergodic
countable p.m.p. equivalence relation on the Lebesgue probability measure
space (X, ). Weset I, = {1,2,...,n} and we define an equivalence relation
R, on X, = X x I, by saying that two elements (z,i) and (y, j) of X,, are
equivalent if and only if z ~g y. We equip X,, with the measure u x A,
where )\, is the counting measure on [,,. Then R, is an ergodic measure
preserving equivalence relation on X, with p,(X,) = n. We note that
L(Rn) = Mn(L(R))

Let ¢ be a positive real number and choose an integer n with ¢ < n.
Let Y C X,, with p,(Y) = ¢t. The induced p.m.p. equivalence relation
Ry = R,N(Y xY) onY equipped with the normalized measure fin,., [ (Y)
only depends on ¢, up to isomorphism (see Exercise 18.1). It is therefore
denoted without ambiguity by R!. We say that R! is an amplification of R.

Observe that Y = U;—1Y; x {i}, where Y1, ...,Y,, are Borel subsets of X
with Y"1 | u(Y;) = t. So Rf may be realized on the disjoint union Y1U- - -UY,,,
where two elements € Y; and y € Y; are R'-equivalent if and only if
r ~R Y.

As in the case of factors (Lemma 4.2.3), one shows that the equivalence
relations (R*)! and R* are isomorphic.

DEFINITION 18.2.1. Let R be an ergodic countable p.m.p. equivalence
relation. We denote by §F(R) the subgroup of R* formed of the positive real
numbers ¢ such that R! is isomorphic to R. It is called the fundamental
group of R.

For instance, since there is only one II; hyperfinite countable p.m.p.
equivalence relation, up to isomorphism, we see that its fundamental group
is the whole R7 .

Let R be an ergodic countable p.m.p. equivalence relation on (X, u).
For every t > 0, the factors L(R?) and L(R)* are isomorphic, and so we see
that F(R) C F(L(R)). However, an isomorphism between L(R) and L(R!)
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is not always induced by an isomorphism between R and R!, and we have
to take Cartan subalgebras into account.

Recall that two Cartan subalgebra inclusions A; C M;, i = 1,2, where
My, Mo are II; factors, are said to be isomorphic if there exists an isomor-
phism « : M ~ My such that a(A;) = As.

Let A be a Cartan subalgebra of a II; factor M. Let 0 < ¢t < 1 be
given and choose a non-zero projection p in A with 7(p) = t. It follows from
Lemma 17.2.2 that the isomorphism class of the inclusion (Ap C pMp) only
depends on t. We denote it by (A C M)* = A* ¢ M*. Whenever ¢t > 1,
one proceeds in the same way, starting with the Cartan subalgebra inclusion
A® D, C M ® M,(C), where D,, is the diagonal subalgebra of M, (C).

Whenever M = L(R) and A = L*°(X), the Cartan subalgebra inclusion
defined by R! is (A C M)!. Obviously if t1,ty are such that Rt and R are
isomorphic, then (A C M) and (A C M)® are isomorphic. The converse
follows from Corollary 12.2.4. If it happens that every ¢ € F(L(R)) is such
that there exists an isomorphism from L(R) onto L(R!) sending A onto
A! then F(L(R)) = F(R) and in this case the computation of F(L(R)) is
reduced to the computation of F(R).

We will apply this strategy to Ry, ~ 72 and therefore will have to compute
the fundamental group of an equivalence relation induced by a free ergodic
p-m.p. action of a free group. For this, we will use the notion of cost of an
equivalence relation.

18.2.2. Cost of an equivalence relation. Let R be a countable
p.m.p. equivalence relation on (X, u). A graphing of R is a sequence ()
in the pseudo group [[R]], which generates R in the sense that R is the
smallest equivalence relation such that = € D(yp,,) implies x ~ ¢, (z).

DEFINITION 18.2.2. The cost C((¢y)) of the graphing () is defined as

> (D (pn)).

The cost C(R) of the equivalence relation is defined as the infimum of the
cost of all graphings of R.

Note that C(R), as well as §(R), are invariants of the isomorphism class
of R.

Recall that the rank of a countable group G if the minimal number
rank(G) of elements that are needed to generate G. Assume that G acts on
(X, p) in a p.m.p. way. The equivalence relation R~ x is generated by any
family ¢; : € X — g;x, where the g;’s range over a set of generators of G.
Thus we have

C(Rg~x) < rank(G).

THEOREM 18.2.3. Let R be countable p.m.p. equivalence relation on
(X, ). Fort >0 we have

C(R") —1=(C(R)—1)/t.
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In particular, if in addition R is ergodic and 1 < C(R) < 400, then F(R) =
{1}.

PROOF. For simplicity, we will only prove the inequality C(R!) — 1 <
(C(R) — 1)/t for t > 1. This is all that will be needed in the sequel. Let
Y1,...,Y, be Borel subsets of X such that Y ", u(Y;) =t — 1. We realize
R! on the disjoint union Y = X UY; U ---UY,, as explained above. Let 7
be the normalized probability measure on Y. We denote by o; € [[RY]] the
transformation that identifies Y; viewed as a subset of X to Y; in the disjoint
union. Whenever (¢) is a graphing of R, then together with (o;)1<i<p it
gives a graphing of R!. It follows that

2o (D(e0) + 3 n(Dle) = Cllow -1

Since this holds for every choice of graphing of R, the inequality C(R?) —1 <
(C(R) — 1)/t follows. O

18.3. A II; factor with trivial fundamental group

THEOREM 18.3.1. Let R be an ergodic countable p.m.p. equivalence rela-
tion on (X, pn). We assume that A = L°°(X) is the unique rigidly embedded
Cartan subalgebra of M = L(R), up to isomorphism. Let 0 < t <1 be such
that M ~ M'. Then R and R' are isomorphic. Therefore, we have

$(L(R)) = 3(R).

PROOF. Let p € M be a projection such that 7(p) = t. By Lemma
17.2.1 we may take p € A. The inclusion A* C M? is rigid (see Proposition
14.2.11). Our uniqueness assumption implies that it is isomorphic to A C M
and therefore the equivalence relations R and R! are isomorphic. U

THEOREM 18.3.2. Let F,,, 2 < n < oo, be embedded as a finite index
subgroup of SL(2,7Z). The fundamental group of L(Z? xF,) ~ L>®(T?) x F,
is equal to {1}.

ProoOF. We apply the previous theorem to the equivalence relation R
on T? which is induced by the natural action of F,. Indeed, L*°(T?) is
the unique rigidly embedded Cartan subalgebra of L>°(T?) x F,,, up to uni-
tary conjugacy (see Example 18.1.5). Then we conclude thanks to the next
theorem. O

THEOREM 18.3.3. Let F,, ~ (X, 1), 2 < n < o0, be a free p.m.p. action.
Then the cost of Rr,~x s n. Therefore, if moreover the action is ergodic,
the fundamental group of this equivalence relation is {1}.

ProOF. We only give the proof for n = 2, to keep the notations simpler.
We write G = Fa, R = Rp,~x and M = L>*(X) x G. Recall that for
¢ € [[R]], there exists a partition E = UyeqFy of the domain E of ¢ into
Borel subsets such that ¢(x) = gz if x € E, (see Exercise 1.17). Therefore,
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to compute the cost of R, it suffices to consider graphings consisting of maps
of the form x € E + gx form some Borel subset E of X and some g € G.
Let G = {go0,91,-..} be an enumeration of the elements of G. Let
(Ek)k>0 be a sequence of Borel subsets of X and for k, consider ¢y : « €
Ei — grx. Whenever (¢y) is a graphing of R, we only need to prove that

> uEy) > 2.

k>0
We denote by Z!(G, M) the set of maps ¢ : G — M such that
Vg,h € G, cgn = g+ ugcy, (18.1)

where the u,’s are the canonical unitaries in M. These maps c are called
1-cocycles and are of course determined by the values that they take on the
generators a,b. We note that Z'(G, M) is a right M-module and, since a, b
are free in G, we have a bijective right M-linear map ¥ : M®&M — Z'(G, M)
defined by

U(mdn)=c with c,=m and ¢, =n.

Let py, be the projection in L*°(X ) with support g Ex. Then we consider
the M-linear map © : Z'(G, M) — [[72, prM defined by

O(c)r = preg, forall k> 0.

We claim that © is injective. Indeed, let ¢ € Z1(G, M) such that ©(c) =
0, that is, prcg, = 0 for all & > 0. Recall from Section 1.4.2 that M is
canonically embedded into L?(X)® £2(G) by m — m(1®4.). Therefore, via
the identification of L?(X) ® ¢*(Q) with L?(X, ?(G)), we may view every
element m = > . agug of M as the measurable function z — m(z) € 2(G)
where the component m(x)y of index g € G is m(z)y = a4(x). Then the
cocycle equation (18.1) becomes

con (@) = cg(x) + Mg)en(g™'2)  ae, (18.2)

where A is the left regular representation of G.
Now, since the action G ~ (X, p) is free, the map (z,g) + (z,g9 'z)
allows to identify without ambiguity (g, z) — c,(x) € £2(G) with

(2,y) = (2,97 '7) € R = w(z,y) = cy(x) € (G).
Then, (18.2) becomes
w(,2) = w(,y) + M@y 2) for ae. (5,y,2) eRD,  (18.3)

where we set A\(z, g7 1z) = \(g).

The fact that pycy, = 0 becomes w(gry,y) = 0 for a.e. y € E,. By
(18.3), the set of (z,y) € R such that w(z,y) = 0 is a subequivalence
relation of R. Since (¢i) is a graphing, we see that w(z,y) = 0 for a.e.
(x,y) € R. This means that ¢, = 0 for all ¢ € G. So ¢ = 0 and © is
injective.
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For every n > 0, we consider the right M-linear map

O, : M &M — @ peM
k=0
defined by

On(m1 @ my) = @D O(T(my & ma)).
k=0

Since 6, is right M-linear, there exists a unique element V;, € M,, 11 2(C)® M
such that

(9n(m1 o mg))k = (V)kami + (Vi)goma  for all my,my € M.

We denote by @Q,, € My(M) the right support of V,, and by P,, € M, +1(M)
its left support. Note that by construction, we have P, < diag(po,...,pn),
where diag(po, ..., pn) is the diagonal matrix with entries py,...,p, on the
diagonal. It follows that?

n n

D w(Er) = 7(pr) 2 (Tr, @ 7)(Pn) = (Tra @ 7)(Qn).
k=0 k=0

We claim that the sequence of projection @), increases to 1. Once we have

proven this claim the theorem will follow since the above inequality yields

> ulBr) > 2.
k=0

The sequence of projections @), is increasing since the kernels of the
maps 6, are decreasing. So (@) converges strongly to some projection
Q € Msy(M). Assume that Q < 1. Then either the first column or the
second column of 1 — () is non-zero and defines a non-zero element mq ® mo
of M & M with the property that 6,,(m1®ms) = 0 for all n. This means that
O(¥(m1®msz)) = 0 and contradicts the fact that ¥ and © are injective. [

REMARK 18.3.4. The equivalence relations Rp, -2 are mutually non-
isomorphic since their costs are distinct. It follows from Corollary 18.1.4
that the II; factors L>°(T?) x F,, are mutually non-isomorphic.

Exercise

EXERCISE 18.1. Let R be an ergodic countable p.m.p. equivalence rela-
tion on (X, p).

(i) Let Y1, Y3 be two Borel subsets of X. Show that u(Y1) = u(Y2) if
and only if there exists ¢ € [R] such that p(Y1) = ¢(Y2).
(ii) Show that the fundamental group §(R) of R may be defined as

{tltgl L1, 15 €]0,1], RV ~ th}.

2pelow Try is the usual trace in My (C)



300 18. A II; FACTOR WITH TRIVIAL FUNDAMENTAL GROUP

(ifi) Show that (R) C F(L(R)).

Notes

The deformation/rigidity technique was discovered by Popa [Pop06a,
Pop06¢, Pop06d, Pop06e] between 2001-2004. Since then, more and more
deformations were found [Ioa07], [IPPO08|, [Pet09], [Sinll], as well as
more and more rigidity behaviours, not necessarily associated with property
(T) but also with spectral gap properties [Pop08], [Pop07d], [OP10a],
[OP10b], [CS13], [CSU13|, these lists of references being not exhaustive.
This is now an essential tool to detect the position of a somewhat rigid
subalgebra in presence of an appropriate deformation property.

Due to the results of Section 18.1 obtained in [Pop06a], the com-
putation of the fundamental group of L*(T?) x F,, was reduced to that
of the corresponding equivalence relation, in principle easier to achieve.
Fundamental groups of countable p.m.p. equivalence relations were intro-
duced by Gefter and Golodets [GG88]. They proved in particular that
$(Ra~x) = {1} whenever G ~ (X, p) is a free p.m.p. action of a lattice
G in a connected simple Lie group with finite center and real rank > 2.
A major breakthrough is due to Gaboriau who could exhibit many actions
G ~ (X, ) whose equivalence relations have a trivial fundamental group,
as a consequence of his remarkable study of the notions of cost and ¢?-Betti
numbers for equivalence relations (see [Gab00, Gab02] and [Gab10] for a
survey). Theorems 18.2.3 and 18.3.3 come from [Gab02]. In fact, as soon
as G has at least one non-zero /2-Betti number, we have §(Rg~x) = {1}
[Gab02]. The proof of Theorem 18.3.3 given in this chapter was communi-
cated to us by Vaes. It is a version in the spirit of operator algebras of a
previous proof by Gaboriau, expressed in a more geometric style. We thank
them for allowing us to present it here.

The example of L>(T?) x F,, described in this chapter was the first
example of a II; factor with an explicitely computed fundamental group
distinct of R% . More generally, if a group G' having the Haagerup property
and at least one non-zero Betti number (like SL(2,Z) or F,,, n > 2) acts on
(X, p) in a free ergodic p.m.p. way and if L>°(X) is rigidly embedded into
L>*(X) x G, then the fundamental group of this factor is trivial. We remind
the reader that Connes had established that the fundamental group of every
L(G), where G is an ICC group with Property (T), is countable but without
an explicit description [Con80a]. The above example L°°(T?) x F,, answers
positively a longstanding question of Kadison [Kad67], asking whether there
exist II; factors M such that, for some n > 1, M,,(C) ® M is not isomorphic
to M.

Since then, impressive advances have been achieved during the last
decade. Thus, let § be a subgroup of R* : if § is countable, or uncountable
of any Hausdorff dimension in (0, 1), there exists a group measure space
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factor having § as fundamental group (see [PV10a, PV10c|, and [VaelO]
for a survey). Other kinds of examples are given in [IPPO08|, [Hou09].

The example found by Connes and Jones [CJ82] of a free ergodic p.m.p.
action G ~ (X, u) such that L>°(X) x G contains two non-conjugate group
measure space Cartan subalgebras (see also Section 17.3) shows that the
fundamental group of Rg~x can be strictly smaller than the fundamental
group of L®(X) x G. Other examples were given in [Pop86a, Pop90].
There even exist examples where §(L>(X) xG) = R% and §(Re~x) = {1}
(see [Pop08]). A wealth of results about fundamental groups is contained
in the paper [PV10c]|.

Let us recall also that it is now known that L>°(X) x F,, has a unique
Cartan subalgebra, up to unitary conjugacy, for any free ergodic p.m.p. ac-
tion of F,, [PV14a]. In particular, the crossed products (L>([0,1]") x F,
and (L*°([0,1]) x F,, arising from Bernoulli actions are isomorphic if
and only if these actions are orbit equivalent and so, using the cost in-
variant, if and only if n = m. It follows that the factors L(Z ! [F,) and
L(ZF,,) of the wreath products are isomorphic if and only if n = m, since
L(ZFy) ~ (L>=([0,1)F%) x Fy, for every k. However, this is still far from gi-
ving an answer to the major open problem asking whether L(F,) ~ L(F,,),
n,m > 2, implies n = m.

In IPV13, BV14, Berl5, CI17], the reader will find examples of gen-
eralized wreath products G for which the group factor L(G) remembers the
group G in the sense that any isomorphism between L(G) and an arbitrary
group factor L(H) is implemented by an isomorphism of the groups. An
ICC group G with this property is called a W*-superrigid group. Other
examples of W*-superrigid groups are given in [CdSS16, CI17].






CHAPTER 19

Free group factors are prime

In this chapter, we illustrate by another example the deformation/rigidity
technique. The deformation is constructed in Lemma 19.1.1. It is a one pa-
rameter group (o )ier of automorphisms of the free product M = N * N of
two copies of the free group factor N = L(F,). It moves N x C inside M
in such a way that M = N % a3(N % C). The rigidity comes from a spec-
tral gap property of embeddings of non-amenable von Neumann algebras
in N+C C M (see Lemma 19.1.3). Using intertwining techniques and the
crucial fact that the deformation « carries a symmetry given by a period 2
automorphism of N x N (one says that the deformation is s-malleable), we
will prove the following result.

THEOREM. Let [y, be the free group on n generators, 2 < n < oo, and
let P C L(F,) be a von Neumann subalgebra such that P' N L(F,) is diffuse.
Then P is amenable.

A II; factor satisfying the property of this theorem is called solid (see
Exercice 19.2 for an equivalent formulation). One says that a II; factor
M is prime if, whenever M is isomorphic to a tensor product M;Q@Ms,
then either M7 or Ms is finite dimensional. The previous theorem has the
following consequence, since L(F,) cannot be written as a tensor product of
the form R®N where R is the hyperfinite 11y factor.

COROLLARY. The free group factors L(IF,), n > 2, are prime.

19.1. Preliminaries

In this section we gather the lemmas that we will use in our proof of the
above theorem.

19.1.1. Construction of the malleable deformation.

LEMMA 19.1.1. Let N = (L(F,),7) be the factor of the free group on n
generators, 2 < n < oco. There exist a continuous homomorphism a : R —
Aut (N % N) and a period two automorphism 3 € Aut (N * N) such that

(a) No = N C and N1 = a1(N % C) are free with respect to T and
M = Np x Ny;

(b) Bauf = a—y for allt € R;

(¢) B(x) = for all x € N % C.

303
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PROOF. Let ai, a9, -+ be the generators of F,,, viewed as unitary ele-
ments in NV x C, and let b1, bo,--- be the same generators but viewed as
unitary elements in C x N.

Fix k and let h be the self-adjoint operator with spectrum in [—7, 7], ob-
tained from by by the Borel functional calculus, such that by = exp(ihy). For
t € R, we put a¢(ay) = exp(ithg)ar and ay(br) = bg. Obviously, exp(ithy)ak
and by generate the same von Neumann algebra as ag, bx. Moreover, since
T(ap) = 0= 7(b}) for n # 0, we see that

T(an(an) ap(be)’" - - au(ar) (b)) = 0 = T(aj' by -~ alby’)

for any sequence i1,...,%, ji,...,J; of elements in Z which are non-zero,
except may be i1 and j;. It follows that ay extends to an automorphim of
the von Neumann algebra generated by ag, br. Doing like this for every
k and every t € R we get a continuous one-parameter group t — oy of
automorphisms of the whole M = N x N.

Note that aj(ag) = bgar and ay are free with respect to 7 and that
ax, a1 (ag) generate the same von Neumann algebra as ag, bg. It follows that
if we set Ng = N+ C and N7 = a1 (N % C), then Ny, Ny are free with respect
to 7 and generate M

Next, we define 3 by B(ax) = ax and B(by) = by. Clearly, 3 is a period
2 automorphism of M which satisfies Condition (c¢). Moreover, we have

BoayofBar) = Bexp(ithy)ay) = exp(—ithy)ar = a—i(ag),
and similarly
poaioB(by) = by = a_s(by).
Therefore, Condition (b) is also satisfied. O

The pair (o, 8) is a s-malleable deformation of N is the following sense:
there exists an embedding of N in a larger II; factor N , together with
a continuous path ¢ € R — a3 of automorphisms of N and a period 2
automorphism S of N such that

(a) T(xai(y)) =0 for all z,y € N with 7(z) =0 = 7(y);
(b) By = a_y for all t € R;
(¢) B(z) =z for all z € N.

19.1.2. A spectral gap property. We first give some clarification on
the structure of L?(M; * Ms) as a Mi-M;-bimodule.

LEMMA 19.1.2. Let (M,7) = (M1, 71) * (M2, 72) be a free product of two
tracial von Neumann algebras. Then, as a My-M;-bimodule, the orthogonal
L?(M)© L?(My) of L>(My) in L?>(M) is isomorphic to an orthogonal direct
sum of copies of the coarse My-Mj-bimodule.

Proor. We keep the notation of Section 5.3.2. In particular, H; =
L?(M;). We have observed that L?(M) is isomorphic to L?(M;) ® H;(1),
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where

Hu(1) :cg@@( P H,®--H, )
n>1  ijFig#--Fin
117#1
We identify H; with H1®€, (H1® Ha)B(H1® Ho @ Hi) with H1® Ho @Hq,
and so on.
Let us set

2n—1

Kn=Hi1QHoQ@H1 - Q@ H1® Ho @H;.

Then, we have L*(M) = L?>(M;) & @, Kn. A straightforward verifica-
tion shows that the direct summands of this decomposition are Mj-M;-
subbimodules of yz, L?(M)yy,. All of them are direct sums of the coarse Mj-
M;i-bimodule, except for the first one which is the trivial M;-M;-bimodule.

O

LEMMA 19.1.3. Let (M1, 11), (M2, T2) be two tracial von Neumann alge-
bras and set (M, 1) = (My,1)*(Ma,72). Let P be a separable von Neumann
subalgebra of My which has no amenable direct summand. We identify P
with P x C and My with My x C. Then, for any free ultrafilter w, we have
P'NM¥ C My. In other terms, for every ¢ > 0, there exist a finite sub-
set F' of U(P) and 6 > 0 such that if x in the unit ball (M), satisfies
maxycr |uzr — zull, <6, then ||[x — Ep, (2)]], < e.

PrOOF. We assume that P does not have any amenable direct summand
but that P’ N M* ¢ M{. Take an element! x = (z,,) € P'N M* which does
not belong to M{’. Observe that E%; (z) = (E]\]\Z;’1 (z5,)) commutes with P.

By substracting E%; (z) to x we may assume that EA% (zn) = 0, so that

T, € L*(M)©L?(M,) for every n, with z still non-zero. Moreover, since P is
separable, we may replace (z,) by a subsequence satisfying lim,, ||[zn, y]||, =
0 for every y € P. Of course, we may assume that sup,, ||z, < 1.

We will apply Lemma 13.4.8 with Q = C, M instead of M, cL?(M1)p, =
K and

H = LA(M) © L*(My) = (L*(My) ® L*(My)) ® ¢4(I),

a direct sum of copies of the coarse M;-M;i-bimodule. Let us check that the
sequence (x,) of the elements z, € H satisfies the conditions (a), (b) and
(c) of this lemma (the net (&) of this lemma being replaced by (z,)). It
is immediate for (b) and (c) and Condition (a) holds since, for z € M; we
have

2@l = T(eha*zr,) = T(zeazna”) < a3 )2]; < |23
It follows that there exists a non-zero projection p’ € Z(P' N M) such that

Pyp’ is amenable relative to C inside M and so Pp’ is amenable (see Exercise

Ior simplicity, we denote in the same way a bounded sequence and its class in M.
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13.16). The greatest projection z in P such that zp’ = 0 belongs to Z(P)
and P(1 — z) is amenable since it is isomorphic to Pp’. This contradicts our
assumption and therefore we have P’ N MY C MY.

Let us show the last assertion of the lemma. If it does not hold, since
P is separable, there exist ¢ > 0 and a sequence x = (x,) in the unit
ball (M); of M such that lim, ||yz, — z,y||, = 0 for every y € P and
|zn — Ea, (20)]|y > € for every n. Then x € P’ M“ but « ¢ M{’. The
converse is also immediate. O

19.1.3. Two more lemmas.

LEMMA 19.1.4. Let (M, 1) = (M1, 71) * (Ma,T2) be the free product of
two tracial von Neumann algebras. Let P be a separable, diffuse, w.o. closed

self-adjoint subalgebra of My and let v € M be a partial isometry such that
vPv* C My and v*v =1p. Then v = 0.

PRrROOF. The proof is similar to that of Lemma 5.3.6. Since P is diffuse, it
contains a sequence (u,) of unitary operators such that 7 (u,) = 0 for every
n and lim, u,, = 0 in the w.o. topology. We claim that for every z,y € M we
have lim,, | Eag, (zuny)||, = 0. Using approximations by elements of the free
algebraic product M of My and Ms defined in Remark 5.3.5, we may assume
that x and y belong to M. By linearity, it suffices to consider the case where
TUpY = ariunyy1b with z1,y1 € My, and a (resp. b) is an alternated product

o

ending (resp. beginning) by some element in My or is the identity. Then,
we have

zuny = a((@1uny1) — 71 (z1uny1)1)b + 71 (z1Uny1 ) ab.

Since a((azlunyl) -7 (a:lunyl)l)b is an alternated product not in Ms, its
projection under Ejy, is 0 and so

Eng, (zuny) = 11 (z1uny1) Enr, (ab).

But we have lim,, 71 (z1u,y1) = 0 and therefore lim,, || Ey, (zuny)||, = 0.

In particular, we see that lim,, || Ear, (vunv*)||, = 0. On the other hand,
Eng, (vunv*) = vupv* and so ||Epg, (vunv®)|l, = 7(1p)Y2. Tt follows that
1p=0=w. Ul

LEMMA 19.1.5. Let (M, 1) be a tracial von Neumann algebra, P and Q
two von Neumann subalgebras. Let 0 < ¢ < 2712 be such that
|z — Eq(z)ll, <e

for x in the unit ball (P); of P. Then a corner of P embeds into Q inside
M.

PRrROOF. A straightforward modification of the proof of Lemma 14.3.2
shows the existence of a non-zero element h in P'N (M, eq) such that 7(h) <
T(eq) = 1. It follows from Theorem 17.1.1 that P <y Q. O
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19.2. Proof of the solidity of F,
We set M = L(F,) * L(F,), M; = L(F,) *x C and My = C x L(F,).

Assumet that there exists a non-amenable von Neumann subalgebra P of
L(F,,) (identified with M) such that P'NL(F,,) is diffuse. There is a non-zero
projection e € P such that ePe has no amenable corner (see Exercise 10.8).
In particular, ePe is diffuse and so, replacing if necessary e by a smaller
projection, we may assume that 7(e) = 1/k for some integer £ > 0. Then,
by Proposition 4.2.5 we have M; = My (C) ® (eMie). The von Neumann
subalgebra P = M, (C)®(ePe) has no amenable direct summand and P'NM,
is still diffuse. It follows that, replacing P by ]3, we may assume that P has
no amenable direct summand.

By Lemma 19.1.3, for £ > 0, there exist a finite subset F' of U(P) and
d > 0 such that if z in the unit ball (M), satisfies max,cp ||uz — zull, <6,
then ||z — En, (z)||, <e.

We set P® = P'N M. Let (o, 3) be as in Lemma 19.1.1. Since ¢ — oy
is continuous, there exists ¢ = 27" such that

VueF, Jlu—a ()l <6/2
and therefore
Vue FVe € (PO, lla—(2),u]lly < 2llu— a_¢(u)ll, < 6.

It follows that ||a—¢(z) — Eap (a—(@))|, < € for all z € (PY); or equiva-
lently

| = Bayan)(@)]], < €

for all z € (PY);.

So, having chosen ¢ small enough, we have P° <, a;(M7), by Lemma
19.1.5. Now, thanks to Theorem 17.1.2 we get non-zero projections p € P,
q € a;(My), a unital normal homomorphism 6 : pP% — qay(M;)q and a
non-zero partial isometry v € M such that vv* = p’ < p, v*v = ¢’ < ¢, and
zv = v0(z) for all x € pP%. Moreover, we have p’ € (pP°)’ N pMp and
¢ € 0(pP°p) NqMgq.

Since pP% is diffuse, the remark 5.3.7 implies that (pP%p)’'NpMp C M,
and so p’ € M. Similarly, since §(pP%p) is diffuse and since M = oy (M7) *
o (Ms), we get ¢’ € au(My). So, Py = pP°pp lies in My and v is a partial
isometry such that vv* = 1p,, v*Pov C ay(My).

With n fixed as above, we now construct by induction over £ > 0, partial
isometries v, € M and diffuse weakly closed self-adjoint subalgebras Py of
Mj such that

T(vgvk) = 7(v*0), vy = 1p,, v Pk C o jon-k(M1). (19.1)

For k = 0, the above Py and vy = v satisfy the required conditions. Assume
that we have constructed v;, P; for j = 0,1,--- ,k. We have

B(vg) PeB(vk) = B(vpPrvk) C a_yjgn—k(M).
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So Pp+1, defined as ay jon—x (B(vj)PrB(vk)), lies in M. Note that

041/2n7k(5(Uk))Pk+1041/2n*k(ﬂ(UZ)) = 041/2n7k(Pk)- (19.2)
On the other hand, by applying a; jgn—x in (19.1) we also have

al/zn—k (’U;;)al/zn—k (Pk)()él/zn—k (Uk) C al/Qn—k—l (Ml) (193)

Therefore, if we set vg+1 = @y jgn—+ (B(V])) v jon—# (Vg), we deduce from (19.2)
and (19.3) that
UZ+1Pk+1Uk+1 C Qup jgn—k—1 (Ml)
Moreover, since 3(vxvy) = vxvj, we have v vp41 = 011/277.7]@('[};'[)]6), so that
7(Vj11Vk+1) = T(vjvg). This ends the induction argument.
Taking k£ = n, we see that

vy Ppup, C o (M) = M.

Then, by Lemma 19.1.4, we get v, = 0 and also v = 0 since 7(v*v) =
7(v}vp), a contradiction. O

REMARK 19.2.1. Roughly speaking, the rigidity provided by the fact that
P has no amenable direct summand is used to build intertwiners between
subalgebras of a;(M7) and «y (M) for sufficiently small ¢’ — ¢. The main
difficulty is to glue together these intertwiners, which are partial isometries,
in order to get a non-zero intertwiner from a subalgebra of M; into oy (Mj).
The role of 8 is to overcome this problem.

Exercises

EXERCISE 19.1. Let M be a tracial von Neumann algebra such that

there exists an abelian diffuse von Neumann subalgebra in its center. Show
that M is diffuse.

EXERCISE 19.2. Show that a II; factor M is solid if and only if it satisfies
the following condition: for every diffuse von Neumann subalgebra ) of M
the commutant Q' N M is amenable.

EXERCISE 19.3. Let (M;,7;), ¢ = 1,2, be two tracial von Neumann

algebras. We assume that M is a full II; factor. Show that the free product
(My,711) % (My, 7o) is a full II; factor.

Notes

The solidity of L(FF,,), and more generally of any II; subfactor of L(G),
where G is a non-elementary ICC word-hyperbolic group G, was established
by Ozawa in [Oza04a]. His approach uses sophisticated C*-algebraic tools.
With the purpose of giving a more elementary and self-contained proof, the
Popa’s s-malleable deformation/rigidity method of this chapter has been
published in [Pop07d]. Note that a non-amenable II; factor having Pro-
perty Gamma cannot be solid [Oza04a]. In [Oza06], Ozawa has produced
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examples of prime II; factors that are not solid (see also [Fim11] for other
examples).

The first example of a II; factor that is not prime was given in [Pop83],
namely the von Neumann algebra of the free group with uncountably many
generators. Later, the primeness of L(F,) was proved by Ge [Ge98], us-
ing Voiculescu’s free entropy techniques. A new approach, based on the
notion of L2-rigidity for von Neumann algebras, was proposed by Peter-
son [Pet09]. He obtained in this way another proof of the primeness of
every non-amenable II; subfactor of L(F, ), and more generally of any free
products of diffuse finite von Neumann algebras. His examples have neither
Property Gamma nor Property (T).

Malleability properties were discovered in [Pop06c|, [Pop06d]. Since
then, malleable deformations have been constructed in various contexts and
are essential tools in studying group actions and II; factors (see the surveys
[Pop07b] and [Ioal3] for informations and references).

In [OP10a], Ozawa and Popa found that the free group von Neu-
mann algebras L(IF,,) have an even more remarkable property than solidity,
they named strong solidity. This means that the normalizer of any diffuse
amenable von Neumann subalgebra of L(IF,) generates an amenable von
Neumann algebra. This is stronger than solidity and implies that L(TF,,)
has no Cartan subalgebra, a fact initially proved by Voiculescu [Voi96] by
free probability techniques. Recently, Chifan and Sinclair [CS13] have esta-
blished the strong solidity of the von Neumann algebras of non-elementary
ICC word-hyperbolic groups. For related results see also [CH10], [Houl0],
[HS11], [Sin11], [CSU13|. All these results are obtained by using power-
ful deformation/rigidity strategies with various sources of deformations and
rigidity.






APPENDIX

A. C*-algebras

We collect below the results on C*-algebras that we need in this mono-
graph. For a concise reference we recommend [Tak02, Chapter I] and
[Mur90] for an additional first course.

A.1. Definition an examples. A (concrete) C*-algebra on a Hilbert
space H is a x-subalgebra of B(#) which is closed with respect to the norm
topology. For every operator x € B(H), one has the crucial identity ||xzx*|| =
ol

An abstract C*-algebra A is a Banach x-algebra where this identity holds
for every x € A. An important consequence is that the spectral radius of
every self-adjoint element is equal to its norm [Tak02, Proposition 1.4.2],
from which it follows that on any x-algebra there is at most one norm mak-
ing it a C*-algebra [Mur90, Corollary 2.1.2]. It also follows that every
homomorphism' ¢ from a C*-algebra into another one is norm decreasing
[Tak02, Proposition 1.5.2].

Apart from B(H), the most basic example of C*-algebra is Cy(X), the
abelian *-algebra (endowed with the uniform norm) of complex-valued con-
tinuous functions that vanish at infinity on a locally compact (Hausdorff)?
space X. Conversely, let A be an abelian C*-algebra and A its spectrum,
that is, the space of non-zero homomorphisms y from A to C. We view
x € A as the map 7 : x — x(z). Equipped with the topology of point-
wise convergence, Ais locally compact and the invaluable Gelfand theorem
states that the Gelfand map x — T is an isometric isomorphism from the
C*-algebra A onto the C*-algebra Cp(A) [Tak02, Theorem I1.4.4].

As a first consequence of this theorem, one gets the following result. Let
A be a unital C*-algebra, that is, having a unit element 1, and let z € A be
normal, that is, *z = xa*. Denote by Sp(z) its spectrum. Then there is a
unique isomorphism ¢ from C(Sp(z)) onto the C*-subalgebra of A generated
by z and 1 such that ¢(1) = 1 and ¢(z) = x, where z : C'(Sp(z) — C is
the identity function. If f € C'(Sp(zx)), then ¢(f) is denoted f(x). One says

IFor us, a homomorphism from a C*-algebra A into an other one B preserves the
algebraic operations and the involution.

2If X is compact, we write C'(X) instead of Co(X). All topological spaces will be
Hausdorff.
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that f(z) is obtained from z by continuous functional calculus. When A
is not unital, there is an adapted version [Tak02, page 19] which allows to
define similarly f(z) € A for every continuous complex-valued function f
on R such that f(0) = 0.

From the Gelfand theorem, one deduces that every injective homomor-
phism ¢ : A — B between two C*-algebras is isometric [Tak02, Corollary
1.5.4].

Every closed ideal of A is self-adjoint and the quotient is in a natural way
a C*-algebra [Tak02, Theorem 1.8.1]. It follows that the range ¢(A) of every
homomorphism ¢ : A — B is a C*-subalgebra of B, i.e., is automatically
closed.

Particularly important is the study of the representations of A, that is,
of the homomorphisms 7 from A into some B(#). In particular, 7(A) is a
C*-algebra on H. The Gelfand-Naimark theorem states that every abstract
C*-algebra has an injective representation as a concrete C*-subalgebra of
some B(#H) [Tak02, Theorem 1.9.8]

The finite-dimensional C*-algebras are well-understood. Indeed they
are all isomorphic to some direct sum @;* | M,,, (C) where M, (C) is the C*-
algebra of n x n matrices with complex entries (see Exercise 2.2 or [Tak02,
Section I.11]).

A.2. Positivity. Let A be a C*-algebra and A, its subspace of self-
adjoint elements. An essential feature of A is that A;, carries a natural
partial order. A self-adjoint element x is said to be positive, and one writes
x > 0, if it is of the form x = y*y for some y € A, or equivalently of the
form h? with h € A;,. For A C B(H), this means that x is a positive
operator in the usual sense, that is, self-adjoint with it spectrum contained
in Ry (or equivalently such that (£, 2&) > 0 for every £ € H). We denote
by A4 the set of positive elements in A. It is a closed convex cone with
Ay N (—A;) = {0} [Tak02, Theorem I1.6.1]. The partial order relation on
Agq is defined by y < x if  —y € A;. This implies that aya™ < axa® for
every a € A. When A is unital, let us also observe that x < ||z||1 for every
T € Agy. If y <z, but y # x, we write y < z.

We define the absolute value of x € A by |z| = (z*z)'/2. If z € A,,, we
set

1 1
vy = 5(al+2), @ = (] - 2).

These elements ;. and z_ are respectively the positive and negative part of
x. Hence, x is the difference of two positive elements z; and x_ in A such
that zox_ = 0.

It follows that A, generates linearly A. Indeed, let x € A. Then first

1 1
x = 5(37 +a*) + zz(a: — "),
where the self-adjoint operators ®(z) = (1/2)(z+2*) and I(x) = (1/2i)(z—
x*) are respectively called the real and imaginary part of x. Next we write
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these self-adjoint elements as the difference of their positive and negative
part. In conclusion, © = x1 —x9 +ixs —ixy, with z; positive and ||z;|| < |||,
1<i<4.

A linear functional ¢ on a C*-algebra A is said to be positive if p(x) > 0
for every = € Ay. Tt is automatically continuous and satisfies p(2*) = ¢(x)
for every x € A. Moreover, if A is unital, then ||¢|| = ¢(1) [Tak02, Section
1.9]. Conversely, every bounded linear functional ) on A such that ||¢| =
(1) is positive [Dix77, Proposition 2.1.9].

A linear map ¢ : A — B between C*-algebra is said to be positive if
¢(Ay) C By. Tt is bounded, preserves the passage to the adjoint, i.e.,
o(z*) = ¢(x)* for x € A, and moreover we have ||¢]| < 2|/¢(1)|| whenever
A is unital [Pau02, Proposition 2.1]. Homomorphisms are basic examples
of positive maps. A linear positive map ¢ : A — B is said to be faithful
if whenever x € A, is such that ¢(x) = 0, then z = 0. Note that a
homomorphism is faithful if and only if it is injective.

For every integer n > 1, and every C*-algebra C, we denote by M, (C)
the set of n X n matrices with entries in C. There is a natural way to
turn it in a C*-algebra (see [Tak02, Section IV.3]). Given a linear map
¢ : A — B between C*-algebra, we define a map ¢, : M,(A) — M,(B)
by én([aij]) = [¢(as;)]. When ¢ is positive, we could expect that ¢, is
still positive but this is not the case in general (see [Pau02, page 5]). Note
however that ¢, is a homomorphism whenever ¢ is a homomorphism, and
S0 positivity is preserved in this case.

A.3. Completely positive maps. They form a very important class
of morphisms, intermediate between positive linear maps and homomor-
phisms. For a comprehensive study of these morphisms see [Pau02]

DEFINITION A.1. A linear map ¢ : A — B between C*-algebras is said
to be completely positive if ¢,, is positive for every integer n > 1.

The following result provides an easy way to check that a linear map is
completely positive [Tak02, Corollary IV.3.4].

PropoOSITION A.2. A linear map ¢ : A — B is completely positive if
and only if szzl yip(xiz)y; > 0 for everyn > 1, z1,...,2, € A and
Yi,---5Yn €B.

In particular, given a € A, the map = — a*za from A to A is completely
positive. Every positive linear map from a C*-algebra into an abelian C*-
algebra is completely positive [Tak02, Corollary IV.3.5]. The general com-
pletely positive maps from A into B(#) are described by the dilation theorem
of Stinespring. We recall below its version in case A is unital (see [BOOS,
Theorem 1.5.3] for instance), which is the only case we need.

THEOREM A.3. Let A be a unital C*-algebra and ¢ : A — B(H) be a
completely positive map. There exist a Hilbert space K, a unital represen-
tation m : A — B(K), i.e., m(1) = 1, and an operator V. : H — K such
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that
o(x) =Vin(z)V
for every x € A. In particular, we have ||¢|| = ||V*V| = ||¢(1)].

The Schwarz inequality
Ve e A, () ¢(x) < |¢llop(z"z)

follows immediately.

A.4. Norm-one projections and conditional expectations. Let
A be a unital C*-algebra and B a C*-subalgebra with the same unit. The
notion of conditional expectation from A onto B is defined in Section 9.1: it
is a linear positive projection E which is B-bimodular, that is, E(bjzb2) =
b1 E(x)by for by,be € B and z € A. For z,y € A, we have the generalized
Cauchy-Schwarz inequality

E(y*z)E(y*z)* < ||lz|*E(y*y).

Assuming that ||z|| = 1, this is proved by developing E((zb—y)*(zb—y)) > 0
with b = E(z*y).

Taking y = 1 in the Cauchy-Schwarz inequality, we see that ||(E(z)| <
||z|]|]. Conversely, Tomyiama proved that every norm-one projection is a
conditional expectation [Tomb57]. More precisely we have the following
result.

THEOREM A.4. Let A be a unital C*-algebra, B C A a C*-subalgebra
with the same unit and E : A — B a linear map. The following conditions
are equivalent:

(i) E is a conditional expectation;
(ii) E is a completely positive projection;
(iii) F is a norm-one projection.

For a short proof, we refer to [BO08, Theorem 1.5.10].

A.5. Arveson’s extension theorem. Let A be a unital C*-algebra
and B a C*-subalgebra with the same unit. By the Hahn-Banach theorem,
every positive linear functional ¢ on B extends to a bounded linear func-
tional @ on A with the same norm. Thus we have ||¢|| = (1) and therefore
¢ is positive. It is a remarkable result of Arveson [Arv69] that the same
result still holds when C is replaced by any B(?), under an assumption of
complete positivity (see [BOO08, Theorem 1.6.1] for a concise proof).

THEOREM A.5. Let A be a unital C*-algebra and B a C*-subalgebra
with the same unit. Then, every completely positive map ¢ from B to B(H)
extends to a completely positive map ¢ : A — B(H)
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B. Standard Borel and measure spaces

In this monograph we will only deal with these spaces. We gather now
the few properties that we will use. For more information, we refer to

[Kec95].

B.1. Standard Borel spaces.

DEFINITION B.1. A Polish space is a separable topological space admit-
ting a compatible complete metric.

DEFINITION B.2. A standard Borel space is a Borel space isomorphic
to some Borel space (X, B), where B is the collection of Borel subsets of a
Polish space X.

These Borel spaces satisfy the following important property (see [Kec95,
Corollary 15.2]).

ProposiTiON B.3. Let f : X — Y be a Borel map between two standard
Borel spaces. Let A C X be a Borel subspace such that f|, is injective. Then
f(A) is a Borel subset of Y. In particular, if f is a Borel bijection, then it
1$ a Borel isomorphism.

Standard Borel spaces have a simple classification: they are either finite,
or isomorphic to Z, or to [0, 1] (see for instance [Kec95, Chapter 11, Theorem
15.6] or [Tak02, Corollary A.11}).

A Polish group is a topological group whose topology is Polish. A useful
result is the automatic continuity property stated below [Kec95, Theorem
9.10].

PROPOSITION B.4. Let f : G — H be a continuous bijective homomor-
phism between Polish groups. Then f is a homeomorphism.

For the next theorem, see [Kec95, Theorem 18.10].

THEOREM B.5 (Lusin-Novikov). Let X,Y be two standard Borel spaces
and E C X XY a Borel subset. We assume that for every x € X, the fiber
7 1(x) N E is countable, where m : X x Y — X is the projection onto X.
Then there is a countable partition E = U, E, of X XY into Borel subsets
such that the restriction of m to each E, is injective.

B.2. Standard probability measure spaces. They have a nice be-
haviour and are sufficiently general for all our practical purposes. Their
theory was started by von Neumann [vIN32a, vIN32b] and further studied
in particular by Halmos and von Neumann [HvIN42].

Let p be a probability measure on a Borel space X. We say that p
is continuous (or without atom) if u({t}) = 0 for all t € X. We say that
p is discrete if p = Y, p({t})ds, where T' is a subset of X, which is
necessarily countable. Every probability measure p can be uniquely written
as [t = e + g where p. is continuous and pg is discrete.
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DEFINITION B.6. A probability measure space (X, u) is said to be stan-
dard if there exists a standard conull Borel subspace in X. If in addition pu
is continuous, we say that (X, ) is a Lebesgue probability measure space.

One of the most important facts about standard probability measure
spaces is the Halmos-von Neumann theorem stating that they are isomorphic
to [0,1] equipped with its natural Borel structure together with a convex
combination of the Lebesgue probability measure on [0,1] and a discrete
probability measure. For details, see [Kec95, Chapter 11, §17] or [Ram71].

So there is only one Lebesgue probability measure space, up to iso-
morphism of probability measure spaces, and we speak of the Lebesgue
probability measure space. For the reader’s convenience, we give a proof
the uniqueness of this space, based on the classification of standard Borel
spaces.

THEOREM B.7. Let (X, ) be a standard probability measure space, where
W is continuous. There is a Borel isomorphism 6 : X — [0,1] such that
O = X\ where where O, is the pushforward of p under 0 and where \ is
the Lebesgue probability measure on [0, 1].

Proor. We follow [Kec95, Theorem 17.41]. Using the classification
theorem of standard Borel spaces, we may assume that X = [0, 1]. Let g be
the continuous function ¢ — p([0,t]) defined on [0, 1]. It is non-decreasing,
with g(0) = 0 and g(1) = 1. Furthermore, we have g.u = A since for any
t € [0,1], if we choose s with g(s) = t, we get

wlg=1([0,4]) = p([0, 5]) = g(s) =t = A([0,1]).

This function ¢ is not necessarily injective, but for every ¢t € [0,1] we
have u(g~1({t})) = 0. The subset T of [0, 1] such that the interval g—1(¢) is
not reduced to a point is countable, and therefore N = g~!(T) is such that
u(N) = 0. Note that g is a homeomorphism from [0,1] \ N onto [0, 1] \ T
Let @ € [0,1] \ T be an uncountable Borel set of Lebesgue measure 0 and
set P = ¢g71(Q). Then PUN and Q UT are two uncountable standard
Borel spaces, and therefore there is a Borel isomorphism A from P U N
onto Q@ UT. Now we define 6 to be equal to h on P U N and to g on the

complement. Obviously, 0 is a Borel isomorphism from [0, 1] onto itself such
that O,u = A. O
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(M)1: unit ball of M, 34

(M,H): von Neumann algebra on a
Hilbert space H, 4

(7p, Hy,€p): GNS representation
associated with ¢, 46

1as: unit of M, 4

A x G: crossed product, 14, 68

By(X): bounded Borel functions on X,
19, 31

C(X): continuous functions, X
compact, 311

C?, Cy, 19

Co(X): continuous functions vanishing
at infinity, 311

D(y): domain of the partial
isomorphism ¢, 18

E(Q): spectral projection relative to €,
32, 102

Ep, EY: conditional expectations, 140

E, = E(] — o0, t]), 32, 102

Ei(z) = E(Jt, +00]), 166

J, Ju: canonical conjugation operator,
98

L(G): left group von Neumann algebra
of G, 6

L(M): standard left image of M, 98

L(R): left von Neumann algebra of the
equivalence relation R, 20

L?(M): standard Hilbert M-module,
117

L*(M, Tr), 136

L*(M,7)+, 108

L*(M, ) = H,: GNS Hilbert space
when ¢ faithful, 46

L3(M): orthogonal of C in L*(M), 259

Lp,F € My(R): left convolution
operator, 20

Lg, & left bounded: left multiplication
by &, 129

Le, £ € L*(M): closure of LY, 98
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LY, &€ L*(M), 98

Ly, f € £2(G): left convolution product,
6

M, N, P,Q: von Neumann algebras, 4

M*: ultrapower of M, 75

Mt t >0, 62

M*°P: opposite algebra, 49

M..: predual of M, 115

M : positive elements of M, 32

M ® Ma: algebraic tensor product, 65

M;®Ms: tensor products of von
Neumann algebras, 65, 66

M; ~ Ms: isomorphic von Neumann
algebras, 11

My multiplication operator by f, 5

M, (A): n x n matrices with coefficients
in A, 4, 35, 313

M o: self-adjoint elements of M, 32

P <y Q: embedding of P into @ inside
M, 285

R(G): right group von Neumann
algebra of G, 6

R(M): standard right image of M, 98

R(R): right von Neumann algebra of
the equivalence relation R, 20

R(p): range of the partial isomorphism
©, 18

Rr, F € My(R): right convolution
operator, 20

R,: right multiplication by n, 130

Re, € € L*(M): closure of R, 98

RY, € € L*(M), 98

Ry, f € £2(G): right convolution
product, 8

S’: commutant of S, 4

S”: bicommutant of S, 4

S, characteristic function of the graph
of ¢, 20

[M : NJ]: index of a sub factor, 150
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[ME]: projection on the norm closure of
MEg, 31

[[R]]: full pseudo-group of the
equivalence relation R, 18

[R]: full group of the equivalence
relation R, 201

Ad (u): inner automorphism group
defined by the unitary u, 11

Aut (M): automorphism group of M, 11

Aut (M, A): automorphisms of M
preserving A, 201

Aut (M, T): trace preserving
automorphism group of M, 68

Aut (X, p): p.m.p. automorphisms, 13

Aut (R): automorphism group of the
equivalence relation R, 201

Bimod (M, N), 224

dim(Has) : M-module dimension, 133

Id: identity map on H, 3

S(z): imaginary part of z, 312

Inn (M): inner automorphism group of
M, 11

mod(6): module of the automorphism
0, 127

N: non-negative integers, 10

N*: positive integers, 10

Out (M): outer automorphism group of
M, 11

R(x): real part of z, 312

Sp (x): spectrum of z, 31, 311

span(MK), 37

sup,;xi, 36

T: unit circle, 9

Tr: trace (possibly unbounded), 12, 124

Trz: center-valued tracial weight, 143

|Al: cardinal of the set A, 19

lz|, x4, z—, 312

a1 ® asg: tensor product of
isomorphisms, 120

Vi Dis 35

/\i Di, 36

B(H): bounded operators on the
Hilbert space H, 3

B(Ha) = B(Ha, Har), 128

B(H, Kar): M-linear bounded maps,
128

F(Har): “finite rank” M-linear
operators, 128

GN(A): normalizing pseudo-group,
192

H(a): M-N bimodule relative to the
homomorphism «, 215

H(¢): M-N bimodule relative to the
completely positive map ¢, 216

H, K, L: Hilbert spaces, 4

H ®pr K: interior tensor product of
Hilbert modules, 222

9K: right bounded vectors, 130

H°: left bounded vectors, 129

HOF % Hilbert direct sums of H,
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Hi1 ® Ha: tensor product of Hilbert
spaces, 65

Z({M,ep)): ideal of (M, ep) generated
by its finite projections, 275

To({(M,eg)): ideal of (M, ep) generated
by ep, 148, 275

KC(H): compact operators on H, 4

My(R), 19

N (A): normalizer of A in M, 192

P(M) : projections in M, 32

R1 =~ Ra: isomorphic equivalence
relations, 22

Ra~x: orbit equivalence relation, 18

Rep(G): unitary representations of G,
224

S'(H): trace class operators on H, 116

S?(#H): Hilbert-Schmidt operators on
H, 136

U(M) : unitaries of M, 32

Z(M) : center of M, 37

d.: Dirac measure at =, 5

23,4 € N* U {oc}: canonical Hilbert
space of dimension 4, 80

ta: trivial representation of G, 219

A, Ag : left regular representation of G,
5

Ag/u: quasi-regular representation, 233

F(M): fundamental group of M, 63

F(R): fundamental group of R, 295

J(M): subfactors indices, 151

pe = g, 31
e,nt spectral measure defined by &, 7,
31

llz]l, |||l : norm of z, 3

lally, 12T 2], ], 97

we,n: vector linear form, 3, 30

wg = we,g, 30

w, wi, 230

H: contragredient bimodule, 221

®ienM;: infinite tensor product, 67

m < p: weak containment of
representations, 224

1, M;: product (or direct sum) of von
Neumann algebras, 25
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p, pc : right regular representation of asymptotically trivial, 259
G, 5
(M, ep): basic construction, 147 basic construction, 147
% M;: direct sum (or product) of von Bernoulli
Neumann algebras, 25 actions, 13, 69
T, Tar: normal tracial states, 6 generalized actions, 18
T1 @ T2: tensor product of traces, 66 bicommutant theorem, 30
Tu: integral on L*°(X, p), 13 bimodule, 100, 213
0. p: pushforward of v under 6, 316 bifinite, 215
1q: characteristic function of €2, 32 of finite (Jones’) index, 215
Ez, 145 pointed cyclic, 217
7: trace on B(Hum), 128
#: image of x in L?(M), 46, 97 C*-algebra, 4, 311
M: operators affiliated with M, 103 canonical conjugation operator, 98
MH7 HN7 (]V[HN): Hilbert modules canonical unitaries, 8, 15, 69
(bimodules), 100 Cartan inclusion, 196
MHN <m Kn: weak containment of Cartan inclusions
bimodules, 229 conjugate, 200
ep: projection L?(M) — L*(B), 140 unitarily conjugate, 200
p=4q,36 Cartan subalgebra, 196
p=<gq, 37 Cartan-rigid group, 290
p~q, 36 center-valued
s(z): support of a self-adjoint =, 34 trace, 142
si(z) : left support of x, 34, 103 tracial weight, 143
sp(x) : right support of z, 34, 103 central net in a II; factor, 261
uy = Ls,, 20 central support of a projection, 37
ug: canonical unitary, 8, 15, 69 coarse M-N-bimodule, 214
xéM : z affiliated with M, 103 coefficient
y<z,y<wz, 312 of a bimodule, 217
z(p): central support of p, 37 of a representation, 220
m, 135 completely additive linear functional, 40
n, 135 completely positive map, 313
composition, or (Connes) tensor
absolute value in a C*-algebra, 33, 312 product of bimodules, 223
AFD (approximately finite conditional expectation, 139
dimensional), 173 conjugate p.m.p. actions, 291
affiliated operator, 103 contragredient bimodule, 221
almost having invariant vectors, 225 convolver, 7, 98
alternated product, 74 corner of a von Neumann algebra, 39
amenability relative to a von Neumann cost of an equivalence relation, 296
subalgebra, 235 countable group, countable set, 17
amenable countable p.m.p. equivalence relation,
Cartan inclusion, 206 19
countable p.m.p. equivalence countably decomposable, 47
relation, 206 coupling constant, 135
group, 159 crossed product, 14, 68
von Neumann algebra, 161 cyclic vector, 6
amplification of a factor, 62 of a M-N-bimodule, 217
approximately finite dimensional
finite von Neumann algebra, 173 Day’s convexity argument, 164
tracial von Neumann algebra, 173 deformation of the identity, 254
von Neumann algebra, 188 dimension function, 87

asymptotically G-invariant net, 259 dimension of a module, 133
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direct sum (or product) of von
Neumann algebras, 25

direct summand of a von Neumann
algebra, 39

ergodic action, 15, 69
ergodic countable p.m.p. equivalence
relation, 21

factor, 9
of type I, 12
of type I, 12
of type I,,, 12
of type II;, 12
of type Ilo, 125
of type III, 127
faithful
homomorphism, 313
positive linear functional, 6
positive linear map, 313
Fell topology, 226, 227
Fourier coefficients, 8, 15, 69
free action, 15, 69
free product of von Neumann algebras,
72
free ultrafilter, 75
free von Neumann subalgebras, 70
full IT; factor, 249, 266
full group
of a p.m.p. equivalence relation, 201
of p.m.p. automorphisms, 201
full pseudogroup of a countable p.m.p.
equivalence relation, 18
functional calculus
Borel, 32, 102
continuous, 312
fundamental group
of a II; factor, 63
of a p.m.p. equivalence relation, 295

Gelfand map, 311
Gelfand-Naimark-Segal construction
(GNS), 46
group
algebra, 9
von Neumann algebra, 6
group measure space
Cartan subalgebra, 197, 287
Cartan-rigid group, 290
von Neumann algebra, 14

Haagerup property
for groups, 273
for von Neumann algebras, 274

INDEX

Hilbert-Schmidt operator, 135
homogeneous von Neumann algebra, 78
homomorphism between C*-algebras, 4,
311
hyperfinite
II; factor, 23
countable p.m.p. equivalence
relation, 209
finite von Neumann algebra, 173
hypertrace, 162

ICC group, 9
ideal of definition of a trace, 135
index (Jones’ index)
of a bimodule, 237
of a subfactor, 150
induced von Neumann algebra, 61
infinite tensor product, 67
inner amenable group, 267
inner automorphism, 11
integrable operator, 111
isomorphism
of equivalence relations, 22, 198
of probability measure spaces, 12
of von Neumann algebras, 11
isomorphism (or equivalence) of
M-modules, 121

Koopman representation, 118, 259

Lebesgue probability measure space,
316

left M-module, 100, 121

left bounded vector, 98, 129

left support of an operator, 34, 103

local approximation property, 174

locally finite group, 159

matrix units, 39
McDulff factor, 82
measure

continuous, 315

discrete, 315
mixing property, 18
module

faithful, 121

finite, 134

finitely generated, 133
module of an automorphism, 127
multiplicity function, 122

normal
positive linear functional, 40
positive linear map, 43



normalizer, 192
normalizing pseudo-group, 192

opposite algebra, 49

orbit equivalence relation, 18

orbit equivalence superrigidity, 291
orbit equivalent actions, 22, 198
orthonormal basis of a M-module, 130
outer automorphism group, 11

p.m.p. (probability measure
preserving), 12
p-m.p. action, 13
partial isomorphism, 18
Pimsner-Popa basis, 130, 150
polar decomposition
of a bounded operator, 34
of a bounded vector, 131
of an unbounded operator, 102
Polish group, 119, 315
positive
linear functional, 6, 313
linear map, 43, 313
positive definite function, 220
Powers-Stgrmer inequality, 109, 164
predual of a von Neumann algebra, 116
prime II; factor, 303
product (or direct sum) of von
Neumann algebras, 25
projections, 32
abelian, 77
equivalence of, 36
finite, 83
infinite, 83
minimal, 39
properly outer
action, 69
automorphism, 69
property
(H) for groups, 273
(H) for von Neumann algebras, 274
(P) of Schwartz, 170
(T) for von Neumann algebras, 242
(T) for groups, 241
Gamma, 261
property (H) relative to a von Neumann
subalgebra, 276
property (T) relative to a von Neumann
subalgebra, 246

Radon-Nikodym
derivative, 109, 116
theorem, 109, 116
reduced von Neumann algebra, 39

INDEX
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relative
property (T) for pairs of groups, 241
property (T) for pairs of von
Neumann algebras, 242
relatively rigid von Neumann
subalgebra, 242
representation of a C*-algebra, 312
right N-module, 100
right bounded vector, 130
right support of an operator, 34, 103
rigid embedding, 241, 242

s-malleable deformation, 304
Schwarz inequality, 314
semi-finite

trace, 124

von Neumann algebra, 125
separating vector, 6
solid II; factor, 303
spatial isomorphism, 11
spectral gap

for a factor, 261

for a representation, 257

for an action, 259
spectral measure, 32, 102
square integrable operator, 106
standard

Borel space, 315

probability measure space, 316
standard M-M-bimodule, 100, 214
standard form, 97
standard representation, 47, 97
state, 6
strong ergodicity, 266
strong operator (s.o0.) topology, 3
subtracial

completely positive map, 217

vector, 217
subunital completely positive map, 217

tensor product

of isomorphisms, 120

of von Neumann algebras, 65
trace-class operator, 116, 135
tracial

completely positive map, 217

state, 6

vector, 217

weight, 124
trivial M-M-bimodule, 100, 214

ultrapower of a tracial von Neumann
algebra, 75
unital C*-algebra, 311
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unitary implementation of Aut (M), 118

von Neumann algebra, 4
diffuse, 39
finite, 83, 95
infinite, 83
injective, 161
of type I, 78
of type I, 78
separable, 48, 119
tracial, 6

WH*-superrigid

action, 291

group, 301
weak containment

for bimodules, 229

for group representations, 224
weak operator (w.0.) topology, 3
weakly equivalent representations, 224
wreath product, 10

generalized, 10



