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CHAPTER 1

A first approach: examples

This chapter presents some basic constructions of von Neumann algebras
arising from measure theory, group theory, group actions and equivalence
relations. All these examples are naturally equipped with a faithful trace
and are naturally represented on a Hilbert space. This provides a plentiful
source of tracial von Neumann algebras to play with. More constructions
will be given in Chapter 5.

The most general von Neumann algebras are obtained from simpler
building blocks, called factors. These are the von Neumann algebras with
a trivial center. We will see that they appear frequently, under usual as-
sumptions. Infinite dimensional tracial factors (II1 factors) are our main
concern. We end this chapter with the most elementary example, the hy-
perfinite II1 factor, which is constructed as an appropriate closure of an
increasing sequence of matrix algebras.

1.1. Notation and preliminaries

Let H be a complex Hilbert space with inner-product 〈·, ·〉 (always as-
sumed to be antilinear in the first variable), and let B(H) be the algebra
of all bounded linear operators from H to H. Equipped with the involu-
tion x 7→ x∗ (adjoint of x) and with the operator norm, B(H) is a Banach
∗-algebra with unit IdH. We will denote by ‖x‖, or sometimes ‖x‖∞, the
operator norm of x ∈ B(H). Throughout this text, we will consider the two
following weaker topologies on B(H):

• the strong operator topology (s.o. topology), that is, the locally con-
vex topology on B(H) generated by the seminorms

pξ(x) = ‖xξ‖, ξ ∈ H,
• the weak operator topology (w.o. topology), that is, the locally con-

vex topology on B(H) generated by the seminorms

pξ,η(x) = |ωξ,η(x)|, ξ, η ∈ H,
where ωξ,η is the linear functional x 7→ 〈ξ, xη〉 on B(H).

This latter topology is weaker than the s.o. topology. It is strictly weaker
when H is infinite dimensional (see Exercise 1.1). An important observa-
tion is that the unit ball of B(H) is w.o. compact. This is an immediate
consequence of Tychonoff’s theorem.

3
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4 1. A FIRST APPROACH: EXAMPLES

This unit ball, endowed with the uniform structure associated with the
s.o. topology, is a complete space. In case H is separable, both w.o. and
s.o. topologies on the unit ball are metrizable and second-countable. On the
other hand, when H is infinite dimensional, this unit ball is not separable
with respect to the operator norm (Exercise 1.2).

A von Neumann algebra M on a Hilbert space H is a ∗-subalgebra of
B(H) (i.e., a subalgebra invariant under the ∗-operation) which is closed in
the s.o. topology and contains the identity operator IdH.1 We will sometimes
write (M,H) to specify the Hilbert space on which M acts, but H will often
be implicit in the definition of M . The unit IdH of M will also be denoted
1M or simply 1. We use the lettersH,K,L to denote complex Hilbert spaces,
while the letters M,N,P,Q will typically denote von Neumann algebras.

Given a subset S of B(H), we denote by S′ its commutant in B(H):

S′ = {x ∈ B(H) : xy = yx for all y ∈ S}.
The commutant (S′)′ of S′ is denoted S′′ and called the bicommutant of

S. Note that S′ is a s.o. closed unital subalgebra of B(H); if S = S∗, then
S′ = (S′)∗ and therefore S′ is a von Neumann algebra on H. We will see
in the next chapter that every von Neumann algebra appears in this way
(Theorem 2.1.3).

The first example of von Neumann algebra coming to mind is of course
M = B(H). Then, M ′ = C IdH. WhenH = Cn, we get the algebra Mn(C) of
n×n matrices with complex entries, the simplest example of a von Neumann
algebra.

We recall that a C∗-algebra on H is a ∗-subalgebra of B(H) which is
closed in the norm topology. Hence a von Neumann algebra is a C∗-algebra,
but the converse is not true. For instance the C∗-algebra K(H) of compact
operators on an infinite dimensional Hilbert space H is not a von Neumann
algebra on H: its s.o. closure is B(H).

We assume that the reader has a basic knowledge about C∗-algebras.
We have gathered in the appendix, with references, the main facts that
we will use. Note that for us, a homomorphism between two C∗-algebras
preserves the algebraic operations and the involution2. We recall that it is
automatically a contraction and a positive map, i.e., it preserves the positive
cone (Appendix A).

Remark 1.1.1. A C∗-algebra can be defined abstractly as a Banach ∗-
algebra A such that ‖x∗x‖ = ‖x‖2 for every x ∈ A. A celebrated theorem of
Gelfand and Naimark states that such an algebra is isometrically isomorphic
to a norm closed ∗-algebra of operators on some Hilbert space.

Similarly, for von Neumann algebras, there are two points of view: the
concrete and the abstract one (see the notes at the end of this chapter).

1We will see in Theorem 2.1.3 that we may require, equivalently, that M is closed in
the w.o. topology.

2In the literature, very often one says ∗-homomorphism to emphasize the fact that
the involution is also preserved.
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1.3. GROUP VON NEUMANN ALGEBRAS 5

In this monograph, we have chosen to define von Neumann algebras as
concretely represented operator algebras on some Hilbert space (even if this
Hilbert space will not always be explicitly mentioned).

1.2. Measure space von Neumann algebras

Every probability measure space (X,µ) gives rise in a natural way to an
abelian von Neumann algebra.

Proposition 1.2.1. Let (X,µ) be a probability measure space. We set
A = L∞(X,µ).

(i) For f ∈ L∞(X,µ), we denote by Mf the multiplication operator by
f on L2(X,µ), that is, Mfξ = fξ for ξ ∈ L2(X,µ). Then Mf is a
bounded operator and ‖Mf‖ = ‖f‖∞.

(ii) If A is identified with a subalgebra of B(L2(X,µ)) via f 7→Mf , then
A = A′. In particular, A is a von Neumann algebra on L2(X,µ)
and a maximal abelian subalgebra of B(L2(X,µ)).

Proof. (i) Obviously, Mf is a bounded operator with ‖Mf‖ ≤ ‖f‖∞
and it is a classical exercise in measure theory to show that ‖Mf‖ = ‖f‖∞.

(ii) Since A is abelian, we have A ⊂ A′. Let T ∈ A′ and set f = T (1).
Then, for h ∈ L∞(X,µ), we have T (h) = TMh1 = MhT (1) = hf and
‖fh‖2 ≤ ‖T‖‖h‖2. It follows that f ∈ L∞(X,µ) with ‖f‖∞ ≤ ‖T‖ and so
T = Mf . �

Remark 1.2.2. Recall that L∞(X,µ) is the dual Banach space of L1(X,µ).
The weak* topology on L∞(X,µ) is defined by the family of seminorms
qg(f) =

∣∣∫
X fg dµ

∣∣, g ∈ L1(X,µ). Equivalently, it is defined by the family
of seminorms

f 7→ pξ,η(f) =

∣∣∣∣∫
X
fξη dµ

∣∣∣∣
with ξ, η ∈ L2(X,µ). Therefore, the weak* topology coincides with the w.o.
topology on L∞(X,µ) acting on L2(X,µ).

1.3. Group von Neumann algebras

Let G be a group3. We denote by λ (or λG in case of ambiguity) and ρ
(or ρG) the left, and respectively right, regular representation of G in `2(G),
i.e., for all s, t ∈ G,

λ(s)δt = δst, ρ(s)δt = δts−1 ,

where (δt)t∈G is the natural orthonormal basis of `2(G).4

3For us G will be a discrete group, unless otherwise stated, and we are mostly inter-
ested in infinite countable groups.

4Given a set X, we denote by δx both the characteristic function of {x} and the Dirac
measure at x ∈ X.
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1.3.1. Definition and first properties. We denote by L(G) the strong
operator closure of the linear span of λ(G). This von Neumann algebra is
called the (left) group von Neumann algebra of G. Similarly, one introduces
the strong operator closure R(G) of the linear span of ρ(G). Obviously,
these two algebras commute: xy = yx for x ∈ L(G) and y ∈ R(G) and
we will see in Theorem 1.3.6 that each one is the commutant of the other.
These von Neumann algebras come equipped with a natural trace, as shown
below.

Definition 1.3.1. A linear functional ϕ on a von Neumann algebra M is
positive if ϕ(x∗x) ≥ 0 for every x ∈M (i.e., ϕ(x) ≥ 0 for x ≥ 0). Whenever,
in addition, ϕ(x∗x) = 0 implies x = 0, we say that ϕ is faithful. If ϕ is
positive with ϕ(1) = 1 we say that ϕ is a state5.

A positive linear functional such ϕ(xy) = ϕ(yx) for every x, y ∈ M is a
trace. If moreover it is a state, we call it a tracial state.

We recall that a positive linear functional is norm continuous with ‖ϕ‖ =
ϕ(1).

Definition 1.3.2. Given a von Neumann algebra M acting on a Hilbert
space H, a vector ξ ∈ H is called cyclic for M if Mξ is dense in H. It is
called separating for M if, for x ∈M , we have xξ = 0 if and only if x = 0.

We denote by e the unit of G. One easily checks that δe is a cyclic and
separating vector for L(G) (and R(G)). We define a faithful state on L(G)
by

τ(x) = 〈δe, xδe〉.
For s1, s2 ∈ G, we have τ(λ(s1)λ(s2)) = 1 if s1s2 = e and τ(λ(s1)λ(s2)) = 0
otherwise. It follows immediately that τ is a trace. We observe that this
trace is continuous with respect to the w.o. topology.

Thus, L(G) and R(G) are examples of tracial von Neumann algebras in
the following sense6.

Definition 1.3.3. A tracial von Neumann algebra (M, τ) is a von Neu-
mann algebra (M,H) equipped with a faithful tracial state τ whose res-
triction to the unit ball is continuous with respect to the w.o. topology
(equivalently, equipped with a faithful normal tracial state, see Proposition
2.5.5). In case of ambiguity, the given trace of M will be denoted by τM .

Since δe is a separating vector for L(G), the map x 7→ xδe provides a
natural identification of L(G) with a dense linear subspace of `2(G) that we
are going to characterize.

Recall first that for f, f1 ∈ `2(G), the convolution product

Lf (f1) = f ∗ f1,

5Recall that {x∗x : x ∈M} is the cone of all positive elements in M (see Appendix
A.2).

6L∞(X,µ) equipped with the integral τµ : f 7→
∫
X
f dµ is of course another example.
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defined by

(f ∗ f1)(t) =
∑
s∈G

f(s)f1(s−1t),

belongs to `∞(G). More precisely, using the Cauchy-Schwarz inequality, we
see that

‖f ∗ f1‖∞ ≤ ‖f‖2‖f1‖2. (1.1)

We say that f is a left convolver for G if f ∗f1 ∈ `2(G) for every f1 ∈ `2(G).
Observe that every finitely supported function f is a left convolver and that
Lf =

∑
s∈G f(s)λ(s).

Lemma 1.3.4. Let f ∈ `2(G).

(i) If f is a left convolver, Lf is a bounded operator on `2(G).
(ii) f is a left convolver if and only if there exists c > 0 such that
‖f ∗ k‖2 ≤ c‖k‖2 for every finitely supported function k on G.

Proof. (i) It is sufficient to prove that Lf has a closed graph. Let (fn)
be a sequence in `2(G) such that limn fn = 0 and limn Lf (fn) = h in `2(G).
It follows from the inequality (1.1) that

lim
n
‖f ∗ fn‖∞ = 0

and therefore h = 0.
(ii) Assume the existence of a bounded operator T such that T (k) = f ∗k

for every finitely supported function k on G. Let h ∈ `2(G) and let (hn)
be a sequence of finitely supported functions on G with limn ‖h− hn‖2 = 0.
Then we have limn ‖T (h)− f ∗ hn‖2 = 0 and limn ‖f ∗ h− f ∗ hn‖∞ = 0, so
that T = Lf . �

We denote by LC(G) the space of all left convolvers for G. Note that
for f ∈ LC(G) and t ∈ G, we have

Lf ◦ ρ(t) = ρ(t) ◦ Lf .
Since f 7→ Lf is injective, it follows that we may (and will) view LC(G) as
a subspace of ρ(G)′ ⊂ B(`2(G)).

Proposition 1.3.5. LC(G) is a von Neumann subalgebra of ρ(G)′.

Proof. Let f ∈ LC(G). Then (Lf )∗ = Lf∗ where f∗(t) = f(t−1), so
that LC(G) is stable under involution. Let now f1, f2 be in LC(G). For
t ∈ G, we have

Lf1 ◦ Lf2(δt) = Lf1 ◦ ρ(t−1) ◦ Lf2(δe) = ρ(t−1) ◦ Lf1(f2)

= ρ(t−1)(f1 ∗ f2) = (f1 ∗ f2) ∗ δt,
so that, by Lemma 1.3.4 (ii), f1 ∗ f2 ∈ LC(G) with Lf1Lf2 = Lf1∗f2 .

Let us show next that LC(G) is s.o. closed. Let T ∈ B(`2(G)) be
such that there exists a net (fi) of left convolvers with limi Lfi = T in
the s.o. topology. We put h = Tδe ∈ `2(G). Since Lfiδe = fi, we get

‖h− fi‖2 = ‖Tδe − Lfiδe‖2 → 0.
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To conclude, we show that T = Lh. For f ∈ `2(G), we have

‖Tf − fi ∗ f‖∞ ≤ ‖Tf − fi ∗ f‖2 → 0

and
‖h ∗ f − fi ∗ f‖∞ ≤ ‖h− fi‖2‖f‖2 → 0,

and therefore Tf = h ∗ f . Hence, h ∈ LC(G) with Lh = T . �

Since λ(G) ⊂ LC(G), it follows from the above proposition that L(G) ⊂
LC(G). Similarly, we may introduce the von Neumann RC(G) generated by
the right convolvers Rf for G. It commutes with LC(G), that is, LC(G) ⊂
RC(G)′.

We will see that L(G) is exactly the subspace of `2(G) formed by the
left convolvers and prove simultaneously that L(G) = R(G)′.

Theorem 1.3.6. We have LC(G) = L(G) = R(G)′ and RC(G) =
R(G) = L(G)′.

Proof. We already know that

L(G) ⊂ LC(G) ⊂ RC(G)′ ⊂ R(G)′.

Let us prove that R(G)′ ⊂ LC(G). To this end, we consider T ∈ R(G)′

and set f = Tδe. Then for t ∈ G, we have

Tδt = Tρ(t−1)δe = ρ(t−1)Tδe = f ∗ δt.
It follows that Tk = f ∗k for every finitely supported function k on G. Then,
by Lemma 1.3.4 (ii), we see that f ∈ LC(G) and T = Lf .

So, we have proved that LC(G) = RC(G)′ = R(G)′. Similarly, we have
RC(G) = LC(G)′ = L(G)′. Now, we use one of the fundamental tools of
the theory of von Neumann algebras, that will be established in the next
chapter, namely the von Neumann bicommutant theorem. It tells us that
every von Neumann algebra is equal to its bicommutant (see Theorem 2.1.3).
It follows that

L(G) = L(G)′′ = RC(G)′ = LC(G) = R(G)′

and, similarly,
R(G) = RC(G) = L(G)′.

�

Remark 1.3.7. Usually, for g ∈ G, we will put ug = λ(g) ∈ L(G) and
this unitary operator will be identified with the vector λ(g)δe = δg ∈ `2(G).
Therefore, every f ∈ `2(G) is written as f =

∑
g∈G fgug and, in particular,

every x ∈ L(G) is written as

x =
∑
g∈G

xgug. (1.2)

Observe that τ(x∗x) =
∑

g∈G |xg|
2 and that xg = τ(xu∗g). In analogy with

developments in Fourier series, the scalars xg are called the Fourier coeffi-
cients of x. The unitaries ug are called the canonical unitaries of L(G). We
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warn the reader that in (1.2) the convergence is in `2-norm and not with
respect to the s.o. or w.o. topology.

Denote, as usually, by C[G] the group algebra of G, that is, the ∗-
subalgebra of L(G) formed by the elements

∑
g∈G xgug where xg = 0 except

for a finite number of indices. Then L(G) is the s.o. closure of C[G].

Example 1.3.8. Consider the group G = Z of all integers. Since Z
is abelian, L(Z) is an abelian von Neumann algebra which coincides with
R(Z) = L(Z)′.

Let F : `2(Z) → L2(T) be the Fourier transform, where T is the unit
circle in C, equipped with the Lebesgue probability measure m. Then Fδn =
en with en(z) = zn and, for f ∈ LC(Z), we have FLfF−1 = M

f̂
where M

f̂

is the multiplication operator by the Fourier transform f̂ of f . Hence, f̂ is a
multiplier for T, that is, a function ψ on T such that h 7→ ψh is a bounded
operator from L2(T) into itself. It follows that FLC(Z)F−1 is the von
Neumann subalgebra of B(L2(T)) formed by the multiplication operators
by these multipliers for T. It can be identified in a natural way with L∞(T).

The canonical tracial state τ on L(Z) becomes, after Fourier transform,
the integration with respect to the Lebesgue probability measure on T:

τ(Lf ) =

∫
T
f̂ dm.

The same observations hold for any abelian group G: the group von

Neumann algebra L(G) is abelian and isomorphic to L∞(Ĝ,m) where Ĝ
is the dual group and m is the Haar probability measure on this compact
group.

However, the most interesting examples for us come from groups such
that L(G) has, in sharp contrast, a center reduced to the scalar operators.
A von Neumann algebra with such a trivial center is called a factor.

Proposition 1.3.9. Let G be a group. The following conditions are
equivalent:

(i) L(G) is a factor;
(ii) G is an ICC (infinite conjugacy classes) group, that is, every non

trivial conjugacy class
{
gsg−1 : g ∈ G

}
, s 6= e, is infinite.

Proof. Let x be an element of the center of L(G). For t ∈ G we have

xδe = λ(t)xλ(t−1)δe = λ(t)xρ(t)δe = λ(t)ρ(t)(xδe).

It follows that xδe is constant on conjugacy classes. Therefore, if G is ICC,
since xδe is square summable, we see that xδe = αδe with α ∈ C, and
therefore x = α IdH.

Assume now that G is not ICC and let C ⊂ G be a finite non-trivial
conjugacy class. An easy computation shows that the characteristic function
f = 1C of C defines an element Lf of the center of L(G) which is not a scalar
operator. �
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There are plenty of countable ICC groups. Among the simplest exam-
ples, let us mention:

• S∞ =
∞⋃
n=1

Sn, the group of those permutations of N∗ fixing all

but finitely many integers7 (Sn is the group of all permutations of
{1, 2, · · · , n}) (Exercise 1.7);
• Fn, n ≥ 2, the free group on n generators (Exercise 1.8);
• wreath products G = H o Γ where H is non trivial and Γ is an

infinite group, as well as many generalized wreath products.

Let us give some details about the third example. Suppose we are given
a non-trivial group H and a group Γ acting on a set I. We denote by H(I)

the direct sum of copies of H, indexed by I, that is, H(I) is the group of
all maps ξ : I → H such that ξi = e for all but finitely many i. We let Γ
act on H(I) by (γξ)i = ξγ−1i. The generalized wreath product H oI Γ is the

semi-direct product H(I)oΓ. The wreath product H oΓ is the particular case
where I = Γ on which Γ acts by left translations.

Proposition 1.3.10. Let H, Γ and I be as above. We denote by Γf
the subgroup of elements in Γ whose conjugacy class is finite. We assume
that the orbits of Γ y I are infinite and that the restricted action Γf y I
is faithful. Then the group G = H oI Γ is ICC. In particular every wreath
product H o Γ, where H is non trivial and Γ is infinite, is ICC.

Proof. We denote by e the unit of H(I) and by ε the unit of Γ. Given
g ∈ G and a subgroup K ⊂ G we set gK =

{
kgk−1 : k ∈ K

}
.

Let g = (ξ, γ) be an element of G distinct from the unit. Assume first
that ξ 6= e. Then its support is non-empty and has an infinite orbit under Γ,
so gΓ and a fortiori gG are infinite. Assume now that g = (e, γ) with γ 6= ε.
If γ 6∈ Γf then of course the conjugacy class of g is infinite. It remains to
consider the case where γ ∈ Γf \ {ε}. Since Γf acts faithfully on I, there

is an i0 ∈ I such that γi0 6= i0. Let ξ0 be an element in H(I) having all its
components trivial except the one of index i0 and take g0 = (ξ0, ε). Then
g−1

0 gg0 = (ξ−1
0 γ(ξ0), γ) has an infinite conjugacy class since ξ−1

0 γ(ξ0) 6= e,
and we see that gG is infinite. �

1.3.2. A remark about L(S∞). The factor L(S∞) has a very impor-
tant property that we will often meet later, and already in Section 1.6: it is
the s.o. closure of the union of an increasing sequence of finite dimensional
von Neumann algebras namely the von Neumann algebras L(Sn), n ≥ 1.
Indeed, these algebras are finite dimensional since the groups Sn are finite.
Moreover, L(Sn) is naturally isomorphic to the linear span of λS∞(Sn) in
L(S∞), as a consequence of the following proposition.

7In this text N denotes the set of non-negative integers and N∗ is the set of strictly
positive integers.
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Proposition 1.3.11. Let H be a subgroup of a countable group G. Then
the restriction of λG to H is a multiple of the left regular representation of
H.

Proof. WriteG as the disjoint union of its rightH-cosets: G = ∪s∈SHs,
where S is a set of representatives of H \G. Then `2(G) = ⊕s∈S`2(Hs). It
is enough to observe that `2(Hs) is invariant under the restriction of λG to
H, and that this restriction is equivalent to the left regular representation
of H. �

1.3.3. II1 factors and type I factors. Until now, we have met two
kinds of factors: the von Neumann algebras B(H) where H is a finite or
infinite dimensional Hilbert space (which are easily seen to be factors) and
the factors of the form L(G) where G is an ICC group. Since we are mainly
interested in the study of these objects up to isomorphism, let us first specify
what we mean by isomorphic von Neumann algebras.

Definition 1.3.12. We say that two von Neumann algebras M1 and M2

are isomorphic, and we write M1 'M2, if there exists a bijective homomor-
phism (i.e., an isomorphism) α : M1 →M2.

When M1 = M2 = M , we denote by Aut (M) the automorphism group
of M . If u is a unitary of M (i.e., such that uu∗ = 1M = u∗u), then Ad (u) :
x ∈ M 7→ uxu∗ is an automorphism of M called an inner automorphism.
The set of these inner automorphisms is a normal subgroup of Aut (M),
which is denoted by Inn (M). The quotient group Aut (M)/Inn (M) is also
of interest. It is denoted by Out (M) and is called the outer automorphism
group of M .

An isomorphism preserves the algebraic structures as well as the involu-
tion. We recall that it is automatically an isometry (see Appendix A). On
the other hand it is not necessarily continuous with respect to the w.o. or
s.o. topology (see Exercise 1.3) but we will see later (Remark 2.5.10) that
its restriction to the unit ball is continuous with respect to these topologies.

Since we have defined von Neumann algebras as acting on specified
Hilbert spaces, the following stronger notion of isomorphism is also very
natural.

Definition 1.3.13. We say that the von Neumann algebras (M1,H1),
(M2,H2), are spatially isomorphic if there exists a unitary operator U :
H1 → H2 such that x 7→ UxU∗ is an isomorphism (called spatial) from M1

onto M2.

Two isomorphic von Neumann algebras need not be spatially isomorphic
(see Exercise 1.4). Classification, up to spatial isomorphism, involves in
addition a notion of multiplicity.

Let us now come back to the examples of factors mentioned at the begin-
ning of this section. A basic result of linear algebra tells us that the (finite
dimensional) von Neumann algebra Mn(C) of n × n complex matrices has
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a unique tracial state τ , namely τ = (1/n)Tr where Tr is the usual trace of
matrices8.

On the other hand, it is easily shown that there is no tracial state on
the von Neumann algebra B(H) when H is infinite dimensional. Indeed, we
may write H as the orthogonal direct sum of two Hilbert subspaces H1,H2

of the same dimension as the dimension of H. If p1, p2 are the orthogonal
projections on these subspaces, there exist partial isometries u1, u2 with
u∗iui = IdH and uiu

∗
i = pi, i = 1, 2. The existence of a tracial state τ on

B(H) leads to the contradiction

1 = τ(p1) + τ(p2) = τ(u1u
∗
1) + τ(u2u

∗
2) = τ(u∗1u1) + τ(u∗2u2) = 2.

Thus, when G is an ICC group, L(G) is not isomorphic to any B(H):
it belongs to the class of II1 factors that are defined below, whereas B(H)
belongs to the class of type I factors.

Definition 1.3.14. A II1 factor is an infinite dimensional tracial von
Neumann algebra M whose center is reduced to the scalar operators9.

Definition 1.3.15. A factor M is said to be of type I if it is isomorphic
to some B(H). If dimH = n, we say that M (which is isomorphic to Mn(C))
is of type In. If dimH =∞, we say that M is of type I∞.

Factors of type I (on a separable Hilbert space) are classified, up to
isomorphism, by their dimension. On the other hand, the classification of
II1 factors is out of reach10. Already, given two countable ICC groupsG1, G2,
to determine whether the II1 factors L(G1) and L(G2) are isomorphic or not
is a very challenging question.

1.4. Group measure space von Neumann algebras

We will describe in this section a fundamental construction, associated
with an action of a group G on a probability measure space (X,µ). The
previous section was concerned with the case where X is reduced to a point.

1.4.1. Probability measure preserving actions. Recall that two
probability measure spaces (X1, µ1) and (X2, µ2) are isomorphic if there
exist conull subsets Y1 and Y2 of X1 and X2, respectively, and a Borel
isomorphism θ : Y1 → Y2 such that θ∗µ1|Y1

= µ2|Y2
, i.e., (θ∗µ1|Y1

)(E) =

µ1(θ−1(E)) = µ2(E) for every Borel subset E of Y2. Such a map θ is
called a probability measure preserving (p.m.p.) isomorphism, and a p.m.p.
automorphism whenever (X1, µ1) = (X2, µ2). We identify two isomorphisms

8By convention, τ will always denote tracial states whereas Tr will denote not neces-
sarily normalized traces.

9We will see later (Theorem 6.3.5) that it is enough to require the existence of a
tracial state: for factors, such a tracial state is automatically faithful and has the desired
continuity property. Moreover, it is unique.

10Indeed, II1 factors on separable Hilbert spaces, up to isomorphism, are not classi-
fiable by countable structures [ST09].
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that coincide almost everywhere. We denote by Aut (X,µ) the group of
(classes modulo null sets of) p.m.p. automorphisms of a probability measure
space (X,µ).

Every element θ ∈ Aut (X,µ) induces an automorphism f 7→ f ◦θ of the
algebra L∞(X,µ) which preserves the functional τµ : f 7→

∫
X f dµ, i.e.,

∀f ∈ L∞(X,µ),

∫
X
f ◦ θ dµ =

∫
X
f dµ.

We will see later that, for nice probability measure spaces (the so-called
standard ones, see Section B.2 in the appendix), every automorphism of
L∞(X,µ) comes from an element of Aut (X,µ) (see Corollary 3.3.3). The
most useful examples of probability measure spaces are the standard ones,
where the measure does not concentrate on a point (see Appendix B). It will
be our implicit assumption in the sequel.

Definition 1.4.1. A probability measure preserving (p.m.p.) action
G y (X,µ) of a group G on a probability measure space (X,µ) is a group
homomorphism from G into Aut (X,µ). The action of g ∈ G on w ∈ X will
be written gw.

The most classical examples of p.m.p. actions are Bernoulli actions. Let
(Y, ν) be a probability measure space and let X = Y G be equipped with the
product measure µ = ν⊗G. The Bernoulli action G y (X,µ) is defined by
(gx)h = xg−1h for x = (xh)h∈G ∈ X and g ∈ G. As a particular case, we
may take Y = {0, 1} and ν({0}) = p, ν({1}) = 1− p, for a given p ∈]0, 1[.

1.4.2. Construction of the group measure space algebra. Let
Gy (X,µ) be a p.m.p. action of G on a probability measure space (X,µ).
Let A be the von Neumann algebra L∞(X,µ), acting by mutiplication on
L2(X,µ). Let σ be the unitary representation of G on L2(X,µ) defined by
(σgf)(w) = f(g−1w). By restriction to L∞(X,µ) ⊂ L2(X,µ), this induces
an action of G by automorphisms on L∞(X,µ).

We encode this action of G on A through the involutive algebra A[G]
generated by a copy of A and a copy of G, subject to the covariance relation
gag−1 = σg(a). More precisely, A[G] is the space of formal sums of the form∑

g∈G agg where ag ∈ A and where the set of g ∈ G with ag 6= 0 is finite.
The product is defined by

(a1g)(a2h) = a1σg(a2)gh,

and the involution by

(ag)∗ = σg−1(a∗)g−1, where a∗(w) = a(w).

These operations are consistent with the operations on A and G: a ∈ A 7→ ae
is an injective ∗-homomorphism from A into A[G] and g ∈ G 7→ 1Ag is an
injective group homomorphism into the unitary group of A[G].11 Of course,

11When X is reduced to a point, A[G] is just the group algebra C[G].
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A will be identified with the corresponding subalgebra of A[G]. To avoid
confusion, g ∈ G when viewed as the element 1Ag of A[G] will be written
ug. Thus, a generic element of A[G] is written as∑

g∈G
agug. (1.3)

For a =
∑

g∈G agug and b =
∑

g∈G bgug in A[G], we have(∑
g∈G

agug
)(∑

g∈G
bgug

)
=
∑
g∈G

(a ∗ b)gug

where a ∗ b is the twisted convolution product

(a ∗ b)g =
∑
h∈G

ahσh(bh−1g). (1.4)

We will complete A[G] in order to get a von Neumann algebra. The first
step is to represent A[G] as a ∗-algebra of operators acting on the Hilbert
space H = L2(X,µ)⊗ `2(G) by sending a ∈ A ⊂ A[G] to L(a) = a⊗ 1 and
ug to L(ug) = σg ⊗ λg. Since the algebraic homomorphism rules for A and
G are satisfied, as well as the covariance rule L(ug)L(a)L(ug)

∗ = L(σg(a)),
this gives a ∗-homomorphism L from A[G] into B(H).

The group measure space von Neumann algebra associated with G y
(X,µ), or crossed product, is the von Neumann subalgebra of B(H) generated
by L(A)∪ {L(ug) : g ∈ G}, that is, the s.o. closure of L(A[G]) in B(H). We
denote it by L(A,G), or AoG.

Since L(
∑

g∈G agug)(1 ⊗ δe) =
∑

g∈G ag ⊗ δg we see that L is injective

and we identify A[G] with the corresponding s.o. dense subalgebra of AoG.
We also identify it in an obvious way with a dense subspace of the Hilbert
space L2(X,µ)⊗ `2(G). Note that L2(X,µ)⊗ `2(G) is the Hilbert space of
all f =

∑
g∈G fg ⊗ δg with fg ∈ L2(X,µ) and∑

g∈G
‖fg‖2L2(X) < +∞.

It is convenient to set

fgug = fg ⊗ δg
and thus to write f as the sum

∑
g∈G fgug, with coefficients fg ∈ L2(X,µ).

This is consistent with the above identification of a =
∑

g∈G agug ∈ A[G]

with
∑

g∈G ag ⊗ δg ∈ L2(X,µ)⊗ `2(G). Then we have(∑
g∈G

agug
)(∑

g∈G
fgug

)
=
∑
g∈G

(a ∗ f)gug

where a ∗ f is defined as in Equation (1.4)
Similarly, A[G] acts on H by right convolution:

R(aug)(fuh) = (fuh)(aug) = fσh(a)uhg,
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and thus (∑
g∈G

fgug
)(∑

g∈G
agug

)
=
∑
g∈G

(f ∗ a)gug.

We denote by R(A,G) the von Neumann subalgebra of B(H) generated by
this right action R. Obviously, L(A,G) and R(A,G) commute. The vector
ue = 1 ⊗ δe ∈ H is cyclic for L(A,G) and R(A,G) and therefore is also
separating for these two algebras. In particular, the elements of L(A,G)
may be identified to elements of L2(X,µ)⊗ `2(G) by x 7→ xue and thus are
written (in compatibility with (1.3)) as

x =
∑
g∈G

xgug, (1.5)

with
∑

g∈G ‖xg‖
2
L2(X) < +∞. Observe that A appears as a von Neumann

subalgebra of L(A,G).
Let τ be the linear functional on L(A,G) defined by

τ(x) = 〈ue, xue〉 =

∫
X
xe dµ, for x =

∑
g∈G

xgug.

Using the invariance of the probability measure µ, it is easily seen that τ is a
tracial state (of course w.o. continuous). We also remark that τ is faithful,
with

τ(x∗x) =
∑
g∈G

∫
X
|xg|2 dµ.

Following the lines of the proof of Theorem 1.3.6 (which corresponds to
the case A = C), one shows that L(A,G) is the subspace of f =

∑
g∈G fgug ∈

H = L2(X,µ)⊗ `2(G) that are left convolvers in the sense that there exists
c > 0 with ‖f ∗ k‖H ≤ c‖k‖H for every finitely supported k ∈ H.12 In par-
ticular, for every g ∈ G, we have fg ∈ L∞(X,µ) ⊂ L2(X,µ) with ‖fg‖∞ ≤ c.
One also gets L(A,G) = R(A,G)′ and R(A,G) = L(A,G)′.

Thus, the coefficients xg in (1.5) belong in fact to L∞(X,µ). They are
called the Fourier coefficients of x. The ug’s are called the canonical uni-
taries of the crossed product. Again, we warn the reader that the conver-
gence of the series in (1.5) does not occur in general with respect to the
s.o. topology.

We now introduce conditions on the action, under which A o G turns
out to be a factor, and so a II1 factor.

Definition 1.4.2. A p.m.p. action G y (X,µ) is (essentially) free if
every g ∈ G, g 6= e, acts (essentially) freely, i.e., the set {w ∈ X : gw = w}
has µ-measure 0.

The action is said to be ergodic if every Borel subset E of X such that
µ(gE \ E) = 0 for every g 6= e is either a null set or a conull set.

12See Chapter 7, Section 7.1 for a general study of this property.
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We give equivalent formulations, which in particular will allow us later
to extend these notions to group actions on any von Neumann algebra (see
Definition 5.2.2).

Lemma 1.4.3. Let Gy (X,µ) be a p.m.p. action. The following condi-
tions are equivalent:

(i) the action is ergodic;
(ii) (resp. (ii’)) the only functions f ∈ L∞(X,µ) (resp. f ∈ L2(X,µ))

that are fixed under the G-action (i.e., σg(f) = f for every g ∈ G)
are the constant (a.e.) functions;

(iii) the only measurable functions f : X → C that are fixed under the
G-action are the constant (a.e.) functions.

Proof. We only prove that (i) ⇒ (iii), from which the whole lemma
follows immediately. Let f : X → R be a measurable G-invariant function.
For every r ∈ R, the set Er = {w ∈ X : f(w) < r} is invariant, so has
measure 0 or 1. Set α = sup {r : µ(Er) = 0}. Then for r1 < α < r2, we have
µ(Er1) = 0 and µ(Er2) = 1. It follows that f ≡ α (a.e.). �

For the next two results, we will need the following property of standard
Borel spaces: they are countably separated Borel space. This means the
existence of a sequence (En) of Borel subsets such that for w1 6= w2 ∈ X
there is some En with w1 ∈ En and w2 /∈ En.

Lemma 1.4.4. Let (X,µ) be a probability measure space, g ∈ Aut (X,µ),
and let σg be the corresponding automorphism of L∞(X,µ). The following
conditions are equivalent:

(i) g acts freely;
(ii) for every Borel subset Y with µ(Y ) > 0, there exists a Borel subset

Z of Y with µ(Z) > 0 and Z ∩ gZ = ∅;
(iii) if a ∈ L∞(X,µ) is such that aσg(x) = xa for every x ∈ L∞(X,µ),

then a = 0.

Proof. (i) ⇒ (ii). Let (En) be a separating family of Borel subsets
as above. Assume that (i) holds and let Y be such that µ(Y ) > 0. Since
Y =

⋃(
Y ∩ (En \ g−1En)

)
(up to null sets) there exists n0 such that

µ(Y ∩ (En0 \ g−1En0)) 6= 0

and we take Z = Y ∩ (En0 \ g−1En0) .
(ii) ⇒ (iii). Let a ∈ L∞(X,µ) such that aσg(x) = xa for every x ∈

L∞(X,µ). If a 6= 0, there exists a Borel subset Y of X with µ(Y ) > 0 such
that, for every x ∈ L∞(X,µ), we have x(g−1w) = x(w) for almost every
w ∈ Y . Taking x = 1Z with Z as in (ii) leads to a contradiction.

Finally, the easy proof of (iii) ⇒ (i) is left to the reader. �

Proposition 1.4.5. Let G y (X,µ) be a p.m.p. action and set A =
L∞(X,µ).

(i) A′ ∩ (AoG) = A if and only if the action is free.
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(ii) Assume that the action is free. Then AoG is a factor if and only
if the action is ergodic.

Proof. Recall that A is naturally embedded into A o G by a 7→ aue.
Let x =

∑
g∈G xgug ∈ AoG. Then for a ∈ A we have

ax =
∑
g∈G

axgug, and xa =
∑
g∈G

xgσg(a)ug.

It follows that x belongs to A′ ∩ (A o G) if and only if axg = xgσg(a) for
every g ∈ G and a ∈ A. Assertion (i) is then immediate.

To prove (ii), we remark that x belongs to the center of A o G if and
only if it commutes with A and with the ug, g ∈ G. Assuming the freeness
of the action, we know that the center of AoG is contained in A. Moreover,
an element a ∈ A commutes with ug if and only if σg(a) = a. Hence, the
only elements of A commuting with ug for every g are the scalar operators
if and only if the action is ergodic. This concludes the proof �

1.4.3. Examples. It follows that when G y (X,µ) is a free and er-
godic p.m.p. action of an infinite group G, then L∞(X,µ)oG is a II1 factor.
Examples of such free and ergodic p.m.p. actions are plentiful. We mention
below the most basic ones.

First, let G be a countable13 dense subgroup of a compact group X.
Denote by µ the Haar probability measure on X. The left action of G onto
X by left multiplication is of course measure preserving. It is obviously free.
It is ergodic since any function in L2(X,µ) which is G-invariant is invariant
under the action of the whole group X (using the density of G) and therefore
is constant.

The simplest such example is X = T and G = exp(i2πZα) with α
irrational. For one more nice example, consider X = (Z/(2Z))N, the group
operation being the coordinate-wise addition, and take for G the subgroup
of sequences having only finitely many non-zero coordinates.

Secondly, let G be any countable group, (Y, ν) a probability measure
space and X = Y G, equipped with the product measure µ = ν⊗G. We
assume, as always, that ν does not concentrate on a single point.

Proposition 1.4.6. The Bernoulli action Gy X is free and ergodic.

Proof. We begin by showing that the action is free. Let g 6= e and
choose an infinite subset I of G such that gI ∩ I = ∅. Then we have

µ({x : gx = x}) ≤ µ(
{
x : xg−1h = xh, ∀h ∈ I

}
)

=
∏
h∈I

µ(
{
x : xg−1h = xh

}
) = 0,

since the (ν × ν)-measure of the diagonal of Y × Y is strictly smaller than
1.

13For us, a countable group will implicitly mean countably infinite, whereas countable
sets may be finite
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We now prove a stronger property than ergodicity, that is the mixing
property: for any Borel subsets A,B we have limg→∞ µ(A∩gB) = µ(A)µ(B).
Using basic arguments appealing to monotone classes, it suffices to prove this
property when A,B are both of the form

∏
g∈GEg where Eg = Y for all

except finitely many g. But then, obviously there is a finite subset F ⊂ G
such that µ(A ∩ gB) = µ(A)µ(B) for g 6∈ F . �

Remark 1.4.7. It is also interesting to deal with generalized Bernoulli
actions. We let G act on an infinite countable set I and we set X = Y I ,
endowed with the product measure µ = ν⊗I . This gives rise to the following
p.m.p. action on (X,µ), called a generalized Bernoulli action:

∀x ∈ X,∀g ∈ G, (gx)i = xg−1i.

Ergodicity and freeness of these actions are studied in Exercise 1.12.

As a last example of a free and ergodic action, let us mention the natural
action of SL(n,Z) on (Tn,m) where m is the Lebesgue probability measure
on Tn (see Exercise 1.13).

1.5. Von Neumann algebras from equivalence relations

We now present a construction that allows one to obtain factors from
not necessarily free group actions.

1.5.1. Countable p.m.p. equivalence relations.

Definition 1.5.1. A countable or discrete equivalence relation is an equi-
valence relation R ⊂ X × X on a standard Borel space X that is a Borel
subset of X ×X and whose equivalence classes are countable.

Let Gy X be an action of a countable group G by Borel automorphisms
of the Borel standard space X. The corresponding orbit equivalence relation
is

RGyX = {(x, gx) : x ∈ X, g ∈ G}.
It is an example of a countable equivalence relation, and is in fact the most
general one (see Exercise 1.15).

Coming back to the general case of Definition 1.5.1, a partial isomor-
phism ϕ : A → B between two Borel subsets of X is a Borel isomorphism
from A onto B. We denote by [[R]] the set of such ϕ whose graph is con-
tained into R, i.e., (x, ϕ(x)) ∈ R for every x ∈ A. The domain A of ϕ is
written D(ϕ) and its range B is written R(ϕ). This family of partial iso-
morphisms is stable by the natural notions of composition and inverse. It is
called the (full) pseudogroup of the equivalence relation. The pseudogroup
[[RGyX ]] is described in Exercise 1.17.

Given a probability measure µ on X, one defines a σ-finite measure ν
on R by

ν(C) =

∫
X
|Cx| dµ(x)
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where |Cx| denotes the cardinality of the set Cx = {(x, y) ∈ C : yRx}. Simi-
larly, we may define the measure C 7→

∫
X |Cx| dµ(x) where |Cx| denotes the

cardinal of the set Cx = {(y, x) ∈ C : yRx}. When these two measures are
the same, we say that R preserves the probability measure µ. In this case, we
say that R is a countable probability measure preserving (p.m.p.) equivalence
relation on (X,µ). We will implicitly endow R with the measure ν.

Lemma 1.5.2. Let R be a countable equivalence relation on a probability
measure space (X,µ). The two following conditions are equivalent:

(i) R preserves the measure µ;
(ii) for every ϕ : A→ B in [[R]], we have ϕ∗(µ|A) = µ|B.

When an action G y X of a countable group G is given and R = RGyX ,
these conditions are also equivalent to

(iii) Gy X preserves µ.

Proof. Obviously (i) implies (ii). Conversely, assume that (ii) holds.
Let E be a Borel subset of R. Since the two projections from R onto X
are countable to one, there exists a Borel countable partition E = ∪En such
that both projections are Borel isomorphisms from En onto their respective
ranges, as a consequence of a theorem of Lusin-Novikov (see B.5 in the
appendix). Each En is the graph of an element of [[R]], and the conclusion
(i) follows.

When R is defined by G y X, it suffices to observe that for every
ϕ : A→ B in [[R]], there exists a partition A = ∪g∈GAg such that ϕ(x) = gx
for x ∈ Ag. �

1.5.2. The von Neumann algebras of a countable p.m.p. equi-
valence relation. To any countable equivalence relation R on X, we as-
sociate an involutive algebra Mb(R) generalizing matrix algebras, which
correspond to trivial equivalence relations on finite sets, where all the ele-
ments are equivalent. By definition, Mb(R) is the set of bounded Borel
functions F : R → C such that there exists a constant C > 0 with, for every
x, y ∈ X,

|{z ∈ X : F (z, y) 6= 0}| ≤ C, and |{z ∈ X : F (x, z) 6= 0}| ≤ C.
It is easy to see thatMb(R) is an involutive algebra, when the product and
the involution are given respectively by the expressions

(F1 ∗ F2)(x, y) =
∑
zRx

F1(x, z)F2(z, y),

F ∗(x, y) = F (y, x).

Viewing the elements ofMb(R) as matrices, these operations are respectively
the matricial product and adjoint. Note also that Mb(R) contains the al-
gebra Bb(X) of bounded Borel functions on X: one identifies f ∈ Bb(X) to
the diagonal function (x, y) 7→ f(x)1∆(x, y) where 1∆ is the characteristic
function of the diagonal ∆ ⊂ R. The algebra Mb(R) also contains the full
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pseudo-group [[R]] when the element ϕ : A → B of [[R]] is identified with
the characteristic function Sϕ of the set {(ϕ(x), x) : x ∈ A}.

Every finite sum14

F (x, y) =
∑

fϕ(x)Sϕ(x, y), (1.6)

where ϕ ∈ [[R]] and fϕ : R(ϕ)→ C is a bounded Borel function, belongs to
Mb(R). Using again the Lusin-Novikov theorem B.5, it can be shown that
Mb(R) is exactly the space of such functions (see Exercise 1.14).

Assume in addition that R preserves the probability measure µ. We
define a representation L of Mb(R) in L2(R, ν) by the expression

LF (ξ)(x, y) = (F ∗ ξ)(x, y) =
∑
zRx

F (x, z)ξ(z, y),

for F ∈ Mb(R) and ξ ∈ L2(R, ν). We leave it to the reader to check that
F 7→ LF is a ∗-homomorphism from the ∗-algebraMb(R) into B(L2(R, ν)).
Moreover the restriction of L to Bb(X) induces an injective representation
of L∞(X,µ), defined by

(Lfξ)(x, y) = f(x)ξ(x, y)

for f ∈ L∞(X,µ) and ξ ∈ L2(R, ν). Note also that for ϕ,ψ ∈ [[R]], we
have LSϕ ∗ LSψ = LSϕ◦ψ and (LSϕ)∗ = LSϕ−1 . It follows that the element

uϕ = LSϕ is a partial isometry: u∗ϕuϕ and uϕu
∗
ϕ are the projections in

L∞(X,µ) ⊂ B(L2(R, ν)) corresponding to the multiplication by the charac-
teristic functions of the domain D(ϕ) of ϕ and of its range R(ϕ) respectively.
We have (uϕξ)(x, y) = ξ(ϕ−1(x), y) if x ∈ R(ϕ) and (uϕξ)(x, y) = 0 other-
wise.

The von Neumann algebra of the countable p.m.p. equivalence relationR
is the s.o. closure L(R) of {LF : F ∈Mb(R)} in B(L2(R, ν)). Observe that
L∞(X,µ) is naturally embedded as a von Neumann subalgebra of L(R).
From the expression (1.6) we see that L(R) is the von Neumann algebra
generated by the partial isometries uϕ where ϕ ranges over [[R]].

Similarly, we may let Mb(R) act on the right by

RF (ξ)(x, y) = (ξ ∗ F )(x, y) =
∑
zRx

ξ(x, z)F (z, y).

We denote by R(R) the von Neumann algebra generated by these operators
RF with F ∈ Mb(R). We may proceed as in Sections 1.3 and 1.4 to prove
the following facts:

• 1∆ is a cyclic and separating vector for L(R). In particular, T 7→
T1∆ identifies L(R) with a subspace of L2(R, ν). Note that LF1∆ =
F for F ∈Mb(R).
• τ(LF ) = 〈1∆, LF1∆〉 =

∫
X F (x, x) dµ(x) defines a faithful w.o. con-

tinuous tracial state on L(R).

14analogous to the expression (1.3)
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We might prove, as we did for group von Neumann algebras, that L(R)′ =
R(R) and that the elements of L(R) (resp. R(R)), viewed as functions, are
the left (resp. right) convolvers for R (see Section 7.1 for another proof).

Definition 1.5.3. Let R be a countable p.m.p. equivalence relation and
let A be a Borel subset of X. We denote by [A]R = p1(p−1

2 (A)) = p2(p−1
1 (A))

the R-saturation of A, where p1, p2 are the left and right projections from
R onto X. We say that A is invariant (or saturated) if [A]R = A (up to null
sets). The relation (R, µ) is called ergodic if every invariant Borel subset is
either null or co-null.

Remark 1.5.4. The Borel set A is invariant if and only if 1A◦p1 = 1A◦p2

ν-a.e. More generally, a Borel function f on X is said to be invariant if
f ◦ p1 = f ◦ p2 ν-a.e. The equivalence relation is ergodic if and only if the
only invariant bounded Borel functions are the constant (up to null sets)
ones.

Proposition 1.5.5. Let R be a countable p.m.p. equivalence relation on
(X,µ).

(i) L∞(X,µ)′ ∩ L(R) = L∞(X,µ), that is, L∞(X,µ) is a maximal
abelian subalgebra of L(R).

(ii) The center of L(R) is the algebra of invariant functions in L∞(X,µ).
In particular, L(R) is a factor if and only if the equivalence relation
is ergodic.

Proof. (i) Let T ∈ L(R) ∩ L∞(X,µ)′. We set F = T1∆ ∈ L2(R, ν).
For every f ∈ L∞(X,µ) we have

LfT1∆ = TLf1∆ = T (1∆ ∗ f),

where (ξ ∗ f)(x, y) = ξ(x, y)f(y) for ξ ∈ L2(R, ν). Moreover, T commutes
with the right convolution ξ 7→ ξ ∗ f by f , whence LfF = F ∗ f , that
is f(x)F (x, y) = F (x, y)f(y) ν-a.e. It follows that F is supported by the
diagonal ∆, and belongs to L∞(X,µ) since T is bounded.

(ii) f ∈ L∞(X,µ) belongs to the center of L(R) if and only if

f(x)F (x, y) = F (x, y)f(y), ν-a.e.,

for every F ∈Mb(R), therefore if and only if f ◦ p1 = f ◦ p2 ν-a.e. �

In particular, the von Neumann algebra of an ergodic countable p.m.p.
equivalence relation on a Lebesgue probability measure space (X,µ) (i.e.,
without atoms) is a II1 factor.

Remark 1.5.6. When G y (X,µ) is a free p.m.p. action and R =
RGyX , the von Neumann algebras L(R) and L∞(X,µ) o G coincide. In-
deed, the map φ : (x, g) 7→ (x, g−1x) induces a unitary operator V : ξ 7→ ξ◦φ
from L2(R, ν) onto L2(X × G,µ ⊗ λ) = L2(X,µ) ⊗ `2(G), where λ is the
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counting measure on G. This holds because the action is free, and there-
fore φ is an isomorphism from (X × G,µ ⊗ λ) onto (R, ν). We immedi-
ately see that V ∗(L∞(X,µ) o G)V ⊂ L(R). In fact L∞(X,µ) is identi-
cally preserved, and we have V ∗ugV = LSg where Sg is the characteris-
tic function of {(gx, x) : x ∈ X} ⊂ R. Similarly, we see that the commu-
tant of L∞(X,µ) o G is sent into the commutant R(R) of L(R), whence
V ∗(L∞(X,µ) o G)V = L(R) thanks to the von Neumann bicommutant
theorem.

1.5.3. Isomorphisms of p.m.p. equivalence relations.

Definition 1.5.7. We say that two countable p.m.p. equivalence rela-
tions R1 and R2 on (X1, µ1) and (X2, µ2) respectively are isomorphic (and
we write R1 ' R2) if there exists an isomorphism θ : (X1, µ1)→ (X2, µ2) (of
probability measure spaces, i.e., θ∗µ1 = µ2) such that (θ× θ)(R1) = R2, up
to null sets, that is, after restriction to conull subsets we have x ∼R1 y if and
only if θ(x) ∼R2 θ(y). Such a θ is said to induce or implement the isomor-
phism between the equivalence relations. If this holds when R1 = RG1 and
R2 = RG2 we say that the actions G1 y (X1, µ1) and G2 y (X2, µ2) are
orbit equivalent. This means that for a.e. x ∈ X1, we have θ(G1x) = G2θ(x).

Let θ : (X1, µ1)→ (X2, µ2) as above. Then U : ξ 7→ ξ◦(θ×θ) is a unitary
operator from L2(R2, ν2) onto L2(R1, ν1) such that UL(R2)U∗ = L(R1).
Moreover, this spatial isomorphism sends L∞(X2, µ2) onto L∞(X1, µ1). More
precisely, for f ∈ L∞(X2, µ2), we have ULfU

∗ = Lf◦θ. We also observe that
this isomorphism preserves the canonical traces on L(R1) and L(R2).

We deduce from Remark 1.5.6 that when G1 y (X1, µ1) and G2 y
(X2, µ2) are free p.m.p. actions that are orbit equivalent through θ : (X1, µ1)→
(X2, µ2), the isomorphism f 7→ f ◦ θ from L∞(X2, µ2) onto L∞(X1, µ1)
extends to a spatial isomorphism from the crossed product von Neumann
algebra L∞(X2, µ2)oG2 onto L∞(X1, µ1)oG1. We will study the converse
in Chapter 12 (Corollary 12.2.6).

1.6. Infinite tensor product of matrix algebras

In this section, we describe a way to construct II1 factors, starting from
increasing sequences of matrix algebras.

For any integer n, we embed the matrix algebra Mn(C) into M2n(C) by

x 7→
(
x 0
0 x

)
.

We consider the sequence of inclusions

M2(C) ↪→M22(C) ↪→ · · ·M2k(C) ↪→ · · ·
and we set M = ∪n≥1M2n(C). Since the inclusions are isometric, we have
a natural norm on M: if x ∈ M, we let ‖x‖ be ‖x‖M2n (C), where n is any

integer such that x ∈ M2n(C). There is also a natural trace defined by
τ(x) = τn(x), where again n is such that x ∈M2n(C) and τn is the (unique)
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tracial state on M2n(C). Obviously, we have τ(x∗x) ≥ 0 for every x ∈ M,
and τ(x∗x) = 0 if and only if x = 0. We denote by H the completion
of M equipped with the inner product 〈x, y〉 = τ(x∗y) and by ‖·‖τ the
corresponding norm. An element x of M, when viewed as a vector in H,
will be written x̂. For x, y ∈M, we set

π(x)ŷ = x̂y.

Then, we have (for some n),

‖π(x)ŷ‖2τ = τ(y∗x∗xy) = τn(y∗x∗xy) ≤ ‖x‖2τn(y∗y) = ‖x‖2‖ŷ‖2τ .
Therefore, π(x) extends to an element of B(H), still denoted by π(x). It is
easily checked that π :M→ B(H) is an injective ∗-homomorphism and we
will write x for π(x). Let R be the s.o. closure of M in B(H).

This construction of R from (M, τ) is an example of the GNS construc-
tion that we will meet later.

For x ∈ M, we observe that τ(x) =
〈
1̂, x1̂

〉
, and we extend τ to R by

the same expression. Using the density of M into R we see that τ is still a
tracial state on R. We also note that this tracial state is continuous on R
equipped with the w.o. topology.

Similarly, we may define a ∗-antihomomorphism π0 :M→ B(H) by:

∀x, y ∈M, π0(x)ŷ = ŷx.

Obviously, π0(x) commutes with R. We deduce from this observation that
τ is a faithful state. Indeed, assume that x ∈ R is such that τ(x∗x) = 0,
that is x1̂ = 0. Then xŷ = xπ0(y)1̂ = π0(y)(x1̂) = 0 for every y ∈M, which
implies that x = 0.

Finally, we show that R is a factor, thus a II1 factor. Let x be an element
of the center of R and let xi be a net in M which converges to x in the s.o.
topology. In particular, we have

lim
i

∥∥x1̂− x̂i
∥∥
τ

= lim
i

∥∥x1̂− xi1̂
∥∥
τ

= 0.

Since τ is a trace, we see that
∥∥uyu∗1̂∥∥

τ
=
∥∥y1̂
∥∥
τ

for every y ∈ R and every
unitary element u ∈ R. Therefore, if n is such that xi ∈M2n(C) and if u is
in the group U2n(C) of unitary 2n × 2n matrices, we get∥∥x1̂− uxiu∗1̂

∥∥
τ

=
∥∥uxu∗1̂− uxiu∗1̂∥∥τ =

∥∥x1̂− x̂i
∥∥
τ
.

Let λ be the Haar probability measure on the compact group U2n(C). Since∫
U2n (C) uxiu

∗ dλ(u) commutes with every element of U2n(C), it belongs to

the center of M2n(C), and therefore is a scalar operator αi1. We have∥∥x1̂− αi1̂
∥∥
τ

=
∥∥∥x1̂−

∫
U(M2n )

uxiu
∗ dλ(u)

∥∥∥
τ
≤
∥∥x1̂− x̂i

∥∥
τ
.

It follows that limi

∥∥x1̂− αi1̂
∥∥
τ

= 0, and therefore x is a scalar operator.
This factor R is called the hyperfinite II1 factor. Since M2k(C) =

M2(C)⊗k, we write R = M2(C)⊗∞.
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Remark 1.6.1. This construction may be extended to any sequence of
inclusions

Mn1(C) ↪→Mn2(C) ↪→ · · ·Mnk(C) ↪→ · · ·
where nk+1 = pknk, and x ∈Mnk(C) is embedded into Mnk+1

(C) by putting

diagonally pk copies of x.15 Like L(S∞), these factors are the s.o. closure
of an increasing union of finite dimensional von Neumann algebras (indeed
matrix algebras here). We will see in Chapter 11 that all these factors
are isomorphic to the above factor R and thus find the explanation for the
terminology “the” hyperfinite II1 factor.

Comments. So far, we have now at hand various examples of II1 fac-
tors. In the sequel, we will meet several constructions giving rise to possibly
new examples (see for instance Chapter 5).

We leave this chapter with many questions. A first one is, since we have
defined von Neumann algebras in a concrete way as operator algebras acting
on a given Hilbert space, what are the possible concrete representations for
a given von Neumann algebra? This will be studied in Chapter 8.

A much more important and challenging problem is the classification of
II1 factors, up to isomorphism. Those factors are so ubiquitous that there
is a serious need to detect whether they are isomorphic or not, hence a
serious need of invariants. Among the most useful invariants (up to iso-
morphism) for a II1 factor M , we will meet the fundamental group F(M),
the set I(M) of indices of subfactors (see respectively Definitions 4.2.4 and
9.4.9) and the outer automorphism group Out (M) (Definition 1.3.12). We
will also introduce several invariant properties such as amenability (Chapter
10), the Kazhdan property (T) (Chapter 14), and the Haagerup property
(H) (Chapter 16).

Exercises

Exercise 1.1. Let (en)n∈N be an orthonormal sequence in a Hilbert
space H. Let xn be the operator sending e0 onto en, and such that xn(ξ) = 0
whenever ξ is orthogonal to e0. Check that limn xn = 0 with respect to the
w.o. topology but not with respect to the s.o. topology.

Exercise 1.2. Let H be a separable Hilbert space.

(a) Show that the unit ball
(
B(H)

)
1

of B(H) is metrizable and compact
(hence second-countable) relative to the w.o. topology.

(b) Show that
(
B(H)

)
1

is metrizable and second-countable relative to
the s.o. topology, and complete for the corresponding uniform struc-
ture.

(c) When H is infinite dimensional, show that
(
B(H)

)
1

is not separable

relative to the operator norm topology (take H = L2([0, 1]) for
instance).

15This construction will be generalized in section 5.1.2.
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Exercise 1.3. Let H be a separable infinite dimensional Hilbert space
and let α be the isomorphism sending x ∈ B(H) onto α(x) ∈ B(H⊕∞) with
α(x)((ξn)n) = (xξn)n for every (ξn)n ∈ H⊕∞. Show that α(B(H)) is a von
Neumann algebra on H⊕∞, but that α is not continuous with respect to the
w.o. (or s.o.) topologies16.

Exercise 1.4. Let H be a separable Hilbert space. Let k ∈ N∗ and
let αk be the isomorphism sending x ∈ B(H) onto αk(x) ∈ B(H⊕k) with
αk(x)((ξn)n) = (xξn)n for every (ξn)n ∈ H⊕k. Show that the von Neumann
algebras αk1(B(H)) and αk2(B(H)) are spatially isomorphic if and only if
k1 = k2.

Exercise 1.5. Let (X,µ) be a probability space and A = L∞(X,µ). We
view A as a subspace L2(X,µ) and as a von Neumann algebra on L2(X).
Show that on the unit ball (A)1 of the von Neumann algebra A, the s.o.
topology coincides with the topology defined by ‖·‖2. Show that ((A)1, ‖·‖2)
is a complete metric space.

Exercise 1.6. Let (Mi,Hi) be a family of von Neumann algebras. Given
(Ti) with Ti ∈ Mi and sup ‖Ti‖ < +∞, let T be the operator acting on the
Hilbert space direct sum H = ⊕iHi by T

(
(ξi)i

)
= (Tξi)i. We denote by∑⊕

i Mi, or also by
∏
iMi, the set of such operators T . Show that

∑⊕
i Mi is

a von Neumann subalgebra of B(H).
It is called the direct sum, or also the (`∞-)product of the von Neumann

algebras Mi (both terminologies and notation are usual in the literature).
Note that the projections 1Mi belong to the center of the direct sum.

Exercise 1.7. Let S∞ = ∪∞n=1Sn be the group of finite permutations of
N∗. Let σ ∈ Sn be a non-trivial permutation and let i be such that σ(i) 6= i.
For j > n, denote by sj the transposition permuting i and j. Show that{
sjσs

−1
j : j > n

}
is infinite.

Exercise 1.8. Show that the free group Fn, n ≥ 2, is ICC.

Exercise 1.9. Let Gy (X,µ) be a p.m.p. action of a countable group
G and A = L∞(X,µ). We keep the notation of Section 1.4.2. Let W be
the unitary operator of H = L2(X,µ) ⊗ `2(G) = `2(G,L2(X,µ)) defined
by W (f)(s) = σs(f(s)) for f : s 7→ f(s) ∈ L2(X,µ). For a ∈ L∞(X,µ),
we define the operator π(a) on H by (π(a)f)(s) = σs−1(a)f(s). Show that
W (σs⊗λs)W ∗ = 1⊗λs for s ∈ G, and that W (a⊗ 1)W ∗ = π(a). Therefore
A o G may be (and is often) alternatively defined as the von Neumann
subalgebra of B(H) generated by (π(A) ∪ 1⊗ λ(G)).

Exercise 1.10. Let Gy (X,µ) be a p.m.p. action of an ICC group G
and set A = L∞(X,µ). Show that the commutant of {ug : g ∈ G} in AoG

16H⊕∞ denotes the countably infinite Hilbert space direct sum of copies of H and,
for k ∈ N∗, the Hilbert space direct sum of k copies of H is denoted by H⊕k.
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is the fixed-point algebra AG. Conclude that A o G is a II1 factor if and
only if the action is ergodic.

Exercise 1.11. Let Gy (X,µ) be a p.m.p. action and A = L∞(X,µ).
Let x =

∑
g∈G xgug ∈ AoG and ξ =

∑
g∈G ξgug ∈ L2(X,µ)⊗`2(G). We set

xξ =
∑

g∈G(xξ)gug ∈ L2(X,µ)⊗`2(G). Show that (xξ)g =
∑

h∈G xhσh(ξh−1g),

where the convergence holds in L1(X,µ), and that

‖(xξ)g‖L1(X) ≤
(∑
h∈G
‖xh‖2L2(X)

)1/2(∑
h∈G
‖ξh‖2L2(X)

)1/2
.

Exercise 1.12. Let G y (X,µ) be a generalized Bernoulli action as
defined in Remark 1.4.7.

(i) Show that this action is ergodic if and only if every orbit of the
action Gy I is infinite.

(ii) Whenever ν has no atom, show that this generalized Bernoulli ac-
tion G y (X,µ) is free if and only if the action G y I is faithful,
that is, for every g 6= e there exists i ∈ I with gi 6= i. In case ν
has atoms, show that the generalized Bernoulli action is free if and
only if for every g 6= e the set {i ∈ I : gi 6= i} is infinite.

Exercise 1.13. Show that the canonical action of SL(n,Z) on (Tn,m)
is free and ergodic (Hint: to prove ergodicity, use the Fourier transform from
L2(Tn,m) onto `2(Zn)).

Observe that SL(n,Z) can be replaced by any subgroup whose orbits on
Zn are infinite, except the trivial one.

Exercise 1.14. Let R be a countable equivalence relation on X.

(i) Let C be a Borel subset of R with

sup
x∈X
|Cx| < +∞, sup

x∈X
|Cx| < +∞.

Show that there is a partition C =
⊔
Cn into Borel subsets such

that the second projection p2 is injective on each Cn and p2(Cm) ⊃
p2(Cn) for m < n. Conclude that there are only finitely many such
non-empty subsets. Show that C is the disjoint union of finitely
many Borel subsets such that both projections from X ×X → X
are injective when restricted to them (use Theorem B.5).

(ii) Show that every F ∈ Mb(R) may be written as a finite sum
F (x, y) =

∑
fϕ(x)Sϕ(x, y), where ϕ ∈ [[R]] and fϕ : R(ϕ) → C

is a bounded Borel function.

Exercise 1.15. Let R be a countable equivalence relation on X.

(i) Show that there exists a partition R\∆ =
⊔
Dn into Borel subsets

such that both projections p1, p2 restricted to each Dn are injective
with p1(Dn) ∩ p2(Dn) = ∅.

(ii) Use this partition to construct a countable group of Borel isomor-
phisms of X such R = RGyX (see [FM77a, Theorem 1]).
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Exercise 1.16. Let R be a countable p.m.p. equivalence relation on
(X,µ). We identify L(R) to a subspace of L2(R, ν) by sending T ∈ L(R)
onto FT = T1∆. Then we denote by LFT the operator T .

(i) Let F ∈ L(R) and ξ ∈ L2(R, ν). Show that

(LF ξ)(x, y) =
∑
z

F (x, z)ξ(z, y) for a.e. (x, y) ∈ R.

(ii) Let F1, F2 ∈ L(R). Show that LF1 ◦ LF2 = LF1∗F2 where

(F1 ∗ F2)(x, y) =
∑
z

F1(x, z)F2(z, y) a.e.

(iii) Let F ∈ L(R). Show that (LF )∗ = LF ∗ where F ∗(x, y) = F (y, x)
a.e.

(iv) Let F ∈ L(R). Show that |F (x, y)| ≤ ‖LF ‖ a.e.

Exercise 1.17. Let G y (X,µ) a p.m.p. action and let (RGyX , µ) be
the corresponding p.m.p. equivalence relation. Show that a Borel isomor-
phism ϕ between two Borel subsets A,B of X belongs to [[RGyX ]] if and
only if there exists a partition A = ∪g∈GAg of A into Borel subsets such
that ϕ(x) = gx for a.e. x ∈ Ag.

Notes
The main part of this chapter is taken from the founding papers of

Murray and von Neumann [MVN36, MvN37, vN39, MvN43], where
von Neumann algebras were called rings of operators.

These algebras can also be abstractly defined as C∗-algebras that are
duals of some Banach space17. Indeed, Dixmier [Dix53] proved that every
von Neumann algebra is the dual of a Banach space and Sakai has shown
[Sak56] that if a unital C∗-algebra A is the dual of a Banach space F , there
is an injective homomorphism π from A into some B(H) such that (π(A),H)
is a von Neumann algebra. Moreover, this predual F is unique. It is called
the predual of M (see [Tak02, Theorem III.3.5 and Corollary III.3.9] for
instance). For the case of tracial von Neumann algebras, see Section 7.4.2.

The importance of factors as basic building blocks for general von Neu-
mann algebras was already recognized in the seminal paper [MVN36] which
is a sequel of von Neumann’s article [vN30]. In [MVN36] the first examples
of II1 factors were exhibited as crossed products. Soon after, constructions
of factors as infinite tensor products of matrix algebras were investigated by
von Neumann in [vN39]. Later, group von Neumann algebras were defined
and studied in [MvN43]. In this paper, among many other outstanding
results, it was shown that the hyperfinite factor R is the unique hyperfi-
nite separable II1 factor, up to isomorphism. This will be made precise and
proved in Chapter 11. In particular, Murray and von Neumann discovered
that R is isomorphic to L(S∞) but is not isomorphic to L(F2).

17Thus defined, they are often called W ∗-algebras.
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Automorphisms of crossed products associated with free ergodic p.m.p.
actions were first studied in the pioneering work of Singer [Sin55]. This
was followed by Dye’s deep analysis of the notion of orbit equivalence of
group actions, in connection with the associated crossed products [Dye59,
Dye63]. The von Neumann algebras of countable measured equivalence
relations are studied in detail in [FM77a, FM77b]. Previously, Krieger
had led the way by showing how the freeness of a group action G y X
could be relaxed in order to get a factor [Kri70].
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CHAPTER 2

Fundamentals on von Neumann algebras

This chapter contains the most essential notions to start the study of
von Neumann algebras.

We first introduce two key results: the von Neumann bicommutant the-
orem and the Kaplansky density theorem.

Next, we point out that an immediate consequence of the spectral theory
is the abundance of projections in von Neumann algebras. We state some
useful facts to know about the geometry of projections.

We observe that the definition of von Neumann algebras as concretely
represented on Hilbert spaces, although easily accessible, has some draw-
backs. For instance, the w.o. and s.o. topologies are not intrinsic, and so
the notion of continuity for these topologies is not intrinsic either. To get
around this difficulty, we introduce the notion of normal positive linear map,
whose continuity is defined by using the order, and therefore is preserved
under isomorphism.

However, the situation is not so bad. On its unit ball, the w.o. and
s.o. topologies do not depend on the concrete representation of the von
Neumann algebra. A normal positive linear map is characterized by the fact
that its restriction to the unit ball is continuous with respect to either of
these topologies. In the last section we show that a tracial von Neumann
algebra has a natural representation, called the standard representation. We
will highlight later, in Chapter 8, its central role in the classification of the
representations of the algebra.

2.1. Von Neumann’s bicommutant theorem

We begin by showing that, although different for infinite dimensional
Hilbert spaces (see Exercise 1.1), the s.o. and w.o. topologies introduced in
the first chapter have the same continuous linear functionals. Recall that for
ξ, η in a Hilbert space H we denote by ωξ,η the linear functional x 7→ 〈ξ, xη〉
on B(H). We set ωξ = ωξ,ξ.

Proposition 2.1.1. Let ω be a linear functional on B(H). The following
conditions are equivalent:

(i) there exist ξ1, . . . , ξn, η1, . . . ηn ∈ H such that ω(x) =
∑n

i=1 ωηi,ξi(x)
for all x ∈ B(H);

(ii) ω is w.o. continuous;
(iii) ω is s.o. continuous.

29
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Proof. (i)⇒ (ii)⇒ (iii) is obvious. It remains to show that (iii)⇒ (i).
Let ω be a s.o. continuous linear functional. There exist vectors ξ1, . . . , ξn ∈
H such that, for all x ∈ B(H),

|ω(x)| ≤
( n∑
i=1

‖xξi‖2
)1/2

.

Let H⊕n =

n times︷ ︸︸ ︷
H⊕ · · · ⊕ H be the Hilbert direct sum of n copies of H. We

set ξ = (ξ1, . . . , ξn) ∈ H⊕n and for x ∈ B(H),

θ(x)ξ = (xξ1, . . . , xξn).

The linear functional ψ : θ(x)ξ 7→ ω(x) is continuous on the vector sub-
space θ(B(H))ξ of H⊕n. Therefore it extends to a linear continuous func-
tional on the norm closure K of θ(B(H))ξ. It follows that there exists
η = (η1, . . . , ηn) ∈ K such that, for x ∈ B(H),

ω(x) = ψ(θ(x)ξ) = 〈η, θ(x)ξ〉H⊕n =
n∑
i=1

〈ηi, xξi〉. �

Corollary 2.1.2. The above proposition remains true when B(H) is
replaced by any von Neumann subalgebra M .

Proof. Immediate, since by the Hahn-Banach theorem, continuous w.o.
(resp. s.o.) linear functionals on M extend to linear functionals on B(H)
with the same continuity property. �

In the sequel, the restrictions of the functionals ωξ,η and ωξ = ωξ,ξ to
any von Neumann subalgebra of B(H) will be denoted by the same symbols.

Let us observe that every w.o. continuous linear functional is a linear
combination of at most four positive ones, as easily seen by polarization.

Recall that two locally convex topologies for which the continuous linear
functionals are the same have the same closed convex subsets. Therefore,
the s.o. and w.o. closures of any convex subset of B(H) coincide.

The following fundamental theorem shows that a von Neumann algebra
may also be defined by purely algebraic conditions.

Theorem 2.1.3 (von Neumann’s bicommutant theorem). Let M
be a unital self-adjoint subalgebra of B(H). The following conditions are
equivalent:

(i) M = M ′′;
(ii) M is weakly closed;
(iii) M is strongly closed.

Proof. (i) ⇒ (ii) ⇒ (iii) is obvious. Let us show that (iii) ⇒ (i). Since
the inclusion M ⊂ M ′′ is trivial, we only have to prove that every x ∈ M ′′
belongs to the s.o. closure of M (which is M , by assumption (iii)). More
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precisely, given ε > 0 and ξ1, . . . , ξn ∈ H, we have to show the existence of
y ∈M such that

for 1 ≤ i ≤ n, ‖xξi − yξi‖ ≤ ε.
We consider first the case n = 1. Given ξ ∈ H, we denote by [Mξ] the

orthogonal projection from H onto the norm closure Mξ of Mξ. Since this
vector space is invariant under M , the projection [Mξ] is in the commutant
M ′. Hence

xξ = x[Mξ]ξ = [Mξ]xξ,

and so we have xξ ∈ Mξ. Therefore, given ε > 0, there exists y ∈ M such
that ‖xξ − yξ‖ ≤ ε.

We now reduce the general case to the case n = 1 thanks to the following
very useful and basic matrix trick. We identify the algebra B(H⊕n) with
the algebra Mn(B(H)) of n by n matrices with entries in B(H). We denote
by θ : B(H)→ B(H⊕n) the diagonal map

y 7→

y · · · 0
...

. . .
...

0 · · · y

 .

We set N = θ(M). Of course, N is s.o. closed. A straightforward compu-
tation shows that the commutant N ′ of N is the algebra of n × n ma-
trices with entries in M ′. It follows that for every x ∈ M ′′, we have
θ(x) ∈ N ′′. We apply the first part of the proof to θ(x) and N . Given
ε > 0 and ξ = (ξ1, . . . , ξn) ∈ H⊕n, we get an element θ(y) ∈ N such that
‖θ(x)ξ − θ(y)ξ‖ ≤ ε, that is, ‖xξi − yξi‖ ≤ ε for i = 1, . . . , n. �

2.2. Bounded Borel functional calculus

In this section, we deduce some immediate applications of the bicommu-
tant theorem to the Borel functional calculus.

Let x ∈ B(H) be a self-adjoint operator, and Sp(x) ⊂ [−‖x‖, ‖x‖] its
spectrum. The continuous functional calculus defines an isometric isomor-
phism f 7→ f(x) from the C∗-algebra C(Sp(x)) of complex-valued contin-
uous functions on Sp(x) onto the C∗-subalgebra of B(H) generated by x
and 1 (see Appendix A.1). In particular, f(x) is the limit in norm of the
sequence (pn(x)), where (pn) is any sequence of polynomials converging to
f uniformly on Sp(x).

Let us recall briefly how this functional calculus extends to the ∗-algebra
Bb(Sp(x)) of bounded Borel functions on Sp(x). First, given ξ, η ∈ H, using
the Riesz-Markov theorem, we get a bounded, countably additive, complex-
valued measure µξ,η on Sp(x) defined by∫

f dµξ,η = 〈ξ, f(x)η〉

for every continuous function f on Sp(x). We say that µξ,η is the spectral
measure of x associated with ξ, η. We set µξ = µξ,ξ. The simple observation
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that, for a bounded Borel complex-valued function f on Sp(x), the map
(ξ, η) 7→

∫
f dµξ,η is a bounded sesquilinear functional implies, by the Riesz

lemma, the existence of a unique operator, denoted f(x), such that∫
f dµξ,η = 〈ξ, f(x)η〉

for every ξ, η ∈ H. In particular, for every Borel subset Ω of Sp(x), if we
denote by 1Ω the characteristic function of Ω, then the operator E(Ω) =
1Ω(x) is a projection, called the spectral projection of x associated with Ω.
The map Ω 7→ E(Ω) defined on the Borel subsets of Sp(x) is a projection-
valued measure called the spectral (projection-valued) measure of x. The
usual notation

f(x) =

∫
Sp(x)

f(t) dEt

is convenient. It is interpreted as

〈ξ, f(x)η〉 =

∫
Sp(x)

f(t) d〈ξ, Etη〉

for every ξ, η ∈ H, the integral being the Stieltjes integral with respect to the
function t 7→ 〈ξ, Etη〉, where Et is the spectral projection of x corresponding
to ]−∞, t].1 Let us just remind the reader that the Borel functional calculus
f 7→ f(x) is a ∗-homomorphism from Bb(Sp(x)) into B(H) with ‖f(x)‖ ≤
‖f‖∞. The operator f(x) is self-adjoint whenever f is real-valued; it is
positive whenever f ≥ 0. Moreover, if y ∈ B(H) commutes with x, then it
commutes with f(x) for every f ∈ Bb(Sp(x)). Therefore, the bicommutant
theorem implies the following result.

Proposition 2.2.1. Let x be a self-adjoint element of a von Neumann
algebra (M,H). Then, for every bounded Borel function f on Sp(x), we
have f(x) ∈ M . In particular, the spectral measure of x takes its values in
M .

The continuous and Borel functional calculi have several easy and im-
portant consequences. Let us introduce first some notation2. Given a von
Neumann algebra M ,

• Ms.a is the subspace of its self-adjoint elements,
• M+ is the cone of its positive elements,
• U(M) is the group of its unitary elements u, that is such that
u∗u = 1M = uu∗,
• P(M) is the set of its projections, that is of the self-adjoint idem-

potents.

We have recalled in Appendix A.2 that every element x ∈ M may be
expressed as a linear combination of four positive elements. Moreover, it
follows from the continuous functional calculus that every x ∈ M is the

1For details on these facts we refer to [RS80, Chapter VII] or [Arv02, Chapter II].
2We invite the reader to make explicit the sets introduced below when M = L∞(X,µ).
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linear combination of at most four unitary operators in M . Indeed, it suffices
to consider the case of a self-adjoint element x with ‖x‖ ≤ 1. Then 1 − x2

is a positive operator and an immediate computation shows that

u = x+ i(1− x2)1/2

is a unitary operator in M . Moreover, x = 1
2(u+ u∗).

Proposition 2.2.1 implies that a von Neumann algebra has plenty of
projections.

Corollary 2.2.2. Let M be a von Neumann algebra. The linear span
of P(M) is dense in M equipped with the norm topology.

Proof. It is enough to show that every self-adjoint element x of M
can be approximated by linear combinations of elements of P(M). Given
ε > 0, let Sp(x) = ∪ni=1Ωi be a finite partition of Sp(x) by Borel sub-
sets, such that |t− s| ≤ ε for every s, t ∈ Ωi and 1 ≤ i ≤ n. We choose
an element ti in each Ωi. Then we have ‖x−

∑n
i=1 tiE(Ωi)‖ ≤ ε since

supt∈Sp(x) |t−
∑n

i=1 ti1Ωi(t)| ≤ ε. �

We may even obtain a dyadic expansion of every positive element of
(M)1 in term of projections.

Corollary 2.2.3. Let x ∈ M with 0 ≤ x ≤ 1. Then x can be written
as the sum of a norm-convergent series

x =

+∞∑
n=1

1

2n
pn,

where the pn are projections in M .

Proof. Observe that if p1 is the spectral projection E([1/2,+∞[) of x
we have

0 ≤ x− 2−1p1 ≤ 1/2.

We perform the same construction with 2(x−2−1p1) and we get a projection
p2 such that

0 ≤ x− 2−1p1 − 2−2p2 ≤ 2−2.

By induction, we get the sequence (pn)n≥1 which satisfies, for all n,

0 ≤ x−
n∑
k=1

2−kpk ≤ 2−n. �

The polar decomposition is another fundamental tool in operator theory.
Given x ∈ B(H), recall that its absolute value is |x| = (x∗x)1/2. There exists
a unique partial isometry3 u such that x = u|x| and Keru = Kerx = Ker |x|.
In particular, u∗u is the smallest projection p ∈ B(H) such that xp = x, that
is, the projection on (Kerx)⊥ = Imx∗.4 We denote this projection by sr(x).

3i.e., such that u∗u, and thus uu∗, are projections.
4As usual, Ker (x) and Im (x) denote the kernel and the image of x respectively.
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It is called the right support of x. We have Imu = Imx and therefore uu∗

is the smallest projection p ∈ B(H) such that px = x. It is denoted by
sl(x) and is called the left support of x. Whenever x is self-adjoint, we set
s(x) = sr(x) = sl(x).

The factorization x = u|x| is called the polar decomposition of x.

Proposition 2.2.4. Let x be an element of a von Neumann algebra
(M,H).

(i) The left and right supports of x belong to M .
(ii) Let x = u|x| be the polar decomposition of x. Then u and |x| belong

to M .

Proof. (i) To prove that sr(x) ∈ M , we check that sr(x) commutes
with every unitary element v of the commutant M ′. Since vx = xv, for every
projection p ∈ B(H) satisfying xp = x we have xvpv∗ = x and therefore
sr(x) ≤ vsr(x)v∗. Replacing v by v∗, we get sr(x) = vsr(x)v∗. The proof
for sl(x) is similar. We may also remark that sl(x) = sr(x

∗).
(ii) We prove that u commutes with every unitary element v of the

commutant M ′. We have x = vxv∗ = (vuv∗)|x|. Since Ker vuv∗ = Kerx,
we get u = vuv∗ by uniqueness of the polar decomposition. �

2.3. The Kaplansky density theorem

The following theorem is an important technical result which allows
approximations by bounded sequences.

Theorem 2.3.1 (Kaplansky density theorem). Let A be a ∗-subalgebra
of B(H) and M its w.o. closure. The unit ball (A)1 of A (resp. the unit ball
of the self-adjoint part As.a of A) is s.o. dense in the unit ball (M)1 of M
(resp. the unit ball of Ms.a).

Proof. Obviously, we may assume that A is norm-closed. Using Propo-
sition 2.1.1, we remark first that M is also the s.o. closure of the convex set
A. Moreover, since the map x 7→ 1

2(x + x∗) is w.o. continuous, Ms.a is the
w.o. closure of As.a, and so its s.o. closure, still by convexity.

The continuous function f : t ∈ R 7→ 2t
1+t2

∈ [−1, 1] is a bijection onto

[−1, 1] when restricted to [−1, 1]. We set g = (f|[−1,1]
)−1.

We first consider the case of a self-adjoint element x ∈M with ‖x‖ ≤ 1,
and put y = g(x) ∈ Ms.a. Let (yi) be a net in As.a such limi yi = y in
the s.o. topology. Since f(yi) is in the unit ball of As.a, it suffices to show
that limi f(yi) = f(y) = x in the s.o. topology to conclude this part of the
theorem. We have

f(yi)− f(y) = 2yi(1 + y2
i )
−1 − 2y(1 + y2)−1

= 2(1 + y2
i )
−1
(
yi(1 + y2)− (1 + y2

i )y
)

(1 + y2)−1

= 2(1 + y2
i )
−1(yi − y)(1 + y2)−1 + 2(1 + y2

i )
−1yi(y − yi)y(1 + y2)−1.
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Since
∥∥(1 + y2

i )
−1
∥∥ ≤ 1 and

∥∥(1 + y2
i )
−1yi

∥∥ ≤ 1, we get

‖(f(yi)− f(y))ξ‖ ≤ 2
∥∥(yi − y)(1 + y2)−1ξ

∥∥+ 2
∥∥(y − yi)y(1 + y2)−1ξ

∥∥,
for every vector ξ ∈ H. This shows our assertion.

The general case is reduced to the self-adjoint one by using once again
a matrix trick. We consider the inclusions5

M2(A) ⊂M2(M) ⊂M2(B(H)) = B(H⊕2)

and we observe that the s.o. convergence in M2(B(H)) is the same as the
s.o. entry-wise convergence. So M2(A) is s.o. dense into M2(M). Take
x ∈M with ‖x‖ ≤ 1 and put

x̃ =

(
0 x
x∗ 0

)
.

Then x̃ is a self-adjoint element of M2(M) with ‖x̃‖ ≤ 1. By the first part of
the proof, there exists a net (yi) in the unit ball of M2(A)s.a which converges
to x̃ in the s.o. topology. Writing

yi =

(
ai bi
ci di

)
,

we have ‖bi‖ ≤ 1 and limi bi = x in the s.o. topology. This concludes the
proof. �

As a first application of this theorem we have:

Corollary 2.3.2. Let M be a ∗-subalgebra of B(H), with IdH ∈ M .
Then M is a von Neumann algebra if and only if its unit ball is compact (or
equivalently closed) in the w.o. topology.

Proof. If M is a von Neumann algebra, its unit ball is w.o. compact,
being the intersection of the w.o. closed set M with the w.o. compact unit
ball of B(H).

Conversely, assume that the unit ball of M is w.o. closed. Let x be an
element of the w.o. closure of M . We may assume that ‖x‖ ≤ 1, and by
the Kaplansky density theorem, there is a net (xi) in the unit ball of M
converging to x in the w.o. topology. Therefore, we have x ∈M . �

2.4. Geometry of projections in a von Neumann algebra

Let H be a Hilbert space. The set P(B(H)) of its projections is equipped
with the partial order induced by the partial order on the space B(H)s.a of
self-adjoint operators: for p, q ∈ P(B(H)), we have p ≤ q if and only if
〈ξ, pξ〉 ≤ 〈ξ, qξ〉 (or equivalently ‖pξ‖ ≤ ‖qξ‖) for every ξ ∈ H. We remark
that this is also equivalent to the inclusion p(H) ⊂ q(H). Given a set
{pi : i ∈ I} of projections, there is a smallest projection p such p ≥ pi for all
i ∈ I. We denote it by

∨
i pi (or supi pi). It is the orthogonal projection on

5For every von Neumann algebra A, Mn(A) denotes the von Neumann algebra of
n× n matrices with entries in A.
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the norm closure of the linear span of
⋃
i∈I pi(H). There is also a greatest

projection p with p ≤ pi for all i. We denote it by
∧
i pi (or infi pi). It is

the orthogonal projection on
⋂
i piH. Thus P(B(H)) is a complete lattice.

This fact is true in any von Neumann algebra M . For the proof, we need
the following proposition which connects the order and the s.o. topology on
the real vector space Ms.a, partially ordered by its cone M+.

Theorem 2.4.1. Let M be a von Neumann algebra on a Hilbert space
H. Let (xi)i∈I be a bounded increasing net of self-adjoint elements in M ,
i.e., supi ‖xi‖ = c < +∞ and xi ≤ xj whenever i ≤ j. Then (xi) converges
in the s.o. topology to some x ∈M . Moreover, x is the least upper bound of
{xi : i ∈ I} in the partially ordered space B(H)s.a. We write x = supi xi.

Proof. Using the polarization of the sesquilinear functional (ξ, η) 7→
〈ξ, xiη〉, we see that the net (〈ξ, xiη〉)i∈I converges for every ξ, η ∈ H. We set
b(ξ, η) = limi 〈ξ, xiη〉. Obviously, b is a bounded sesquilinear functional on
H, and by the Riesz theorem there exists x ∈ B(H) such that b(ξ, η) = 〈ξ, xη〉
for every ξ, η ∈ H. It is straightforward to check that x is self-adjoint with
‖x‖ ≤ c and that xi ≤ x for every i ∈ I. Since 0 ≤ (x − xi)2 ≤ 2c(x − xi)
and since limi xi = x in the w.o. topology, we get that limi xi = x in the s.o.
topology, as well.

Of course, x is in M . Now, if y is a self-adjoint element of B(H) with
y ≥ xi for all i ∈ I, we have 〈ξ, yξ〉 ≥ 〈ξ, xiξ〉 and so 〈ξ, yξ〉 ≥ 〈ξ, xξ〉 for
every ξ ∈ H. Hence, y ≥ x. �

Proposition 2.4.2. If {pi : i ∈ I} is a set of projections in a von Neu-
mann algebra M , then

∨
i pi and

∧
i pi are in M .

Proof. We set pF =
∨
i∈F pi for any finite subset F of I. It is easily seen

that pF is the support of
∑

i∈F pi, that is, the smallest projection p ∈ B(H)
with (

∑
i∈F pi)p =

∑
i∈F pi. Therefore pF ∈ M by Proposition 2.2.4. Now,

(pF ) where F ranges over the set of finite subsets of I is an increasing net
converging, by Theorem 2.4.1, to

∨
i pi in the s.o. topology, and therefore∨

i pi ∈M .
To show the second assertion, we remark that∧

i

pi = 1−
∨
i

(1− pi). �

When (pi)i∈I is a family of mutually orthogonal projections,
∨
i pi is

rather written
∑

i∈I pi. It is the s.o. limit of the increasing net (
∑

i∈F pi)
where F ranges over the finite subsets of I.

We introduce now a relation comparing the “sizes” of projections.

Definition 2.4.3. Let p and q be two projections in a von Neumann
algebra M . We say that p and q are equivalent and we write p ∼ q if there
exists a partial isometry u ∈M with u∗u = p and uu∗ = q. We write p - q
if there exists a partial isometry u ∈M with u∗u = p and uu∗ ≤ q, i.e., p is



D
ra
ft

2.4. GEOMETRY OF PROJECTIONS IN A VON NEUMANN ALGEBRA 37

equivalent to a projection p1 ∈M with p1 ≤ q. If p - q but p and q are not
equivalent, we write p ≺ q.

It is easy to see that ∼ is indeed an equivalence relation and that the
relation - is transitive: p - q and q - r implies p - r. It is also a
straightforward exercise to show that if {pi : i ∈ I} and {qi : i ∈ I} are two
sets of mutually orthogonal projections in M such that pi ∼ qi for all i ∈ I,
then

∑
i∈I pi ∼

∑
i∈I qi. Less obvious is the following.

Theorem 2.4.4. If p - q and q - p, then p ∼ q.

Proof. We have p ∼ p′ ≤ q and q ∼ q′ ≤ p and therefore p′ is equivalent
to a projection e with e ≤ q′; so p ∼ e ≤ q′ ≤ p. We claim that p ∼ q′.
Let u be a partial isometry in M such that u∗u = p and uu∗ = e. We set
p2n = unp(u∗)n and p2n+1 = unq′(u∗)n and we observe that p0 = p, p1 = q′,
p2 = e and that upnu

∗ = pn+2 for n ≥ 0, so that the sequence (pn) of
projections is decreasing. We set f =

∧
n pn. Then p is the sum

p = f + (p0 − p1) + (p1 − p2) + (p2 − p3) + (p3 − p4) + · · · (2.1)

of mutually orthogonal projections, and similarly

q′ = f + (p1 − p2) + (p2 − p3) + (p3 − p4) + (p4 − p5) + · · · ,
that we write rather as

q′ = f + (p2 − p3) + (p1 − p2) + (p4 − p5) + (p3 − p4) + · · · , (2.2)

since we immediately see, under this form, that the mutually orthogonal
projections of the decompositions (2.1) of p and (2.2) of q′ are two by two
equivalent and so p ∼ q′. �

Proposition 2.4.5. Let p, q be two projections in M . Then we have

(p ∨ q)− p ∼ q − (p ∧ q).

Proof. Consider the operator (1− p)q. The projection on its kernel is
(1 − q) + (q ∧ p). Therefore the left support of q(1 − p), which is the right
support of (1 − p)q, is q − (q ∧ p). Similarly, the right support of q(1 − p)
is 1 −

(
p + (1 − p) ∧ (1 − q)

)
= 1 −

(
p + (1 − (p ∨ q))

)
= (p ∨ q) − p. The

conclusion follows from the fact that the left and right supports of the same
operator are equivalent. �

We denote by Z(M) the center of the von Neumann algebra M .

Lemma 2.4.6. Let (M,H) be a von Neumann algebra.

(i) Let p ∈ P(M). There exists a smallest projection z in the center
of M such that zp = p. We call it the central support of p and
denote it z(p). It is the orthogonal projection onto the closure of
span(MpH), the space of linear combinations of elements of MpH.

(ii) For p ∈ P(M), we have z(p) =
∨
u∈U(M) upu

∗.

(iii) If p, q ∈ P(M) are such that p ∼ q, then z(p) = z(q).
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Proof. (i) By definition, z(p) is the infimum of the set of projections
z ∈ Z(M) with zp = p. Since the closed linear span of MpH is invariant
under M and M ′, the orthogonal projection onto it belongs to Z(M) and is
obviously majorized by z(p), so is z(p).

The other assertions are also very easy to establish and we leave their
proof to the reader. �

Lemma 2.4.7. Let M be a von Neumann algebra and let p, q be two
projections in M . The following conditions are equivalent:

(i) z(p)z(q) 6= 0;
(ii) pMq 6= 0;

(iii) there exist non-zero projections p1 ≤ p and q1 ≤ q that are equiva-
lent.

Proof. (i)⇒ (ii). Suppose that pMq = 0. Then for every u, v ∈ U(M)
we have upu∗vqv∗ = 0 and so z(p)z(q) = 0 by the previous lemma.

(ii) ⇒ (iii). Let x ∈M such that pxq 6= 0. Then the right support q1 of
pxq and its left support p1 satisfy the conditions of (iii).

(iii) ⇒ (i). Let p1, q1 be as in (iii). Then we have z(p) ≥ z(p1) = z(q1)
and z(q) ≥ z(q1) and therefore z(p)z(q) 6= 0. �

The following theorem provides a useful tool which reduces the study of
pairs of projections to the case where they are comparable.

Theorem 2.4.8 (Comparison theorem). Let p, q be two projections
in a von Neumann algebra M . Then there exists a projection z in the center
of M such that pz - qz and q(1− z) - p(1− z).

Proof. Using Zorn’s lemma, we see that there exists a maximal (rela-
tive to the inclusion order) family M = {(pi, qi) : i ∈ I} where (pi, qi) are
pairs of equivalent projections and the pi (resp. qi), i ∈ I, are mutually
orthogonal and majorized by p (resp. by q). We have

∑
i∈I pi ∼

∑
i∈I qi.

We set p0 = p −
∑

i∈I pi and q0 = q −
∑

i∈I qi. We claim that p0Mq0 =
0 and therefore z(p0)z(q0) = 0. Otherwise, taking x 6= 0 in p0Mq0, we
have sl(x) ∼ sr(x) with sl(x) ≤ p0 and sr(x) ≤ q0, which contradicts the
maximality of M.

We put z = z(q0). We have

pz =
(∑
i∈I

pi
)
z ∼

(∑
i∈I

qi
)
z ≤ qz

and
q(1− z) =

(∑
i∈I

qi)(1− z
)
∼
(∑
i∈I

pi
)
(1− z) ≤ p(1− z),

that is pz - qz and q(1− z) - p(1− z). �

We deduce the following important consequence.

Corollary 2.4.9. Let M be a factor and let p, q be two projections in
M . Then, either p - q or q - p.
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Remark 2.4.10. Conversely, whenever any two projections are compa-
rable, then M is a factor. Indeed, a non-trivial projection z in the center of
M cannot be compared with 1− z.

Corollary 2.4.11. Let M be a factor with a faithful tracial state6 τ
and let p, q be two projections in M . Then p - q if and only if τ(p) ≤ τ(q)
and therefore p ∼ q if and only if τ(p) = τ(q).

Definition 2.4.12. A projection p in a von Neumann algebra (M,H) is
said to be minimal if p 6= 0 and if for every projection q ∈M with 0 ≤ q ≤ p,
we have either q = 0 or q = p.

A von Neumann M is diffuse if it has no minimal projections.

Note that if p ∈ P(M), then pMp = {pxp : x ∈M} is a von Neumann
algebra on pH : indeed its unit ball is w.o. compact and then use Corollary
2.3.2. It is called the reduced von Neumann algebra7 of M with respect to
p. The projection p is minimal in M if and only if pMp = Cp.

Whenever M = L∞(X,µ), its projections are the characteristic func-
tions of Borel subsets of X (up to null sets) and the minimal projections
correspond to atoms. In B(H) the minimal projections are exactly the rank
one projections.

The following proposition tells us that the type I factors are exactly
those having minimal projections.

By definition, a (system of) matrix units in M is a family of partial
isometries (ei,j)i,j∈I in M such that ej,i = (ei,j)

∗ and ei,jek,l = δj,kei,l for
every i, j, k, l. For instance the set of elementary matrices in B(`2(I)) is a
matrix units.

Proposition 2.4.13. A factor M has a minimal projection if and only
if it is isomorphic to B(K) for some Hilbert space K.

Proof. Assume that M has a minimal projection. Corollary 2.4.9 im-
plies that the minimal projections in M are mutually equivalent and that
for any non-zero projection p ∈ M there is a minimal projection q ≤ p.
Using Zorn’s lemma, we see that there exists a family (ei)i∈I of minimal
mutually orthogonal projections with

∑
i∈I ei = 1. We fix i0 ∈ I and for

i ∈ I, let u0,i be a partial isometry with u∗0,iu0,i = ei and u0,iu
∗
0,i = ei0 .

We put ei,j = u∗0,iu0,j and so ei,i = ei. Then (ei,j) is a matrix units with∑
i ei,i = 1M . For x ∈M , let xi,j ∈ C be such that eixej,i = xi,jei. We have

eixej = (eixej,i)ei,j = xi,jei,j . Then x 7→ [xi,j ] is an isomorphism from M
onto B(`2(I)). �

Since a diffuse von Neumann algebra is infinite dimensional, the next
corollary follows.

6We will see in Corollary 6.4.2 that any tracial state on a factor is automatically
faithful.

7One also says that pMp is a corner of M . Whenever p is in the center of M , one
says that pMp = pM is a direct summand of M .
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Corollary 2.4.14. A tracial factor is isomorphic to some matrix alge-
bra when it is non-diffuse and is a II1 factor otherwise.

Let M be a von Neumann algebra and z be a projection in the center of
M . Then Mz is a two-sided w.o. closed ideal in M . We see below that all
such ideals are of this form Mz. As a consequence, a factor has only trivial
two-sided w.o. closed ideals.

Proposition 2.4.15 (Two-sided ideals). Let I be a two-sided ideal in
a von Neumann algebra M .

(i) I is self-adjoint.
(iii) Let x ∈ I+ = I ∩M+ and t ∈]0,+∞[. The spectral projection et of

x relative to [t,+∞[ belongs to I.
(iii) Assume in addition that I is w.o. closed. Then there exists a unique

projection z ∈ Z(M) such that I = Mz.

Proof. (i) Given x ∈ I, we have |x| ∈ I. Indeed, consider the polar
decomposition x = u|x|. Then |x| = u∗x ∈ I. It follows that x∗ = |x|u∗
belongs to I; hence, the ideal I is self-adjoint.

(ii) Denote by f the bounded Borel function on the spectrum of x with
f(s) = 0 for s < t and f(s) = s−1 for s ≥ t. Since sf(s) = 1[t,+∞[(s) for
every s, the bounded Borel functional calculus results tell us that xf(x) = et
and so et belongs to the set P(I) of projections in I.

(iii) The support of x ∈ I+, which is
∨
t>0 et, belongs to I when I is

w.o. closed. We set z =
∨
p∈P(I) p. We have z ∈ I, whence Mz ⊂ I. But z

majorizes the left support of every x ∈ I, and so I ⊂Mz.
Finally, being a two-sided ideal, I = uIu∗, and therefore z = uzu∗ for

every unitary operator u ∈M , so that z ∈ Z(M). �

2.5. Continuity and order

As before, without further mention, M is a von Neumann algebra on
a Hilbert space H. Recall that a linear functional ω on M is said to be
positive if ω(M+) ⊂ R+. We introduce a notion of continuity for ω which is
expressed in term of the order on the space of self-adjoint elements.

Definition 2.5.1. Let ω be a positive linear functional on M . We say
that

(i) ω is normal if for every bounded increasing net (xi) of positive
elements in M , we have ω(supi xi) = supi ω(xi);

(ii) ω is completely additive if for every family {pi : i ∈ I} of mutually
orthogonal projections in M , we have ω(

∑
i pi) =

∑
i ω(pi).

Complete additivity is reminiscent of the analogous property for integrals
in measure theory.

Remarks 2.5.2. (a) It is a straightforward exercise to show that when-
ever ω is normal, every positive linear functional ϕ with ϕ ≤ ω is normal.
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(b) Every w.o. continuous positive linear functional is normal (see The-
orem 2.4.1). However, there exist normal positive linear functionals which
are not w.o. continuous. For instance, assume that H is separable and in-
finite dimensional. Let (εn) be an orthonormal basis of H and set ω(x) =∑

n≥1 n
−2〈εn, xεn〉 for x ∈ B(H). Then ω is normal but not w.o. continu-

ous. Otherwise, by Proposition 2.5.4 below there would exist η1, . . . , ηk ∈ H
with ω(x) =

∑k
i=1 〈ηi, xηi〉 for every x ∈ B(H). If p denotes the orthogonal

projection on the linear span of {ηi : 1 ≤ i ≤ k} then 1 − p is a non-zero
projection with ω(1− p) = 0. This is impossible, since ω is a faithful linear
functional on B(H).

(c) Recall that every w.o. continuous linear functional is a linear com-
bination of at most four positive w.o. continuous linear functionals (hence
normal).

We will provide in Theorem 2.5.5 several characterisations of normality.
Before then, we give the general form of a w.o. continuous positive linear
functional. For that, we need the following elementary Radon-Nikodým type
lemma.

Lemma 2.5.3. Let ω be a positive linear functional on M and ξ ∈ H
such that ω(x) ≤ 〈ξ, xξ〉 for x ∈ M+. There exists x′ ∈ M ′+ such that
ω(x) = 〈(x′ξ), x(x′ξ)〉 for all x ∈M .

Proof. The Cauchy-Schwarz inequality gives, for x, y ∈M ,

|ω(x∗y)|2 ≤ ω(x∗x)ω(y∗y) ≤ ‖xξ‖2‖yξ‖2.
Therefore, we get a well-defined bounded sesquilinear form on Mξ by setting

(xξ|yξ) = ω(x∗y).

Hence, there exists a positive operator z on the Hilbert space Mξ such that
ω(x∗y) = 〈xξ, zyξ〉. For x, y, t ∈M , we have

〈xξ, ztyξ〉 = ω(x∗ty) = ω((t∗x)∗y) = 〈t∗xξ, zyξ〉 = 〈xξ, tzyξ〉,
so that tz = zt on Mξ. We denote by p the orthogonal projection onto Mξ
and we let x′ be the square root of the positive element zp in M ′. Obviously,

ω(x) = 〈ξ, xzpξ〉 =
〈
x′ξ, xx′ξ

〉
for all x ∈M . �

Proposition 2.5.4. Let ω be a w.o. continuous positive linear functional
on M . Then there exist ζ1, . . . , ζn ∈ H such that ω =

∑n
i=1 ωζi.

Proof. By Proposition 2.1.1, ω is of the form
∑n

i=1 ωηi,ξi . Thanks to
the classical trick by which we replace H by H⊕n and M by θ(M) where
θ(x)(ζ1, . . . , ζn) = (xζ1, . . . , xζn), it suffices to consider the case ω = ωη,ξ.
But since ω is positive, we have, for x ∈M+,

4〈η, xξ〉 = 〈(η + ξ), x(η + ξ)〉 − 〈(η − ξ), x(η − ξ)〉
≤ 〈(η + ξ), x(η + ξ)〉.
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The conclusion follows from Lemma 2.5.3. �

Theorem 2.5.5. Let ω be a positive linear functional on M . The fol-
lowing conditions are equivalent:

(1) ω is normal;
(2) ω is completely additive;
(3) ω is the limit in norm, in the dual M∗ of M , of a sequence of

w.o. continuous positive linear functionals;
(4) the restriction of ω to the unit ball of M is w.o. continuous;
(5) the restriction of ω to the unit ball of M is s.o. continuous.

Proof. We show that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1). The only
non-immediate implication is (2) ⇒ (3).

Assume that ω is completely additive. Let (pi)i∈I be a maximal family
of mutually orthogonal projections in M such that, for every i, there exists
ξi ∈ piH with ω(x) = 〈ξi, xξi〉 on piMpi. Note that ‖ξi‖ = ω(pi)

1/2. We put
q =

∑
pi. Lemma 2.5.6 below, applied to ω restricted to (1 − q)M(1 − q),

shows that
∑
pi = 1. Thanks to the complete additivity of ω, we have∑

i ω(pi) = ω(1) < +∞, and therefore the subset I0 of indices i for which
ω(pi) 6= 0 is countable.

By the Cauchy-Schwarz inequality, we have, for x ∈M ,

|ω(xpi)| ≤ ω(1)1/2ω(pix
∗xpi)

1/2 = ω(1)1/2‖xξi‖. (2.3)

It follows that xξi 7→ ω(xpi) is a well-defined and bounded linear functional
on Mξi. Hence, there exists ηi ∈Mξi such that ω(xpi) = 〈ηi, xξi〉 for x ∈M .
For every finite subset F of I0, we set qF =

∑
i∈F pi and denote by ωF the

positive linear functional x 7→ ω(qFxqF ) on M . We have, for x ∈M ,

ωF (x) =
∑
i∈F

ω(qFxpi) =
∑
i∈F
〈qF ηi, xξi〉.

Therefore, ωF is w.o. continuous. Moreover, limF ‖ω − ωF ‖ = 0, where the
limit is taken along the net of finite subsets of I0. Indeed,∣∣∣ω(x)− ωF (x)

∣∣∣ ≤ ∣∣∣ω(x)− ω(xqF )
∣∣∣+
∣∣∣ω(xqF )− ω(qFxqF )

∣∣∣
≤
∣∣∣ω(x(1− qF ))

∣∣∣+
∣∣∣ω((1− qF )xqF )

∣∣∣
≤ 2ω(1)1/2‖x‖ω(1− qF )1/2,

so that ‖ω − ωF ‖ ≤ 2ω(1)1/2ω(1− qF )1/2. But limF ω(1− qF ) = 0. �

Lemma 2.5.6. Let ϕ be a completely additive positive linear functional
on M . There exist a non-zero projection p ∈ M and ξ ∈ pH such that
ϕ(x) = 〈ξ, xξ〉 for every x ∈ pMp.

Proof. We choose a vector η ∈ H such that ϕ(1) < 〈η, η〉. It suffices to
prove the existence of p such that ϕ(x) ≤ 〈η, xη〉 for x ∈ (pMp)+. Then the
conclusion will follow from Lemma 2.5.3. Let (pi) be a maximal family of
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mutually orthogonal projections with ϕ(pi) ≥ 〈η, piη〉 for all i. The complete
additivity of ϕ implies that

ϕ(
∑
i

pi) ≥ 〈η, (
∑
i

pi)η〉.

We put p = 1 −
∑

i pi. Observe that p 6= 0 since ϕ(1) < 〈η, η〉. By the
maximality of (pi), we have ϕ(q) < 〈η, qη〉 for every non-zero projection
q ≤ p. Using spectral theory, we approximate x ∈ (pMp)+, in norm, by
appropriate linear combinations of its spectral projections, with positive
coefficients, and we get ϕ(x) ≤ 〈η, xη〉, since ϕ is norm continuous. �

Remark 2.5.7. With more effort8, we can get that the conditions of
Theorem 2.5.5 are also equivalent to the following condition (3’) which is
stronger than (3):

(3’) ω =
∑

n ωζn with
∑

n ‖ζn‖
2 < +∞ ;

Let us give a proof that (2) implies (3’) when ω is a trace. We keep the
notation of the proof of (2) ⇒ (3) in Theorem 2.5.5. Using the equality

ω(xpi) = ω(pixpi) we get |ω(xpi)| ≤ ω(pi)
1/2‖xξi‖ instead of the inequality

(2.3) and so now we have ‖ηi‖ ≤ ω(pi)
1/2. We have∣∣∣ω(x)−

∑
i∈F

ω(xpi)
∣∣∣2 ≤ ω((1−∑

i∈F
pi)x

∗x(1−
∑
i∈F

pi)
)
ω(1−

∑
i∈F

pi)

≤ ‖x‖2ω(1)ω(1−
∑
i∈F

pi).

Passing to the limit, we get

ω(x) =
∑
i∈I0

〈ηi, xξi〉,

with
∑

i∈I0 ‖ηi‖
2 ≤

∑
i∈I0 ω(pi) =

∑
i∈I0 ‖ξi‖

2 < +∞. To conclude that

ω =
∑
ωζi with

∑
‖ζi‖2 < +∞, we argue as in the proof of Proposition

2.5.4.

We say that a linear map Φ from a von Neumann algebra (M,H) into a
von Neumann algebra (N,K) is positive if Φ(M+) ⊂ N+. We say that such
a positive linear map is normal if for every bounded increasing net (xi) of
positive elements in M , we have Φ(supi xi) = supi Φ(xi).

Proposition 2.5.8. Let Φ : M → N be a positive linear map. The
following conditions are equivalent:

(1) Φ is normal;
(2) ω ◦ Φ is a normal positive linear functional on M for every such

functional ω on N ;
(3) the restriction of Φ to the unit ball of M is continuous with respect

to the w.o. topologies.

8see [Dix81, Theorem 1, page 57]
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Whenever Φ is a homomorphism, the above conditions are also equivalent
to:

(4) the restriction of Φ to the unit ball of M is continuous with respect
to the s.o. topologies.

Proof. (1) ⇒ (2) is obvious. Assume that (2) holds. To show that
the restriction of Φ to the unit ball (M)1 is continuous with respect to the
w.o. topologies, we have to check that x 7→ ω ◦ Φ(x) is w.o. continuous on
(M)1 for every w.o. continuous linear functional ω on N . We may assume
that ω is positive. Then ω ◦Φ is a normal positive linear functional and the
assertion (3) follows from Theorem 2.5.5.

(3) ⇒ (1). We now assume the w.o. continuity of the restriction of Φ to
the unit ball of M . Let (xi) be an increasing net of positive elements in the
unit ball of M . Its supremum x is the w.o. limit of (xi) and therefore Φ(x)
is the w.o. limit of (Φ(xi)). But then, Φ(x) = supi Φ(xi), and therefore Φ is
normal.

Assume now that Φ is a homomorphism. If limi xi = x strongly in
(M)1, then limi(x − xi)

∗(x − xi) = 0 in the w.o. topology and so, if (3)
holds we have limi Φ((x − xi)

∗(x − xi)) = 0 in the w.o. topology. Since
Φ((x − xi)∗(x − xi)) = Φ(x − xi)∗Φ(x − xi), we see that limi Φ(xi) = Φ(x)
strongly. Therefore (3) implies (4). The proof of (4)⇒ (1) is similar to that
of (3) ⇒ (1). �

Corollary 2.5.9. Every isomorphism α : M → N is normal and there-
fore its restriction to the unit ball of M is continuous with respect to the
w.o. topologies, as well as with respect to the s.o. topologies.

Proof. Obviously, α preserves the positivity in M , and since it is an
isomorphism, we have α(supi xi) = supi α(xi) for every bounded increasing
net (xi) of positive elements in M . �

Remark 2.5.10. As a consequence of this corollary, whereas the w.o. to-
pology on a von Neumann algebra depends on the Hilbert space on which
it acts (see Exercise 1.3), the w.o. topology on its unit ball is intrinsic. The
same observation applies to the s.o. topology.

Proposition 2.5.11. Let ω and ψ be positive linear functionals on von
Neumann algebras M and N respectively, and let Φ : M → N be a positive
linear map such that ψ ◦ Φ ≤ ω. We assume that ω and ψ are normal and
that ψ is faithful. Then Φ is normal.

Proof. We set ϕ = ψ ◦ Φ. Since ϕ ≤ ω, we see that ϕ is normal.
Now, let (xi) be a bounded increasing net of positive elements in M and put
y = Φ(supi xi). We have y ≥ supi Φ(xi) and

sup
i
ϕ(xi) = ϕ(sup

i
xi) = ψ ◦ Φ(sup

i
xi)

= ψ(y) ≥ ψ(sup
i

Φ(xi)) = sup
i
ψ(Φ(xi)) = sup

i
ϕ(xi).



D
ra
ft

2.6. GNS REPRESENTATIONS 45

Since ψ is faithful, we deduce that y = supi Φ(xi). �

Proposition 2.5.12. Let π : M → B(K) be a normal unital homomor-
phism. Then π(M) is a von Neumann algebra on K.

Proof. Let us show that π(M) is w.o. closed. We first claim that the
kernel of π is a w.o. closed two-sided ideal of M . Indeed, let x be in the
w.o. closure of Kerπ with ‖x‖ ≤ 1. By the Kaplansky density theorem,
there exists a net (xi) in the unit ball of Kerπ that converges to x in the
w.o. topology. It follows that π(x) = 0. Proposition 2.4.15 shows that Kerπ
is of the form Mz where z is a projection in Z(M). Now the restriction of
π to M(1 − z) is an injective homomorphism, and so is an isometry. Since
the unit ball of M(1 − z) is w.o.compact, its image under π, namely the
unit ball of π(M) is also w.o. compact and π(M) is w.o. closed by Corollary
2.3.2. �

Remark 2.5.13. Let the abelian von Neumann algebra L∞(X,µ) act

on L2(X,µ). Let ω =
∑

n ωζn , with
∑

n ‖ζn‖
2
2 < +∞, be a positive normal

linear functional on L∞(X,µ) (see Remark 2.5.7). Setting ξ =
∑

n |ζn|
2 ∈

L1(X,µ)+, we see that

ω(f) =

∫
X
fξ dµ =

〈
ξ1/2, fξ1/2

〉
for every f ∈ L∞(X,µ). It follows that the positive normal linear functionals
on L∞(X,µ) are w.o. continuous and that they are exactly the positive
σ(L∞(X,µ), L1(X,µ))-continuous linear functionals. We deduce from this
observation that a positive linear map Φ : L∞(X,µ) → L∞(Y, ν) is normal
if and only if it is continuous with respect to the weak* topologies defined
by the L1-L∞ duality.

2.6. GNS representations

Just as L∞(X,µ) has a natural representation on L2(X,µ), we will see
that every tracial von Neumann algebra (M, τ) has a privileged normal
faithful representation, called the standard representation.

2.6.1. The GNS construction. Since a tracial von Neumann alge-
bra is given with a specific state, it is natural to study the corresponding
Gelfand-Naimark-Segal representation. We begin by recalling this construc-
tion.

Let M be a von Neumann algebra, or more generally a unital C∗-algebra,
and let ϕ be a positive linear functional on M . We define a sesquilinear form
on M by

〈x, y〉ϕ = ϕ(x∗y).

Let Nϕ = {x ∈M : ϕ(x∗x) = 0}. Using the Cauchy-Schwarz inequality, we
see that Nϕ is the space of all x ∈M such that 〈x, y〉ϕ = 0 for every y ∈M ,
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and therefore it is a linear subspace of M . We define Hϕ as the completion
of the pre-Hilbert space M/Nϕ with respect to the inner product

〈x̂, ŷ〉ϕ = ϕ(x∗y),

where x̂ denotes the class of x in the quotient. We set ‖x̂‖ϕ = ϕ(x∗x)1/2.
For x, y ∈M , we put

πϕ(x)ŷ = x̂y.

We have

‖πϕ(x)ŷ‖2ϕ = ‖x̂y‖2ϕ = ϕ(y∗x∗xy)

≤ ‖x∗x‖ϕ(y∗y) = ‖x‖2‖ŷ‖2ϕ.

It follows that πϕ(x) extends to an element of B(Hϕ), still denoted πϕ(x). It
is easy to check that πϕ is a homomorphism from M into B(Hϕ). Moreover,

if we put ξϕ = 1̂, we have, for x ∈M ,

ϕ(x) = 〈ξϕ, πϕ(x)ξϕ〉ϕ. (2.4)

We say that (πϕ,Hϕ, ξϕ) is the Gelfand-Naimark-Segal (GNS) representation
associated with ϕ. Note that the vector ξϕ is cyclic for πϕ(M).

If we start from a faithful state ϕ, it follows from Equation (2.4) that
πϕ is an injective homomorphism and that ξϕ is separating for πϕ(M). In
this case we will identify M with πϕ(M) and write xξ for πϕ(x)ξ. Also, we
identify x ∈M with xξϕ and view M as a dense subspace of Hϕ. Sometimes,
we will write x̂ instead of x = xξϕ to emphasize the fact that x is seen as
an element of Hϕ. If we start from M = L∞(X,µ) and ϕ = τµ, then πϕ
is the representation by multiplication on the Hilbert space L2(X,µ). For
that reason, in general we write L2(M,ϕ) for the Hilbert space Hϕ and ‖·‖2
instead of ‖·‖ϕ.

2.6.2. Normal GNS representations. Returning to the general case,
it is of course important for us to know when πϕ(M) is a von Neumann
algebra on Hϕ.

Theorem 2.6.1. Let ϕ be a state on a von Neumann algebra M and let
(πϕ,Hϕ, ξϕ) be the GNS construction. The state ϕ is normal if and only if
πϕ is normal. Moreover, in this case πϕ(M) is a von Neumann algebra on
Hϕ.

Proof. Obviously, if πϕ is normal, so is ϕ by Equation (2.4). Con-
versely, assume that ϕ is normal. Then for a, b ∈M , the map

x 7→ 〈aξϕ, πϕ(x)bξϕ〉ϕ = ϕ(a∗xb)

is w.o. continuous on the unit ball (M)1 of M , and thanks to the density of
πϕ(M)ξϕ in Hϕ, we see that x 7→ 〈ξ, πϕ(x)η〉ϕ is w.o. continuous on (M)1

for every ξ, η ∈ Hϕ. So πϕ is normal. Proposition 2.5.12 tells us that in this
case πϕ(M) is a von Neumann algebra. �
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Definition 2.6.2. Let (M, τ) be a tracial von Neumann algebra. Its
GNS representation on L2(M, τ) is called the standard representation9.

Remark 2.6.3. For a detailed study of this representation, the reader
may go directly to Chapter 7. We only note here that for x, y ∈ M we
have ‖ŷx‖2 ≤ ‖x‖∞‖ŷ‖2, so that M acts also to the right on L2(M, τ) by
ŷ x = ŷx (see Subsection 7.1.1).

2.6.3. An abstract characterisation. We sometimes meet the situ-
ation where M is a unital C∗-algebra equipped with a faithful tracial state τ
and we want to know whether πτ (M) is a von Neumann algebra on L2(M, τ)
(see for instance Section 5.4). A useful answer is provided by the study of
the metric d2 defined by the norm ‖x‖2 = ‖xξτ‖τ on the unit ball (M)1 of
M . Note that since ‖xŷ‖τ ≤ ‖y‖∞‖x‖2, the topology induced on (M)1 by
the s.o. topology of B(L2(M, τ)) is the same as the topology defined by the
metric d2. This no longer holds on M (Exercise 2.13).

Proposition 2.6.4. Let M be a unital C∗-algebra equipped with a faith-
ful tracial state τ . Then M (identified with πτ (M)) is a von Neumann
algebra on L2(M, τ) if and only if its unit ball (M)1 is complete with respect
to the metric d2 induced by the norm ‖·‖2. Moreover, τ is normal when this
condition is satisfied.

Proof. Assume first that M is s.o. closed in B(L2(M, τ)). Let (xn) be
a Cauchy sequence in ((M)1, d2). Since

‖xnŷ − xmŷ‖τ ≤ ‖y‖∞‖xn − xm‖2
whenever y ∈M , we see that the sequence (xnŷ) is convergent in L2(M, τ).
Setting xŷ = limn xnŷ, we define an element x ∈ B(L2(M, τ)) with ‖x‖ ≤ 1.
Obviously, (xn) converges to x in the s.o. topology, so x ∈ M . Of course,
we have limn ‖xn − x‖2 = 0.

Conversely, assume that (M)1, equipped with the metric d2, is complete.
Let N be the closure of M in the s.o. topology. We extend τ to a normal
tracial state on N by setting τ(x) = 〈ξτ , xξτ 〉 for every x ∈ N . Due to the
inequality ‖xŷ‖τ ≤ ‖y‖∞‖xξτ‖τ , which is still valid for x ∈ N and y ∈ M ,
we see that τ is faithful on N . By the Kaplansky density theorem, (M)1 is
s.o. dense in the unit ball (N)1 of N . Since the s.o. topology coincides with
the ‖·‖2 topology on (N)1, we see that (M)1 = (N)1, whence M = N . �

2.6.4. Separable tracial von Neumann algebras.

Definition 2.6.5. We say that a von Neumann algebra is countably
decomposable (or σ-finite) if every family of mutually orthogonal non-zero
projections is at most countable.

Of course, every tracial von Neumann algebra is countably decompos-
able. We now introduce a stronger form of separability.

9We will see in Proposition 7.5.1, that this representation does not depend on the
choice of the trace.
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Definition 2.6.6. We say that a von Neumann algebra is separable if
it has a faithful normal representation on a separable Hilbert space.

Proposition 2.6.7. Let (M, τ) be a tracial von Neumann algebra. The
following conditions are equivalent:

(i) M is separable;
(ii) The unit ball (M)1 contains a s.o. dense sequence (equivalently,

dense in the metric induced by ‖·‖2);
(iii) L2(M, τ) is a separable Hilbert space.

Proof. (i) ⇒ (ii). Assume that M acts on a separable Hilbert space
H. Then on (M)1 the s.o. topology is second countable and therefore (M)1

contains a s.o. dense countable subset.
(ii) ⇒ (iii). Let D ⊂ (M)1 be countable and dense in (M)1 in the

topology defined by ‖·‖2. SinceM is dense in L2(M, τ) we see that span(QD)
is dense in L2(M, τ).

(iii) ⇒ (i) is obvious. �

Exercises

Exercise 2.1. Let (M,H) be a von Neumann algebra and (zi)i ∈ I be a
family of mutually orthogonal projections in Z(M) such that

∑
i∈I zi = 1M .

Show that (M,H) is (isomorphic to) the direct sum
∑⊕

i (ziM, ziH).

Exercise 2.2. Let M be a finite dimensional von Neumann algebra.
Show that M is isomorphic to a finite direct sum of matrix algebras.

Exercise 2.3. Let M and N be two von Neumann algebras on a Hilbert
space H. Show that (M ∩N)′ = (M ′∪N ′)′′ and conclude that M is a factor
if and only if (M ∪M ′)′′ = B(H).

Exercise 2.4. Let e be a projection in M with central support 1 and
let p be a non-zero projection in M . Show that there is a non-zero partial
isometry u ∈M with u∗u ≤ e and uu∗ ≤ p.

Exercise 2.5. Let e be a projection in M and let (fi) be a maximal
family of mutually orthogonal projections in M such that fi - e for every
i. Show that

∑
i fi is the central support of e.

Exercise 2.6. Let M be a von Neumann algebra, p ∈ M a minimal
projection and z(p) its central support. Show that Mz(p) is a type I factor,
i.e., is isomorphic to some B(K).

Exercise 2.7. Let M be a II1 factor, N a subfactor of type In, and α
an automorphism of M . Show that there is a unitary element u ∈ M such
that α(x) = uxu∗ for every x ∈ N .

Exercise 2.8. Let M be a von Neumann algebra, x ∈ Ms.a and t ∈ R.
Denote by Λt the ordered set of continuous functions f : Sp(x)→ [0, 1] such
that f(s) = 0 for s ≥ t. Show that (f(x))f∈Λt converges in the s.o. topology
to the spectral projection E(]−∞, t[) of x (along the net Λt).
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Exercise 2.9. Let M be a von Neumann algebra on H and let x, y ∈
M+ with y ≤ x. Show that there exists a unique element a ∈ B(H) with

y1/2 = ax1/2 and sr(a) = s(x). Show that a ∈M .

Exercise 2.10. Let I be a two-sided ideal in a von Neumann algebra
M .

(i) Let x ∈ I+ and let y ∈M with 0 ≤ y ≤ x. Show that y ∈ I+.
(ii) Show that I is linearly generated by I+.

Exercise 2.11. Let I be a two-sided ideal in a von Neumann algebra
M .

(i) We assume that I
wo

= M . Let p be a non-zero projection in M .
Show that there is a non-zero projection q ∈ I with q ≤ p.

(ii) Show that I
wo

= M if and only if there is an orthogonal family (qi)
of projections in I such that

∑
i qi = 1.

(iii) Assume that I
wo

= M . Show that every x ∈M+ is the least upper
bound of an increasing net of elements of I+.

Exercise 2.12. Let (M, τ) be a tracial von Neumann algebra, acting on
L2(M, τ).

(i) Show that x 7→ x∗ is s.o. continuous on the unit ball of M .
(ii) Let A be a ∗-subalgebra of M . Show that A is dense in M in the

s.o. topology if and only if for every x ∈ M with ‖x‖ ≤ 1, there is
a sequence (an) in the unit ball of A such that limn ‖x− an‖2 = 0.

Exercise 2.13. Find a sequence (fn) in L∞([0, 1]) such that limn ‖fn‖2 =
0 while (fn) does not converge to 0 in the s.o. topology.

Exercise 2.14. Let α : M → N be an isomorphism between two von
Neumann algebras and let M be a ∗-subalgebra of M . Show that M is
s.o. dense in M if and only if α(M) is s.o. dense in N (thus, s.o. density of
M is intrinsic).

Exercise 2.15. Let (Mi, τi), i = 1, 2, be two tracial von Neumann
algebras and let Mi be a ∗-subalgebra s.o. dense in Mi. Let α :M1 →M2

be a ∗-isomorphism such that τ2◦α(x) = τ1(x) for every x ∈M1. Show that
there is a unitary operator U : L2(M1, τ1)→ L2(M2, τ2) such that UxU∗ =
α(x) for every x ∈M1 and therefore that α extends to an isomorphism from
M1 onto M2.

Exercise 2.16. Let (M, τ) be a tracial von Neumann algebra. We de-
note byMop the opposite von Neumann algebra: it isM as a vector space, the
involution is the same, but the multiplication in Mop is defined by x ·y = yx.
If M is a group von Neumann algebra or the von Neumann algebra of a
countable p.m.p. equivalence relation, show that M is isomorphic to Mop.

The first example of a II1 factor not anti-isomorphic to itself was found
in [Con75]
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Exercise 2.17. Let M1,M2 be two tracial von Neumann algebras such
that there exist increasing sequences (Nk

1 )k≥1, (Nk
2 )k≥1 of matrix algebras,

with Nk
1 ' Nk

2 for every k and ∪kNk
i

s.o.
= Mi, i = 1, 2. Show that M1 and

M2 are isomorphic II1 factors.

Exercise 2.18. Let G be a group.

(i) Show that L(G) is the unique (up to isomorphism) tracial von Neu-
mann algebra (M, τ) generated by unitary elements (ug)g∈G such
that uguh = ugh for all g, h ∈ G and τ(ug) = 0 for all g 6= e.

(ii) Show that if H is a subgroup of G then L(H) is canonically iso-
morphic to the von Neumann subalgebra of L(G) generated by
{uh : h ∈ H}.

(iii) Let Gy (X,µ) be a p.m.p. action of G. Show that L(G) is canon-
ically isomorphic to the von Neumann subalgebra of L∞(X,µ)oG
generated by its canonical unitaries {ug : g ∈ G}.

Notes
The content of this chapter is the outcome of advances due to von Neu-

mann, Murray and von Neumann, Dixmier, Dye, Kaplansky and many oth-
ers from 1929 up to the early fifties. The bicommutant theorem 2.1.3 is one
of the main results of the pioneering paper [vN30] of von Neumann on rings
of operators. The Kaplansky density theorem is proved in [Kap51]. Most
of the results about projections are included in [MVN36]. Theorem 2.5.5
is due to Dixmier [Dix53] where the reader will also find the major part
of our sections 2.5 and 2.6. For these facts, we also refer to Dye’s paper
[Dye52].
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CHAPTER 3

Abelian von Neumann algebras

As we will see in this chapter, abelian von Neumann algebras are well
understood, and this subject is nothing but a part of classical measure the-
ory. Of particular importance are the abelian von Neumann algebras acting
on a separable Hilbert space. In this chapter we only consider such algebras,
since the theory is simpler in this case, and covers most of the interesting
applications.

A nice fact is that there exists a unique diffuse separable abelian von
Neumann algebra, up to isomorphism (Theorem 3.2.4).

3.1. Maximal abelian von Neumann subalgebras of B(H)

Let M be a von Neumann algebra on H. Recall that a vector ξ ∈ H is
cyclic for M if Mξ = H. We say that ξ is separating for M if, for x ∈ M ,
we have xξ = 0 if and only x = 0.

Lemma 3.1.1. A vector ξ ∈ H is cyclic for M if and only if it is sepa-
rating for M ′.

Proof. Obviously, if ξ is cyclic for M it is separating for M ′. Con-
versely, assume that ξ is separating for M ′. The orthogonal projection p on
Mξ is in M ′. Since (1− p)ξ = 0, we conclude that p = 1. �

Using a maximality argument, H can be written as a Hilbert sum H =
⊕i∈IMξi of subspaces which are cyclic for M . Moreover, I is countable
whenever H is assumed to be separable.

Proposition 3.1.2. Let A be an abelian von Neumann algebra on a sepa-
rable Hilbert space H. There exists a cyclic vector for A′, hence a separating
vector for A.

Proof. We write H = ⊕n≥1A′ξn where the vectors ξn have norm-one
and we set ξ =

∑
n≥1

1
2n ξn. Let pn ∈ A ⊂ A′ be the orthogonal projection

onto A′ξn. We have A′ξn = 2nA′pnξ ⊂ A′ξ for every n, whence A′ξ = H. �

Proposition 3.1.3. Every abelian von Neumann algebra A on a sepa-
rable Hilbert space is generated by a self-adjoint operator.

Proof. Since the unit ball of A equipped with the w.o. topology is
compact and metrizable, it has a countable dense subset. Therefore there is
a countable family {an : n ≥ 1} of self-adjoint operators in A whose linear

51
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span is w.o. dense in A. For each an there is a countable subset Pn of its
spectral projections such that an belongs to the norm closure of the linear
span of Pn (see Corollary 2.2.3). It follows that one may find a countable
set {en : n ≥ 1} in P(A) whose linear span is w.o. dense in A. Let B be the
C∗-subalgebra generated by 1 and the projections en, n ≥ 1. Since B is w.o.
dense in A, it suffices to show that B is generated, as a C∗-algebra, by a
single self-adjoint operator.

The Gelfand transform identifies B with the C∗-algebra C(X) of con-
tinuous functions on the compact spectrum X of B, and each en with the
characteristic function of a closed and open subset En of X. We remark
that, since {en : n ≥ 1} generates B, for every pair of distinct points in X
there exists n such that En contains one of these points but not the other.
We set F2n = En, F2n+1 = X \ En and

f =
∑
n≥1

1

2n
(1Fn − 1).

To show that f generates B, it suffices to prove that f separates the points of
X and then apply the Stone-Weierstrass theorem. Let s 6= t be two distinct
points in X. Let n0 be the largest integer such that for n < n0 both points
either are in Fn or in X \ Fn, and assume for instance that s ∈ Fn0 and
t 6∈ Fn0 . We have

f(s)− f(t) =
1

2n0
+
∑
n>n0

1

2n
(1Fn(s)− 1Fn(t)) 6= 0. �

Theorem 3.1.4. Let A be an abelian von Neumann algebra on a sepa-
rable Hilbert space H. The following conditions are equivalent:

(i) A = A′, i.e., A is a maximal abelian von Neumann subalgebra of
B(H);

(ii) A has a cyclic vector;
(iii) there exist a compact metric space X, a probability measure µ

on X and a unitary operator U : L2(X,µ) → H such that A =
UL∞(X,µ)U∗ (where L∞(X,µ) is viewed as a von Neumann sub-
algebra of B(L2(X,µ)), as in Proposition 1.2.1).

Proof. (i) ⇒ (ii) is an immediate consequence of Proposition 3.1.2.
(ii) ⇒ (iii). Let ξ be a cyclic vector for A with ‖ξ‖ = 1. Let x be a

self-adjoint operator which generates A and let E be the spectral measure
of x. We denote by µξ (= µξ,ξ) the probability measure Ω 7→ 〈ξ, E(Ω)ξ〉
on the Borel subsets of the spectrum X of x. Let f ∈ Bb(X) be a Borel
bounded function on X. We have ‖f(x)ξ‖ = ‖f‖L2(X,µξ)

, so that the map

f 7→ f(x)ξ extends to an isometry U from L2(X,µξ) into H. This iso-
metry is surjective since ξ is cyclic for A. A straightforward computation
shows that f(x) = UMfU

∗ for every f ∈ L∞(X,µξ), where Mf is the mul-
tiplication operator by f . In particular, Φ : Mf 7→ f(x) is an isometric
w.o. continuous homomorphism from L∞(X,µξ) into A. Since L∞(X,µξ) is
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a maximal abelian subalgebra of B(L2(X,µξ)) and since Φ is a spatial ho-
momorphism, Φ(L∞(X,µξ)) is a maximal abelian von Neumann subalgebra
of B(H), whence Φ(L∞(X,µξ)) = A.

(iii) ⇒ (i) is proved in Proposition 1.2.1. �

Note that the space X may be taken as a compact subset of R.

Remark 3.1.5. Let x ∈ B(H) be a self-adjoint operator. Let ξ ∈ H
be a cyclic vector for x, i.e., such that the set {xnξ : n ∈ N} is total. The
proof of the previous theorem includes the classical spectral theorem: there
exists a unitary operator U from H onto L2(Sp(x), µξ) such the UxU∗ is the
multiplication operator by the function t ∈ Sp(x) 7→ t.

3.2. Classification up to isomorphisms

We have seen in the proof of the previous theorem that if an abelian
von Neumann algebra A on a separable Hilbert space H has a cyclic vector
ξ, then it is spatially isomorphic to L∞(X,µξ) acting by multiplication on
L2(X,µξ). If ξ is only separating, the next theorem shows that A is still
isomorphic to L∞(X,µξ), but the isomorphism needs not be spatial.

Theorem 3.2.1. Let A be an abelian von Neumann algebra on H. Let
x be a self-adjoint operator generating A and set X = Sp(x). We choose
a separating vector ξ and denote by µ = µξ the spectral measure on X
associated with ξ. Then the Gelfand map f 7→ f(x) extends uniquely to an
isomorphism from L∞(X,µ) onto A.

Proof. Let Φ : Bb(X) → A be the ∗-homomorphism defined by the
bounded Borel functional calculus. For f ∈ Bb(X), we have ‖f‖L2(X,µ) =

‖f(x)ξ‖. It follows that f(x) = 0 if and only if f = 0, a.e. Therefore, Φ
defines an injective homomorphism from L∞(X,µ) into A.1 In particular,
Φ is an isometry.

Since 〈ξ,Φ(f)ξ〉 =
∫
X f dµ, we deduce from Proposition 2.5.11 that Φ

is normal. Then, Proposition 2.5.12 tells us that Φ(L∞(X,µ)) is a von
Neumann algebra. Now, since Φ(L∞(X,µ)) contains x which generates A
as a von Neumann algebra, we see that Φ(L∞(X,µ)) = A.

The uniqueness of Φ follows from the fact that the unit ball of C(X) is
weak* dense (or equivalently, w.o. dense by Remark 1.2.2) in the unit ball
of L∞(X,µ), combined with the continuity of Φ on the unit ball relative to
the w.o. topologies. �

Corollary 3.2.2. Let A be an abelian von Neumann algebra on a sepa-
rable Hilbert space and let τ be a normal faithful state on A. There exist a
probability measure µ on a compact subset X of R and an isomorphism α
from A onto L∞(X,µ) such that τµ ◦ α = τ .

1It follows that the class of µ is independent of the choice of the separating vector ξ.
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Proof. By the previous theorem and Proposition 3.1.2, there exists an
isomorphism α : A → L∞(X, ν) where ν is a probability measure on some
compact subset X of R. For every Borel subset E of X, we set µ(E) =
τ ◦ α−1(1E). In this way, we get a probability measure on X, which is
equivalent to ν since τ is faithful. It follows that L∞(X, ν) = L∞(X,µ) and
τµ ◦ α = τ . �

Remark 3.2.3. It is not difficult to see that if µ1 and µ2 are two
probability measures on X such that there exists an isomorphism from
L∞(X,µ1) onto L∞(X,µ2) which is the identity on the subalgebra C(X),
then µ1 is equivalent to µ2, and the isomorphism is the identity map of
L∞(X,µ1) = L∞(X,µ2) (see [Dou98, Theorem 4.55]).

We can go further in the classification of abelian von Neumann algebras.
We refer to the appendix B for the results used below. Every probability
measure µ on X can be uniquely written as µ = µc + µd where µc is contin-
uous and µd is discrete. Therefore L∞(X,µ) is isomorphic to the product of
L∞(X \ T, µc) by L∞(T, µd) where T is the support (necessarily countable)
of µd. Of course, L∞(T, µd) is isomorphic to the algebra `∞n of bounded
sequences indexed by a set of cardinality n equal to the cardinality |T | of T .
So it remains to consider the case where µ is continuous.

Recall that a von Neumann algebra A is diffuse if for any non-zero
projection p ∈ A, there is a non-zero projection q ∈ A with q ≤ p and q 6= p.
When A is isomorphic to L∞(X,µ), this is equivalent to the continuity of
µ.

Theorem 3.2.4. Any diffuse abelian von Neumann algebra A on a sepa-
rable Hilbert space is isomorphic to L∞([0, 1], λ), where λ is the Lebesgue
measure on [0, 1]. Moreover, if a faithful normal state τ is given on A, we

may choose the isomorphism α such that τ = τλ ◦ α : a 7→
∫ 1

0 α(a) dλ.

Proof. We apply Corollary 3.2.2 and observe that µ is a continuous
probability measure since A is diffuse. Since (X,µ) is a standard probability
measure space, the conclusion follows from Theorem B.7 in the appendix.

�

3.3. Automorphisms of abelian von Neumann algebras

We study in this section the pointwise realization of isomorphisms be-
tween separable abelian von Neumann algebras, when viewed as algebras of
bounded measurable functions. In the course of the proof of the next theo-
rem, we will use the following observation: every isomorphism between two
measure space algebras L∞(X,µ) and L∞(Y, ν) equipped with the weak*
topologies (defined by the duality with the corresponding L1-spaces) is con-
tinuous (see Remark 2.5.13). As already mentioned, these topologies are
also the w.o. topologies relative to the representations of these algebras on
the corresponding L2-spaces.
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Theorem 3.3.1. Let (X,µ) be a standard probability measure space.

(i) Let θ be a Borel isomorphism between two co-null subsets of X,
which preserves the measure class of µ. Then f 7→ f ◦ θ is an
automorphism of L∞(X,µ).

(ii) Conversely, let α be an automorphism of L∞(X,µ). There exists a
(unique, up to null sets) isomorphism θ between two co-null subsets
of X which preserves the measure class of µ and is such that α(f) =
f ◦ θ for every f ∈ L∞(X,µ).

Proof. (i) is obvious. Let us show (ii) in the interesting case where µ
is continuous. We are reduced to consider the case (X,µ) = ([0, 1], λ). Let
us denote by ι the function t 7→ t defined on [0, 1]. We set θ = α(ι). Since
α is positive, θ is a measurable function from [0, 1] into itself.

Let us show that
∫
f d θ∗λ =

∫
α(f) dλ for every bounded Borel function

f on [0, 1]. We will use the weak* density of the unit ball of C([0, 1]) into
the unit ball of its bidual (which is the dual of the Banach space of bounded
measures on [0, 1]) and will identify the space Bb([0, 1]) of Borel bounded
functions on [0, 1] with a subspace of C([0, 1])∗∗. We deduce from these ob-
servations that for every f ∈ Bb([0, 1]) there exists a net (gi)i∈I of continuous
functions on [0, 1] such that ‖gi‖∞ ≤ ‖f‖∞ for all i and limi

∫
gi dν =

∫
f dν

for every bounded measure ν on [0, 1]. In particular, if we consider for ν
the bounded measures that are absolutely continuous with respect to λ,
we see that limi gi = f in L∞([0, 1], λ) equipped with the weak* topology.
Therefore we have limi α(gi) = α(f) in the weak* topology.

Since α(ι) = ι ◦ θ, it follows from the Stone-Weierstrass theorem that
α(g) = g ◦ θ for every continuous function g on [0, 1], and thus∫

α(g) dλ =

∫
g ◦ θ dλ =

∫
g d θ∗λ.

So, we get
∫
α(f) dλ =

∫
f dθ∗λ for every f ∈ Bb([0, 1]). In particular,

taking f to be the characteristic function of a Borel subset E of [0, 1], we
see that λ(E) = 0 if and only if (θ∗λ)(E) = 0, since λ(E) = 0 if and only if
α(1E) = 0. Therefore, the measures λ and θ∗λ are equivalent.

Let f ∈ L∞([0, 1], λ) and let (gi) be a bounded net of continuous func-
tions on X such that limi gi = f in the weak* topology, as above. Since
α(gi) = gi ◦ θ for every i, we conclude that α(f) = f ◦ θ.

Similarly, there is a measurable function ρ from [0, 1] into itself such that
α−1(f) = f ◦ ρ for every f ∈ L∞([0, 1], λ). We have

ι = α−1 ◦ α(ι) = α−1(θ) = ρ ◦ θ

and similarly ι = θ ◦ ρ. Therefore, θ is a Borel isomorphism between two
co-null subsets of X . �

Remark 3.3.2. It follows that every isomorphism α from L∞(X,µ) onto
L∞(Y, ν) is of the form f 7→ f ◦ θ, where θ : Y → X is a Borel isomorphim
such that θ∗ν is equivalent to µ.
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Let τµ be the integral map f 7→
∫
X f dµ on L∞(X,µ) and denote by

Aut (L∞(X,µ), τµ) the group of automorphisms of L∞(X,µ) which preserve
τµ. We recall that Aut (X,µ) is the group of µ-preserving Borel automor-
phisms of X.

Corollary 3.3.3. The map θ 7→ αθ, where αθ(f) = f ◦ θ−1, is a group
isomorphism from Aut (X,µ) onto Aut (L∞(X,µ), τµ).

Proof. Immediate. �

In the same way we have:

Theorem 3.3.4. Let (X,µ) and (Y, ν) be two standard probability mea-
sure spaces and α : L∞(X,µ) → L∞(Y, ν) be a homomorphism such that∫
Y α(f) dν =

∫
X f dµ for every f ∈ L∞(X,µ). Then there is a unique (up

to null sets) Borel map θ : Y → X such that θ∗ν = µ and α(f) = f ◦ θ for
every f ∈ L∞(X,µ). Moreover θ is onto, modulo a set of measure 0, and θ
is an isomorphism if and only if α is a von Neumann algebra isomorphism.

Proof. The ideas are the same as in the previous proof. The main
points to mention are that, since α preserves the integrals, it is injective
and, above all, it is continuous for the weak* topologies (see Proposition
2.5.11). �

Remark 3.3.5. Two separable abelian von Neumann algebras A '
L∞(X,µ) and B ' L∞(Y, ν) are thus isomorphic if and only there is a
class measure preserving isomorphism between the spaces X and Y .

Now assume that A and B are represented on separable Hilbert spacesH
and K respectively. Recall that a spatial isomorphism is an isomorphism α :
A→ B of the form a 7→ UaU∗ where U : H → K is a unitary operator. The
classification of abelian von Neumann algebras, up to spatial isomorphism,
involves, in addition to a measure class, a multiplicity invariant as we will
see in Chapter 8.

Exercises

Exercise 3.1. Let x ∈ B(H) be a self-adjoint operator. Show that
there exist a probability measure space (X,µ), a unitary operator U : H →
L2(X,µ) and a bounded real-valued function f on X such that UxU∗ = Mf .

Exercise 3.2. Let A be a separable abelian diffuse von Neumann alge-
bra and τ be a normal faithful state on A.

(i) Show that there is an increasing family (pt)t∈[0,1] of projections in
A with τ(pt) = t for every t.

(ii) Show that there is a unitary operator u in A with τ(un) = 0 for
every n 6= 0 and such that limn→+∞ u

n = 0 in the w.o. topology.

Exercise 3.3. Let (M, τ) be a diffuse tracial von Neumann algebra (for
instance a II1 factor).

(i) Show that every maximal abelian subalgebra A of M is diffuse.
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(ii) Assuming moreover that M is separable, show that there exists a
family (pt)0≤t≤1 of projections in M with ps < pt for s < t and
τ(pt) = t for every t.

Notes
The main results of this chapter are due to Halmos and von Neumann

[HvN42] and are continuations of earlier works due to von Neumann [vN32a,
vN32b].



D
ra
ft



D
ra
ft

CHAPTER 4

II1 factors. Some basics

Among the tracial von Neumann algebras, II1 factors are at the opposite
of abelian von Neumann algebras. We show that they are simple with a
unique tracial state.

In the second section, we introduce a first invariant for these factors,
their fundamental group.

4.1. Uniqueness of the trace and simplicity

Given an abelian von Neumann algebra L∞(X,µ), the functional τµ :
f 7→

∫
X f dµ is a faithful normal tracial state. Of course, in this situa-

tion, it is easy to construct many other such traces. We also observe that
the w.o. closed ideals of L∞(X,µ) are in bijective correspondence with the
measurable subsets of X (up to null sets).

Let us now consider the case of a tracial von Neumann factor1. Recall
that such a factor is either isomorphic to some matrix algebra Mn(C) or
is of type II1, depending on its dimension2 or, equivalently, depending on
whether or not it has a minimal projection (see Corollary 2.4.14). It is a
classical result of linear algebra that Mn(C) has only one tracial state and
is simple, i.e., has no non-trivial two-sided ideal. We now prove that these
facts hold for any tracial factor.

We need a preliminary lemma.

Lemma 4.1.1. Let M be a diffuse factor and let p 6= 0 be a projection in
M . There exist two projections p1, p2 ∈M with p1 ∼ p2 and p1 + p2 = p.

Proof. We first claim that for any non-zero projection e in M there
exist two non-zero equivalent orthogonal projections e1, e2 with e1 + e2 ≤ e.
Indeed, since e is not minimal, there exists f ∈ P(M) with f ≤ e, f 6= 0
and f 6= e. We have z(f)z(e− f) = 1 because M is a factor and our claim
follows from Lemma 2.4.7.

Now, we consider the set F of families (pi, qi)i∈I of pairs of equivalent
projections, majorized by p and such that {pi, qi : i ∈ I} are mutually or-
thogonal projections. Let (pi, qi)i∈I be a maximal family in F and put
p1 =

∑
i∈I pi, p2 =

∑
i∈I qi. Then p1 and p2 are equivalent. Moreover, using

the maximality of the family, and applying the first part of the proof to
p− (p1 + p2) if this projection is non-zero, we see that p1 + p2 = p. �

1Later, such factors will be called finite factors (see Chapter 6).
2Recall that a II1 factor is an infinite dimensional, tracial factor.
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Corollary 4.1.2. Let M be a diffuse factor. For every integer n ≥ 1
there are mutually orthogonal and equivalent projections p1, . . . , p2n such
that

∑2n

i=1 pi = 1. In particular, if M carries a tracial state τ , we have
τ(pi) = 2−n.

Proof. Obvious. �

Proposition 4.1.3. A von Neumann factor M has at most one tracial
state3.

Proof. It is enough to consider the case where M is diffuse. Let q ∈
P(M), q 6= 1, and consider p1, . . . , p2n as in the previous corollary. Thanks
to the comparison result 2.4.9, we see that there is a unique integer k such
that ∑

i≤k
pi - q ≺

∑
i≤k+1

pi.

It follows that for every tracial state τ on M we have

k

2n
≤ τ(q) <

k + 1

2n
.

Therefore, the real number τ(q) does not depend on the choice of τ . This
prove the uniqueness of τ , because the linear span of P(M) is dense in M
with respect to the norm topology (see Corollary 2.2.2). �

Proposition 4.1.4. Let (M, τ) be a tracial von Neumann algebra. Then
M is a factor if and only if τ is the unique normal faithful tracial state on
M .

Proof. The uniqueness when M is a factor is proved in the previous
proposition. Now, assume that M is not a factor and let z be a non-trivial
central projection. Let α be any number in ]0, 1[ with α 6= τ(z) Then τ̃
defined on M by

τ̃(x) =
α

τ(z)
τ(xz) +

1− α
1− τ(z)

τ(x(1− z))

is a normal faithful tracial state with τ̃ 6= τ . �

Proposition 4.1.5. A tracial factor (M, τ) contains no non-trivial two-
sided ideal.

Proof. Let I 6= 0 be a two-sided ideal and let x be a non-zero positive
element in I. We take t > 0 small enough so that the spectral projection
e of x relative to [t,+∞[ is non-zero. We have e ∈ I (see Proposition
2.4.15). Since the normal tracial state τ on M is faithful we have τ(e) 6= 0,
and thus any maximal family of mutually orthogonal projections in M ,
all equivalent to e, is finite. Therefore, we can find mutually orthogonal

projections p1 = e, p2, . . . , pk with 1 =
∑k

i=1 pi, pi ∼ e for i < k and pk - e.
There exist partial isometries u1, u2, . . . , uk inM with ui = uie and uiu

∗
i = pi

for i = 1, . . . , k. It follows that pi ∈ I for all i, whence 1 ∈ I and I = M . �

3As already said, it is also automatically normal and faithful, but this is much more
difficult to show (see Theorem 6.3.5).
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We have seen in Corollary 2.4.11 that any two projections of a tracial
factor (M, τ) are equivalent if and only if they have the same trace. If M
is isomorphic to Mn(C), then τ(P(M)) = {0, 1, . . . , n}. For II1 factors, we
have:

Proposition 4.1.6. Let M be a II1 factor and τ its tracial normal state.
Then p 7→ τ(p) induces a bijection from the set of equivalence classes of
projections in M onto [0, 1].

Proof. We only need to show that for that for every t ∈]0, 1[ there
is a projection p ∈ P(M) with τ(p) = t. Let t =

∑
k 2−nk be the dyadic

expansion of t. Using the comparison theorem of projections in a factor and
the fact that M has projections of trace 2−n for every n since it is diffuse,
we construct by induction a sequence of mutually orthogonal projections
p1, p2, . . . , pk, . . . such that τ(pk) = 2−nk for every k. We set p =

∑
k pk.

Since τ is normal, we get τ(p) = t. �

The number τ(p) is viewed as the “dimension of p”. It is a very important
feature of II1 factors that their projections have a continuum of dimensions.

4.2. The fundamental group of a II1 factor

Let M be a von Neumann algebra on a Hilbert space H. Given a projec-
tion p ∈M , we have already introduced the reduced von Neumann algebra
pMp = {pxp : x ∈M}. If q is a projection in M ′ then Mq is a von Neu-
mann algebra on qH, since x 7→ xq is a normal representation of M on qH
(see Proposition 2.5.12). It is called the induced von Neumann algebra of M
with respect to q. When M is a factor, then pMp and Mq are factors, as a
consequence of the following facts.

Proposition 4.2.1. Let M and p as above. Let e be a projection in
Z(pMp). Then e = z(e)p where z(e) is the central support of e in M . It
follows that Z(pMp) = Z(M)p.

Proof. We have (p− e)Me = (p− e)pMpe = 0 and therefore

(p− e)ueu∗ = 0

for every u ∈ U(M). It follows, by Lemma 2.4.6, that (p− e)z(e) = 0, hence
e = z(e)p.

The inclusion Z(pMp) ⊂ Z(M)p is then a consequence of Corollary
2.2.3. The opposite inclusion Z(M)p ⊂ Z(pMp) is obvious. �

Proposition 4.2.2. Let M be a von Neumann on a Hilbert space H.

(i) Let p be a projection in M . Then the commutant (pMp)′ of pMp
in B(pH) is pM ′ .

(ii) Let q be a projection in M ′. Then the commutant (Mq)′ of Mq in
B(qH) is qM ′q.
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Proof. (i) We have obviously pMp ⊂ (M ′p)′. Let x ∈ (M ′p)′ ⊂ B(pH),
and set x̃ = xp = pxp ∈ B(H). For y ∈M ′, we have

yx̃ = ypxp = (xp)(yp) = xpy = x̃y

and so x̃ ∈ M . It follows that x = px̃p ∈ pMp and therefore we have
(M ′p)′ ⊂ pMp. The bicommutant theorem 2.1.3 gives (pMp)′ = M ′p.

(ii) is a consequence of (i), after replacing M by M ′ and p by q. �

For every integer n ≥ 1, we may as well enlarge the Hilbert space H and
introduce the algebra Mn(M) of n×n matrices with entries in M , acting on
H⊕n. A routine proof shows that Mn(M) is a von Neumann algebra, whose
commutant is the algebra of diagonal matrices with equal diagonal entries in
M ′. Writing H⊕n as the Hilbert tensor product Cn⊗H, the algebra Mn(M)
appears as the algebraic tensor product Mn(C) ⊗M . Embedding Mn(M)
into Mn+1(M) (as (n + 1) × (n + 1) matrices with coefficients 0 placed in
the last line and the last column), we introduce the ∗-algebra

M(M) = ∪n≥1Mn(M).

We may view the elements of M(M) as matrices [mi,j ]i,j≥1 such that there
exists n with mi,j = 0 whenever i > n or j > n. This algebra acts on
H⊕∞ = `2(N∗) ⊗ H in an obvious way. It is not w.o. closed. Its closure is
the von Neumann tensor product B(`2(N∗))⊗M to be defined in the next
chapter.

From now on in this section, M will be a II1 factor and, as usual, τ is
its trace. We observe first that each Mn(M) is a II1 factor. We denote by
Trn ⊗ τ its (non-normalized) trace defined by (Trn ⊗ τ)([xi,j ]) =

∑
i τ(xi,i)

and by Tr⊗τ the trace onM(M) whose restriction to Mn(M) is Trn⊗τ for
every n. Since any two projections p, q ∈M(M) belong to some Mn(M), we
see that there exists u ∈M(M) such that u∗u = p and uu∗ = q if and only
if (Tr ⊗ τ)(p) = (Tr ⊗ τ)(q). It follows that the spatial isomorphism class
of pM(M)p = pMn(M)p only depends on the real number t = (Tr⊗ τ)(p).
We set M t = pMn(M)p, which is, as such, well defined up to isomorphism.
Usually, Mn(C) ⊗M is called an amplification of M , and so, more gene-
rally, we will say that any M t is an amplification of M . Moreover, since
{(Tr⊗ τ)(p) : p projection ∈Mn(M)} = [0, n] for every n, we see that M t

is defined for every t > 0.
Given two von Neumann algebras M and N , recall that we write M ' N

whenever they are isomorphic.

Lemma 4.2.3. Let M be a II1 factor and s, t be two real numbers > 0.
Then (M s)t 'M st.

Proof. We take M s = pMm(M)p with

p ∈ P(Mm(M)), (Trm ⊗ τ)(p) = s,

and (M s)t = q(Mn(M s))q with

q ∈ P(Mn(M s)), (Trn ⊗ τs)(q) = t,
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where τs = (1/s)(Trm ⊗ τ)|Ms . We view q as a projection in Mn(C) ⊗
Mm(C) ⊗ M smaller than 1Mn(C) ⊗ p. Then (M s)t = qMnm(M)q with
(Trnm ⊗ τ)(q) = st. �

Definition 4.2.4. Let M be a II1 factor. We denote by F(M) the
subset of R∗+ formed of the positive real numbers t such that M t ' M .
The previous lemma shows that F(M) is a subgroup of R∗+. It is called the
fundamental group of M .

It is immediate that F(M) is the set of τ(p)/τ(q), where p and q run
over the non-zero projections in M such that pMp and qMq are isomorphic.
The computation of this invariant (up to isomorphism) is one of the major
problems in the theory of II1 factors.

The next proposition shows that M 'Mn(C)⊗M1/n.

Proposition 4.2.5. Let M be a II1 factor and let p ∈ P(M) with τ(p) =
1/n. Then M is isomorphic to Mn(pMp) 'Mn(C)⊗ (pMp).

Proof. Using the comparison theorem of projections, we find mutu-
ally orthogonal and equivalent projections p1, p2, . . . , pn with p1 = p and∑n

i=1 pi = 1. Let ui, i = 1, . . . , n, be partial isometries such that u∗iui = p1

and uiu
∗
i = pi. Then

x 7→ [u∗ixuj ]1≤i,j≤n
is an isomorphism from M onto Mn(pMp). Note that (uiu

∗
j )1≤i,j≤n is a set

of matrix units in M .
�

Proposition 4.2.6. The hyperfinite II1 factor R can be embedded as a
von Neumann subfactor of any II1 factor M .

Proof. Using the previous proposition we construct an increasing se-
quence (Qn) of subalgebras of M such that Qn is isomorphic to M2n(C)
for every n. Then the s.o. closure of ∪n≥1Qn is isomorphic to R (Exercise
2.17). �

Notes
The fundamental group is one of the three invariants introduced by

Murray and von Neumann in [MvN43] in order to distinguish between II1

factors. They proved that the fundamental group of the hyperfinite factor R
is R∗+ (see Remark 11.2.3) but the existence of II1 factors with fundamental
group distinct from R∗+ was only established in 1980 by Connes [Con80a]
(see Section 14.3). It is only in 2001 (results published in [Pop06a]) that the
first explicit computations were achieved, providing examples with funda-
mental groups reduced to {1} (see Chapter 18). Notice that such examples
M are not isomorphic to Mn(M) for any integer n ≥ 2.
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CHAPTER 5

More examples

We have now the sufficient background to introduce new constructions of
tracial von Neumann algebras, and in particular II1 factors: tensor products,
general crossed products, free products and ultraproducts.

We will need later to have some basic knowledge of the structure of tra-
cial von Neumann algebras beyond the now familiar case of abelian ones and
factors. In the last section of this chapter we provide elementary informa-
tions on this subject and examples.

5.1. Tensor products

Given two abelian von Neumann algebras L∞(Xi, µi), i = 1, 2, the clas-
sical notion of product in measure theory gives rise to the abelian von Neu-
mann algebra L∞(X1 ×X2, µ1 × µ2). This construction is extended to the
general setting of von Neumann algebras in the following way.

5.1.1. Tensor product of two von Neumann algebras. Let (M1,H1)
and (M2,H2) be two von Neumann algebras. The algebraic tensor product
M1 � M2 of M1 and M2 acts on the Hilbert tensor product H1 ⊗ H2 as
follows:

∀xi ∈Mi, ∀ξi ∈ Hi, i = 1, 2, (x1 ⊗ x2)(ξ1 ⊗ ξ2) = (x1ξ1)⊗ (x2ξ2).

The s.o. closure of M1 �M2 is denoted M1⊗M2 and (M1⊗M2,H1 ⊗H2) is
called the von Neumann tensor product of (M1,H1) by (M2,H2).

One may wonder how the von Neumann tensor product M1⊗M2 de-
pends on the given spatial representations. In fact, it is intrinsic, up to
isomorphism (see Exercise 8.14 for the case of II1 factors).

Examples 5.1.1. (a) Starting from (Mi,Hi) = (L∞(Xi, µi), L
2(Xi, µi)),

i = 1, 2, one gets

(M1⊗M2,H1 ⊗H2) = (L∞(X1 ×X2, µ1 × µ2), L2(X1 ×X2, µ1 × µ2)).

(b) We take M1 = B(`2(N)) and M2 = M acting on H. Then the von
Neumann tensor product B(`2(N))⊗M acts on `2(N)⊗H = H⊕∞. We denote
by ui : H → H⊕∞ the isometry sending ξ ∈ H onto the sequence (ξn) with
ξn = 0 for all n but n = i where ξi = ξ. Any bounded operator T on H⊕∞
may be written as the infinite matrix [Ti,j ]i,j∈N with Ti,j = u∗iTuj ∈ B(H).
The set N of all bounded operators with entries in M is w.o. closed because
T 7→ Ti,j is continuous with respect to the w.o. topology. A decomposable
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operator [ti,j ] ⊗ x ∈ B(`2(N)) �M is identified to the matrix [ti,jx] and so
belongs to N . Clearly, the ∗-algebraM(M) consisting in the matrices [Ti,j ],
with entries in M and such that there exists some integer n with Ti,j = 0
whenever i > n or j > n, is contained in B(`2(N))�M and is s.o. dense in
N . From these observations we deduce that N = B(`2(N))⊗M .

Obviously, N can be replaced by any set I and so `2(N) can be replaced
by any Hilbert space K. Note in particular that B(K)⊗B(H) = B(K ⊗H).

The simplest case is I = {1, . . . , n}. Then, for any von Neumann algebra
M , the von Neumann tensor productMn(C)⊗M coincides with the algebraic
tensor product (denoted Mn(C)⊗M rather than Mn(C)�M) and with the
von Neumann algebra Mn(M) of n× n matrices with entries in M .

Let (M1,H1) be a von Neumann algebra and H2 a Hilbert space. We
leave as an exercise to check that (M1⊗B(H2))′ = M ′1 ⊗ IdH2 and that
(M1 ⊗ IdH2)′ = M ′1⊗B(H2).1

Clearly, for M1⊗M2 to be a factor, each component needs to be a factor.
Conversely:

Proposition 5.1.2. (M1⊗M2,H1⊗H2) is a factor when (M1,H1) and
(M2,H2) are factors.

Proof. We claim that(
(M1⊗M2)′ ∩ (M1⊗M2)

)′
= B(H1)⊗B(H2) = B(H1 ⊗H2).

The left handside contains M1⊗IdH2 and M ′1⊗IdH2 and so it contains

(M1 ∪M ′1)′′⊗IdH2 = B(H1)⊗IdH2 .

Similarly we see that it contains IdH1⊗B(H2).
Since B(H1)⊗IdH2 ∪ IdH1⊗B(H2) generates B(H1)⊗B(H2), our claim is

proved. �

When (M1, τ1) and (M2, τ2) are two tracial von Neumann algebras, we
implicitly consider them as represented on L2(M1, τ1) and L2(M2, τ2) re-
spectively, in order to define their von Neumann tensor product.

Proposition 5.1.3. With the above assumptions, M1⊗M2 is in a natu-
ral way a tracial algebra: it carries a unique tracial normal state τ such that
τ(x1 ⊗ x2) = τ1(x1)τ2(x2) for x1 ∈ M1, x2 ∈ M2, and this trace is faithful.
Moreover the Hilbert spaces L2(M1, τ1)⊗L2(M2, τ2) and L2(M1⊗M2, τ) are
canonically isomorphic. We write τ = τ1 ⊗ τ2.

When M1, M2 are tracial factors and at least one of them is of type II1,
then M1⊗M2 is a II1 factor.

1More generally, given (M1,H1) and (M2,H2), it is true that (M1⊗M2)′ = M ′1⊗M ′2.
In this generality it is a deep result that was obtained in the 1960s, using Tomita’s theory
of modular Hilbert algebras (see [Tak70] for details and history and [Tak02, Theorem
5.9] for a simplified proof).
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Proof. The vector 1M1 ⊗ 1M2 ∈ L2(M1, τ1) ⊗ L2(M2, τ2) is cyclic for
M1⊗M2. This vector is also cyclic for the right action of M1 � M2 and
therefore separating for M1⊗M2. It defines the faithful tracial normal state
of the above statement. The rest of the proposition is also obvious. �

Proposition 5.1.4. The von Neumann tensor product (M, τ) of (M1, τ1)
by (M2, τ2) is characterized, up to isomorphism, in the following way: it is
the unique tracial von Neumann algebra (M, τ) containing M1 �M2 as a
s.o. dense subalgebra, and such that τ(x1 ⊗ x2) = τ1(x1)τ2(x2) for every
x1 ∈M1, x2 ∈M2.

Proof. Let (M̃, τ̃) be another tracial von Neumann algebra with the
same properties. Then there is a unitary operator

U : L2(M̃, τ̃)→ L2(M1, τ1)⊗ L2(M2, τ2)

that induces a spatial isomorphism from (M̃, τ̃) onto (M1⊗M2, τ1⊗ τ2) (see
Exercise 2.15). �

5.1.2. Infinite tensor products. The construction of Section 1.6 rela-
tive to infinite tensor products of matrix algebras is easily extended to the
case of tracial von Neumann algebras. So let (Mi, τi)i∈N be a sequence of

such algebras. We set (Nk, ϕk) = (⊗ki=0Mi,⊗ki=1τi) and we embed Nk into
Nk+1 in the obvious way. Then M = ∪k∈NNk is equipped with the unique
trace τ such that τ(x) = ϕk(x) for any k such that x ∈ Nk. As in Section
1.6 we introduce the completion H of M with respect to the inner product
〈x, y〉 = τ(x∗y) and we denote by π the corresponding representation of
M on H. It is obviously injective and the s.o. closure of π(M) is written
⊗i∈NMi. Again, exactly as in Section 1.6, we see that τ extends in a unique
way to a normal faithful tracial state on ⊗i∈NMi. The tracial von Neumann
algebra (⊗i∈NMi, τ) is called the infinite tensor product of (Mi, τi)i∈N.

It remains to check that ⊗i∈NMi is a factor whenever each component
is so. To that purpose, we claim that τ is the unique normal faithful tracial
state on ⊗i∈NMi (see Proposition 4.1.4). This is an immediate consequence
of the fact that each Nk is a factor and so its tracial state is unique (Propo-
sition 4.1.3).

Given a finite subset F of N, the von Neumann tensor product ⊗i∈FMi,
when viewed as a von Neumann subalgebra of ⊗i∈NMi, will be denoted
(⊗i∈FMi)⊗ Id⊗N\F .

5.2. Crossed products

In the first chapter, we introduced the group measure space von Neu-
mann algebra associated with a probability measure preserving action Gy
(X,µ), or equivalently, a trace preserving action of the groupG on (L∞(X,µ), τµ).
This construction extends easily to the case of a trace preserving action of
G on any tracial von Neumann algebra.
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Let (B, τ) be a tracial von Neumann algebra and let Aut (B, τ) be the
group of automorphisms of B which preserve τ . We observe that every
α ∈ Aut (B, τ) extends to a unitary operator of L2(B, τ), still denoted α,
such that

∀x ∈ B, α(x̂) = α̂(x).

A trace preserving action G y (B, τ) is a group homomorphism σ from G
into Aut (B, τ). The crossed product B o G associated with this action is
defined exactly as in Section 1.4. We introduce the algebra B[G] of finitely
supported formal sums ∑

g∈G
bgug

with bg ∈ B, the product and involution being defined by

(b1ug)(b2uh) = b1σg(b2)ugh, (bug)
∗ = σg−1(b∗)ug−1 .

Of course, B will be identified with the subalgebra Bue of B[G]. We repre-
sent B[G] in the Hilbert space

H = L2(B, τ)⊗ `2(G) = `2(G,L2(B, τ))

by the formula

(bug)(ξ ⊗ δh) = (bσg(ξ))⊗ δgh.
Again, we find it convenient to write ξuh instead of ξ ⊗ δh ∈ H, so that the
previous formula becomes

(bug)(ξuh) = bσg(ξ)ugh.

The s.o. closure of B[G] in B(H) is B oG, by definition. We may similarly
let B[G] act to the right on H by

(ξuh)(bug) = ξσh(b)uhg.

Let us state briefly the main properties of this construction, which are
proved exactly as in the commutative case. The vector ue = 1̂ ⊗ δe is
cyclic and separating for B o G. Therefore, the map x 7→ xue identifies
B oG with a subspace of L2(B, τ) ⊗ `2(G). So we write x under the form∑

g∈G xgug ∈ L2(B, τ)⊗ `2(G).2

The trace τ on B extends to a trace on BoG, which we will still denote
by τ , by the formula

τ(x) = 〈ue, xue〉H = τ(xe) for x =
∑
g∈G

xgug ∈ B oG.

This trace is normal and faithful. Note that

τ(x∗x) =
∑
g∈G

τ(x∗gxg) =
∑
g∈G
‖xg‖2L2(B,τ) = ‖x‖2`2(G,L2(B,τ)).

2The notation ξug for ξ⊗ δg is compatible with the inclusion of B[G] into L2(B, τ)⊗
`2(G).
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Again the xg are called the Fourier coefficients of x and the ug are the cano-
nical unitaries of the crossed product. The convergence of the expansion
x =

∑
g∈G xgug holds in L2(B, τ)⊗ `2(G) with its Hilbert norm.

We end this section with the definitions of the non-commutative ana-
logues of freeness and ergodicity.

Definition 5.2.1. Let B be a von Neumann algebra and α an automor-
phism of B. We say that α is free or properly outer if there is no element
y ∈ B, other than 0, such that yα(x) = xy for every x ∈ B.

The reader will easily check that whenever B is a factor, α is properly
outer if and only if it is outer (i.e., not inner, that is, not of the form
x 7→ uxu∗ for some unitary operator u ∈ B).

Definition 5.2.2. Let σ be a homomorphism from a group G into the
group Aut (B) of automorphisms of a von Neumann algebra B. We say that
the action σ is

(a) ergodic if C1B = {x ∈ B : σg(x) = x,∀g ∈ G}.
(b) free or properly outer if for every g 6= e, the automorphism σg is

properly outer.

Here is the non-commutative version of Proposition 1.4.5, whose proof
is similar.

Proposition 5.2.3. Let (B, τ) be a tracial von Neumann algebra, and
let σ : Gy (B, τ) be a trace preserving action.

(i) B′ ∩ (B oG) = Z(B) if and only if the action is properly outer.
(ii) Assume that the action is properly outer. Then B o G is a factor

(and thus a II1 factor) if and only if the action on the center of B
is ergodic.

Example 5.2.4. Let G be a countable group and let (N, τ) be a tracial
von Neumann algebra. Let (B = ⊗g∈GNg, τ

⊗G) be the tensor product of
copies of N indexed by G. The Bernoulli action on B is well defined by

(σg(x))h = xgh

for every x = (⊗g∈Fxg)⊗ Id⊗G\F , F finite subset of G.
This action is ergodic. Even more, it is mixing: for x, y ∈ B, we have

limg→∞ τ(xσg(y)) = τ(x)τ(y). This is easily seen by approximating x, y by

elements in some (⊗g∈FNg)⊗ Id⊗G\F where F is a finite subset of G.
Moreover, for every g 6= e, the automorphism σg is properly outer. In-

deed, let b ∈ B with ‖b‖2 = 1 and bσg(y) = yb for every y ∈ B. We fix a
non-trivial projection p in N . Given ε > 0, there exists a finite subset F of
G and b′ ∈ (⊗k∈FNk)⊗ Id⊗G\F with ‖b− b′‖2 < ε. Then we have∥∥b′σg(y)− yb′

∥∥
2
≤ 2ε
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for every y in the unit ball (B)1 of B. Let h /∈ F ∪ gF , and let y be the
element of B whose only non-trivial component is p in the position h. Then
we have

4ε2 ≥
∥∥b′σg(y)− yb′

∥∥2

2
=
∥∥b′(σg(y)− y)

∥∥2

2
= 2
∥∥b′∥∥2

2
(τ(p)− τ(p)2),

with ‖b′‖2 ≥ 1 − ε. It follows that τ(p) − τ(p)2 ≤ 2ε2(1 − ε)−2 for every
ε ∈]0, 1[, hence τ(p) ∈ {0, 1}, a contradiction.

5.3. Free products

5.3.1. Free subalgebras. Given two groups G1, G2, the von Neumann
algebra associated with their product G1 ×G2 is the tensor product:

L(G1 ×G2) = L(G1)⊗L(G2).

There is another familiar and useful construction in group theory, namely
the free product G = G1 ∗ G2. Recall that G is generated by G1 and G2

and is such that, given any group H and any homomorphisms fi : Gi → H,
i = 1, 2, there is a (unique) homomorphism f : G → H with f|Gi

= fi.

Every element s in G \ {e} is an irreducible word s = s1 · · · sn, that is,
si ∈ Gki \ {e} with ki 6= ki+1 for i = 1, . . . n − 1. The product is defined
by concatenation and reduction. We are interested in the construction of
L(G1 ∗G2) from L(G1) and L(G2). Let τ be the canonical tracial state on
L(G). Let x1, . . . , xn in L(G) be such that xi ∈ L(Gki), with ki 6= ki+1 for
i = 1, . . . , n − 1, and τ(xi) = 0 for all i. A straightforward computation
shows that τ(x1x2 · · ·xn) = 0. This means that L(G1) and L(G2) sit as
freely independent subalgebras of L(G) in the following sense (compare with
the tensor product L(G1)⊗L(G2)).

Definition 5.3.1. Let M1,M2 be two von Neumann subalgebras of a
von Neumann algebra M equipped with a faithful normal state ϕ. We
say that M1,M2 are free with respect to ϕ if ϕ(x1x2 · · ·xn) = 0 whenever
xi ∈ Mki with k1 6= k2 6= · · · 6= kn and ϕ(xi) = 0 for all i. We say that two
elements a1, a2 of M are free with respect to ϕ if the von Neumann algebras
they generate are free.

Proposition 5.3.2. Let M1,M2 be two von Neumann subalgebras of M
that are free with respect to a faithful normal state ϕ. We assume that M
is generated (as a von Neumann algebra) by M1 ∪M2.

(i) ϕ is completely determined by its restrictions to M1 and M2.
(ii) If each restriction is a trace, then ϕ is a trace.

Proof. Given xi ∈ Mki with k1 6= k2 6= · · · 6= kn, we claim that
ϕ(x1x2 · · ·xn) is uniquely determined. This will conclude the proof of (i)
since the linear spanM of such products is a w.o. dense ∗-subalgebra of M

and ϕ is normal. We proceed inductively on n. We write xi = ϕ(xi)1+
o
xi.

Note that ϕ(
o
xi) = 0. Replacing each xi by its expression, expanding, and
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using the fact that ϕ(
o
x1

o
x2 · · ·

o
xn) = 0, we see that we are reduced to

computations involving at most n− 1 products.
Assume now that the restrictions of ϕ to M1 and M2 are tracial. It

suffices to show that the restriction of ϕ to M is a trace, and even, by
linearity, that ϕ(xy) = ϕ(yx) for x = x1x2 · · ·xm and y = y1y2 · · · yn where
xi ∈Mki , yj ∈Mlj with k1 6= k2 6= · · · 6= km, l1 6= l2 6= · · · 6= ln, n ≤ m, and
ϕ(xi) = 0 = ϕ(yj) for all i, j.

First, we obviously have that ϕ(xy) = 0 whenever km 6= l1. Assuming
km = l1 we get

ϕ(xy) = ϕ(x1 · · ·xm−1(xmy1 − ϕ(xmy1)1)y2 · · · yn) +

ϕ(xmy1)ϕ(x1 · · ·xm−1y2 · · · yn)

= ϕ(xmy1)ϕ(x1 · · ·xm−1y2 · · · yn).

Iterating this computation we see that ϕ(xy) = 0, except possibly when
n = m and ki = lm−i+1 for every i, and then we have

ϕ(xy) = ϕ(x1ym)ϕ(x2ym−1) · · ·ϕ(xmy1).

Similarly, we see that ϕ(yx) = 0 except possibly in the same conditions as
above and then we have

ϕ(yx) = ϕ(y1xm)ϕ(y2xm−1) · · ·ϕ(ymx1).

The conclusion follows from the tracial property of the restrictions of ϕ to
M1 and M2. �

Proposition 5.3.3. Let (M1, τ1), (M2, τ2) be two tracial von Neumann
algebras. There exists (up to isomorphism) at most one triple ((M, τ), φ1, φ2),
where τ is a normal faithful tracial state and φi : Mi → M , i = 1, 2, are
homomorphisms, satisfying the following properties:

(i) τi = τ ◦ φi for i = 1, 2;
(ii) φ1(M1), φ2(M2) sit in M as free von Neumann subalgebras with

respect to τ and M is generated by φ1(M1) ∪ φ2(M2).

Proof. Note first that every homomorphism φi satisfying Condition (i)
is normal by Proposition 2.5.11 and so φi(Mi) is a von Neumann subalgebra
of M by Proposition 2.5.12.

Let (M, τM ) and (N, τN ) be two solutions. We denote by φi : Mi → M
and ψi : Mi → N the trace preserving inclusions (i = 1, 2). Let M and
N be the ∗-algebras generated by φ1(M1) ∪ φ2(M2) and ψ1(M1) ∪ ψ2(M2)
respectively.

There is a well defined ∗-homomorphism α from M onto N such that
α(φi(x)) = ψi(x) for x ∈ Mi, i = 1, 2. Indeed, for y = φk1(x1) · · ·φkn(xn)
with xi ∈Mki , we set α(y) = ψk1(x1) · · ·ψkn(xn), and whenever y is a linear
combination of such terms we extend α by linearity. Of course, such an
expression of y is not unique. If y = Y1 and y = Y2 are two such expressions,
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to see that α(Y1) and α(Y2) defined in this way coincide, we first observe
that, by Proposition 5.3.2 (i), we have

τN (ψk1(x1) · · ·ψkn(xn)) = τM (φk1(x1) · · ·φkn(xn))

whenever xi ∈Mki , i = 1, . . . , n. It follows that

0 = τM ((Y1 − Y2)∗(Y1 − Y2)) = τN
(
(α(Y1)− α(Y2))∗(α(Y1)− α(Y2))

)
.

Since the trace τN is faithful, we conclude that α(Y1) = α(Y2).
Finally, since τN ◦ α = τM on M, it follows that α extends (uniquely)

to a trace preserving isomorphism from M onto N (Exercise 2.15). �

Definition 5.3.4. Let (M1, τ1), (M2, τ2) be two tracial von Neumann
algebras and let ((M, τ), φ1, φ2) be such that the conditions (i) and (ii) of
the previous proposition are satisfied. Then we say that (M, τ) is the free
product of (M1, τ1) and (M2, τ2) and we write (M, τ) = (M1, τ1) ∗ (M2, τ2)
or simply M = M1 ∗M2. Usually, we identify M1 and M2 with their ranges
in M .

For instance, (L(G1), τ1) and (L(G2), τ2) (with their canonical tracial
states) satisfy the conditions of Proposition 5.3.3 with respect to L(G1 ∗G2)
equipped with its trace τ and so (L(G1∗G2), τ) is isomorphic to (L(G1), τ1)∗
(L(G2), τ2).

We now prove the existence of (M1, τ1) ∗ (M2, τ2) for any pair of tracial
von Neumann algebras.

5.3.2. Construction of M1 ∗M2. For i = 1, 2 we set Hi = L2(Mi, τi)

and ξi = 1̂Mi . The first step is to represent M1 and M2 on the Hilbert space
free product of (H1, ξ1) by (H2, ξ2).

We denote by
o
Hi the orthogonal complement of Cξi in Hi. The Hilbert

space free product (H1, ξ1) ∗ (H2, ξ2) is (H, ξ) given by the direct hilbertian
sum

H = Cξ ⊕
⊕
n≥1

( ⊕
i1 6=i2 6=···6=in

o
Hi1 ⊗ · · ·⊗

o
Hin

)
,

where ξ is a unit vector. We set

Hl(i) = Cξ ⊕
⊕
n≥1

( ⊕
i1 6=i2 6=···6=in

i1 6=i

o
Hi1 ⊗ · · ·⊗

o
Hin

)
,

and we define a unitary operator Vi : Hi ⊗Hl(i)→ H as follows:

ξi ⊗ ξ 7→ ξ

ξi ⊗ η 7→ η, ∀η ∈
o
Hi1 ⊗ · · ·⊗

o
Hin , i1 6= i

η ⊗ ξ 7→ η, ∀η ∈
o
Hi

η ⊗ η′ 7→ η ⊗ η′, ∀η ∈
o
Hi, η′ ∈

o
Hi1 ⊗ · · ·⊗

o
Hin , i1 6= i.
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Similarly, we set

Hr(i) = Cξ ⊕
⊕
n≥1

( ⊕
i1 6=i2 6=···6=in

in 6=i

o
Hi1 ⊗ · · ·⊗

o
Hin

)
,

and we define the corresponding unitary operator Wi : Hr(i)⊗Hi → H.
We faithfully represent Mi on H by

∀x ∈Mi, λi(x) = Vi(x⊗ IdHl(i))V
∗
i ,

and similarly, we represent faithfully the commutant M ′i of Mi (in B(Hi))
by

ρi(x) = Wi(IdHr(i) ⊗ x)W ∗i .

A straightforward computation shows that λi(x)ρj(y) = ρj(y)λi(x) for

every x ∈Mi, y ∈M ′j , i, j ∈ {1, 2}. So, if we set M =
(
λ1(M1) ∪ λ2(M2)

)′′
,

and N =
(
ρ1(M ′1) ∪ ρ2(M ′2)

)′′
, we see that these von Neumann algebras

commute. We will see in Subsection 7.1.3 (d) that N = M ′.

We set
o
M i= ker τi. Note that

o
Hi is the norm closure of

o
M iξi. Moreover,

we have λi(x)ξ = xξi whenever x ∈
o
M i, and an easy induction argument

shows that

(λk1(x1) · · ·λkn(xn))ξ = x1ξk1 ⊗ · · · ⊗ xnξkn ∈
o
Hk1 ⊗ · · ·⊗

o
Hkn , (5.1)

for xi ∈
o
Mki with k1 6= k2 6= · · · 6= kn. It follows that ξ is cyclic for M .

Similarly, it is cyclic for N , and finally we get that ξ is cyclic and separating
for both algebras.

In particular, the vector state ωξ is faithful on M . We claim that
((M,ωξ), λ1, λ2) satisfies the conditions stated in Proposition 5.3.3. Since
V ∗i ξ = ξi⊗ ξ, a straightforward computation shows that ωξ ◦ λi = τi. More-
over, we deduce immediately from Equation (5.1) that the von Neumann
algebras λ1(M1) and λ2(M2) are free with respect to ωξ. Since ωξ is a tra-
cial state (by Proposition 5.3.2), we denote it by τ . Hence (M, τ) is the free
product of λ1(M1) and λ2(M2) we were looking for.

Remark 5.3.5. Since ξ is separating for M , the map x ∈ M 7→ xξ is
injective and so we may identify M with a subspace of H. In particular, we

identify λk1(x1) · · ·λkn(xn) with x1⊗ · · ·⊗xn ∈
o
Mk1 ⊗ · · ·⊗

o
Mkn , thanks to

(5.1). We set

M = C1⊕
⊕
n≥1

( ⊕
i1 6=i2 6=···6=in

o
M i1 ⊗ · · ·⊗

o
M in

)
. (5.2)

ThenM is a ∗-subalgebra of M , w.o. dense, called the algebraic free product
of M1 and M2. We observe that the components of the decomposition ofM
in (5.2) are mutually orthogonal with respect to the inner product defined
by τ .
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We end this section by giving a sufficient condition for the free product
of two tracial von Neumann algebras to be a factor. We make use of the
notion of conditional expectation defined in Chapter 9 and the reading of
the proof of the next lemma may be postponed.

Lemma 5.3.6. Let (M1, τ1), (M2, τ2) be two tracial von Neumann alge-
bras and set (M, τ) = (M1, τ1) ∗ (M2, τ2). Let Q be a diffuse von Neumann
subalgebra of M1. Then Q′ ∩M ⊂ M1. In particular, M is a II1 factor
whenever M1 is so.

Proof. We denote by EM1 the trace preserving conditional expectation
from M onto M1 (see Theorem 9.1.2). Let (un) be a sequence of unitary
operators in Q such that limn un = 0 in the w.o. topology (see Exercise 3.2).
We claim that for x, y ∈M such that EM1(x) = EM1(y) = 0, we have

limn ‖EM1(xuny)‖2 = 0. (5.3)

A crucial observation is that EM1(z) = 0 whenever z /∈
o
M1 is an alternated

product3 of elements in
o
M i. This follows from the fact that τ1(m1EM1(z)) =

τ(m1z) = 0 for every m1 ∈ M1, where the latter equality results from
straightforward computations.

Let us prove (5.3). Using the Kaplansky density theorem (and the obser-
vation preceding Proposition 2.6.4), we see that x is the limit in ‖·‖2-norm
of elements of M. Moreover, since EM1(x) = 0 and EM1 is ‖·‖2-continuous

we may assume that these elements have no component on C1⊕
o
M1= M1.

The same argument applies to y and finally it suffices to consider the case

where x, y are in some
o
M i1 · · ·

o
M in , i1 6= i2 6= · · · 6= in, n ≥ 2, or in

o
M2. So

we write x = x1ab and y = dcy1, where b, d ∈ {1}∪
o
M1, a, c ∈

o
M2, and x1

(resp. y1), if 6= 1, is an alternated product of elements in
o
M i, ending (resp.

beginning) with some element in
o
M1. Then, we have

xuny = (x1a)(bund)(cy1)

= (x1a)
(
bund− τ1(bund)1

)
(cy1) + τ1(bund)(x1acy1).

We set v = bund − τ1(bund)1 and note that EM1(x1avcy1) = 0 by our
previous observation. It follows that EM1(xuny) = τ1(bund)EM1(x1acy1).
But limn τ1(bund) = 0, and our claim (5.3) is proved.

Now let x ∈ Q′∩M . Subtracting EM1(x), we may assume that EM1(x) =
0. Then, we have

EM1(xunx
∗) = unEM1(xx∗)

and ‖unEM1(xx∗)‖2 = ‖EM1(xx∗)‖2. Together with (5.3), this implies that
EM1(xx∗) = 0 and thus x = 0 since EM1 is faithful. �

3An alternated product is of the form x1 . . . xn with xk ∈
o

M ik , i1 6= i2 6= · · · 6= in.
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Remark 5.3.7. The same proof applies to the case where 1Q 6= 1M : if
Q ⊂M1 is diffuse, then Q′ ∩ 1QM1Q ⊂M1.

Corollary 5.3.8. Let (M1, τ1), (M2, τ2) be two tracial von Neumann
algebras. We assume that M1 is diffuse and that M2 is non-trivial. Then
(M, τ) = (M1, τ1) ∗ (M2, τ2) is a II1 factor.

Proof. We keep the notation of Section 5.3.2. By the previous lemma,
we have Z(M) ⊂ Z(M1). Let z ∈ Z(M) with τ1(z) = 0 and let y be a
non-zero element in M2 with τ2(y) = 0. We have on the one hand ‖zyξ‖2 =
‖zξ1‖2‖yξ2‖2 by (5.1) and, on the other hand,

‖zyξ‖22 = τ(y∗z∗zy) = τ(z∗y∗zy) = 0.

It follows that zξ1 = 0 and thus z = 0. Therefore we get Z(M) = C1. �

5.4. Ultraproducts

As we will see later, the technique of ultraproducts is a very useful
tool when studying the behaviour of families of sequences. We fix a free
ultrafilter ω. Recall that ω is an element of βN \ N, where βN is the Stone-
Čech compactification of N, i.e., the spectrum of the C∗-algebra `∞(N). For
any bounded sequence (cn) of complex numbers, limω cn is defined as the
value at ω of this sequence, viewed as a continuous function on βN.

Let (Mn, τn) be a sequence of tracial von Neumann algebras. The pro-
duct algebra

∏
n≥1Mn is the C∗-algebra of bounded sequences x = (xn)n

with xn ∈ Mn for every n, endowed with the norm ‖x‖ = supn ‖xn‖. The
(tracial) ultraproduct

∏
ωMn is the quotient of

∏
n≥1Mn by the ideal Iω

of all sequences (xn)n such that limω τn(x∗nxn) = 0. It is easily seen that
Iω is a normed closed two-sided ideal, so that

∏
ωMn is a C∗-algebra. If

xω denotes the class of x ∈
∏
n≥1Mn, then τω(xω) = limω τn(xn) defines

without ambiguity a faithful tracial state on
∏
ωMn. We set ‖y‖2,ω =

τω(y∗y)1/2 whenever y ∈
∏
ωMn.

When the (Mn, τn) are the same tracial von Neumann algebra (M, τ),
we set Mω =

∏
ωM , and we say that (Mω, τω) is the (tracial) ultrapower of

(M, τ) along ω.

Proposition 5.4.1. (
∏
ωMn, τω) is a tracial von Neumann algebra.

Moreover, if the Mn are tracial factors such that limn dimMn = +∞, then∏
ωMn is a II1 factor4.

Proof. For simplicity of notation, we deal with the case Mω, the proof
in the general case being the same. We use the characterisation given in
Proposition 2.6.4, and show that the unit ball of Mω is complete for the

4This factor is not separable in general. It is the only example where we really need
to work with non separable II1 factors in this monograph.
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metric induced by ‖·‖2,ω. Let (x(p))p be a sequence in Mω such that, for
every p

‖x(p)‖∞ < 1, ‖x(p+ 1)− x(p)‖2,ω < 2−(p+1).

We choose inductively a representing sequence (xn(p))n for x(p) such that

sup
n
‖xn(p)‖ ≤ 1, sup

n
‖xn(p+ 1)− xn(p)‖2 ≤ 2−(p+1).

Then, for each n ∈ N, the sequence (xn(p))p is a Cauchy sequence in the unit
ball (M)1 of M equipped with the ‖·‖2 metric, and therefore converges to
some xn ∈ (M)1. Now, we have ‖xn − xn(p)‖2 ≤ 2−p, whence, if x denotes
the class of the sequence (xn)n,

‖x− x(p)‖2,ω = lim
ω
‖xn − xn(p)‖2 ≤ 2−p.

Assume now that M is a factor. We claim that any two projections
p, q ∈Mω are comparable and soMω is a factor (see Remark 2.4.10). Indeed,
using the lemma to follow, we choose representatives (pn) and (qn) of p, q
respectively, consisting in sequences of projections such that τ(pn) = τω(p)
and τ(qn) = τω(q) for every n. Assume that τω(p) ≤ τω(q). Since M
is a factor, there exists a partial isometry un in M with u∗nun = pn and
unu

∗
n ≤ qn. Let uω be the class of the sequence (un)n. Then we have

u∗ωuω = p and uωu
∗
ω ≤ q. �

Lemma 5.4.2. Let (M, τ) be a tracial von Neumann algebra, ω a free
ultrafilter and p a projection in Mω.

(i) There exists a representative (pn) of p such that pn is a projection
for every n.

(ii) If in addition M is a factor, we may choose the pn such that τ(pn) =
τω(p) for every n.

Proof. (i) Let (xn) be a representative of p such that 0 ≤ xn ≤ 1 for
every n. We have limω

∥∥xn − x2
n

∥∥
2

= 0. We may assume that
∥∥xn − x2

n

∥∥
2

=
δn < 1/4 for every n. Let pn be the spectral projection of xn relative to the

interval [1− δ1/2
n , 1). Then limω ‖xn − pn‖2 = 0 by Lemma 5.4.3 below.

(ii) We only consider the case where M is a II1 factor, the case of matrix
algebras being trivial. We set τω(p) = λ. Let q be a projection in M with
τ(q) = λ. We have either q - pn or pn - q. We choose a projection qn ∈M
with τ(qn) = λ and either qn ≤ pn or pn ≤ qn. Then we have

‖qn − pn‖22 = |τ(qn − pn)| = |λ− τ(pn)|

and so limω ‖qn − pn‖2 = 0. �

Lemma 5.4.3. Let 0 ≤ x ≤ 1 be an element of a tracial von Neumann
algebra such that

∥∥x− x2
∥∥

2
= δ < 1/4. Let p be the spectral projection of x

relative to [1−
√
δ, 1]. Then we have ‖x− p‖2 ≤ (3δ)1/2.
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Proof. Let µ be the spectral probability measure of x associated with
the vector 1̂ ∈ L2(M, τ). We have∫ 1

0
(t− t2)2 dµ(t) =

∫ 1

0
(t− t2)2 d〈1̂, Et1̂〉 =

∥∥x− x2
∥∥2

2
= δ2.

Put δ1 = δ1/2. We have

δ2 ≥
∫ 1−δ1

δ1

(t− t2)2 dµ(t) ≥ (δ1 − δ2
1)2µ([δ1, 1− δ1]),

hence µ([δ1, 1− δ1]) ≤ δ(1− δ1)−2. It follows that

‖x− p‖22 =

∫ δ1

0
t2 dµ(t) +

∫ 1−δ1

δ1

t2 dµ(t) +

∫ 1

1−δ1
(1− t)2 dµ(t)

≤ 2δ + (1− δ1)2µ([δ1, 1− δ1]) ≤ 3δ. �

Remark 5.4.4. Let M be a separable II1 factor. One may wonder
whether the ultraproduct Mω depends on the free ultrafilter ω. Ge and
Hadwin proved that, assuming the Continuum Hypothesis, all these ultra-
products are isomorphic [GH01]. It has been proved more recently by
Farah, Hart and Sherman that, conversely, if all these ultraproducts are
isomorphic then the Continuum Hypothesis holds [FHS13].

5.5. Beyond factors and abelian von Neumann algebras

A tracial factor is either isomorphic to some matrix algebra or is of
type II1 depending on the existence or not of a minimal projection (see
Corollary 2.4.14). In the non-factor case, the distinction is made via the
existence of non-zero abelian projections, which generalize the notion of
minimal projection.

Definition 5.5.1. Let M be a von Neumann algebra. A projection
p ∈M is called abelian if p 6= 0 and the reduced von Neumann algebra pMp
is abelian.

A useful feature of abelian projections is the following one.

Proposition 5.5.2. Let p, q be two projections in a von Neumann al-
gebra M . We assume that p is abelian and that p ≤ z(q) where z(q) is
the central support of q. Then we have p - q. In particular, two abelian
projections with the same central support are equivalent.

Proof. Since there exists a central projection z such that zp - zq and
(1− z)q - (1− z)p, it suffices to show that (1− z)q ∼ (1− z)p. So, we may
assume that q ∼ q1 ≤ p ≤ z(q).

Since p is abelian, we have q1 = pe where e ∈ Z(M) (see Proposition
4.2.1). Then we have

e ≥ z(q1) = z(q) ≥ z(p)
and so p = pe = q1. �
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Definition 5.5.3. We say that a von Neumann algebra is of type I if
it has an abelian projection whose central support is 1. A von Neumann
algebra is said to be of type II1 if it is finite (i.e., its unit is not equivalent
to a strictly smaller projection, see the next chapter) and does not have any
abelian projection.

Remark 5.5.4. For factors, abelian projections are the same as minimal
projections. The above definitions are compatible with the definitions of
type I and type II1 given in the case of factors (see Theorem 6.3.5 for II1

factors).
There is almost no loss of generality to deal with tracial von Neumann

algebras instead of finite ones. Indeed, finite von Neumann algebras are
direct sums of tracial von Neumann algebras and, in the countably decom-
posable case, they are exactly the tracial von Neumann algebras (Exercise
6.2).

Examples 5.5.5. (a) For instance, any tensor product L∞(X,µ)⊗B(H)
is easily seen to be of type I. Such an algebra M is said to be d-homogeneous
where d is the dimension of H. The cardinal d only depends on M (see
Exercise 5.5 for countable cardinals).

More generally, every product of the form
∏
i∈I Ai⊗B(Hi) where the

Ai’s are abelian is still of type I.
(b) Let (N, τ) be a II1 factor and L∞(X,µ) an abelian von Neumann

algebra. Then M = L∞(X,µ)⊗N is a type II1 von Neumann algebra.
Indeed, assume that M has an abelian projection p. Let (en) be a decreasing
sequence of projections in N such limn τ(en) = 0. Since the central support
of 1⊗ en is 1M (Exercise 5.4 (ii)), we deduce from the previous proposition
that p - 1⊗ en and so

(τµ ⊗ τ)(p) ≤ (τµ ⊗ τ)(1⊗ en) = τ(en)

for every n, in contradiction with the fact that p 6= 0.
More generally, every product

∏
i∈I Ai⊗Ni where the Ai’s are abelian

and the Ni’s are II1 factors is a type II1 von Neumann algebra.

Remark 5.5.6. Every type I von Neumann algebra can be written as∏
i∈I Ai⊗B(Hi) where the Ai’s are abelian(see [Tak02, Theorem V.1.27]).

Finite type I von Neumann algebras are exactly those with dimHi < +∞
for all i.

On the other hand, not every type II1 von Neumann algebra is of the
form

∏
i∈I Ai⊗Ni where the Ai’s are abelian and the Ni’s are II1 factors,

but separable II1 von Neumann algebras are direct integrals of II1 factors
(see [Dix81, Chapitre II, §3 and §5]).

Theorem 5.5.7. Every von Neumann algebra M has a unique decompo-
sition as a direct sum M1 ⊕M2 where M1 is a type I von Neumann algebra
and M2 is without abelian projection (with possibly one of the two compo-
nents degenerated to {0}).
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Proof. Assume that M has at least an abelian projection (otherwise
there is nothing to prove). Let (pi)i∈I be a maximal family of abelian pro-
jections pi in M whose central supports z(pi) are mutually orthogonal and
set p =

∑
i∈I pi, z =

∑
i∈I z(pi). Then p is an abelian projection whose

central support is z. Moreover, thanks to the maximality of (pi)i∈I , we see
that M(1 − z) has no abelian projection. So M = (Mz) ⊕ (M(1 − z)) is a
decomposition of M as a direct sum of a type I von Neumann algebra by a
von Neumann algebra without any abelian projection.

Let M = (Mz1)⊕ (M(1− z1)) be another such decomposition. We have
z1 ≤ z. Indeed, let p1 be an abelian projection having z1 as central support.
If z1(1− z) 6= 0, then p1z1(1− z) is an abelian projection in M(1− z), but
this cannot occur. Similarly, we see that z ≤ z1. �

We have seen in Corollary 4.1.2 that in any diffuse factor, for all n ≥ 1
every projection is the sum of 2n equivalent projections. This result extends
to any von Neumann algebra without abelian projections.

Proposition 5.5.8. Let M be a von Neumann algebra without abelian
projection. Then any projection in M is the sum of two equivalent orthogonal
projections and therefore is the sum of 2n equivalent orthogonal projections
for all n ≥ 1.

Proof. It suffices to show that for any non-zero projection e in M there
exist two non-zero equivalent orthogonal projection e1, e2 with e1 + e2 ≤ e.
Then the end of the proof will be exactly the same as that of Lemma 4.1.1.

The crucial observation is that eMe is not abelian. So, there is a projec-
tion f in eMe but not in Z(eMe). Therefore we have fM(e−f) 6= 0. Then,
it follows from Lemma 2.4.7 that there exist non-zero projections e1 ≤ f and
e2 ≤ e− f that are equivalent. �

Exercises

Exercise 5.1. We keep the notation of Example 5.1.1 (b).

(i) Prove the assertions stated in this example.
(ii) Let T = [Ti,j ] be a matrix with coefficients in M . For every n

we denote by T (n) the matrix with T (n)i,j = Ti,j if i, j ≤ n and
T (n)i,j = 0 otherwise. Show that T ∈ B(`2(N))⊗M if and only if
the sequence (‖T (n)‖)n is bounded.

(iii) Extend these results, when N is replaced by any set I.

Exercise 5.2. Let M be a von Neumann algebra and let (pi)i∈I be a
family of mutually equivalent projections such that

∑
i∈I pi = 1. Show that

M is isomorphic to B(`2(I))⊗(pi0Mpi0) with i0 ∈ I.

Exercise 5.3. Let M1 and M2 be two factors. Show that

(1M1⊗M2)′ ∩ (M1⊗M2) = M1⊗1M2 .
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Exercise 5.4. Let (X,µ) be a probability measure space and (N,H) a
factor.

(i) Show that the commutant of L∞(X,µ)⊗1B(H) in B(L2(X,µ)⊗H)

is L∞(X,µ)⊗B(H).
(ii) Show that the center of L∞(X,µ)⊗N is L∞(X,µ)⊗1N .

More generally, one shows that the center of a tensor product of two von
Neumann algebras is the tensor product of their centers (see [Tak02, Corol-
lary IV.5.11]).

Exercise 5.5. Let M be a von Neumann algebra and let (ei)i∈I , (fj)j∈J
be two countable families of abelian projections having 1 as central support
and such that

∑
i∈I ei = 1 =

∑
j∈J fj . Show that all these projections are

equivalent and that card I = card J .

Exercise 5.6. We set `2∞ = `2(N∗) and `2i denotes the canonical Hilbert
space of finite dimension i. Let I, J be two subsets of N∗∪{∞} and (Ai)i∈I ,
(Bj)j∈J be two families of abelian von Neumann algebras. Let

α :
∑⊕

i∈I
Ai⊗B(`2i )→

∑⊕

j∈J
Bj⊗B(`2j )

be an isomorphism. Show that I = J and that α
(
Ai⊗B(`2i )

)
= Bi⊗B(`2i )

for every i ∈ I.

Exercise 5.7. When M is a factor, show that α ∈ Aut (M) is inner if
and only if their exists a non-zero element y ∈M such that yα(x) = xy for
every x ∈M .

Exercise 5.8. Let (B, τ) be a tracial von Neumann algebra and σ :
Gy B a trace preserving action of a group G. Show that BoG is spatially
isomorphic to the von Neumann algebra of operators on H = L2(B, τ) ⊗
`2(G) = `2(G,L2(B, τ)) generated by {π(B)} ∪ {1⊗ λg : g ∈ G} where π(b)
is defined by (π(b)f)(g) = σg−1(b)f(g) for b ∈ B and f ∈ H (see Exercise
1.9 for the case where B is abelian).

Exercise 5.9. Let (B, τ) be a tracial von Neumann algebra and σ : Gy
B a trace preserving action of a group G. Show that the crossed product
BoG is the unique (up to isomorphism) tracial von Neumann algebra (M, τ)
generated by a trace preserving copy of B and unitary elements (ug)g∈G
satisfying the following properties:

ugbu
∗
g = σg(b) for all g ∈ G, b ∈ B, uguh = ugh for all g, h ∈ G,

τ(bug) = 0 for all b ∈ B, g 6= e.

Exercise 5.10. Let G be an ICC group and let σ : G y (B, τ) be a
trace preserving action. We identify L(G) in the obvious way with a von
Neumann subalgebra of BoG (i.e., the von Neumann subalgebra generated
by the ug, g ∈ G).

(i) Show that L(G)′ ∩ (B oG) = BG (the algebra of G-fixed elements
in B).
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(ii) Show that B oG is a factor (and so a II1 factor) if and only if the
G-action on the center of B is ergodic.

Exercise 5.11. Let G be a finite group and σ : Gy B a properly outer
trace preserving action on a tracial von Neumann algebra (B, τ). For g ∈ G,

we denote by vg the unitary operator on L2(B, τ) defined by vgx̂ = σ̂g(x)
for every x ∈ B. Let M be the ∗-subalgebra of B(L2(B, τ)) generated by
B ∪ {vg : g ∈ G}. Let φ : B o G → M by defined by φ(

∑
g∈G bgug) =∑

g∈G bgvg.

(i) Show that φ : B oG→ B(L2(B, τ)) is a normal homomorphism.
(ii) Show that φ is injective (use the fact that the center of B o G is

contained in Z(B)).
(iii) Conclude that M is a von Neumann algebra isomorphic to B oG.

Exercise 5.12. Let M be a II1 factor and ω a free ultrafilter on N.

(i) Let f1, . . . , fk be mutually orthogonal projections in Mω. Show
that we can find, for i = 1, . . . , k, a representative (f in)n∈N in
`∞(N,M) of f i, such that for every n, the f in, i = 1, . . . , k, are
mutually orthogonal projections in M . Show that these projec-
tions can be chosen mutually equivalent whenever one starts with
mutually equivalent projections in Mω.

(ii) Let u be a partial isometry in Mω and set f1 = u∗u, f2 = uu∗.
Choose representatives (f in)n∈N of f i, i = 1, 2, such that for every
n the projections f1

n and f2
n are equivalent. Show that u can be

lifted into a sequence (un)n satisfying u∗nun = f1
n and unu

∗
n = f2

n

for every n.
(iii) Show that every matrix units in Mω can be lifted to a sequence of

matrix units in M .

Exercise 5.13. LetM be a von Neumann algebra. Show the equivalence
of the following two conditions:

(i) M is of type I;
(ii) every non-zero projection of M majorizes an abelian projection.

Notes
The tensor product of two von Neumann algebras was introduced in the

first joint paper of Murray and von Neumann [MVN36]. Infinite tensor
products of von Neumann algebras were defined by von Neumann [vN39]
very soon after. The notion of crossed product for a group action on an
abelian von Neumann algebra goes back to the pioneering work of Mur-
ray and von Neumann [MVN36]. The setting of group actions on tracial
von Neumann algebras was originated by the Japanese school of operator
algebras in the late fifties. ([Tur58, Suz59, NT58] to cite a few)

The notion of free product of two von Neumann algebras appears for
the first time in [Chi73], but was developed and used in its full strength by
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Voiculescu, his students and others. It gave rise in the eighties to the very
active and powerful theory of free probability (see [Voi85] for the beginning).

Ultraproducts constructions appeared in model theory in the fifties.
However, they are already implicit in the operator algebra setting in Wright’s
paper [Wri54] and later in Sakai’s notes [Sak62] although these authors do
not use the ultrapower terminology. Ultraproducts are a crucial ingredi-
ent in McDuff’s characterisation of those II1 factors M that are isomorphic
to M⊗R (the so-called McDuff factors [McD70]), in Connes’ characteri-
sation of full factors [Con74] (see Chapter 15) and in his celebrated work
on the classification of injective factors [Con76]. Ultraproduct techniques
are nowadays a classical useful tool when one wants to replace approximate
properties by some precise version.
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CHAPTER 6

Finite factors

It is now the time to clarify the definition of II1 factors. We have in-
troduced them in term of the existence of an appropriate trace. The main
purpose of this chapter is to give an equivalent definition, which relies on
the behaviour of the projections: an infinite dimensional factor is of type II1

if and only if its unit is not equivalent to a strictly smaller projection. The
notion of dimension function will be the key of the proof of the equivalence
of the two definitions. We will also see that whenever a factor has a tracial
state, this trace is automatically normal and faithful. It is also unique, as
already shown in Chapter 4.

We end this chapter by a general averaging result for factors which, when
applied to a finite factor, gives a nice description of the trace.

6.1. Definitions and basic observations

Definition 6.1.1. A projection p in a von Neumann algebra M is finite
if p is not equivalent to a projection q strictly smaller than p. In other terms,
p is finite if for every partial isometry u ∈ M with u∗u = p and uu∗ ≤ p,
then uu∗ = p.

If p is not finite, we say that p is infinite.

Every projection q ∈ M smaller than a finite projection p ∈ M is also
finite. Indeed, if there exists a partial isometry u ∈ M with u∗u = q and
uu∗ < q then v = u + (p − q) will be a partial isometry with v∗v = p and
vv∗ < p, a contradiction. In particular, when the unit element 1 of M is a
finite projection, every projection in M is finite.

Definition 6.1.2. We say that a von Neumann algebra M (in particular
a factor) is finite if 1 is a finite projection. Otherwise, we say that M is
infinite.

Obviously, abelian von Neumann algebras are finite. Every von Neu-
mann algebra which has a faithful tracial state τ is finite. Indeed, let u be a
partial isometry in M such that u∗u = 1. Then τ(1−uu∗) = τ(1−u∗u) = 0,
so that 1 = uu∗ since τ is faithful.

Whenever p ∼ q, it is not true in general that 1 − p ∼ 1 − q. This can
be observed for instance in the von Neumann algebra B(`2(N)).

On the other hand, when 1 is finite we have:

Lemma 6.1.3. Let M be a finite von Neumann algebra.

83
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(i) Let p, q ∈M be two projections such that p ∼ q. Then 1−p ∼ 1−q.
In particular, there exists a unitary u ∈M with upu∗ = q.

(ii) Let v ∈M be a partial isometry. There exists a unitary operator u
with v = u(v∗v).

Proof. (i) The comparison theorem 2.4.8 tells us that there exists a
projection z ∈ Z(M) with (1−p)z - (1−q)z and (1−q)(1−z) - (1−p)(1−z).
By considering separately the situations in Mz and M(1−z), we may assume
for instance that 1− p - 1− q. If 1− p ∼ r ≤ 1− q, we have

1 ≥ q + r ∼ p+ (1− p) = 1

so that q + r = 1, whence 1− p ∼ 1− q.
Let v ∈ M be a partial isometry with v∗v = p, vv∗ = q and let w ∈ M

be such that w∗w = 1− p, ww∗ = 1− q. Then u = v + w is a unitary that
has the required property.

(ii) is immediate from (i). �

In contrast with the case of finite projections, any infinite projection in
a factor can be cut up in two pieces equivalent to itself.

Proposition 6.1.4. Every infinite projection p in a factor M can be
written as p = p1 + p2 where p1, p2 are projections in M such that p1 ∼ p ∼
p2.

Proof. Replacing M by the factor pMp we may assume that p = 1.
Let e1 ∈ P(M) be such that e1 ∼ 1 with e1 6= 1 and let u ∈M be such that
u∗u = 1 and uu∗ = e1. We put e0 = 1, en = un(un)∗ for n > 0. Then (en)n≥0

is a strictly decreasing sequence of projections which are all equivalent to 1.
Morever the projections fn = en − en+1, n ≥ 0, are equivalent, since, if we
set vn = u(en − en+1), we have v∗nvn = en − en+1 and vnv

∗
n = en+1 − en+2.

Let (qi)i∈I be a maximal family of mutually orthogonal and equivalent
projections, which contains the sequence {fn : n ∈ N}. Since M is a factor,
the maximality of the family implies that q = 1−

∑
i∈I qi - qi. We consider

a partition I1∪ I2 of I into two subsets of the same cardinal as I and we put
p1 =

∑
i∈I1 qi, p2 =

∑
i∈I2 qi + q. We have p1 + p2 = 1 and due to the fact

that the cardinal of I is infinite, we immediately see that p1 ∼ p2 ∼ 1. �

We remark that, by using a partition of I into a countable family of
subsets of the same cardinality, we even get p =

∑
n≥1 pn where the pn are

all equivalent to p.
It follows from this proposition that an infinite factor has no tracial

state. Indeed, if 1 is infinite, we may write 1 = p1 + p2 where p1, p2 are
two projections equivalent to 1. Assuming that M has a tracial state τ , we
obtain the contradiction

1 = τ(p1) + τ(p2) = 2.
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6.2. Construction of the dimension function

The aim of the next two sections is to prove that a finite factor carries
a normal tracial state. Since a finite factor that has a minimal projection
is isomorphic to some matrix algebra Mn(C) (see Proposition 2.4.13) we
only have to deal with finite diffuse factors. The first step is to construct a
function that, like tracial states, measures the dimension of projections. We
begin by the introduction of a kind of dyadic expansion for projections.

Proposition 6.2.1. Let M be a diffuse factor. There exists a sequence
(pn)n≥1 of mutually orthogonal projections in M such that

pn+1 ∼ 1−
n+1∑
i=1

pi for n ≥ 0. (6.1)

Proof. By Proposition 4.1.1 we find two equivalent projections p1, q1 ∈
M with p1 + q1 = 1. By the same argument, we find two equivalent projec-
tions p2, q2 with p2 + q2 = 1− p1 and therefore 1− p1 − p2 ∼ p2. Repeating
this process, we get a sequence (pn)n≥1 of projections with the required
properties. �

Remark 6.2.2. We observe that 1 is the orthogonal sum of two pro-
jections equivalent to p1 and that every pn is the orthogonal sum of two
projections equivalent to pn+1.

We now turn to the case of finite factors.

Proposition 6.2.3. Let M be a diffuse finite factor and let (pn) be as
in Proposition 6.2.1.

(i) Let p ∈ P(M) be such that p - pn for every n ≥ 1. Then p = 0.
(ii) We have

∑+∞
k=1 pk = 1, and therefore

∑+∞
k=n+1 pk ∼ pn for n ≥ 1.

(iii) If p is a non-zero projection in M , there exists an integer n such
that pn - p.

Proof. (i) Suppose p 6= 0. We have p ∼ qn ≤ pn for all n. Setting

q =
∑
n odd

qn and q′ =
∑
n≥1

qn,

we have q ∼ q′ and q < q′, in contradiction with the fact that q′ is finite.
(ii) If we put p = 1 −

∑+∞
k=1 pk, we get from (6.1) that p - pn for every

n and so p = 0.
(iii) follows immediately from (i). �

Definition 6.2.4. A projection p ∈M which is equivalent to one of the
above constructed projections pn, n ≥ 1, is called a fundamental projection.
We denote by FP(M) the set of fundamental projections in M .

The (equivalence classes of) fundamental projections play, for projec-
tions, the role of dyadic rationals for numbers in [0, 1].
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Proposition 6.2.5. Let M and (pn) be as above and let p ∈ M be a
non-zero projection. There exists a unique increasing sequence n1 < n2 <
· · · < nk < · · · of integers and a sequence (p′nk)k≥1 of mutually orthogonal
projections in M with the following properties:

(i) p′nk ∼ pnk for every k ≥ 1;

(ii) p =
∑+∞

i=1 p
′
ni.

Proof. We first observe that condition (ii) is equivalent to

p−
k∑
i=1

p′ni - pnk for k ≥ 1. (ii’)

Indeed, (ii’) implies that

p−
∞∑
i=1

p′ni ≤ p−
k∑
i=1

p′ni - pnk - pk

for all k, and so p =
∑∞

i=1 p
′
ni by Proposition 6.2.3 (i). Conversely, if (ii)

holds, then we have, for all k,

p−
k∑
i=1

p′ni ∼
∞∑

i=nk+1

pni - pnk .

We may assume that p 6= 1 since for 1 =
∑+∞

k=1 pk the only possible
choice is nk = k for all k. By Proposition 6.2.3 we see that there exists
n such that pn - p, and we define n1 to be the smallest integer with this
property. Let p′n1

∼ pn1 be such that p′n1
≤ p. We have p − p′n1

≺ pn1 ,
otherwise we would have pn1 - p − p′n1

, and n1 would not be the smallest
integer with pn - p. In case p− p′n1

= 0, we have, by Proposition 6.2.3,

p =
∞∑

k=n1+1

p′k ,

where the projections are mutually orthogonal, with p′k ∼ pk for every k ≥
n1 + 1. We easily see that it is the only possible infinite expansion, up to
equivalence of projections1.

If p− p′n1
6= 0, we repeat the process and we choose n2 to be the smal-

lest integer with pn2 - p − p′n1
. By induction, we get a strictly increasing

sequence (nk)k≥1 of integers and a sequence (p′nk) of mutually orthogonal
projections with the required properties (i) and (ii’), where we make the

convention that if we get at some stage the equality p =
∑k

i=1 p
′
ni , then we

choose the expansion of the form

p =

k−1∑
i=1

p′ni +

∞∑
i=nk+1

p′i,

1This choice of an infinite decomposition is similar to the convention of choosing the
infinite expansion of a dyadic rational number instead of the finite one.



D
ra
ft

6.2. CONSTRUCTION OF THE DIMENSION FUNCTION 87

with p′i ∼ pi for every i ≥ nk + 1.
The uniqueness of the sequence (nk)k≥1 is also easily checked by induc-

tion. �

By a slight abuse of language, we will say that p =
∑∞

i=1 p
′
ni is the dyadic

expansion of p.
We now define the notion of dimension function and prove its existence

and uniqueness.

Definition 6.2.6. LetM be a diffuse finite factor. A dimension function
on M is a map ∆ : P(M)→ [0, 1] such that

(i) ∆(1) = 1;
(ii) p ∼ q ⇒ ∆(p) = ∆(q);

(iii) ∆(p+ q) = ∆(p) + ∆(q) for every pair (p, q) of orthogonal projec-
tions.

Lemma 6.2.7. Let ∆ be dimension function on a diffuse finite factor M .
Then we have

(i) ∆(p) = 0 if and only if p = 0;
(ii) p - q if and only if ∆(p) ≤ ∆(q);

(iii) ∆ is completely additive, i.e., for any family (qi)i∈I of mutually
orthogonal projections in M , we have ∆(

∑
i∈I qi) =

∑
i∈I ∆(qi).

Proof. (i) If p 6= 0, by Proposition 6.2.3 (iii) there exists a fundamental
projection pn with pn - p. We have ∆(pn) = 2−n (see Remark 6.2.2),
whence ∆(p) 6= 0.

(ii) is immediate. It remains to show the complete additivity. Let (qi)i∈I
be a family of mutually orthogonal projections in M and set q =

∑
i∈I qi.

For every finite subset F of I we have
∑

i∈F ∆(qi) ≤ ∆(q) and hence∑
i∈I ∆(qi) ≤ ∆(q). Since the sum

∑
i∈I ∆(qi) is finite, the set of indices i

with qi 6= 0 is countable and we may assume that I = N∗.
Assume that

∑
n≥1 ∆(qn) < ∆(q) and choose an integer k with

2−k +
∑
n≥1

∆(qn) ≤ ∆(q).

Let r ∈ P(M) with ∆(r) = 2−k. We construct, by induction, a sequence
(rn)n≥0 of mutually orthogonal projections with r0 ∼ r, rn ∼ qn for n ≥ 1
and rn ≤ q for n ≥ 0. First, since ∆(r) ≤ ∆(q), there is r0 ∼ r with r0 ≤ q.
Suppose now that we have constructed r0, r1, . . . , rn−1. We have

∆(q −
n−1∑
i=0

ri) = ∆(q)−
n−1∑
i=0

∆(ri) ≥
∞∑
i=n

∆(qi) ≥ ∆(qn).

Thus we have

qn - q −
n−1∑
i=0

ri

and therefore there exists rn ∼ qn with rn ≤ q −
∑n−1

i=0 ri.
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Finally, we obtain

q =
∞∑
i=1

qi ∼
∞∑
i=1

ri <
∞∑
i=0

ri ≤ q

which is impossible since q is a finite projection. �

Theorem 6.2.8. Let M be a diffuse finite factor. There exists a unique
dimension function ∆ : P(M) → [0, 1]. It is defined by ∆(0) = 0 and for
p 6= 0 by the expression

∆(p) =

∞∑
i=1

1

2ni
, (6.2)

where p =
∑∞

i=1 p
′
ni is the dyadic expansion of p.

Proof. We first prove the uniqueness of ∆. We keep the notation of
Proposition 6.2.1. Using Remark 6.2.2, we see that we must have ∆(pn) =
2−n for every n. Therefore, using the complete additivity of ∆, we obtain
that ∆(p) must be given by the expression (6.2) if p 6= 0..

So, we define ∆ by this expression. Obviously, we have ∆(p) = 0 if and
only if p = 0.

We check first that whenever p - q, then ∆(p) ≤ ∆(q). Let p =∑∞
i=1 p

′
ni , q =

∑∞
i=1 q

′
mi be the dyadic expansions of p and q. Assume that

∆(p) > ∆(q). Then we denote by i0 the smallest integer i with ni 6= mi.
We have ni0 < mi0 . By Proposition 6.2.3 (ii), we get

p′ni0
∼ pni0 %

∞∑
i=i0

pmi ∼
∞∑
i=i0

q′mi

and we deduce the contradiction p � q.
Let us show now that ∆ is a dimension function. Condition (ii) of

Definition 6.2.6 is immediate. We claim that ∆(p+ q) = ∆(p) + ∆(q) when
pq = 0. We first consider the case where p is a fundamental projection,
say p ∼ pn. Let q =

∑∞
i=1 q

′
mi be the dyadic expansion of q. Then either

n 6∈ {mi : i ≥ 1} and then p+
∑∞

i=1 q
′
mi is the dyadic expansion of p+ q and

we get immediately the additivity, or there is mi0 with n = mi0 . In this case,
p + q′mi0

∼ pn−1 and we iterate the argument with (p + q′mi0
) +

∑
i 6=i0 q

′
mi .

In a finite number of steps we get the dyadic expansion of p+ q, from which
we again deduce the additivity.

We now study the general case where p has the dyadic expansion
∑∞

i=1 p
′
ni .

For every k, we write p =
∑k

i=1 p
′
ni +rk and q =

∑k
i=1 q

′
ni +r′k and we notice

that rk - p′nk - pk and r′k - q′nk - pk, so that rk + r′k - pk−1. From the
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above observations, we see that

∆(p+ q) = ∆
(

(

k∑
i=1

p′ni +
k∑
i=1

q′ni) + (rk + r′k)
)

=
k∑
i=1

∆(p′ni) +
k∑
i=1

∆(q′ni) + ∆(rk + r′k)

with 0 ≤ ∆(rk + r′k) ≤
1

2k−1 .
It follows that

∆(p+ q) =
∞∑
i=1

∆(p′ni) +
∞∑
i=1

∆(q′ni) = ∆(p) + ∆(q).

It is now easy to prove (2). Assume that ∆(p) ≤ ∆(q) and that q ∼ q′ ≤
p. Then ∆(p) = ∆(q) + ∆(p− q′), so that p = q′ and p ∼ q. �

6.3. Construction of a tracial state

We keep the assumptions and notations of Theorem 6.2.8. We show that
the dimension function extends in a unique way to a normal faithful tracial
state on M .

Lemma 6.3.1. Let ϕ and ψ be two non-zero completely additive maps
from P(M) into R+. We assume that ϕ is faithful, i.e., ϕ(e) 6= 0 whenever
e 6= 0. Given ε > 0, there is a non-zero fundamental projection p ∈ FP(M)
and a constant θ > 0 such that for every projection q ≤ p, we have

θϕ(q) ≤ ψ(q) ≤ θ(1 + ε)ϕ(q). (6.3)

Proof. We may assume that ϕ(1) = ψ(1) 6= 0. We first show that
there exists a fundamental projection e such that ϕ(e1) ≤ ψ(e1) for every
fundamental projection e1 ≤ e.

Suppose, on the contrary, that for every e ∈ FP(M) there exists e1 ∈
FP(M) with e1 ≤ e and ϕ(e1) > ψ(e1). Take a maximal family (ei)i∈I
of mutually orthogonal fundamental projections such that ϕ(ei) > ψ(ei).
Using Proposition 6.2.3 (iii) we see that

∑
i∈I ei = 1, whence

ϕ(1) =
∑
i∈I

ϕ(ei) >
∑
i∈I

ψ(ei) = ψ(1),

thanks to the complete additivity of ϕ and ψ.
Therefore there exists e with the required property. We set

θ = sup {η : ηϕ(e1) ≤ ψ(e1), ∀e1 ≤ e, e1 ∈ FP(M)}.

We have θ ∈ [1,+∞[ and θϕ(e1) ≤ ψ(e1) for e1 ∈ FP(M) and e1 ≤ e.
Let us assume now that for every projection p ∈ FP(M) with p ≤ e

there exists a fundamental projection e1 ≤ p with

θ(1 + ε)ϕ(e1) ≤ ψ(e1).
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Using a maximality argument as above, but in the von Neumann algebra
pMp, this would imply that θ(1 + ε)ϕ(p) ≤ ψ(p), in contradiction with the
definition of θ.

Hence there exists a fundamental projection p ≤ e such that θ(1 +
ε)ϕ(e1) ≥ ψ(e1) for every fundamental projection e1 ≤ p, and the inequality
θϕ(e1) ≤ ψ(e1) is of course satisfied. Thanks to the dyadic expansion of any
projection q ≤ p and the complete additivity of ϕ and ψ, we get (6.3). �

Lemma 6.3.2. Let ψ be a positive linear functional on M and ε > 0 such
that

∀q ∈ P(M), ∆(q) ≤ ψ(q) ≤ (1 + ε)∆(q).

Then for every x ∈M+ and every unitary operator u in M , we have

ψ(uxu∗) ≤ (1 + ε)ψ(x). (6.4)

Proof. For q ∈ P(M), we have

ψ(uqu∗) ≤ (1 + ε)∆(uqu∗) = (1 + ε)∆(q) ≤ (1 + ε)ψ(q).

By Corollary 2.2.3, every x ∈ M+ is the sum
∑

n 2−nqn of a series which
converges in norm, with qn ∈ P(M). The inequality (6.4) follows immedi-
ately. �

A positive linear functional ψ is called an ε-trace if it satisfies the in-
equality (6.4) for every x ∈M+ and u ∈ U(M). Note that we have then

∀y ∈M, ψ(yy∗) ≤ (1 + ε)ψ(y∗y), (6.5)

because the polar decomposition of y and Lemma 6.1.3 imply that y may
be written as y = u|y| with u ∈ U(M). Then

ψ(yy∗) = ψ(u|y|2u∗) ≤ (1 + ε)ψ(|y|2) = (1 + ε)ψ(y∗y).

Conversely, the property (6.5) easily implies that ψ is an ε-trace.

Lemma 6.3.3. Let M be a diffuse finite factor and let ∆ be its dimension
function. Then for every ε > 0 there is a normal ε-trace ψε such that

1

1 + ε
∆(q) ≤ ψε(q) ≤ (1 + ε)2∆(q) (6.6)

for all q ∈ P(M).

Proof. We apply Lemma 6.3.1 with ϕ = ∆ and ψ a non-zero normal
linear functional ω. Replacing ω by θ−1ω we obtain the existence of a non-
zero fundamental projection p such that for any q ∈ P(M) with q ≤ p, we
have

∆(q) ≤ ω(q) ≤ (1 + ε)∆(q). (6.7)

Applying Lemma 6.3.2 to the diffuse factor pMp instead of M , we see that
ω restricted to pMp is a normal ε-trace. Now, since p is a fundamental
projection, there exists an integer n and fundamental projections q1, . . . , q2n

such that
∑2n

i=1 qi = 1, q1 = p and qi ∼ p for every i. Let wi be a partial
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isometry with w∗iwi = p and wiw
∗
i = qi. We set ψε(x) =

∑2n

i=1 ω(w∗i xwi).
Then we have, for y ∈M ,

ψε(yy
∗) =

2n∑
i=1

ω
(
w∗i y(

2n∑
j=1

wjw
∗
j )y
∗wi
)

=
2n∑
i,j=1

ω
(
(w∗i ywj)(w

∗
i ywj)

∗)
≤ (1 + ε)

2n∑
i,j=1

ω
(
(w∗jy

∗wi)(w
∗
i ywj)

)
= (1 + ε)ψε(y

∗y),

and therefore ψε is an ε-trace. Moreover ψε 6= 0 since ψε(p) = ω(p) ≥ ∆(p).
It remains to show that the inequalities (6.6) are satisfied. Let q ∈

P(M) and let q =
∑

i≥1 p
′
ni be its dyadic expansion. By comparing the

fundamental projections p′ni with the fundamental projections qj we first
see that there is a unitary operator u ∈M such that up′niu

∗ commutes with
qj for every i, j. We set q′ = uqu∗. This projection commutes with each
qj . Then w∗j q

′wj is a projection in pMp and furthermore, the projections

w∗j q
′wj and q′qj are equivalent via the partial isometry q′wj . The inequality

(6.7) gives

∆(q′qj) = ∆(w∗j q
′wj) ≤ ω(w∗j q

′wj)

≤ (1 + ε)∆(w∗j q
′wj) = (1 + ε)∆(q′qj),

and after addition,

∆(q′) ≤ ψε(q′) ≤ (1 + ε)∆(q′).

Since ψε is an ε-trace, we get

ψε(q) ≤ (1 + ε)ψε(q
′) ≤ (1 + ε)2∆(q′) = (1 + ε)2∆(q),

and

ψε(q) ≥
1

1 + ε
ψε(q

′) ≥ 1

1 + ε
∆(q′) =

1

1 + ε
∆(q). �

Theorem 6.3.4. Let M be a diffuse finite factor. Its dimension function
extends in a unique way to a normal faithful tracial state on M .

Proof. Let (εn) be a decreasing sequence of positive real numbers with
limn εn = 0. By Lemma 6.3.3, there is a sequence of normal εn-traces ψn
such that

1

1 + εn
∆(q) ≤ ψn(q) ≤ (1 + εn)2∆(q)

for every q ∈ P(M). In particular, we have limn ψn(q) = ∆(q). In fact, this
sequence (ψn)n converges uniformly on the unit ball of M . Indeed, writing
any x of the unit ball of M as x = (x1−x2)+i(x3−x4) where the 0 ≤ xi ≤ 1,
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it suffices to consider the case 0 ≤ x ≤ 1. By Corollary 2.2.3, we can write
x as a sum

∑∞
n=1

1
2n qn with qn ∈ P(M) for all n. Then we have, for n ≥ m,

|ψn(x)− ψm(x)| ≤
∞∑
k=1

1

2k
|ψn(qk)− ψm(qk)|

≤
∞∑
k=1

1

2k
∆(qk)

(
(1 + εm)2 − 1

1 + εm

)
≤
(

(1 + εm)2 − 1

1 + εm

)
.

It follows that (ψn) is a Cauchy sequence and therefore converges in norm
to a linear functional ψ on M .

We easily check that ψ is a normal tracial state. Let us show that ψ
is faithful. Let x ∈ M+ with ψ(x) = 0. For every real number t > 0, we
denote by et the spectral projection relative to the interval [t,+∞[. Since
tet ≤ x, we get ∆(et) = ψ(et) = 0 and so et = 0. Hence, we have x = 0.

The uniqueness of the extension of the dimension function follows from
the expansion x =

∑∞
n=1

1
2n qn of every 0 ≤ x ≤ 1, obtained in Corollary

2.2.3. �

Theorem 6.3.5. Let M be a factor. The following conditions are equiv-
alent:

(i) M has a normal tracial state;
(ii) M has a (norm continuous) tracial state;

(iii) 1 is a finite projection (i.e., M is finite).

Moreover, the tracial state, when it exists is unique and faithful.

Proof. It suffices to consider the case where M is diffuse.
(i) ⇒ (ii) is obvious and (ii) ⇒ (iii) is an immediate consequence of

Proposition 6.1.4. That (iii) ⇒ (i) follows from the previous theorem.
The uniqueness of the tracial state has been proved in Proposition

4.1.3. The faithfulness of the tracial state τ follows from Theorem 6.3.4,
but can also be shown directly. Indeed, if τ is a tracial state, the set
{x ∈M : τ(x∗x) = 0} is a two-sided ideal, which is reduced to zero (see
Proposition 4.1.5). �

Thus, for an infinite dimensional factor, to say that it is of type II1 or
finite is the same.

6.4. Dixmier averaging theorem

Let M = Mn(C) be a matrix algebra. We observe that its unique tracial
state τ can be obtained by averaging over the compact group Un(C) of
unitary n × n matrices, with respect to its Haar probability measure, that
is,

τ(x)1 =

∫
Un(C)

uxu∗ du. (6.8)
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Consider now a II1 factor M . We will extend formula (6.8) to this
setting, in an appropriate way (see Corollary 6.4.2).

For x ∈M , we denote by Cx the ‖·‖2-closed convex hull of

{uxu∗ : u ∈ U(M)}

in L2(M, τ). We may assume that ‖x‖∞ ≤ 1. Then by Proposition 2.6.4,
Cx is contained in the unit ball of M . Let y ∈M be the unique element of
Cx with smallest ‖·‖2-norm. This element commutes with the unitary group
of M , and so is scalar, say y = α1. Since the tracial state τ is constant on
Cx, we see that α = τ(x). Therefore, we have Cx ∩ C1 = {τ(x)1}.

In fact, we have a stronger useful result, where the ‖·‖2-closure of the
convex hull of {uxu∗ : u ∈ U(M)} is replaced by its ‖·‖∞-closure, a smaller
set that we denote by Kx.

Theorem 6.4.1 (Dixmier averaging theorem). Let M be a factor
and let x ∈M .

(i) Given ε > 0, there are unitaries u1, . . . , un ∈ U(M) and α ∈ C
such that ∥∥∥∥∥ 1

n

n∑
i=1

uixu
∗
i − α1

∥∥∥∥∥
∞

≤ ε.

(ii) The set Kx ∩ C1 is not empty.

Proof. (i) We first consider the case x = x∗ and we may of course
assume x 6∈ C1. We denote by Sp(x) its spectrum and set

c = min Sp(x), C = max Sp(x), t = (c+ C)/2.

We introduce the spectral projection p = E(]−∞, t]) of x. We remark that
since c 6= C, we have 0 < p < 1. By the the comparison theorem 2.4.9, we
have either p - 1−p or 1−p - p. Let us assume for instance that p - 1−p,
the other case being treated similarly.

Let v be a partial isometry in M such that p = v∗v ∼ vv∗ ≤ 1− p. We
set p′ = vv∗ and

w = v + v∗ + (1− p− p′).
Then w is a unitary operator. The main point in the proof is the evaluation
of the diameter diam Sp(Tw(x)) of the spectrum of the self-adjoint operator
Tw(x) = 1

2(x+ wxw∗). We claim that

diam Sp(Tw(x)) ≤ 3

4
diam Sp(x) =

3

4
(C − c). (6.9)

Since Tw(x) ≤ C1, it suffices to show that x + wxw∗ ≥ (t + c)1. Using the
functional calculus, we see that

cp ≤ xp ≤ tp and t(1− p) ≤ x(1− p) ≤ C(1− p).

We will also use the facts that w = w∗ and wpw∗ = p′, so that

w(1− p− p′)w∗ = 1− p− p′.
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It follows that

x+ wxw∗ ≥
(
t(1− p) + cp

)
+
(
wcpw∗ + tw(1− p− p′ + p′)w∗

)
= t(1− p) + cp+ cp′ + t(1− p− p′) + tp

= (t+ c)p+ (t+ c)p′ + 2t(1− p− p′)
≥ (t+ c)1,

which proves our claim.
We now put w1 = w and choose n such that (3

4)ndiam Sp(x) ≤ ε. By
applying the preceding process n times, we get unitaries w1, . . . , wn such
that

diam Sp(Twn . . . Tw1(x)) ≤
(3

4

)n
diam Sp(x) ≤ ε.

We put

y = Twn . . . Tw1(x) =
1

2n

2n∑
i=1

uixu
∗
i

and α = 1
2(min Sp(y) + max Sp(y)) ∈ R. Then we have

‖y − α1‖∞ ≤ diam Sp(y) ≤ ε.

Let now x be an arbitrary element of M . Applying the first part of the
proof to <(x) = 1

2(x + x∗) and ε/2, we get unitaries w1, . . . , wk in M and
α ∈ R with ∥∥∥∥∥1

k

k∑
i=1

wi<(x)w∗i − α1

∥∥∥∥∥
∞

≤ ε/2.

We set y = 1
k

∑k
i=1wi=(x)w∗i , where =(x) = 1

2i(x − x∗), and apply the
first part of the proof to the self-adjoint element y and ε/2, to get unitaries
w′1, . . . , w

′
l and α′ ∈ R. Since x = <(x) + i=(x), we finally obtain∥∥∥∥∥∥ 1

kl

l∑
j=1

k∑
i=1

w′jwixw
∗
i (w

′
j)
∗ − (α+ iα′)1

∥∥∥∥∥∥
∞

≤ ε/2 + ε/2 = ε. �

(ii) For every n ≥ 1, there exist yn ∈ Kx and αn ∈ C such that
‖yn − αn1‖∞ ≤ 1/n. The sequence (αn) is clearly bounded, so we may
assume that it converges to some α ∈ C. Then, (yn) is a Cauchy sequence,
and so it converges to an element y ∈ Kx, and of course y = α1. Therefore,
we have Kx ∩ C1 6= ∅.

Corollary 6.4.2. Let τ be a tracial state on a von Neumann factor M .
Then, for every x ∈M , we have

Kx ∩ C1 = {τ(x)1}.

Proof. We remark that since τ is tracial and norm continuous, it takes
the constant value τ(x) on Kx. It follows that Kx ∩ C1 = {τ(x)1}. �
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Note that this gives another proof of the uniqueness of a tracial state on
a factor.

Remark 6.4.3. The previous results of this section can be extended
without assuming that M is a factor. In particular, we still have Kx ∩
Z(M) 6= ∅ (see [Dix81, Chapter III, §5]).

When M is finite, instead of the existence of a tracial state one shows
the existence of a center-valued conditional expectation E : M → Z(M)
(see Definition 9.1.5), and one has Kx ∩ Z(M) = {E(x)}.

Theorem 6.3.5 is replaced by the following one:

Theorem 6.4.4. Let M be a von Neumann algebra. The following con-
ditions are equivalent:

(i) M has sufficiently many normal traces, i.e., for every non-zero
x ∈M+ there is a normal trace τ on M with τ(x) 6= 0;

(ii) M has a center-valued conditional expectation;
(iii) M is finite.

A proof of this result is given in [Dix81, Chapter III, §8]. For an ele-
gant proof of the fact (iii) implies (i), using the Ryll-Nardzewski fixed point
theorem, see [Yea71].

Exercises

Exercise 6.1. Let τ be a normal trace on a von Neumann algebra M .
Show that

{x ∈M : τ(x∗x) = 0}
is a w.o. closed ideal of M , hence of the form Mz where z is a projection
in the center of M . Check that z is the largest projection p in M such that
τ(p) = 0. The projection 1− z is called the support of τ .

Exercise 6.2. Let M be a von Neumann algebra.

(i) If M is a direct sum of tracial von Neumann algebras, show that
M is finite.

(ii) If M is finite, show that there is a family (pi)i∈I of mutually orthog-
onal projections in Z(M) such that

∑
i∈I pi = 1 and each piM is

tracial, so that M is a direct sum of tracial von Neumann algebras
(Hint: consider a maximal family of normal traces with mutually
orthogonal supports, and use Theorem 6.4.4).

(iii) If M is finite, show that M is countably decomposable if and only
if it is tracial.

Exercise 6.3. Let M be a finite factor and F a finite subset of M .
Given ε > 0, show that there exist unitaries u1, . . . , un in M such that∥∥∥∥∥ 1

n

n∑
i=1

uixu
∗
i − τ(x)1

∥∥∥∥∥ ≤ ε
for x ∈ F .
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Notes
The main arguments for the proof of Theorem 6.3.5 come from [MVN36,

MvN37]. Later, this theorem was extended as Theorem 6.4.4, by Dixmier
[Dix49], to the case of any von Neumann algebra. The theorem 6.4.1, and
more generally the result mentioned in Remark 6.4.3, were also established
in [Dix49].
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CHAPTER 7

The standard representation

In this chapter, we show that a tracial von Neumann algebra (M, τ)
behaves in many respects as any commutative one (L∞(X,µ), τµ). The

set M̃ of closed densely defined operators affiliated with M on L2(M, τ)
forms a ∗-algebra analogous to the ∗-algebra of complex-valued measurable

functions on X. The Hilbert space L2(M, τ) is embedded into M̃ as the
space of square integrable operators. We also introduce the Banach space
L1(M, τ) of integrable operators, whose dual is M . Classical results such as
the Hölder inequalities or the Radon-Nikodým theorem are extended to this
setting and we prove the Powers-Størmer inequality, which is specific to the
non-commutative case.

Finally, we show that the group Aut (M) of automorphisms of M has
a canonical implementation by unitaries in B(L2(M, τ)), a generalisation of
the Koopman representation in the commutative case.

7.1. Definition and basic properties

One of the main features of the representation of (M, τ) in L2(M, τ)
that we study below is that it makes M anti-isomorphic to its commutant.
It plays a crucial role in the study of all normal representations of M , as we
will see in the next chapter.

7.1.1. The standard representation. The GNS representation

(πτ , L
2(M, τ), ξτ )

of the tracial von Neumann algebra (M, τ) has been introduced in Section
2.6. It is called the standard representation of (M, τ). We also say that
M is in standard form on L2(M, τ). We recall from Section 2.6 that πτ is
a normal faithful representation. In particular, Theorem 2.6.1 implies that
πτ (M) is a von Neumann algebra on L2(M, τ). We will identify x ∈M and
πτ (x) and write xξ for πτ (x)ξ. Also, we identify x with xξτ and view M as
a dense subspace of L2(M, τ). Finally, we use the notation x̂ when we want
to stress the point that x is considered as an element of L2(M, τ). Its norm

τ(x∗x)1/2 will be written ‖x‖2, ‖x̂‖2, ‖x̂‖τ or even ‖x̂‖2,τ depending on the
context.

Since for x, y ∈ M , we have πτ (x)ŷ = x̂y, it is natural to view πτ (x)
as the operator of multiplication to the left by x and to denote it by Lx.

97
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Similarly, the map ŷ 7→ ŷx is continuous:

‖ŷx‖22 = τ(x∗y∗yx) = τ(yxx∗y∗) ≤ ‖x‖2‖ŷ‖22.

We denote by Rx the extension of this operator to L2(M, τ). Then x 7→ Rx is
an injective homomorphism from the opposite algebraMop into B(L2(M, τ)).
We usually write ξx instead of Rxξ. The ranges of L and R are respectively
denoted by L(M) and R(M). Clearly, these two algebras commute. Note
that L(M) = πτ (M) = M .

The operator J : x̂ 7→ x̂∗ is an antilinear isometry from M̂ onto itself,
which extends to an antilinear surjective isometry of L2(M, τ) still denoted
by J (or JM in case of ambiguity). We say that J is the canonical conjugation
operator on L2(M, τ). A straightforward computation shows that JLxJ =
Rx∗ for every x ∈M , whence JL(M)J = R(M). We will prove that L(M) =
R(M)′ and give simultaneously another description of these algebras L(M)
and R(M).

Let ξ ∈ L2(M, τ). We define the following two operators from M̂ into
L2(M, τ):

L0
ξ(ŷ) = Ry(ξ) = ξy,

R0
ξ(ŷ) = Ly(ξ) = yξ.

These operators are not bounded in general, but they are closable. Let
us show for instance this property for L0

ξ . Let (xn) be a sequence in M such

that limn x̂n = 0 and limn L
0
ξ(x̂n) = η. Then, for y ∈ M , we have, on one

hand,

〈η, ŷ〉 = lim
n

〈
L0
ξ(x̂n), ŷ

〉
and, on the other hand,∣∣〈L0

ξ(x̂n), ŷ
〉∣∣ = |〈Rxnξ, ŷ〉| =

∣∣〈ξ,R∗xn ŷ〉∣∣
=
∣∣∣〈ξ, ŷx∗n〉∣∣∣ ≤ ‖ξ‖2‖yx∗n‖2

≤ ‖ξ‖2‖y‖∞‖x
∗
n‖2 = ‖ξ‖2‖y‖∞‖x̂n‖2.

It follows that limn

〈
L0
ξ(x̂n), ŷ

〉
= 0, whence 〈η, ŷ〉 = 0 for every y ∈M and

so η = 0.1

We will denote by Lξ and Rξ the closures of L0
ξ and R0

ξ respectively.

Whenever Lξ is a bounded operator, we say that Lξ (or ξ) is a left convolver
or that the vector ξ is left bounded. The set of left convolvers is denoted by
LC(M). Similarly, we define the set RC(M) of right convolvers. We have
the following generalisation of Theorem 1.3.6. It tells us in particular that
JMJ = M ′, hence M and its commutant in B(L2(M, τ)) “have the same
size”.

1One may also observe that M̂ is contained in the domain of (L0
ξ)
∗.
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Theorem 7.1.1. Let (M, τ) be a tracial von Neumann algebra. Then

L(M) = LC(M) = R(M)′

JL(M)J = R(M) = RC(M) = L(M)′.

In particular, for ξ ∈ L2(M, τ), the closed densely defined operator Lξ (resp.

Rξ) is bounded if and only if ξ ∈ M̂ .

Proof. We have obviously L(M) ⊂ LC(M) and R(M) ⊂ RC(M). Let
us show that Lξ ◦ Rη = Rη ◦ Lξ for ξ ∈ LC(M) and η ∈ RC(M). Let (xn)
and (yn) be sequences in M such that limn x̂n = ξ and limn ŷn = η. Then
for a, b ∈M , we have 〈

b̂, xnâyp

〉
=
〈
Rbx̂∗n, Laŷp

〉
,

so that limn,p→∞

〈
b̂, xnâyp

〉
= 〈Rb(Jξ), L(a)η〉. But

lim
n

〈
b̂, xnâyp

〉
= lim

n

〈
b̂, Rayp x̂n

〉
=
〈
b̂, Raypξ

〉
=
〈
b̂, Lξ(âyp

〉
=
〈
L∗ξ b̂, Laŷp

〉
and therefore we have

lim
p

lim
n

〈
b̂, xnâyp

〉
=
〈
L∗ξ b̂, Rηâ

〉
.

Similarly, we get

lim
n

lim
p

〈
b̂, xnâyp

〉
=
〈
R∗η b̂, Lξâ

〉
.

It follows that 〈
b̂, LξRηâ

〉
=
〈
b̂, RηLξâ

〉
and we conclude that Lξ and Rη commute. Hence we have

L(M) ⊂ LC(M) ⊂ RC(M)′ ⊂ R(M)′

and R(M) ⊂ RC(M) ⊂ LC(M)′ ⊂ L(M)′.

Let us show that R(M)′ ⊂ LC(M). We take T ∈ R(M)′ and put ξ = T 1̂.
Then for x ∈M , we have

T x̂ = TRx1̂ = RxT 1̂ = Rxξ = ξx = L0
ξ x̂.

Hence T = L0
ξ on M̂ and therefore T = Lξ since T is bounded and Lξ is

the closure of its restriction to M̂ . Thus we have shown that LC(M) =
R(M)′ = RC(M)′ and similarly we have RC(M) = L(M)′ = LC(M)′. We
conclude the proof, using the bicommutant theorem, as we did in the proof
of Theorem 1.3.6. �
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7.1.2. The standard bimodule. We now introduce the notion of bi-
module over a pair of von Neumann algebras. As we will see in the sequel,
this is nowadays an essential tool in the study of these algebras.

Definition 7.1.2. Let M and N be two von Neumann algebras.

(i) A left M -module is a Hilbert space H, equipped with a normal
unital homomorphism πl : M → B(H).

(ii) A right N -module is a Hilbert space H, equipped with a normal
unital anti-homomorphism πr : N → B(H) (i.e., a normal unital
representation of the opposite algebra Nop).

(iii) A M -N -bimodule is a Hilbert space H which is both a left M -
module and a right N -module, such that the representations πl
and πr commute.

We will sometimes write MH, HN and MHN to insist on the side of the
actions. Usually, for ξ ∈ H, x ∈M and y ∈ N , we will just write xξy instead
of πl(x)πr(y)ξ.

The Hilbert space L2(M, τ) is the most basic example ofM -M -bimodule.
It is called the trivial (or identity) or standard M -M -bimodule. Its structure
of M -M -bimodule is given by:

∀x, y ∈M, ∀ξ ∈ L2(M, τ), xξy = LxRyξ = xJy∗Jξ.

7.1.3. Examples of standard representations. Let (M, τ) be a tra-
cial von Neumann algebra and let π be a normal representation on a Hilbert
space H, and suppose that there exists a norm-one cyclic vector ξ0 in H
such that ωξ0 ◦π = τ . Then π is naturally equivalent to the standard repre-
sentation. More precisely, let U be the operator from π(M)ξ0 into L2(M, τ)
sending π(x)ξ0 onto x̂. Then U extends to a unitary operator, still denoted
by U , from H onto L2(M, τ) such that Uπ(x)U∗ = πτ (x) for every x ∈ M .
Viewed as acting on H, the canonical conjugation operator is defined by
Jπ(x)ξ0 = π(x∗)ξ0.

In particular, we remark below that the main examples of von Neumann
algebras given in Chapter 1 were indeed in standard form. We keep the
notation of this chapter.

(a) First, let us consider the case of the group von Neumann algebra
L(G) acting by convolution on `2(G) (see Section 1.3). The natural tracial
state τ on L(G) is defined by the cyclic and separating vector δe ∈ `2(G).
Therefore, L(G) is in standard form on `2(G). In this example, J is defined

by Jξ(t) = ξ(t−1) and, for every t ∈ G, we have Jλ(t)J = ρ(t). It follows
that JL(G)J = R(G) and we retrieve the fact that R(G) = L(G)′.

(b) Second, let M be the crossed product L∞(X,µ) o G = L(A,G)
relative to a probability measure preserving action G y (X,µ), where we
put A = L∞(X,µ). We use the following convenient notation introduced in
Section 1.4: for f ∈ L2(X,µ),

fug = f ⊗ δg ∈ L2(X,µ)⊗ `2(G).
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The vector ue = 1̂⊗ δe is cyclic for M and defines the canonical trace on M
which is therefore in standard form on L2(X,µ) ⊗ `2(G). The conjugation
operator J is defined by

Jfug = σg−1(f)ug−1 .

and it is also straightforward to check that

JL
(∑
g∈G

agug
)
J = R

(∑
g∈G

u∗ga
∗
g

)
= R

(∑
g∈G

σg(a
∗
g−1)ug

)
.

This shows that L(A,G)′ = R(A,G).
When L2(X,µ)⊗ `2(G) is identified with L2(X ×G,µ⊗ λ) (where λ is

the counting measure on G), we have

Jξ(x, t) = ξ(t−1x, t−1).

For group actions which are free, this is the formula given in the next para-
graph, after identification of X ×G with the graph of the orbit equivalence
relation.

(c) Let us consider now the case of a countable probability measure
preserving equivalence relation R on (X,µ). With the notation of Section
1.5.2, the representation of L(R) on L2(R, ν) introduced there is standard
since 1∆ is a cyclic vector which defines the canonical trace on L(R). For

ξ ∈ L2(R, ν) we have Jξ(x, y) = ξ(y, x) and, given F ∈ Mb(R), one sees
that JLFJ = RF ∗ . Therefore we obtain the equality L(R)′ = R(R).

(d) For our last example, we keep the notation of Section 5.3.2. Let
(M1, τ1), (M2, τ2) be two tracial von Neumann algebras. The representation
of (M, τ) = (M1, τ1) ∗ (M2, τ2) on the Hilbert space H constructed in this
section is standard since there is a vector ξ ∈ H which induces the trace τ
and is cyclic.

The canonical conjugation operator J is defined by Jξ = ξ and

J(x1ξk1 ⊗ · · · ⊗ xnξkn) = x∗nξkn ⊗ · · · ⊗ x∗1ξk1 ,

for xi ∈
o
Mki with k1 6= k2 6= · · · 6= kn. For x ∈ Mi, we have Jλi(x)J =

ρi(JixJi), where Ji is the canonical conjugation operator on L2(Mi, τi). It
follows that M ′ = JMJ is the von Neumann algebra N defined in Section
5.3.2.

7.2. The algebra of affiliated operators

Let (M, τ) be a tracial von Neumann algebra on a Hilbert space H. We
show in this section that the closed densely defined operators on H affiliated
with M behave nicely.
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7.2.1. Closed densely defined operators. We recall here a few im-
portant facts concerning unbounded operators and the spectral theory of
(unbounded) self-adjoint operators2.

Let x be a self-adjoint operator on a Hilbert space H, that is, a densely
defined operator (possibly unbounded) such that x = x∗. Its spectrum Sp(x)
is a closed subset of R. The bounded Borel functional calculus defines an
algebraic ∗-homomorphism f 7→ f(x) from the algebraBb(Sp(x)) of bounded
Borel complex-valued functions on Sp(x) into B(H).

This functional calculus enables the construction of the spectral measure
E : Ω → E(Ω) = 1Ω(x) of x, defined on the Borel subsets of Sp(x). As in
Section 2.2, setting Et = E(]−∞, t]), we use the notation

f(x) =

∫
Sp(x)

f(t) dEt.

The functional calculus may be extended to the algebra B(Sp(x)) of all
Borel complex-valued functions on Sp(x), as follows. Let f ∈ B(Sp(x)).
Then f(x) is the operator with domain

Dom (f(x)) =

{
η ∈ H :

∫
Sp(x)

|f(t)|2 d〈η,Etη〉 < +∞

}
, (7.1)

and defined, for ξ ∈ H and η ∈ Dom (f(x)) by

〈ξ, f(x)η〉 =

∫
Sp(x)

f(t) d〈ξ, Etη〉.

We get a closed densely defined operator, which is self-adjoint whenever f is
real-valued. Again, we write f(x) =

∫
Sp(x) f(t) dEt. In particular, we have

x =
∫

Sp(x) t dEt. It is useful to have in mind the following formula:

∀η ∈ Dom (f(x)), ‖f(x)η‖2 =

∫
Sp(x)

|f(t)|2 d〈η,Etη〉. (7.2)

We say that y ∈ B(H) commutes with an unbounded operator z if yz ⊂
zy, that is, Dom (yz) ⊂ Dom (zy) and zy = yz on Dom (yz). Equivalently,
we have y

(
Dom (z)) ⊂ Dom (z) and zy = yz on Dom (z). An operator

y ∈ B(H) commutes with a self-adjoint operator x if and only if it commutes
with all its spectral projections E(Ω), and if so, it commutes with f(x) for
every f ∈ B(Sp(x)).

As in the bounded case, the polar decomposition is a useful tool.

Proposition 7.2.1. Let x be a closed densely defined operator on H.
Then

(i) x∗x is a positive self-adjoint operator;
(ii) there exists a unique partial isometry u such that x = u|x| and

Kerx = Keru where, by definition, |x| = (x∗x)1/2.

2For details we refer to [RS80, Chapter VIII].
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The expression x = u|x| is called the polar decomposition of x. The
delicate part of the proof is to show that x∗x is a self-adjoint operator3.
Morever x∗x is positive, that is 〈ξ, x∗xξ〉 ≥ 0 for ξ ∈ Dom (x∗x). Then
|x| is defined via the functional calculus, and the rest of the proof is easy4.
We recall that u∗u is the projection sr(x) on (Kerx)⊥ and that uu∗ is the
projection sl(x) on the norm closure of Imx. These projections sr(x) and
sl(x) are called respectively the right and left support of x.

Note also that an operator y ∈ B(H) commutes with x if and only if it
commutes with u and |x|.

7.2.2. Operators affiliated with a tracial von Neumann algebra.

Definition 7.2.2. Let M be a von Neumann algebra on a Hilbert space
H. We say that an (unbounded) operator x is affiliated with M , and we
write x ε̃M , if for every unitary operator u ∈ U(M ′), we have ux = xu.

This means that the operators ux and xu have the same domains and
coincide on this common domain. In particular, we have

u(Dom (x)) = Dom (x)

for every u ∈ U(M ′). Since every y ∈ M ′ is a linear combination of four
unitary operators in M ′, we see that x ε̃M if and only if x commutes with
every y ∈M ′.

We denote by M̃ the set of all closed densely defined operators affili-
ated with M . Let us record the following consequence of the bicommutant
theorem and of the results recalled in the previous section.

Proposition 7.2.3. Let M be a von Neumann algebra on H. Let x
be a closed densely defined operator on H and let x = u|x| be its polar

decomposition. Then x ∈ M̃ if and only if u and the spectral projections of
|x| are in M .

In particular, when x ∈ M̃ , its left and right supports sl(x) and sr(x)
belong to M .

We now consider the case where M is equipped with a faithful normal

tracial state τ . We will see that, under this assumption, M̃ behaves nicely.

Proposition 7.2.4. Let (M, τ) be a tracial von Neumann algebra on H
and let x, y ∈ M̃ be such that x ⊂ y. Then x = y.

Proof. Recall that x ⊂ y means that Dom (x) ⊂ Dom (y) with x =
y|Dom (x). Let G(x) = {(ξ, xξ) : ξ ∈ Dom (x)} be the graph of x. Note that x

is a closed operator precisely whenG(x) is a closed subspace ofH⊕H = H⊕2.
Similarly, we introduce the graph G(y) of y. Let [G(x)] and [G(y)] be the
orthogonal projections of H⊕2 onto G(x) and G(y) respectively.

3See for instance [Yos95, Theorem 2, p. 200].
4For another proof see [RS80, Theorem VIII.32].
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The algebra M2(M) of two by two matrices with entries in M is a von
Neumann subalgebra of B(H⊕2). Its commutant is

M2(M)′ =

{(
a 0
0 a

)
: a ∈M ′

}
.

We claim that the projections [G(x)] and [G(y)] are in M2(M). Indeed,
since x ε̃M , for every u′ ∈ U(M ′) we have u′x = xu′, from which we get(

u′ 0
0 u′

)
[G(x)] = [G(x)]

(
u′ 0
0 u′

)
.

It follows that [G(x)] ∈M2(M)′′ = M2(M) and similarly for [G(y)].

Set p1 =

(
1 0
0 0

)
∈M2(M). Then p1 is the left support of p1[G(x)] and

[G(x)] is its right support. The same observation holds for [G(y)]. It follows
that, in M2(M),

[G(x)] ∼ p1 ∼ [G(y)].

Now, since x ⊂ y, we have G(x) ⊂ G(y) and therefore [G(x)] ≤ [G(y)].
Since M2(M) has a faithful tracial state, we conclude that [G(x)] = [G(y)],
that is, G(x) = G(y), whence x = y. �

Let x, y be two closed densely defined operators on H. Then

Dom (x+ y) = Dom (x) ∩Dom (y).

In general this space is not dense in H and can even be reduced to 0 (see

Exercise 7.3). When x, y ∈ M̃ , we will see that x + y is a densely defined

closable operator and we will be able to define an addition in M̃ . Similarly,
we will define a product. These facts rely on the following lemmas.

Lemma 7.2.5. Let x ∈ M̃ . Then, for every ε > 0, there exists a projec-
tion p ∈M such that pH ⊂ Dom (x) and τ(1− p) ≤ ε.

Proof. Let x = u|x| be the polar decomposition of x and denote by pn
the spectral projection of |x| relative to [0, n]. Then, we have pnH ⊂ Dom (x)
and limn τ(pn) = 1. We choose n large enough so that 1− τ(pn) ≤ ε. �

Lemma 7.2.6. Let V be a vector subspace of H such that for every ε > 0,
there exists a projection p ∈ M with pH ⊂ V and τ(1 − p) ≤ ε. Then V is
dense in H

Proof. It suffices to construct an increasing sequence (qn) of projec-
tions with

∨
n qn = 1 and qnH ⊂ V . For every integer k ≥ 1, we choose a

projection pk ∈M such that pkH ⊂ V and τ(1− pk) ≤ 2−k. We put

qn =
∧
k>n

pk.

Then we have qnH ⊂ V and

τ(1− qn) = τ
( ∨
k>n

(1− pk)
)
≤
∑
k>n

τ(1− pk) ≤
∑
k>n

2−k = 2−n
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by Lemma 7.2.7 below. Since τ is normal, we get τ(1−
∨
n qn) = 0, whence∨

n qn = 1. �

Lemma 7.2.7. Let (pi)i∈I be a family of projections in (M, τ). Then

τ(
∨
i∈I

pi) ≤
∑
i∈I

τ(pi). (7.3)

Proof. Given two projections p, q ∈M , by Proposition 2.4.5 we have

τ(p ∨ q − p) = τ(q − p ∧ q),

and therefore τ(p ∨ q) ≤ τ(p) + τ(q). By induction, we get the inequality
(7.3) when I is a finite set, and the general case uses the normality of τ and
the fact that ∨

i∈I
pi =

∨
F

(
∨
i∈F

pi)

where F ranges over the finite subsets of I. �

Theorem 7.2.8. Let (M, τ) be a tracial von Neumann algebra on a
Hilbert space H.

(i) Let x ∈ M̃ . Then x∗ ∈ M̃ .

(ii) Let x, y ∈ M̃ . Then x+ y and xy are closable and densely defined,

and their closures belong to M̃ .

(iii) M̃ , equipped with the three above operations, is a ∗-algebra.

Proof. (i) is obvious. Let us show that if x, y ∈ M̃ , then x + y is
densely defined. To that purpose, we show that Dom (x + y) satisfies the
condition stated in Lemma 7.2.6. Given ε > 0, let p, q ∈ P(M) be such that
pH ⊂ Dom (x), qH ⊂ Dom (y), and τ(1 − p) ≤ ε/2, τ(1 − q) ≤ ε/2. Then
we have

(p ∧ q)H = pH ∩ qH ⊂ Dom (x) ∩Dom (y) = Dom (x+ y),

and

τ(1− p ∧ q) = τ((1− p) ∨ (1− q))
≤ τ(1− p) + τ(1− q) ≤ ε.

Hence x + y is densely defined and of course affiliated with M . Since
x∗ and y∗ are also affiliated with M , we get that x∗ + y∗ is densely defined.
Since x+y ⊂ (x∗+y∗)∗, we see that x+y is closable. We denote by x+̇y its
closure. It is a routine verification to check that the closure of an operator

afiliated with M retains the same property. Therefore, x+̇y ∈ M̃ .
To prove that xy is closable, we consider the projections p, q as above.

The operator yq is closed and everywhere defined, hence bounded. Let r
denote the projection on the kernel of (1−p)yq. Then rH ⊂ Dom (xyq) and
thus (q ∧ r)H ⊂ Dom (xy). Note that 1− r - 1− p. It follows that

τ(1− (q ∧ r)) = τ((1− q) ∨ (1− r)) ≤ τ(1− q) + τ(1− p) ≤ ε.
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Thus, xy is densely defined, and we conclude as for x+y that xy is closable.

Its closure x ẏ belongs to M̃ .

It remains to show that these operations give to M̃ the structure of a ∗-
algebra. Let us explain for instance how to prove the distributivity property
x˙(y+̇z) = (x˙y)+̇(x˙z). From the inclusion xy + xz ⊂ x(y + z), we deduce
that (x ẏ)+̇(x ż) ⊂ x˙(y+̇z). Then we use Proposition 7.2.4 to deduce the
equality. �

For simplicity of notation, in the sequel, we will often write x+y instead
of x+̇y, and similarly for the product.

Example 7.2.9. Let M = L∞(X,µ) where (X,µ) is a probability mea-
sure space and take for τ the integral with respect to µ. We consider the
standard representation of M on L2(M,µ). Let f : X → C be a mea-
surable function. Denote by Mf the multiplication operator by f , with
Dom (Mf ) =

{
ξ ∈ L2(M,µ) : fξ ∈ L2(M,µ)

}
. Then Mf is closed, densely

defined, and affiliated with M . Conversely, every closed densely defined

operator affiliated with M is of this form5. Therefore, M̃ can be identified
with the ∗-algebra of complex-valued measurable functions on X (modulo
null sets).

In particular, the spaces Lp(X,µ), p ∈ [1,+∞], are canonically embed-

ded in M̃ . This property still holds for any tracial von Neumann algebra.
We will study this fact for L2 in the next section.

7.3. Square integrable operators

In this section, (M, τ) is a tracial von Neumann algebra represented in
standard form on L2(M, τ).

7.3.1. Square integrable operators.

Definition 7.3.1. A closed densely defined operator x on L2(M, τ) is
said to be square integrable if it is affiliated with M and is such that 1̂ ∈
Dom (x).

Given ξ ∈ L2(M, τ), we have introduced in Section 7.1.1 the closed
densely defined operator Lξ and proved (Theorem 7.1.1) that this operator

is bounded if and only if ξ ∈ M̂ ⊂ L2(M, τ). In the general case, the
operator Lξ has the following characterisation.

Theorem 7.3.2. For every ξ ∈ L2(M, τ), the operator Lξ is square
integrable. Moreover, the map ξ 7→ Lξ is a linear bijection from L2(M, τ)
onto the space of square integrable operators.

Proof. Let ξ ∈ L2(M, τ). Every unitary operator in M ′ = R(M) is of
the form Ru, where u ∈ U(M). Then, for x ∈M , we have

RuLξ(Ru)∗x̂ = RuLξx̂u∗ = RuRxu∗ξ = Rxu∗uξ = Rxξ = Lξx̂.

5See for instance [KR97, Theorem 5.6.4].
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Since M̂ is an essential domain of both operators RuLξ(Ru)∗ and Lξ, they

coincide. Therefore, Lξ is affiliated with M . Moreover, 1̂ is in the domain
of Lξ, and so Lξ is square integrable.

Let us show that the map ξ 7→ Lξ is linear. For ξ, η ∈ L2(M, τ), we have

L0
ξ+η = L0

ξ + L0
η ⊂ Lξ+̇Lη,

and therefore the closure Lξ+η of L0
ξ+η is such that Lξ+η ⊂ Lξ+̇Lη. Then,

Proposition 7.2.4 implies the equality.
The map ξ 7→ Lξ is obviously injective since ξ = Lξ1̂. It remains to show

the surjectivity. Let T be a square integrable operator, and set ξ = T 1̂. Then
for x ∈M , we have

Lξx̂ = RxT 1̂ = TRx1̂ = T x̂.

We deduce that Lξ ⊂ T and again Lξ = T , thanks to Proposition 7.2.4. �

We will freely consider the elements of L2(M, τ) as operators. Under
this identification, for x ∈ M and ξ ∈ L2(M, τ), we may view xξ and ξx

as the product of two operators in M̃ . The adjoint corresponds to the
conjugation operator J introduced in Section 7.1.1: for ξ ∈ L2(M, τ), we
have (Lξ)

∗ = LJξ. Indeed, let x, y ∈M . Then,

〈x̂, Lξ ŷ〉 = 〈x̂, Ryξ〉 =
〈
x̂y∗, ξ

〉
=
〈
Jξ, ŷx∗

〉
= 〈RxJξ, ŷ〉 = 〈LJξx̂, ŷ〉.

We deduce that LJξ ⊂ (Lξ)
∗, whence LJξ = (Lξ)

∗ by Proposition 7.2.4.
It is therefore natural to write Jξ = ξ∗ and to say that ξ is self-adjoint

if ξ = Jξ, or equivalently if Lξ = (Lξ)
∗.

Proposition 7.3.3. Let ξ ∈ L2(M, τ). The following conditions are
equivalent:

(i) ξ is self-adjoint;
(ii) 〈ξ, x̂〉 ∈ R for every x ∈Ms.a;
(iii) there exists a sequence (xn) in Ms.a such that limn ‖x̂n − ξ‖2 = 0.

Proof. For ξ ∈ L2(M, τ) and x ∈Ms.a, we have

〈ξ, x̂〉 = 〈Jξ, x̂〉

from which we immediately deduce the equivalence between (i) and (ii).
Let us now show that (i)⇒ (iii). Let ξ = Jξ ∈ L2(M, τ). There exists a

sequence (xn) inM such that limn ‖x̂n − ξ‖2 = 0. We put yn = (xn+x∗n)/2 ∈
Ms.a. Since

∥∥∥x̂∗n − Jξ∥∥∥
2

= ‖x̂n − ξ‖2, we see that limn ‖ŷn − ξ‖2 = 0. The

converse is also straightforward. �

Hence, the real subspace L2(M, τ)s.a of self-adjoint elements is the norm

closure of M̂s.a.
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We say that an element ξ ∈ L2(M, τ) is positive if the corresponding ope-
rator Lξ is self-adjoint and positive, i.e., 〈η, Lξη〉 ≥ 0 for all η ∈ Dom (Lξ).
We will denote by L2(M, τ)+ the subset of such ξ.

Proposition 7.3.4. Let ξ ∈ L2(M, τ). The following conditions are
equivalent:

(i) ξ is positive;
(ii) 〈x̂, ξ〉 ≥ 0 for every x ∈M+;

(iii) there exists a sequence (xn) in M+ such that limn ‖x̂n − ξ‖2 = 0.

Proof. We remark that ξ is positive if and only if 〈x̂, Lξx̂〉 ≥ 0 for every
x ∈M . We write x ∈M+ as x = yy∗, and get

〈x̂, ξ〉 = 〈ŷ, Lξ ŷ〉,

from which we deduce the equivalence between (i) and (ii).
Let us prove that (iii) ⇒ (i). Suppose that there exists a sequence (xn)

in M+ such that limn ‖x̂n − ξ‖2 = 0. Then we have ξ = Jξ by the previous
proposition. Morever, if we write xn as xn = y∗nyn we have, for every x ∈M ,

〈x̂, xnx̂〉 = 〈ŷnx, ŷnx〉 ≥ 0,

and

〈x̂, Lξx̂〉 = 〈x̂, Rxξ〉 = lim
n
〈x̂, Rxx̂n〉 = lim

n
〈x̂, xnx̂〉 ≥ 0.

It remains to show that (i) ⇒ (iii). Assume that ξ is positive and for
n ∈ N, denote by en the spectral projection of ξ relative to [0, n]. Then
enξ ∈M+ and we have limn ‖enξ − ξ‖2 = 0. �

We remark that the polar decomposition ξ = u|ξ| allows us to write
any element in L2(M, τ) as the product of a partial isometry in M and
an element of L2(M, τ)+. Let us observe also that if ξ ∈ L2(M, τ) is self-
adjoint, then ξ+ = 1

2(|ξ| + ξ) and ξ− = 1
2(|ξ| − ξ) are in L2(M, τ)+. Thus,

every element of L2(M) is a linear combination of four elements in L2(M)+.

Remark 7.3.5. Let x ∈ M̃ and let E be the spectral measure of |x|.
Then x is square integrable if and only if 1̂ ∈ Dom (|x|), that is, if and only
if ∫

R
|t|2 dτ(Et) =

∫
R
|t|2 d

〈
1̂, Et1̂

〉
< +∞,

and then, after having identified x with x1̂, we have

‖x‖22 =

∫
R
|t|2 dτ(Et) (7.4)

(see (7.1) and (7.2)).
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7.3.2. The Powers-Størmer inequality. For a ∈M , we will denote
by τa the linear functional x 7→ τ(ax) defined on M . Note that τa = ω1̂,â. If

a ∈M+, then τa is a positive linear functional and we have τa ≤ ‖a‖τ , since

τa(x) = τ(x1/2ax1/2) ≤ ‖a‖τ(x)

for every x ∈M+. We have the (easy) Radon-Nikodým type converse.

Proposition 7.3.6 (Little Radon-Nikodým theorem). Let ϕ be a
positive linear functional on M and assume the existence of λ ∈ R+ such
that ϕ ≤ λτ . Then there exists a unique a ∈ M with ϕ = τa, and we have
0 ≤ a ≤ λ1.

Proof. We may assume that λ = 1. We define a linear functional ψ on

M̂ by ψ(x̂) = ϕ(x). By the Cauchy-Schwarz inequality, we have

|ψ(x̂)|2 ≤ ϕ(1)ϕ(x∗x) ≤ τ(x∗x) = ‖x̂‖22,
and so ψ extends to a continuous linear functional on L2(M, τ), still denoted
by ψ. Therefore, there exists ξ in L2(M, τ) such that ψ(η) = 〈ξ, η〉 for every
η ∈ L2(M, τ), and in particular ϕ(x) = 〈ξ, x̂〉. Using Proposition 7.3.4, we
see that ξ is positive. Similarly, we have〈

1̂− ξ, x̂
〉

= τ(x)− ϕ(x) ≥ 0

for all x ≥ 0, and so 1̂ − ξ ≥ 0. Since 0 ≤ ξ ≤ 1̂, we get that ξ = â with
a ∈M and 0 ≤ a ≤ 1, whence ϕ = τa.

Assume that ϕ = τb for another b ∈ M . We get τ((a − b)(a − b)∗) = 0,
and therefore a = b. �

The element a is called the Radon-Nikodým derivative of ϕ with respect
to τ .

For ξ ∈ L2(M, τ), recall that ωξ is the positive linear functional x 7→
〈ξ, xξ〉 on M . The following very useful result is a substitute for the obvious
fact in the commutative case, saying that whenever ξ, η are two positive
functions, then |ξ − η|2 ≤

∣∣ξ2 − η2
∣∣.

Theorem 7.3.7 (Powers-Størmer inequality). We have

‖ξ − η‖22 ≤ ‖ωξ − ωη‖ ≤ ‖ξ − η‖2‖ξ + η‖2, (7.5)

for every ξ, η ∈ L2(M, τ)+.

Proof. The right hand side inequality follows immediately from the
identity

ωξ − ωη = (1/2)
(
ωξ−η,ξ+η + ωξ+η,ξ−η

)
.

Let us prove the left hand side inequality. We begin by the study of the case
where ξ = â and η = b̂ with a, b ∈ M+. Then ωξ = τa2 , ωη = τb2 and we
have to prove that

‖â− b̂‖22 ≤ ‖τa2 − τb2‖.
Let p, q be the spectral projections of a−b corresponding respectively to the
intervals [0,+∞[ and ]−∞, 0[ so that a− b = (p− q)|a− b|.
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Since ‖p− q‖ ≤ 1, we get the inequality∣∣τ((a2 − b2)(p− q)
)∣∣ = |(τa2 − τb2)(p− q)| ≤ ‖τa2 − τb2‖.

The goal of the rest of the proof is to establish the inequality

‖â− b̂‖22 ≤
∣∣τ((a2 − b2)(p− q)

)∣∣.
We first claim that

τ
(
(a2 − b2)p

)
≥ τ

(
(a− b)2p

)
. (7.6)

Indeed we have

τ
(
(a2 − b2)p

)
− τ
(
(a− b)2p

)
= τ

(
b(a− b)p

)
+ τ
(
(a− b)bp

)
= 2τ

(
b1/2(a− b)pb1/2

)
≥ 0,

since (a− b)p ≥ 0.
Similarly, we get

τ
(
(b2 − a2)q

)
≥ τ

(
(b− a)2q

)
. (7.7)

Adding up (7.6) and (7.7), we obtain

τ
(
(a2 − b2)(p− q)

)
= τ

(
(a2 − b2)p

)
+ τ
(
(b2 − a2)q

)
≥ τ

(
(p+ q)(a− b)2

)
= τ

(
(a− b)2

)
= ‖â− b̂‖22.

We now consider the general case. We chose sequences (an) and (bn) in

M+ such that limn ‖ân − ξ‖2 = 0 and limn ‖b̂n − η‖2 = 0. Passing to the
limit in the inequality

‖ân − b̂n‖22 ≤ ‖ωân − ωb̂n‖

gives the first inequality of (7.5). �

The following theorem says that any normal positive linear functional
on M is canonically written as a vector state.

Theorem 7.3.8. The map ξ 7→ ωξ is a homeomorphism from L2(M, τ)+

onto the cone of all normal positive linear functionals on M .

Proof. The injectivity is a consequence of the left inequality in (7.5).
Let us prove the surjectivity. Let ϕ be positive normal linear functional on
M . We first claim that for every ε > 0, there is a ∈M+ such that ‖ϕ−ωâ‖ ≤
ε. Indeed, by Theorem 2.5.5 (3) there exist ξ1, . . . , ξm in L2(M, τ) such that
‖ϕ−

∑m
k=1 ωξk‖ ≤ ε/2 and so we see that we may find a1, . . . , am ∈M with

‖ϕ−
m∑
k=1

ωâk‖ ≤ ε.

But
∑m

k=1 ωâk = τb with b =
∑m

k=1 aka
∗
k ≥ 0. To conclude our claim it

suffices to put a = b1/2.
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Now, we take a sequence (bn) in M+ such that limn ωb̂n = ϕ. Thanks to

the Powers-Størmer inequality, we see that (b̂n) is a Cauchy sequence which,
therefore, converges to an element ξ ∈ L2(M, τ)+, and then ϕ = ωξ.

The fact that ξ 7→ ωξ is a homeomorphism follows from Theorem 7.3.7.
�

As a consequence, a positive normal linear functional is w.o. continuous
on M in standard representation, (and not only when restricted to its unit
ball). For the abelian case, see Remark 2.5.13.

Proposition 7.3.9. Let (M, τ) be a tracial von Neumann algebra and
let Z be its center. The restriction of the trace to Z is still denoted by τ . We
identify L2(Z, τ) to a subspace of L2(M, τ). The map ξ ∈ L2(Z, τ)+ 7→ ωξ
is a bijection onto the cone of normal traces on M . In particular, if τ1 and
τ2 are two normal traces on M with the same restriction to Z, then τ1 = τ2.

Proof. For ξ ∈ L2(M, τ)+, the functional ωξ is a trace if and only if
the positive (possibly unbounded) operator ξ commutes with M . One only
needs to observe that, for x ∈M and u ∈ U(M),

ωξ(uxu
∗) = ωu∗ξu(x)

with u∗xu ∈ L2(M, τ)+. The proposition follows immediately. �

7.4. Integrable operators. The predual

Still, (M, τ) is a tracial von Neumann algebra represented in standard
form on L2(M, τ).

Definition 7.4.1. Let x ∈ M̃ and let E be the spectral measure of |x|.
We say that x is integrable if∫

R
|t| dτ(Et) =

∫
R
|t|d

〈
1̂, Et1̂

〉
< +∞,

where Et = E(]−∞, t]) as always.

We denote by L1(M, τ) the set of integrable operators. More generally,

for p ≥ 1, we may define Lp(M, τ) as the set of x ∈ M̃ with
∫
R |t|

p dτ(Et) <
+∞. Of course, we set L∞(M, τ) = M . These Lp-spaces behave as in the
commutative case. In the previous section, we have studied the case p = 2.
The additional case p = 1 will be enough for our needs. Obviously, we have

M ⊂ L2(M, τ) ⊂ L1(M, τ).

We will see that L1(M, τ) is a Banach space whose dual is M .
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7.4.1. Integration on M̃+. First, we extend τ|M+
to a map τ from the

cone M̃+ of positive elements of M̃ into [0,+∞], by the formula

τ(x) =

∫
R+

t dτ(Et) =

∫
R+

t d
〈
1̂, Et1̂

〉
,

where E is the spectral measure of x.

Lemma 7.4.2. For x, y ∈ M̃+ and λ ≥ 0, we have

τ(x+ y) = τ(x) + τ(y), τ(λx) = λτ(x).

Moreover, for every x ∈ M̃ , we have

τ(x∗x) = τ(xx∗). (7.8)

Proof. We denote by en the spectral projection of x+ y corresponding
to the interval [0, n]. Then we have

τ(x+ y) = lim
n
τ((x+ y)en) = lim

n
τ(enxen + enyen).

But the operators enxen and enyen are bounded and both sequences (τ(enxen))n,
(τ(enyen))n are increasing. Thus

τ(x+ y) = lim
n

(τ(enxen) + τ(enyen))

= lim
n
τ(enxen) + lim

n
τ(enyen)

= lim
n

∥∥∥x1/2ên

∥∥∥2

2
+ lim

n

∥∥∥x1/2ên

∥∥∥2

2
.

When τ(x) < +∞ then x1/2 ∈ L2(M, τ) and we get

lim
n

∥∥∥x1/2ên

∥∥∥2

2
=
∥∥∥x1/2

∥∥∥2

2
= τ(x).

Therefore we see that τ(x+ y) = τ(x) + τ(y) when τ(x) < +∞ and τ(y) <
+∞. Whenever τ(x) = +∞ we claim that limn τ(enxen) = +∞. Otherwise,

(x1/2ên) is a Cauchy sequence in L2(M, τ), thus converging to some ξ. Since

x1/2 is a closed operator, we deduce that 1̂ is in its domain with x1/21̂ = ξ,
a contradiction. Then, since

τ(en(x+ y)en) ≥ τ(enxen),

we get that τ(x+ y) = +∞ = τ(x) + τ(y).

The proof of τ(λx) = λτ(x) is immediate. Finally, given x = u|x| ∈ M̃
where u ∈ U(M) (by Lemma 6.1.3), to see that τ(x∗x) = τ(xx∗), or equiv-

alently that τ(|x|2) = τ(u|x|2u∗), it suffices to observe that Et(u|x|2u∗) =

uEt(|x|2)u∗, where Et(k) is here the spectral projection of k ∈ M̃+ relative to

]−∞, t]. It follows that τ(Et(u|x|2u∗)) = τ(uEt(|x|2)u∗) = τ(Et(|x|2)). �
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We set

n =
{
x ∈ M̃ : τ(x∗x) < +∞

}
,

m =

{
n∑
i=1

xiyi : xi, yi ∈ n

}
.

Lemma 7.4.3. Let τ : M̃+ → [0,+∞] as above. Then

(a) n and m are linear self-adjoint subspaces of M̃ which are stable
under left and right multiplications by elements of M ;

(b) m ∩ M̃+ =
{
x ∈ M̃+ : τ(x) < +∞

}
and m is linearly generated by

m ∩ M̃+;

(c) the restriction of τ to m ∩ M̃+ extends in a unique way to a linear

functional on m (still denoted τ) and we have τ(x∗) = τ(x) for
every x ∈ m;

(d) τ(xy) = τ(yx) if either x, y ∈ n or x ∈M and y ∈ m.

Proof. (a) Let x, y ∈ n. We have

(x+ y)∗(x+ y) + (x− y)∗(x− y) = 2(x∗x+ y∗y),

whence τ((x + y)∗(x + y)) < +∞. Thus, n is a linear subspace of M̃ , of
course self-adjoint. Obviously, ux ∈ n for every u ∈ U(M), and so, n is a
M -bimodule. The corresponding assertion for m is immediate

(b) Let z =
∑n

j=1 x
∗
jyj with xj , yj ∈ n. Since

4z =
n∑
j=1

3∑
k=0

i−k(xj + ikyj)
∗(xj + ikyj)

we see that m is linearly spanned by m ∩ M̃+. Whenever z is self-adjoint,
we get

4z =
n∑
j=1

(xj + yj)
∗(xj + yj)−

n∑
j=1

(xj − yj)∗(xj − yj).

So z is the difference of two elements of m ∩ M̃+. Moreover we have

z ≤
n∑
j=1

(xj + yj)
∗(xj + yj),

and it follows that m∩ M̃+ ⊂
{
x ∈ M̃+ : τ(x) < +∞

}
. The opposite inclu-

sion is obvious.
(c) Every element x ∈ m is written as x1− x2 + i(x3− x4), where the xi

are in m∩ M̃+. Then we set τ(x) = τ(x1)− τ(x2) + i(τ(x3− τ(x4)). Since τ

is additive on M̃+, we see that this definition is not ambiguous. Moreover,
this extension τ is linear and self-adjoint.
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(d) The equality τ(xy) = τ(yx) for x, y ∈ n is deduced from (7.8), by
polarization. Finally, for x ∈M and y1, y2 ∈ n, we get

τ(x(y1y2)) = τ((xy1)y2) = τ(y2(xy1)

= τ((y2x)y1) = τ(y1(y2x)) = τ((y1y2)x).

The second assertion of (d) follows by linearity. �

Remark 7.4.4. We could have observed from the beginning that n =
L2(M, τ), showing in this way that n is a M -bimodule linearly generated by
its positive cone. Indeed, this observation follows immediately from Remark
7.3.5 and the definition of τ(x∗x) = τ(|x|2), since Et(|x|) = Et2(|x|2), where,

for s ≥ 0 and y ∈ M̃+, we denote by Es(y) the spectral projection of y
relative to ]−∞, s].

So, when ξ ∈ L2(M, τ), we have ‖ξ‖2 = ‖|ξ|‖2 = τ(ξ∗ξ)1/2, and by
polarization we get

∀ξ, η ∈ L2(M, τ), τ(ξ∗η) = 〈ξ, η〉L2(M). (7.9)

In particular, ωξ,η is the linear functional x ∈M 7→ τ(ξ∗xη).
On the other hand, we see that

m =
{
x ∈ M̃ : τ(|x|) < +∞

}
= L1(M, τ),

after writing x as x = (u|x|1/2)(|x|1/2). Moreover, L1(M, τ) is the set of
products of two elements of L2(M, τ).

7.4.2. The predual of M . Given a ∈ L1(M, τ), we set ‖a‖1 = τ(|a|).
Moreover, we denote by τa the linear functional x 7→ τ(ax) defined on M .
This is compatible with the definition of τa previously introduced when
a ∈ M . We also observe that ωξ,η = τηξ∗ for every ξ, η ∈ L2(M, τ). In

particular, τa = ωξ,η with ξ = |a|1/2 and η = u|a|1/2 is w.o. continuous.

Theorem 7.4.5. Let (M, τ) be a tracial von Neumann algebra acting on
L2(M, τ).

(i) The map a 7→ τa is linear, injective, from L1(M, τ) onto the space
M∗ of w.o. continuous linear functionals on M in standard form,
and we have

‖τa‖ = τ(|a|) = ‖a‖1. (7.10)

Moreover, the linear form τa is positive if and only if the operator
a is in L1(M, τ)+.

(ii) (L1(M, τ), ‖·‖1) is a Banach space whose dual is M when x ∈ M
is viewed as the functional a 7→ τ(ax).

(iii) The topology σ(M,M∗) is the w.o. topology associated with the stan-
dard representation.
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Proof. (i) Let us prove Equality (7.10), which will imply the injectivity
of the map a 7→ τa. Let a = u|a| be the polar decomposition of a. For x ∈M ,
the Cauchy-Schwarz inequality gives

|τa(x)| =
∣∣∣τ(|a|1/2(xu|a|1/2))

∣∣∣ =
〈
|a|1/2, xu|a|1/2

〉
≤
∥∥∥|a|1/2∥∥∥

2

∥∥∥xu|a|1/2∥∥∥
2
≤ τ(|a|)1/2‖x‖∞τ(|a|)1/2

≤ τ(|a|)‖x‖∞,

whence ‖τa‖ ≤ τ(|a|). Taking x = u∗ we get τa(u
∗) = τ(|a|), and so the

equality in (7.10).
The map is surjective since every positive element in M∗ is of the form

ωξ = τξ2 with ξ ∈ L2(M, τ)+ (see Theorem 7.3.8) and since M∗ is linearly
generated by its positive elements (by polarization).

The last assertion of (i) is immediate.
(ii) We will identify M∗ and L1(M, τ). Using the polar decomposition

a = u|a|, we observe that every ϕ = τa ∈M∗ may be written ϕ = ωξ,η with

ξ = |a|1/2, η = u|a|1/2 and so ‖ξ‖2 = ‖η‖2 = ‖ϕ‖1/2.
We claim that M∗ is closed in M∗. Let ω be in the norm closure of M∗.

We have ω =
∑∞

k=1 ϕk where ϕk is w.o. continuous and ‖ϕk‖ ≤ 2−k for k ≥
2. So, by the above observation, we get ω =

∑
k ωξk,ηk with

∑
k ‖ξk‖

2
2 < +∞

and
∑

k ‖ηk‖
2
2 < +∞. By polarization, we see that ω is a linear combination

of positive normal linear functionals, and so ω ∈ M∗ (by Theorem 7.3.8).
As a consequence, M∗ is complete and so is L1(M, τ).

Finally, we prove that M is the dual of L1(M, τ), or of M∗. For x ∈M
let x̃ be the linear functional ω 7→ ω(x) defined on M∗. It is easily checked
that ‖x‖ = ‖x̃‖ for x ∈M . Now, let v ∈ (M∗)

∗. The map (ξ, η) 7→ 〈v, ωξ,η〉
is sesquilinear and continuous and therefore there exists an operator x ∈
B(L2(M, τ)) such that

〈v, ωξ,η〉 = 〈ξ, xη〉

for every ξ, η ∈ L2(M, τ). Given y ∈ M ′, the functionals induced on M by
ωξ,yη and ωy∗ξ,η are the same. It follows that x commutes with y, whence
x ∈M , and finally x̃ = v.

(iii) is obvious. �

Remark 7.4.6. Note that M is naturally embedded in L1(M, τ). Since
M is the dual of L1(M, τ), to show the density of this embedding, it suffices
to check that if x ∈ M satisfies τa(x) = 0 for all a ∈ M , then x = 0. This
is obvious, because τ is faithful: taking a = x∗, we get τ(x∗x) = 0 and so
x = 0. So L1(M, τ) may be defined abstractly as the completion of M for
the norm ‖·‖1.

Remark 7.4.7. Observe that M∗ is the subspace of M∗ linearly gener-
ated by the positive normal linear functionals, which coincide in the standard
representation with the w.o. continuous positive ones. Since normality only
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depends on the ordered cone M+, we see that M∗ does not depend on the
choice of τ . It is called the predual of M .

More generally, for any von Neumann algebra M we may introduce
the subspace M∗ of M∗ linearly generated by the positive normal linear
functionals. One of the basic results in the subject states that M is cano-
nically identified to the dual of M∗, that M∗ is a closed subspace of M∗ and
that M∗ is the unique predual of M , up to isomorphism [Dix53, Sak56].
In addition to the example of tracial von Neumann algebras just studied,
we mention the well-known fact that the von Neumann algebra B(H) is the
dual of the Banach space S1(H) of all trace-class operators, i.e., operators
T on H such that Tr(|T |) < +∞, where Tr is the usual trace on B(H)+ (see
[Ped89, Section 3.4]).

Remark 7.4.8. It is a classical fact that the unit ball of M∗ is weak*-
dense in the unit ball of its bidual M∗. Moreover, every (norm continuous)
state ψ on M is the weak* limit of a net of normal states. Indeed, if ψ in not
in the closure of the convex set C formed by the normal states, the Hahn-
Banach separation theorem implies the existence of a self-adjoint element
x ∈ M and a real number α such that ψ(x) > α and ϕ(x) ≤ α for every
ϕ ∈ C. But then x ≤ α1, so that ψ(x) ≤ α, a contradiction.

The general non-commutative version of the Radon-Nikodým theorem is
contained in the statement of Theorem 7.4.5. Let us spell out this important
result.

Theorem 7.4.9 (Radon-Nikodým theorem). Let (M, τ) be a tracial
von Neumann algebra. For every ϕ ∈ M∗, there is a unique a ∈ L1(M, τ)
such that ϕ = τa. The operator a is called the Radon-Nikodým derivative of
ϕ with respect to τ .

For further use, we also record in another form the Hölder inequalities
(Exercise 7.6):

∀a ∈ L1(M, τ),∀x ∈M, |τ(ax)| ≤ ‖ax‖1 ≤ ‖a‖1‖x‖∞, (7.11)

∀ξ, η ∈ L2(M, τ), |τ(ξη)| ≤ ‖ξη‖1 ≤ ‖ξ‖2‖η‖2, (7.12)

and the Powers-Størmer inequality:

∀ξ, η ∈ L2(M, τ)+, ‖ξ − η‖22 ≤
∥∥ξ2 − η2

∥∥
1
≤ ‖ξ − η‖2‖ξ + η‖2 (7.13)

(recall that for ξ ∈ L2(M)+, we have ωξ = τξ2).

Finally, note that given ξ, η ∈ L2(M, τ), the classical inequality

‖|ξ| − |η|‖2 ≤ ‖ξ − η‖2
is no longer true in the non abelian case, but is replaced by the following
one:

Lemma 7.4.10. For ξ, η ∈ L2(M, τ) we have

‖|ξ| − |η|‖22 ≤ 2 max(‖ξ‖2, ‖η‖2)‖ξ − η‖2.
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Proof. As a consequence of the Powers-Størmer inequality we get

‖|ξ| − |η|‖22 ≤
∥∥∥|ξ|2 − |η|2∥∥∥

1

= ‖ωξ∗ − ωη∗‖
≤ ‖ξ + η‖2‖ξ − η‖2,

the last by (7.5), whence the wanted inequality. �

7.5. Unitary implementation of the automorphism group

7.5.1. Uniqueness of the standard form. The following theorem
shows that the standard form of a tracial von Neumann algebra is unique,
up to a canonical isomorphism. In particular, this is why we will often write
L2(M) instead of L2(M, τ).

Proposition 7.5.1. Let τ1 and τ2 be two normal faithful tracial states
on a von Neumann algebra M . There exists one, and only one, unitary
operator U from L2(M, τ1) onto L2(M, τ2) with the following properties:

(i) U is M -M linear (with respect to the structures of M -M -bimodules)
and intertwines the canonical conjugation operators J1 and J2 rela-
tive to τ1 and τ2 respectively;

(ii) U
(
L2(M, τ1)

)
+

= L2(M, τ2)+.

Proof. The Radon-Nikodým theorem implies the existence of a positive
element h in L1(M, τ2) such that τ1 = τ2(h·) and since τ1 is a trace, we see
that h is affiliated with the center Z(M) acting on L2(M, τ2).

Let U : M̂ → L2(M, τ2) be defined by U(m̂) = h1/2m. We have

‖m̂‖2,τ1 =
∥∥h1/2m

∥∥
2,τ2

, and so U extends to an isometry from L2(M, τ1)

into L2(M, τ2). The space h1/2M is stable under the right action of M
and therefore is of the form pL2(M, τ2) for some projection p ∈ M . Since
(1− p)h = 0, we get τ1(1− p) = 0, whence p = 1 and U is an isometry from
L2(M, τ1) onto L2(M, τ2).

Obviously, U is M -M linear. Moreover, for m ∈M , we have

U ◦ J1(m̂) = h1/2m∗ = m∗h1/2 = J2 ◦ U(m̂),

whence U ◦ J1 = J2 ◦ U .
We claim that U

(
L2(M, τ1)+

)
= L2(M, τ2)+. Indeed, using Proposition

7.3.4 we get U(M̂+) ⊂ L2(M, τ2)+ and then U
(
L2(M, τ1)+ ⊂ L2(M, τ2)+.

This proposition also gives U∗
(
L2(M, τ2)+

)
⊂ L2(M, τ1)+ because 〈U∗ξ, m̂〉 =

〈ξ, Um̂〉 ≥ 0 for ξ ∈ L2(M, τ2)+ and m ∈M+.
Finally, let V be a unitary operator with the same properties. Then

V ∗U = W is a unitary operator in the center of M . The equality J1 ◦W =
W ◦ J1 gives W = W ∗. In addition, W is a positive unitary operator since
W 1̂ ∈ L2(M, τ1)+. It follows that W = 1. �
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7.5.2. Unitary implementation of Aut (M). We recall that Aut (M)
is the group of automorphisms of M .

Proposition 7.5.2. Let (M, τ) be a tracial von Neumann algebra. There
exists a unique group homomorphism α 7→ uα from Aut (M) into the unitary
group of B

(
L2(M, τ)

)
such that, for every α ∈ Aut (M),

(i) α(x) = uαxu
∗
α for every x ∈M ;

(ii) uαJ = Juα, and uα
(
L2(M, τ)+

)
= L2(M, τ)+.

The map α 7→ uα is called the unitary implementation of Aut (M).

Proof. Let u, v be two unitary operators that satisfy conditions (i) and
(ii) above. Then v∗u ∈M ′, and since Jv∗uJ = v∗u, we also have v∗u ∈M .
Moreover, v∗u

(
L2(M, τ)+

)
= L2(M, τ)+ and thus u = v by Proposition

7.5.1.
Now, given α ∈ Aut (M), let v : L2(M, τ ◦α)→ L2(M, τ) be the unitary

operator such that v(m̂) = α̂(m) and let w : L2(M, τ) → L2(M, τ ◦ α) be
defined in Proposition 7.5.1 with τ1 = τ and τ2 = τ ◦ α. It is a routine
verification to check that vw fulfills the above conditions (i) and (ii). �

Remark 7.5.3. More generally, let (M1, τ1) and (M2, τ2) be two tracial
von Neumann algebras and let α be an isomorphism from M1 onto M2.
There exists a unique unitary U : L2(M1, τ1)→ L2(M2, τ2) such that α(x) =
UxU∗ for x ∈M1, UJ1 = J2U and U

(
L2(M1, τ1)+

)
= L2(M2, τ2)+.

Remark 7.5.4. The unitary implementation is an isomorphism from
Aut (M) onto the subgroup of unitary operators u on L2(M, τ) such that
uMu∗ = M , uJ = Ju, and u

(
L2(M, τ)+

)
= L2(M, τ)+. The subgroup

Aut (M, τ) of trace preserving automorphisms is sent on those unitaries
which in addition satisfy u1̂ = 1̂. We observe that for α ∈ Aut (M, τ),

the unitary operator uα is defined, for m ∈ M , by uα(m̂) = α̂(m). We also
note that the subgroups of U(B(L2(M, τ))) corresponding to Aut (M) and
Aut (M, τ) are closed with respect to the s.o. topology (or the w.o. topology).

Remark 7.5.5. Let M = L∞(X,µ) equipped with its canonical tracial
state τµ. Given any Borel automorphism θ of X such that θ∗µ is equivalent
to µ, the map α : f ∈ L∞(X,µ) 7→ f ◦θ is an automorphism of M and every
automorphism of M is of this form (see Theorem 3.3.4). If r denotes the
Radon-Nikodým derivative dθ∗µ/ dµ, we immediately see that uαξ =

√
r ξ◦θ

for ξ ∈ L2(X,µ). This unitary implementation of Aut (M) is sometimes
called its Koopman representation.

7.5.3. Aut (M, τ) is a Polish group when M is separable. We equip
Aut (M, τ) with the topology for which a net (αi) ∈ Aut (M, τ) converges
to α if for every x ∈M we have

lim
i
‖αi(x)− α(x)‖2 = 0.

Then Aut (M, τ) is a topological group.
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As seen above, the unitary implementation of α 7→ uα of Aut (M, τ) is an
an isomorphism onto a closed subgroup of the unitary group of B(L2(M)),
equipped with the s.o. topology. Moreover, for α, β ∈ Aut (M, τ) and x ∈M
we have

‖α(x)− β(x)‖2 = ‖uαx̂− uβx̂‖2,
and therefore α 7→ uα is a homeomorphism.

Recall that a Polish group is a topological group whose topology is Polish,
that is, metrizable, complete and separable. In particular, the group U(H)
of unitary operators on a separable Hilbert space H, equipped with the s.o.
topology is a Polish group. Indeed, let {ξn} be a countable dense subset of
the unit ball of H. Then

d(u, v) =
∑
n

1

2n
(
‖uξn − vξn‖+ ‖u∗ξn − v∗ξn‖

)
is a metric compatible with the s.o. topology on U(H), and U(H) is complete
and separable with respect to this metric. As a consequence, Aut (M, τ) is
a Polish group when M is separable.

Exercises

Exercise 7.1. Let G y (B, τ) be a trace preserving action of a count-
able group on a tracial von Neumann algebra. Show that M = B oG is on
standard form on L2(B, τ) ⊗ `2(G). Spell out the conjugation operator J
and the right action of M .

Exercise 7.2. Show that a vector ξ ∈ L2(M, τ) is separating for M if
and only if it is cyclic.

Exercise 7.3. LetH = L2([−1/2, 1/2], λ) (where λ is the Lebesgue mea-
sure) equipped with the orthonormal basis (en)n∈Z, with en(t) = exp(2πint).
Let χ be the function on [−1/2, 1/2] such that χ(t) = −1 if t ∈ [−1/2, 0]
and χ(t) = 1 otherwise. We denote by u the multiplication operator on H
by χ. Finally, let x be the self-adjoint operator such that xen = exp(n2)en
for n ∈ Z.

(i) Show that Im (x−1) ∩ u
(
Im (x−1)

)
= 0 (Hint: if∑

n

exp(−n2)αnen = χ
∑
n

exp(−n2)βnen,

consider the entire functions f(z) =
∑

n exp(−n2)αnen(z) and g(z)
=
∑

n exp(−n2)βnen(z) and compare their restrictions to [−1/2, 1/2]).
(ii) Show that the intersection of the domains of the self-adjoint ope-

rators x and uxu is reduced to 0.

Exercise 7.4. Show that M is separable if and only if L1(M, τ) is a
separable Banach space.
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Exercise 7.5. Let (M, τ) be a tracial von Neumann algebra. Show that
every normal trace τ1 on M is of the form τ(h·) where h ∈ L1(M, τ)+ is
affiliated with Z(M).

Exercise 7.6. Let (M, τ) be a tracial von Neumann algebra, a ∈ L1(M, τ),
x ∈M , ξ, η ∈ L2(M, τ).

(i) Show that ‖ax‖1 ≤ ‖a‖1‖x‖∞, ‖xa‖1 ≤ ‖x‖∞‖a‖1.
(ii) Show that ‖ξη‖1 ≤ ‖ξ‖2‖η‖2.

Exercise 7.7. Let (M, τ) be a tracial von Neumann algebra. Show that
that the topology on Aut (M, τ) defined in Section 7.5.3 is also defined by
the family of semi-norms α 7→ ‖ϕ ◦ α‖ where ϕ ranges over M∗.

Exercise 7.8. Let (M1, τ1) and (M2, τ2) be two tracial von Neumann
algebras and set M = M1⊗M1, τ = τ1 ⊗ τ2.

(i) Show that the Hilbert spaces L2(M, τ) and L2(M1, τ1)⊗L2(M2, τ2)
are canonically isomorphic.

(ii) Given two other tracial von Neumann algebras (N1, τ1), (N2, τ2)
and isomorphisms αi : Mi → Ni, i = 1, 2, show that there is a
unique isomorphism α : M → N such that α(x1 ⊗ x2) = α1(x1)⊗
α2(x2) for x1 ∈M1 and x2 ∈M2.

This isomorphism α is called the tensor product of the isomorphisms α1 and
α2 and is denoted by α1 ⊗ α2. Such tensor products can be defined for any
pair of von Neumann algebras (see [Tak02, Corollary 5.3]).

Exercise 7.9. Let M1, M2 be two II1 factors and αi ∈ Aut (Mi), i =
1, 2. Show that α1 ⊗ α2 is inner if and only if both automorphisms αi are
inner.

Notes
The subject of this chapter dates back to the seminal paper [MVN36]

of Murray and von Neumann, which contains many of the results pre-
sented here, and in particular the fact that the set of all closed densely
defined operators affiliated with a II1 factor is a ∗-algebra. The theory of
non-commutative integration was developed by many authors, among them
Dixmier [Dix53] and Segal [Seg53] for finite or semi-finite von Neumann
algebras. The Radon-Nikodým theorem 7.4.9 is due to Dye [Dye52]. Nowa-
days, the subject goes far beyond (see [Tak03, Chapter IX] for instance).

The notion of standard form has been extended to the case of any von
Neumann algebra in [Haa75]. The very useful Powers-Størmer inequality
was proved in [PS70] for Hilbert-Schmidt operators and in [Ara74, Haa75]
in the general case.
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CHAPTER 8

Modules over finite von Neumann algebras

We now study the right (or equivalently the left) modulesH over a tracial
von Neumann algebra (M, τ).1 They have a very simple structure: they
are M -submodules of multiples of the right M -module L2(M). It follows
that, up to isomorphism, there is a natural bijective correspondence between
them and the equivalence classes of projections in B(`2(N))⊗M . This latter
algebra is not finite in general, but belongs to the class of semi-finite von
Neumann algebras, that we study succintly.

The set B(HM ) of operators which commute with the right M -action on
H is a semi-finite von Neumann algebra, equipped with a canonical semi-
finite trace τ̂ , depending on τ . In the particular case M = C, then B(HM ) =
B(H) and τ̂ is the usual trace Tr.

In the general case, τ̂ may be defined with the help of appropriate or-
thonormal bases, made of M -bounded vectors, generalising the usual or-
thonormal bases of a Hilbert space. The dimension of H as a M -module is
by definition τ̂(1) which, unfortunately, is not intrinsic, except when M is
a factor, where τ is unique. In this case, a M -module is determined, up to
isomorphism, by its dimension, which can be any element in [0,+∞] and
there is in particular a well understood notion of finite M -module. The
general case will be studied in the next chapter.

8.1. Modules over abelian von Neumann algebras.

Let M be a von Neumann algebra. Recall that a left M -module (resp. a
right M -module) (π,H) is a Hilbert space H equipped with a normal unital
homomorphism (resp. anti-homomorphism) π of M . When π is faithful, we
say that (π,H) is a faithful M -module.

Definition. We say that two left M -modules (πi,Hi), i = 1, 2, are
isomorphic (or equivalent) if there exists a unitary operator U : H1 → H2

such that Uπ1(x) = π2(x)U for every x ∈M .

Our purpose is to describe the structure of these modules (assumed to be
separable), up to isomorphism, for separable tracial von Neumann algebras.

1Except in Section 8.3, for simplicity of presentation, we implicitely limit ourselves to
the separable case: von Neumann algebras as well as modules will be separable. The
reader will easily see where these assumptions are not necessary and then make the
straightforward appropriate modifications. We will mention explicitly where separability
is indispensable.

121
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We first consider the classical case of abelian von Neumann algebras, which
amounts to the multiplicity theory for self-adjoint operators.

Let M be a separable abelian von Neumann algebra. We have seen in
Theorem 3.2.1 that M is of the form L∞(X,µ) where (X,µ) is a standard
probability measure space. For every Borel subset Y of X, the Hilbert space
L2(Y, µ) is obviously a M -module, when equipped with the representation
by multiplication of functions. We may add such representations. A more
general way to construct M -modules is as follows. Let n : X → N∗ ∪ {∞}
be a measurable function and set Xk = {t ∈ X : n(t) = k}. If `2k denotes
the canonical Hilbert space of dimension k, then the direct Hilbert sum
H(n) =

∑⊕
k≥1

(
`2k ⊗ L2(Xk, µ)

)
has an obvious structure of M -module. We

say that n is the multiplicity function of the module H(n). In fact, this is
the most general construction of M -modules.

Theorem 8.1.1. Let (π,H) be a M -module where M = L∞(X,µ).
There exists a unique (up to null sets) measurable function n : X → N∪{∞}
such that H is isomorphic to H(n).

Proof. Consider first the case where (π,H) is a cyclic M -module, i.e.,

there exists ξ ∈ H with π(M)ξ = H. Let E be the Borel subset of X such
that kerπ = 1EL

∞(X,µ) and set Y = X \ E. The restriction πY of π to

L∞(Y, µ) is faithful. We choose a cyclic vector ξ such that ‖ξ‖2 = µ(Y ) and
so we have ωξ ◦πY (1) = µ(Y ). The L∞(Y, µ)-modules L2(L∞(Y, µ), ωξ ◦πY )
and H are isomorphic and thus we deduce from Proposition 7.5.1 that the
M -modules L2(Y, µ) and H are isomorphic.

In the general case, the M -module H is a Hilbert sum of cyclic mod-
ules and is therefore isomorphic, as a M -module, to some Hilbert sum∑⊕

k≥1 L
2(Yk, µ), where the Yk are Borel subsets of X, not necessarily dis-

joints. We may assume that π is faithful. We can build a partition (Xk) of
X, to the price of introducing multiplicity, in order to show that H is of the
form

∑⊕
k≥1

(
`2k ⊗ L2(Xk, µ)

)
. We set

X1 =
⋃
k

(
Yk \ ∪j 6=kYj

)
, X2 =

⋃
{k 6=l}

(
(Yk ∩ Yl) \ ∪j 6=k,j 6=lYj

)
, . . .

We leave the details as an easy exercise.
Let us show that H(n) is completely determined by its multiplicity

function. Let n, n′ : X → N∗ ∪ {∞} be two multiplicity functions and
U : (π,H(n))→ (π′,H(n′)) be an isomorphism between the two correspon-
ding L∞(X,µ)-modules. We writeH(n) as

∑⊕
k≥1

(
`2k⊗L2(Xk, µ)

)
andH(n′)

as
∑⊕

k≥1

(
`2k ⊗L2(X ′k, µ)

)
. Then AdU induces an isomorphism between the

commutants of the two L∞(X,µ) actions, i.e., from
∑⊕

k≥1 B(`2k)⊗L∞(Xk, µ)

onto
∑⊕

k≥1 B(`2k)⊗L∞(X ′k, µ). But then, for every k we have

AdU
(
B(`2k)⊗L∞(Xk, µ)

)
= B(`2k)⊗L∞(X ′k, µ)
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(see Exercice 5.6). Moreover, we have Uπ(f) = π′(f)U for f ∈ L∞(X,µ).
Taking f = 1Xk , it follows that for ξ ∈ `2k ⊗ L2(Xk, µ),

π′(1Xk′ )Uξ = Uξ = Uπ(1Xk)ξ = π′(1Xk)Uξ = π′(1Xk∩Xk′ )Uξ,

and therefore Xk′ ⊂ Xk. Similarly, we get the opposite inclusion. �

Remark 8.1.2. Let x be a self-adjoint operator on a Hilbert space H,
and let M be the abelian von Neumann algebra generated by x. By Theorem
3.2.1, we have M = L∞(X,µ) for some probability measure on the spectrum
X of x. Then the structure theorem 8.1.1 for the M -module H gives the
classical spectral multiplicity structure theorem for the self-adjoint operator
x (see for instance [RS80, Theorem VII.6] for a precise statement). Con-
versely, since every abelian von Neumann algebra (on a separable Hilbert
space) is generated by a self-adjoint operator (see Proposition 3.1.3) the
classification of self-adjoint operators, up to unitary equivalence, provides
Theorem 8.1.1. In this case, n(t) expresses the “multiplicity” of t in the
spectrum of x. As a particular case, if x has a finite spectrum the com-
plete invariant is, of course, the multiplicity function k ∈ X 7→ n(k) of the
eigenvalues of x.

8.2. Modules over tracial von Neumann algebras

Let (M, τ) be a separable tracial von Neumann algebra. We have seen in
the previous chapter that L2(M) is a left M -module (and a right M -module
as well). We will use here the notation Lxξ for xξ and Rxξ for ξx and denote
by L(M) and R(M) the ranges of L and R respectively. Recall that R(M)
is the commutant of L(M). We keep for the moment these notations L(M)
and R(M) in order to avoid confusion with M and M ′ respectively when M
is concretely represented on some Hilbert space H, other then L2(M). The
direct sum of countably many copies of L2(M) is still a left M -module, in
an obvious way. It is denoted by `2(N)⊗L2(M). Given a projection p in the
commutant B((`2(N))⊗R(M) of Id`2(N) ⊗ L(M) in B(`2(N) ⊗ L2(M)), the

restriction to p(`2(N)⊗L2(M)) of the left action of M defines a structure of
left M -module on this Hilbert space. We will see now that this is the most
general type of separable left M -module. As in the proof of Theorem 8.1.1,
we first consider the case of a cyclic module.

Lemma 8.2.1. Let π : M → B(H) be a normal unital representation.
with a cyclic vector ξ. There exists an isometry U : H → L2(M) such that
Uπ(x) = LxU for every x ∈M . If we set Uξ = η, the range Mη of U is of
the form pL2(M) with p ∈ R(M) = L(M)′.

Proof. We define a normal positive functional on M by setting ϕ(x) =
〈ξ, π(x)ξ〉. By Theorem 7.3.8, it is is of the form ϕ = ωη for some η ∈
L2(M)+. Then U : π(x)ξ → Lxη extends to an isometry with the required
properties. �



D
ra
ft

124 8. MODULES OVER FINITE VON NEUMANN ALGEBRAS

Proposition 8.2.2. Let π : M → B(H) be a normal unital repre-
sentation. There exists an isometry U : H → `2(N) ⊗ L2(M) such that
Uπ(x) =

(
Id`2(N) ⊗ Lx

)
U for every x ∈ M .2 Moreover, we may choose U

such that the projection on the range of U is of the diagonal form ⊕kpk with
pk ∈ R(M).

Proof. We write (π,H) as a the direct sum of cyclic sub-representations
(πk,Hk, ξk), k ∈ N. For each k, we define Uk : Hk → pkL

2(M) as in the
previous lemma. Then, the partial isometry

U : H = ⊕kHk → ⊕k
(
pkL

2(M)
)
⊂ `2(N)⊗ L2(M)

defined in the obvious way intertwines π and the diagonal left representation
of M on `2(N)⊗ L2(M). �

Proposition 8.2.3. Let π : M → B(H) be a normal unital representa-
tion. There is a projection p in B((`2(N))⊗R(M) such that H is isomorphic,
as a left M -module, to p(`2(N)⊗L2(M)). This correspondence defines a bi-
jection between the set of left M -modules, up to equivalence, and the set of
projections of the commutant of Id`2(N)⊗L(M), up to equivalence classes of
projections in this commutant.

Proof. With the notation of Proposition 8.2.2, it suffices to set p =
UU∗. The second part of the statement is immediate. �

To go further, we will need tools to detect when two projections of
B((`2(N))⊗R(M) are equivalent. This algebra belongs to the class of semi-
finite von Neumann algebras that we briefly introduce now.

8.3. Semi-finite von Neumann algebras

8.3.1. Semi-finite tracial weights. Recall first that the cone B(H)+

of all positive operators on H comes equipped with a trace Tr (or TrH in
case of ambiguity) defined as follows. Let (εj) be any orthonormal basis of
H. For every x ∈ B(H)+, we put Tr(x) =

∑
j 〈εj , xεj〉 ∈ [0,+∞]. This

element is independent of the choice of the orthonormal basis and is called
the trace of x. It is a faithful normal semi-finite trace in the following sense.

Definition 8.3.1. Let M be a von Neumann algebra. A map Tr :
M+ → [0,+∞] is called a trace3 if it satisfies the following properties:

(a) Tr(x+ y) = Tr(x) + Tr(y) for all x, y ∈M+;
(b) Tr(λx) = λTr(x) for all x ∈M+ and λ ∈ R+ (agreeing that 0·+∞ =

0);
(c) Tr(x∗x) = Tr(xx∗) for all x ∈M .

It is called semi-finite if, in addition,

2Without the separability assumption, N has to be replaced by some (not necessarily
countable) set I.

3We sometimes say tracial weight to insist on the fact that it is not necessarily finite.
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(d) for every non-zero x ∈M+ there exists some non-zero y ∈M+ with
y ≤ x and Tr(y) < +∞.

If

(e) Tr(supi xi) = supi Tr(xi) for every bounded increasing net (xi) in
M+, we say that Tr is normal.

It is called faithful if, for x ∈M+,

(f) Tr(x) = 0 if and only if x = 0.

Whenever Tr(1) < +∞ then, since M is linearly generated by M+, Tr
extends uniquely to a linear functional on M , which is a trace in the usual
sense.

Definition 8.3.2. A von Neumann algebra M is said to be semi-finite
if there exists on M+ a faithful, normal, semi-finite trace Tr.

The class of semi-finite von Neumann algebras encompasses finite von
Neumann algebras.

Factors with a minimal projection are isomorphic to some B(H) (see
2.4.13), hence semi-finite. They form the class of type I factors. Diffuse semi-
finite factors split into two classes: we find those such that Tr(1) = +∞,
called type II∞ factors, and those such that Tr(1) < +∞, our now familiar
II1 factors4.

Let us give a basic way to construct semi-finite non-finite von Neumann
algebras. Let (N, τ) be a tracial von Neumann algebra on H and I an
infinite set. Consider the von Neumann tensor product M = B(`2(I))⊗N
on `2(I)⊗H. As usually, we write its elements as matrices [mi,j ] with lines
and columns indexed by I and entries in N . The diagonal entries of the
elements of M+ are in N+. Let Tr be the usual normal faithful semi-finite
trace on B(`2(I))+. For m = [mi,j ] ∈M+, we set

τ∞(m) = (Tr⊗ τ)(m) =
∑
i∈I

τ(mi,i). (8.1)

Then τ∞ is a normal faithful semi-finite trace on M+ with τ∞(1) = +∞. The
two first conditions of Definition 8.3.1 are obvious. Using matrix multiplica-
tion, we also easily check that τ∞(mm∗) = τ∞(m∗m) and that τ∞(m∗m) = 0
if and only if m = 0. Furthermore, τ∞ is semi-finite. Indeed, denote by pi
the projection on the subspace Cδi ⊗H. Given a non-zero m ∈ M+, there
is i ∈ I such that pimpi 6= 0. Then, we have

τ∞(m1/2pim
1/2) = τ∞(pimpi) < +∞,

with m1/2pim
1/2 ≤ m and m1/2pim

1/2 6= 0.

4This definition is not ambiguous since the faithful, normal, semi-finite trace Tr on a
semi-finite factor is unique, up to multiplication by a positive real number (see Propositions
4.1.3 and 8.3.6).
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Finally, let (mκ) be an increasing net of elements in M+ with
∨
αmκ =

m. We easily get that τ∞(m) = supκ τ∞(mκ) by observing that for every i ∈
I, the net of diagonal entries (pimκpi) is increasing with pimpi as supremum.

If in addition N is a factor, then M is a II∞ factor. Exercise 8.1 shows
that every II∞ factor is of this form.

Proposition 8.3.3. Let M be a tracial von Neumann algebra on a
Hilbert space H. Then M ′ is a semi-finite von Neumann algebra.

Proof. We may assume that H = p(`2(I) ⊗ L2(M)) where p is a pro-
jection in B(`2(I))⊗R(M), so that M ′ = p

(
B(`2(I))⊗R(M)

)
p. Then we

observe that the reduction of a semi-finite von Neumann algebra remains
semi-finite. �

We end this section with some basic facts on II∞ factors.

Lemma 8.3.4. Let M be a factor with a normal faithful semi-finite trace
Tr. Let p, q ∈ P(M), such that Tr(p) = +∞ and 0 < Tr(q) < +∞. There
exists a family (qi)i∈I of mutually orthogonal projections in M with qi ∼ q
for every i,

∑
i∈I qi = p. The set I is infinite and whenever M is separable

it is countable.

Proof. Obviously, we have q - p. Using a maximality argument, we
see that there exists (q′i)i∈I , where the projections q′i are mutually orthogonal
and equivalent to q, with q′i ≤ p for every i and p −

∑
i∈I q

′
i - q. Since the

set I is infinite, the projections p and
∑

i∈I q
′
i are equivalent. Indeed, if we

set p0 = p−
∑

i∈I q
′
i and fix i0 ∈ I, using the existence of a bijection from I

onto I \ {i0}, we get

p =
∑
i∈I

q′i + p0 '
∑

i∈I\{i0}

q′i + p0 -
∑
i∈I

q′i.

Let u be a partial isometry in M such that u∗u = p and uu∗ =
∑

i∈I q
′
i. To

conclude, we set qi = u∗q′iu for i ∈ I. �

We may write I = I1∪I2, where I1 and I2 are disjoint and have the same
cardinal as I. Then p is the sum of the two mutually orthogonal projections
pj =

∑
i∈Ij qi, j = 1, 2, which are equivalent to p. In particular, p is infinite.

We easily deduce the following corollary.

Corollary 8.3.5. Let M be a factor with a normal faithful semi-finite
trace Tr. A projection p ∈M is infinite if and only if Tr(p) = +∞.

Proposition 8.3.6. Let M be a II∞ factor and Tr a normal faithful
semi-finite trace on M .

(i) We have {Tr(p) : p ∈ P(M)} = [0,+∞].
(ii) Let Tr1 be another normal semi-finite faithful trace on M+. There

exists a unique λ > 0 such that Tr1 = λTr.
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Proof. (i) Let q be a projection such that 0 < Tr(q) < +∞. Then
qMq is a factor (see Proposition 4.2.1) which is diffuse and finite and so

{Tr(p) : p ∈ P(qMq)} = [0, c]

where c = Tr(q), by Proposition 4.1.6. Since 1 is the sum of infinitely many
projections equivalent to q, we easily deduce the statement of (i).

(ii) Let p be a projection such that Tr(p) = 1 and set λ = Tr1(p). Then,
by uniqueness of the tracial state on pMp, we have Tr1(x) = λTr(x) for
every x ∈ (pMp)+. Let q be the sum of finitely many projections equivalent
to p. For x ∈M+ we have

Tr1(x1/2qx1/2) = Tr1(qxq) = λTr(qxq) = λTr(x1/2qx1/2),

since qMq is isomorphic to some pMp⊗Mn(C). Using the normality of the
traces, and Lemma 8.3.4, we get the conclusion. �

Definition 8.3.7. Let M be a type II∞ factor and Tr a normal faithful
semi-finite trace on M . Given θ ∈ Aut (M), the number λ > 0 such that
Tr ◦ θ = λTr (independent of the choice of Tr) is called the module of θ and
denoted by mod(θ).

Proposition 8.3.8. Let M be a separable type II∞ factor and let Tr be
a normal faithful semi-finite trace on M . Let p, q ∈ P(M). Then p - q if
and only if Tr(p) ≤ Tr(q).

Proof. Clearly, if p - q then Tr(p) ≤ Tr(q). Conversely, assume that
Tr(p) ≤ Tr(q). The only non trivial case to consider is when both p and
q have an infinite trace. But then, given any non-zero projection e ∈ M
with Tr(e) < +∞, we see from Lemma 8.3.4 that there exist two sequences
(pk)k∈N and (qk)k∈N of projections equivalent to e with p =

∑
k∈N pk and

q =
∑

k∈N qk, whence the equivalence of p and q. The fact that we get here
sequences follows from the separability, which is a crucial assumption. �

This proposition solves the comparison problem of projections in a sepa-
rable semi-finite factor. In the non-factorial case, we need more sophisticated
tools (see Proposition 9.2.4).

Remark 8.3.9. So far, we have introduced the following types of factors:
I, II1 and II∞. There are factors which do not belong to these classes, those
which do not carry any normal non-zero semi-finite trace. They are called
type III factors. They will not be considered in this monograph.

8.4. The canonical trace on the commutant of a tracial von
Neumann algebra representation

In the rest of this chapter, (M, τ) is a tracial von Neumann algebra. Until
now, we have only considered left M -modules. We may study, equivalently,
right M -modules, which are nothing else than left Mop-modules. In the fol-
lowing we will more often consider rightM -modules since we are rather inter-
ested in the commutant (that we let act to the left) of the right structures.
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The commutant of Id`2(N) ⊗ R(M) in B(`2(N) ⊗ L2(M)) is B(`2(N))⊗M ,
the von Neumann algebra of operators which, viewed as infinite matrices,
have their entries in M (identified with L(M)). The analogue of Proposi-
tion 8.2.3 provides a bijective correspondence between the set of equivalence
classes of right M -modules and the set of equivalence classes of projections
in B(`2(N))⊗M .

Given two right M -modules H and K, we denote by B(HM ,KM ) the
space of right M -linear bounded maps from H into K. We set B(HM ) =
B(HM ,HM ). This semi-finite von Neumann algebra (Proposition 8.3.3) is
a generalisation of B(H) which corresponds to M = C. It carries a specific
tracial weight τ̂ (equal to Tr when M = C), depending on τ , that we define
now.

8.4.1. First characterisation of τ̂ . Let H be a right M -module. Ob-
serve that, given S, T in B(L2(M)M ,HM ), we have S∗T ∈ M and TS∗ ∈
B(HM ).

Lemma 8.4.1. The linear span F(HM ) of{
TS∗ : T, S ∈ B(L2(M)M ,HM )

}
is an ideal of B(HM ), dense in the w.o. topology.

Proof. The elements of F(HM ) are analogous, for M -modules, to fi-
nite rank operators for Hilbert spaces. The only non trivial fact is the
density of F(HM ). Let z be the projection of the center of B(HM ) such

that F(HM )
w.o.

= B(HM )z. Then (1 − z)H is a right M -module. Assume
that there exists ξ 6= 0 in (1 − z)H. By Lemma 8.2.1, the M -module ξM
is isomorphic to pL2(M) for some projection p ∈M . After identification of
these two modules, we see that the map m̂→ p̂m extends to a non-zero el-
ement T ∈ B(L2(M)M ,HM ) with zT = 0. It follows that TT ∗ is a non-zero
element of F(HM ) with zTT ∗ = 0, a contradiction.

�

Proposition 8.4.2. Let H be a right M -module. The commutant B(HM )
is a semi-finite von Neumann algebra which carries a canonical normal faith-
ful semi-finite trace τ̂ characterized by the equality

τ̂(TT ∗) = τ(T ∗T ) (8.2)

for every right M -linear bounded operator T : L2(M)→ H.

Proof. Let U : H → `2(N)⊗ L2(M) be a right M -linear isometry. For
x ∈ B(HM )+ we set

τ̂(x) = (Tr⊗ τ)(UxU∗),

where Tr is the usual trace on B(`2(N))+. Then, τ̂ is a normal faithful
semi-finite trace. Moreover, if V : H → `2(N)⊗ L2(M) is another M -linear
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isometry, we have

(Tr⊗ τ)(UxU∗) = (Tr⊗ τ)((UV ∗)V xV ∗(V U∗))

= (Tr⊗ τ)(V xV ∗(V U∗)(UV ∗)) = (Tr⊗ τ)(V xV ∗).

Hence, τ̂ is independent of the choice of U .
Let us prove Equation (8.2). We may assume that

H = p(`2(N)⊗ L2(M)),

where p is a projection in B(`2(N))⊗M . Let T ∈ B(L2(M)M ,HM ) and write
T 1̂ =

∑
k≥1 δk ⊗ ξk. For m ∈M , we have∑

k∈N
‖ξkm‖22 = ‖Tm̂‖2 ≤ ‖T‖2‖m̂‖22.

Theorem 7.1.1 implies that ξk = m̂k ∈ M̂ . Moreover we have∑
k∈N

m∗kmk ≤ ‖T‖21

where the convergence is with respect to the w.o. topology. Straightforward
computations show that T ∗T =

∑
km
∗
kmk, and that TT ∗ is the matrix

[mim
∗
j ]i,j . It follows that τ̂(TT ∗) = τ(T ∗T ). By polarization, we get that

τ̂(TS∗) = τ(S∗T ) for every S, T ∈ B(L2(M)M ,HM ). That τ̂ is characterized
by (8.2) follows from its normality, together with Lemma 8.4.1 and Exercise
2.11. �

We leave it to the reader to check that τ̂ is the usual trace Tr on B(H)
when M = C. We note that Tr is defined via any orthonormal basis of H.
Likewise, there is a useful notion of orthonormal basis with respect to a M -
module, which can be used to define the canonical trace on the commutant.
We need first the notion of bounded vector.

8.4.2. Bounded vectors.

Definition 8.4.3. Let (M, τ) be a tracial von Neumann and H a right
M -module. A vector ξ ∈ H is said to be left (M-)bounded5 if there exists
c > 0 such that ‖ξx‖ ≤ c‖x‖2 for every x ∈ M . In other words, the map
x̂ 7→ ξx extends to a bounded operator Lξ from L2(M) into H.

We denote by H0 the set of left bounded vectors. Obviously, ξ 7→ Lξ is
a bijection from H0 onto B(L2(M)M ,HM ). We have seen in Theorem 7.1.1

that L2(M)0 = M̂ .

Proposition 8.4.4. Let H be a right M -module. Then H0 is a dense
linear subspace of H which is stable under the actions of M and of its com-
mutant B(HM ). Moreover, for ξ ∈ H0, x ∈ M and y ∈ B(HM ) we have
Lyξx = yLξx : m̂→ y(ξxm).

5We warn the reader that this notion, and therefore the notion of orthonormal basis
defined in the next section, depends on the choice of τ .



D
ra
ft

130 8. MODULES OVER FINITE VON NEUMANN ALGEBRAS

Proof. We only prove the density ofH0, the rest of the statement being
obvious. Let ξ ∈ H. We have seen in Lemma 8.2.1 that the M -module ξM

is isomorphic to pL2(M) for some projection p ∈M . The space pM̂ is made
of left bounded vectors and is dense in pL2(M). �

We now observe that for ξ, η ∈ H0, the operator L∗ξLη commutes with

the right M -action on L2(M) and so belongs to M . We set L∗ξLη = 〈ξ, η〉M
since, as we will see now, this operation behaves like an inner-product, but
with value in M .

Lemma 8.4.5. Given ξ, η ∈ H0, we have

(i) 〈ξ, ξ〉M ≥ 0 and 〈ξ, ξ〉M = 0 if and only if ξ = 0;
(ii) (〈ξ, η〉M )∗ = 〈η, ξ〉M ;

(iii) 〈ξ, ηx〉M = 〈ξ, η〉Mx, 〈ξx, η〉M = x∗〈ξ, η〉M for every x ∈M ;
(iv) τ(〈ξ, yηx〉M ) = 〈ξ, yηx〉H for every x ∈M and y ∈ B(HM );

(v) (Lξ)
∗(xη) = ̂〈ξ, xη〉M for every x ∈ B(HM ).

Proof. Straightforward verifications. �

Given a left M -module K, we may similarly introduce the space 0K
of right bounded vectors. It satisfies the properties stated in Lemma 8.4.5
translated to left modules. More precisely, if η ∈ 0K, we denote by Rη :
L2(M) → K the corresponding bounded right M -linear operator and, for
ξ, η ∈ 0K, we set J(R∗ξRη)J =M 〈ξ, η〉. Note that (ξ, η) →M 〈ξ, η〉 is linear
with respect to the first variable and antilinear with respect to the second
one.

Lemma 8.4.6. Given ξ, η ∈ 0K, we have

(i) M 〈ξ, ξ〉 ≥ 0 and M 〈ξ, ξ〉 = 0 if and only if ξ = 0;
(ii) (M〈ξ, η〉)∗ = M〈η, ξ〉;
(iii) M〈xξ, η〉 = xM〈ξ, η〉, M〈ξ, xη〉 = M 〈ξ, η〉x∗ for every x ∈M ;
(iv) τ(M〈xξy, η〉) = 〈η, xξy〉K for every x ∈M and y ∈ B(MK).

8.4.3. Orthonormal bases.

Definition 8.4.7. Let H be a right M -module over a tracial von Neu-
mann algebra (M, τ). An orthonormal basis (or Pimsner-Popa basis) for
this M -module is a family (ξi)i∈I of non-zero left bounded vectors such that∑

i ξiM = H and 〈ξi, ξj〉M = δi,jpj ∈ P(M) for all i, j. Hence, H = ⊕i ξiM .
Note that I is countable under the separability assumption on H.

Let ξ ∈ H0 such that 〈ξ, ξ〉M = L∗ξLξ = p ∈ P(M). Then ξ = ξp and

LξL
∗
ξ is the orthogonal projection on the M -submodule ξM . The verification

is straightforward. The following consequence is immediate.

Lemma 8.4.8. Let (ξi) be a family of left bounded vectors. Then (ξi) is
an orthonormal basis if and only if 〈ξi, ξj〉M = δi,jpj ∈ P(M) for all i, j and∑

i LξiL
∗
ξi

= IdH.
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Lemma 8.4.9 (Polar decomposition). Every left bounded vector ξ in

a right M -module H can be written in a unique way as ξ = ξ′〈ξ, ξ〉1/2M , where

ξ′ is left bounded and is such that 〈ξ′, ξ′〉M is the range projection of 〈ξ, ξ〉1/2M .

Moreover ξ′M = ξM .

Proof. Let Lξ = u〈ξ, ξ〉1/2M be the polar decomposition of Lξ viewed as

a bounded operator from L2(M) into ξM . We set ξ′ = u(1̂). The end of the
proof is immediate. �

The decomposition ξ = ξ′〈ξ, ξ〉1/2M is called the polar decomposition of ξ.

Lemma 8.4.10. Assume that H = ηM . Then there exists a left bounded
vector ξ such that 〈ξ, ξ〉M ∈ P(M) and H = ξM .

Proof. Indeed, let U be an isomorphism of M -modules from H onto a
sub-module of L2(M), say pL2(M) with p ∈ P(M) (see Lemma 8.2.1). It
suffices to set ξ = U−1(p1̂). �

Proposition 8.4.11. Every right M -module H has orthonormal bases.

Proof. Let {ξi} ⊂ H0 be a maximal family with the property that

〈ξi, ξj〉M = δi,jpj ∈ P(M) and set K =
∑

i ξiM . If K 6= H, by the previous

lemma the right M -module K⊥ contains a non-zero left bounded vector
ξ, which can be chosen such that 〈ξ, ξ〉M ∈ P(M). This contradicts the
maximality of the family {ξi}. �

Remark 8.4.12. An orthonormal basis (ξi) is indeed a basis in the fol-
lowing sense: every η ∈ H0 has a unique expression as

η =
∑
i

ξimi

where mi ∈ piM and the series converges in norm. Indeed, we have

η =
∑
i

LξiL
∗
ξi
η =

∑
i

ξi〈ξi, η〉M . (8.3)

Moreover, if η =
∑

i ξimi then

〈ξj , η〉M = L∗ξjLη1̂ = L∗ξjη =
∑
i

〈ξj , ξi〉Mmi = pjmj .

Lemma 8.4.13. Let H be a right M -module and let (ξi) be an orthonor-
mal basis. Let ξ, η be two left bounded vectors. Then the series∑

〈ξ, ξi〉M 〈η, ξi〉M
is convergent in M with respect to the s.o. topology and we have

〈ξ, η〉M = L∗ξLη =
∑
i

L∗ξLξiL
∗
ξi
Lη =

∑
i

〈ξ, ξi〉M 〈ξi, η〉M .

Proof. Obvious since
∑

i LξiL
∗
ξi

= IdH. �
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Remark 8.4.14. As already mentioned in Lemma 8.4.1, the linear span
F(HM ) of the set of operators LξL

∗
η, ξ, η ∈ H0 is a w.o. dense two-sided

ideal of B(HM ). It is the ideal of finite rank operators in case M = C1. So,
in the general case, it is useful to view the elements of F(HM ) as “finite
rank” operators.

8.4.4. Second characterisation of τ̂ . We may now state our second
characterisation of τ̂ .

Proposition 8.4.15. Let H be a right module over a tracial von Neu-
mann algebra (M, τ) and let (ξi)i∈I be an orthonormal basis of this module.
Then, for every non-negative element x ∈ B(HM ), we have

τ̂(x) =
∑
i

τ(〈ξi, xξi〉M ) =
∑
n

〈ξi, xξi〉H. (8.4)

Proof. We set pi = 〈ξi, ξi〉M . Let U be the isometry from H into
`2(I)⊗ L2(M) such that, for m ∈M and all i,

U(ξim) = δi ⊗ pim̂ = δi ⊗ L∗ξi(ξim).

We know that for x ∈ B(HM )+,

τ̂(x) = (Tr⊗ τ)(UxU∗) =
∑
i

τ((UxU∗)i,i),

and we have (UxU∗)i,i = L∗ξi(xξi) = 〈ξi, xξi〉M . �

Remark 8.4.16. From Lemma 8.4.13 and the expression (8.4) we get
another proof that τ̂ is a trace. Indeed, given x ∈ B(HM ) we have

τ̂(x∗x) =
∑
i

τ(〈xξi, xξi〉M ) =
∑
i,j

τ(〈xξi, ξj〉M 〈ξj , xξi〉M )

=
∑
i,j

τ(〈x∗ξj , ξi〉M 〈ξi, x
∗ξj〉M ) = τ̂(xx∗).

Proposition 8.4.17. Let ξ, η be two left bounded vectors. We have

τ̂(LξL
∗
η) = τ(〈η, ξ〉M ) = τ(L∗ηLξ) = 〈η, ξ〉H. (8.5)

Proof. We have

τ̂(LξL
∗
η) =

∑
i

〈
ξi, (LξL

∗
η)ξi

〉
H =

∑
i

〈
L∗ξξi, L

∗
ηξi
〉
L2(M)

=
∑
i

〈〈ξ, ξi〉M , 〈η, ξi〉M 〉L2(M) = τ(〈η, ξ〉M ) = τ(L∗ηLξ).

�
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8.5. First results on finite modules

Definition 8.5.1. Let (M, τ) be a tracial von Neumann algebra. We
say that a right M -module H is finitely generated if there exists a finite set
{η1, . . . , ηn} of elements of H such that H =

∑n
i=1 ηiM .

The following orthonormalisation process will imply that {η1, . . . ηn}
may be chosen to be an orthonormal basis.

Lemma 8.5.2 (Gram-Schmidt orthonormalisation). Let η1, . . . , ηn
be some elements of a right M -module. There exists an orthonormal family
ξ1, . . . , ξn (i.e., such that 〈ξi, ξj〉M = δi,jpj ∈ P(M)) such that {η1, . . . , ηn} ⊂
⊕ni=1ξiM .

Proof. Using lemma 8.4.10, we may assume that the ηj are left M -
bounded. Let η1 = ξ1m1 be the polar decomposition of η1 and set η′2 = η2−
ξ1〈ξ1, η2〉M . We have 〈ξ1, η

′
2〉M = 0. We consider the polar decomposition

η′2 = ξ2m2 of η′2. Then η2 ∈ ξ1M + ξ2M and 〈ξ1, ξ2〉M = 0 since 0 =
〈ξ1, ξ2〉Mm2 and thus 0 = 〈ξ1, ξ2〉M 〈ξ2, ξ2〉M = 〈ξ1, ξ2〉M . Iterations of this
process prove the lemma. �

Proposition 8.5.3. Let H be a right module over a tracial von Neumann
algebra M . The following conditions are equivalent:

(i) H is finitely generated;
(ii) there exist n ∈ N and a projection p ∈Mn(C)⊗M = Mn(M) such

that H is isomorphic to the right M -module p(`2n ⊗ L2(M));
(iii) there exist n ∈ N and a diagonal projection p ∈ Mn(C) ⊗ M =

Mn(M) such that H is isomorphic to the right M -module p(`2n ⊗
L2(M));

(iv) the M -module H has a finite orthonormal basis;
(v) F(HM ) = B(HM ).

Proof. (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) are obvious and (i) ⇒ (iv) is a conse-
quence of the previous lemma.

(iv) ⇒ (v). Let (ξ1, . . . , ξn) be an orthonormal basis of H. Then IdH =∑n
i=1 LξiL

∗
ξi
∈ F(HM ).

(v) ⇒ (i). Assume that IdH =
∑n

i=1 LξiL
∗
ηi . Then, for ξ ∈ H we have

ξ =

n∑
i=1

Lξi(L
∗
ηi(ξ))

and therefore H is finitely generated, since Lξi(L
∗
ηi(ξ)) ∈ ξiM . �

Definition 8.5.4. Let (M, τ) be a tracial von Neumann algebra and H
a right M -module. The M -dimension of H is the number τ̂(IdH) or, equiv-
alently the number (Tr ⊗ τ)(p), where p is any projection in B(`2(N))⊗M
such that H is isomorphic to p(`2(N)⊗L2(M)). It is denoted by dim(HM ).
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One defines similarly the dimension dim(MK) of a left M -module K. In
particular, dim(L2(M)M ) = 1 = dim(ML

2(M)).
The right module H is said to be finite if dim(HM ) is finite.

Note that dim(HM ) depends on the choice of τ and so the notation may
be, unfortunately, misleading.

Given an orthonormal basis (ξi) of the module H, or more generally any
family (ξi) of left bounded vectors such that

∑
i LξiL

∗
ξi

= IdH, we have

dim(HM ) =
∑
i

τ(〈ξi, ξi〉M ) =
∑
i

‖ξi‖2H. (8.6)

Indeed, this follows from Proposition 8.4.17, since τ̂(IdH) =
∑

i τ̂(LξiL
∗
ξi

).
In particular, if H and K are two right M -modules and H ⊕ K is their

Hilbert direct sum, we have

dim((H⊕K)M ) = dim(HM ) + dim(KM ).

Proposition 8.5.5. Let H be a module on a tracial von Neumann alge-
bra M . Consider the following conditions:

(i) H is finitely generated;
(ii) dim(HM ) < +∞;

(iii) the commutant B(HM ) of the right representation is a finite von
Neumann algebra.

Then we have (i) ⇒ (ii) ⇒ (iii).

Proof. Obvious. �

In the non-factor case, the situation is quite subtle. The three above
conditions are not equivalent (see Exercise 8.13). Moreover, the number
dim(HM ) does not determine the isomorphism class of the corresponding
right module. These questions will be clarified in the next chapter. We only
consider below the easy case where M is a II1 factor.

8.6. Modules over II1 factors

Proposition 8.6.1. When M is a factor, the three conditions of Propo-
sition 8.5.5 are equivalent.

Proof. Immediate, since B(HM ) is a factor. Indeed, whenever B(HM )
is a finite factor, it is isomorphic to some p

(
B(`2(N))⊗M

)
p with (Tr⊗τ)(p) <

+∞; so p is equivalent to a projection in some Mn(C) ⊗M and Condition
(ii) of Proposition 8.5.3 holds. �

For the next result, the separability assumptions are essential.

Proposition 8.6.2. Let M be a separable II1 factor. The map HM 7→
dim(HM ) induces a bijection from the set of equivalences classes of separable
right M -modules onto [0,+∞].
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Proof. We observe that p(`2(N)⊗L2(M)) and q(`2(N)⊗L2(M)) are iso-
morphic if and only if the projections p and q are equivalent in B(`2(N))⊗M ,
thus if and only if (Tr⊗ τ)(p) = (Tr⊗ τ)(q) (see Proposition 8.3.8).

Finally, the M -dimension can be any element of [0,+∞] since{
(Tr⊗ τ)(p) : p ∈ P

(
B(`2(N))⊗M

)}
= [0,+∞].

�

Remark 8.6.3. Let M be a II1 factor on a Hilbert space H such that M ′

is also finite. In [MVN36, Theorem 10], Murray and von Neumann proved
the deep fact that the number τM ([M ′ξ])/τM ′([Mξ]) is independent of the
choice of the non-zero vector ξ ∈ H (where τM and τM ′ are the tracial states
on M and M ′ respectively). They used this number as a tool to compare
M and M ′. It is called the coupling constant (between M and M ′).

We leave it as an exercise to check that this coupling constant is equal
to dim(MH).

Exercises

Exercise 8.1. LetM be a II∞ factor and Tr a normal faithful semi-finite
trace on M+. Let p ∈ P(M) be such that Tr(p) < +∞.

(i) Show that pMp is a II1 factor.
(ii) Show that there exists a family (pi)i∈I , where I is an infinite set

of indices, of mutually orthogonal projections, equivalent to p and
such that

∑
i∈I pi = 1.

(iii) Show that M is isomorphic to B(`2(I))⊗(pMp).
(iv) Show that I is countable if and only if M is countably decompos-

able.

Exercise 8.2. Let M be a von Neumann algebra and let Tr be a trace
on M+. We set

n = {x ∈M : Tr(x∗x) < +∞}
and

m =

{
n∑
i=1

xiyi : xi, yi ∈ n

}
.

Prove the following assertions:

(i) n and m are two-sided ideals of M .
(ii) m∩M+ = {x ∈M+ : Tr(x) < +∞} and m is linearly generated by

m ∩M+.
(iii) the restriction of Tr to m∩M+ extends in a unique way to a linear

functional on m (still denoted by Tr).
(iv) Tr(xy) = Tr(yx) if either x, y ∈ n or x ∈M and y ∈ m.

The proof is similar to that of Lemma 7.4.3. One says that m is the
ideal of definition of Tr. When Tr is the trace on B(H)+, then m and
n are respectively the ideals of trace class operators and Hilbert-Schmidt
operators.



D
ra
ft

136 8. MODULES OVER FINITE VON NEUMANN ALGEBRAS

Exercise 8.3. Let M be a von Neumann algebra and let Tr be a trace
on M+.

(i) Show that Tr is semi-finite if and only if n (or m) is w.o. dense in
M .

(ii) Assume that Tr is normal. Show that for m ∈ m+, the positive
linear functional x 7→ Tr(xm) is normal on M .

Exercise 8.4. Let M be a von Neumann algebra and let Tr be a normal
semi-finite trace on M+. Show (with the help of Exercise 2.11) that there
exists a family (a sequence when M is separable) (ϕi) of positive normal
linear functionals on M such that Tr(x) =

∑
i ϕi(x) for x ∈ M+. Conclude

that Tr is lower semi-continuous in the sense that for every c > 0 the set
{x ∈M+ : Tr(x) ≤ c} is w.o. closed.

Exercise 8.5. Let M be a von Neumann algebra and let Tr be a normal
faithful semi-finite trace on M+. On the two-sided ideal

n = {x ∈M : Tr(x∗x) < +∞},
we define the inner product 〈x, y〉 = Tr(x∗y). We denote by L2(M,Tr) the
corresponding completion of n. Show that L2(M,Tr) has a natural structure
of M -M -bimodule. Observe that whenever M = B(H) with its usual trace,
L2(M,Tr) is the space S2(H) of Hilbert-Schmidt operators on H.

Exercise 8.6. Let H be a right M -module on a II1 factor M . Assume
that dim(HM ) = c with n ≤ c < n + 1. Show that H is isomorphic, as a
M -module to L2(M)⊕n ⊕ pL2(M) with p ∈ P(M) and τ(p) = c− n.

Exercise 8.7. Let (M, τ) be a tracial von Neumann algebra and let
H = Cn ⊗L2(M) be a right Mn(M)-module in the obvious way. Show that
dim(HMn(M)) = 1/n.

Exercise 8.8. Let H be a right M -module on a II1 factor M such that
dim(HM ) < +∞. Let p be a projection in the commutant B(HM ) of the
right action. Show that dim((pH)M ) = τB(HM )(p) dim(HM ), where τB(HM )

is the unique tracial state on B(HM ).

Exercise 8.9. Let M be a II1-factor, H a right M -module and let p be
a projection in M . Show that dim(HM ) = τ(p) dim((Hp)pMp).

Exercise 8.10. Let H be a right M -module on a II1 factor M such that
dim(HM ) < +∞. Show that dim(HM ) dim(B(HM )H) = 1.

Exercise 8.11. Let M be a II1 factor and let H be a right M -module.

(i) Show that H has a cyclic vector if and only if dim(HM ) ≤ 1.
(ii) Show that H has a separating vector if and only if dim(HM ) ≥ 1.

Exercise 8.12. Let M be a II1 factor on a Hilbert space H such that
M ′ is also finite. Show that the coupling constant between M and M ′ is
equal to dim(MH).
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Exercise 8.13. Let f : [0, 1] → N be a Borel function such that f ∈
L1([0, 1], λ) but f 6∈ L∞([0, 1], λ), where λ is the Lebesgue measure on [0, 1].
For each integer n we chose a projection pn of rank n in B(`2(N)). Let p be
the projection in L∞([0, 1], λ)⊗B(`2(N)

)
defined by p(x) = pn if f(x) = n.

Show that the right module p
(
L2([0, 1], λ)⊗`2(N)

)
over L∞([0, 1], λ) is finite

but is not finitely generated.

Exercise 8.14. Let M1,M2 be two II1 factors and πi : Mi → B(Hi), i =
1, 2, be normal representations. Recall that the von Neumann tensor product
(M1⊗M2, L

2(M1, τ1)⊗ L2(M2, τ2)) has been defined in Section 5.1.1. Show
that there is a unique isomorphism π from M1⊗M2 onto π1(M1)⊗π2(M2)
(represented on H1 ⊗H2) such that π(x1 ⊗ x2) = π1(x1)⊗ π2(x2) for every
x1 ∈M1, x2 ∈M2 (use the structure result about M -modules).

Exercise 8.15. Let M be a separable II1 factor. Let τ∞ be the canonical
normal faithful semi-finite trace onM∞ = M⊗B(`2(N)). Recall from Section
4.2 that the fundamental group F(M) of M is the set of τ∞(p) where p runs
over the set of projections p ∈M∞ such that M and pM∞p are isomorphic.
Show that F(M) = {mod(θ) : θ ∈ Aut (M∞)}.

Exercise 8.16. We keep the notation of the previous exercise and we
set Aut 1(M∞) = {θ ∈ Aut (M∞) : mod(θ) = 1}. Let p0 be the rank one
projection on the first vector of the canonical basis of `2(N).

(i) Show that there is a unitary u ∈ U(M∞) and α ∈ Aut (M) such
that Ad (u) ◦ θ(x ⊗ p0) = α(x) ⊗ p0 for every x ∈ M . Show that
the class of α in Out (M) is well defined. We denote it by αθ.

(ii) Show that θ 7→ αθ is a homomorphism from Aut 1(M∞) into Out (M)
which defines, by passing to the quotient, a homomorphism from
Aut 1(M∞)/Inn (M∞) into Out (M).

Notes
The study of the structure of modules over factors goes back to [MVN36,

MvN43]. In particular, the coupling constant, or in other terms the dimen-
sion of a module, had be investigated in details in [MVN36].

Since the eighties, this subject has been developed by many authors,
mainly in view of the study of subfactors and of the ergodic theory of group
actions and their associated crossed products. A major impetus is due to
the influential work of V.F.R. Jones on the index of subfactors [Jon83b].
A large part of the above exercises is borrowed from this paper. The idea
of using orthonormal bases to compute dimensions of modules comes from
[PP86] where indices of subfactors were computed in terms of Pimsner-Popa
bases (see Propositions 9.4.7 and 9.4.8 in the next chapter).
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CHAPTER 9

Conditional expectations. The Jones’ basic
construction

In this chapter, we consider a tracial von Neumann algebra (M, τ) and
a von Neumann subalgebra B. We study in details the right B-module
L2(M)B. An important tool is the trace preserving conditional expectation
EB : M → B that we introduce first.

Having this notion at hand, we focus on the conditional expectation EZ
where Z is the center of M . It is tracial and intrinsic, and we call it the
center-valued trace. When M is only assumed to be semi-finite, there is a
more technical notion of center-valued tracial weight, which is essentially
unique and plays the same role as EZ . We use this notion to clarify the
relations between the various possible definitions of a finite module over a
tracial von Neumann, like B, which is not necessarily a factor.

Then we come back to the case of L2(M)B. The von Neumann algebra
B(L2(M)B) of operators commuting with the right B-action is the so-called
algebra of the basic construction for B ⊂M which plays an important role
in many contexts. In this framework we translate the general results about
modules obtained in the first part of this chapter and in the previous chapter.

9.1. Conditional expectations

We extend to the non-commutative setting the notion of conditional
expectation which is familiar in measure theory.

Definition 9.1.1. Let M be a von Neumann algebra and B a von Neu-
mann subalgebra. A conditional expectation from M to B is a linear map
E : M → B which satisfies the following properties:

(i) E(M+) ⊂ B+ ;
(ii) E(b) = b for b ∈ B;

(iii) E(b1xb2) = b1E(x)b2 for b1, b2 ∈ B and x ∈M .

Hence E is a positive projection from M onto B, and is left and right
B-linear. Moreover, for x ∈M we have

E
(
(E(x)− x)∗(E(x)− x)

)
= −E(x)∗E(x) + E(x∗x).

It follows that E(x)∗E(x) ≤ E(x∗x) and, since x∗x ≤ ‖x‖21, we have

‖E(x)‖2 ≤ ‖E(x∗x)‖ ≤ ‖x‖2. Hence E is a norm-one projection from M
onto B. All this holds as well in the setting of C∗-algebras.

139
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Conversely, every norm-one projection is a conditional expectation (see
Theorem A.4 in the appendix).

9.1.1. Existence of conditional expectations.

Theorem 9.1.2. Let (M, τ) be a tracial von Neumann algebra and let B
be a von Neumann subalgebra. There exists a unique conditional expectation
EB from M onto B such that τ ◦ EB = τ . Moreover, EB is normal and
faithful1.

Proof. We remark that L2(B, τ |B) is a Hilbert subspace of L2(M, τ).
For simplicity of notation, we denote these spaces by L2(B) and L2(M)
respectively. We denote by eB the orthogonal projection onto L2(B). Of

course, we have eB(b̂) = b̂ for b ∈ B. Thanks to Proposition 7.3.4 we see
that eB(L2(M)+) ⊂ L2(B)+. Now, given x ∈ M with 0 ≤ x ≤ 1, we get

0 ≤ eB(x̂) ≤ 1̂, whence eB(x̂) ∈ B̂+, and thus we deduce the inclusion

eB(M̂) ⊂ B̂. We identify M and M̂ and define EB to be the restriction of
eB to M . For b ∈ B and x ∈ M , we have τ(xb) = τ(EB(x)b). It follows
that EB is a conditional expectation with τ ◦ EB = τ . In particular, EB is
faithful.

We now show the uniqueness of EB. If E is another conditional expec-
tation with τ ◦ E = τ , then for x ∈M and b ∈ B, we have

τ
(
(x− E(x))b

)
= τ

(
E((x− E(x))b

)
= 0,

i.e., x̂ − Ê(x) and B̂ are orthogonal. Hence, E has to be the orthogonal

projection from M̂ ⊂ L2(M) onto B̂ ⊂ L2(B).
The normality of EB follows from Corollary 2.5.11. �

Remark 9.1.3. Note that EB(x) is the unique element y in B such that
τ(xb) = τ(yb) for every b ∈ B. Another way to introduce EB is to use the
Radon-Nikodým theorem 7.3.6 (see Exercise 9.1). We also remark that EB
is the restriction to M of the orthogonal projection eB from L2(M) onto
L2(B), when M and B are identified to subspaces of L2(M) and L2(B)
respectively.

9.1.2. Examples. Of course, EB depends on the choice of the trace τ .
Usually, this choice is implicit and we do not mention it.

(1) Take M = Mn(C) and let B be the subalgebra of diagonal matrices.
Then EB is the application sending a matrix x to its diagonal part.

More generally, let (M, τ) be a tracial von Neumann algebra, and let B =∑n
i=1 Cei be generated by non-zero projections e1, . . . , en with

∑n
i=1 ei = 1.

Then, for x ∈M ,

EB(x) =

n∑
i=1

τ(eixei)

τ(ei)
ei.

1In case of ambiguity, we will write EMB for EB .
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(2) We keep the same notations. Then

EB′∩M (x) =

n∑
i=1

eixei.

(3) Let (ei,j)1≤i,j≤n be a matrix units of a von Neumann subalgebra B
of (M, τ) (so that B is isomorphic to Mn(C)). Then

EB(x) =
∑

1≤i,j≤n
nτ(xej,i)ei,j .

(4) Let G y (B, τ) be a trace preserving action and set M = B o G.
Let τ still denote the natural tracial state on M defined by

τ
(∑
g∈G

xgug
)

= τ(xe)

(see Section 5.2). Then EB
(∑

g∈G xgug
)

= xe. It follows that the Fourier

coefficient xg of x =
∑

g∈G xgug is given by xg = EB(xu∗g).

(5) Let R be a p.m.p. countable equivalence relation on (X,µ). We
keep the notation of Section 1.5.2. We have seen that the von Neumann
algebra L(R) may be identified with a subset of L2(R, ν). Its natural trace
τ is defined by

τ(F ) =

∫
X
F (x, x) dµ(x).

Recall that B = L∞(X,µ) embeds into L(R), as its diagonally supported
elements. For F ∈ L(R), we readily check that EB(F ) is the restriction of
F to the diagonal subset of R.

9.1.3. Extensions of conditional expectations to L1-spaces. Let
(M, τ) be a tracial von Neumann algebra and let B be a von Neumann
subalgebra. For b ∈ B and m ∈M , we have

|τ(bEB(m))| = |τ(bm)| ≤ ‖b‖∞‖m‖1,
whence ‖EB(m)‖1 ≤ ‖m‖1. It follows that EB extends to a norm-one projec-
tion from L1(M) onto L1(B), still denoted EB. Observe that τ(bEB(ξ)) =
τ(bξ) for every ξ ∈ L1(M) and b ∈ B.2

By definition, EB : M → B extends to the orthogonal projection eB :
L2(M)→ L2(B), that we also denote by EB, for consistency reasons.

Lemma 9.1.4. Let (M, τ) and B as above.

(i) The restriction of EB : L1(M)→ L1(B) to L2(M) is the projection
EB = eB : L2(M)→ L2(B);

2In other terms, when L1(M) and L1(B) are identified to M∗ and B∗ respectively
(see Theorem 7.4.5), then EB is the map sending a functional in M∗ to its restriction to
B.
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(ii) EB(Lp(M)+) = Lp(B)+ and so EB(ξ∗) = EB(ξ)∗ for ξ ∈ Lp(M),
p = 1, 2;

(iii) EB(bξ) = bEB(ξ), EB(ξb) = EB(ξ)b for b ∈ B and ξ ∈ Lp(M),
p = 1, 2;

(iv) EB(ηξ) = ηEB(ξ), EB(ξη) = EB(ξ)η for η ∈ L2(B) and ξ ∈
L2(M);

(v) Whenever D is a von Neumann subalgebra of B, we have ED =
ED ◦ EB.

Proof. We leave the straightforward proofs to the reader. �

9.1.4. Center-valued traces.

Definition 9.1.5. A center-valued trace on a von Neumann algebra M
is a conditional expectation E from M onto its center Z(M) such that
E(xy) = E(yx) for every x, y ∈M .

Proposition 9.1.6. Let (M, τ) be a tracial von Neumann algebra and
Z = Z(M) its center. Then EZ is a center-valued trace. It is normal and
faithful, and it is the only normal center-valued trace on M .

Proof. Given z ∈ Z, we have

τ(zEZ(xy)) = τ(zxy) = τ(xzy) = τ(zyx) = τ(zEZ(yx)),

whence EZ(xy) = EZ(yx).
Let E be a normal center-valued trace on M . Then τ◦E is a normal trace

on M which has the same restriction to Z as τ . It follows from Proposition
7.3.9 that τ = τ ◦ E and therefore E = EZ . �

Remark 9.1.7. More generally, any finite von Neumann algebra carries
a unique faithful center-valued trace. Moreover this center-valued trace is
normal (see [Tak02, Chapter V, Theorem 2.6]).

The following result generalizes the corollary 2.4.11.

Proposition 9.1.8. Let EZ be the normal center-valued trace on (M, τ).
Given two projections p, q in M , we have p - q if and only if EZ(p) ≤ EZ(q).

Proof. Assume that EZ(p) ≤ EZ(q) and that there exists a projection
z in Z such that qz ≺ pz. Since EZ is faithful, we have

EZ(q)z = EZ(qz) < EZ(pz) = EZ(p)z,

in contradiction with the fact that EZ(p) ≤ EZ(q). It follows that pz - qz
for every projection z ∈ Z, and the comparison theorem for projections
implies that p - q. �
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9.2. Center-valued tracial weights

A von Neumann algebra which carries a faithful normal center-valued
trace is finite since it has obviously sufficiently many normal traces in the
sense of Theorem 6.4.4. For semi-finite von Neumann algebras we may use,
instead, center-valued tracial weights, which generalize both center-valued
traces and tracial weights.

In this section and the following one, we only consider separable von
Neumann algebras acting on separable Hilbert spaces.

Let M be a (separable) von Neumann algebra. We identify its center Z
with L∞(X,µ) where (X,µ) is a standard probability measure space. We

denote by Ẑ+ the cone of measurable functions from X into [0,+∞], where
two functions which coincide almost everywhere are identified. This set has

an obvious order, which extends the natural order on L∞(X,µ)+ ⊂ Ẑ+. In

Ẑ+ every increasing net has a least upper bound.

Definition 9.2.1. A center-valued tracial weight on M+ is a map TrZ :

M+ → Ẑ+ such that

(a) TrZ(x+ y) = TrZ(x) + TrZ(y) for x, y ∈M+ ;
(b) TrZ(zx) = zTrZ(x) for z ∈ Z+ and x ∈M+ ;
(c) TrZ(x∗x) = TrZ(xx∗) for x ∈M .

It is called semi-finite if, in addition,

(d) for every non-zero x ∈ M+, there exists some non-zero y ∈ M+

with y ≤ x and TrZ(y) ∈ Z+.

If

(e) TrZ(supi xi) = supi TrZ(xi) for every bounded increasing net (xi)
in M+, we say that TrZ is normal.

The notion of faithful center-valued tracial weight is defined in the ob-
vious way. Whenever TrZ(1) ∈ Z (or equivalently TrZ(x) ∈ Z+ for every
x ∈M+), one says that TrZ is finite. In particular, if TrZ(1) = 1, then TrZ
extends uniquely to a center-valued trace on M .

It is easily seen that a von Neumann algebra M which admits a normal,
faithful, semi-finite center-valued tracial weight is semi-finite. Conversely,
we have:

Theorem 9.2.2. Let M be a semi-finite von Neumann algebra and Z =
L∞(X,µ) be its center3.

(i) There exists a normal faithful semi-finite center-valued tracial weight
on M+.

(ii) Let TrZ,1 and TrZ,2 be two such center-valued tracial weights. There
exists a unique (up to null sets) Borel function f : X → (0,+∞)
such that TrZ,1 = f TrZ,2.

3The assertions to follow, which only involve properties up to null sets, do not depend
on this choice.
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Proof. (i) Let Tr be a normal faithful semi-finite tracial weight on M+.
For y ∈ M+, we denote by Try the map z → Tr(yz) from Z+ into [0,+∞].
We write Tr as a sum

∑
n ϕn of finite normal functionals (see Exercise 8.4).

The classical Radon-Nikodým theorem applied to z 7→ ϕn(zy) gives fn(y) ∈
L1(X,µ)+ such that ϕn(zy) =

∫
X fn(y)z dµ for every z ∈ L∞(X,µ). We set

Φ(y) =
∑

n fn(y). Then we have:

∀z ∈ Z+,Tr(zy) =

∫
X

Φ(y)z dµ.

It is a routine exercise to check that Φ is a normal faithful semi-finite center-
valued tracial weight on M+.

(ii) Set Tri(x) =
∫
X TrZ,i(x) dµ for x ∈ M+, i = 1, 2. Then f is the

Radon-Nikodým derivative of Tr1 with respect to Tr2 (see Exercise 9.6 for the
only case we will need, where one of the center-valued weights is finite)4. �

Example 9.2.3. Let (M, τ) be a tracial von Neumann algebra with
center Z and let EZ be its center-valued trace. We identify the center
Id`2(N) ⊗ Z of B(`2(N))⊗M with Z. For x ∈

(
B(`2(N))⊗M

)
+

, we set

(Tr⊗ EZ)([xi,j ]) =
∑
i∈N

EZ(xi,i) ∈ Ẑ+.

It is easily checked that Tr⊗EZ is a normal faithful semi-finite center-valued
tracial weight on

(
B(`2(N))⊗M

)
+

.

Given a faithful normal semi-finite tracial weight Tr on a separable semi-
finite von Neumann algebra M , we may have Tr(p) = Tr(q) despite the fact
that the projections p and q are not equivalent. In contrast, center-valued
tracial weights prove to be a useful tool in the classification of projections.
The next result generalizes Proposition 8.3.8.

Proposition 9.2.4. Let TrZ be a normal faithful semi-finite center-
valued tracial weight on a separable semi-finite von Neumann algebra M
and let p, q ∈ P(M). Then p - q if and only if TrZ(p) ≤ TrZ(q).

Proof. When one of the two functions TrZ(p) or TrZ(q) is finite almost
everywhere, the proof is similar to that of Proposition 9.1.8. We admit the
general case, that we do not really need in this monograph5. �

Proposition 9.2.5. We keep the notation of the previous proposition.
A projection p ∈M is finite if and only if TrZ(p) < +∞ almost everywhere.

Proof. Assume that TrZ(p) < +∞ almost everywhere and that p ∼
p1 ≤ p. Then TrZ(p − p1) = 0 and so p = p1. Conversely, assume that p
is finite. We identify the center pZ of pMp with qZ, where q is the central

support of p. The restriction of TrZ to (pMp)+ has its range into qẐ+ and

4We refer to [Dix81, Chapter III, §4]) for a complete proof.
5For the general case we refer the interested reader to [Dix81, Chapter III, §4, Exer-

cise 4] combined with [Dix81, Chapter III, §1, Exercise 15].
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is a center-valued normal faithful semi-finite tracial weight. Replacing M
by pMp, we may assume that p = 1. Let EZ be the center-valued trace
on the finite von Neumann algebra M . By Theorem 9.2.2 (ii) we have
TrZ = fEZ where f is finite almost everywhere, hence the conclusion since
f = TrZ(1). �

Corollary 9.2.6. Let p, q be two finite projections in a semi-finite von
Neumann algebra. Then p ∨ q is a finite projection.

9.3. Back to the study of finite modules

We have seen that the modules H over II1 factors are classified by their
dimension τ̂(1) where 1 = IdH and τ̂ is the canonical tracial weight on the
commutant of the representation. Here τ̂ is intrinsic.

In the general case of a tracial von Neumann algebra (M, τ), we must
replace the tracial weight τ̂ , which depends on the choice of τ , by a center-
valued tracial weight in order to get a complete invariant for M -modules.
Let Z = L∞(X,µ) be the center of M , where µ comes from the restriction
of τ to Z, and let EZ be the trace-preserving conditional expectation from
M onto Z. Given a right M -module H, let U : H → `2(N)⊗L2(M) be a M -
linear isometry. Then we define a normal, faithful, semi-finite center-valued

tracial weight ÊZ on B(HM )+ by the formula

ÊZ(x) = (Tr⊗ EZ)(UxU∗) ∈ Ẑ+.

We easily see, as in the proof of Proposition 8.4.2, that ÊZ does not

depend on the choice of U . Furthermore, ÊZ does not depend on τ since
EZ is intrinsic.

The same proof as that of Proposition 8.4.2 gives

ÊZ(TT ∗) = EZ(T ∗T ) (9.1)

for every bounded, right M -linear operator T : L2(M)→ H.
Note that, for x ∈ B(HM )+,

τ̂(x) =

∫
X
ÊZ(x) dµ. (9.2)

The function ÊZ(1) = (Tr⊗ EZ)(UU∗) = (Tr⊗ EZ)(p), where p is any
projection in B(`2(N) ⊗ L2(M)) such that H is isomorphic to p(`2(N) ⊗
L2(M)), should be considered as the “dimension” of the module H. It is
independent of τ and is a complete invariant (under our separability as-
sumptions): two projections p and q in B(`2(N)⊗ L2(M)) are equivalent if
and only if (Tr⊗ EZ)(p) = (Tr⊗ EZ)(q), by Proposition 9.2.4.

Remark 9.3.1. When M has no abelian projection then, for every z ∈
Ẑ+, there is a projection p ∈ B(`2(N))⊗M such that ÊZ(p) = z (see Exercise
9.5). In this case, right M -modules (up to isomorphism) are thus in bijective

correspondence with Ẑ+. When M is a II1 factor, this result applies with

Ẑ+ = [0,+∞].
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On the other hand, when M = L∞(X,µ), the element ÊZ(1) of Ẑ+

corresponding to the M -module H = ⊕k
(
`2k ⊗ L2(Xk, µ)

)
, where (Xk) is a

partition of X, is the multiplicity function n : X → [0,+∞] such that n(t) =
k for t ∈ Xk (which is thus a complete invariant, as already observed in
Theorem 8.1.1). In this case, the M -modules are in bijective correspondence

with the elements of Ẑ+ taking their values in N∪{∞} (see Theorem 8.1.1).

We now clarify the statement of Proposition 8.5.5, in term of the be-

haviour of the “dimension” ÊZ(1).

Proposition 9.3.2. Let H be a right M -module. We set Z = L∞(X,µ),

where µ is the probability measure defined by τ . Let d = ÊZ(1) ∈ Ẑ+.

(i) H is a finitely generated M -module if and only if d ∈ L∞(X,µ).
(ii) H is a finite right M -module if and only if

∫
X d(t) dµ(t) < +∞

(i.e., d ∈ L1(X,µ)).
(iii) The commutant B(HM ) of the right representation is finite if and

only if d < +∞ a.e.

Proof. (i) Obviously, d is bounded whenever H is finitely generated.
Conversely, assume that d ≤ n. For simplicity we consider the case n = 1.
By Proposition 8.2.2, we may take H = ⊕kpkL2(M) with pk ∈ P(M) for all
k and we have

∑
k EZ(pk) = d ≤ 1. Using Proposition 9.1.8, we see that we

may choose the projections pk to be mutually orthogonal in M . Then the
right module H is isomorphic to qL2(M), where q =

∑
k pk, and is therefore

generated by q̂.
(ii) is obvious since (Tr⊗ τ)(p) =

∫
X d(t) dµ(t) and (iii) is a consequence

of Proposition 9.2.5. �

Observe that only the property stated in (ii) depends on the choice of τ .
A finitely generated M -module is finite. The converse is not too far from

being true.

Corollary 9.3.3. Let H be a finite right M -module. There is an in-
creasing sequence (zn) of projections in Z such that limn zn = 1 in the
s.o. topology and such that Hzn is a finitely generated right M -module for
every n.

Proof. Take d as in the previous proposition and let zn by the charac-
teristic function of {t ∈ X : d(t) ≤ n}. Since znd is bounded, the M -module
Hzn is a finitely generated. Moreover, limn zn = 1 in the s.o. topology
because d is µ-integrable (in fact, d < +∞ a.e. would be enough). �

9.4. Jones’ basic construction

In this section, we are given a tracial von Neumann algebra (M, τ) in
standard form, i.e., M ⊂ B(L2(M)), and a von Neumann subalgebra B.
Then L2(M) has an obvious structure of right B-module, which will be our
object of study.
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9.4.1. Definition and first properties.

Definition 9.4.1. Let (M, τ) be a tracial von Neumann algebra and
let B be a von Neumann subalgebra. The von Neumann algebra 〈M, eB〉
generated by M and the projection eB in B(L2(M)) is called the extension
of M by B, or the von Neumann algebra of the (Jones’) basic construction
for B ⊂M .

We give below a list of some fundamental properties of this basic con-
struction. Recall that J is the canonical conjugation operator on L2(M).
Assertion (4) states that 〈M, eB〉 is the commutant B(L2(M)B) of the right
B-action.

Proposition 9.4.2. Let B ⊂M be as above. Then

(1) eBxeB = EB(x)eB for every x ∈M ;
(2) JeB = eBJ ;
(3) B = M ∩ {eB}′;
(4) 〈M, eB〉 = JB′J = (JBJ)′;
(5) the central support of eB in 〈M, eB〉 is 1;

(6) 〈M, eB〉 = span{xeBy : x, y ∈M}w.o;
(7) B 3 b 7→ beB is an isomorphism from B onto eB〈M, eB〉eB.

Proof. The proof of statements (1) to (4) is straightforward and left to
the reader. The central support of eB in 〈M, eB〉 is the orthogonal projec-

tion from L2(M) onto 〈M, eB〉 eBL2(M)
‖·‖2

which is obviously L2(M). So,
assertion (5) is immediate.

Using (1), it is easily seen that span{xeBy : x, y ∈M} is a ∗-subalge-
bra of 〈M, eB〉 and a two-sided ideal of the ∗-algebra generated by M ∪
{eB}. Thus, I = span{xeBy : x, y ∈M}w.o is a w.o. closed two-sided ideal
of 〈M, eB〉. Since I contains eB whose central support is 1, we get (6) (see
Proposition 2.4.15).

Finally, to prove (7), we observe that B 3 b 7→ beB is a normal homo-
morphism from B into eB〈M, eB〉eB by (3). It is injective since beB = 0

implies 0 = beB 1̂ = b̂. Moreover, for x, y ∈ M , we have eB(xeBy)eB =
EB(x)EB(y)eB, so the surjectivity is a consequence of (6). �

Since 〈M, eB〉 is the commutant of the right action of B, it is a semi-
finite von Neumann algebra equipped with its canonical normal semi-finite

faithful center-valued tracial weight ÊZ and its tracial weight τ̂ , where Z
is here the center of B and where the restriction to B of the trace on M
is still denoted by τ . Let us make explicit these objects. Given x ∈ M ,
denote by Lx : L2(B) → L2(M) the right B-linear bounded operator such

that Lx(b̂) = x̂b for b ∈ B. We have (Lx)∗(m̂) = eB(x∗m̂) for m ∈ M and
thus

∀x, y ∈M, LxL
∗
y = xeBy

∗, L∗yLx = EMB (y∗x).
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It follows from the equality (8.2) that

τ̂(xeBy) = τ(xy) (9.3)

whenever x, y ∈ M . By item (6) of the previous proposition, this characte-
rizes τ̂ .

Similarly, using the equality (9.1), where now, as already said, Z is the
center of B (assumed to be separable), we get

ÊZ(xeBy) = EBZ ◦ EMB (xy) = EMZ (xy), (9.4)

since EBZ ◦ EMB = EMZ .
We now translate the results of Sections 8.5 and 8.6 in the setting of

the right B-module L2(M)B. The elements of M̂ are left B-bounded but
the space (L2(M)B)0 of left B-bounded vectors can be strictly larger. Let
ξ ∈ (L2(M)B)0 and denote by Lξ : L2(B) → L2(M) the corresponding
operator. Then we have, for η ∈ L2(M),

L∗ξ(η) = EB(ξ∗η). (9.5)

Indeed, for b ∈ B, we have〈
L∗ξ(η), b̂

〉
L2(B)

= 〈η, ξb〉L2(M) = 〈η, Jb∗Jξ〉L2(M) = 〈b∗Jξ, Jη〉L2(M)

= 〈ξ∗, bη∗〉L2(M) = τ(ξbη∗) = τ(η∗ξb) = τ(EB(η∗ξ)b).

It follows that for ξ, η ∈ (L2(M)B)0,

〈ξ, η〉B = L∗ξLη = EB(ξ∗η) ∈ B, (9.6)

LηL
∗
ξ = η ◦ eB ◦ ξ∗, (9.7)

where η ◦ eB ◦ ξ∗ ∈ 〈M, eB〉 is the bounded operator on L2(M) such that
η ◦ eB ◦ ξ∗(m̂) = ηEB(ξ∗m) for every m ∈M .

As said in Remark 8.4.14, the operators LηL
∗
ξ may be viewed as “finite

rank” operators, and therefore the elements of the norm closure I0(〈M, eB〉)
of the vector space they generate are “compact” operators. We will come
back to this subject in Section 16.3.

Proposition 9.4.3. The space I0(〈M, eB〉) defined above is the norm-
closed ideal of 〈M, eB〉 generated by eB.

Proof. Observe first that I0(〈M, eB〉) is a norm-closed ideal which con-
tains eB = L1L

∗
1. On the other hand, LξL

∗
η = (LξeB)eB(LηeB)∗ sits in the

ideal generated by eB, since LξeB and LηeB belong to 〈M, eB〉. This con-
cludes the proof. �

Proposition 9.4.4. Let (M, τ) and B as above and let (ξi) be an or-
thonormal basis of L2(M)B.

(i) We have dim(L2(M)B) = τ̂(1) =
∑

i ‖ξi‖
2
L2(M) =

∑
i ‖ξiξ∗i ‖L1(M).
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(ii) We have dim(L2(M)B) < +∞ if and only if the series
∑

i ξiξ
∗
i is

convergent in L1(M). Then
∑

i ξiξ
∗
i is the Radon-Nikodým deriv-

ative of τ̂|M with respect to τ and so is affiliated to the center of
M .

Proof. (i) is Formula (8.6).
(ii) Assume that the series

∑
i ξiξ

∗
i is convergent in L1(M). By Propo-

sition 8.4.15 we have, for m ∈M+,

τ̂(m) =
∑
i

〈ξi,mξi〉L2(M) =
∑
i

τ(mξiξ
∗
i ) = τ(m(

∑
i

ξiξ
∗
i )).

It follows that τ̂ is finite and that
∑

i ξiξ
∗
i is the Radon-Nikodým derivative

of τ̂|M with respect to τ . This operator is affiliated to the center of M since
τ̂ is tracial. �

9.4.2. Case where M is a II1 factor.

Proposition 9.4.5. Let M be a II1 factor and B ⊂M a von Neumann
subalgebra such that dim(L2(M)B) < +∞. For every x ∈ 〈M, eB〉 there
exists a unique m ∈M such that xeB = meB.

Proof. Our assumption is that τ̂ is a normal faithful finite trace on
〈M, eB〉. We set d = τ̂(1). Then τ̂|M = dτ . Let EM be the unique conditional
expectation from 〈M, eB〉 onto M such that τ̂ ◦ EM = τ̂ . For m ∈ M , we
have

dτ(mEM (eB)) = τ̂(meB) = τ(m),

whence dEM (eB) = 1.
If xeB = meB with m ∈ M , we get m = dEM (xeB), hence the unique-

ness ofm. Let us prove its existence. We first consider the case x = m1eBm2,
with m1,m2 ∈M . Then, we have

m1eBm2eB = m1EB(m2)eB

which proves our assertion in this case. The conclusion for any x follows from
(6) in Proposition 9.4.2 and the continuity property of EM with respect to
the w.o. topology. �

Corollary 9.4.6. Let M be a II1 factor and B ⊂ M a von Neumann
subalgebra such that dim(L2(M)B) < +∞. The set of left B-bounded vectors

in L2(M)B coincides with M̂ .

Proof. Let ξ be a left B-bounded vector. Then LξeB belongs to
〈M, eB〉, and by the previous proposition, there exists m ∈ M such that
LξeB = meB. It follows that ξ = LξeB(1̂) = meB(1̂) = m̂. �

This fact non longer holds in general (see Exercise 9.11).
As a consequence of the corollary, we see in the next proposition, that

whenever M is a factor with dim(L2(M)B) < +∞, the elements ξi of Propo-

sition 9.4.4 are in M̂ .
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Proposition 9.4.7. Let M be a II1 factor and B ⊂M a von Neumann
subalgebra. Then d = dim(L2(M)B) < +∞ if and only if there exists a
family (mi) in M such that

(i) EB(m∗imj) = δi,jpj ∈ P(B) for all i, j;
(ii)

∑
imieBm

∗
i = 1 (convergence in the w.o. topology);

(iii)
∑

imim
∗
i converges in L1(M).

Whenever these conditions hold, we have
∑

imim
∗
i = d1. In particular,

the convergence of this series also holds in the w.o. topology. Moreover,
L2(M)B = ⊕im̂iB (orthogonal Hilbert sum).

Proof. Assume the existence of a family (mi) ∈M satisfying conditions
(i), (ii) and (iii) of the above statement. It is an orthonormal basis. In
particular, since the projections mieBm

∗
i are mutually orthogonal with range

m̂iB, we have L2(M)B = ⊕im̂iB.
By Proposition 9.4.4, we get that

∑
imim

∗
i is a scalar operator d 1 with

dim(L2(MB)) = d < +∞. But then, d 1 is the least upper bound in M of
the family of finite partial sums of the series, whence the convergence in the
w.o. topology.

Conversely, assume that dim(L2(MB)) = d < +∞. Then the “only if”
part follows from Proposition 9.4.4 and Corollary 9.4.6. �

Proposition 9.4.8. Let M be a II1 factor and B ⊂M a von Neumann
subalgebra. Then L2(M)B is finitely generated if and only if there exists
m1, . . . ,mn ∈M such that

(i) EB(m∗imj) = δi,jpj ∈ P(B)for all i, j;
(ii)

∑
1≤i≤nmieBm

∗
i = 1.

Whenever these conditions hold, we have
∑

1≤i≤nmim
∗
i = dim(L2(M)B)1

and x =
∑

1≤i≤nmiEB(m∗ix) for every x ∈M .

Proof. Assume that L2(M)B is a finitely generated B-module. By
Proposition 8.5.3, we know that it has a finite orthonormal basis. We con-
clude thanks to Corollary 9.4.6. The converse is obvious.

If these conditions hold, recall from Remark 8.4.12 that every x ∈ M
has a unique expression of the form x =

∑n
i=1mibi with bi ∈ piB, and that

bi = 〈mi, x〉B = EB(m∗ix). �

The family (mi)1≤i≤n is called a Pimsner-Popa basis.

Definition 9.4.9. In case B is a subfactor of a separable II1 factor M ,
the Jones’ index6 of B in M is the number

[M : B] = dim(L2(M)B).

It is finite if and only if 〈M, eB〉 is a II1 factor and also if and only if L2(M)B
is finitely generated (see Proposition 8.6.1). We set

I(M) = {[M : B] : B ⊂M, subfactor of finite index}.
6For an explanation of the terminology, see Exercise 9.13.
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Remark 9.4.10. We observe that since L2(B) ⊂ L2(M), we have [M :
B] ≥ 1 and [M : B] = 1 if and only if M = B. It is also easy to see that{
n2 : n ≥ 1, n ∈ N

}
⊂ I(M) (see Exercise 9.14). A remarkable result is that

I(M) ⊂
{

4 cos(π/n)2 : n ∈ N, n ≥ 3
}
∪ [4,+∞[= I(R), (9.8)

where R is, as always, the hyperfinite II1 factor.

9.4.3. An example. Let σ : G y (B, τ) be a trace preserving action
of a countable group G and let M = BoG be the corresponding crossed pro-
duct. We keep the notation of Section 5.2. We observe that M is in standard
form on H = L2(B) ⊗ `2(G), which is therefore also written L2(M). This
was noticed in Section 7.1.3 whenever B is commutative, and the general
case is dealt with similarly.

We want to describe the extension 〈M, eB〉. Recall that the canonical

unitary ug ∈ M is identified with 1̂ ⊗ δg and that we write ξug for ξ ⊗ δg.
Now, we note that

ξug = ξ ⊗ δg = (ξ ⊗ δe)ug = ug(σg−1ξ ⊗ δe).

This allows us to write L2(M) as the Hilbert direct sum
∑

g∈G L
2(B)ug, as

we did until now, but also as
∑

g∈G ugL
2(B). The latter decomposition is

more convenient to study the structure of right B-module of L2(M). Indeed,
(ug)g∈G is an orthonormal basis of the B-module L2(M)B. The right action
of B is diagonal and so, clearly B⊗B(`2(G)) is the commutant 〈M, eB〉 of B
acting to the right on L2(M). Furthermore, eB is the matrix y with entries
equal to 0 except ye,e = 1B. It is also easy to check that the canonical trace
on 〈M, eB〉 is τ ⊗ Tr, where Tr is the usual trace on B(`2(G))+.

Note also that since (ug)g∈G is an orthonormal basis of L2(M)B, we get
that dim(L2(M)B) is the cardinal of G.

Exercises

Exercise 9.1. Let (M, τ) be a tracial von Neumann algebra. Given
x ∈M+, consider the linear positive functional ϕ : b 7→ τ(bx) defined on B.
Show that EB(x) is the Radon-Nikodým derivative of ϕ with respect to the
restriction of τ to B.

Exercise 9.2. Let (M, τ) be a tracial von Neumann algebra. Given
x ∈M , we denote by Cx the ‖·‖2-closed convex hull of {uxu∗ : u ∈ U(M)}.
Show that Cx ∩ Z = {EZ(x)}.

Exercise 9.3. Let (M, τ) be a tracial von Neumann algebra with center
Z and let p be a projection in M . Show that whenever EZ(p) is a projection
we have p = pEZ(p) = EZ(p) and conclude that EZ(p) is a projection if and
only if p ∈ Z.
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Exercise 9.4. Let (M, τ) be a tracial von Neumann algebra, A a von
Neumann subalgebra of M and p a projection in M . Show that the set
of projections q in A such that q - p has a maximal element (Hint: use
Proposition 9.1.8).

Exercise 9.5. Let (M, τ) be a separable tracial von Neumann algebra
with center Z. We assume that M does not have abelian projections. Show

that for every z ∈ Ẑ+ there is a projection p ∈ B(`2(N))⊗M such that
(Tr⊗ EZ)(p) = z (use [Dix81, Chapter III, §4, Exercise 1]).

Exercise 9.6. Let M be a separable tracial von Neumann algebra and
Z = L∞(X,µ) its center. Let EZ be its center-valued trace and let TrZ
be a normal faithful semi-finite tracial weight on M . For x ∈ M+ we set
Tr(x) =

∫
X TrZ(x) dµ(x) and τ(x) =

∫
X EZ(x) dµ(x) = τµ ◦ EZ(x).

(i) Show that Tr is a normal faithful semi-finite trace on M+.
(ii) Let (pn) be an increasing sequence of projections in M with

∨
pn =

1 and Tr(pn) < +∞ for every n. Let qn ∈ P(Z) be the central
support of pn. Show the existence of fn ∈ L1(X,µ)+ with (1 −
qn)fn = 0 such that

Tr(pnxpn) =

∫
X
fnEZ(pnxpn) dµ

for every x ∈M+.
(iii) Deduce the existence of a mesurable function f : X → [0,+∞] such

that, for x ∈M+,

Tr(x) =

∫
X
fEZ(x) dµ.

(iv) Show that TrZ(x) = fEZ(x) and that 0 < f < +∞ almost every-
where.

Exercise 9.7. Let H be a right module on a separable tracial von Neu-
mann algebra (M, τ). We denote by I0(B(HM )) the norm closure of the
ideal F(HM ) (defined in Lemma 8.4.1) into B(HM ). We set Z = Z(M) =
L∞(X,µ). Let p be a projection in B(HM ).

(i) Show that p is finite if and only if ÊZ(p) < +∞ almost everywhere.

(ii) Show that τ̂(p) < +∞ if and only if ÊZ(p) ∈ L1(X,µ).

(iii) Show that p ∈ I0(B(HM )) if and only if ÊZ(p) ∈ Z.

Exercise 9.8 (Compact operators). Let (M,Tr) be a von Neumann
algebra equipped with a faithful normal semi-finite trace. Let I(M) (resp.
J (M)) be the norm-closed two-sided ideal of M generated by the finite
projections (resp. the projections p with Tr(p) < +∞) of M .

(i) Let p ∈ P(M). Show that p ∈ I(M) (resp. J (M)) if and only if p
is finite (resp. Tr(p) < +∞).
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(ii) Show that x ∈M belongs to I(M) (resp. J (M)) if and only if the
spectral projections es of |x| relative to [s,+∞[, s > 0, are finite
(resp. such that Tr(es) < +∞).

Exercise 9.9 (Compact operators). We keep the notation of Exercise
9.7. Let I(B(HM )) (resp. J (B(HM ))) be the norm-closed two-sided ideal
of B(HM )) generated by the finite projections (resp. the projections p with
τ̂(p) < +∞) of B(HM ).

(i) Show that x ∈ B(HM ) belongs to I0(B(HM )) if and only if the
spectral projections es of |x| relative to [s,+∞[, s > 0, are in
I0(B(HM )).

(ii) Show that I0(B(HM )) ⊂ J (B(HM )) ⊂ I(B(HM )).

When M = C, these three ideals are the same, namely the usual ideal of
compact operators.

When B is a von Neumann subalgebra of a tracial von Neumann algebra
(M, τ) then I0(B(L2(M)B) = 〈M, eB〉 (Proposition 9.4.3). Therefore, we
have 〈M, eB〉 ⊂ J (B(L2(M)B)) ⊂ I(B(L2(M)B)).

Exercise 9.10. Let (ξi) be an orthonormal basis of a right M -module H
and let ÊZ be the canonical center-valued tracial weight on B(HM ). Show

that ÊZ(1) =
∑

iEZ(L∗ξiLξi).

Exercise 9.11. Let Y = {n ∈ N : n ≥ 1} and X = Y × {0, 1}. We
endow X with the probability measure ν such that ν({n, 1}) = (1/n)2−n

and ν({n, 0}) = (1 − 1/n)2−n and let µ be the image of ν under the first
projection.

(i) Show that the L∞(Y, µ)-module L2(X, ν) is finitely generated, and
compute its dimension.

(ii) Show the existence of L∞(Y, µ)-bounded vectors which are not in
L∞(X, ν).

Exercise 9.12. Let σ : G y (B, τ) be a trace preserving action of a
countable group G and set M = B oG. Let ξ =

∑
g∈G ugηg be an element

of L2(M) =
∑

g∈G ugL
2(B). Show that ξ is left B-bounded if and only

if ηg ∈ B for every g and
∑

g∈G η
∗
gηg converges in B with respect to the

s.o. topology.

Exercise 9.13. Let H be a subgroup of a countable group G. Show
that dim(`2(G)L(H)) = [G : H].

Exercise 9.14. Let M be a II1 factor. Recall (Proposition 4.2.5) that
for any integer n ≥ 1 there is a II1 factor N such that M is isomorphic to
N⊗Mn(C).

(i) Show that [N⊗Mn(C) : N ⊗ 1] = n2.
(ii) Conclude that

{
n2 : n ∈ N∗

}
⊂ I(M).
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Exercise 9.15. Let N ⊂ M be an inclusion of II1 factors and let H
be a finite right M -module. Show that dim(HN ) < +∞ if and only if
[M : N ] < +∞ and that in this case

dim(HN ) = [M : N ] dim(HM ).

Exercise 9.16. Let N ⊂ M be an inclusion of II1 factors with [M :
N ] < +∞ and let p be a non-zero projection in N ′ ∩M . Show that

[pMp : Np] = [M : N ]τM (p)τN ′(p)

where N ′ is the commutant of N acting on L2(M) and τM , τN ′ are the
normalized traces on M and N ′ respectively (Hint: use Exercises 9.15, 8.8
and 8.9).

Exercise 9.17. Let N ⊂M as in the previous exercise and let p1, . . . , pn
be pairwise orthogonal non-zero projections inN ′∩M such that

∑n
i=1 pi = 1.

Show that

[M : N ] =

n∑
i=1

τN ′(pi)
−1[piMpi : Npi],

and conclude that [M : N ] ≥ n2.

Exercise 9.18. Let M be a II1 factor and r be in the fundamental
group F(M) of M . Let t = t(r) be the unique element of ]0, 1[ such that
t(1 − t)−1 = r (so M t and M1−t are isomorphic) and let p ∈ P(M) with
τ(p) = t. We consider an isomorphism θ from pMp onto (1 − p)M(1 − p)
and we introduce the subfactor N = {x+ θ(x) : x ∈ pMp}. Show that

[M : N ] = 1/t+ 1/(1− t).

This defines an injective map from F(M)∩]0, 1] into I(M). Therefore
F(M) is countable whenever I(M) is countable.

Exercise 9.19. Let B be a subfactor of a II1 factor M , such that [M :
B] = d < +∞. Let n be the integer part of d. Show that there exists an
orthonormal basis m1, . . . ,mn+1 of L2(M)B such that EB(m∗imi) = 1 for
i ≤ n and EB(m∗n+1mn+1) is a projection with trace d− n.

Notes
Conditional expectations in tracial von Neumann algebras were intro-

duced in [Ume54] as non-commutative extensions of the usual notion in
probability theory. A related notion was studied in [Dix53]. Center-valued
traces and tracial weights have been investigated in [Dix49, Dix52].

The basic construction appears in [Ska77, Chr79]. Given a subfactor
B of a II1 factor M , Jones [Jon83b] made the crucial observation that the
index of B in M is the same as the index of M in 〈M, eB〉. His deep analysis
of this fact allowed him to prove his celebrated result (9.8), stated in Remark
9.4.10, on the restriction of the possible values of the index. This is quite
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suprising, compared with the continuum of possible values (i.e., ]0,+∞]) of
dimensions for general B-modules.

The result stating that the index of B in M is finite if and only if M
is a finitely generated projective module on B is due to Pimsner and Popa
[PP86], as well as the computation of the index from any basis of this
module.
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CHAPTER 10

Amenable von Neumann algebras

The most tractable groups are certainly the so-called amenable ones.
We briefly recall their definition and give, for a group G, a condition on its
von Neumann algebra L(G) equivalent to the amenability of G. This is the
starting point for the definition, in full generality, of an amenable tracial
von Neumann algebra. We give several equivalent characterisations of this
notion, analogous to well-known equivalent definitions of amenability for a
group: existence of a hypertrace and a Følner type condition, in particular.
The main results are Theorems 10.2.9 and 10.3.1.

10.1. Amenable groups and their von Neumann algebras

10.1.1. Amenable groups. Recall that a group G is amenable if there
exists a left invariant mean m on G, that is a state m on `∞(G) such that
m(sf) = m(f) for every s ∈ G and f ∈ `∞(G), where (sf)(t) = f(s−1t) for
all t ∈ G.

Examples 10.1.1. (1) Every finite group G is amenable. Indeed, the
uniform probability measure m on G (i.e., the Haar measure) is an invariant
mean.

(2) Let G be a locally finite group, that is, be the union G = ∪nGn of
an increasing sequence of finite subgroups Gn. Then G is amenable. To
construct a left invariant mean on G we start with the sequence (mn) of
Haar measures on the subgroups and we take an appropriate limit of the
sequence. To this end, we fix a free ultrafilter ω. Recall that, for any
bounded sequence (cn) of complex numbers, limω cn is defined as the value
at ω ∈ βN \ N of this sequence, viewed as a continuous function on the
Stone-Čech compactification βN of N. Given f ∈ `∞(G), we set

m(f) = lim
ω
mn(f |Gn).

It is easily checked that m is an invariant mean on G.
A basic example is the group S∞ of all finite permutations of N.
(3) The simplest example of non-amenable group is the free group F2

with two generators a and b. Indeed, for x ∈
{
a, b, a−1, b−1

}
let us denote by

Ex the set of reduced words beginning by the letter x. We have F2 = {e} ∪
Ea ∪Eb ∪Ea−1 ∪Eb−1 , together with F2 = Ea ∪ aEa−1 and F2 = Eb ∪ bEb−1 .
This makes impossible the existence of a left invariant mean.

159
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A remarkable fact is that amenability admits many equivalent charac-
terisations. We recall below several of them1.

Proposition 10.1.2. Let G be a group. The following conditions are
equivalent:

(i) G is amenable;
(ii) there exists a net (ξi) of unit vectors in `2(G) such that, for every

g ∈ G,

lim
i
‖λG(g)ξi − ξi‖2 = 0;

(iii) there exists a net of finitely supported positive definite functions on
G which converges pointwise to 1;

(iv) there exists a net (Ei) of finite, non-empty, subsets of G such that,
for every g ∈ G,

lim
i

|gEi∆Ei|
|Ei|

= 0.

Condition (ii) means that the left regular representation λG of G almost
has invariant vectors in the sense of Definition 13.3.4, or in other terms,
that the trivial representation ιG of G is weakly contained in the left regular
representation λG (see Proposition 13.3.5). The notion of positive definite
function on a group is recalled in Section 13.1.3. A net satisfying Condition
(iv) is called a Følner net. This condition means that in (ii) we may take

for ξi the normalized characteristic function |Ei|1/21Ei .

10.1.2. The von Neumann algebra of an amenable group.

Proposition 10.1.3. Let G be a group and M = L(G). Then G is
amenable if and only if there exists a conditional expectation E from B(L2(M))
onto M .

Proof. As always, the us, s ∈ G, are the canonical unitaries of L(G).
Assume first the existence of E. Given f ∈ `∞(G), we denote by Mf the
multiplication operator by f on `2(G). We set m(f) = τ(E(Mf )), where τ
is the canonical trace on M . Since usMfu

∗
s = Msf for every s ∈ G, we see

that the state m is left invariant.
Conversely, assume that G is amenable, and let m be a left invariant

mean on `∞(G). Given ξ, η ∈ `2(G), and T ∈ B(L2(M)), we introduce the
function defined by

fTξ,η(s) =
〈
ξ, ρ(s)Tρ(s−1)η

〉
where ρ is the right regular representation of G. Obviously, fTξ,η is a bounded
function on G with

|fTξ,η(s)| ≤ ‖T‖‖ξ‖‖η‖.

1For details, see for instance [BdlHV08, Appendix G]. Of course, when G is coun-
table, nets can be replaced by sequences.
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We define a continuous sesquilinear functional on `2(G) by the formula

(ξ, η) = m(fTξ,η).

It follows that there is a unique operator, denoted by E(T ), with

〈ξ, E(T )η〉 = m(fTξ,η)

for every ξ, η ∈ `2(G).
The invariance property of m implies that ρ(s)E(T )ρ(s−1) = E(T ) for

all s ∈ G. Therefore, E(T ) commutes with ρ(G), whence E(T ) ∈ L(G). It
is easily checked that E is a conditional expectation. �

10.2. Amenable von Neumann algebras

The previous proposition motivates the next definition.

Definition 10.2.1. We say that a von Neumann M is amenable, or
injective, if it has a concrete representation as a von Neumann subalgebra of
some B(H) such that there exists a conditional expectation2 E : B(H)→M .

Injectivity is a more usual terminology. This is justified by the following
proposition which also shows that the definition is independent of the choice
of H. For basic facts related to the notion of completely positive map used
below see Section A.3 in the appendix.

Proposition 10.2.2. Let M be a von Neumann algebra. The following
conditions are equivalent:

(i) M is injective;
(ii) for every inclusion A ⊂ B of unital C∗-algebras, every unital com-

pletely positive map φ : A → M extends to a completely positive
map from B to M ;

(iii) for any B(H) which contains M as a von Neumann subalgebra,
there is a conditional expectation from B(H) onto M .

Proof. (i) ⇒ (ii). Assume that M is a von Neumann subalgebra of
B(H) and that there exists a conditional expectation E : B(H) → M . We

extend φ to a completely positive map φ̃ : B → B(H), using Arveson’s exten-
sion theorem, which says that B(H) is an injective object in the category of
C∗-algebras with completely positive maps as morphisms (see Theorem A.5

in the appendix). Then E ◦ φ̃ : B → M is a completely positive extension
of φ.

(ii) ⇒ (iii). Let M ⊂ B(H). We apply (ii) with A = M , B = B(H)
and the identity map IdM . Then there exists a completely positive map
φ : B(H)→M whose restriction to M is IdM . Such a map is automatically
a conditional expectation (see Theorem A.4).

(iii) ⇒ (i) is obvious. �

2or equivalently a norm-one projection, by Theorem A.4
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We will rather use the name amenable for such von Neumann algebras to
emphasize the analogy with amenability for groups. Indeed, by the previous
section, a group G is amenable if and only if its von Neumann algebra L(G)
is amenable.

Remarks 10.2.3. (a) As a consequence of Propositions 10.1.3 and 10.2.2,
if G is a non-amenable ICC group, for instance G = Fn, n ≥ 2, the II1 factor
L(G) is not isomorphic to the II1 factor L(S∞).

(b) Let G y (X,µ) be a p.m.p. action. Then the crossed product
L∞(X,µ)oG is amenable if and only if the group G is amenable (Exercice
10.6).

10.2.1. Example: the hyperfinite II1 factor.

Theorem 10.2.4. The hyperfinite factor R is amenable.

Proof. By definition, R = ∪n≥1Qn
s.o

, with Qn = M2n(C). Let J be
the conjugation operator in L2(R). For n ≥ 1 and T ∈ B(L2(R)) we set

En(T ) = J(

∫
U2n

uJTJu∗ du)J,

where du is the Haar probability measure on the (compact) group U2n of
unitary 2n × 2n matrices. Then (En(T ))n is a norm bounded sequence of
operators in B(L2(R)). Note that whenever T ∈ R, this sequence is constant,
with value T .

We will construct a conditional expectation E : B(L2(R))→ R by taking
the limit of the sequence of maps En along a free ultrafilter ω. Using the
Riesz representation theorem, we check that there exists a unique bounded
operator, that we denote by E(T ), such that

〈ξ, E(T )η〉 = lim
ω
〈ξ, En(T )η〉, ∀ξ, η ∈ L2(R).

Since En(T ) ∈ JQ′n0
J for n ≥ n0, we see that

E(T ) ∈ ∩n0≥1JQ
′
n0
J = R.

We have E(T ) = T if T ∈ R. It is also obvious that E(T ) ≥ 0 if T ∈
B(L2(R))+ and that E(xT ) = xE(T ), E(Tx) = E(T )x for x ∈ R and
T ∈ B(L2(R)). �

As for groups, amenability of von Neumann algebras can be defined in
many equivalent ways. This is the matter of the rest of this chapter and we
will come back to this subject in Section 13.4.

10.2.2. Hypertraces. Let (M, τ) be a tracial von Neumann algebra.
A state ψ on B(L2(M)) is called a hypertrace (for (M, τ)) if ψ(xT ) = ψ(Tx)
for every x ∈ M and T ∈ B(L2(M)) and ψ|M = τ . Note that this latter
condition is automatic when M is a II1 factor. A hypertrace can be viewed
as the analogue of an invariant mean on an amenable group.
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Proposition 10.2.5. Let (M, τ) be a tracial von Neumann algebra.
Then M is amenable if and only if it has a hypertrace.

Proof. If E : B(L2(M))→M is a conditional expectation, then τ ◦ E
is a hypertrace.

Conversely, suppose that ψ is a hypertrace. Given T ∈ B(L2(M))+, we
define a positive linear functional ϕ on M by ϕ(x) = ψ(Tx). For x ∈ M+,
we have

|ϕ(x)|2 =
∣∣∣ψ(x1/2Tx1/2)

∣∣∣2 ≤ ψ(x1/2T 2x1/2)ψ(x)

≤ ‖T‖2ψ(x)2.

Since ψ|M = τ , we get ϕ(x) ≤ ‖T‖τ(x) for x ∈ M+. In particular, ϕ is
normal. Using the Radon-Nikodým theorem 7.3.6, we see that there is an
element E(T ) ∈M+ such that, for every x ∈M ,

ψ(Tx) = τ(E(T )x).

Then, it is easily seen that E extends to a conditional expectation from
B(L2(M)) onto M . �

10.2.3. Another characterisation. We will prove in Theorem 10.2.9
the analogue for von Neumann algebras of the property (ii) in Proposition
10.1.2. This will be made more specific later in Section 13.4.

In order to establish this new characterisation of amenability, we need
two preliminary results.

Let H be a Hilbert space. Recall that the predual of B(H) is isometric
to the Banach space S1(H) of trace-class operators: each T ∈ S1(H) is
identified to the linear functional ϕT : x ∈ B(H) 7→ Tr(Tx) where Tr is the
usual trace on B(H). We denote by S(B(H)) the state space of B(H), i.e.,

S(B(H)) = {ϕ ∈ B(H)∗ : ϕ ≥ 0, ϕ(1) = 1}.

We will often write B instead of B(H) for simplicity.

Lemma 10.2.6. We denote by K0 the set of ϕT where T runs over the
convex set of positive finite rank operators on H with Tr(T ) = 1. Then K0 is
contained in S(B(H)) and is dense in S(B(H)) in the weak* topology (i.e.,
the σ(B∗,B) topology).

Proof. The closure K0 of K0 in the σ(B∗,B)-topology is a σ(B∗,B)-
compact convex subset of S(B). Assume that there is an element ϕ ∈ S(B)
which does not belong to K0. By the Hahn-Banach separation theorem,
there is an α > 0 and a σ(B∗,B)-continuous linear functional on B∗, that
is an element x ∈ B, with <〈x, ϕ〉 > α and <〈x, ψ〉 ≤ α for all ψ ∈ K0.
Replacing x by its real part, we may assume that x = x∗. Hence, we have
ϕ(x) > α and Tr(xT ) ≤ α for every positive finite rank operator T on H
such that Tr(T ) = 1.
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Taking T to be the rank one projection η 7→ 〈ξ, η〉ξ where ξ is a norm-one
vector in H, we get

∀ξ ∈ H, ‖ξ‖ = 1, 〈ξ, xξ〉 ≤ α,
and therefore x ≤ α IdH, so that

ϕ(x) ≤ αϕ(IdH) = α,

which is a contradiction. �

The second result we need it the original Powers-Størmer inequality.
Given a Hilbert-Schmidt operator T , we write ‖T‖2,Tr = Tr(T ∗T )1/2 its
Hilbert-Schmidt norm.

Theorem 10.2.7. Let T, S be positive finite rank operators in B(H).
Then

‖T − S‖22,Tr ≤
∥∥Tr(T 2 ·)− Tr(S2 ·)

∥∥ =
∥∥ϕ

T2 − ϕS2

∥∥.
The proof is similar that of Theorem 7.3.7. At the same time, we also

record here the following more general inequality, that we will be useful in
the next chapter3.

Theorem 10.2.8 (Powers-Størmer inequality). Let (M,Tr) be a
semi-finite von Neumann algebra equiped with a normal faithful semi-finite
trace. Let x, y be two elements of M+ with Tr(x2) < +∞ and Tr(y2) < +∞.
Then we have

‖x− y‖22,Tr ≤
∥∥Tr(x2 ·)− Tr(y2 ·)

∥∥.
The theorem below uses two main ingredients in order to show its condi-

tion (2) assuming the existence of a hypertrace: the above Powers-Størmer
inequality and a convexity argument due to Day in the framework of groups.

Theorem 10.2.9. Let (M, τ) be a tracial von Neumann algebra. The
following conditions are equivalent:

(1) M is amenable;
(2) for every ε > 0 and every finite set F of unitaries in M there exists

a positive finite rank operator T on L2(M) with ‖T‖2,Tr = 1 such
that

max
u∈F
‖uT − Tu‖2,Tr ≤ ε and (10.1)

sup
x∈M,‖x‖≤1

∣∣Tr(xT 2)− τ(x)
∣∣ ≤ ε; (10.2)

(3) for every ε > 0 and every finite set F of unitaries in M there exists
a Hilbert-Schmidt operator T on L2(M) with ‖T‖2,Tr = 1, which

satisfies (10.1) and

max
u∈F
|Tr(T ∗uT )− τ(u)| ≤ ε.

3Both Theorems 7.3.7 and 10.2.8 are particular cases of [Haa75, Lemma 2.10].
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Proof. We still set B = B(L2(M)).
(1) ⇒ (2). Let ψ be a hypertrace and consider ε > 0 and a finite set

F = {u1, . . . , un} of unitaries in M . We identify the dual of (B∗)n ×M∗
with Bn ×M by

〈(ϕ1, . . . , ϕn+1), (T1, . . . , Tn+1)〉 =

n+1∑
i=1

ϕi(Ti).

We set

C =
{(

(u1ϕu
∗
1 − ϕ), . . . , (unϕu

∗
n − ϕ), (ϕ|M − τ)

)
: ϕ ∈ K0

}
,

where (uϕu∗)(x) = ϕ(u∗xu) and K0 is as in Lemma 10.2.6. Using this
lemma, we see that there is a net (ϕi) of elements in K0 such that limϕi = ψ
in the σ(B∗,B)-topology. But then, for every u ∈ U(M) we have

lim
i
uϕiu

∗ = uψu∗ = ψ = lim
i
ϕi.

It follows that (0, . . . , 0) is in the σ((B∗)n ×M∗,Bn ×M) closure of C. The
crucial observation is that C is a convex subset of (B∗)n ×M∗ and so this
closure is the same as the norm closure. Hence, there is a positive finite
rank operator S on L2(M) with Tr(S) = 1 and

max
u∈F
‖uϕSu

∗ − ϕS‖ ≤ ε, ‖ϕS |M − τ‖ ≤ ε.

Now, we set T = S1/2. Since (uSu∗)1/2 = uTu∗, we get from the Powers-
Størmer inequality that for u ∈ F ,

‖uTu∗ − T‖22,Tr ≤ ‖ϕuSu∗ − ϕS‖ = ‖uϕSu
∗ − ϕS‖ ≤ ε.

(2) ⇒ (3) is obvious. Let us show that (3) ⇒ (1). Let (Ti) be a net of
Hilbert-Schmidt operators with ‖Ti‖2,Tr = 1, such that for every u ∈ U(M),
we have

lim
i
‖uTi − Tiu‖2,Tr = 0, lim

i
Tr(T ∗i uTi) = τ(u).

For i ∈ I, we introduce the normal state ϕi : x 7→ Tr(T ∗i xTi) on B. Let
ψ ∈ B∗ be a cluster point of the net (ϕi) in the weak* topology. Obviously,
τ is the restriction of ψ to M . Moreover, for u ∈ U(M) and x ∈ B, we have

ψ(uxu∗)− ψ(x) = lim
i

Tr(T ∗i uxu
∗Ti)− lim

i
Tr(T ∗i xTi) = 0

since, using the Cauchy-Schwarz inequality, we get

|Tr(T ∗i uxu
∗Ti)− Tr(T ∗i xTi)| = |〈u∗Tiu, xu∗Tiu〉Tr − 〈Ti, xTi〉Tr|

≤ 2‖x‖∞‖u
∗Tiu− Ti‖2,Tr.

So, ψ is a hypertrace. �
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10.3. Connes’ Følner type condition

10.3.1. Følner type characterisation of amenable II1 factors. In
this section we assume that M is a II1 factor. Note that in this situation,
Condition (10.2) is unnecessary in the statement of Theorem 10.2.9, since
the restriction to M of any hypertrace is the unique tracial state on M .
The next theorem is an important step in the proof that an amenable II1

factor is hyperfinite (see Chapter 11). It says that in Condition (10.1), we
may take T to be the normalization of a finite rank projection. This result
corresponds to the Følner characterisation of amenable groups

Given a positive operator x and t > 0, in the rest of this section, Ect (x)
will denote the spectral projection of x relative to the interval (t,+∞).

Theorem 10.3.1. A II1 factor is amenable if and only if for every ε > 0
and every finite set F of unitaries in M , there is a finite rank projection
P ∈ B(L2(M)) such that

max
u∈F
‖uPu∗ − P‖2,Tr < ε‖P‖2,Tr. (10.3)

Proof. Assume that M is amenable. Let 0 < η < 1 be given. By
Theorem 10.2.9, we know that there exists a positive finite rank operator T
on L2(M) such that

max
u∈F
‖uTu∗ − T‖2,Tr < η‖T‖2,Tr.

We have to show that we can replace T by a projection. This relies on the
so-called Connes’ trick, proved below in Theorem 10.3.4, which implies the
existence of a t > 0 with

max
u∈F
‖Ect (uTu∗)− Ect (T )‖2,Tr < (3nη)1/2‖Ect (T )‖2,Tr,

where n is the number of elements in F .
Clearly, we have Ect (uTu

∗) = uEct (T )u∗. We take η ≤ ε2/(3n) and set
P = Ect (T ) to get (10.3). �

Remark 10.3.2. Let H be a Hilbert space and H′ be a dense vector
subspace. Given a finite rank projection P ∈ B(H) and ε > 0, there exists
a finite rank projection Q with QH ⊂ H′ and ‖P −Q‖2,Tr ≤ ε. Indeed, let

(ξ1, . . . , ξn) be an orthonormal basis of PH. We can approximate each ξk
by a vector ηk ∈ H′ and we can do so that the projection Q on the linear
span of the η1, . . . , ηn satisfies the required inequality. We leave the details
to the reader.

In particular, for H = L2(M), this observation applies to the dense

subspace M̂ . It follows that in the previous theorem, we may choose P such

that PL2(M) ⊂ M̂ .

We now turn to the statement of Connes’ trick.
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10.3.2. Connes’s trick. It is a non-commutative version of a trick due
to Namioka, that we first explain.

Let 1(t,∞) denote the characteristic function of the interval (t,+∞). The
main point in Namioka’s trick is the following elementary observation:

∀s1, s2 ∈ R,
∫
R
|1(t,∞)(s1)− 1(t,∞)(s2)| dt = |s1 − s2|.

Now, given a σ-finite measure space (X,µ) and f, g ∈ L1(X,µ), using Fu-
bini’s theorem, we get

‖f − g‖1 =

∫
R
‖Ect (f)− Ect (g)‖1 dt

where, in analogy with spectral theory, we write Ect (f) = 1(t,∞) ◦f . Applied
with g = 0, this gives

‖f‖1 =

∫
R
‖Ect (f)‖1 dt.

In particular, if f, g are such that ‖f − g‖1 < ε‖f‖1 for some ε > 0, we at
once deduce the existence of a t0 ∈ R with

‖Ect0(f)− Ect0(g)‖1 < ε‖Ect0(f)‖1,
and so Ect0(f) 6= 0 if ε < 1.

We want to obtain a non-commutative version of this Namioka’s obser-
vation. The first task is to reduce computations of Hilbert-Schmidt norms
of operators to computations of L2-norms of functions.

Proposition 10.3.3. Let H be Hilbert space and let x, y be two positive
finite rank operators on H. There exists a positive Radon measure ν on R2

+

such that for every pair f, g of Borel complex-valued functions on R+ with
f(0) = 0 = g(0) one has

‖f(x)− g(y)‖22,Tr =

∫
R2

+

|f(α)− g(β)|2 dν(α, β).

Proof. We write

x =
m∑
i=1

λiei, y =

n∑
j=1

µjfj ,

where the λi’s are the distinct strictly positive eigenvalues of x and the ei’s
are the corresponding spectral projections (and similarly for y). We put
e0 = 1−

∑n
i=1 ei, f0 = 1−

∑m
j=1 fj , and Tr is the usual trace on B(H)+.

We set
X = (Sp(x)× Sp(y)) \ {(0, 0)},

and we define a measure ν on X (and therefore on R2
+) by setting

ν({(λi, µj)}) = Tr(eifj)

ν({(λi, 0)}) = Tr(eif0)

ν({(0, µj)}) = Tr(e0fj).
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Let f, g be two real-valued Borel functions on R+ with f(0) = 0 = g(0).
Then

f(x) =

m∑
i=1

f(λi)ei, g(y) =

n∑
j=1

g(µj)fj

are still finite rank operators. We have

Tr(f(x)g(y)) =

∫
R2

+

f(α)g(β) dν(α, β),

Tr(f2(x)) =

∫
R2

+

f2(α) dν(α, β), Tr(g2(y)) =

∫
R2

+

g2(β) dν(α, β),

and therefore

‖f(x)− g(y)‖22,Tr =

∫
R2

+

|f(α)− g(β)|2 dν(α, β). (10.4)

�

We are now ready to prove the following non-commutative version of
Namioka’s trick, that is formulated for n elements.

Theorem 10.3.4 (Connes’ trick). Let x1, . . . , xn be positive finite rank
elements in B(H) and 0 < ε < 1 such that, for i = 1, · · · , n,

‖xi − x1‖2,Tr < ε‖x1‖2,Tr .

Then there is a t0 > 0 with∥∥Ect0(xi)− Ect0(x1)
∥∥

2,Tr
< (3nε)1/2

∥∥Ect0(x1)
∥∥

2,Tr
, 1 ≤ i ≤ n.

Proof. We apply (10.4) with f = g = 1(t1/2,+∞). Then for every pair

x, y of positive finite rank operators we have

‖Ec
t1/2

(x)− Ec
t1/2

(y)‖22,Tr =

∫
R2

+

|1(t1/2,+∞)(α)− 1(t1/2,+∞)(β)| dν(α, β),

and therefore∫ ∞
0
‖Ec

t1/2
(x)− Ec

t1/2
(y)‖22,Tr dt

=

∫
R2

+

( ∫ ∞
0
|1(t1/2,+∞)(α)− 1(t1/2,+∞)(β)|dt

)
dν(α, β)

=

∫
R2

+

|α2 − β2|dν(α, β)

≤
( ∫

R2
+

|α− β|2 dν(α, β)
)1/2( ∫

R2
+

|α+ β|2 dν(α, β)
)1/2

= ‖x− y‖2,Tr‖x+ y‖2,Tr ,

after having again applied (10.4).
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By assumption, for ε < 1, we have ‖xj + x1‖2,Tr ≤ 3‖x1‖2,Tr. It follows

that ∫ ∞
0

n∑
i=1

‖Ec
t1/2

(xi)− Ect1/2(x1)‖22,Tr dt < 3nε‖x1‖22,Tr

= 3nε

∫ ∞
0
‖Ec

t1/2
(x1)‖22,Tr dt.

Hence, there is a t0 > 0 with
n∑
i=1

‖Ect0(xi)− Ect0(x1)‖22,Tr < 3nε‖Ect0(x1)‖22,Tr.

�

This theorem holds true for any semi-finite von Neumann algebra (M,Tr)
instead of (B(H),Tr). For later use we record the following particular case.
The details are left to the reader4.

Proposition 10.3.5. Let (M, τ) be a tracial von Neumann algebra. Let
ξ, η be two elements of L2(M)+. There exists a positive Radon measure ν on
R2

+ such that for every pair f, g of Borel complex-valued functions on R+,
with f(0) = 0 = g(0) and f(ξ), g(η) ∈ L2(M), the functions (α, β) 7→ f(α)
and (α, β) 7→ g(β) are square integrable and

‖f(ξ)− g(η)‖22 =

∫
R2

+

|f(α)− g(β)|2 dν(α, β).

Theorem 10.3.6. Let (M, τ) be a tracial von Neumann algebra. Let
ξ1, . . . , ξn be elements of L2(M)+. Let 0 < ε < 1 be such that

‖ξi − ξ1‖2 < ε‖ξ1‖2 , 1 ≤ i ≤ n.
Then there is a t0 > 0 with∥∥Ect0(ξi)− Ect0(ξ1)

∥∥
2
< (3nε)1/2

∥∥Ect0(ξ1)
∥∥

2
, 1 ≤ i ≤ n.

Exercises

Exercise 10.1. Let M be a finite factor such that there exists an in-
creasing sequence (Pn)n≥1 of matrix subalgebras Pn of M containing 1M , of

type I2kn , with ∪nPn
s.o

= M . Show that M is isomorphic to the hyperfinite
factor R.5

Exercise 10.2. Let (M,H) be a von Neumann algebra.

(i) Let p ∈ P(M). Show that pMp is amenable whenever M is
amenable.

4See [Con76, Section I.1].
5We will prove in the next chapter (Theorem 11.2.2) the much more general and

difficult result saying that all separable AFD II1 factors are isomorphic.
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(ii) If M is amenable, show that M⊗B(K) is amenable for any Hilbert
space K (Hint: consider first the case where K is finite dimensional
and conclude by approximation).

Exercise 10.3. Let (M,H) be a von Neumann algebra and let (π,H)
be a representation of an amenable group G such that π(g)Mπ(g)∗ = M for
every g ∈ G. Denote by MG the von Neumann subalgebra of fixed points of
M under this action. Show that there exists a conditional expectation from
M onto MG and that MG is amenable whenever M is so.

Exercise 10.4. Show that abelian von Neumann algebras are amenable.

Exercise 10.5. Let (M,H) be an amenable von Neumann algebra.
Show that M ′ is amenable (Hint: assume that M is tracial and consider
first the case where (M,H) is a standard form; then use Proposition 8.2.2
to deal with the case of a non-standard representation. If M is not tracial,
the proof is the same but requires the general notion of standard form for
which the interested reader may look at [Haa75].).

Exercise 10.6. Let G y (X,µ) be a p.m.p. action on a standard
probability measure space. Show that the crossed product L∞(X,µ) oG is
amenable if and only if the group G is amenable.

Exercise 10.7. Let M be a von Neumann algebra and let p be a pro-
jection having 1 as central support. Show that M is amenable if and only if
pMp is amenable.

Exercise 10.8. Show that every von Neumann algebra M has a unique
decomposition as a direct sum M1⊕M2 where M1 is amenable and M2 has
no amenable corner.

Exercise 10.9. Let M1 and M2 be two von Neumann algebras such
that M1⊗M2 is amenable. Show that M1 and M2 are amenable.

Exercise 10.10. A von Neumann (M,H) is said to have Property (P)
if for every T ∈ B(H) the w.o. closed convex hull of {uTu∗ : u ∈ U(M)} has
a non-void intersection with M ′.

(i) Let (M,H) be a von Neumann algebra and suppose that there exists
an increasing sequence (Mn) of finite dimensional subalgebras, with
the same unit as M , such that (∪Mn)′′ = M . Show that (M,H)
has the property (P) of Schwartz.

(ii) Show that the hyperfinite factor R has the property (P).

Notes
The main results and techniques presented in this chapter are borrowed

from Connes’ seminal paper [Con76].
The early stage towards the notion of injective von Neumann algebra is

Property (P) of J.T. Schwartz [Sch63]. In this case, Schwartz proved the
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existence of a conditional expectation from B(H) onto M ′. He showed that
a group von Neumann algebra L(G) has Property (P) if and only if G is
amenable.

Later, Hakeda and Tomiyama [HT67] introduced the extension property
for (M,H) by the existence of a norm-one projection from B(H) onto M .
This condition, which is now known as amenability or injectivity, is a priori
weaker than Property (P) (by Exercise 10.5). It has many advantages in
comparison with Property (P): it is easier to establish, is independent of
the Hilbert space on which the von Neumann is represented and enjoys
remarkable stability properties. We will show in the next chapter that, for
tracial von Neumann algebras, amenability implies hyperfiniteness which in
turn is weaker than Property (P) (Exercise 10.10). So, finally, amenability
is equivalent to Property (P). More generally, this is still true for any von
Neumann algebra acting on a separable Hilbert space [Con76].
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CHAPTER 11

Amenability and hyperfiniteness

In this chapter, two fundamental results are established. First, any
amenable finite von Neumann algebra can be approximated by finite dimen-
sional algebras, a deep fact due to Connes. Such algebras are said to be
approximately finite dimensional (AFD) or hyperfinite. Second, we show
the theorem due to Murray and von Neumann asserting that there is only
one separable hyperfinite II1 factor, up to isomorphism.

11.1. Every amenable finite von Neumann algebra is AFD

Definition 11.1.1. Let M be a finite von Neumann algebra. We say
that M is approximately finite dimensional (AFD) or hyperfinite if for every
finite subset F = {x1, . . . , xn} of M , every normal tracial state τ and every
ε > 0, there exist a finite dimensional ∗-subalgebra Q ⊂M with 1M ∈ Q and
y1, . . . , yn in Q such that ‖xi − yi‖2,τ < ε for i = 1, . . . , n, where ‖x‖2,τ =

τ(x∗x)1/2 (although ‖·‖2,τ needs not be a norm).

When M has a faithful normal tracial state τ , the above definition is
equivalent to the next one, and does not depend on the choice of the faithful
normal tracial state τ . We use the following notation. If (M, τ) is a tracial
von Neumann algebra, the metric defined by the norm ‖·‖2 is denoted by
d2. Given ε > 0 and two subsets C,D of M , we write C ⊂ε,2 D if for every
x ∈ C we have d2(x,D) < ε.

Definition 11.1.2. We say that a tracial von Neumann algebra (M, τ)
is approximately finite dimensional (AFD) or hyperfinite if for every finite
subset F of M , there exists a finite dimensional ∗-subalgebra Q ⊂ M with
1M ∈ Q, such that F ⊂ε,2 Q.

The goal of this section is to show the following celebrated theorem.

Theorem 11.1.3. Every amenable finite von Neumann algebra is AFD.

In the rest of this chapter we limit ourself to the case of a von Neumann
algebra M equipped with a normal faithful tracial state τ . The proof of the
above theorem in the general case follows from the exercise 11.1. Moreover,
for simplicity of presentation, we will assume that M is separable.

The hardest step is to prove Theorem 11.1.5 which states that a tracial
amenable von Neumann algebra M has the local approximation property as

173
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defined below. Then a classical maximality argument will imply that M is
AFD (Theorem 11.1.17).

Definition 11.1.4. We say that (M, τ) has the local approximation pro-
perty if for every ε > 0, every non-zero projection e ∈ M and every finite
subset F ⊂ U(eMe), there exists a non-zero finite dimensional matrix alge-
bra Q in eMe with unit q such that for v ∈ F ,

(a) ‖[q, v]‖2 < ε‖q‖2;
(b) d2(qvq,Q) < ε‖q‖2.

11.1.1. Amenability implies the local approximation property.

Theorem 11.1.5. A tracial amenable von Neumann algebra (M, τ) has
the local approximation property.

Since eMe is still amenable for every e ∈ P(M), it is enough to take
e = 1 and to prove the following claim.

Claim: given ε > 0 and a finite subset {v1, . . . , vl} of unitaries in M there
exists a non-zero finite dimensional matrix algebra Q with unit q such that
for 1 ≤ k ≤ l,

‖[q, vk]‖2 < ε‖q‖2 and d2(qvkq,Q) < ε‖q‖2. (11.1)

Strategy of the proof. We choose a maximal abelian von Neumann subal-
gebra A of M . We will first apply to 〈M, eA〉 the Connes’ non-commutative
version of the Day and Namioka arguments as in the previous chapter, in
order to find a finite projection p ∈ 〈M, eA〉 almost invariant under the uni-
taries vk.

1 After a first approximation, we will show that this projection
can be associated to a finite family x1, . . . , xm of elements in M that are
orthonormal with respect to the conditional expectation EA. A local Rohlin
type lemma followed by a technical deformation will allow to construct, from
these elements x1, . . . , xm, a matrix units which generates a matrix algebra
Q. Condition (11.1) will be a consequence of the almost invariance of p and
of the local Rohlin type lemma. The maximality of A is only used in the
proof of this local Rohlin type lemma.

We first state a few facts relative to the Jones’ basic construction.

Two formulas in 〈M, eA〉. Until Lemma 11.1.11, we only assume that A
is an abelian von Neumann subalgebra of (M, τ). We recall that 〈M, eA〉
is semi-finite and we endow it with the normal faithful semi-finite trace
τ̂ introduced in Section 8.4 (see also Section 9.4). Since 〈M, eA〉 is the
commutant of JAJ , we observe that JAJ is the center of 〈M, eA〉.

Given a left A-bounded vector ξ ∈ L2(M)A, we denote, as in Section
8.4.2, by Lξ the corresponding A-linear operator from L2(A)A into L2(M)A.

Let pξ be the orthogonal projection onto the A-submodule ξA of L2(M)A.
We will need to compute τ̂(JaJpξ) for a ∈ A. To that end, we consider

1Recall that 〈M, eA〉 is the Jones’ basic construction for A ⊂M
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the polar decomposition ξ = ξ′〈ξ, ξ〉1/2A of ξ (see Lemma 8.4.9). Then, with
the notations of Section 8.4.3, we see that pξ = pξ′ = Lξ′L

∗
ξ′ . Using the

fact that A is abelian and Lξ′ is A-linear, we get Ja∗JLξ′ = L(ξ′a) and thus
Ja∗JLξ′L

∗
ξ′ = L(ξ′a)L

∗
ξ′ . It follows from Proposition 8.4.17 that

τ̂(JaJpξ) = τ(
〈
ξ′, ξ′a∗

〉
A

).

But 〈ξ′, ξ′〉A is the range projection of 〈ξ, ξ〉1/2A (see Lemma 8.4.9), that is,
the support s(〈ξ, ξ〉A) of 〈ξ, ξ〉A. Thus we get

τ̂(JaJpξ) = τ(a∗s(〈ξ, ξ〉A)). (11.2)

We note that whenever ξ ∈M ⊂ L2(M), then 〈ξ, ξ〉A = EA(ξ∗ξ) (see Section
9.4.1).2

We will also need the following fact: given x, y ∈M such that EA(x∗x)
and EA(y∗y) are projections in A, then

pxpypx = JEA(x∗y)EA(y∗x)Jpx. (11.3)

This is a straightforward computation using the commutativity of A and
the fact that pz(m) = zEA(z∗m) for m ∈M and z = x or z = y.

11.1.1.1. A Følner type condition.

Lemma 11.1.6. Assume that M is amenable. Given ε′ > 0, there exists
a projection p ∈ 〈M, eA〉 such that τ̂(p) < +∞ and

max
1≤k≤l

‖p− vkpv∗k‖2,τ̂ < ε′‖p‖2,τ̂ .

Proof. The proof is similar to that of Theorems 10.2.9 and 10.3.1. We
set

C = {(v1ϕv
∗
1 − ϕ, . . . , vlϕv∗l − ϕ)}

where ϕ runs over the normal states on 〈M, eA〉 of the form τ̂(c ·) with
c ∈ 〈M, eA〉+ and τ̂(c) = 1. Using the existence of an hypertrace, we see
that (0, . . . , 0) is in the weak closure of the convex set C. Then, given
δ > 0, the same Day’s convexity argument as in the proof of Theorem 10.2.9
provides a c ∈ 〈M, eA〉+ with τ̂(c) = 1 and

‖τ̂(vkcv
∗
k·)− τ̂(c ·)‖ < δ2

for 1 ≤ k ≤ l. We set b = c1/2. By the Powers-Størmer inequality (see
Theorem 10.2.8) we get

‖vkbv∗k − b‖
2
2,τ̂ ≤ ‖τ̂(vkcv

∗
k·)− τ̂(c ·)‖ < δ2‖b‖22,τ̂ .

Now using Theorem 10.3.6, we find a spectral projection p of b such that,

max
1≤k≤l

‖p− vkpv∗k‖2,τ̂ < (3lδ)1/2‖p‖2,τ̂ .

We choose δ = (ε′)2/3l. �

2We identify M to a subspace of L2(M).
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In the next step, we show that we may take p of the form
∑m

i=1 pxi where
the xi ∈M satisfy EA(x∗ixj) = δi,jpi ∈ P(A).

11.1.1.2. Approximation of finite-trace projections in 〈M, eA〉.
Lemma 11.1.7. Let p be a projection in 〈M, eA〉 such that τ̂(p) < +∞.

Given ε′ > 0, there exist x1, . . . , xm in M with EA(x∗ixj) = δi,jpi ∈ P(A)
for every i, j and ∥∥∥∥∥p−

m∑
i=1

pxi

∥∥∥∥∥
2,τ̂

< ε′.

Proof. We first observe that there exists an increasing sequence (zn) of
projections in the center of 〈M, eA〉 such that limn zn = 1 in the s.o. topol-
ogy and pznL

2(M) is a finitely generated right A-module for every n (see
Corollary 9.3.3). So, replacing p by pzn for n large enough, we may as-
sume that pL2(M) is finitely generated. By Proposition 8.5.3, we know
that p =

∑m
i=1 pξi where ξ1, . . . , ξm is an orthonormal basis of the right A-

module pL2(M). The elements ξi are left A-bounded, but are not necessarily
in M . Our technical task is to show that we may replace ξ1, . . . , ξm by an
orthonormal basis made of elements in M . We proceed by induction on m.

We set ξ0 = 0, x0 = p0 = 0. Given 0 < δ < 1/4, we assume that
we have found x0, . . . , xk−1 in M such that EA(x∗ixj) = δi,jpi ∈ P(A) for

0 ≤ i, j ≤ k − 1 and
∥∥∥∑k−1

i=0 pξi −
∑k−1

i=0 pxi

∥∥∥
2,τ̂

< δ. We want to show that

there exists xk ∈ M such that EA(x∗kxk) is a projection, EA(x∗kxi) = 0 for

i < k and
∥∥∥∑k

i=0 pξi −
∑k

i=0 pxi

∥∥∥
2,τ̂

< 2δ1/2. The lemma is then an easy

consequence.
We view ξk as an operator affiliated to M . It follows that there exists an

increasing sequence (qn) of projections in M such that qnξk ∈ M for every
n and limn qn = 1 strongly. We have

‖pqnξk − pξk‖
2
2,τ̂ ≤ 2‖pqnξk − qnpξkqn‖

2
2,τ̂ + 2‖qnpξkqn − pξk‖

2
2,τ̂

and

‖pqnξk − qnpξkqn‖
2
2,τ̂ = τ̂(pqnξk)− 2τ̂(qnpξkqn) + τ̂(qnpξkqnpξkqn)

≤ τ̂(pqnξk)− τ̂(qnpξkqn),

since pqnξkqnpξk = qnpξk .
Moreover, by (11.2), we get

τ̂(pqnξk) = τ(s(〈qnξk, qnξk〉A)) ≤ τ(s(〈ξk, ξk〉A)) = τ̂(pξk).

But limn τ̂(qnpξkqn) = τ̂(pξk) and limn ‖qnpξkqn − pξk‖2,τ̂ = 0 and so, given

δ′ > 0, we can choose n′ such that
∥∥pqn′ξk − pξk∥∥2,τ̂

< δ′.

We set y = qn′ξk, y0 =
∑k−1

i=0 pxi(y) and y1 = y − y0. We have
EA(x∗i y1) = 0 for 0 ≤ i ≤ k − 1, but a = EA(y∗1y1) may not be a pro-
jection. So, we will need later to modify slightly y1. But before, we want
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to evaluate ‖py1 − py‖2,τ̂ . We set f =
∑k−1

i=0 pxi + py1 and fk−1 =
∑k−1

i=0 pxi .

We have py ≤ f and so f(fk−1 + py) = fk−1 + py. Then

‖f − (fk−1 + py)‖22,τ̂ = τ̂(f)− τ̂(fk−1 + py) + 2τ̂(pyfk−1)

= τ̂(f)− τ̂(fk−1 + py) + 2τ̂
(
(py − pξk)fk−1

)
+ 2τ̂

(
pξk(

k−1∑
i=0

pxi −
k−1∑
i=0

pξi)
)

< τ̂(py1)− τ̂(py) + 2k1/2δ′ + 2δ,

where, to get the last inequality, we have used the Cauchy-Schwarz inequality
and the fact that ‖fk−1‖2,τ̂ ≤ k1/2 and ‖pξk‖2,τ̂ ≤ 1. We remark that

τ̂(py1) = τ
(
s(EA(y∗1y1))

)
≤ τ

(
s(EA(y∗y))

)
= τ̂(py).

It follows that

‖py1 − py‖
2
2,τ̂ = ‖f − (fk−1 + py)‖22,τ̂ ≤ 2k1/2δ′ + 2δ.

Now, let us explain how we modify y1. Let en be the spectral projection
of a = EA(y∗1y1) corresponding to the interval (1/n,+∞). We put xk =

y1ena
−1/2. Then we still have EA(x∗ixk) = 0 for 0 ≤ i ≤ k − 1 and morever

EA(x∗kxk) = en is now a projection. Observe also that pxk = py1en . Using
again (11.2), we see that

‖py1 − py1en‖
2
2,τ̂ = ‖py1 − JenJpy1‖

2
2,τ̂

= τ̂(py1)− τ̂(JenJpy1)

= τ(s(a))− τ(ens(a)),

where s(a) is the support of a. With n sufficiently large, we can make
‖py1 − pxk‖2,τ̂ arbitrary small.

Finally we get that
∥∥∥∑k

i=0 pξi −
∑k

i=0 pxi

∥∥∥
2,τ̂

is smaller than

∥∥∥∥∥
k−1∑
i=0

pξi − fk−1

∥∥∥∥∥
2,τ̂

+ ‖pξk − py‖2,τ̂ + ‖py − py1‖2,τ̂ + ‖py1 − pxk‖2,τ̂

< δ + δ′ + (2k1/2δ′ + 2δ)1/2 + ‖py1 − pxk‖2,τ̂
< δ + δ′ + (2k1/2δ′ + 2δ)1/2

for a sufficiently large n. Whenever δ < 1/4, we can find δ′ sufficiently small

such that δ + δ′ + (2k1/2δ′ + 2δ)1/2 ≤ 2δ1/2. �

Our two last steps before proceeding to the proof of Theorem 11.1.5 are
the local Rohlin type lemma 11.1.11 and the deformation lemma 11.1.12.
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11.1.1.3. A local Rohlin type lemma. We need to show first the ele-
mentary fact that every abelian von Neumann algebra is AFD.

Lemma 11.1.8. Let (A, τ) be an abelian separable von Neumann algebra.
There exists an increasing sequence (An) of finite dimensional von Neumann
subalgebras of A such that ∪nAn

wo
= A.

Proof. Let (an) be a sequence in the unit ball (A)1 of A which is dense
in (A)1 equipped with the ‖·‖2-metric (see Proposition 2.6.7). We construct
the algebras An by induction. First, there exist projections e1, . . . , ek and

scalars α1, . . . , αk in C such that
∑k

j=1 ej = 1 and
∥∥∥a1 −

∑k
j=1 αjej

∥∥∥ < 1/2.

A fortiori we have the same inequality with respect to the ‖·‖2-norm. We
denote by A1 the algebra generated by the projections e1, . . . , ek. Observe
that ‖a1 − EA1(a1)‖2 < 1/2 and that ‖EA1(a1)‖ ≤ 1.

Assume that we have constructed finite dimensional algebras A1, . . . Am
such that A1 ⊂ A2 ⊂ · · · ⊂ Am and∥∥ai − EAj (ai)∥∥2

< 2−j for 1 ≤ i ≤ j ≤ m. (11.4)

As above, for i = 1, . . . ,m+ 1 we can find projection eij and scalars αij such
that ∥∥∥∥∥∥ai −

ki∑
j=1

αije
i
j

∥∥∥∥∥∥ < 2−(m+1).

Let Am+1 be the algebra generated by Am and the projections eij . Then

(11.4) is satisfied with m+ 1 instead of m.
We conclude that the unit ball of ∪nAn is dense in the unit ball of A

with respect to the ‖·‖2-metric, that is, with respect to the s.o. topology. �

We also need the following continuity property for conditional expecta-
tions.

Lemma 11.1.9. Let (M, τ) be a tracial von Neumann algebra and (Bn) a
decreasing sequence of von Neumann subalgebras. We set B = ∩nBn. Then,
for every x ∈M we have

lim
n
‖EBn(x)− EB(x)‖2 = 0.

Proof. The sequence (eBn) of orthogonal projections eBn : L2(M) →
L2(Bn) is decreasing. We set e = ∧neBn . We have obviously eB ≤ e, and it
remains to show that e ≤ eB. Given x ∈M , we have limn ‖eBn(x̂)− e(x̂)‖2 =
0. On the other hand, (EBn(x)) is a sequence bounded in norm by ‖x‖.
Therefore there is a subsequence (EBnk (x))k which converges to some x0 ∈
M in the w.o. topology. It is easily seen that x0 ∈ B and that

lim
k

〈
eBnk (x̂), ŷ

〉
= 〈x̂0, ŷ〉

for every y ∈M . It follows that e(x̂) = x̂0 ∈ B̂, hence e ≤ eB. �
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Remark 11.1.10. The same result holds for an increasing sequence (Bn)

and B = ∪nBn
wo

. We leave it as an exercise.

Lemma 11.1.11 (Local Rohlin type lemma). Let A be a maximal abe-
lian subalgebra of (M, τ). Let f ∈ A be a non-zero projection, y1, . . . , ym ∈
M , and ε′ > 0. There exists a projection e ∈ A with e ≤ f and

max
1≤i≤m

‖eyie− λie‖2 < ε′‖e‖2,

where λi = τ(eyie)/τ(e).

Proof. Since A is abelian, using the spectral decomposition of the
EA(yi)’s, we find a non-zero projection f ′ ∈ A with f ′ ≤ f , such that
for all i, ∥∥EA(yi)f

′ − λ′if ′
∥∥ < ε′/2

for some scalar λ′i ∈ C.
Let (An) be an increasing sequence of finite dimensional subalgebras of

Af ′ such that ∪nAn
wo

= Af ′. Note that

∩n(A′n ∩ f ′Mf ′) = A′f ′ ∩ f ′Mf ′ = Af ′

since Af ′ is a maximal abelian subalgebra of f ′Mf ′. By Lemma 11.1.9 we
have limn

∥∥EA′n∩f ′Mf ′(x)− EAf ′(x)
∥∥

2
= 0 for every x ∈ f ′Mf ′. It follows

that there is an integer n0 such that

m∑
i=1

∥∥∥EA′n0
∩f ′Mf ′(f

′yif
′)− EAf ′(f ′yif ′)

∥∥∥2

2
< (ε′/2)2

∥∥f ′∥∥2

2
.

If we denote by e1, . . . , es the minimal projections of An0 , we get

m∑
i=1

∥∥∥∥∥∥
s∑
j=1

(ejyiej − EA(yi)ej

∥∥∥∥∥∥
2

2

< (ε′/2)2
∥∥f ′∥∥2

2

(see Example 9.1.2 (2) and since EAf ′(f
′yif

′) = EA(yi)f
′) and therefore, by

Pythagoras’ theorem,

m∑
i=1

s∑
j=1

‖ejyiej − EA(yi)ej‖22 < (ε′/2)2
s∑
j=1

‖ej‖22.

It follows that for some j, and for all i, we have

‖ejyiej − EA(yi)ej‖2 < (ε′/2)‖ej‖2
and thus ‖ejyiej − λ′iej‖2 < ε′‖ej‖2.

Since
(
τ(ejyiej)/τ(ej)

)
ej is the orthogonal projection of ejyiej onto Cej ,

we see that e = ej satisfies the statement of the lemma. �



D
ra
ft

180 11. AMENABILITY AND HYPERFINITENESS

11.1.1.4. A deformation lemma.

Lemma 11.1.12. Let (M, τ) be a tracial von Neumann algebra. For η
sufficiently small, C > 0 and m ∈ N, there exists δ(η, C,m) (that we simply
write δ(η)) with limη→0 δ(η) = 0 such that, given y1, . . . , ym in M and e ∈
P(M) satisfying

‖ey∗i yje− δi,je‖2 < η‖e‖2
for all 1 ≤ i, j ≤ m and maxi ‖yi‖ ≤ C, then there exist partial isometries
u1, . . . , um and a projection e′ in M with e′ ≤ e, u∗iuj = δi,je

′ and∥∥e− e′∥∥
2
< δ(η)

∥∥e′∥∥
2
,

∀i,
∥∥yie′ − ui∥∥2

< δ(η)
∥∥e′∥∥

2
.

Remark 11.1.13. Note that

‖yie− ui‖2 ≤ ‖yi‖
∥∥e− e′∥∥

2
+
∥∥yie′ − ui∥∥2

< (C + 1)δ(η)
∥∥e′∥∥

2

so we will have (and indeed use) the same result with ‖yie− ui‖2 in place
of ‖yie′ − ui‖2 in the second inequality of the lemma.

The proof of this lemma is by induction on m and uses the next lemmas.

Lemma 11.1.14. Let e be a projection in M and x ∈ (eMe)+ such that
‖e− x‖2 < ε′‖e‖2 with 0 < ε′ < 1. Denote by e′ the spectral projection of x

corresponding to the interval (1−
√
ε′, 1 +

√
ε′). Then we have

e′ ≤ e,
∥∥e− e′∥∥

2
<
√
ε′‖e‖2 (11.5)∥∥e′ − xe′∥∥ < √ε′. (11.6)

Proof. Observe that if τe denote the trace τ/τ(e) on eMe then, for

y ∈ eMe, one has ‖y‖2 = τ(e)1/2‖y‖2,τe . Therefore it suffices to consider the

case e = 1. The inequality (11.6) is obvious. To prove the second inequality
of (11.5), we consider the spectral probability measure of x associated with

the vector 1̂ ∈ L2(M). We have

ε′
∥∥1− e′

∥∥2

2
= ε′µ

(
R+ \ (1−

√
ε′, 1 +

√
ε′)
)
≤
∫
R+

|1− t|2 dµ(t) ≤ (ε′)2.

�

Lemma 11.1.15. Let e be a projection in M and x ∈M such that x∗x ∈
eMe and ‖x∗x− e‖ < ε′ < 1. If x = u|x| is the polar decomposition of x,

then ‖x− u‖ < 1− (1− ε′)1/2 <
√
ε′ and u∗u = e.

Proof. Again, it suffices to consider the case e = 1. We observe that
‖x− u‖ ≤ ‖|x| − 1‖ and that the spectrum of |x|2 = x∗x is contained in the
interval (1− ε′, 1 + ε′). �

Putting these two lemmas together we get:
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Lemma 11.1.16. Let e be a projection in M and x ∈ Me such that
‖x∗x− e‖2 < ε′‖e‖2, where ε′ < 1. There exist a projection e′ ≤ e and a
partial isometry u, namely the isometry given by the polar decomposition of
xe′ such that u∗u = e′ and∥∥e− e′∥∥

2
<
√
ε′‖e‖2,

∥∥xe′ − u∥∥ < (ε′)1/4,

from which it follows that

‖e‖2 < (1−
√
ε′)−1

∥∥e′∥∥
2

and ∥∥xe′ − u∥∥
2
≤
∥∥xe′ − u∥∥∥∥e′∥∥

2
< (ε′)1/4

∥∥e′∥∥
2
.

Denoting by ϕ the function t 7→ t1/4(1−
√
t)−1 we thus have∥∥e− e′∥∥

2
< ϕ(ε′)

∥∥e′∥∥
2

and
∥∥xe′ − u∥∥

2
< ϕ(ε′)

∥∥e′∥∥
2
.

Proof of Lemma 11.1.12. As said, we proceed by induction on m.
The step m = 1 follows from the previous lemma where we take x = y1e
and ε′ = η.

Assume now that we have found a projection ek ∈ P(M) and partial
isometries u1, . . . , uk such that

u∗iuj = δi,jek for 1 ≤ i, j ≤ k, (11.7)

‖yiek − ui‖2 < δk(η)‖ek‖2 for 1 ≤ i ≤ k, (11.8)

‖e− ek‖2 < δk(η)‖ek‖2 and ek ≤ e, (11.9)

where δk only depends on η, C, k, and limη→0 δk(η) = 0. We set q =

1−
∑k

i=1 uiu
∗
i and y′k+1 = qyk+1. We have

∥∥y′k+1ek − yk+1ek
∥∥

2
≤

k∑
i=1

‖u∗i yk+1ek‖2

≤
k∑
i=1

‖(u∗i − eky∗i )yk+1ek‖2 +

k∑
i=1

‖eky∗i yk+1ek‖2

< kδk(η)‖yk+1‖‖ek‖2 + kη(1 + δk(η))‖ek‖2
< k(Cδk(η) + η(1 + δk(η)))‖ek‖2.

From this, straightforward computations show that∥∥ek(y′k+1)∗y′k+1ek − ek
∥∥

2
< δ′k(η)‖ek‖2

where again limη→0 δ
′
k(η) = 0.

Using anew Lemma 11.1.16 we find a projection ek+1 ≤ ek and a partial
isometry uk+1 such that u∗k+1uk+1 = ek+1, ‖ek − ek+1‖2 < ϕ(δ′k(η))‖ek+1‖2
and

∥∥y′k+1ek+1 − uk+1

∥∥
2
< ϕ(δ′k(η))‖ek+1‖2. We observe that quk+1 = uk+1

and so, replacing ui by uiek+1, we easily see that Condition (11.7) is fulfilled
at the step k + 1, as well as Conditions (11.8), (11.9) with an appropriate
function δk+1. �
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We are now ready to prove Theorem 11.1.5

Proof of Theorem 11.1.5. We have to prove the claim which follows
the statement of the theorem. We assume here that A is maximal abelian.
Let δ > 0 be given. By Lemmas 11.1.6 and 11.1.7, there exist x1, . . . , xm in
M with EA(x∗ixj) = δi,jfi ∈ P(A) for every i, j and

max
1≤k≤l

‖p− vkpv∗k‖
2
2,τ̂ < (δ/l)‖p‖22,τ̂ ,

where p =
∑m

i=1 pxi . For y ∈ 〈M, eA〉 we have

‖y‖22,τ̂ ≥ ‖py‖
2
2,τ̂ =

m∑
i=1

‖pxiy‖
2
2,τ̂ ≥

m∑
i=1

‖pxiypxi‖
2
2,τ̂ .

Using (11.2) and (11.3), it follows that

‖p− vkpv∗k‖
2
2,τ̂ ≥

m∑
i=1

‖pxi − pxivkpv∗kpxi‖
2
2,τ̂

≥
m∑
i=1

‖pxi −
m∑
j=1

pxipvkxjpxi‖
2
2,τ̂

≥
m∑
i=1

‖fi −
m∑
j=1

EA(x∗i vkxj)EA(x∗jv
∗
kxi)fi‖22.

Hence, we get

l∑
k=1

m∑
i=1

τ
((
fi −

m∑
j=1

EA(x∗i vkxj)EA(x∗jv
∗
kxi)fi

)2)
< δ‖p‖22,τ̂ = δ

m∑
i=1

τ(fi).

Since A is abelian, we have an inequality between integrals and therefore
there exists a non-zero projection f ∈ A such that, for every k,

m∑
i=1

(
fif −

m∑
j=1

EA(x∗i vkxj)EA(x∗jv
∗
kxi)fif

)2
< δ

m∑
i=1

fif. (11.10)

Moreover, again because A is abelian, there is a non-zero projection f ′ ∈ A,
smaller than f , such that, for every j, either f ′fj = f ′ or f ′fj = 0, with
f ′fi 6= 0 for at least one i. Cutting (11.11) by f ′, and keeping only the
indices i such that f ′fi = f ′, we may assume that

m∑
i=1

(
f −

m∑
j=1

EA(x∗i vkxj)EA(x∗jv
∗
kxi)f

)2
< mδf, (11.11)

with fif = f for all i.
Now, we use the local Rohlin type lemma 11.1.11 to the family

{x∗ixj , x∗i vkxj : 1 ≤ i, j ≤ m, 1 ≤ k ≤ l}.
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Given η > 0, there exists a projection e ∈ A, with e ≤ f and

‖ex∗ixje− δi,je‖2 < η‖e‖2, (11.12)

‖ex∗i vkxje− λi,j,ke‖2 < η‖e‖2. (11.13)

The deformation lemma 11.1.12, the remark 11.1.13 and Equation (11.12)
provide a projection e′ ∈M , e′ ≤ e, partial isometries u1, . . . , um in M and
a fonction δ : R∗+ → R∗+ satisfying limη→0 δ(η) = 0 such that for every i, j,

u∗iuj = δi,je
′,

∥∥e− e′∥∥
2
< δ(η)

∥∥e′∥∥
2

and ‖xie− ui‖2 < δ(η)
∥∥e′∥∥

2
.

We use Equation (11.13) to approximate in ‖·‖2-norm

EA(x∗i vkxj)e = EA(ex∗i vkxje)

by ex∗i vkxje since it implies ‖EA(ex∗i vkxje)− ex∗i vkxje‖2 < 2η‖e‖2. In turn,
ex∗i vkxje is approximated by u∗i vkuj .

Therefore, if η is chosen sufficiently small, we get from (11.11), where f
is first replaced by e, and then e is approximated by e′, that

m∑
i=1

τ
((
e′ −

m∑
j=1

u∗i vkuju
∗
jv
∗
kui
)2)

< mδτ(e′), (11.14)

and moreover we get from (11.13) that∥∥u∗i vkuj − λi,j,ke′∥∥2

2
< (δ/m)

∥∥e′∥∥2

2
. (11.15)

We set ei,j = uiu
∗
j , q =

∑m
i=1 ei,i and we denote by Q the matrix algebra

generated by the matrix units (ui,j).
By Pythagoras’ theorem and (11.15), and since

‖ei,ivkej,j − λi,j,kei,j‖2 =
∥∥ui(u∗i vkuj − λi,j,ke′)u∗j∥∥2

=
∥∥u∗i vkuj − λi,j,ke′∥∥2

,

we get ∥∥∥∥∥∥qvkq −
∑
i,j

λi,j,kei,j

∥∥∥∥∥∥
2

2

=
∑
i,j

‖ei,ivkej,j − λi,j,kei,j‖22

< mδ
∥∥e′∥∥2

2
= δ‖q‖22,

and so
d2(qvkq,Q) < δ1/2‖q‖2. (11.16)

It remains to estimate ‖q − vkqv∗k‖2. We have, by (11.14),∥∥∥∥∥q −∑
i

ei,ivkqv
∗
kei,i

∥∥∥∥∥
2

2

=
∑
i

‖ei,i − ei,ivkqv∗kei,i‖
2
2

and so∥∥∥∥∥q −∑
i

ei,ivkqv
∗
kei,i

∥∥∥∥∥
2

2

=
∑
i

∥∥e′ − u∗i vkqv∗kui∥∥2

2
< δm

∥∥e′∥∥2

2
= δ‖q‖22.

(11.17)
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An immediate computation shows that∥∥∥∥∥vkqv∗k −∑
i

ei,ivkqv
∗
kei,i

∥∥∥∥∥
2

2

+

∥∥∥∥∥∑
i

ei,ivkqv
∗
kei,i

∥∥∥∥∥
2

2

= ‖vkqv∗k‖
2
2 = ‖q‖22

so that∥∥∥∥∥vkqv∗k −∑
i

ei,ivkqv
∗
kei,i

∥∥∥∥∥
2

2

=
(
‖q‖2 +

∥∥∥∥∥∑
i

ei,ivkqv
∗
kei,i

∥∥∥∥∥
2

)(
‖q‖2 −

∥∥∥∥∥∑
i

ei,ivkqv
∗
kei,i

∥∥∥∥∥
2

)
< (2‖q‖2)(δ1/2‖q‖2),

thanks to (11.17). It follows that

‖q − vkqv∗k‖2 < (δ1/2 + 21/2δ1/4)‖q‖2. (11.18)

Chosing δ sufficiently small, (11.16) and (11.18) give our wanted inequalities
(11.1). �

11.1.2. The local approximation property implies the AFD pro-
perty.

Theorem 11.1.17. Let (M, τ) be a tracial von Neumann algebra which
has the local approximation property. Then M is AFD.

Proof. We fix ε > 0 and a finite subset F of the unit ball of M . We
set δ = 3−1/2ε. Recall that every element of M is a linear combination of
at most four unitary elements. So, since M has the local approximation
property, there exists a finite matrix algebra Q with unit q such that

‖[q, x]‖2 < δ‖q‖2 and d2(qxq,Q) < δ‖q‖2 (11.19)

for every x ∈ F .
We denote by EQ the trace preserving conditional expectation from qMq

onto Q. For x ∈ F , we deduce from (11.19) and from Pythagoras’ theorem,
first that

‖qxq − EQ(qxq)‖2 < δ‖q‖2,
and next, since qx(1− q) + (1− q)xq is orthogonal to qMq, that

‖(x− (1− q)x(1− q))− EQ(qxq)‖22
= ‖qxq − EQ(qxq)‖22 + ‖qx(1− q) + (1− q)xq‖22
= ‖qxq − EQ(qxq)‖22 + ‖q[q, x] + [x, q]q‖22
≤ ‖qxq − EQ(qxq)‖22 + 2‖[x, q]‖22 ≤ ε

2‖q‖22.
Let us consider the set S of all families {Qi}i∈I of matrix subalgebras

Qi whose units qi are mutually orthogonal and are such that

∀x ∈ F,
∥∥x− (1− q)x(1− q)− E⊕i∈IQi(qxq)

∥∥2

2
≤ ε2‖q‖22, (11.20)
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where q =
∑

i∈I qi.
By the first part of the proof, S is not empty. Using Remark 11.1.10, a

“passing to the limit argument” easily implies that S is inductively ordered
by inclusion. We take a maximal element {Qi}i∈I in S with corresponding
set {qi}i∈I of units.

We want to show that q =
∑

i∈I qi = 1. Suppose, by contradiction, that
q 6= 1. We apply the first part of the proof to (1 − q)M(1 − q), which has
the local approximation property, and to the set {(1− q)x(1− q) : x ∈ F}.
There exists a non-zero finite dimensional algebra P ⊂ (1−q)M(1−q), with
unit p such that

‖(1− q)x(1− q)− (1− q − p)x(1− q − p)− EP (pxp)‖22 < ε2‖p‖22,

for all x ∈ F . Adding this inequality to (11.20) we get

‖x− (1− q − p)x(1− q − p)−E(⊕iQi)⊕P ((q + p)x(q + p))‖22
≤ ε2‖q + p‖22

after having observed that

E(⊕iQi)⊕P ((q + p)v(q + p)) = E⊕iQi(qxq) + EP (pxp)

and using again Pythagoras’ theorem.
This contradicts the maximality of {Qi}i∈I , and so we have q = 1.
Hence F is well approximated by elements of

⊕
i∈I Qi, but

⊕
i∈I Qi is not

finite dimensional when I is infinite. In this case, given ε1 < ε2, we choose a
finite subset I1 of I such that τ(1−

∑
i∈I1 qi) < ε1 and ‖x−E⊕i∈I1Qi(x))‖2 ≤

2ε for x ∈ F . We set f = 1−
∑

i∈I1 qi and

N = Cf ⊕
⊕
i∈I1

Qi.

For x ∈ F , we have

‖x− EN (x)‖2 ≤ ‖x−
∑
i∈I1

EQi(qixqi)‖2 +

∥∥∥∥τ(fxf)

τ(f)
f

∥∥∥∥
2

< 2ε+
√
ε1 < 3ε.

It follows that F ⊂3ε N , where N is a finite dimensional unital subalgebra
of M and this concludes the proof. �

11.2. Uniqueness of separable AFD II1 factors

When M is a II1 factor, the following lemma shows that, in the definition
of an AFD factor, we may assume that Q is a matrix algebra of type I2n for
some n.

Lemma 11.2.1. Let M be an AFD II1 factor. Given ε > 0 and a finite
subset F ⊂ U(M), there exists, for some n, a type I2n subalgebra N of M ,
with 1N = 1M such that F ⊂ε N .
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Proof. By definition, there exists a finite dimensional subalgebra Q
with 1Q = 1M and F ⊂ε Q. We have Q =

∑m
i=1Qi where each Qi is

isomorphic to some ki × ki matrix algebra (see Exercise 2.2). We denote by
qi the unit of Qi and we choose mutually orthogonal minimal projections
e1
i , . . . , e

ki
i in Qi, so that their sum is qi. We fix an integer n. Dyadic

approximations of the numbers τ(e1
i ), i = 1, . . . ,m, allow to build mutually

orthogonal projections f ji , 1 ≤ i ≤ m, 1 ≤ j ≤ ni, with f ji ≤ e1
i and

τ(f ji ) = 2−n for all i, j, and which are such that

τ(e1
i −

ni∑
j=1

f ji ) < 2−n.

We select partial isometries wli ∈ Qi, 1 ≤ l ≤ ki, 1 ≤ i ≤ m, such that

(wli)
∗wli = e1

i and wli(w
l
i)
∗ = eli. We consider the projections wlif

j
i (wli)

∗ for
all possible i, j, l and get in such a way a family of mutually orthogonal
projections, each of trace 2−n. We complete this family by appropriate
orthogonal projections, of trace 2−n, in such a way that the sum of all the
projections of trace 2−n we have built is 1. These projections are minimal
projections of a subalgebra N of type I2n . In order to define N we have
the freedom of the choice of the partial isometries relating these minimal

projections. We do so that this N contains the partial isometries wlif
j
i for

all i, j, l. We set vli =
∑ni

j=1w
l
if
j
i , 1 ≤ l ≤ ki, 1 ≤ i ≤ m. Then wli − vli is a

partial isometry with e1
i −

∑ni
j=1 f

j
i as right support. It follows that∥∥∥wli − vli∥∥∥2

2
= τ(e1

i −
ni∑
j=1

f ji ) < 2−n,

and so d2(wli(w
l
j)
∗, N) < 21−n/2.

Since the wli(w
l
j)
∗ generate linearly Q, it is a routine exercise to see that

if n is large enough, we have F ⊂2ε N . �

Theorem 11.2.2. Let M be a separable II1 factor. The following condi-
tions are equivalent:

(1) M is amenable;
(2) M is AFD;
(3) there exists an increasing sequence (Qn) of finite dimensional ∗-

subalgebras of M , with the same unit as M , such that (∪Qn)′′ = M ;
(4) there exists in M an increasing sequence (Qn) of matrix algebras

Mn of type I2kn , with the same unit as M , such that (∪Qn)′′ = M ;
(5) M is isomorphic to the hyperfinite II1 factor R.

Proof. (5) ⇒ (4) ⇒ (3) ⇒ (2) is immediate and (5) ⇒ (1) has been
proved in the theorem 10.2.4. Theorem 11.1.3 states that (1) ⇒ (2). Let
us show (2) ⇒ (4). Let {xn : n ≥ 1} be a countable, s.o. dense subset of
the unit ball of M . For every n, Lemma 11.2.1 provides a 2kn × 2kn matrix
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algebra Qn with 1M ∈ Qn such that

‖xi − EQn(xi)‖2 < 2−n, for 1 ≤ i ≤ n.
The main difficulty is that the matrix algebras Qn obtained in such a way
are not in increasing order. Therefore, we will construct them inductively.

Assume that we have constructed Q1 ⊂ · · · ⊂ Qn such that

‖xi − EQk(xi)‖2 < 2−k, for 1 ≤ i ≤ k, k ≤ n,
each Qj being a matrix algebra of type I

2kj
. We will construct Qn+1 of type

I2kn+1 with Qn ⊂ Qn+1 and

‖xi − EQn+1(xi)‖2 < 2−(n+1), for 1 ≤ i ≤ n+ 1. (11.21)

Then, we will have
M = ∪∞n=1Qn

s.o
.

We consider a matrix units (ei,j) of Qn and we set e = e1,1. Since eMe

is amenable, hence AFD, given ε > 0, we can find a 2k × 2k matrix algebra
N ⊂ eMe with e ∈ N , and elements xi,j,k in N such that

‖e1,ixjek,1 − xi,j,k‖2 < ε 2−(n+1), (11.22)

for 1 ≤ j ≤ n+ 1 and 1 ≤ i, k ≤ 2kn .
Let (e1

i,j)1≤i,j≤2k be a matrix units of N . Then{
ei,1e

1
k,le1,j : 1 ≤ i, j ≤ 2kn , 1 ≤ k, l ≤ 2k

}
is a matrix units which generates a 2kn+1 × 2kn+1 matrix algebra Qn+1 with
kn+1 = kn + k. Obviously, Qn is diagonally embedded into Qn+1.

It remains to check Condition (11.21). Setting

yj =
2kn∑
i,k=1

ei,1xi,j,ke1,k ∈ Qn+1,

we have

‖xj − yj‖22 =
2kn∑
i,k=1

‖ei,ixjek,k − ei,1xi,j,ke1,k‖22.

Since
‖ei,ixjek,k − ei,1xi,j,ke1,k‖22 ≤ ‖e1,ixjek,1 − xi,j,k‖22,

we get, thanks to the inequalities (11.22),

‖xj − yj‖22 < (2knε2−(n+1))2.

So, if we choose ε = 2−kn , we obtain∥∥xj − EQn+1(xj)
∥∥

2
< ‖xj − yj‖2 ≤ 2−(n+1) for 1 ≤ i ≤ n+ 1.

This completes the proof (2) ⇒ (4).
To finish the proof of the theorem, let us now show that (4) ⇒ (5).

Note that M and R are of the form M = (∪Pn)′′ and R = (∪Qn)′′ where
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(Pn) and (Qn) are increasing sequences with Pn ' M2n(C) ' Qn. Then
there exists an isometric ∗-isomorphism Φ from the ∗-algebra M = ∪nPn
onto R = ∪nQn which preserves the traces: τR ◦ α = τM |M. Since M̂ and

R̂ are dense in L2(M) and L2(R) respectively, there is a unique unitary

operator U : L2(M)→ L2(R) such that Ux̂ = α̂(x) for every x ∈ M. Then
x 7→ UxU∗ defines an isomorphism from M onto R which extends α. �

Remark 11.2.3. Every von Neumann subalgebra of an amenable tracial
von Neumann algebra is amenable. Therefore, it follows from the theorem
11.2.2 that every infinite dimensional subfactor of R is isomorphic to R.
Hence R is the smallest II1 factor in the sense that every II1 factor con-
tains a subfactor isomorphic to R (see Proposition 4.2.6) and that every II1

subfactor of R is isomorphic to R.
Similarly, by Theorem 11.2.2 we get that eRe is isomorphic to R for any

non-zero projection of R. Hence, R∗+ is the fundamental group of R.
Finally, we observe that R appears in many ways, among them as:

• infinite tensor products of matrix algebras;
• L(G) for every ICC amenable countable group G;
• L∞(X) o G for every free ergodic p.m.p. action of an amenable

countable group G (see Exercise 10.6).

We say that a separable factor M is approximately finite dimensional
(AFD) if there exists an increasing sequence (Qn) of finite dimensional ∗-
subalgebras of M , with the same unit as M , such that (∪nQn)′′ = M . Such
an algebra is amenable (this can be shown as in Theorem 10.2.4, using a
standard form of M).

Corollary 11.2.4. There is a unique separable AFD type II∞ factor,
up to isomorphism.

Proof. We observe first that R⊗B(`2(N)) is a separable AFD type
II∞ factor. Now let M be such a factor, which is therefore amenable. By
Exercise 8.1, we know that M is isomorphic to some N⊗B(`2(N)) where
N is a II1 factor. Let p be any finite rank projection in B(`2(N)). Then
(1 ⊗ p)(N⊗B

(
`2(N))

)
(1 ⊗ p) = N⊗B(p`2(N)) is amenable, and since there

exists a norm-one projection from N⊗B(p`2(N)) onto N ⊗ 1 (for instance
the trace preserving one), we get from Theorem 11.2.2 that N is isomorphic
to R. �

Exercise

Exercise 11.1. Let M be a finite von Neumann algebra and write M =∑⊕
i∈I(Mi, τi) as a direct sum of tracial von Neumann algebras (see Exercise

6.2).

(i) Show that M is amenable if and only if each Mi is amenable.
(ii) Show that M is AFD if and only if each Mi is AFD.
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Notes
The notion of approximately finite dimensional (AFD) II1 factor was

introduced by Murray and von Neumann3 in [MvN43], therefore in the
early ’40s. The equivalence between conditions (2) to (5) in Theorem 11.2.2
was proved in this paper, where it is also shown that the crossed product
associated with a free ergodic p.m.p. action of a locally finite group is AFD,
as well as the group von Neumann algebra of any ICC locally finite group.
In [Dye63], Dye established that free ergodic p.m.p. actions of groups with
polynomial growth also give rise to this AFD factor. For abelian groups this
had been stated by Murray and von Neumann.

Some 30 years after Murray and von Neumann breakthrough, Connes
obtained ([Con76]) the other major achievement developped in this chap-
ter by showing the remarkable fact that an injective (i.e., amenable) von
Neumann algebra is AFD (the converse being immediate). The simplified
proof that we give in this chapter is borrowed from [Pop86b].

3They rather used the terminology of “approximately finite factor”.
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CHAPTER 12

Cartan subalgebras

A central problem in the theory of von Neumann algebras is the clas-
sification, up to isomorphism, of the group measure space von Neumann
algebras L∞(X)oG for free p.m.p. actions of countable groups, in terms of
G and of the group action. The von Neumann subalgebra L∞(X) plays a
crucial role in the study of L∞(X)oG. It is a Cartan subalgebra (Definition
12.1.11), a notion that has attracted increasing attention over the years.

In the first section we study the abstract properties of Cartan inclusions
A ⊂M , where M is a tracial von Neumann algebra.

In the second section, we address the classification problem of group
measure space von Neumann algebras, and more generally of von Neumann
algebras of countable p.m.p. equivalence relations. We have already ob-
served in Section 1.5.3 that the isomorphism class of L∞(X) o G only de-
pends on the equivalence relation given by the orbits of G y X. However
we may have L∞(X1) o G1 ' L∞(X2) o G2 without the corresponding
equivalence relations being isomorphic (see Section 17.3). One of the main
result of Section 12.2 is that two free p.m.p. actions G1 y (X1, µ1) and
G2 y (X2, µ2) are orbit equivalent if and only if the corresponding tracial
Cartan inclusions L∞(X1) ⊂ L∞(X1) o G1 and L∞(X2) ⊂ L∞(X2) o G2

are isomorphic (Corollary 12.2.7).
In Section 12.3 we highlight an alternative to the notion of equivalence

relation for the study of Cartan subalgebras, namely the notion of full group:
there is a functorial bijective correspondence between the classes of tra-
cial Cartan inclusions (up to isomorphism) and the classes of full groups
equipped with 2-cocycles (Theorem 12.3.8). In particular, for G y (X,µ)
the full group [G] generated by G encodes all the information on the orbit
equivalence class of the action (Corollary 12.3.10).

Finally, in the last section we use the background on Cartan subalgebras
developped in the first section and techniques already applied in proving
that amenable tracial von Neumann algebras are AFD (previous chapter)
to give an operator algebraic proof of the fact that every amenable countable
p.m.p. equivalence relation (hence every free p.m.p. action of any amenable
countable group) is hyperfinite.

12.1. Normalizers and Cartan subalgebras

12.1.1. Preliminaries on normalizers of an abelian subalgebra.
Given a von Neumann algebra M and a von Neumann subalgebra A, the

191
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normalizer of A in M is the group NM (A) of unitary operators u ∈M such
that uAu∗ = A. Note that NM (A) contains the unitary group U(A) as a
normal subgroup.

When A is abelian, it is useful to introduce the notion of normalizing
pseudo-group, more general than the group of normalizers.

Definition 12.1.1. Let M be a von Neumann algebra and A an abelian
von Neumann subalgebra. The normalizing pseudo-group of A in M (or
quasi-normalizer) is the set GNM (A) of partial isometries v ∈ M such that
vAv∗ ⊂ A and v∗Av ⊂ A.

Note that if v ∈ GNM (A), then vv∗ and v∗v are two projections in A
and vAv∗ = Avv∗, v∗Av = Av∗v. The map x 7→ vxv∗ is an isomorphism
from Av∗v onto Avv∗. The set GNM (A) is stable under product and adjoint.
So, the linear span of GNM (A) is an involutive subalgebra of M . The link
between NM (A) and GNM (A) is described in the next lemma.

Lemma 12.1.2. Let (M, τ) be a tracial von Neumann algebra and A an
abelian von Neumann subalgebra. A partial isometry v belongs to GNM (A)
if and only if it is of the form uq with u ∈ NM (A) and q = v∗v ∈ A.

Proof. We may assume that GNM (A)′′ = M . Given v ∈ GNM (A), let
(vi)i∈I be a maximal family of elements in GNM (A) such that {viv∗i : i ∈ I}
and {v∗i vi : i ∈ I} are both consisting of mutually orthogonal projections,
with vi0 = v for some i0 ∈ I. We set e = 1−

∑
i viv

∗
i and f = 1−

∑
i v
∗
i vi.

Then e and f are two projections in A which are equivalent in the finite
von Neumann algebra M since 1 − e and 1 − f are equivalent. We claim
that e = f = 0. Otherwise, let w be a partial isometry with ww∗ = e and
w∗w = f . We choose ε > 0 such that ε < ‖w‖2. Let λ1, . . . , λn in C and
u1, . . . , un in GNM (A) such that∥∥∥w − n∑

j=1

λjuj

∥∥∥
2
≤ ε.

We have
∥∥∥w −∑n

j=1 λjeujf
∥∥∥

2
≤ ε, so that at least for one j we have eujf 6=

0. Then w′ = eujf belongs to GNM (A) and is such that ew′ = w′ = w′f .
But this contradicts the maximality of (vi)i∈I .

To conclude, we set u =
∑

i vi. �

The von Neumann generated by NM (A) is the w.o. (or s.o.) closure
of the linear span of NM (A). It is also the closure of the linear span of
GNM (A).

12.1.2. Case of a maximal abelian von Neumann subalgebra.
We begin by a property of maximal abelian ∗-subalgebras.

Proposition 12.1.3. Let A be an abelian von Neumann subalgebra of a
tracial von Neumann algebra (M, τ) and let (An) be an increasing sequence
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of von Neuman subalgebras of A such that ∪nAn is w.o. dense in A. Then
A is maximal abelian if and only if, for every x ∈M ,

lim
n

∥∥EA′n∩M (x)− EAn(x)
∥∥

2
= 0.

Moreover, in this case we have, for x ∈M ,

lim
n

∥∥EA′n∩M (x)− EA(x)
∥∥

2
= 0.

Proof. Observe first that A′n ∩M is a decreasing sequence of von Neu-
mann algebras whose intersection is A′ ∩M . Then by Lemma 11.1.9 and
Remark 11.1.10 we have, for every x ∈M ,

lim
n

∥∥EA′n∩M (x)− EA′∩M (x)
∥∥

2
= 0 and lim

n
‖EAn(x)− EA(x)‖2 = 0.

Then, the statement follows immediately since A is maximal abelian if and
only if A = A′ ∩M . �

Corollary 12.1.4. Let A be a maximal abelian von Neumann subal-
gebra of a separable tracial von Neumann algebra (M, τ). Then, there is a
sequence (enk)1≤k≤mn, n ≥ 1, of partitions of the unit in A such that for
every x ∈M ,

lim
n

∥∥∥∥∥
mn∑
k=1

enkxe
n
k − EA(x)

∥∥∥∥∥
2

= 0

Proof. Let (An) be an increasing sequence of finite dimensional ∗-
subalgebras of A whose union is w.o. dense in A (see Lemma 11.1.8). By
the previous proposition we have

lim
n

∥∥EA′n∩M (x)− EA(x)
∥∥

2
= 0.

We denote by enk , k = 1, . . . ,mn, the minimal projections of An. It suffices
to observe that EA′n∩M (x) =

∑mn
k=1 e

n
kxe

n
k . �

We now turn to the description of some useful properties of GNM (A).
In the rest of this section (M, τ) will be a tracial von Neumann algebra and
A will be a maximal abelian ∗-subalgebra (m.a.s.a.) of M . For simplicity of
notation we assume the M is separable. The reader will easily check that
this assumption is not really needed.

Proposition 12.1.5. Let v ∈ GNM (A). Then there exists a non-zero
projection f ∈ A such that either fvf = 0 or fvf is a unitary element in
Af .

Proof. Assume first that EA(v) 6= 0 and write EA(v) = ve as in Lemma
12.1.6. Then eve = ve is a unitary in Ae and we take f = e.

Assume now that EA(v) = 0. By the previous corollary, there exists a
partition (ek)1≤k≤m of the unit in A such that

m∑
k=1

‖ekvek‖22 =

∥∥∥∥∥
m∑
k=1

ekvek

∥∥∥∥∥
2

2

≤ 1/2.
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It follows that there is at least an index k such that ekvek is not a unitary
in Aek. Then, f = ek − ekvekv∗ek is a non-zero projection in A such that
fvf = 0. �

Recall that we denote by eA the orthogonal projection from L2(M) onto
L2(A). More generally, if v ∈ GNM (A) the space vL2(A) is closed and
we will denote by evA the corresponding orthogonal projection. We have
evA = veAv

∗ ∈ 〈M, eA〉 ∩A′ and vL2(A) = L2(A)v.
Recall also that τ̂ denotes the canonical normal faithful semi-finite trace

on 〈M, eA〉 and that τ̂(evA) = τ(vv∗) (see Section 9.4.1).
The restriction of eA to M is the conditional expectation EA from M

onto A (see Remark 9.1.3). Similarly, the restriction of evA to M is the map
x 7→ vEA(v∗x) since x − vEA(v∗x) is orthogonal to vA. We set EvA(x) =
vEA(v∗x). We establish below some features of these maps EvA and evA.

Lemma 12.1.6. Let v0, v ∈ GNM (A). There exists a unique projection
e ∈ A such that Ev0A(v) = ve with e ≤ v∗v. In particular Ev0A(v) is a
partial isometry.

Proof. We consider first the case where v0 = 1. Let EA(v) = wa
be the polar decomposition of EA(v) and set e = w∗w. Then we have
e ≤ v∗v since v∗v is greater that the right support of EA(v). For b ∈ A
we have EA(v)b = (vbv∗)EA(v), that is wab = (vbv∗)wa. It follows that
wb = (vbv∗)w and therefore v∗wb = bv∗w. Thus v∗w is a partial isometry
which belongs to A since A is maximal abelian. Moreover, we have

w∗v = EA(w∗v) = w∗EA(v) = w∗wa = a.

We see that a is a positive partial isometry, hence a projection. It follows
that a = e and w = ve.

Let us consider now the general case. By the first part, we have

Ev0A(v) = v0EA(v∗0v) = v0(v∗0v)f

where f ∈ A is a projection such that f ≤ v∗v0v
∗
0v. Thus

Ev0A(v) = v(v∗v0v
∗
0v)f

and we set e = (v∗v0v
∗
0v)f = f .

The uniqueness of e is obvious. �

Lemma 12.1.7. Let v1, v2, v ∈ GNM (A) and suppose that v1A and v2A
are orthogonal. Then the left (respectively right) supports of Ev1A(v) and
Ev2A(v) are orthogonal.

Proof. We have Ev1A(v) = ve1 and Ev2A(v) = ve2 with e1 ≤ v∗v and
e2 ≤ v∗v. Since v1A and v2A are orthogonal, we have

0 = τ(e1v
∗ve2) = τ(e1e2),

so that 0 = e1e2. �
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Let (vi)i∈I be a family of partial isometries in GNM (A) such that the
subspaces viA are mutually orthogonal. We set∑

i∈I
viA =

{
x ∈M : x =

∑
i∈I

viai, ai ∈ A,
∑
i∈I
‖viai‖22 < +∞

}
.

We observe that such an expression, if it exists, is unique as long as we
require that v∗i viai = ai for every i since ai = EA(v∗i x) in this case.

Lemma 12.1.8. The space
∑

i∈I viA is closed in M equipped with the
‖·‖2-norm. Moreover, for every v ∈ GNM (A) there exists a unique projection
e ∈ A with e ≤ v∗v such that ve ∈

∑
i∈I viA and v − ve is orthogonal to∑

i∈I viA.

Proof. The closure of
∑

i∈I viA in L2(M) is ⊕i∈IviL2(A). Let x ∈M .

Its orthogonal projection on ⊕i∈IviL2(A) is ⊕i∈IviEA(v∗i x). It follows that

M ∩
(
⊕i∈I viL2(A)

)
=
∑
i∈I

viA.

Let now v ∈ GNM (A). Using the two previous lemmas, we get that
EviA(v) = vei for a unique projection ei ∈ A such tha ei ≤ v∗v and that
these projections ei are mutually orthogonal. Therefore e =

∑
i∈I ei is a

projection in A. We have ve =
∑

i∈I vei ∈
∑

i∈I viA and v−ve is orthogonal
to
∑

i∈I viA. �

Let A be the von Neumann algebra generated by A ∪ JAJ . It is an
abelian von Neumann subalgebra of 〈M, eA〉 ∩A′.

Lemma 12.1.9. Let v ∈ GNM (A). Then evA ∈ A. Moreover, we have

AevA = AevA = A′evA.

Proof. Let us first recall a notation: given a von Neumann subalgebra
N of B(L2(M)) and ξ ∈ L2(M), then [Nξ] ∈ N ′ is the orthogonal projection
on Nξ. Thus eA = [A1] and for v ∈ GNM (A) we have [JAJv] = evA.

Case v = 1. Let x ∈ M . Using Corollary 12.1.4, we see that there is
a sequence (enk)1≤k≤mn , n ≥ 1, of partitions of the unit in A such that we
have

lim
n

∥∥∥∥∥
mn∑
k=1

enkxe
n
k − EA(x)

∥∥∥∥∥
2

= 0.

If we set Pn =
∑mn

k=1 e
n
kJe

n
kJ ∈ A, we get limn ‖Pn(x)− eA(x)‖2 = 0 for

every x ∈M . It follows that the sequence (Pn)n of projections converges to
eA in the s.o. topology and so eA ∈ A ⊂ A′.

We have eA ≤ [A1] ≤ [A′1], and finally all three projections are the
same since [A′1] is the smallest projection p ∈ A such that p(1) = 1.

Note that AeA is a maximal abelian subalgebra of B(L2(A)). Since AeA
is abelian and contains AeA we get that AeA = AeA is maximal abelian and
and therefore AeA = A′eA.
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General case v ∈ GNM (A). We set e = v∗v and f = vv∗. Since v
commutes with JAJ and belongs to the normalizing pseudo-group of A, we
see that x 7→ vxv∗ is an isomorphism from Ae onto Af . In particular, we
have evA = veAv

∗ ∈ A. The rest of the statement also follows by spatial
isomorphism. �

Remark 12.1.10. Given b ∈ A there exists a unique a ∈ A such that
avv∗ = a and bevA = aevA. Moreover we have ‖a‖ ≤ ‖b‖. To see this
inequality we take a1 ∈ A with a1eA = (v∗bv)eA. We have ‖a1‖ ≤ ‖b‖. To
conclude, we observe that a = va1v

∗.

12.1.3. Cartan subalgebras.

Definition 12.1.11. Let (M, τ) be a tracial von Neumann algebra. A
Cartan subalgebra is a maximal abelian von Neumann subalgebra A of M
such that the normalizer NM (A) generates M as a von Neumann algebra.
Then we will also say that A ⊂M is a tracial Cartan inclusion, or simply a
Cartan inclusion.

Note that in this case, the linear span of NM (A) and the linear span of
GNM (A) are dense in M in the norm ‖·‖2.

Proposition 12.1.12. If A is a Cartan subalgebra of a tracial von Neu-
man algebra (M, τ), then A is a maximal abelian subalgebra of B(L2(M)).

Proof. Since A is a Cartan subalgebra of M the linear span N of

NM (A) is dense in L2(M). It follows that L2(M) =
∨
u∈NM (A) uA

‖·‖2 and

so 1 =
∨
u∈NM (A) euA. Since A′euA = AeuA ∈ A we see that A′ = A. �

Remark 12.1.13. When A is a Cartan subalgebra of a separable tracial
von Neumann algebra M , we get that the A-A-bimodule L2(M) has a cyclic
vector (see Theorem 3.1.4).

We now show the existence of an orthonormal basis of M over A made
of elements of GNM (A) when A is a Cartan subalgebra.

Proposition 12.1.14. Let A be a Cartan subalgebra of a tracial von
Neuman algebra (M, τ). There is a family (vi)i∈I of non-zero partial isome-
tries in GNM (A) such that the subspaces viA, i ∈ I, are mutually orthogonal
and M =

∑
i∈I viA.

Proof. Let (vi)i∈I be a maximal family of non-zero partial isometries
in GNM (A) such that the subspaces viA, i ∈ I, are mutually orthogonal.
Suppose that

∑
i∈I viA 6= M . Since the linear span of GNM (A) is ‖·‖2-

dense in M , there exists v ∈ GNM (A) such that v 6∈
∑

i∈I viA. Let e
be a projection in A such that ve ∈

∑
i∈I viA and v − ve orthogonal to∑

i∈I viA. Then v − ve is a non-zero partial isometry in GNM (A) and (v −
ve)A is orthogonal to viA for every i ∈ I. This contradicts the maximality
of (vi)i∈I �
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Note that (vi)i∈I is an orthonormal basis of the right A-module L2(M),
of course countable when M is separable. We will say that (vi)i∈I is an
orthonormal basis over A.

Corollary 12.1.15. Let A be a Cartan subalgebra of a separable tracial
von Neumann algebra M and let (vn)n≥1 be an orthonormal basis over A as
in the previous proposition. Then

A =

∑
n≥1

anevnA : an ∈ Avnv∗n, sup
n
‖an‖ < +∞

.
Moreover, the above decomposition of every element of A is unique.

Proof. This is immediate since evnA ∈ A for every n, and
∑

n≥1 evnA =
1. It suffices to use Lemma 12.1.9 and Remark 12.1.10. �

12.1.4. Basic examples of Cartan inclusions. In this section, (X,µ)
will be a standard probability measure space and A = L∞(X,µ).

The typical example of a Cartan inclusion is provided by the group mea-
sure space construction. Let M = L∞(X,µ) o G where G y (X,µ) is a
free p.m.p. action. As seen in Chapter 1, L∞(X,µ) is a maximal abelian
von Neumann subalgebra of M and M is generated by L∞(X,µ) and the
set {ug : g ∈ G} of canonical unitaries. Observe that these unitaries ug nor-
malize L∞(X,µ) and thus L∞(X,µ) is a Cartan subalgebra of M . Such
Cartan subalgebras are called group measure space Cartan subalgebras. Ob-
serve that in this case, Proposition 12.1.14 is obvious: every x ∈ M has a
unique expression as x =

∑
g∈G ugag with

∑
g∈G ‖ag‖

2
2 < +∞.

A more general example is given by p.m.p. equivalence relations. Let R
be a countable p.m.p. equivalence relation on (X,µ). Then A = L∞(X,µ)
is a Cartan subalgebra of M = L(R). Indeed, we know that A is a maximal
abelian subalgebra of M (Proposition 1.5.5). Moreover, L(R) is generated,
as a von Neumann algebra, by the partial isometries uϕ, where the ϕ’s
are partial isomorphisms between measurable subsets of X, whose graph is
contained into R (see Section 1.5.2). Recall that uϕ is the partial isometry
defined by (uϕξ)(x, y) = ξ(ϕ−1(x), y) if x is in the domain D(ϕ−1) of ϕ−1

and (uϕξ)(x, y) = 0 otherwise. For f ∈ A, we have uϕfu
∗
ϕ = 1D(ϕ−1)f ◦ϕ−1

and therefore uϕ belongs to GNM (A).
We keep the notation of Section 1.5.2. Recall that the elements of L(R)

may be viewed as elements of L2(R, ν) via the identification T ≡ T1∆.

Lemma 12.1.16. Every u ∈ NM (A) has a unique expression as fuϕ,
where f ∈ U(A) and ϕ ∈ Aut (X,µ) is such that x ∼R ϕ(x) for a.e. x ∈ X.

Proof. Let ϕ be the automorphism of (X,µ) induced by the restriction
of Ad (u) to A. Viewing u as an element of L2(R, ν), we have, for every
a ∈ A,

u(x, y)a(y) = a(ϕ−1(x))u(x, y), for a.e. (x, y) ∈ R.
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Since u is a unitary operator, it follows that for almost every x ∈ X there is
y ∼R x with u(x, y) 6= 0 (by Exercise 1.16) and therefore we have ϕ(x) ∼R x.

Moreover, since Ad (u)|A = Ad (uϕ)|A we see that u∗ϕu ∈ U(A). This
concludes the proof, the uniqueness of the decomposition being obvious. �

In the setting of equivalence relations, Proposition 12.1.12 has an easy
proof, as shown below.

Proposition 12.1.17. Let R be a countable p.m.p. equivalence rela-
tion on (X,µ). We set M = L(R) and A = L∞(X,µ). Then the von
Neumann algebra A generated in B(L2(M, τ)) by A ∪ JAJ is the von Neu-
mann algebra of multiplication operators by the elements of L∞(R, ν) on
L2(M, τ) = L2(R, ν).

Proof. We remark that for a ∈ A and ξ ∈ L2(R, ν) we have

(aξ)(x, y) = a(x)ξ(x, y), and (JaJξ)(x, y) = a(y)ξ(x, y),

whence the inclusion A ⊂ L∞(R, ν). We claim that A is a maximal abelian
von Neumann subalgebra of B(L2(R, ν)). To this end, by Theorem 3.1.4,
it suffices to show that A has a cyclic vector. Let ξ0 be a bounded strictly
positive measurable function on R which belongs to L1(R, ν) and therefore
to L2(R, ν) as well. Let η ∈ L2(R, ν) be a function orthogonal to Aξ0. We
may assume that X = [0, 1] with its canonical Borel structure. We have∫

[0,1]×[0,1]
η(x, y)f(x)g(y)ξ0(x, y)dν(x, y) = 0

for every continuous functions f, g on [0, 1], where we view ξ0dν as a bounded
measure on [0, 1]× [0, 1]. It follows that η = 0 a.e. on (R, ν).

This shows our claim and consequently the lemma. �

We leave it to the reader to translate Proposition 12.1.14 in the setting
of equivalence relations.

12.2. Isomorphism of Cartan inclusions and orbit equivalence

Let us begin by recalling some definitions.

Definition 12.2.1. Let R1 and R2 be two countable p.m.p. equivalence
relations on (X1, µ1) and (X2, µ2) respectively.

(i) Let θ : (X1, µ1)→ (X2, µ2) be an isomorphism of probability mea-
sure spaces. We say that θ induces an isomorphism from R1 onto
R2 (or by abuse of langage that θ is an isomorphism from R1 onto
R2) if (θ × θ)(R1) = R2 (up to null sets). Then we say that R1

and R2 are isomorphic.
(ii) Assume that R1 = RG1yX1 and R2 = RG2yX2 for p.m.p. actions

G1 y (X1, µ1) and G2 y (X2, µ2) of countable groups. We say
that the actions are orbit equivalent if there exists an isomorphism
θ from R1 onto R2 (i.e., such that for a.e. x ∈ X1, we have
θ(G1x) = G2θ(x). Then θ is called an orbit equivalence.
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12.2.1. Isomorphisms. Let R1 and R2 be two countable p.m.p. equi-
valence relations on (X1, µ1) and (X2, µ2) respectively. Let θ : (X1, µ1) →
(X2, µ2) be an isomorphism of probability measure spaces. We denote by θ∗
the induced isomorphism f 7→ f ◦ θ−1 from L∞(X1) onto L∞(X2). We have
observed in Section 1.5.3 that θ∗ extends to an isomorphism from the von
Neumann algebra L(R1) onto L(R2) whenever θ induces an isomorphism
from R1 onto R2. The converse assertion holds true.

Theorem 12.2.2. Let R1 and R2 be as above and let θ : (X1, µ1) →
(X2, µ2) be an isomorphism of probability measure spaces. The two following
conditions are equivalent:

(i) θ induces an isomorphism from R1 onto R2;
(ii) θ∗ extends to an isomorphism from the von Neumann algebra L(R1)

onto L(R2).

Proof. It remains to prove that (ii) ⇒ (i). We put Ai = L∞(Xi) and
Mi = L(Ri), i = 1, 2. We denote by τi the canonical tracial state on Mi. We
recall from Section 7.1.3 (c) that we may identify L2(Mi, τi) with L2(Ri, νi),
where νi is the σ-finite measure on Ri defined by µi. For ξ ∈ L2(Ri, νi), the

canonical conjugation operator Ji satisfies Jiξ(x, y) = ξ(y, x).
Let α be an isomorphism from M1 onto M2 which extends θ∗. Let

U : L2(M1, τ1) → L2(M2, τ2) be the unitary implementation of α: we have
UmU∗ = α(m) for every m ∈M1 and U ◦ J1 = J2 ◦ U (see Remark 7.5.3).

We denote by Ai the von Neumann subalgebra of B(L2(Ri, νi)) gene-
rated by Ai ∪ JiAiJi. For a ∈ A1, and ξ ∈ L2(M2, τ2) = L2(R2, ν2) we
have

(UaU∗ξ)(x, y) = (α(a)ξ)(x, y) = a(θ−1(x))ξ(x, y),

and

(UJ1aJ1U
∗ξ)(x, y) = (J2UaU

∗J2ξ)(x, y)

= (UaU∗J2ξ)(y, x)

= a(θ−1(y)ξ(x, y) = (J2θ∗aJ2ξ)(x, y).

By Proposition 12.1.17, we know that Ai = L∞(Ri, νi). Then, ob-
viously we have UL∞(R1, ν1)U∗ = L∞(R2, ν2). Next, by Remark 3.3.2,
we see that there is an isomorphism Θ : R1 → R2 with Θ∗ν1 equiva-
lent to ν2 and UMFU

∗ = MF◦Θ−1 for every F ∈ L∞(R1, ν1), where MF

denotes the multiplication operator by F . Whenever F (x, y) = a(x)b(y)
with a, b ∈ L∞(X1, µ1) we have F (Θ−1(x, y)) = F (θ−1(x), θ−1(y)). Since
A1 ∪ B1 generates L∞(R1, ν1) as a von Neumann algebra, we see that
Θ−1(x, y) = (θ−1(x), θ−1(y)). Therefore, θ is an isomorphism from R1 onto
R2. �

Definition 12.2.3. We say that two tracial Cartan inclusions A1 ⊂M1

and A2 ⊂M2 are isomorphic if there exists an isomorphism α from M1 onto
M2 such that α(A1) = A2 and τ2 ◦α = τ1. Then we say that A1 and A2 are
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conjugate. If M1 = M2 and if α is an inner automorphism, we say that A1,
A2 are conjugate by an inner automorphism or unitarily conjugate.

Corollary 12.2.4. Let R1 and R2 be two countable p.m.p. equivalence
relations on (X1, µ1) and (X2, µ2) respectively. The two following conditions
are equivalent:

(i) the equivalence relations are isomorphic;
(ii) the tracial Cartan inclusions L∞(Xi, µi) ⊂ L(Ri), i = 1, 2, are

isomorphic.

Proof. Let α : L(R1) → L(R2) be a trace preserving isomorphism
sending L∞(X1) onto L∞(X2). Since α is trace preserving its restriction to
L∞(X1) is of the form f 7→ f ◦ θ−1 where θ : (X1, µ1)→ (X2, µ2) is a p.m.p.
isomorphism. Then we apply the theorem 12.2.2. �

Corollary 12.2.5. Let R1 be a countable ergodic p.m.p. equivalence
relation on (X1, µ1) such that L∞(X1) is the unique Cartan subalgebra of
L(R1), up to conjugacy. Then, for any countable ergodic p.m.p. equivalence
relation R2 on some (X2, µ2), the von Neumann algebras L(R1) and L(R2)
are isomorphic if and only if the equivalence relations are isomorphic.

Proof. Let α : L(R2) ' L(R1) be an isomorphism (automatically trace
preserving since the von Neumann algebras are factors). Then α(L∞(X2)) is
a Cartan subalgebra of L(R1) and therefore there is an automorphism β of
L(R1) such that β ◦ α(L∞(X2)) = L∞(X1). Then the equivalence relations
are isomorphic by Corollary 12.2.4. �

We now state these results for group actions.

Corollary 12.2.6. Let G1 y (X1, µ1) and G2 y (X2, µ2) be two free
p.m.p. actions of countable groups, and let θ : (X1, µ1) → (X2, µ2) be an
isomorphism of probability measure spaces. The two following conditions
are equivalent:

(i) θ is an orbit equivalence between the actions;
(ii) θ∗ extends to an isomorphism from L∞(X1)oG1 onto L∞(X2)oG2.

Proof. This follows immediately from Theorem 12.2.2, after having
identified L∞(Xi) oGi with L(RGiyXi) (see Section 1.5.7). �

Corollary 12.2.7. Let G1 y (X1, µ1) and G2 y (X2, µ2) be two free
p.m.p. actions of countable groups. The two following conditions are equi-
valent:

(i) the actions are orbit equivalent;
(ii) the tracial Cartan inclusions L∞(Xi) ⊂ L∞(Xi)oGi, i = 1, 2, are

isomorphic.

Corollary 12.2.8. Let G1 y (X1, µ1) be a free ergodic p.m.p. action
such that L∞(X1) o G1 has L∞(X1) as unique group measure space Car-
tan subalgebra, up to conjugacy. Then, for any free ergodic p.m.p. action



D
ra
ft

12.3. CARTAN SUBALGEBRAS AND FULL GROUPS 201

G2 y (X2, µ2) with G2 countable, the corresponding crossed products are
isomorphic if and only if the actions are orbit equivalent.

12.2.2. The automorphism group of an equivalence relation.
Let R be a countable ergodic p.m.p. equivalence relation on (X,µ). We set
M = L(R) and A = L∞(X) and we denote by Aut (M,A) the subgroup of
automorphisms α ∈ Aut (M) such that α(A) = A. We denote by Aut (R)
the subgroup of automorphisms θ ∈ Aut (X,µ) such that (θ × θ)(R) = R.
Let α ∈ Aut (M,A). Its restriction to A induces an element of Aut (R) by
Theorem 12.2.2. Moreover, this homomorphism π from Aut (M,A) into
Aut (R) is surjective since every θ ∈ Aut (R) comes from αθ : LF 7→
LF◦(θ−1×θ−1), where LF is the convolution operator by F (defined in Sec-
tion 1.5.2). On the other hand, π is not injective. Indeed, let c be a 1-
cocycle, that is, a Borel function from R into T such that c(x, x) = 1 and
c(x, y) = c(x, z)c(z, y), up to null sets. Let U be the multiplication by c on
L2(R, ν). Then ULFU

∗ = LcF and therefore LF 7→ LcF is an element of
Aut (M,A) whose restriction to A is trivial, and so an element of the kernel
of π.

Note that Aut (R) acts on the abelian group Z1(R,T) of those 1-cocycles
by θ.c = c◦ (θ−1×θ−1). Exercise 12.2 shows that kerπ is canonically identi-
fied to Z1(R,T) and that Aut (M,A) is the semi-direct product Z1(R,T)o
Aut (R).

Let Inn (R) be the normal subgroup of Aut (R) consisting of all ϕ ∈
Aut (R) such that ϕ(x) ∼R x for almost every x ∈ X. The outer automor-
phism group of R is Out (R) = Aut (R)/Inn (R).

The group Inn (R) plays a key role in the study of R and of its von
Neumann algebra. It is called the full group of R and is more usually
denoted by [R]. It follows from Lemma 12.1.16 that the group NM (A)/U(A)
is canonically isomorphic to [R]: to u ∈ NM (A) we associate the unique
ϕ ∈ [R] such that Ad (u) = Ad (uϕ) when restricted to A, and then we pass
to the quotient.

In the next section we introduce the abstract notion of full group of
measure preserving automorphisms and apply it to the general construction
of Cartan inclusions.

12.3. Cartan subalgebras and full groups

In this section (X,µ) is still a standard probability measure space and
A = L∞(X,µ), equipped with the trace τ = τµ.

12.3.1. Full groups of probability measure preserving automor-
phisms.

Definition 12.3.1. Let G ⊂ Aut (X,µ) be a group of automorphisms of
(X,µ). We say that G is a full group if whenever θ ∈ Aut (X,µ) is such that
there exist a countable partition (Xn) of X into measurable subsets, and
θn ∈ G such that the θn(Xn) are disjoint with θ|Xn = θn|Xn, then θ ∈ G.
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When G is viewed as a subgroup of Aut (A, τ), the notion of full group
can be expressed in this setting: if θ ∈ Aut (A, τ) is such that there exist a
countable partition of 1 by projections pn ∈ A and automorphisms θn ∈ G
such that the θn(pn) are mutually orthogonal with θ(a) =

∑
n θn(apn) for

a ∈ A, then θ ∈ G. We will equally use the two formulations.

Example 12.3.2. Assume that A is a Cartan subalgebra of a tracial
von Neumann algebra M . Then {Ad (u) : u ∈ NM (A)} is a full group. It
is denoted by [NM (A)]. Note that this group is canonically isomorphic to
NM (A)/U(A).

In the case where A = L∞(X) ⊂ M = L(R), then [NM (A)] is canoni-
cally isomorphic to [R].

Remark 12.3.3. There is also a natural notion of full pseudo-group of
partial measure preserving isomorphisms of (X,µ). In the case of a countable
p.m.p. equivalence relation R on (X,µ), the pseudo-group [[R]] of such
isomorphisms whose graph is contained in R is an example of full pseudo-
group.

Lemma 12.3.4. Let G be a subgroup of Aut (A, τ). We denote by [G]
the set of automorphisms θ ∈ Aut (A, τ) with the property that there exist a
countable partition of 1 by projections pn ∈ A and automorphisms θn ∈ G
such that the θn(pn) are mutually orthogonal with θ(a) =

∑
n θn(apn) for

a ∈ A. Then [G] is a full group and it is the smallest full group that contains
G.

Proof. Immediate. �

The group [G] is called the full group generated by G.

Remark 12.3.5. Let M = L∞(X,µ) o G where G y (X,µ) is a free
p.m.p. action. Then [G] = [NM (A)]. We use the fact that every element
of [NM (A)] is of the form Ad (uθ) with θ ∈ [RGyX ], in order to see that
[NM (A)] ⊂ [G].

12.3.2. Equivalence relations, full groups and Cartan inclu-
sions. A natural problem is to understand what is the most general con-
struction of tracial Cartan inclusions. There are two approaches of this
problem.

12.3.2.1. From equivalence relations to Cartan inclusions. Let R be a
countable p.m.p. equivalence relation on (X,µ). The construction of L(R)
can be generalized by including a twist by a 2-cocycle. For n ≥ 1, we
denote by R(n) ⊂ Xn+1 the Borel space of all (n+ 1)-tuples (x0, . . . , xn) of

equivalent elements. We equip R(n) with the σ-finite measure ν(n) defined
by

ν(n)(C) =

∫
X
|π−1

0 (x) ∩ C|dµ(x),

where C is a Borel subset of R(n) and π0(x0, . . . , xn) = x0.
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A 2-cocycle for (R, µ) is a Borel map c : R(2) → T such that

c(x1, x2, x3)c(x0, x1, x3) = c(x0, x2, x3)c(x0, x1, x2), a.e. (12.1)

We assume that c is normalized, that is, it takes value 1 as soon as two of its
three variables are the same. Two 2-cocycles c, c′ are cohomologous if there
exists a Borel map h : R → T such that h(x, x) = 1 a.e. and

c′(x, y, z) = h(x, y)h(x, z)−1h(y, z)c(x, y, z), a.e. (12.2)

We fix a 2-cocycle c and keep the notations of Section 1.5.2. Then, given
F ∈Mb(R), we define a bounded operator LcF on L2(R, ν) by

LcF (ξ)(x, y) =
∑
zRx

F (x, z)ξ(z, y)c(x, z, y).

It is straightforward to check that the von Neumann algebra L(R, c) gene-
rated by these operators LcF , F ∈Mb(R), retains exactly the same proper-
ties as L(R). In particular, A = L∞(X) is a Cartan subalgebra of L(R, c).
It is also immediately seen that, whenever c, c′ are cohomologous as in (12.2),
there is a spatial isomorphism from L(R, c) onto L(R, c′), induced by the
unitary W : ξ 7→ hξ, which preserves the Cartan subalgebra L∞(X). We
have L(R, 1) = L(R).

We get in this way the most general example of a pair (M,A) formed
by a separable tracial von Neumann algebra and a Cartan subalgebra. We
will sketch a proof by using the alternative construction via full groups.

12.3.2.2. From full groups to Cartan inclusions. Let us first translate
the previous construction in terms of the full group G = [R]. We identify
ϕ ∈ Aut (X,µ) with ϕ∗ ∈ Aut (A, τ). For φ ∈ G, we denote by pφ ∈
P(A) the characteristic function of the set {x ∈ X : φ(x) = x}. Given a ∈
A, we set φ(a) = a ◦ φ−1. For ϕ,ψ ∈ G and x ∈ X, we set vϕ,ψ(x) =
c(x, ϕ−1(x), ψ−1ϕ−1(x)).

Then v is a map from G×G to U(A) which satisfies the following proper-
ties, for all ϕ,ψ, φ, ϕ1, ϕ2 ∈ G:

vϕ,ψvϕψ,φ = ϕ(vψ,φ)vϕ,ψφ, (12.3)

pϕ1ϕ
−1
2
vϕ1,ψ = pϕ1ϕ

−1
2
vϕ2,ψ, ψ(pϕ1ϕ

−1
2

)vψ,ϕ1 = ψ(pϕ1ϕ
−1
2

)vψ,ϕ2 , (12.4)

pϕvϕ,ψ = pϕ, ϕ(pψ)vϕ,ψ = ϕ(pψ), pϕψvϕ,ψ = pϕψ. (12.5)

The equations in (12.5) are the translation of the fact that c is norma-
lized.

Moreover, if v, v′ are associated with two cocycles c, c′ then we easily
check that c, c′ are cohomologous if and only if there exists w : G → U(A)
which satisfies the following conditions, for all ϕ,ψ, ϕ1, ϕ2 ∈ G:

pϕ1ϕ
−1
2
wϕ1 = pϕ1ϕ

−1
2
wϕ2 , (12.6)

v′ϕ,ψ = wϕϕ(wψ)vϕ,ψw
∗
ϕψ. (12.7)
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Definition 12.3.6. A 2-cocycle for a full group G on (A, τ) is a map
v : G × G → U(A) which satisfies the conditions (12.3) and (12.4). The
cocycle v is normalized if it satisfies the conditions (12.5). Two cocycles
v, v′ are cohomologous if there exists w : G → U(A) which satisfies the
conditions (12.6) and (12.7), and then we write v ∼ v′.

Every 2-cocycle is cohomologous to a normalized one.
Starting now from a general full group G of automorphisms of (A, τ) to-

gether with a normalized 2-cocycle v let us briefly describe the construction
of the attached Cartan inclusion. We consider the vector space M of finite
sums

∑
ϕ aϕuϕ with aϕ ∈ A and ϕ ∈ G. On M we define the product and

involution by

(aϕuϕ)(aφuφ) = aϕϕ(aφ)vϕ,φuϕφ, (aϕuϕ)∗ = ϕ−1(a∗ϕ)uϕ−1 .

We define a linear functional τ on M by τ(aϕuϕ) = τ(aϕpϕ) and a sesquili-
near form by 〈x, y〉τ = τ(x∗y). We easily see that this form is positive. We
denote by H the Hilbert space completion of M/I where

I = {x ∈M : τ(x∗x) = 0}.
Observe that M is represented on H by left multiplications.

Finally, we define M = L(G, v) to be the weak closure of M in this
representation. Then τ defines a normal faithful tracial state on M and
A ⊂M is a Cartan inclusion.

Remark 12.3.7. Assume that G is the full group generated by a coun-
table group G of automorphisms of (A, τ). Let R be the equivalence relation
implemented by the orbits of G. Equivalently, we have x ∼R y if and only
if Gx = Gy. Then R is a countable p.m.p. equivalence relation. If c is the
2-cocycle for R such that vϕ,ψ(x) = c(x, ϕ−1(x), ψ−1ϕ−1(x)) for a.e. x then
we check that A ⊂ L(G, v) = A ⊂ L(R, c).

12.3.2.3. From Cartan inclusions to full groups. We now start from a
Cartan inclusion A ⊂ M where M is a tracial von Neumann algebra. We
set G = [NM (A)]. The main problem is to choose a good section ϕ 7→ uϕ
of the quotient map NM (A) → [NM (A)]. We write G as a well ordered set
{ϕi : i ∈ I} with IdA as a first element. We choose uIdA = 1. Let J be an
initial segment of I in the sense that whenever j ∈ J then every smaller
element is in J . We assume that we have chosen uϕj implementing ϕj for
j ∈ J , in such a way that if i, j ∈ J and q ∈ P(A) are so that ϕi and ϕj
agree on Aq, then uϕiq = uϕjq. Let k be the first element of I \ J . There
is a maximal projection p ∈ P(A) such that the restriction of ϕk to Ap
does not agree with any ϕj , j ∈ J , on Aq for any q ∈ P(Ap). It follows
that ϕk =

⊕
j∈J ϕj|Aqj ⊕ ϕk|Ap for some mutually orthogonal projections

qj ∈ P(A) with
∑

j∈J qj = 1−p. Then we set uϕk =
∑

j∈J uϕjqj +wp where

w ∈ NM (A) is any unitary that implements ϕk.
In this manner, we have obtained unitaries uϕ, ϕ ∈ G such that uIdA = 1,

Ad (uϕ) = ϕ, and uϕq = uψq for every projection q ∈ P(A) with ϕ,ψ
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agreeing on Aq. We set vϕ,ψ = uϕuψu
∗
ϕψ for ϕ,ψ ∈ G. It is straighforward to

check that v is a 2-cocycle for the full group G, due to the fact that our choice
of the uϕ has been carried out in such a way that pϕψ−1uϕu

−1
ψ = pϕψ−1 .

Moreover, the choice of v is unique up to the relation ∼.
Thus, we just have defined a functor from the category of tracial Cartan

inclusions, with morphisms given by isomorphisms, into the category of pairs
(G y (A, τ), v/∼) consisting of a full group G on an abelian von Neumann
algebra (A, τ) and the class of a 2-cocycle v : G×G → U(A), with morphisms
given trace preserving automorphisms of the abelian algebras that carries
the full groups (resp. the class of 2-cocycles) onto each other.

The functor is one to one and onto, the inverse having been constructed
in the subsection 12.3.2.2. This is summarised in the following theorem.

Theorem 12.3.8. To every tracial Cartan inclusion A ⊂M is associated
the full group G = [NM (A)] and the class of a 2-cocycle v : G × G → U(A).
Conversely every pair (G y (A, τ), v/∼) gives rise to a tracial Cartan inclu-
sion. After passing to quotients, we get a functorial bijective correspondence
between the set of isomorphism classes of tracial Cartan inclusions A ⊂ M
and the set of isomorphism classes of pairs (G y (A, τ), v/∼).

We can now complete the theorem 12.2.2 as follows.

Theorem 12.3.9. Let R1 and R2 be two countable p.m.p. equivalence re-
lations on (X1, µ1) and (X2, µ2) respectively, and let θ : (X1, µ1)→ (X2, µ2)
be an isomorphism of probability measure spaces. The following conditions
are equivalent:

(i) θ induces an isomorphism from R1 onto R2;
(ii) θ∗ extends to an isomorphism from the von Neumann algebra M1 =

L(R1) onto M2 = L(R2);
(iii) θ[R1]θ−1 = [R2].

Proof. We apply Theorem 12.3.8 with trivial 2-cocycles. �

Similarly, Corollary 12.2.6 is completed as follows.

Corollary 12.3.10. Let G1 y (X1, µ1) and G2 y (X2, µ2) be two free
p.m.p. actions of countable groups, and let θ : (X1, µ1) → (X2, µ2) be an
isomorphism of probability measure spaces. The following conditions are
equivalent:

(i) θ is an orbit equivalence between the actions;
(ii) θ∗ extends to an isomorphism from L∞(X1)oG1 onto L∞(X2)oG2;
(iii) θ[G1]θ−1 = [G2].

12.4. Amenable and AFD Cartan inclusions

Let A be a Cartan subalgebra of (M, τ) and let A = (A ∪ JAJ)′′ . We
let NM (A) act on A by x 7→ Ad (u)(x) = uxu∗. Recall that Ad (u) is an
automorphism of A and fixes each element of JAJ .
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Definition 12.4.1. We say that a tracial Cartan inclusion A ⊂ M is
amenable if there exists a state on A that is invariant under the action of
NM (A).

If (M, τ) is a tracial amenable von Neumann algebra (for instance the
hyperfinite factor R), then every Cartan subalgebra A of M is amenable: it
suffices to consider the restriction to A of an hypertrace.

We also observe that if e is a non-zero projection of A, then eAe ⊂ eMe
is an amenable Cartan inclusion when A ⊂M is so.

Remark 12.4.2. Let R be a countable p.m.p. equivalence relation on
(X,µ) and take M = L(R) and A = L∞(X,µ). We have A = L∞(R, ν). For
f ∈ L∞(R, ν) and ϕ ∈ [R] we set fϕ(x, y) = f(ϕ−1(x), y). Then A ⊂ M
is amenable if and only if there exists a state Φ on L∞(R, ν) such that
Φ(fϕ) = Φ(f) for every f ∈ L∞(R, ν) and ϕ ∈ [R]. In this case we say that
the equivalence relation is amenable.

Definition 12.4.3. We say that a tracial Cartan inclusion A ⊂ M is
approximately finite dimensional (AFD) if for every finite subset F of M and
every ε > 0, there exist matrix units (eki,j)1≤i,j≤nk , 1 ≤ k ≤ m, with eki,j ∈
GNM (A) for every i, j, k, where the m projections

∑
1≤i≤nk e

k
i,i, 1 ≤ k ≤ m,

form a partition of the unit in A, such that ifQ denotes the finite dimensional
von Neumann algebra generated by the eki,j then ‖x− EQ(x)‖2 ≤ ε for every
x ∈ F .

Of course if the Cartan inclusion A ⊂ M is AFD, then M is amenable
and the inclusion is amenable. The aim of this section is to prove the
converse.

Theorem 12.4.4. Every amenable Cartan inclusion is AFD.

We follow the main steps of the proof that an amenable finite von Neu-
mann algebra is AFD (see Theorem 11.1.3). The principal step is to estab-
lish a local approximation property. For simplicity we assume that M is
separable.

Definition 12.4.5. We say that a Cartan inclusion A ⊂M has the local
approximation property if for every ε > 0, every non-zero projection e ∈ A
and every finite subset F = {u1, . . . ul} ⊂ NeMe(eA) there exists a matrix
units (ei,j)1≤i,j≤m in GNeMe(eA), such that, if we set q =

∑
i ei,i, and if N

denotes the algebra generated by Aq and the ei,j , then quiq ∈ Q and∑
j

‖[q, uj‖22 ≤ ε‖q‖
2
2.

Remark 12.4.6. Let us keep the notation of the previous definition.
Then every element x ofQ has a unique expression of the form x =

∑
i,j ai,jej,i

with ai,j ∈ Aej,j .
Theorem 12.4.7. An amenable Cartan inclusion has the local approxi-

mation property.
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We begin with the proof of a Følner type condition.

Lemma 12.4.8. Let F = {u1, . . . ul} be a finite subset in NM (A) and let
ε > 0. There exists a projection p ∈ A such that τ̂(p) < +∞ and∑

j

∥∥p− ujpu∗j∥∥2

2,τ̂
≤ ε‖p‖22,τ̂ .

Proof. We proceed as in the proof of Lemma 11.1.6, replacing now
〈M, eA〉 by A, and using the existence of an invariant state under the action
of NM (A) on A instead of the existence of an hypertrace. �

Proof of Theorem 12.4.7. Since Ae ⊂ eMe is an amenable Cartan
inclusion, it suffices to prove that the statement of Definition 12.4.5 holds
with e = 1.

Let p ∈ A with τ̂(p) < +∞ such that∑
j

∥∥p− ujpu∗j∥∥2

2,τ̂
≤ ε‖p‖22,τ̂ .

We have p =
∑

n anevnA where an ≤ vnv
∗
n is a projection in A (by Corol-

lary 12.1.15). Since anevnA = eanvnA, if we set wn = anvn we see that
p =

∑
n ewnA where (wn) is an orthogonal system in GNM (A), that is

EA(w∗iwj) = 0 if i 6= j. Since τ̂(p) < +∞, by approximation we may
assume that p is a finite sum

∑
1≤k≤m ewkA.

Thanks to Proposition 12.1.5, we see that there exists a partition of the
unit (sn)n≥1 in A such that sn(w∗i ujwk)sn is either equal to 0 or is a unitary
element in Asn for all i, j, k, n and such that the sn(w∗iwk)sn have also the
same property. Using Pythagoras’ theorem, we get∑

n

(∑
j

∥∥(p− ujpu∗j)JsnJ∥∥2

2,τ̂

)
≤ ε

∑
n

‖pJsnJ‖22,τ̂ .

It follows that there exists at least an index n such that∑
j

∥∥(p− ujpu∗j)JsnJ∥∥2

2,τ̂
≤ ε‖pJsnJ‖22,τ̂ . (12.8)

We choose such a n and set s = sn. We observe that eAJsJ = seAs and
therefore

pJsJ =
∑
k

wkseAsw
∗
k.

Moreover, for every k we have either wks = 0 or s(w∗kwk)s = s. Thus,
after a suitable relabeling, we may assume that p in (12.8) is of the form
p =

∑
k wkeAw

∗
k with w∗jwk = δj,ks and w∗i ujwk ∈ As for all i, j, k. For this

p we have ∑
j

∥∥p− ujpu∗j∥∥2

2,τ̂
≤ ε‖p‖22,τ̂ .

We set ek,l = wkw
∗
l and q =

∑
ek,k, and we denote by Q the algebra

generated by the matrix units (ek,l) and Aq. Then, qujq ∈ Aq for every j.
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We have

‖p‖22,τ̂ = τ̂(
∑

wkeAw
∗
k) =

∑
τ(wkw

∗
k) = τ(q)

and ∥∥p− ujpu∗j∥∥2

2,τ̂
= 2

∑
τ̂(p)− 2

∑
i,k

τ̂(wieAw
∗
i ujwkeAw

∗
ku
∗
j )

= 2τ(q)− 2
∑
i,k

τ̂(wiEA(w∗i ujwk)eAw
∗
ku
∗
j )

= 2τ(q)− 2
∑
i,k

τ(wiw
∗
i ujwkw

∗
ku
∗
j ) =

∥∥q − ujqu∗j∥∥2

2
.

Thus we have ∑
j

∥∥q − ujqu∗j∥∥2

2
≤ ε‖q‖22. (12.9)

�

Proof of Theorem 12.4.4. Let F = {u1, . . . ul} be a finite subset in
NM (A). We proceed as in the proof of the theorem 11.1.17. First, we
observe that the inequality (12.9) implies the following one:∑

j

‖uj − (1− q)uj(1− q)− quiq‖22 ≤ ε‖q‖
2
2.

Then, we consider the set S of all families (Qi)i∈I of subalgebras with mu-
tually orthogonal units qi where each Qi is generated by Aqi and a matrix
units (eij,k) in GNM (A), such that qiujqi ∈ Qi for all j, which satisfies

∑
j

∥∥∥∥∥uj − (1− q)uj(1− q)−
∑
i

qiujqi

∥∥∥∥∥
2

2

≤ ε‖q‖22,

where q =
∑

i∈I qi. This set S is not empty and it is inductively ordered
by inclusion. We take a maximal element (Qi)i∈I with corresponding set
of units (qi)i∈I . We put q =

∑
i∈I qi. Using the same arguments as in the

proof of Theorem 11.1.17 we see that q = 1.
The set I needs not to be finite, but we can find a finite subset I1 of I

such that if f = 1−
∑

i∈I1 qi and if N = CAf ⊕
⊕
Qi then ‖uj − EN (uj)‖2

can be made small enough (see again the proof of Theorem 11.1.17).
Finally, we observe that each Ni (and N0 = Af) is finite dimensional

over A with an appropriate basis made of elements of GNM (A) (see the
remark 12.4.6). �

12.5. Amenable II1 equivalence relations are hyperfinite

Definition 12.5.1. Let R be a countable p.m.p. equivalence relation
on the Lebesgue probability measure space (X,µ).
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(i) We say that R is hyperfinite if there exists an increasing sequence
(Rn)n of subequivalence relations, with finite orbits, such that
∪nRn = R, up to null sets.

(b) We say that R is of type II1 if it is ergodic.

IfR is a II1 hyperfinite countable p.m.p. equivalence relation, then L(R)
is the hyperfinite II1 factor, and therefore R is amenable (as defined in the
remark 12.4.2). We will see that the converse is true, as a consequence of
the following theorem.

Theorem 12.5.2. Let M be a separable II1 factor.

(i) M is isomorphic to the hyperfinite factor R if and only if M has
an amenable Cartan subalgebra.

(ii) If A1 and A2 are two Cartan subalgebras of R there exists an au-
tomorphism θ of R such that θ(A1) = A2.

Proof. (i) Suppose that M has an amenable Cartan subalgebra A.
Then the theorem 12.4.4 implies that A is AFD. By suitably modifying the
matrix units (eki,j) of Definition 12.4.3, with arguments similar to those that

we used in the proofs of Lemma 11.2.1 and of (2) ⇒ (4) in Theorem 11.2.2,
we construct an increasing sequence of 2kn × 2kn matrix algebras Qn whose
union is s.o. dense in M . It follows that M is isomorphic to R.

Moreover we can do so that each Qn has a matrix units (fni,j)1≤i,j≤2kn

satisfying:

(a) fni,j ∈ GNM (A) and
∑

i f
n
i,i = 1;

(b) every fnr,s is the sum of some fn+1
i,j (property arising from a diagonal

embedding of Qn into Qn+1).

(ii) Let A be a Cartan subalgebra of R and let us keep the above nota-
tion. We denote by A0 the von Neumann subalgebra of R generated by the
projections fni,i with 1 ≤ i ≤ 2kn , n ≥ 1. Then A0 is abelian maximal in

∪nQn
so

= R and since A0 ⊂ A we get A0 = A. This shows the uniqueness
of A up to automorphism: there is an automorphism θ of R which sends A

on D⊗∞ defined in the exercise 12.1. �

Corollary 12.5.3. Every II1 amenable countable p.m.p. equivalence
relation is hyperfinite. Moreover, there is only one II1 hyperfinite countable
p.m.p. equivalence relation, up to isomorphism.

Proof. We have already observed that R is a II1 factor defined by a
hyperfinite equivalence relation. Then the assertions of this corollary follow
immediately from the previous theorem together with Corollary 12.2.4. �

Corollary 12.5.4. Any two ergodic p.m.p actions of countable ame-
nable groups on Lebesgue probability measure spaces are orbit equivalent.

Proof. Let Gi y (Xi, µi), i = 1, 2, be two such actions. Then the
equivalence relations RGiyXi are amenable (Exercise 12.5) and ergodic,
hence isomorphic. �



D
ra
ft

210 12. CARTAN SUBALGEBRAS

Exercises

Exercise 12.1. Let (Mn, τn) be a sequence of tracial von Neumann
algebras, and for every n, let An be a Cartan subalgebra of Mn. Show that
⊗n∈NAn is a Cartan subalgebra of ⊗n∈NMn.

When Mn = M for all n, we set M⊗∞ = ⊗n∈NMn. In particular, if D

denotes the diagonal subalgebra of M2(C), then D⊗∞ is a Cartan subalgebra

of M2(C)⊗∞.

Exercise 12.2. We keep the notation of Section 12.2.2.

(i) Show that Z1(R,T) is the kernel of π (Hint: let α ∈ kerπ and let
U be its unitary implementation. Show that U is the operator of
multiplication by a Borel function c : R → T. Show that c(x, y) =
c(y, x)−1 and that c(x, z)c(z, y) does not depend on z. Conclude
that c or −c is a cocycle.)

(ii) For c ∈ Z1(R,T) (resp. θ ∈ Aut (R)) we denote by αc (resp. αθ)
the automorphism LF 7→ LcF (resp. LF 7→ LF◦(θ−1×θ−1)) of L(R).
Show that (c, θ) 7→ αc ◦ αθ is an isomorphism from the group
Z1(R,T) o Aut (R) onto the group Aut (M,A).

Exercise 12.3. We keep the notation of the previous exercise. We let
[R] act on U(A) by ϕ(f) = f ◦ϕ−1 where f : X → T is in U(A) and ϕ ∈ [R].
Show that (f, ϕ) 7→ fuϕ is an isomorphism from the semi-direct product
U(A) o [R] onto NM (A).

Exercise 12.4. We still set M = L(R) and A = L∞(X) as above.
We denote by Out (M,A) the image of Aut (M,A) into Out (M). Let
B1(R,T) be the subgroup of Z1(R,T) consisting of the function of the
form (x, y) 7→ f(x)f(y)−1 where f : X → T is Borel, and set H1(R,T) =
Z1(R,T)/B1(R,T).

(i) Show that the action of Aut (R) on Z1(R,T) gives by passing to
the quotient an action of Out (R) on H1(R,T).

(ii) Show that the isomorphism from Z1(R,T)oAut (R) onto Aut (M,A)
gives, by passing to the quotient, an isomorphism from H1(R,T)o
Out (R) onto Out (M,A).

Exercise 12.5. Let G y (X,µ) be a measure preserving action of a
countable amenable group. Show that the equivalence relation RGyX is
amenable.

Notes
The interest of maximal abelian subalgebras was emphasized in [Dix54],

where Cartan subalgebras are called regular maximal abelian subalgebras.
In the pioneering paper [Sin55], Singer highlighted the importance of Cartan
subalgebras in the study of group measure space von Neumann algebras and
obtained in particular the useful corollary 12.2.7. This led Dye to develop
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a comprehensive study of group actions up to orbit equivalence [Dye59,
Dye63]. He emphasized the crucial role of the full group associated with
a group action. In fact, he proved more than what is stated in Corollary
12.3.10: its condition (iii) is indeed equivalent to the algebraic isomorphism
of the full groups. This result is known as Dye’s reconstruction theorem.
Dye’s ideas, as well as the construction of Krieger [Kri70] of von Neumann
algebras associated with non necessarily freely acting groups, were later
carried on by Feldman and Moore [FM77a, FM77b] who provided an
exhaustive study of countable non-singular equivalence relations and their
von Neumann algebras. The notion of Cartan algebra was also considered
by Vershik [Ver71].

The group Aut (M,A), where A is a Cartan subalgebra of a II1 factor
M was studied by Singer for group actions and by Feldman and Moore for
equivalence relations in their above mentioned papers. The results obtained
in the first section of this chapter come from [Dye59, Dye63, Pop85].

As mentioned above, the bases of orbit equivalence theory were laid by
Dye. In his seminal paper [Dye59], he proved that a countable p.m.p. equi-
valence relation R is hyperfinite if and only if it is isomorphic to some RZyX

for a p.m.p. action of the group Z of integers. Moreover, he proved that two
ergodic p.m.p. actions of Z are orbit equivalent, hence the uniqueness of the
ergodic type II1 hyperfinite equivalence relation up to isomorphism. In the
paper [Dye63], Dye established that any p.m.p. action of an infinite abelian
group (even of a group with polynomial growth) gives rise to a hyperfinite
equivalence relation. This was extended much later by Ornstein and Weiss
[OW80] to the case of actions of any countable amenable group. Therefore,
any two ergodic p.m.p. actions of amenable groups are orbit equivalent.

As for the relations with operator algebras, in [MvN43] Murray and
von Neumann established the hyperfiniteness of the group measure space
II1 factors arising from free ergodic p.m.p. actions of locally finite groups.
In [Dye63], Dye proved that this is the case for any free ergodic action of
any group giving rise to hyperfinite equivalence relations. It was known at
the end of the ’60s that for any free p.m.p. action G y (X,µ), the von
Neumann algebra L∞(X) oG has the Schwartz property (P) if and only if
G is amenable [Sch67, Gol71]. Zimmer extended this study to the case
of equivalence relations, for which he defined a notion of amenability. He
showed that a countable p.m.p. equivalence relation R is amenable if and
only if L(R) is an injective von Neumann algebra [Zim77a, Zim77b]1. He
also observed [Zim78] that for a free p.m.p. action Gy X, the group G is
amenable if and only if RGyX is amenable.

Finally, this circle of results was beautifully completed by Connes, Feld-
man and Weiss [CFW81] who proved that a countable p.m.p. equivalence
relation is amenable if and only if it is hyperfinite1. As a consequence, for an

1In fact, these results are proved in the more general framework of non-singular equiv-
alence relations.
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ergodic p.m.p. equivalence relation R, the II1 factor L(R) is hyperfinite if
and only ifR is hyperfinite, and the uniqueness of the hyperfinite II1 factor is
the operator algebra analogue of the uniqueness of the II1 hyperfinite equiv-
alence relation. The operator algebraic proof of the above Connes-Feldman-
Weiss result presented in Section 12.4 is taken from [Pop85, Pop07c].
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Bimodules

As seen in Chapter 8, the study of M -modules gives few information
on the tracial von Neumann algebra (M, τ). In contrast, the set of M -N -
bimodules that we introduce now has a very rich structure. These modules
play the role of generalized morphisms from M to N , in particular they are
closely connected to completely positive maps from M to N as we will see
in Section 13.1.2.

Particularly useful is the study of the set of (equivalence classes of)
M -M -bimodules. It behaves in perfect analogy with the set of unitary
representations of groups. We observe that to any unitary represention
of a countable group G is associated a L(G)-L(G)-bimodule. The bimo-
dules corresponding to the trivial and the regular representation are easily
identified. The usual operations on representations have their analogues in
the setting of bimodules, as well as the notion of weak containment. As a
consequence, any property of G involving this notion has its counterpart for
tracial von Neumann algebras. For instance, in the last section, the notion of
amenable von Neumann algebra is interpreted in the setting of bimodules, as
well as relative amenability. In Chapter 14, we similarly will use bimodules
to define the very useful notion of relative property (T).

13.1. Bimodules, completely positive maps and representations

13.1.1. Definition and first examples.

Definition 13.1.1. Let M and N be two von Neumann algebras. A
M -N -bimodule is a Hilbert space H which is both a left M -module and a
right N -module, and is such that the left and right actions commute (see
Definition 7.1.2). We will sometimes write MHN to make precise which
von Neumann algebras are acting, and on which side, and denote by πM ,
πNop the corresponding representations, in case of ambiguity. Usually, for
x ∈M,y ∈ N, ξ ∈ H, we write xξy instead of πM (x)πNop(y)ξ.

We say that two M -N -bimodules H1 and H2 are isomorphic (or equiv-
alent) if there exists a unitary operator U : H1 → H2 which intertwines the
representations.

A M -N -bimodule introduces a link between the von Neumann algebras
M and N . It is also called a correspondence between M and N .

Example 13.1.2. Let us begin with the case M = L∞(X1, µ1) and
N = L∞(X2, µ2), where (Xi, µi), i = 1, 2, are standard probability measure

213
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spaces. Let ν be a probability measure on X1 × X2 whose projections are
absolutely continuous with respect to µ1 and µ2. Let

n : X1 ×X2 → N ∪ {∞}

be a measurable function and denote by H(n) the L∞(X1 ×X2, ν)-module
with multiplicity n (see Section 8.1). Then H(n) becomes a M -N -bimodule
by setting

fξg = (f ◦ p1)(g ◦ p2)ξ, ∀f ∈M, g ∈ N, ξ ∈ H(n)

where p1, p2 denote the projections on X1 and X2 respectively.
This construction provides the most general example of a separable M -

N -bimodule. Indeed, let H be a separable M -N -bimodule and denote by
L∞(X,µ) the von Neumann subalgebra of B(H) generated by the images of
M and N . A generalisation of results mentioned in Remark 3.3.2 implies
that, for i = 1, 2, there exists a Borel map qi : X → Xi, such that qi ∗µ is
absolutely continuous with respect to µi, and which induces the (normal)
canonical homomorphism from L∞(Xi, µi) into L∞(X,µ). To conclude, it
suffices to introduce the image ν of µ under q1×q2 : X → X1×X2 and to use
Theorem 8.1.1. The measure ν represents the graph of the correspondence
from M to N defined by the bimodule and n is its multiplicity1.

In the rest of this chapter, M and N will always be tracial von Neumann
algebras with trace denoted by τ , or τM , τN if necessary.

Examples 13.1.3. L2(M) is the most basic M -M -bimodule, called the
standard or identity or trivial M -M -bimodule. As seen in Chapter 7, it is
independent of the choice of the tracial normal faithful state on M , up to
isomorphism. From it, many interesting bimodules can be built.

(a) The Hilbert tensor product L2(M)⊗L2(N) equipped with its obvious
structure of M -N -bimodule is called the coarse M -N -bimodule:

x(ξ ⊗ η)y = (xξ)⊗ (ηy), ∀x ∈M,y ∈ N, ξ ∈ L2(M), η ∈ L2(N).

When M and N are abelian as in the previous paragraph, this bimodule has
multiplicity one and ν = µ1 ⊗ µ2.

Let us denote by S2(L2(N), L2(M)) the Hilbert space of the Hilbert-
Schmidt operators from L2(N) into L2(M), that is, of the bounded operators
T : L2(N) → L2(M) with Tr(T ∗T ) < +∞. It is a M -N -bimodule with
respect to the actions by composition:

xTy = x ◦ T ◦ y, , ∀x ∈M,y ∈ N,T ∈ S2(L2(N), L2(M)).

The map ξ⊗ η 7→ θJη,ξ, where θJη,ξ is the operator η1 ∈ L2(N) 7→ 〈Jη, η1〉ξ,
induces an equivalence between the M -N -bimodules L2(M) ⊗ L2(N) and
S2(L2(N), L2(M)).

1See [Con94, V. Appendix B].
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(b) To any normal homomorphism α from M into N is associated the
M -N -bimodule H(α), which is the Hilbert space α(1)L2(N) endowed with
the following actions:

πM (x)πNop(y)ξ = α(x)ξy, ∀x ∈M,y ∈ N, ξ ∈ α(1)L2(N).

When M and N are abelian and α : L∞(X1, µ1) → L∞(X2, µ2) is defined
by θ : X2 → X1, then H(α) can be viewed as L2(X1×X2, ν), where ν is the
image of µ2 under the graph map x2 → (θ(x2), x2).

Going back to the general situation, it is easily seen that H(α1) and
H(α2) are isomorphic if and only if there is a partial isometry u ∈ N with
u∗u = α1(1), uu∗ = α2(1) and uα1(x)u∗ = α2(x) for all x ∈M .

Specially important is the case where α belongs to the automorphism
group Aut (M) of M . We get that the quotient group Out (M) of Aut (M)
modulo the inner automorphisms embeds canonically into the space of (iso-
morphism classes of) M -M -bimodules.

(c) More generally, let p be a projection in B(`2(I))⊗N and let α
be a unital normal homomorphism from M into p

(
B(`2(I))⊗N

)
p. Then,

p
(
`2(I)⊗ L2(N)

)
is a M -N -bimodule, when equipped with the actions

xξy = α(x)ξy ∀x ∈M,y ∈ N,
the right action being the restriction of the diagonal one. We denote by
H(α) this bimodule.

Proposition 8.2.2, applied to right N -modules instead of left M -modules,
implies that this is the most general example of M -N -bimodule.

Definition 13.1.4. A M -N -bimodule H is said to be of finite (Jones’)
index, or bifinite, if it is both a finite left M -module and a finite right N -
module, i.e., dim(MH) < +∞ and dim(HN ) < +∞.

The terminology comes from the fact that the M -N -bimodule ML
2(M)N

(or equivalently the N -M -bimodule NL
2(M)M ) has finite index if and only

if [M : N ] < +∞ when N ⊂ M is a pair of separable II1 factors. More
generally, we have:

Proposition 13.1.5. Let M,N be II1 separable factors. Then a sepa-
rable M -N -bimodule H is of finite index if and only if it is isomorphic to
H(α) for some normal unital homomorphism α : M → p

(
B(`2n) ⊗ N

)
p =

pMn(N)p, some n and some projection p ∈ Mn(N), such that [pMn(N)p :
α(M)] < +∞. Moreover, in this case we have

dim(HN ) = (Tr⊗ τN )(p) and dim(MH) =
[pMn(N)p : α(M)]

(Tr⊗ τN )(p)
,

where Tr is the usual trace on Mn(C).

Proof. It follows Propositions 8.5.3 and 8.6.1 that the M -N -bimodule
H is finite as right N -module if and only if it is of the form H(α) for some
normal unital homomorphism α : M → pMn(N)p, some n and some pro-
jection p ∈ Mn(N). By definition, we have dim(HN ) = (Tr ⊗ τN )(p). Let
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us prove the other equality. We apply the result of Exercise 9.15 to the left
pMn(N)p-module p(`2n⊗L2(N)) and the subfactor α(M) of pMn(N)p. This
gives

dim(MH) = dim
(
α(M)p(`

2
n ⊗ L2(N))

)
= [pMn(N)p : α(M)] dim

(
pMn(N)pp(`

2
n ⊗ L2(N))

)
.

Finally, we have dim
(
pMn(N)pp(`

2
n⊗L2(N))

)
= 1/(Tr⊗ τN )(p) by Exercises

8.9 and 8.7. �

13.1.2. Bimodules and completely positive maps. The previous
examples already give an indication that bimodules may be viewed as gene-
ralized morphisms between von Neumann algebras. This will be made more
precise now.

– From completely positive maps to bimodules. Let (M, τM ), (N, τN )
be two tracial von Neumann algebras. Let φ : M → N be a normal com-
pletely positive map2. We define on the algebraic tensor product H0 =
M �N a sesquilinear functional by

〈x1 ⊗ y1, x2 ⊗ y2〉φ = τN (y∗1φ(x∗1x2)y2), ∀x1, x2 ∈M,y1, y2 ∈ N.

The complete positivity of φ implies the positivity of this functional. We
denote by H(φ) the completion of the quotient of H0 modulo the null space
of the sesquilinear functional.

We let M and N act on H0 by

x(
n∑
i=1

xi ⊗ yi)y =
n∑
i=1

xxi ⊗ yiy.

Using again the complete positivity of φ, we easily obtain, for ξ ∈ H0, and
x ∈M , y ∈ N , that

〈xξ, xξ〉φ ≤ ‖x‖
2〈ξ, ξ〉φ, 〈ξy, ξy〉φ ≤ ‖y‖

2〈ξ, ξ〉φ.

For instance, the first inequality is a consequence of the fact that in Mn(M)

we have [x∗ix
∗xxi]i,j ≤ ‖x‖2[x∗ixj ]i,j for every x1, . . . , xn, x ∈M .

It follows that the actions of M and N pass to the quotient and extend
to representations on H(φ). Moreover, these representations are normal,
thanks to the fact that φ is normal.

Let α : M → N be a normal homomorphism. The reader will check
that the map x ⊗ y → α(x)y gives an identification of the bimodule H(α)
we have just constructed with the bimodule constructed in Example 13.1.3
(b), so that the notations are compatible.

Another important particular case is when φ is the trace preserving
conditional expectation EN from M onto a von Neumann subalgebra N .
Then the map sending x⊗ y to x̂y gives rise to an isomorphism between the
M -N -bimodules H(EN ) and ML

2(M)N .

2For basic facts related to completely positive maps see Section A.3 in the appendix.
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Let us go back to the general case H(φ). This bimodule comes equipped
with a special vector, namely the class of 1M ⊗ 1N , denoted ξφ. Note that

‖xξφ‖2φ = τN (φ(x∗x)) and ‖ξφy‖2φ = τN (y∗φ(1)y) ≤ ‖φ(1)‖τN (y∗y).

In particular, ξφ is left N -bounded. In addition this vector is cyclic in the

sense that spanMξφN = Hφ. We also observe that φ(x) = (Lξφ)∗xLξφ
where Lξφ : L2(N) → H(φ) is the operator defined by the bounded vector
ξφ.

A pair (H, ξ0) consisting of a bimodule H and a non-zero (cyclic) vector
ξ0 is called a pointed (cyclic) bimodule.

– From bimodules to completely positive maps. Conversely, let us
start from a pointed M -N -bimodule (H, ξ0) where ξ0 is left N -bounded.
Let T = Lξ0 : L2(N) → H be the bounded N -linear operator associated
with ξ0. Then φ : x 7→ T ∗πM (x)T is a completely positive normal map from
M into N .

In case ξ0 is cyclic, the pair (H(φ), ξφ) constructed from this φ is iso-
morphic to (H, ξ0) under the unitary operator U : H(φ)→ H sending x⊗ y
onto xξ0y.

Observe also that if we had started from (H, ξ0) = (H(φ), ξφ) for some
φ, then we would have retrieved φ from this latter construction.

Definition 13.1.6. Let H be a M -N -bimodule. A (right) coefficient of
H is a completely positive map φ : M → N of the form x 7→ L∗ξxLξ where

ξ is a left N -bounded vector3.

– Subtracial and subunital completely positive maps. Subtracial vec-
tors. These notions will be very useful later, in the study of Property (T)
and of the Haagerup property for tracial von Neumann algebras.

Definition 13.1.7. Let φ : M → N be a completely positive map. We
say that φ is subtracial if τN ◦ φ ≤ τM and that φ is subunital if φ(1) ≤ 1.

We say that φ is tracial if τN ◦ φ = τM . Whenever φ(1) = 1, then φ is
unital.

Note that a subtracial completely positive map is normal (by Proposition
2.5.11) and that a subunital completely positive map is equivalently defined
by ‖φ‖ = ‖φ(1)‖ ≤ 1. The proof of the following lemma is straightforward.

Lemma 13.1.8. Let (H, ξ) be a pointed M -N -bimodule with ξ left N -
bounded. Denote by φ : M → N the corresponding coefficient, i.e., φ(x) =
L∗ξxLξ for x ∈M .

(i) φ is subtracial if and only if 〈ξ, xξ〉 ≤ τM (x) for every x ∈M+.
(ii) φ is subunital if and only if 〈ξ, ξy〉 ≤ τN (y) for every y ∈ N+.

When (i) and (ii) are statisfied, we will say that the vector ξ is subtracial.
A tracial vector is a vector ξ such that 〈ξ, xξ〉 = τM (x) for every x ∈M and

3Similarly, we could consider left coefficients ψ : N →M .
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〈ξ, ξy〉 = τN (y) for every y ∈ N . Note that ξ is tracial if and only if the
corresponding completely positive map is tracial and unital.

The following result is a generalisation of the Radon-Nikodým type
Lemma 2.5.3.

Lemma 13.1.9. Let φ and ψ be two completely positive maps from M
to N such that ψ − φ is still a completely positive map. We assume that
ψ(x) = L∗ξxLξ where ξ is a left N -bounded vector in some M -N -bimodule

H. Then there is a left N -bounded vector η ∈ H such that φ(x) = L∗ηxLη
for every x ∈M . More precisely, η = Sξ where S : H → H is a M -N -linear
contraction.

Proof. We may assume that ξ is a cyclic vector in the M -N -bimodule
H. We observe that ψ, and hence φ, are normal. We define a M -N -linear
contraction T from H onto H(φ) by

T (
∑
i

miξni) =
∑
i

miξφni.

Indeed, we have, since ψ − φ is completely positive,∥∥∥∥∥∑
i

miξφni

∥∥∥∥∥
2

=
∑
i,j

〈mi ⊗ ni,mj ⊗ nj〉

=
∑
i,j

τN (n∗iφ(m∗imj)nj) ≤
∑
i,j

τN (n∗iL
∗
ξ(m

∗
imj)Lξnj)

≤
∑
i,j

τN ((Lmiξni)
∗Lmjξnj ) =

∥∥∥∥∥∑
i

miξni

∥∥∥∥∥
2

.

We set S = |T | and η = Sξ. This vector is left N -bounded and we have, for
x ∈M ,

L∗ηxLη = L∗ξSxSLξ = L∗ξT
∗xTLξ = L∗ξφxLξφ = φ(x),

since S and T are M -N linear and Tξ = ξφ.
�

Corollary 13.1.10. Let C be the convex set of all subunital completely
positive maps from M to M . Endowed with the topology of pointwise weak
operator convergence, it is compact. Moreover, IdM is an extremal point of
this compact convex set.

Proof. The first assertion is immediate. Now, suppose that IdM =
λφ1 + (1 − λ)φ2 with φ1, φ2 ∈ C and λ ∈]0, 1[. We note first that φ1(1) =
1 = φ2(1). Next, we apply the previous lemma with H = L2(M), N = M ,
ψ = IdM and therefore ξ = 1 ∈ L2(M). We get λφ1(x) = L∗ηxLη for every
x ∈M , where η belongs to the center of M . Thus, we see that λφ1(x) = xz1,
where z1 is in the center of M . But then λ = z1 and φ1 = IdM . �

The next lemma allows to approximate vectors by subtracial ones.
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Lemma 13.1.11. Let H be a M -N -bimodule and ξ ∈ H. Let T0 ∈
L1(M, τM )+ such that 〈ξ, xξ〉 = τM (xT0) for every x ∈ M and let S0 ∈
L1(N, τN )+ such that 〈ξ, ξy〉 = τN (yS0) for every y ∈ N . We set T = f(T0)

and S = f(S0) where f(t) = min(1, t−1/2) for t ≥ 0. Then the vector
ξ′ = TξS is subtracial and we have∥∥ξ − ξ′∥∥2 ≤ 2‖T0 − 1‖1 + 2‖S0 − 1‖1.

Proof. Given x ∈M+, we have, since S ≤ 1 and T0T
2 ≤ 1,〈

ξ′, xξ′
〉
≤ 〈ξ, TxTξ〉 = τM (TxTT0) ≤ τM (x).

Similarly, we get the other condition for ξ′ to be subtracial.
Moreover, we have∥∥ξ − ξ′∥∥2 ≤ 2‖ξ − Tξ‖2 + 2‖ξ − ξS‖2

≤ 2τM ((1− T )2T0) + 2τN ((1− S)2S0)

≤ 2‖T0 − 1‖1 + 2‖S0 − 1‖1.

�

Remark. Note that if ξ belongs to a M -N -submodule of H, the same
holds for ξ′.

13.1.3. Bimodules from representations of groups. As shown a-
bove, bimodules may be seen as generalized morphisms between von Neu-
mann algebras. We now point out that they also play the same role as
unitary representations in group theory. We remind the reader that a uni-
tary representation (π,H) of a group G is a group homomorphism from G
into the unitary group U(B(H)). The trivial representation ιG is the homo-
morphism s 7→ ιG(s) = 1 ∈ C.

– Bimodules and representations. Let G be a countable group and let
M = L(G) be the corresponding tracial von Neumann algebra. Recall that
`2(G) = L2(M), where the M -M -bimodule structure of L2(M) comes from
the left and right regular representations of G: given s, t ∈ G, we have

usfut = λ(s)ρ(t−1)f, ∀f ∈ `2(G).

Let π be a unitary representation in a Hilbert space Kπ. The Hilbert space
H(π) = `2(G) ⊗ Kπ is equipped with two commuting actions of G defined
by

us(f ⊗ ξ)ut = (usfut)⊗ π(s)ξ, ∀s, t ∈ G, f ∈ `2(G), ξ ∈ Kπ.

These actions extend to L(G) and give toH(π) a structure ofM -M -bimodule.
This is clear for the right G-action. On the other hand, the left G-action is
equivalent to a multiple of the left regular representation since the unitary
operator defined on `2(G)⊗Kπ by

U(δt ⊗ ξ) = δt ⊗ π(t)∗ξ, ∀t ∈ G , ξ ∈ Kπ,
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satisfies

U(us ⊗ π(s))U∗ = us ⊗ IdKπ , ∀s ∈ G,
Obviously, the equivalence class of H(π) only depends on the equiv-

alence class of the representation π. The trivial M -M -bimodule L2(M)
is associated with the trivial representation of G and the coarse bimodule
L2(M) ⊗ L2(M) corresponds to the left regular representation (Exercise
13.12).

This construction can be easily extended to crossed products. Let (B, τ)
be a tracial von Neumann algebra and let σ be a group homomorphism from
G into Aut (B, τ). Now we set M = BoG and keep the notations of Section
5.2. We have L2(M) = `2(G) ⊗ L2(B). Consider again a representation π
of G. This time, the corresponding M -M -bimodule is

H(π) = `2(G)⊗ L2(B)⊗Kπ,
equipped with the commuting actions that are well-defined by

(x̂⊗ ξ)y = x̂y ⊗ ξ = x̂y ⊗ ξ, ∀x ∈M, ξ ∈ Kπ, y ∈M ;

b(x̂⊗ ξ) = bx̂⊗ ξ = b̂x⊗ ξ, ∀x ∈M, ξ ∈ Kπ, b ∈ B;

us(x̂⊗ ξ) = usx̂⊗ π(s)ξ = ûsx⊗ π(s)ξ, ∀x ∈M, ξ ∈ Kπ, s ∈ G.

– Completely positive maps and positive definite functions. We have
seen in the previous section that cyclic pointedM -N -bimodules (H, ξ0) (with
ξ0 left N -bounded) are in bijective correspondence with normal completely
positive maps from M to N (up to isomorphism). This is analogous to
the well known fact that positive definite functions on groups correspond to
equivalence classes of unitary representations equipped with a cyclic vector
(i.e., pointed cyclic unitary representations).

Recall that a a complex-valued function ϕ defined on a countable group
G is positive definite (or of positive type) if, for every finite subset {s1, . . . , sn}
of G, the n×n matrix [ϕ(s−1

i sj)] is positive, that is, for every λ1, . . . , λn ∈ C,

we have
∑n

i,j=1 λiλjϕ(s−1
i sj) ≥ 0. Obviously, given a unitary represen-

tation π in a Hilbert space H, any coefficient of π, that is any function
s 7→ 〈ξ, π(s)ξ〉 with ξ ∈ H, is positive definite. Conversely, given a posi-
tive definite function ϕ on G there is a unique (up to isomorphism) triple
(Hϕ, πϕ, ξϕ) (called the GNS construction) composed of a unitary represen-
tation and a cyclic vector, such that ϕ(s) = 〈ξϕ, πϕ(s)ξϕ〉 for all s ∈ G.
These two constructions are inverse from each other4.

Completely positive maps on group von Neumann algebras, and more
generally on crossed products, are closely related to positive definite func-
tions.

Proposition 13.1.12. Let G be a countable group, (B, τ) a tracial von
Neumann algebra and σ : G y (B, τ) a trace preserving action. We set
M = B oG.

4See for instance [BdlHV08, Theorem C.4.10].
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(i) Let φ : M → M be a completely positive map. Then ϕ : s 7→
τ(φ(us)u

∗
s) is positive definite.

(ii) Let ϕ be a positive definite function on G. There is a unique normal
completely positive map φ : M →M such that φ(bus) = ϕ(s)bus for
every b ∈ B and s ∈ G. More precisely, let (Hϕ, πϕ, ξϕ) be the GNS
construction associated with ϕ and let H(πϕ) be the corresponding

M -M -bimodule. The vector ξ0 = 1̂M ⊗ ξϕ is left bounded, and the
completely positive map φ : M → M associated with (H(πϕ), ξ0)
satisfies φ(bus) = ϕ(s)bus for every b ∈ B and s ∈ G.

(iii) Let H be a M -M -bimodule and ξ0 a left bounded vector. We asso-
ciate the unitary representation π of G in K = span{usξ0u

∗
s : s ∈ G}

defined by

π(s)η = usηu
∗
s, ∀η ∈ K.

If ϕ is the positive definite function on G defined by (K, π, ξ0) and
if φ : M →M is the completely positive map defined by (H, ξ0) we
have ϕ(s) = τM (φ(us)u

∗
s) for every g ∈ G.

Proof. We leave the easy verifications as an exercise. �

13.2. Composition (or tensor product) of bimodules

The parallel between group representations and bimodules can be carried
on further. The classical operations on representations have their analogues
for bimodules. First, the addition (or direct sum) of M -N -bimodules is
defined in an obvious way. Second, given a M -N -bimodule H, the contra-
gredient bimodule is the conjugate Hilbert spaceH equipped with the actions

y · ξ · x = x∗ξy∗ ∀x ∈M,y ∈ N.
The most interesting operation is the composition, or tensor product of

bimodules, which corresponds to the tensor product of representations. For
the notations and properties of bounded vectors used below, we refer to
Section 8.4.2.

13.2.1. Definition of the tensor product.

Proposition 13.2.1. Let M be a tracial von Neumann algebra, let H
be a right M -module and let K be a left M -module. The formula

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, 〈ξ1, ξ2〉Mη2〉K (13.1)

defines a positive sesquilinear form on the algebraic tensor product H0 �K,
where H0 is the subspace of left M -bounded vectors.

Proof. We have to show that, for
∑n

i=1 ξi ⊗ ηi ∈ H0 �K, the quantity〈
n∑
i=1

ξi ⊗ ηi,
n∑
j=1

ξj ⊗ ηj

〉
=

n∑
i,j=1

〈
ηi, 〈ξi, ξj〉M ηj

〉
K
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is non-negative, or equivalently that the matrix [〈ξi, ξj〉M ]1≤i,j≤n ∈Mn(M)

is positive. Viewing [〈ξi, ξj〉M ]1≤i,j≤n as an operator acting on L2(M)⊕n it
is enough to check that

n∑
i,j=1

〈
x̂i, 〈ξi, ξj〉M x̂j

〉
≥ 0

for x1, . . . , xn ∈M . But this is immediate because

n∑
i,j=1

〈
x̂i, 〈ξi, ξj〉M x̂j

〉
=

〈
n∑
i=1

Lξi x̂i,
n∑
j=1

Lξj x̂j

〉
K

.

�

We denote by H ⊗M K the Hilbert space deduced from H0 � K by
separation and completion relative to the sesquilinear form defined in (13.1).
The image of ξ ⊗ η ∈ H �K in H⊗M K will be denoted by ξ ⊗M η.

We may perform the analogous construction, starting from H� 0K. As
such, we obtain Hilbert spaces that are canonically isomorphic, so there is
no ambiguity in the definition.

Proposition 13.2.2. Let M be a tracial von Neumann algebra, let H
be a right M -module and let K be a left M -module. The restrictions to
H0� 0K of the sesquilinear forms defined on H0�K and H� 0K coincide.
Moreover, the three Hilbert spaces obtained by separation and completion
from these spaces are the same.

Proof. It suffices to show that for ξ1, ξ2 ∈ H0 and η1, η2 ∈ 0K, we have

〈η1, 〈ξ1, ξ2〉Mη2〉K = 〈ξ1 M〈η1, η2〉, ξ2〉H.

Using Lemmas 8.4.6 and 8.4.5, we get

〈η1, 〈ξ1, ξ2〉Mη2〉K = τ(M〈〈ξ1, ξ2〉Mη2, η1〉) = τ(〈ξ1, ξ2〉M M〈η2, η1〉)
= 〈ξ1, ξ2 M〈η2, η1〉〉H = 〈ξ1 M〈η1, η2〉, ξ2〉H.

This proves our claim. The second part of the statement follows from the
density of H0 and 0K in H and K respectively. �

Proposition 13.2.3. Let M,N,P be three tracial von Neumann algebras
and let H be a M -N -bimodule and K a N -P -bimodule. Then H ⊗N K is a
M -P -bimodule with respect to the actions given by

x(ξ ⊗N η) = (xξ)⊗N η, (ξ ⊗N η)y = ξ ⊗N (ηy),

for x ∈M,y ∈ P, ξ ∈ H0, η ∈ 0K.
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Proof. We only consider the left action, the other case being dealt with
similarly. Given ξ1, . . . , ξn ∈ H0 and η1 . . . , ηn ∈ 0K, we have∥∥∥∥∥

n∑
i=1

(xξi)⊗N ηi

∥∥∥∥∥
2

=
n∑

i,j=1

〈
ηi, 〈xξi, xξj〉Nηj

〉
K

≤ ‖x‖2
∥∥∥∥∥

n∑
i=1

ξi ⊗N ηi

∥∥∥∥∥
2

,

since [〈xξi, xξj〉N ] ≤ ‖x‖2[〈ξi, ξj〉N ] in Mn(N)+. It follows that the left mul-
tiplication by x extends to a bounded operator on H ⊗N K. To see that
the representation of M is normal, we remark that, for ξ, η ∈ H0, the map
x 7→ 〈ξ, xη〉N = L∗ξxLη from M into N is w.o. continuous. �

Definition 13.2.4. The M -P -bimodule H⊗N K is called the composi-
tion or (Connes) tensor product of the bimodules MHN and NKP .

13.2.2. Properties of the tensor product. Below, M,N,P,Q are
tracial von Neumann algebras.

Proposition 13.2.5 (Associativity). Let H be a M -N -bimodule, K a
N -P -bimodule and L a P -Q-bimodule. The M -Q-bimodules (H⊗N K)⊗P L
and H⊗N (K ⊗P L)are canonically isomorphic.

Proof. One easily shows that the map U : (ξ⊗η)⊗µ→ ξ⊗(η⊗µ), with
ξ ∈ H0, η ∈ K, µ ∈ 0L, extends to an isomorphim of the above mentioned
M -Q-bimodules �

The distributivity of the tensor product with respect to the direct sum
is easy to establish, as well as the canonical isomorphisms

M (H⊗N L2(N))N ' MHN ' M (L2(M)⊗M H)N .

Proposition 13.2.6. Let H1,H2 be two right N -modules and K1,K2 be
two left N -modules. Let S : H1 → H2 and T : K1 → K2 be two bounded N -
linear maps. There exists a unique bounded operator S⊗N T : H1⊗N H2 →
K1 ⊗N K2 such that (S ⊗N T )(ξ ⊗N η) = Sξ ⊗N Tη for every ξ ∈ H0

1

and η ∈ 0H2. Moreover, if H1,K1 are M -N -bimodules, H2,K2 are N -P -
bimodules, and if S, T intertwine the actions, then S ⊗N T is M -P -linear.

Proof. The straightforward proof is left to the reader. �

Proposition 13.2.7. Let H be a M -N -bimodule and K a N -P -bimodule.
Then the map η⊗ξ 7→ ξ ⊗ η defines a linear application from K0⊗N 0H into
H⊗N K which extends to an isomorphism of P -M -bimodule from K ⊗N H
onto H⊗N K.

Proof. Again, the proof is a straightforward computation. �
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13.3. Weak containment

Given a group G, assumed to be countable for simplicity, the set Rep(G)
of equivalence classes of unitary representations of G in separable Hilbert
spaces contains a lot of informations relative to G. Therefore, given two
tracial von Neumann algebras M and N , it is tempting to study the space
Bimod (M,N) of equivalence classes of M -N -bimodules5, which plays the
same role as Rep(G). We develop further the similarities between these two
spaces and describe below the analogue for bimodules of the notion of weak
containment of group representations. We first give a quick survey for the
case of group representations.

13.3.1. Weak containment for group representations.

Definition 13.3.1. Let (π,H) and (ρ,K) be two unitary representations
of G. We say that π is weakly contained in ρ, and we write π ≺ ρ, if every
coefficient of π can be approximated by finite sums of coefficients of ρ. More
precisely, π ≺ ρ if for every ξ ∈ H, every finite subset F of G and every
ε > 0, there exist η1, . . . , ηn ∈ K such that∣∣∣∣∣〈ξ, π(g)ξ〉 −

n∑
i=1

〈ηi, ρ(g)ηi〉

∣∣∣∣∣ ≤ ε
for all g ∈ F .

If π ≺ ρ and ρ ≺ π, we say that π and ρ are weakly equivalent and denote
this by π ∼ ρ.

Note that π ≺ ρ if and only if every normalized6 coefficient ϕ of π
is the pointwise limit of a sequence of convex combinations of normalized
coefficients of ρ.

Of course, any subrepresentation of ρ is weakly contained in ρ. We also
observe that a representation is weakly equivalent to any of its multiples.

Remark 13.3.2. Although we will not need this result, we mention the
following equivalent formulation of the notion of weak containment. Remark
first that every unitary representation (π,H) gives rise to a representation
of the involutive Banach algebra `1(G) by

∀f ∈ `1(G), π(f) =
∑
g∈G

f(g)π(g).

It is a straightforward exercise to deduce from the definition that, whenever
π ≺ ρ, we have

∀f ∈ `1(G), ‖π(f)‖ ≤ ‖ρ(f)‖.
The converse is true. See for instance [Dix77, Chapter 18] about this fact.

5Strictly speaking, we have to fix a huge cardinal and consider bimodules on Hilbert
spaces whose dimension does not exceed it, in order to avoid paradoxically large sets. This
restriction will be implicit.

6ϕ : g 7→ 〈ξ, π(g)ξ〉 is said to be normalized if ϕ(e) = ‖ξ‖2 = 1.
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When π is irreducible, the definition may be spelled out in the following
simpler way.

Proposition 13.3.3. An irreducible representation π of G is weakly
contained in ρ if and only if every coefficient of π is the pointwise limit of a
sequence of coefficients of ρ.

Sketch of proof. First, we observe that on the unit ball of `∞(G)
the weak* topology coincides with the topology of pointwise convergence.
Denote by Q the set of normalized coefficients of ρ and let C be the closure
of the convex hull of Q in the weak* topology. Note that C is a compact
convex set.

Assume that π ≺ ρ and let ϕ : g 7→ 〈ξ, π(g)ξ〉 be a normalized coefficient
of π. Then ϕ belongs to C. Since π is irreducible, its normalized coefficients
are extremal points of the convex set of all normalized positive definite
functions7. In particular, ϕ is an extremal point of C. To conclude, it
suffices to use the classical result in functional analysis which tells us that
the weak* closure of the generating set Q of C contains the extremal points
of C.8 �

Observe that the trivial representation ιG of G is contained in (ρ,K)
if and only if ρ has a non-zero invariant vector. Similarly, we have the
following simple description of the weak containment of ιG in (ρ,K) based
on the notion of almost having invariant vectors, that we recall first.

Definition 13.3.4. Let (π,H) be a unitary representation of a group
G.

(i) Given a finite subset F of G and ε > 0, a vector ξ ∈ H is (F, ε)-
invariant if maxg∈F ‖π(g)ξ − ξ‖ < ε‖ξ‖.

(ii) We say that (π,H) almost has invariant vectors if π has (F, ε)-
invariant vectors for every finite subset F ⊂ G and every ε > 0.

Proposition 13.3.5. The following conditions are equivalent:

(i) ιG is weakly contained in ρ, i.e., ιG ≺ ρ;
(ii) there exists a net of coefficients of ρ converging to 1 pointwise;
(iii) (ρ,K) almost has invariant vectors.

Proof. Obviously, we have (ii)⇒ (i). The equivalence between (ii) and
(iii) is a consequence of the two following classical inequalities: for every unit
vector ξ,

‖ρ(g)ξ − ξ‖2 = 2|1−<〈ξ, ρ(g)ξ〉| ≤ 2|1− 〈ξ, ρ(g)ξ〉|, (13.2)

|1− 〈ξ, ρ(g)ξ〉| = |〈ξ, ξ − ρ(g)ξ〉| ≤ ‖ρ(g)ξ − ξ‖. (13.3)

7See for instance [BdlHV08, Theorem C.5.2].
8See [Con90, Theorem 7.8, Chapter V] for instance.
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Let us show that (i) ⇒ (iii) (without using Proposition 13.3.3). Assume
that (iii) does not hold. There exist ε > 0 and a finite subset F of G such
that ∑

g∈F
‖ρ(g)ξ − ξ‖2 ≥ ε‖ξ‖2

for every ξ ∈ K. This inequality is still valid when the representation ρ
is replaced by any of its multiple. It follows that there is no sequence of
coefficients of a countable multiple of ρ which converges to 1 pointwise, and
thus ιG is not weakly contained in ρ �

– The Fell topology on Rep(G). The notion of weak containment is
closely related to the Fell topology on Rep(G), defined as follows. Let (π,H)
be a unitary representation of G. Given ε > 0, a finite subset F of G, and
ξ1, . . . , ξn ∈ H, let V (π; ε, F, ξ1, . . . , ξn) be the set of (ρ,K) ∈ Rep(G) such
that there exist η1, . . . , ηn ∈ K with,

∀i, j, ∀g ∈ F, |〈ξi, π(g)ξj〉 − 〈ηi, ρ(g)ηj〉| < ε.

These sets V (π; ε, F, ξ1, . . . , ξn) form a basis of neighbourhoods of π for a
topology on Rep(G), called the Fell topology.

When (π,H) has a cyclic vector ξ, meaning that the linear span of
π(G)ξ is dense in H, then π has a basis of neighbourhoods of the form
V (π; ε, F, ξ). Indeed, any ξi ∈ H is as close as we wish to a linear combina-
tion

∑
k λkπ(gk)ξ. Hence, given V (π; ε, F, ξ1, . . . , ξn), we easily see that it

contains some V (π; ε′, F ′, ξ).
Obviously, a representation π is weakly contained in ρ whenever it be-

longs to the closure of {ρ}. In fact, we have π ≺ ρ if and only if π is in the
closure of the infinite (countable) multiple ρ⊕∞ of ρ.9 This is obvious if π
has a cyclic vector ξ and in the general case, one uses the fact that π is a
sum of representations having a cyclic vector.

However, we note that whenever π is irreducible10, we do have π ≺ ρ if
and only if π ∈ {ρ}. This follows from Proposition 13.3.3 and from the fact
that ξ has cyclic vectors.

This last observation also shows that the trivial representation ι has a
base of neighbourhoods of the form W ′(ι; ε, F ) with ε > 0, F finite subset
of G, where W ′(ι; ε, F ) is the set of representations (π,H) such that there
exists a unit vector ξ ∈ H satisfying

max
g∈F
‖π(g)ξ − ξ‖ ≤ ε.

13.3.2. Weak containment for bimodules. Among several equi-
valent definitions, we choose to introduce this notion via the Fell topology
on Bimod (M,N).

9See [Fel62, Theorem 1.1].
10This applies in particular to the trivial representation ιG.



D
ra
ft

13.3. WEAK CONTAINMENT 227

– The Fell topology on Bimod (M,N). This topology is defined by
the assignement of the following basis of neighbourhoods

V (H; ε, E, F, S)

of each H ∈ Bimod (M,N), with ε > 0 and where E, F , S = {ξ1, . . . , ξn}
range over all finite subsets of M , N and H respectively: V (H; ε, E, F, S) is
the set of all M -N -bimodules K such that there exist η1, . . . , ηn ∈ K with

|〈ξi, xξjy〉 − 〈ηi, xηjy〉| < ε

for every x ∈ E, y ∈ F , 1 ≤ i, j ≤ n.

– Neighbourhoods of the trivial bimodule. When H has a cyclic vec-
tor ξ, it is easily seen that it has a basis of neighbourhoods of the form
V (H; ε, E, F, {ξ}). This applies in particular, when M = N to the trivial

M -M -bimodule L2(M), where we take ξ = 1̂. In this case we may take
E = F and we set

V (L2(M); ε, F ) = V (L2(M); ε, F, F,
{

1̂
}

).

Note that V (L2(M); ε, F ) is the set of M -M bimodules K such that there
exists η ∈ K with

max
x,y∈F

|τ(xy)− 〈η, xηy〉| < ε.

Moreover, by taking F with 1M ∈ F , we may assume that ‖η‖ = 1.
As we will see in the sequel, it is very important to understand what it

means that L2(M) is adherent to a given bimodule, with respect to the Fell
topology. So it may be useful to have at hand different kinds of neighbour-
hoods of L2(M). We now describe another basis.

Given ε > 0 and a finite subset F of M , we define

W (L2(M); ε, F )

to be the set of M -M -bimodulesH such that there exists ξ ∈ H with ‖ξ‖ = 1
and

‖xξ − ξx‖ < ε, |〈ξ, xξ〉 − τ(x)| < ε.

for every x ∈ F .

Lemma 13.3.6. The family of sets W (L2(M); ε, F ), where F ranges over
the finite subsets of M , and ε > 0, forms a basis of neighbourhoods of L2(M).

Proof. Setting E = {x, x∗, x∗x, xx∗ : x ∈ F} ∪ {1M}, we check that
(with ε < 1),

V (L2(M); ε2/4, E) ⊂W (L2(M); ε, F ).

Therefore, W (L2(M); ε, F ) is a neighbourhood of L2(M).
Conversely, given ε > 0 and a finite subset E of the unit ball of M , we

have
W (L2(M); ε/2, F ) ⊂ V (L2(M); ε, E)

with F = E ∪ E2, due to the inequality, for ‖ξ‖ ≤ 1,

|〈ξ, xξy〉 − τ(xy)| ≤ |〈ξ, xyξ〉 − τ(xy)|+ ‖x‖‖yξ − ξy‖.
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�

Now, let

W ′(L2(M); ε, F )

be the set of M -M bimodules H such that there exists ξ ∈ H with ‖ξ‖ = 1
and ‖xξ − ξx‖ < ε for all x ∈ F . When M is a factor this family of sets
forms a simpler basis of neighbourhoods of L2(M).

Proposition 13.3.7. Let M be a II1 factor. The family of sets

W ′(L2(M); ε, F ),

where F ranges over the finite subsets of M , and ε > 0, forms a basis of
neighbourhoods of L2(M).

Proof. It suffices to show that, given ε > 0 and a finite subset F of
the unit ball of M , there exist ε1 > 0 and a finite subset F1 of M such that
W ′(L2(M); ε1, F1) ⊂W (L2(M); ε, F ).

Let H be a M -M -bimodule and ξ ∈ H with ‖ξ‖ = 1. We first observe
that for x1, x2 ∈M we have

|〈ξ, x1x2ξ〉 − 〈ξ, x2x1ξ〉| ≤ ‖x1‖(‖x2ξ − ξx2‖+ ‖x∗2ξ − ξx∗2‖). (13.4)

Second, using the Dixmier averaging theorem (see Theorem 6.4.1 and
Exercise 6.3), given δ > 0, there are unitary elements u1, . . . , un in M such
that ∥∥∥∥∥ 1

n

n∑
i=1

uixu
∗
i − τ(x)1M

∥∥∥∥∥ < δ (13.5)

for all x ∈ F . We set

F1 = F ∪ {u1, . . . , un}.

If ξ ∈ H with ‖ξ‖ = 1 is such that ‖xξ − ξx‖ < δ for every x ∈ F1, we have,
for x ∈ F ,

|〈ξ, uixu∗i ξ〉 − 〈ξ, xξ〉| < 2δ,

by taking x1 = uix and x2 = u∗i in (13.4).
Then, it follows from (13.5) that, for x ∈ F ,

|τ(x)− 〈ξ, xξ〉| < 3δ,

and therefore

W ′(L2(M); ε/3, F1) ⊂W (L2(M); ε, F ).

�
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– Weak containment. Given a M -N -bimodule K, we denote by K⊕∞
the Hilbert direct sum of countably many copies of K.

Definition 13.3.8. Let H and K be two M -N -bimodules. We say that
H is weakly contained in K, and we write H ≺ K, if H belongs to the closure
of K⊕∞ in Bimod (M,N).

Remark 13.3.9. A M -N -bimoduleH gives rise to a representation πH of
the involutive algebra M �Nop on H. The analogue of the result mentioned
in Remark 13.3.2 holds: one has H ≺ K if and only if ‖πH(x)‖ ≤ ‖πK(x)‖
for every x ∈M �Nop (see [AD95] for instance).

When K is a M -M -bimodule, then L2(M) ≺ K is equivalent to the
following property: for every ε > 0 and every finite subset F of M , there
exists a vector η ∈ K⊕∞ with

|τ(xy)− 〈η, xηy〉| < ε,

for every x, y ∈ F (and by Lemma 13.3.6 we may, if we wish, require that
maxx∈F ‖xη − ηx‖ < ε).

The weak containment property of L2(M) can also be read as follows.

Proposition 13.3.10. Let K be a M -M -bimodule. The following con-
ditions are equivalent:

(i) L2(M) is weakly contained in K;
(ii) (resp. (ii′)) for every ε > 0 and every finite subset F of M there

exists a subtracial and subunital completely positive (resp. a com-
pletely positive) map φ : M →M such that
(a) maxx∈F ‖φ(x)− x‖2 ≤ ε;
(b) φ is a finite sum of coefficients of K.

Let η be a left M -bounded vector of a M -M -bimodule H (for instance a
subtracial vector) and denote by φ : x 7→ L∗ηxLη the associated completely
positive map. In the proof of the above proposition, we will use repeatedly
the following equality (see Lemma 8.4.5)

∀x, y ∈M, 〈η, xηy〉 = τ(φ(x)y). (13.6)

Proof. Obviously (ii) ⇒ (ii’). Let us show that (ii’) ⇒ (i). Let ε > 0
and F be given and let φ : M → M be a completely positive map sat-
isfying the conditions (a) and (b). There exists a left bounded vector
η = (η1, . . . , ηn) in K⊕n, for some integer n, such that φ(x) = L∗ηxLη for
every x ∈M . Then we have, for x, y ∈ F ,

|τ(xy)− 〈η, xηy)〉| = |τ(xy)− τ(φ(x)y)| ≤ ‖x− φ(x)‖2‖y‖2 ≤ max
y∈F
‖y‖2ε.

Therefore, we have L2(M) ≺ K.
(i) ⇒ (ii) Assume that L2(M) ≺ K and let ε > 0 and F be given. We

set F1 = F ∪ F ∗ ∪ {x∗x : x ∈ F ∪ F ∗}. Given ε1 > 0 and using the next
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lemma, we find a subtracial vector η in some finite direct sum of copies of
K such that

|τ(x)− 〈η, xη〉| ≤ ε1 and ‖xη − ηx‖ ≤ ε1

for x ∈ F1.
Let φ be the completely positive map defined by η. For x ∈ F , we have

‖φ(x)− x‖22 = τ(φ(x)∗φ(x)) + τ(x∗x)− τ(φ(x)∗x)− τ(x∗φ(x))

≤ 2τ(x∗x)− τ(φ(x)∗x)− τ(x∗φ(x))

≤ |τ(x∗x)− 〈η, x∗ηx〉|+ |τ(x∗x)− 〈η, xηx∗〉|
≤ |τ(x∗x)− 〈η, x∗xη〉|+ ‖x‖‖xη − ηx‖

+ |τ(xx∗)− 〈η, xx∗η〉|+ ‖x‖‖x∗η − ηx∗‖
≤ 2ε1(1 + max

x∈F
‖x‖).

It suffices to take ε1 such that 2ε1(1 + maxx∈F ‖x‖) ≤ ε to get (ii). �

In the lemma below, we use the following notation: given a M -M -
bimodule H and η ∈ H, we denote by ωlη the functional x 7→ 〈η, xη〉 and by
ωrη the functional x 7→ 〈η, ηx〉.

Lemma 13.3.11. Let K be a M -M -bimodule and let (ηi) be a net in K⊕∞
such that for all x ∈M ,

lim
i
ωlηi(x) = τ(x) = lim

i
ωrηi(x), (13.7)

lim
i
‖xηi − ηix‖ = 0. (13.8)

Then there exists a net (η′i) of subtracial vectors in K⊕∞ such that

lim
i

∥∥∥ωlη′i − τ∥∥∥ = 0 = lim
i

∥∥∥ωrη′i − τ∥∥∥, (13.9)

lim
i

∥∥xη′i − η′ix∥∥ = 0, ∀x ∈M.

Moreover, if ηi ∈ K⊕∞0 for all i, where K0 is a subbimodule of K, then the
η′i may still be taken in K⊕∞0 .

If M is separable, we may replace nets by sequences.

Proof. We first claim that in (13.7), we may replace the weak conver-
gence of the nets (ωlηi)i and (ωrηi)i by the ‖·‖-convergence. Indeed, given a
finite subset F of M and ε > 0, our assumption implies that (0, 0) belongs to
the σ(M2

∗ ,M
2) closure of the set of (τ−ωlη, τ−ωrη) where η runs over the set

of elements such that maxx∈F ‖xη − ηx‖ ≤ ε. By a classical convexity argu-
ment, we see that there is a convex combination (

∑n
k=1 λkω

l
ηik
,
∑n

k=1 λkω
r
ηik

)
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such that ∥∥τ − n∑
k=1

λkω
l
ηik
‖ ≤ ε,

∥∥τ − n∑
k=1

λkω
r
ηik

∥∥ ≤ ε,
max
x∈F
‖xηik − ηikx‖ ≤ ε, ∀k.

We denote by ηF,ε the element (λ
1/2
1 ηi1 , . . . , λ

1/2
n ηin), viewed as a vector in

K⊕∞. Then we have ∥∥τ − ωlηF,ε∥∥ ≤ ε, ∥∥τ − ωrηF,ε∥∥ ≤ ε,
max
x∈F
‖xηF,ε − ηF,εx‖ ≤ ε.

So, we may now assume, for (ηi), the ‖·‖-convergence as in (13.9). We
set ωlηi = τ(·Ti) and ωrηi = τ(·Si) with Ti, Si ∈ L1(M, τ)+. Then we have
limi ‖Ti − 1‖1 = 0 = limi ‖Si − 1‖1. Therefore, by Lemma 13.1.11, we may
assume that the ηi’s are subtracial. The second assertion is a consequence
of the remark following Lemma 13.1.11.

Finally, let us assume that M is separable. Let D be a countable subset
of the unit ball (M)1, dense in this ball with respect to the ‖·‖2-topology.
Since the ηi’s are subtracial, it is easily seen that Condition (13.8) holds for
all x ∈M if and only if it holds for all x ∈ D. It follows that we may replace
nets by sequences. �

13.4. Back to amenable tracial von Neumann algebras

13.4.1. Amenability and asymptotically central nets. Recall that
a countable group G is amenable if and only if its left regular representation
λG almost has invariant vectors, or in other terms if and only if its trivial
representation ιG is weakly contained in λG. In the dictionary translating
group representations into bimodules, ιG corresponds to the trivial bimo-
dule and λG corresponds to the coarse bimodule (see Section 13.1.3). We
can reformulate Theorem 10.2.9 as follows.

Theorem 13.4.1. Let (M, τ) be a tracial von Neumann algebra. The
following conditions are equivalent:

(i) M is amenable;
(ii) ML

2(M)M belongs to the closure of ML
2(M)⊗L2(M)M with respect

to the Fell topology;
(iii) ML

2(M)M ≺ ML
2(M)⊗ L2(M)M .

Proof. (i) ⇔ (ii) We identify the coarse bimodule L2(M) ⊗ L2(M)
to the M -M -bimodule S2(L2(M)) of Hilbert-Schmidt operators on L2(M).
Then L2(M) belongs to the closure of S2(L2(M)) with respect to the Fell
topology if and only if there exists a net (Ti)i of Hilbert-Schmidt opera-
tors with ‖Ti‖2,Tr = 1 for every i, such that limi ‖xTi − Tix‖2,Tr = 0 and

limi Tr(T ∗i xTi) = τ(x) for every x ∈ M . This is exactly the content of
Property (3) in Theorem 10.2.9.
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(ii) ⇒ (iii) is obvious. Let us show that (iii) ⇒ (i). Denote by H the
Hilbert direct sum of countably many copies of ML

2(M) ⊗ L2(M)M , that
we view as a left B(L2(M))-module. Assume that (iii) is satisfied. There
exists a net (ηi)i∈I of unit vectors in H such that limi ‖xηi − ηix‖ = 0 and
limi 〈ηi, xηi〉 = τ(x) for all x ∈M . Let ψ ∈ B(L2(M))∗ be a cluster point of
the net of states T 7→ 〈ηi, Tηi〉 in the weak* topology. We have ψ(x) = τ(x)
for x ∈M . Moreover, for every unitary element u ∈M and T ∈ B(L2(M))
we have

ψ(uTu∗) = lim
j

〈
ηij , uTu

∗ηij
〉

= lim
j

〈
u∗ηij , Tu

∗ηij
〉

= lim
j

〈
ηiju

∗, (Tηij )u
∗〉 = lim

j

〈
ηij , Tηij

〉
= ψ(T ).

It follows that ψ is a hypertrace for (M, τ) and therefore M is amenable. �

13.4.2. Amenability and approximation of the identity. Another
very useful characterisation of amenability for a group G, recalled in Propo-
sition 10.1.2, is the following one: G is amenable if and only if there exists
a net (ϕi) of finitely supported positive definite functions on G which con-
verges pointwise to 1. We now state the analogue for tracial von Neumann
algebras.

Theorem 13.4.2. Let (M, τ) be a tracial von Neumann algebra. The
following conditions are equivalent:

(i) M is amenable;
(ii) there exists a net (φi) (or a sequence if M is separable) of subunital

and subtracial finite rank completely positive maps from M to M
such that for all x ∈M ,

lim
i
‖φi(x)− x‖2 = 0.

Proof. (i)⇒ (ii). Assume that M is amenable. By Theorem 13.4.1 and
Proposition 13.3.10, there exists a net (φi) of subtracial elements completely
positive maps φi : M →M , which are finite sums of coefficients of the coarse
bimodule L2(M) ⊗ L2(M), such that limi ‖φi(x)− x‖2 = 0 for all x ∈ M .
Moreover, by density of L2(M)�M in L2(M)⊗L2(M), we may take these
coefficients associated to vectors in L2(M)�M , as observed in the statement
of Proposition 13.3.10.

Therefore, we have to show is that a completely positive map φ defined
by a vector η =

∑n
k=1 ξk ⊗mk ∈ L2(M)�M has a finite rank. A straight-

forward computation shows that φ : x 7→ L∗ηxLη is given by

φ(x) =

n∑
i,j=1

〈ξi, xξj〉m∗imj .

So, we see that φ is the composition of the completely positive map x ∈M 7→
[〈ξi, xξj〉] ∈ Mn(C) and of the completely positive map [ai,j ] ∈ Mn(C) 7→∑

i,j ai,jm
∗
imj ∈M .
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To prove the converse, it suffices to show that every subunital and sub-
tracial finite rank completely positive map φ : M → M is a coefficient of
L2(M)⊗ L2(M). This is proved in the next lemma. �

Lemma 13.4.3. Every subunital and subtracial finite rank completely
positive map φ : M →M is a coefficient of L2(M)⊗ L2(M).

Proof. Let {y1, . . . , yn} be an orthonormal basis of φ(M) ⊂ L2(M).
We have, for x ∈M ,

φ(x) =

n∑
i=1

yiτ(y∗i φ(x)).

Observe that x 7→ τ(y∗i φ(x)) is ‖·‖2-continuous since

|τ(y∗i φ(x))|2 ≤ τ(y∗i yi)τ(φ(x)∗φ(x)) ≤ ‖x‖22,
where the last inequality uses the fact that φ is subunital and subtracial.

Let ηi ∈ L2(M) such that τ(y∗i φ(x)) = 〈ηi, x〉 for every x ∈ M . We
set η =

∑
i ηi ⊗ y∗i and ξ = 1 ⊗ 1. These vectors are left bounded and

φ(x) = L∗ηxLξ. But φ(x∗) = φ(x)∗ and therefore L∗ηxLξ = L∗ξxLη. It follows
that

L∗ξ+ηxLξ+η = L∗ξxLξ + L∗ηxLη + 2φ(x).

Now, we deduce from Lemma 13.1.9 that φ is a coefficient of L2(M) ⊗
L2(M). �

13.4.3. Relative amenability. Let H be a subgroup of a group G.
The quasi-regular representation λG/H is the unitary representation of G by

translations in `2(G/H). We say that H is co-amenable in G if ιG is weakly
contained in λG/H . Again, there are many other equivalent definitions,

among them the existence of a G-invariant mean on `∞(G/H).11 If we set
Q = L(H) and M = L(G) we note that the M -M -bimodule corresponding
to the representation λG/H is L2(M) ⊗Q L2(M) (Exercise 13.12). It is not
difficult to show that H is co-amenable in G if and only if the trivial M -M -
bimodule L2(M) is weakly contained in L2(M)⊗Q L2(M).12

More generally, in the setting of tracial von Neumann algebras, there
is a useful notion of relative amenability that is characterized below by
equivalent conditions similar to the characterisations of an amenable tracial
von Neumann algebra given in Chapter 10 and in Theorem 13.4.1. For an
inclusion P ⊂ N of von Neumann algebras, we say that a state ψ on N is
P -central if ψ(xy) = ψ(yx) for every x ∈ P and y ∈ N .

Theorem 13.4.4. Let P,Q be two von Neumann subalgebras of a tracial
von Neumann algebra (M, τ). The following conditions are equivalent:

(i) there exists a conditional expectation from 〈M, eQ〉 onto P whose

restriction to M is EMP ;

11This notion is studied in detail in [Eym72].
12See [AD95, Prop. 3.5].
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(ii) there is a P -central state ψ on 〈M, eQ〉 such that ψ|M = τ ;
(iii) there is a P -central state ψ on 〈M, eQ〉 such that ψ is normal on

M and faithful on Z(P ′ ∩M);
(iv) there is a net (ξi) of norm-one vectors in L2(〈M, eQ〉) such that

limi ‖xξi − ξix‖ = 0 for every x ∈ P and limi 〈ξi, xξi〉 = τ(x) for
every x ∈M ;

(v) ML
2(M)P is weakly contained in ML

2(M)⊗Q L2(M)P .

Proof. The equivalence between (i) and (ii) is a straightforward gene-
ralisation of Proposition 10.2.5, which is the particular case where Q = C
and P = M .

The implication (ii) ⇒ (iii) is obvious. Conversely, assume that (iii)
holds. Let a be the unique element in L1(M)+ such that ψ(x) = τ(xa) for
every x ∈ M . Since ψ is P -central, we have uau∗ = a for every u ∈ U(P )
and therefore a ∈ L1(P ′ ∩M)+. Let I be the directed set of finite subsets
of U(P ′ ∩M). For i = {u1, . . . , un} ∈ I, we set

ai =
1

n

n∑
k=1

ukau
∗
k ∈ L1(P ′ ∩M)+,

and for m ∈ N, we set ai,m = Ec1/m(ai)a
−1/2
i ∈ P ′ ∩M , where Ec1/m(ai) is

the spectral projection of ai relative to the interval (1/m,+∞). Next, we
introduce the positive linear functionals ϕi,m on 〈M, eQ〉 defined by

ϕi,m(x) =
1

n

n∑
k=1

ψ(u∗kai,mxai,muk)

for x ∈ 〈M, eQ〉. Since ai,muk ∈ P ′∩M , the functional ϕi,m is still P -central.
Moreover, for x ∈M , we have ϕi,m(x) = τ(xEc1/m(ai)). Now, let us observe

that, in the s.o. topology,

lim
i

lim
m
Ec1/m(ai) = lim

i
s(ai) = lim

i

∨
u∈i

s(uau∗) = z

where z is the smallest projection in Z(P ′ ∩M) such that az = a. Since
ψ(1−z) = τ((1−z)a) = 0, and ψ is faithful on Z(P ′∩M), we see that z = 1.
Hence, the state ϕ = limi limm ϕi,m is P -central and τ is its restriction to
M . Thus (ii) is satisfied.

The M -M bimodules L2(M) ⊗Q L2(M) and L2(〈M, eQ〉) are canoni-
cally isomorphic (see Exercise 13.13). The proof of (iv) ⇔ (ii) is similar
to the proof of the equivalence of (3) with the existence of a hypertrace
in Theorem 10.2.9. We just replace the semi-finite von Neumann algebra
B(L2(M)) by the semi-finite von Neumann algebra 〈M, eQ〉 and we observe
that L2(〈M, eQ〉) plays the role of Hilbert-Schmidt operators. Moreover, we
only consider the right P -action on L2(〈M, eQ〉).

Let us prove the equivalence between (v) and the four other conditions.
By Exercise 13.14, ML

2(M)P has a basis of neighbourhoods of the form
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W (ε, E, F ), where E, F are finite subsets of M and P respectively and
W (ε, E, F ) is the set of M -P -bimodules H such that there exists ξ ∈ H
with ‖ξ‖ = 1 and

‖xξ − ξx‖ < ε for all x ∈ P, |〈ξ, xξ〉 − τ(x)| < ε for all x ∈M.

It follows that (iv) ⇒ (v). Assume now that (v) holds. Then there is a net
(ξi) in an infinite multiple of ML

2(M)⊗Q L2(M)P such that

lim
i
‖xξi − ξix‖ = 0 for all x ∈ P, lim

i
〈ξi, xξi〉 = τ(x) for all x ∈M.

We let 〈M, eQ〉 act on L2(M) ⊗Q L2(M) by x(η ⊗Q η′) = (xη) ⊗Q η′. Let
ψ ∈ 〈M, eQ〉∗ be a cluster point of the net of states x 7→ 〈ξi, xξi〉 in the
weak* topology. Then ψ satisfies the conditions of (ii). �

Definition 13.4.5. Let P,Q be two von Neumann subalgebras of a
tracial von Neumann algebra (M, τ). We say that P is amenable relative to
Q inside M if the equivalent assertions of Theorem 13.4.4 are satisfied.

If M is amenable relative to Q inside M (case P = M), one says that
M is amenable relative to Q, or that Q is co-amenable in M . In particular,
M is amenable if and only if it is amenable relative to Q = C1.

Remark 13.4.6. If M is amenable, then P is amenable relative to Q
inside M for every pair (P,Q) of von Neumann subalgebras, since there
exists an hypertrace.

As an example, consider a trace preserving action of a group G on a
tracial von Neumann algebra (Q, τ). Then Q is co-amenable in M = QoG
if an only if G is amenable. Indeed, we have observed in Subsection 9.4.3
that 〈M, eQ〉 is Q⊗B(`2(G)) and it is shown in [AD79, Proposition 4.1] that
the existence of a conditional expectation from Q⊗B(`2(G)) onto QoG is
equivalent to the amenability of G (see [Pop86a, Theorem. 3.2.4. (3)] for
another proof).

Remark 13.4.7. We will need later a slightly more general version of
relative amenability where P is only a von Neumann subalgebra of pMp
for some non-zero projection p of M , that is, p is the unit of P . In this
situation, we say that P is amenable relative to Q inside M if P ⊕C(1− p)
is amenable relative to Q inside M . The version of Theorem 13.4.4 in this
setting is easily spelled out. In particular this relative amenability property
can be expressed by the following equivalent properties:

(ii) there exists a P -central state ψ on p〈M, eQ〉p such that ψ(pxp) =
τ(pxp)/τ(p) for every x ∈M ;

(iii) there is a P -central state ψ on p〈M, eQ〉p such that ψ is normal on
pMp and faithful on Z(P ′ ∩ pMp);

(iv) there is a net (ξi) of norm-one vectors in L2(p〈M, eQ〉p) such that
limi ‖xξi − ξix‖ = 0 for every x ∈ P and limi 〈ξi, xξi〉 = τ(x) for
every x ∈ pMp.
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Whenever Q is an amenable subalgebra of M , the amenability of a von
Neumann subalgebra P of pMp is equivalent to its amenability relative to
Q inside M (see Exercise 13.16). It is sometimes a handy way to show that
P is amenable. We will see an illustration of this observation in Chapter 19
where we will use the following lemma which provides a useful criterion for
relative amenability.

Lemma 13.4.8. Let P,Q be two von Neumann subalgebras of a tracial
von Neumann algebra (M, τ). We assume that there is a Q-M -bimodule K
and a net (ξi)i∈I of elements ξi in a multiple H of L2(M)⊗Q K such that:

(a) lim supi ‖xξi‖ ≤ ‖x‖2 for all x ∈M ;
(b) lim supi ‖ξi‖ > 0;
(c) limi ‖yξi − ξiy‖ = 0 for all y ∈ P .

Then, there exists a non-zero projection p′ ∈ Z(P ′ ∩M) such that Pp′ is
amenable relative to Q inside M .

Proof. We first claim that we may assume, in addition, that

lim
i
‖ξi‖ > 0.

Indeed, let us introduce the set J of all triples j = (E,F, ε), where E ⊂M ,
F ⊂ P are finite sets and ε > 0. This set J is directed by

(E,F, ε) ≤ (E′, F ′, ε′) if E ⊂ E′, F ⊂ F ′, ε′ ≤ ε.
Let us fix j = (E,F, ε). Using Conditions (a) and (c) we find i0 ∈ I

such that ‖xξi‖ ≤ ‖x‖2 + ε and ‖yξi − ξiy‖ ≤ ε for x ∈ E, y ∈ F and
i ≥ i0. We set δ = lim supi ‖ξi‖ > 0. Let i ≥ i0 be such that ‖ξi‖ ≥ δ/2.
Then we define ηj = ξi for this choice of i. A straightforward verification
shows that lim supj ‖xηj‖ ≤ ‖x‖2 for all x ∈ M , lim infj ‖ηj‖ > 0, and
limj ‖yηj − ηjy‖ = 0 for y ∈ P . By taking an appropriate subnet we may
assume that limj ‖ηj‖ > 0. This proves our claim.

Observe that L2(M)⊗QK is a left 〈M, eQ〉-module. Let ψj be the normal
state on 〈M, eQ〉 defined by

ψj(x) =
1

‖ηj‖2
〈ηj , xηj〉

and let ψ : 〈M, eQ〉 → C be a weak* limit of a subnet of (ψj)j∈J . Then
ψ is P -central and its restriction to M is normal since it is majorized by
a multiple of τ , thanks to Condition (a) and the fact that limj ‖ηj‖ > 0.
Finally, if p′ denote the minimal projection in Z(P ′∩M) such that ψ(p′) = 1,
we get that the restriction of ψ to Z((Pp′)′∩p′Mp′) is faithful and it follows
that Pp′ is amenable relative to Q inside M . �

Exercises

Exercise 13.1. (i) Let M be a tracial von Neumann algebra. Let H be
a left M -module and let ξ ∈ H. Show that there exists a sequence (pn) of
projections in M which converges to the identity in the s.o. topology and



D
ra
ft

EXERCISES 237

such that pnξ is right bounded for every n (Hint: consider the functional
x 7→ 〈ξ, xξ〉 and use the Radon-Nikodým theorem).

(ii) Let M , N be two tracial von Neumann algebras and let H be a
M -N -bimodule. Show that the subspace of vectors which are both right
M -bounded and left N -bounded is dense in K.

Exercise 13.2. Let HN and NK be two modules on a tracial von Neu-
mann algebra N . For any n ∈ N and for either ξ ∈ H0 and η ∈ K or ξ ∈ H
and η ∈ 0K, show that ξ ⊗N nη = ξn⊗N η.

Exercise 13.3. Let H be a M -N -bimodule and K be a N -P -bimodule.

(i) For ξ ∈ H0, show that the map LK(ξ) : η 7→ ξ⊗N η is bounded and
P -linear from KP into (H ⊗N K)P . If in addition, η ∈ K0, show
that ξ ⊗N η is left P -bounded and that Lξ⊗Nη = LK(ξ) ◦ Lη.

(ii) Prove the similar statement for right bounded vectors.

Exercise 13.4. Let H and K as above. Let (ξi) (resp. (ηj)) be a family
of left bounded vectors in H (resp. K) such that

∑
i LξiL

∗
ξi

= IdH (resp.∑
i LηiL

∗
ηi = IdK). Show that

∑
i,j Lξi⊗Nηj (Lξi⊗Nηj )

∗ = IdH⊗NK.

Exercise 13.5. Let H be a M -N -bimodule, where M , N are II1 factors.
Assume that dim(HN ) < +∞.

(i) Show that every left N -bounded vector is also right M -bounded.
(ii) Let (ξi)1≤i≤n be an orthonormal basis of HN . Show that the ope-

rator
∑n

i=1 M 〈ξi, ξi〉 is scalar, equal to dim(HN )1M .

Exercise 13.6. Let N , P be II1 factors, H a right N -module and K a
N -P -bimodule. Assume that dim(HN ) < +∞ and dim(KP ) < +∞. Show
that dim((H⊗N K)P ) = dim(HN ) dim(KP ).

We define the Jones’ index of a M -N -bimoduleH to be dim(MH) dim(HN ).
It is tempting to consider its square root [MHN ] as the dimension of the bi-
module, but this quantity does not have the expected properties: for bimod-
ules over II1 factors, we have well [M (H⊗N K)P ] = [MHN ][NKP ] as shown
in the next exercise, but only [M (H ⊕ K)N ] ≥ [MHN ] + [MKN ]. However,
for a II1 factor M , there is a good dimension function (i.e., both addi-
tive and multiplicative) on the set of (equivalence classes) of finite Jones’
index M -M -bimodules, whose value is [MHM ] when H is irreducible, and
is extended by additivity on any finite Jones’ index M -M -bimodule (see
[Rob95], [LR97]).

Exercise 13.7. Let M , N , P be II1 factors.
(i) Let H be a M -N -bimodule. Show that [MHN ] = [NHM ].
(ii) Let H and K be two M -N -bimodules of finite index. Show that

[MHN ⊕M KN ] ≥ [MHN ] + [MKN ].

(iii) Let H be a M -N -module and let K be a N -P -bimodule, both of
finite index. Show that

[MH⊗N KP ] = [MHN ][NKP ].
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Exercise 13.8. Let α ∈ Aut (M). Show that K(α) = H(α) is canon-
ically isomorphic to the M -M -bimodule L2(M) equipped with the actions
xξy = xξα(y).

Exercise 13.9. Let α, β be two automorphisms of M . Show that the
M -M -bimodules H(β ◦ α) and H(α) ⊗M H(β) are canonically isomorphic
(and similarly for K(β ◦ α) and K(β)⊗M K(α)).13

Exercise 13.10. Let M , N , p and α as in Proposition 13.1.5 and let

NKP be a N -P -bimodule, where P is a II1 factor.

(i) Show that the M -P -bimodules α(M)

(
p(`2n ⊗ L2(N))

)
⊗NKP and

α(M)

(
p(`2n ⊗K)

)
P

are isomorphic.
(ii) We now consider a finite index inclusion β : N → qMm(P )q and

take NKP =NH(β)P . Show that MH(α) ⊗NH(β)P is isomorphic
to MH((IdB(`2n) ⊗ β) ◦ α)P , thus extending the previous exercise.

Exercise 13.11. Let M be a II1 factor and denote by Bimod1(M) the
set of equivalence classes of M -M -bimodules of index 1.

(i) Show that Bimod1(M) equipped with the tensor product and the
contragredient map is a group.

(ii Show that Bimod1(M) is the set of equivalence classes of bimodules
H(ψ) where ψ ranges over the isomorphisms from M onto some
p(Mn(C)⊗M)p.

(iii) Show thatH(ψ) 7→ (Tr⊗τ)(p) induces a well-define homomorphism
from Bimod 1(M) onto F(M) whose kernel is Out (M), so that we
have a short exact sequence of groups

1→ Out (M)→ Bimod1(M)→ F(M)→ 1.

Exercise 13.12. Let G be a group and M = L(G). Prove that the
following M -M -bimodules are canonically isomorphic:

(i) H(π) and H(π) for every representation π of G;
(ii) H(π1⊗π2) and H(π1)⊗M H(π2) for every representations π1, π2 of

G;
(iii) H(λG/H) and `2(G) ⊗L(H) `

2(G), where λG/H is the quasi-regular
representation of G associated with a subgroup H.

Exercise 13.13. Let Q be a von Neumann subalgebra of a tracial von
Neumann algebra (M, τ). Show that the map meQm1 7→ m̂⊗Q m̂1 induces
an isomorphism from the 〈M, eQ〉-〈M, eQ〉-bimodule L2(〈M, eQ〉, τ̂) onto the
〈M, eQ〉-〈M, eQ〉-bimodule L2(M, τ)⊗Q L2(M, τ).

Exercise 13.14. Let P be a von Neumann subalgebras of a tracial von
Neumann algebra (M, τ). Show ML

2(M)P has a basis of neighbourhoods of
the form W (ε, E, F ), where E, F are finite subsets of M and P respectively

13Therefore, α 7→ K(α) behaves better with respect to the composition, and is often
taken as the right definition of the bimodule defined by α.
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and W (ε, E, F ) is the set of M -P -bimodules H such that there exists ξ ∈ H
with ‖ξ‖ = 1 and

‖xξ − ξx‖ < ε for all x ∈ F, |〈ξ, xξ〉 − τ(x)| < ε for all x ∈M.

Exercise 13.15. Let M,N,P be tracial von Neumann algebras and let

MHN , MKN , NLP be bimodules.

(i) Show that MHN belongs to the closure of MKN in the Fell topology
if and only if for every finite subsets E of M , F of N and S =
{ξ1, . . . , ξk} of H0, and for every neighbourhood V of 0 in M with
respect to the w.o. topology, there exist η1, . . . , ηk in K0 such that

〈ξi, xξjy〉M − 〈ηi, xηjy〉M ∈ V

for every i, j, every x ∈ E and every y ∈ N .
(ii) Assume that MHN ≺MKN . Show that

MHN ⊗NLP ≺MKN ⊗NLP .

Exercise 13.16. Let Q be an amenable von Neumann subalgebra of a
tracial von Neumann algebra (M, τ) and let P be a von Neumann subalgebra
of pMp for some non-zero projection of M . Show that P is amenable with
respect to Q inside M if and only if P is amenable

Notes
The notion of bimodule was introduced by Connes in the beginning of the

eighties. He was motivated by the need of developing the right framework in
order to define property (T) for II1 factors [Con82] (see the next chapter).
The content of his unpublished manuscript notes that were circulated at that
time may be found in his book [Con94, V. Appendix B] where bimodules
are called correspondences. The Fell topology on the space of bimodules is
described in [CJ85].

The subject was further developed in [Pop86a] and nowadays proves to
be unvaluable for the study of the structure of von Neumann algebras and in
particular to translate, in the setting of von Neumann algebras, properties
of groups that are expressed in terms of representations.

Assuming that M is a II1 factor, a good point of view is to consider
M -M -bimodules of finite index as generalized symmetries. For instance,
the set Bimodf (M) of equivalence classes of such bimodules, equipped with
the direct sum and the tensor product, gives informations on the groups
Out (M) and F(M) (see Exercise 13.11). We have N∗ ⊂ Bimod f (M) where
an integer n is identified with the multiple `2n ⊗L2(M) of the trivial M -M -
bimodule L2(M). Explicit computations of Bimodf (M) have been achieved
in [Vae08], with in particular explicit examples for II1 factors M for which
Bimodf (M) is trivial, that is, reduced to N∗. In this striking case the groups
Out (M) and F(M) are trivial and M has no other finite index subfactor
than the trivial ones of index n2, n ≥ 1.
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The notion of amenability relative to a von Neumann subalgebra was
introduced in [Pop86a]. The more general notion described in Definition
13.4.5 is due to Ozawa and Popa [OP10a] and is very useful, in particular
to study group measure space II1 factors (see [OP10a], [Ioa15], [PV14a],
[PV14b]). Section 13.4.3 comes from [OP10a]. For the lemma 13.4.8, we
have followed the slight modification exposed in [Ioa15, Lemma 2.3].
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Kazhdan property (T)

In analogy with Kazhdan property (T) and relative property (T) in
group theory, we introduce and study in this chapter the notions of pro-
perty (T) for a tracial von Neumann agebra (M, τ) and more generally of
relative property (T) for an inclusion B ⊂M . These notions are defined in
terms of rigid behaviours of completely positive maps or bimodules, which
correspond respectively to rigid behaviours of positive definite functions and
unitary representions in case of groups. A crucial and expected feature of
II1 factors with Property (T) is their lack of flexibility. For instance, we will
see that their groups of outer automorphisms and their fundamental groups
are countable. Separability arguments and rigidity are also used to show
that the functor G 7→ L(G) defined on the ICC groups with Property (T) is
at most countable to one and that there is no separable universal II1 factor.

14.1. Kazhdan property (T) for groups

We first briefly recall some facts in the group case.

Definition 14.1.1. Let H be a subgroup of a group G. We say that
the pair (G,H) has the relative property (T) (or that H ⊂ G is a rigid
embedding, or that H is a relatively rigid subgroup of G) if every unitary
representation π of G which almost has G-invariant vectors (i.e., ιG ≺ π)
has a non-zero H-invariant vector.

We say that G has the (Kazdhan) property (T), if the pair (G,G) has
the relative property (T).

We list below a few other characterisations of relative property (T).

Proposition 14.1.2. The following conditions are equivalent:

(a) the pair (G,H) has the relative property (T);
(b) there exist a finite subset F of G and δ > 0 such that if (π,H) is

a unitary representation of G and ξ ∈ H is a unit vector satisfy-
ing maxg∈F ‖π(g)ξ − ξ‖ ≤ δ, then there is a non-zero H-invariant
vector η ∈ H;

(c) for every ε > 0, there exist a finite subset F of G and δ > 0
such that if (π,H) is a unitary representation of G and ξ ∈ H is
a unit vector satisfying maxg∈F ‖π(g)ξ − ξ‖ ≤ δ, then there is a
H-invariant vector η ∈ H with ‖ξ − η‖ ≤ ε;

(d) every net of positive definite functions on G that converges point-
wise to the constant function 1 converges uniformly on H;

241
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(e) for every ε > 0, there exist a finite subset F of G and δ > 0 such
that if ϕ is a positive definite function satisfying maxg∈F |ϕ(g)− 1| ≤
δ, then one has suph∈H |ϕ(h)− 1| ≤ ε.

The equivalence between (a) and (b) as well as the equivalence between
(c), (d) and (e) are easily proved and (c)⇒ (b) is obvious. The hardest part
(when H is not a normal subgroup of G) is (b)⇒ (c).1 Condition (b) means
that there exists a neighbourhood in Rep(G) of the trivial representation
of G such that every representation in this neighbourhood has a non-zero
H-invariant vector.

Examples of groups with Property (T) are plentiful. For instance, lat-
tices in higher rank semi-simple Lie groups and in Sp(1, n) are such groups.
The pair (Z2 o SL(2,Z),Z2) has the relative property (T) and more gen-
erally, for every non amenable subgroup G of SL(2,Z) (e.g. F2), the pair
(Z2 oG,Z2) has the relative property (T). References for all these facts are
given in the notes at the end of the chapter.

Let us point out that a discrete amenable group has property (T) only
when finite.

14.2. Relative property (T) for von Neumann algebras

Let (M, τ) be a tracial von Neumann algebra and B a von Neumann
subalgebra of M . Our definition of rigidity for the inclusion (M,B) is mo-
delled on Condition (e) in Proposition 14.1.2. Unlike what we often do, in
this section we do not assume that M is separable. In fact, we will see in the
next section that a II1 factor which has the property (T) is automatically
separable.

Definition 14.2.1. We say that the pair (M,B) has the relative pro-
perty (T) (or that B ⊂ M is a rigid embedding, or that B is a relatively
rigid von Neumann subalgebra of M) if for every ε > 0, there exist a finite
subset F of M and δ > 0 such that whenever φ : M → M is a subunital
and subtracial completely positive map2 satisfying maxx∈F ‖φ(x)− x‖2 ≤ δ,
then one has ‖φ(b)− b‖2 ≤ ε for every b ∈ B with ‖b‖∞ ≤ 1. Whenever the
pair (M,M) has the relative property (T), we say that M has the property
(T).

Remark 14.2.2. We have dropped τ in the definition since it can be
shown that it is in fact independent of the choice of the normal faithful
trace (see [Pop06a, Proposition 4.1]).

In the definition, we may limit ourself to tracial and unital completely
positive maps by replacing, if necessary φ by the unital tracial completely

1See [Jol05].
2Recall that φ is subunital if φ(1) ≤ 1 and subtracial if τ ◦ φ ≤ τ . In particular, φ is

normal by Proposition 2.5.11.
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positive map φ̃ defined as

φ̃(x) = φ(x) +
(τ − τ ◦ φ)(x)

(τ − τ ◦ φ)(1)

(
1− φ(1)

)
(φ̃ = φ+ (τ − τ ◦ φ)1 if φ(1) = 1). We leave the details to the reader.

We now prove a characterisation of rigidity analogous to (c) in Propo-
sition 14.1.2. We will use the correspondence between completely positive
maps and bimodules described in Section 13.1.2 and in particular the two
following inequalities.

Lemma 14.2.3. Let H be a M -M -bimodule, ξ ∈ H a tracial vector3 and
φ the corresponding tracial and unital completely positive map. Then, for
every x ∈M , we have

‖xξ − ξx‖2 ≤ 2‖φ(x)− x‖2‖x‖2, (14.1)

‖φ(x)− x‖2 ≤ ‖xξ − ξx‖. (14.2)

Proof. Recall that φ(x) = L∗ξxLξ (where Lξ : L2(M)→ H is the right

M -linear map defined by ξ), so that

〈φ(x), y〉L2(M) = τ(φ(x)∗y) = 〈xξ, ξy〉H
for every x, y ∈M . Then we have

‖xξ − ξx‖2 = ‖xξ‖2 + ‖ξx‖2 − 2<〈xξ, ξx〉

= 2‖x‖22 − 2<τ(φ(x)x∗) ≤ 2‖φ(x)− x‖2‖x‖2.
The second inequality is given by

‖φ(x)− x‖22 = ‖φ(x)‖22 + ‖x‖22 − 2<〈φ(x), x〉

≤ 2‖x‖22 − 2<〈xξ, ξx〉 = ‖xξ − ξx‖2.
�

Proposition 14.2.4. Let (M, τ) be a tracial von Neumann algebra and
B a von Neumann subalgebra of M . The following conditions are equivalent:

(i) B ⊂M is a rigid embedding;
(ii) for every ε′ > 0, there exist a finite subset F of M and δ > 0

such that for any M -M -bimodule H and any tracial vector ξ ∈ H
satisfying maxx∈F ‖xξ − ξx‖ ≤ δ, there exists a B-central vector
η ∈ H with ‖ξ − η‖ ≤ ε′.

Proof. (i) ⇒ (ii). Let ε′ > 0 be given and set ε = (ε′)2/2. For this ε,
consider F and δ as in Definition 14.2.1. Let H be a M -M -bimodule and
ξ ∈ H a tracial vector such that ‖xξ − ξx‖ ≤ δ for every x ∈ F . Let φ be
the corresponding tracial and unital completely positive map. We have

‖φ(x)− x‖22 ≤ ‖xξ − ξx‖
2 ≤ δ2.

3i.e., 〈ξ, xξ〉 = τ(x) = 〈ξ, ξx〉 for every x ∈M .
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It follows that ‖φ(b)− b‖2 ≤ ε for b in the unit ball of B. Then, for u ∈ U(B)
we get

‖ξ − uξu∗‖2 = 2− 2<τ(φ(u)u∗)

= 2<τ((u− φ(u))u∗) ≤ 2‖u− φ(u)‖2 ≤ 2ε.

Let η ∈ H be the element of smallest norm in the closed convex hull of

{uξu∗ : u ∈ U(B)}.
We have uηu∗ = η for every u ∈ U(B), and so η is B-central. Morever, we

see that ‖ξ − η‖ ≤ (2ε)1/2 = ε′.
(ii) ⇒ (i). Let ε > 0 be given and set ε′ = ε/2. For this ε′, consider

F and δ satisfying condition (ii). Let φ : M → M be a tracial and unital
completely positive map such that, for x ∈ F ,

‖φ(x)− x‖2 ≤ δ
′,

with 2δ′maxx∈F ‖x‖2 = δ2. Let (H, ξ) be the pointed M -M -bimodule asso-
ciated with φ. For x ∈ F , we have

‖xξ − ξx‖2 ≤ 2‖φ(x)− x‖2‖x‖2 ≤ δ
2.

Therefore, there exists a B-central vector η ∈ H with ‖ξ − η‖ ≤ ε′. Then,
for b in the unit ball of B we get

‖φ(b)− b‖2 ≤ ‖bξ − ξb‖
≤ ‖b(ξ − η)− (ξ − η)b‖ ≤ 2ε′ = ε.

�

Corollary 14.2.5. Let (M, τ) be a tracial von Neumann algebra. For
every von Neumann subalgebra B having the property (T), the inclusion
B ⊂M is rigid.

Remark 14.2.6. The statement of the previous proposition is still true
when Condition (ii) is replaced by the following condition:

(ii’) for every ε′ > 0, there exist a finite subset F of M and δ′ > 0
such that whenever H is a M -M -bimodule which admits a vector ξ
satisfying the conditions∥∥∥ωlξ − τ∥∥∥ ≤ δ′, ∥∥ωrξ − τ∥∥ ≤ δ′, max

x∈F
‖xξ − ξx‖ ≤ δ′, (14.3)

there exists a B-central vector η ∈ H with ‖ξ − η‖ ≤ ε′.
Recall that ωlξ and ωrξ are respectively the states x 7→ 〈ξ, xξ〉 and x 7→ 〈ξ, ξx〉.

For the proof that Condition (i) (of the previous proposition) implies
(ii’), we observe that we may add in (ii’) the subtraciality of ξ, by using
Lemma 13.1.11. We keep the outline of the proof of (i)⇒ (ii) in Proposition
14.2.4, with the following changes. Given ε′ > 0 we keep considering ε, δ
and F as before, and we take δ′ > 0 such that (δ′)2 +2δ′‖x‖2∞ ≤ δ2 for every
x ∈ F . Let ξ ∈ H be a subtracial vector satisfying Condition (14.3). Let
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φ be still defined by ξ. Then φ is subtracial and subunital, and we get, for
x ∈ F ,

‖φ(x)− x‖22 ≤ 2τ(x∗x)− 〈xξ, ξx〉 − 〈ξx, xξ〉

≤ ‖xξ − ξx‖2 + (τ(x∗x)− ωlξ(x∗x)) + (τ(xx∗)− ωrξ(xx∗))

≤ (δ′)2 + 2δ′‖x‖2∞ ≤ δ
2.

It follows that ‖φ(b)− b‖2 ≤ ε for b in the unit ball of B. Then, for u ∈ U(B)
we get

‖ξ − uξu∗‖2 = 2<τ((u− φ(u))u∗) + 2(‖ξ‖2 − 1) ≤ 2ε.

We end as in the proof of (i) ⇒ (ii).

Proposition 14.2.7. Let H ⊂ G be an inclusion of groups. We set
B = L(H) and M = L(G). The following conditions are equivalent:

(i) the pair (G,H) has the relative property (T);
(ii) the pair (M,B) has the relative property (T).

Proof. (i) ⇒ (ii). Given ε > 0, we choose F and δ as in Condition
(c) of Proposition 14.1.2. Let H be a M -M -bimodule with a unit vector ξ
such that ‖ugξ − ξug‖ ≤ δ for g ∈ F . This vector is (F, δ)-invariant for the
representation π defined by π(g)(η) = ugηu

∗
g for g ∈ G, η ∈ H. Therefore,

there is a H-invariant vector η with ‖ξ − η‖ ≤ ε and η is obviously B-central.
Observe that here we do not need the traciality of ξ.

(ii) ⇒ (i). We assume that B ⊂ M is a rigid embedding and we claim
that Condition (d) of Proposition 14.1.2 holds. Let (ϕi) be a net of positive
definite functions on G, normalized by ϕi(e) = 1, converging to 1 point-
wise. Let φi be the completely positive map associated with ϕi. Recall that
φi(ug) = ϕi(g)ug for g ∈ G. We get a net of tracial and unital completely
positive maps such that limi ‖φi(x)− x‖2 = 0 for every x of the form ug
and so for every x ∈M . It follows that limi sup{b∈B:‖b‖≤1} ‖φi(b)− b‖2 = 0,
from which we immediately deduce the uniform convergence to 1 on H of
the net (ϕi). �

Example 14.2.8. As already said, the pair (Z2 o SL(2,Z),Z2) has the
relative property (T). The action of SL(2,Z) on Z2 yields a trace preserv-
ing action on the von Neumann algebra L(Z2), and by Fourier transform,
on L∞(T2). We get the following canonical isomorphisms of pairs of von
Neumann algebras:(

L(Z2 o SL(2,Z)), L(Z2)
)
'
(
L(Z2) o SL(2,Z), L(Z2)

)
'
(
L∞(T2) o SL(2,Z), L∞(T2)

)
.

So, the pair
(
L∞(T2) o SL(2,Z), L∞(T2)

)
has the relative property (T).

More generally, for any non amenable subgroup G of SL(2,Z), the pair(
L∞(T2) oG,L∞(T2)

)
has the relative property (T) since it is the case for

(Z2 oG,Z2).
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Example 14.2.9. The free group Fn does not have the property (T ).
Indeed, Fn has an infinite abelian quotient, namely Zn. But, using for
instance the condition (d) in Proposition 14.1.2, we see that the property
(T) is stable by passing to the quotient, and Zn does not have this property.

It follows that L(Fn), n ≥ 2, is not isomorphic with any factor L(G)
whenever G is ICC and has the property (T), for instance SL(3,Z).

Remark 14.2.10. Let M be a II1 factor and B a von Neumann sub-
algebra of M . In this context, there is another natural notion of relative
property (T) stated as follows: we say that M has the property (T) relative
to B, or that B is co-rigid in M if there exist a finite subset F of M and
δ > 0 such that every M -M -bimodule H with a B-central unit vector ξ
satisfying maxx∈F ‖xξ − ξx‖ ≤ δ contains a non-zero M -central vector. In
particular, M has the property (T) if and only if it has the property (T)
relative to B = C1 (see Theorem 14.5.2).

It is easy to see that whenever M = B o G, then B is co-rigid in M if
and only if G has the property (T). For a normal subgroup H of G, the co-
rigidity of L(H) into L(G) is equivalent to the property (T) of the quotient
group G/H (see [Pop86a, AD87]).

Rigid embeddings have several natural stability properties. We will only
need the following one for factors.

Proposition 14.2.11. Let B ⊂ M be a rigid embedding. Let p be a
non-zero projection in B. Then pBp ⊂ pMp is a rigid embedding.

Proof. We only consider the case where M is a II1 factor. We denote
by τp the tracial state on pMp. Observe that for y ∈ pMp, we have ‖y‖2,τ =

τ(p)1/2‖y‖2,τp .
Using the comparison theorem about projections, we find partial isome-

tries v1 = p, v2, . . . , vn such that
∑n

i=1 viv
∗
i = 1 and v∗i vi ≤ p for every

i. We fix ε > 0 and set ε0 = ετ(p)1/2. Let F0 be a finite subset of M
and δ0 > 0 such that whenever φ0 : M → M is a subunital and subtra-
cial completely positive map satisfying maxx∈F0 ‖φ0(x)− x‖2,τ ≤ δ0, then

‖φ0(b)− b‖2,τ ≤ ε0 for every b in the unit ball of B.

We set F = {v∗i xvj : x ∈ F0, 1 ≤ i, j ≤ n} and δ = δ0n
−2τ(p)−1/2. Let

φ : pMp → pMp be a subunital and subtracial completely positive map,
i.e., φ(p) ≤ p and τp ◦ φ ≤ τp, such that

max
y∈F
‖φ(y)− y‖2,τp ≤ δ.

We define φ0 : M →M by

φ0(x) =
n∑

i,j=1

viφ(v∗i xvj)v
∗
j .
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It is easily checked that φ0 is a subunital and subtracial completely positive
map. Moreover we have, for x ∈ F0,

‖φ0(x)− x‖2,τ ≤
∑
i,j

∥∥viφ(v∗i xvj)v
∗
j − viv∗i xvjv∗j

∥∥
2,τ

≤
∑
i,j

‖φ(v∗i xvj)− v∗i xvj‖2,τ

≤ n2τ(p)1/2δ = δ0.

It follows that ‖φ0(b)− b‖2,τ ≤ ε0 for b in the unit ball (B)1 of B and

therefore we have ‖φ(pbp)− pbp‖2,τp ≤ ε for every b ∈ (pBp)1. �

14.3. Consequences of property (T) for II1 factors

In this section, M denotes a II1 factor which has the property (T).

14.3.1. Separability. We are going to show the following result.

Proposition 14.3.1. Every II1 factor which has the property (T) is
separable.

For the proof, we will use the lemma below.

Lemma 14.3.2. Let (M, τ) be a tracial von Neumann algebra and Q a

von Neumann subalgebra. Let 0 < ε < 2−1/2 be such that

‖x− EQ(x)‖2 ≤ ε
for x in the unit ball (M)1 of M . Then there exists a non-zero projection q ∈
〈M, eQ〉 ∩M ′ such that the right Q-module qL2(M) has a finite dimension.

Proof. Recall that τ̂ denotes the canonical trace on the basic construc-
tion 〈M, eQ〉. For u ∈ U(M), we have

‖eQ − ueQu∗‖22,τ̂ = 2τ̂(eQ − eQueQu∗eQ)

= 2(1− τ(EQ(u)EQ(u)∗))

= 2‖u− EQ(u)‖22,τ ≤ 2ε2.

Using the averaging lemma 14.3.3 below in the semi-finite von Neumann
algebra (〈M, eQ〉, τ̂) with c = eQ and with the unitary group of M as G, we
get a positive element h ∈ 〈M, eQ〉 ∩M ′ such that τ̂(h) ≤ τ̂(eQ) = 1 and

‖eQ − h‖2,τ̂ ≤
√

2ε. In particular, we have h 6= 0 and for q it suffices to take

a non-zero spectral projection of h. Then dim(qL2(M)Q) = τ̂(q) < +∞. �

Lemma 14.3.3. Let M be a von Neumann algebra equipped with a nor-
mal faithful semi-finite trace Tr. Let c ∈M+ be such that Tr(c) < +∞ and
let G be a unitary subgroup of M . The w.o. closed convex hull C ⊂ M+ of
{ucu∗ : u ∈ G} contains a unique element h of minimal ‖·‖2,Tr-norm. More-

over, we have uhu∗ = u for every u ∈ G and Tr(h) ≤ Tr(c).
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Proof. For every y ∈ C, we have obviously ‖y‖∞ ≤ ‖c‖∞ and since
Tr is lower semi-continuous4, we also have Tr(y) ≤ Tr(c). The inclusion of
C into the Hilbert space L2(M,Tr) is continuous when C and the Hilbert
space are respectively equipped with the w.o. topology and the weak topol-
ogy. Indeed, for x1, x2 such Tr(x∗ixi) < +∞, i = 1, 2, the linear functional
y 7→ Tr(x1x2y) = 〈(x1x2)∗, y〉L2(M) is w.o. continuous on C and these x1x2

generate linearly a dense subspace of L2(M,Tr). Since C is w.o. compact, it
is closed in L2(M,Tr) with respect to the weak topology. Being convex it is
also ‖·‖2,Tr-closed. It follows that C contains a unique element h of minimal

‖·‖2,Tr-norm. Since uhu∗ ∈ C for every u ∈ G and since ‖uhu∗‖2,Tr = ‖h‖2,Tr
we see that uhu∗ = h. �

Proof of Proposition 14.3.1. We fix ε < 2−1/2 and we choose (F, δ)
as in Definition 14.2.1: whenever φ : M → M is a subunital and sub-
tracial completely positive map satisfying maxx∈F ‖φ(x)− x‖2 ≤ δ then
‖φ(x)− x‖2 ≤ ε for every x in the unit ball (M)1. Let Q be the von Neu-
mann subalgebra of M generated by F . Since EQ(x) = x for x ∈ F , we
get ‖x− EQ(x)‖2 ≤ ε for every x ∈ (M)1. Lemma 14.3.2 gives a non-zero

projection q in 〈M, eQ〉 ∩M ′ with τ̂(q) < +∞. Then qL2(M) is a M -Q-
bimodule with dim(qL2(M)Q) < +∞. Cutting down, if necessary, qL2(M)
by a projection of the center of Q, we may assume by Corollary 9.3.3 that
qL2(M) is finitely generated as a right Q-module. Then, by Proposition
8.5.3 there is an integer n > 0 and a projection p ∈ Mn(C) ⊗ Q such that
qL2(M) is isomorphic, as a right Q-module, to p

(
`2n⊗L2(Q)

)
. The structure

of left M -module of qL2(M) gives a normal unital homomorphism from M
into p

(
Mn(C) ⊗ Q

)
p. This homomorphism is an embedding since M is a

factor. But p
(
Mn(C)⊗Q

)
p is separable and so M is also separable. �

14.3.2. M is a full factor and the outer automorphism group
Out (M) is countable. Recall that we denote by Inn (M) the normal sub-
group of Aut (M) = Aut (M, τ) formed by the inner automorphisms. We
equip Aut (M) with the topology for which a net (αi) converges to α if for
every x ∈M we have limi ‖αi(x)− α(x)‖2 = 0 (see Section 7.5.3) The outer
automorphism group Out (M) = Aut (M)/Inn (M) will be endowed with
the quotient topology.

Proposition 14.3.4. Let M be a II1 factor having the property (T).
Then Inn (M) is an open sugroup of Aut (M).

Proof. We will only use the fact that since M has the property (T),
there exist a finite subset F of M and δ > 0 such that if H is a M -M -
bimodule with a tracial vector ξ satisfying

max
x∈F
‖xξ − ξx‖ ≤ δ,

4For some of the properties of Tr used in this proof, see Exercises 8.3, 8.4 and 8.5.
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then H contains a non-zero M -central vector. We claim that

V =

{
α ∈ Aut (M) : max

x∈F
‖α(x)− x‖2 ≤ δ

}
is a neighbourhood of IdM contained in Inn (M). Indeed, for α ∈ V we

have maxx∈F

∥∥∥α(x)1̂− 1̂x
∥∥∥

2
≤ δ. Applying our assumption to the M -M -

bimodule H(α) (see Example 13.1.3 (b)), we obtain the existence of a non-
zero vector η ∈ L2(M) such that α(x)η = ηx for every x ∈ M . It follows
that η∗η is in the center of M , thus is a scalar operator. Hence α(x)u = ux,
where u is the unitary operator of the polar decomposition of η. �

In particular, Inn (M) is also a closed subgroup of Aut (M). A factor
with such a property is said to be full.

Proposition 14.3.5. Let M be a II1 factor which has the property (T).
Then the group Out (M) = Aut (M)/Inn (M) of outer automorphisms is
countable.

Proof. We have seen in Section 7.5.3 that Aut (M) is a Polish group,
due to the separability of M . Since Inn (M) is open, the group Out (M) is
discrete, and being Polish it is countable. �

14.3.3. The fundamental group F(M) is countable. Recall that
F(M) is the subgroup of R∗+ consisting of the positive numbers t such that
the amplification M t is isomorphic to M .

Proposition 14.3.6. If the II1 factor M has the property (T), its fun-
damental group F(M) is countable.

Proof. Assume that F(M) is not countable and choose c ∈]0, 1[ such
that F(M) ∩ [c, 1] is not countable. For every t ∈ F(M) ∩ [c, 1], we choose
a projection pt with τ(pt) = t, and an isomorphism θt from M onto ptMpt.
We may choose these projections such that ps < pt whenever s < t (see
Exercise 3.3). Note also that

τ ≥ τ ◦ θt = τ(pt)τ ≥ cτ.
We take (F, δ) corresponding to ε = 1/2 in Definition 14.2.1 and write

F = {x1, . . . , xn}. We set ξt = (θt(x1), . . . , θt(xn)) ∈ H = L2(M)⊕n. Since
H is separable, there are two elements s < t in F(M)∩[c, 1] with ‖ξs − ξt‖H ≤
δc1/2 and therefore

max
x∈F
‖θs(x)− θt(x)‖2 ≤ δc

1/2.

We set q = θ−1
t (ps) and θ = θ−1

t ◦ θs. We observe that θ is an isomorphism
from M onto qMq and that τ ◦ θ = τ(q)τ ≤ τ .

We have maxx∈F ‖θ(x)− x‖2 ≤ δ, and therefore ‖θ(x)− x‖2 ≤ 1/2 for
every x in the unit ball of M . Then for u ∈ U(M) we have ‖θ(u)u∗ − 1‖2 ≤
1/2. By the usual convexity argument, we deduce the existence of a non-
zero element ξ ∈ L2(M) such that θ(u)ξu∗ = ξ for every u ∈ U(M). It
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follows that ξ∗ξ is a scalar operator and that θ is an inner automorphism,
in contradiction with q < 1. �

Remark 14.3.7. The separability argument used in the above proof can
be applied in many situations. We will give two other illustrations in the
next section, showing the power of this method.

For the original proof of the proposition 14.3.6 due to Connes [Con80a],
see Exercise 14.3

14.4. Rigidity results from separability arguments

A nice feature of groups having Property (T) is that all their represen-
tations in a II1-factor are isolated. More precisely, we have the following
result.

Proposition 14.4.1. Let G be a group having the property (T) and let
(M, τ) be a tracial von Neumann algebra. Let (F, δ) satisfying the condi-
tion (b) of Proposition 14.1.2 with H = G. Let p1, p2 be two projections
in M and let πi : G → U(piMpi) be two group homomorphisms such that
‖π1(g)− π2(g)‖2 ≤ δ‖p1p2‖2 for every g ∈ F . There exists a non-zero par-
tial isometry v ∈ M such that π1(g)v = vπ2(g) for every g ∈ G. Moreover,
if M is II1 factor and if, for instance, π2(G) generates M , then v is unitary
and therefore the representations π1 and π2 are equivalent.

Proof. Consider the representation g 7→ π1(g)Jπ2(g)J on the Hilbert
space H = p1L

2(M)p2 and the vector ξ = p1p2 ∈ H. Then we have

‖π(g)ξ − ξ‖2 = ‖π1(g)p1p2 − p1p2π2(g)‖2 ≤ ‖π1(g)− π2(g)‖2.

It follows that maxg∈F ‖π(g)ξ − ξ‖2 ≤ δ‖ξ‖2 and therefore there exists a
non-zero vector η ∈ H such that π(g)η = η for every g ∈ G, that is, π1(g)η =
ηπ2(g) for every g ∈ G. Let η = v|η| be the polar decomposition of η. Then
|η| commutes with π2(G) and so we get π1(g)v = vπ2(g) for every g ∈ G.

The last statement of the proposition follows from the fact that v∗v
commutes with π2(G). �

14.4.1. Connes’ rigidity conjecture is true, up to countable
classes. Connes conjectured5 that if G1, G2 are two ICC groups with Prop-
erty (T), then the II1 factors L(G1) and L(G2) are isomorphic if and only if
the groups are isomorphic. This conjecture is still out of reach, but we have
the following result.

Theorem 14.4.2. The functor G 7→ L(G) defined on the ICC groups
with Property (T) is at most countable to one.

The proof relies on the following theorem6.

5in [Con82]
6due to Shalom [Sha00]
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Theorem 14.4.3. Every Property (T) group is a quotient of a finitely
presented group with Property (T).

Proof of Theorem 14.4.2. Assume thatM = L(Gi) for uncountably
many non isomorphic ICC groups with Property (T). Since the set of finitely
presented groups is countable, we may assume that all these groups are
quotient of the same group G with Property (T). Let ui : Gi → U(M)
be the canonical embedding. We denote by qi the quotient homomorphism
G→ Gi, and we set πi = ui ◦ qi.

We represent M in standard form on L2(M) and ξ is the canonical
tracial vector in L2(M). Let (F, δ) satisfying the condition (b) of Proposition
14.1.2 with H = G. Since L2(M) is separable and I is uncountable, there
exist distinct i, j in I such that maxg∈F ‖πi(g)ξ − πj(g)ξ‖2 < δ. It follows
from Proposition 14.4.1 that the representations πi and πj are unitarily
equivalent: there exists v ∈ U(M) such that

(
ui ◦ qi(g)

)
v = v

(
uj ◦ qj(g)

)
for g ∈ G. This contradicts the fact that the groups Gi and Gj are not
isomorphic. �

14.4.2. There is no separable universal II1 factor.

Theorem 14.4.4. There is no separable II1 factor M such that every
separable factor is isomorphic to a subfactor of M .

This time the proof uses a deep result of Gromov-Olshanskii7.

Theorem 14.4.5. There exists a countable group G with Property (T),
which has uncountably many pairwise non isomorphic quotient groups Gi,
i ∈ I, all of which are simple and ICC.

Proof of Theorem 14.4.4. Assume that there is a separable II1 fac-
tor M which contains L(Gi) for i ∈ I. As in the proof of Theorem 14.4.2,
we introduce the representations πi = ui ◦ qi of G. We still represent M
in standard form on L2(M) and ξ is the canonical tracial vector in L2(M).
Since πi is a non-trivial representation and ξ is separating for M we have
supg∈G ‖πi(g)ξ − ξ‖ > 0. It follows that there is an integer n > 0 and an
uncountable subset I1 of I such that supg∈G ‖πi(g)ξ − ξ‖ > 1/n for all i ∈ I1.

We choose ε < 1/2n. There exist a finite subset F of G and δ > 0 such
that if (π,H) is a unitary representation of G and ζ ∈ H is a unit vector
satisfying maxg∈F ‖π(g)ζ − ζ‖ < δ, then there is a G-invariant vector η such
that ‖ζ − η‖ < ε.

Since L2(M) is separable and I1 is uncountable, there exist distinct i, j
in I1 such that maxg∈F ‖πi(g)ξ − πj(g)ξ‖2 < δ. It follows that there exists

a non-zero vector η ∈ L2(M) such that πi(g)η = ηπj(g) for all g ∈ G
with ‖ξ − η‖2 < ε. Let H = {g ∈ G : πi(g)η = η}. Then H is a subgroup
of G which contains the normal subgroups kerπi and kerπj . Since these
normal subgroups are distinct and since the groups Gi and Gj are simple,

7revisited by Ozawa in [Oza04b].
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we see that H = G. It follows that supg∈G ‖πi(g)ξ − ξ‖ ≤ 2ε < 1/n, a
contradiction. �

14.5. Some remarks about the definition of relative property (T)

We have defined the relative property (T) by translating Conditions (c)
and (d) of Proposition 14.1.2 in the setting of tracial von Neumann algebras,
where in particular a formulation in terms of completely positive maps proves
to be very convenient. The analogue of Condition (b) of Proposition 14.1.2
for a pair (M,B), where M is equipped with a normal faithful trace τ , would
be the following:

• there exists a neighbourhood W of the trivial bimodule L2(M) such
that every M -M -bimodule in W has a non-zero B-central vector.

Using the basis of neighbourhoods of the form W (L2(M); ε, F ) described
in Section 13.3.2, the above condition reads as

(iii) there exist a finite subset F of M and δ′ > 0 such that whenever H
is a M -M -bimodule which admits a unit vector ξ satisfying

∀x ∈ F, ‖xξ − ξx‖ < δ′, |〈ξ, xξ〉 − τ(x)| < δ′, |〈ξ, ξx〉 − τ(x)| < δ′,

then H has a non-zero B-central vector.

The reader is invited to compare this condition (iii) with Condition (ii’)
in Remark 14.2.6. In (iii), ξ is not required to be tracial or “almost tracial”
in the sense of Remark 14.2.6. On the other hand, the existing B-central
vector is not required to be close to ξ, that is, no “continuity constants” are
involved.

In case M is a II1 factor, the tracial condition is not a serious issue.

Proposition 14.5.1. Let B be a von Neumann subalgebra of a II1 factor
M . The following conditions are equivalent:

(i) the pair (M,B) has the relative property (T);
(ii”) for every ε > 0 there exist a finite subset F of M and δ > 0 such

that for any M -M -bimodule H and any unit vector ξ ∈ H, with
maxx∈F ‖xξ − ξx‖ ≤ δ, there is a B-central vector η with ‖ξ − η‖ ≤
ε.

Proof. Assume that (ii”) does not hold whereas (i) is satisfied. There
exist c > 0, a M -M -bimodule H and a net (ξi) of unit vectors in H such
that limi ‖xξi − ξix‖ = 0 for every x ∈ M and

∥∥ξi − PBξi∥∥ ≥ c for every i,

where PB denotes the orthogonal projection on the subspace of B-central
vectors. Then any weak* limit of the net (ωlξi) of vector states on M is a
trace, and thanks to the uniqueness of the tracial state τ on M we see that
limi ω

l
ξi

= τ in the weak* topology. Similarly, we have limi ω
r
ξi

= τ .

Let F be a finite subset of M and δ′ > 0 satisfying Condition (ii’) of
Remark 14.2.6 with respect to ε′ = c/2. Using a convexity argument as in
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the proof of Lemma 13.3.11, we find a unit vector η = (λ
1/2
1 ξi1 , . . . , λ

1/2
n ξin),

viewed as an element of H⊕∞, with λj > 0,
∑n

j=1 λj = 1, such that∥∥τ − ωlη∥∥ ≤ δ′, ∥∥τ − ωrη∥∥ ≤ δ′,
max
x∈F

∥∥xη − ηx∥∥ ≤ δ′.
It follows that there exists a B-central vector ζ ∈ H⊕∞ such that ‖η − ζ‖ ≤
c/2. Therefore we have

n∑
j=1

λj
∥∥ξij − PBξij∥∥2 ≤ c2/4,

in contradiction with the fact that
∥∥ξi − PBξi∥∥ ≥ c for every i. �

Equivalence with definitions of Property (T) without “continuity con-
stants” is much more difficult to obtain. Concerning II1 factors, this makes
use of a delicate argument as we will see in the proof of the next theorem.

Theorem 14.5.2. Let M be a II1 factor. The following conditions are
equivalent:

(a) M has the property (T);
(b) there exists a neighbourhood V of L2(M) such that every element

of V has a non-zero central vector, that is (in the factor case),
there exist a finite subset F of M and δ > 0 such that if H is a
M -M -bimodule with a unit vector ξ satisfying

max
x∈F
‖xξ − ξx‖ ≤ δ,

then H contains a non-zero M -central vector.

Note that the existence of a non-zero M -central vector is equivalent to
the fact that L2(M) is a M -M -submodule of H. So, Condition (b) means
that there exists a neighbourhood V of L2(M) in Bimod (M) such that eve-
ry element of V contains L2(M) as a M -M -subbimodule. It is the original
Connes-Jones definition of Property (T).

Proof of Theorem 14.5.2. Since Condition (ii”) of Proposition 14.5.1
with B = M implies (b), we only have to show that (b) ⇒ (ii”) stated with
B = M . If (b) holds, as seen in Proposition 14.3.4, Inn (M) is open and thus
closed in Aut (M). By Theorem 15.3.2 to be proved in the next chapter, M
has spectral gap, that is, there exist a finite subset F0 of U(M) and c > 0

such that cmaxu∈F0 ‖uξ − ξu‖2 ≥ ‖ξ‖2 for every ξ ∈ L2(M) with 〈ξ, 1̂〉 = 0.
Let H be a M -M -bimodule, that we write as H = H0 ⊕ H1 where H0

is a multiple of L2(M) and H1 has no non-zero central vector. Let F, δ be
given by condition (b). We set F ′ = F ∪F0. Let ξ ∈ H be a unit vector and
put α = maxx∈F ′ ‖xξ − ξx‖. We write ξ = ξ0 + ξ1 with ξi ∈ Hi, i = 0, 1.
Observe that maxx∈F ‖xξ1 − ξ1x‖ ≤ α. So, since H1 has no non-zero central
vector we see that ‖ξ1‖ ≤ α/δ. Now, we write ξ0 = ξ′0 + ξ′′0 where ξ′0 is a
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central vector and ξ′′0 is orthogonal to the space of central vectors. In H0,
which is a multiple of the trivial M -M -bimodule, we have∥∥ξ′′0∥∥ ≤ cmax

u∈F0

∥∥uξ′′0 − ξ′′0u∥∥ = cmax
u∈F0

‖uξ0 − ξ0u‖ ≤ cα.

It follows that ∥∥ξ − ξ′0∥∥2
=
∥∥ξ1 + ξ′′0

∥∥2 ≤ (α/δ)2 + c2α2.

To conclude, given ε > 0, we set δ′ = ε/k with k =
√
c2 + 1/δ2. We have

found a pair (F ′, δ′) such that whenever H is a M -M -bimodule with a unit
vector ξ satisfying maxx∈F ′ ‖xξ − ξx‖ ≤ δ′, then there is a central vector ξ′0
with ‖ξ − ξ′0‖

2 ≤ ε. �

Remarks 14.5.3. (a) Whenever M is the von Neumann algebra of a
group G, not necessarily ICC (so M is possibly not a factor), and B = L(H)
where H is a subgroup of G, it is still true that (M,B) has the relative
property (T) if and only if there exists a neighbourhood V of L2(M) such
that every element of V has a non-zero B-central vector [Jol93, Bek06].

(b) More results in the relative case have been obtained in [Pop06a,
Theorem 4.3] and [PP05] involving, as in the Connes-Jones result 14.5.2,
rather subtle arguments. Let us only mention for example the following
theorem without “continuity constants”. We denote by NM (B) is the group
of unitaries u ∈M such that uBu∗ = B.

Theorem 14.5.4. Let M be a II1 factor and B a von Neumann subalge-
bra such that B′ ∩M ⊂ B and NM (B)′ ∩M = C. The following conditions
are equivalent:

(a) the pair (M,B) has the relative property (T) ;
(b) there exist a finite subset F of M and δ > 0 such that if H is a

M -M -bimodule with a unit vector ξ satisfying

max
x∈F
‖xξ − ξx‖ ≤ δ,

∥∥∥ωlξ − τ∥∥∥ ≤ δ, ∥∥ωrξ − τ∥∥ ≤ δ,
then H contains a non-zero B-central vector.

Exercises

Exercise 14.1. Let B be a von Neumann subalgebra of a tracial von
Neumann algebra M . Show that the pair (M,B) has the relative property
(T) if and only if for every net (φi)i∈I of tracial and unital completely positive
maps from M to M such that limi ‖φi(x)− x‖2 = 0 for x ∈ M (such a net
is called a deformation of the identity), then limi supb∈(B)1

‖φi(b)− b‖2 = 0.
Moreover, if M is separable, it suffices to consider sequences.

Exercise 14.2. Let B be a von Neumann subalgebra of a tracial von
Neumann algebra M .
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(i) Show that for every projection z in the center of B, then zL2(B)
is a B-B-subbimodule of L2(B), and that every B-B-subbimodule
of L2(B) is of this form.

(ii) Let H be a M -M -bimodule. Show that H contains a non-zero
B-central vector if and only if, as a B-B-bimodule, H contains a
non-zero B-B-subbimodule of L2(B).

Exercise 14.3. Let M be a II1 factor having the property (T). Let t ∈
F(M) and let θt ∈ Aut (M⊗B(`2(N)) such that mod(θt) = t (see Exercise
8.15). Let αt be the unique element of Out (M⊗M) corresponding to θt⊗θ−1

t

(see Exercise 8.16). Show that the map t 7→ αt is injective and conclude that
F(M) is countable.

Notes
Property (T) for groups was introduced by Kazhdan in [Kaž67]. Such

discrete groups being finitely generated, this was a handy way to show that
the (Poincaré) fundamental group of some locally symmetric Riemannian
manifolds are finitely generated. The notion of relative property (T) is
implicit in Kazhdan’s work and was made explicit by Margulis, in particular
the fact that (Z2 o SL(2,Z),Z2) has the relative property (T) [Mar82] .

Since then, Property (T) proved to be very fruitful in diverse domains,
in particular ergodic theory and operator algebras.

For an exhaustive study of the notion of property (T) for groups and its
applications we recommend the book [BdlHV08]. A proof, not using Lie
group theory, that some countable groups such as SL(n,Z), n ≥ 3, have
Property (T) was given by Shalom at the end of the 90’s [Sha99]. The fact
that (Z2 o SL(2,Z),Z2) has the relative property (T) is a key result for
his proof, combined with the fact that SL(n,Z) has the so-called bounded
generation property. A nice simpler proof, based on Shalom’s ideas, but
using a weaker bounded generation property is provided in [BO08, Section
12.1]. The result stating that (Z2 oG,Z2) has the relative property (T) for
any non-amenable subgroup of SL(n,Z) is due to Burger [Bur91].

In [Con80a], Connes discovered that II1 factors of the form L(G), where
G is an ICC group with Property (T), have the remarkable properties shown
in Section 14.3. This provided the first examples of II1 factors with countable
(Murray-von Neumann) fundamental groups, yet without explicit computa-
tion. Later, Connes [Con82] defined Property (T) for any II1 factor in
such a way that L(G) has Property (T) if and only if G has this property.
This was developed by Connes and Jones in [CJ85]. In addition to the fact
that Property (T) factors have countable fundamental groups and outer au-
tomorphisms groups, they showed that they are non-amenable in a strong
sense. For instance they cannot be embedded in a von Neumann algebra
of a free group, as we will see in Chapter 16. Theorem 14.5.2 is also taken
from [CJ85]. Further results on Property (T) for von Neumann algebras
are contained in [Pop86a].
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The notion of relative property (T) for pairs of finite von Neumann al-
gebras was introduced and studied in [Pop06a]. This property was used
in a crucial way to give the first example of a II1 factor M with a funda-
mental group F(M) 6= R∗+ and explicitly computed. Precisely, it is shown
in [Pop06a] that F(M) = {1} for M = L(Z2 o Fn) (see Corollary 18.3.2).
This breakthrough was followed by the discovery of many other remark-
able applications of rigidity properties in operator algebras and ergodic the-
ory. The versions with and without “continuity constants” as explained
in Section 14.5 have both their interest. In particular, the version with
“continuity constant” is well adapted to show the stability of Property (T)
under various operations such as tensor products, reduction or induction
(see [Pop86a, Pop06a]). Theorem 14.5.4 is Corollary 2 in [PP05].

The method of deriving rigidity statements “up to countable classes”
applied in Section 14.4 grew out of Connes’ initial rigidity paper [Con80a].
It was developed in [Pop86a] and gave rise to many applications not present
in this monograph. For instance, it is shown in [Pop86a, Corollary 4.5.2]
that if a II1 factor has Property (T) then the set I(M) of index values of the
subfactors of M (and thus F(M) is countable. Such arguments were revived
at the beginning of the 2000’s, leading to new applications, among them
Theorem 14.4.4, due to Ozawa [Oza04b], and Theorem 14.4.2 appearing
in the survey [Pop07b] along with other examples. The non existence of
a separable universal II1 factor solves Problem 4.4.29 in [Sak98]. An ex-
plicit construction of uncountably many separable II1 factors that cannot
be embedded in a fixed separable II1 factor is provided in [NPS07].
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CHAPTER 15

Spectral gap and Property Gamma

By definition, unitary representations of a Property (T) group G have
the spectral gap property, in the sense that they do not have almost invariant
vectors as soon as they do not have invariant vectors. In particular, every
ergodic trace preserving action ofG on a tracial von Neumann algebra (M, τ)
has spectral gap, meaning that the Koopman representation of G on the
orthogonal in L2(M) of the one-dimensional space of G-invariant vectors
does not have almost invariant vectors. However, even in the absence of
Property (T), any non-amenable group G has such actions, for instance
Bernoulli actions, and therefore displays some weak form of rigidity.

We study in this chapter the spectral gap property for the action of the
unitary group U(M) by inner automorphisms on a II1 factor M . The class of
II1 factors having this property plays an important role in the subject. We
show that a factor in this class admits the following remarkable equivalent
characterisations:

(1) by not having the property Gamma of von Neumann (Theorem
15.2.4);

(2) by the property for its group of inner automorphisms to be closed
in its automorphism group, in which case we say that the factor is
full (Theorem 15.3.2).

Historically, Property Gamma was introduced at first to show that the
hyperfinite factor R and the group von Neumann factors relative to the free
groups Fn, n ≥ 2, are not isomorphic. Indeed, R has Property Gamma but
not L(Fn), as shown in the last part of this chapter.

In this chapter, unless explicitly mentioned, the groups are not assumed
to be countable.

15.1. Actions with spectral gap

15.1.1. First definitions. We begin by introducing the notion of spec-
tral gap for unitary representations of a group G.

Definition 15.1.1. Let (π,H) be a unitary representation of G. We
will say that π has spectral gap if it does not weakly contain the trivial
representation ιG, that is, if it satisfies the following (obviously equivalent)
conditions:

257
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(i) there exist a finite subset F of G and c > 0 such that

max
g∈F
‖π(g)ξ − ξ‖ ≥ c‖ξ‖

for every ξ ∈ H;
(ii) for every bounded net (ξi) in H, one has limi ‖π(g)ξi − ξi‖ = 0 for

every g if and only if limi ‖ξi‖ = 0. (When G is countable, it suffices
to consider sequences instead of nets.)

(iii) for every ε > 0, there exist a finite subset F of G and δ > 0 such
that, if ξ ∈ H satisfies maxg∈F ‖π(g)ξ − ξ‖ ≤ δ, then ‖ξ‖ ≤ ε.

Remark 15.1.2. One often finds in the literature a different definition,
where it is asked the trivial representation not to be weakly contained in
the restriction of π to the orthogonal of the subspace of G-invariant vectors.
Our definition is more convenient for our purpose in this chapter. In par-
ticular, a trace preserving action with spectral gap (see Definition 15.1.5) is
automatically ergodic.

Of course, in Condition (i) we may take F symmetric, that is, F = F−1.
Then, this condition is easily translated into a property of the spectrum
Sp(h) of the self-adjoint contraction h = (1/n)

∑
g∈F π(g), where n denote

the cardinal of F . More precisely, Sp(h) is always contained in [−1, 1] and
we have the following results.

Lemma 15.1.3. We keep the above notation.

(i) Assume that Sp(h) ⊂ [−1, 1 − δ] for some δ < 1. Then for every

ξ ∈ H, we have maxg∈F ‖π(g)ξ − ξ‖ ≥
√

2δ‖ξ‖.
(ii) Assume that there exists c > 0 such that

max
g∈F
‖π(g)ξ − ξ‖ ≥ c‖ξ‖

for every ξ ∈ H. Then, we have Sp(h) ⊂ [−1, 1− c2/(2n)].

Proof. (i) Assume that Sp(h) ⊂ [−1, 1 − δ]. Then for ξ ∈ H with
‖ξ‖ = 1, we have 〈ξ, hξ〉 ≤ 1− δ. So, there exists g ∈ F with

<〈ξ, π(g)ξ〉 ≤ 1− δ,
from which we deduce immediately that ‖π(g)ξ − ξ‖ ≥

√
2δ.

(ii) Assume that maxg∈F ‖π(g)ξ − ξ‖ ≥ c for every norm-one vector ξ ∈
H. Take g ∈ F with ‖π(g)ξ − ξ‖ ≥ c. It follows that <〈ξ, π(g)ξ〉 ≤ 1− c2/2
and then

〈ξ, hξ〉 ≤ n− 1

n
+ (1/n)<〈ξ, π(g)ξ〉

≤ 1− c2/(2n).

Thus
‖hξ − (1− λ)ξ‖ ≥ 〈ξ, (1− λ)ξ − hξ〉 ≥ c2/(2n)− λ

for every λ ∈ R. It follows that the operator h − (1 − λ)IdH is invertible
whenever 0 < λ < c2/(2n), hence the conclusion. �
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Corollary 15.1.4. A representation π of G has spectral gap if and
only if there exists a symmetric finite subset F of G and δ < 1 such that
Sp(h) ⊂ [−1, 1− δ], where h = (1/|F |)

∑
g∈F π(g).1

15.1.2. Spectral gap for trace preserving group actions on tra-
cial von Neumann algebras. Let σ : G y (M, τ) be a trace preserving
action of a group G on a tracial von Neumann algebra (M, τ). Recall that σ
extends to a unitary representation (sometimes called the Koopman repre-
sentation associated with the action) of G on L2(M), well defined by

σg(x̂) = σ̂g(x)

for g ∈ G and x ∈M . This representation has 1̂ as invariant vector. We de-
note by L2

0(M) the orthogonal complement of C1̂ in L2(M) and we identify,
as usual M to the corresponding dense subspace of L2(M).

Definition 15.1.5. We say that σ : G y (M, τ) has spectral gap if the
restriction of σ to L2

0(M) has spectral gap. A probability measure preserving
action G y (X,µ) is said to have spectral gap if the corresponding action
Gy (L∞(X,µ), τµ) has this property.

Note that an action with spectral gap is ergodic, that is, the space
L2(M)G of fixed points in L2(M) (or equivalently (see Exercise 15.3), the
space MG of fixed points in M) is reduced to the scalars.

Definition 15.1.6. Let σ : Gy (M, τ) be a trace preserving action.

(i) We say that a net (ξi) in L2(M) is asymptotically G-invariant if for
every g ∈ G,

lim
i
‖σg(ξi)− ξi‖2 = 0.

(ii) We say that (ξi) is asymptotically trivial if

lim
i
‖ξi −

〈
ξi, 1̂

〉
1̂‖2 = 0.

In the context of trace preserving actions, the equivalent properties
characterizing spectral gap in Definition 15.1.1 can be expressed as follows:

(i) there exist a finite subset F of G and c > 0 such that

∀x ∈M, max
g∈F
‖σg(x)− x‖2 ≥ c‖x− τ(x)1‖2;

(ii) every ‖·‖2-bounded asymptotically G- invariant net (or sequence if
G is countable) in M is asymptotically trivial;

(iii) for every ε > 0, there exist a finite subset F ofG and δ > 0 such that
if x ∈M satisfies maxg∈F ‖σg(x)− x‖2 ≤ δ, then ‖x− τ(x)1‖2 ≤ ε.

1In other term, the spectrum of h does not meet some neighbourhood of 1, hence the
terminology of spectral gap.
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Remarks 15.1.7. (a) Let us mention that no ergodic probability mea-
sure preserving action of an amenable countable group has spectral gap
and that in fact this property is another characterisation of amenability
([Sch81]).

(b) On the other hand, obviously every unitary representation of a Prop-
erty (T) group has spectral gap. In this case, we even have a uniform spectral
gap property in the sense that there exist a finite subset F of G and c > 0
such that for every unitary representation (π,H) of G without non-zero in-
variant vector, then maxg∈F ‖π(g)ξ − ξ‖ ≥ c‖ξ‖ for ξ ∈ H. For a group
G, the fact that all its ergodic probability measure preserving actions have
spectral gap implies that it has the property (T) ([CW80, Sch81]).

Bernoulli actions of non-amenable groups are the most basic examples
of actions with spectral gap.

Proposition 15.1.8. Let (Y, ν) be a standard probability measure space
and let G be a non-amenable countable group. We set X = Y G (the product
of copies of Y indexed by G) and µ = ν⊗G. Then the Bernoulli action
σ : Gy (X,µ) has spectral gap.

Proof. For simplicity, we assume that ν is diffuse and we take Y =
T with its Haar probability measure. Via Fourier transform, we identify
L2(X,µ) to `2(Z(G)) where Z(G) is the group of finitely supported functions

from G to Z. We set Γ = Z(G). We let G act by left translations on Γ.
Under the identification we have made, the unitary representation of G on
`2(Γ) is defined, for g ∈ G and γ ∈ Γ, by

σgδγ = δgγ .

This representation preserves globally the orthonormal set {δγ : γ ∈ Γ, γ 6= 0}.
Choose a set E of representatives of the orbits of the left G-action on Γ\{0}.
For γ ∈ E, let Gγ be the stabilizer of γ under the G-action. Note that Gγ
is a finite subgroup of G since, except for finitely many ones, the compo-
nents of γ are equal to 0. We now observe that the unitary representation
σ restricted to L2

0(X,µ) is equivalent to ⊕γ∈EλG/Gγ . Moreover, since Gγ is
finite the representation the quasi-regular representation λG/Gγ is equivalent
to a subrepresentation of λG.

Assume that ιG is weakly contained in ⊕γ∈EλG/Gγ . Then it is weakly
contained in a multiple of λG. But since any such multiple is weakly equiv-
alent to λG, we see that ιG is weakly contained in λG. This contradicts the
fact that G is not amenable.

When (Y, ν) is not diffuse, we start with any orthonormal basis of
L2(Y, ν). It yields an orthonormal basis of L2(X,µ) and we proceed in
a way similar to what we did above with the basis (δγ)γ∈Γ. �

More generally, ergodic generalized Bernoulli actions G y (Y Z , ν⊗Z)
(see Definition 1.4.7) of a non-amenable countable group G have a spectral
gap under the assumption that the stabilizers of the action G y Z are
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amenable. The proof follows the same lines as the previous one for classical
Bernoulli actions. We leave it as an exercise (Exercise 15.1). It needs the
following result from group representations theory2.

Lemma 15.1.9. Let G be a non-amenable countable group and (Hi)i∈I a
family of amenable subgroups of G. We denote by λG/Hi the quasi-regular

representation of G in `2(G/Hi). Then the trivial representation ιG of G is
not weakly contained in the Hilbert direct sum ⊕i∈IλG/Hi.

Proof. Our assumption is that the trivial representation ιHi of Hi is
weakly contained into its regular representation λHi . The corresponding
representations of G obtained by induction are respectively λG/Hi and λG.
By continuity of induction of representations, we get that each λG/Hi is
weakly contained into λG.

Assume that ιG is weakly contained in ⊕i∈IλG/Hi . Then it is weakly
contained in a multiple of λG, hence in λG, in contradiction with the fact
that G is not amenable. �

15.1.3. Spectral gap for II1 factors. This notion concerns the case
where M is a II1 factor and G = U(M) is the unitary group of M when we
let U(M) act on M by (u, x) 7→ Ad(u)(x) = uxu∗.

Definition 15.1.10. We say that the II1 factor M has spectral gap if
the action of U(M) on M has spectral gap, which is expressed by the three
equivalent conditions:

(i) there exist a finite subset F of U(M) (or of M) and c > 0 such that

∀x ∈M, max
u∈F
‖[u, x]‖2 ≥ c‖x− τ(x)1‖2;

(ii) every ‖·‖2-bounded net (xi) in M which asymptotically commutes
with M (i.e., is such that limi ‖[y, xi]‖2 = 0 for every y ∈ M) is
asymptotically trivial;

(iii) for every ε > 0, there exist a finite subset F of U(M) (or of M)
and δ > 0 such that if x ∈ M satisfies maxu∈F ‖[u, x]‖2 ≤ δ, then
‖x− τ(x)1‖2 < ε.

15.2. Spectral gap and Property Gamma

15.2.1. Property Gamma. This property is the first invariant that
was introduced to show the existence of non hyperfinite II1 factors.

Let M be a II1 factor. A ‖·‖∞-bounded net (xi) in M such that
limi ‖[y, xi]‖2 = 0 for every y ∈M is said to be central.

Definition 15.2.1. We say that M has Property Gamma if there exists
a central net (xi) in M which is not asymptotically trivial.

2Concerning the classical notions of induced representation and weak containment
used in its proof, we refer for instance to [BdlHV08, Appendix F] and [BdlHV08,
Appendix E] respectively (see also Section 13.3.1 for the latter).
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Remarks 15.2.2. (a) Since ‖x‖2 ≤ ‖x‖∞ for every x ∈M , we see that
Property Gamma is stronger than the property of not having spectral gap.

(b) The above definition is equivalent to the following one: there exists
c > 0 such that for every finite subset F of M and every δ > 0 there exists
x ∈ (M)1 with maxx∈F ‖[y, x]‖2 ≤ δ and ‖x− τ(x)1‖2 ≥ c.

(c) WhenM is separable, Property Gamma is equivalent to the existence
of a central sequence (xn) which is not asymptotically trivial. Indeed, take
c > 0 as above let denote by xF,δ an element of (M)1 satisfying the above
conditions relative to (F, δ). Since M is separable there exists an increasing
sequence (Fn) of finite subsets of (M)1 such that ∪Fn is dense in ((M)1, ‖·‖2).
For each integer n we set xn = xFn,1/n. Then the sequence (xn) is central
and not asymptotically trivial.

Property Gamma is easily characterized by the following theorem when
M is separable. Given a free ultrafilter ω on N, we recall that the ultrapower
Mω has been defined in Section 5.4. We see M as a von Neumann subalgebra
of Mω, in an obvious way.

Theorem 15.2.3. Let M be a separable II1 factor and let ω be free
ultrafilter on N. The following conditions are equivalent:

(i) M has Property Gamma;
(ii) M ′ ∩Mω 6= C1;
(iii) M ′ ∩Mω is diffuse;
(iv) there exists a central sequence (vn) in the unitary group of M such

that τ(vn) = 0 for all n.

Proof. (i) ⇒ (ii). Let (xn) be a central sequence such that for some
c > 0 and for every n we have ‖xn − τ(xn)1‖2 ≥ c. Then obviously (xn)ω ∈
M ′ ∩Mω is not scalar.

(ii)⇒ (iii). Let p ∈Mω∩M ′ be a non trivial projection and set τω(p) =
λ ∈]0, 1[. Let (pn) be a representative of p which consists of projections such
that τ(pn) = λ for every n (see Lemma 5.4.2). The functional x ∈ M 7→
τω(xp) is a trace and therefore we have limω τ(xpn) = λτ(x) for x ∈M .

Let (Fn) be an increasing sequence of finite subsets of (M)1 such that
∪nFn is s.o. dense in (M)1. We can choose a subsequence (pkn) of (pn) such
that for n ≥ 1 we have

(a) ‖[pn, pkn ]‖2 ≤ 1/n and
∣∣τ(pnpkn)− λ2

∣∣ ≤ 1/n;
(b) maxx∈Fn ‖[pkn , x]‖2 ≤ 1/n.

It follows that (pnpkn)ω is a non-zero projection in Mω∩M ′ which is strictly
smaller than p. Therefore, p is not a minimal projection.

(iii) ⇒ (iv). Since the von Neumann algebra M ′ ∩ Mω is diffuse, it
contains a projection p such that τω(p) = 1/2 (see Exercise 3.3). Let (pn) be
a representative of p consisting of projections pn in M with τ(pn) = 1/2 for
every n (see Lemma 5.4.2). We set vn = 2pn − 1. Then (vn) is a sequence
of unitaries in M with τ(vn) = 0 and limω ‖[x, vn]‖2 = 0 for every x ∈M .

(iv) ⇒ (i) is obvious. �
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15.2.2. Property Gamma and spectral gap. We now state the
main result of this section.

Theorem 15.2.4. Let M be a separable II1 factor. Then M has Property
Gamma if and only if it does not have spectral gap.

To prove this theorem, we need some preliminaries about ultrapowers.
Even if M is assumed to be separable, we cannot limit ourself to sequences
in Definition 15.1.10 (ii) and we will have to deal with directed sets. Given
such a set I, a filter F of subsets of I is said to be cofinal if for every i0 ∈ I
the set {i ∈ I : i ≥ i0} belongs to F . When I = N, the cofinal ultrafilters
are the free ultrafilters.

Let ω be a cofinal ultrafilter on the directed set I and let M be a II1

factor. The ultrapower Mω along ω is defined exactly as we did in Sec-
tion 5.4 for free ultrafilters on N. We will need the following immediate
characterisation of Property Gamma in terms of such ultrapowers.

Lemma 15.2.5. Let M be a separable II1 factor. The following conditions
are equivalent:

(i) M has Property Gamma;
(ii) there exists a directed set I and a cofinal ultrafilter ω on I such

that Mω ∩M ′ 6= C.

Given a Hilbert space H and a cofinal ultrafilter ω on a directed set I we
define the ultrapower Hω as the quotient of `∞(I,H) by the subspace of all
nets (ξi) such that limω ‖ξi‖H = 0. For (ξi) ∈ `∞(I,H) we denote by (ξi)ω
its class in Hω. We easily see that Hω, endowed with the scalar product
〈(ξi)ω, (ηi)ω〉 = limω 〈ξi, ηi〉H is a Hilbert space.

Let M be a II1 factor and I, ω as above. Then M acts to the left in a
natural way on L2(M)ω, by setting

∀x ∈M, ∀(ξi)ω ∈ L2(M)ω, x(ξi)ω = (xξi)ω.

Similarly, M acts to the right on L2(M)ω.
The Hilbert space L2(Mω) is a closed subspace of L2(M)ω, stable under

the above actions of M . The orthogonal of L2(Mω) in L2(M)ω is denoted by
L2(M)ω 	 L2(Mω). We will denote by L2(M)ω ∩M ′ the space of elements
(ξi)ω in L2(M)ω such that limω ‖yξi − ξiy‖2 = 0 for every y ∈ M , and
similarly we will use the notation L2(Mω) ∩M ′.

Lemma 15.2.6. Let M be a separable II1 factor and let (ξi)ω be a self-
adjoint (i.e., ξi = ξ∗i for all i) element of L2(M)ω 	 L2(Mω). Then (|ξi|)ω
is also orthogonal to L2(Mω).

Proof. For every interval J in R we denote by EJ(ξi) the spectral
projection of ξi relative to J . Since (EJ(ξi))ω ∈Mω, we see that

〈(ξiEJ(ξi))ω, (ηi)ω〉 = lim
ω
〈ξiEJ(ξi), ηi〉L2(M)

= lim
ω
〈ξi, EJ(ξi)ηi〉L2(M) = 〈(ξi)ω, (EJ(ξi))ω(ηi)ω〉 = 0
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for every (ηi)ω ∈ L2(Mω). Thus (ξiEJ(ξi))ω is orthogonal to L2(Mω).
We have

(|ξi|)ω = (ξiE[0+∞[(ξi))ω − (ξiE]−∞,0[(ξi))ω

and therefore (|ξi|)ω is orthogonal to L2(Mω). �

The following lemma is crucial for the proof of Theorem 15.2.4.

Lemma 15.2.7. Assume that L2(M)ω	L2(Mω) contains a non-zero ele-
ment (ξi)ω which commutes with M . Then for every finite subset F of U(M)
and every ε > 0 there exists a non-zero projection e ∈M such that τ(e) ≤ ε
and maxu∈F ‖[u, e]‖2 ≤ ε‖e‖2.

Proof. We may assume that (ξi)ω is self-adjoint with ‖ξi‖2 ≤ 1 for
every i, and by the previous lemma we may even assume that ξi ∈ L2(M)+

for every i. Morever, we may take (ξi)ω with a support as small as we wish.
Indeed, for a > 0 and η ∈ L2(M)+ let us denote by Ea(η) the spectral
projection of η corresponding to the interval [0, a] and by Eca(η) its spectral
projection corresponding to ]a,+∞[. We have limω 〈ξi, ξiEa(ξi)〉L2(M) = 0

and therefore limω ‖ξi − ξiEca(ξi)‖2 = 0. The support of ξiE
c
a(ξi) is smaller

than Eca(ξi) with τ(Eca(ξi)) ≤ aτ(ξi) ≤ a.
For a > 0, we set ξi,a = ξiE

c
a(ξi). For u ∈ F , we have limω ‖[u, ξi,a]‖2 = 0

and limω ‖ξi,a‖2 > 0. Therefore, given ε′ > 0, there exists i such that

max
u∈F
‖[u, ξi,a]‖2 ≤ ε

′‖ξi,a‖2.

Now, by Theorem 10.3.6 there exists t0 > 0 such that

max
u∈F

∥∥[u,Ect0(ξi,a)]
∥∥

2
< (3nε′)1/2

∥∥Ect0(ξi,a)
∥∥

2
,

where n is the cardinal of F . Observe that τ(Ect0(ξi,a)) ≤ τ(Eca(ξi)) ≤ a. To

conclude, we first choose a < ε and ε′ with (3nε′)1/2 < ε, and then we get i
and t0 and set e = Ect0(ξi,a). �

Proof of Theorem 15.2.4. We assume that M does not have spec-
tral gap and want to show that M has Property Gamma. There exists a
‖·‖2-bounded net (xi)i∈I of self-adjoint elements of M which asymptotically
commutes with M but is not asymptotically trivial. Therefore there is a
cofinal ultrafilter ω on I such that limω ‖[y, xi]‖2 = 0 for every y ∈ M and

limω ‖xi − τ(xi)1‖ = c > 0. Replacing xi by (xi − τ(xi)1)/‖xi − τ(xi)1‖−1
2

for i large enough we get a net (xi) of elements of M , with ‖xi‖2 = 1 for
every i, such that limω ‖[y, xi]‖2 = 0 for every y ∈ M and which satisfies
τ(xi) = 0 for every i.

We have ‖(xi)ω‖2 = 1 and (xi)ωy = y(xi)ω for every y ∈ M . Moreover,

if 1̂ω denotes the unit of M viewed as an element of L2(Mω) ⊂ L2(M)ω, we

have 〈(xi)ω, 1̂ω〉L2(M)ω = 0.
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Assume by contradiction that M does not have Property Gamma and
therefore

L2(Mω) ∩M ′ = C1̂ω.

It follows that (xi)ω does not belong to L2(Mω). Let f be the orthogonal
projection from L2(M)ω onto L2(Mω). Observe that f commutes with M .
Replacing (xi)ω by (xi)ω−f(xi)ω we may assume that (xi)ω is orthogonal to
L2(Mω). Using Lemma 15.2.6 we see that there exists a non-zero element,
that we still denote (xi)ω, with xi ∈ M+ and ‖xi‖2 ≤ 1 for every i, which
commutes with M and is orthogonal to L2(Mω).

Let us show that given any non-zero projection q in M , for every finite
subset F of qMq and every ε > 0 we may find a non-zero projection e in
M with e ≤ q, τ(e) ≤ ε and maxy∈F ‖[y, e]‖2 ≤ ε‖e‖2. To that purpose we
consider q(xi)ω = q(xi)ωq. It is a positive element in L2(qMq)ω ∩ (qMq)′

which is orthogonal to L2((qMq)ω). Moreover we have q(xi)ωq 6= 0 since

〈q(xi)ω, (xi)ω〉 = ‖(xi)ω‖2τ(q), due to the fact that y 7→ 〈y(xi)ω, (xi)ω〉 is a
trace on M . Then it suffices to apply Lemma 15.2.7 to q(xi)ωq instead of
(xi)ω and qMq instead of M .

Using this fact and a maximality argument, we now show that given
a finite subset F of Ms.a and ε > 0 there exists a projection q ∈ M such
that maxy∈F ‖[y, q]‖2 ≤ ε and τ(q) = 1/2. Let E be the set of projections
e such that maxy∈F ‖[y, e]‖2 ≤ ε‖e‖2 and τ(e) ≤ 1/2. With its usual order,
this set is inductive and therefore has a maximal element q. We claim
that τ(q) = 1/2. Otherwise, we set ε1 = 1/2 − τ(q), q1 = 1 − q and
F1 = {q1yq1 : y ∈ F}. Then there exists a non-zero projection p ∈ q1Mq1

such that maxy∈F1 ‖[y, p]‖2 ≤ ε‖p‖2 and τ(p) ≤ ε1. We set q′ = q + p.
Straightforward computations, using Pythagoras’ theorem, show that

whenever y is self-adjoint then

∥∥[y, q′]
∥∥2

2
= 2
∥∥q′y(1− q′)

∥∥2

2
= 2
∥∥qy(1− q′)

∥∥2

2
+ 2
∥∥py(1− q′)

∥∥2

2

= ‖[q, (1− p)y(1− p)]‖22 + ‖[p, (1− q)y(1− q)]‖22.
Moreover, since

‖[q, (1− p)y(1− p)]‖22 = 2τ(qy(1− p)yq)− 2τ(yqyq)

we see that ‖[q, (1− p)y(1− p)]‖22 ≤ ‖[q, y]‖22. It follows that∥∥[y, q′]
∥∥2

2
≤ ε2τ(q) + ε2τ(p),

and therefore ‖[y, q′]‖2 ≤ ε‖q′‖2, with τ(q′) ≤ 1/2 and this contradicts the
maximality of q in E .

In conclusion, we get a net (qi) of projections in M which asymptotically
commutes with M and is such that τ(qi) = 1/2 for all i. This is impossible
since M does not have Property Gamma. �

Remark 15.2.8. The result stated in Theorem 15.2.4 is remarkable. It
does not extend to the following classical situation where one considers a
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trace preserving action G y (M, τ) of a countable group on a tracial von
Neumann algebra. In this setting, the analogue of not having Property
Gamma is known in the literature as strong ergodicity. It means that every
‖·‖∞-bounded asymptotically G-invariant sequence (xn) in M (i.e., such
that, for all g ∈ G, limn ‖σg(xn)− xn‖2 = 0) is asymptotically trivial (i.e.,
limn ‖xn − τ(xn)1‖2 = 0).

Every action with spectral gap is strongly ergodic and every strongly
ergodic action is ergodic. However, there are strongly ergodic actions that
do not have the spectral gap property. An example of such a probability
measure preserving action of the free group F3 is given in [Sch81, Example
2.7].

15.3. Spectral gap and full II1 factors

In this section, M will still be a separable II1 factor.

15.3.1. Fullness and spectral gap. We show below the noteworthy
fact that the spectral gap property can be expressed as a topological property
of the group Aut (M) of automorphisms3 of M . Recall that Aut (M) is
endowed with the topology for which a net (αi) converges to α if for every
x ∈ M we have limi ‖αi(x)− α(x)‖2 = 0. It is a Polish group (see Section
7.5.3).

Definition 15.3.1. We say that M is full if the subgroup Inn (M) of in-
ner automorphisms of M is closed in Aut (M) (and so the group Out (M) =
Aut (M)/Inn (M) is a Polish group).

The terminology is explained by the fact that M is full if and only if
Inn (M) is complete.

Theorem 15.3.2. Let M be a separable II1 factor. The following condi-
tions are equivalent:

(i) M is a full factor;
(ii) M has spectral gap.

Proof. We denote by θ the homomorphism u 7→ Ad (u) from U(M)
onto Inn (M). The s.o. topology on U(M) is defined by the metric d(u, v) =
‖u− v‖2 which makes it a complete metric space. Endowed with the quo-
tient topology, the group U(M)/T1, quotient of U(M) by the group T1 of
scalar unitaries, is a Polish group. If [u] denotes the class of u, the quo-
tient metric is d′([u], [v]) = infλ∈T d(λu, v). The homomorphism θ gives, by
passing to the quotient, a continuous isomorphism θ′ from the Polish group
U(M)/T1 onto the topological group Inn (M).

Let us prove that (i)⇒ (ii). Assume that Inn (M) is closed in the Polish
group Aut (M). Then Inn (M) is itself a Polish group and the open mapping
theorem (see B.4 in the appendix) implies that θ′ is a homeomorphism.
Let ω be a free ultrafilter on N. Using the theorems 15.2.4 and 15.2.3, in

3They are automatically trace preserving.
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order to prove (ii) it suffices to show that Mω ∩M ′ = C1. It is enough to
show that every unitary in Mω which commutes with M is scalar. Every
unitary in Mω is of the form (un)ω where (un) is a sequence of unitaries
in M (see Exercise 5.12). If (un)ω commutes with M then limω Ad (un) =
IdM in Inn (M). Since (θ′)−1 is continuous we see that limω[un] = [1] in
U(M)/T1 and therefore there exists a sequence (λn) of elements of T such
that limω ‖un − λn1‖2 = 0.

Let us prove now that (ii) ⇒ (i). Assume that M has spectral gap. For
every integer n ≥ 1 there exist a finite subset Fn of M and δn > 0 such that
if u ∈ U(M) satisfies maxx∈Fn ‖[u, x]‖2 ≤ δn then

d(u,T1) = inf
λ∈T
‖u− λ1‖2 ≤ 1/2n.

Let α ∈ Inn (M) and let (vn) be a sequence of unitaries such that

lim
n

Ad (vn) = α.

We choose this sequence in such a way that for every n we have

max
x∈Fn

∥∥[v−1
n+1vn, x]

∥∥
2

= max
x∈Fn

∥∥(Ad (v−1
n+1vn)

)
(x)
∥∥

2
≤ δn

and so d(v−1
n+1vn,T1) ≤ 1/2n. Then for each n we choose un ∈ U(M)

such that Ad (un) = Ad (vn) and ‖un+1 − un‖2 ≤ 1/2n. It follows that the
sequence (un) converges in the s.o. topology to an unitary u, and we have
Ad (u) = α. �

15.4. Property Gamma and inner amenability

Let G be a countable group. For f ∈ `∞(G) and s ∈ G we denote by
ads(f) the function t 7→ f(s−1ts). A mean m on `∞(G) is said to be inner
invariant if m ◦ ads = m for every s ∈ G. Of course the Dirac measure at e
is such a mean. We say that m is non-trivial if it is supported on G \ {e}.

Definition 15.4.1. We say that G is inner amenable if it carries a non-
trivial inner invariant mean.

Every amenable group G is inner amenable. Indeed, starting from res-
pectively left and right invariant means ml and mr we build a mean m as
follows. Given f ∈ `∞(G) we denote by F the function s 7→ ml(fs), where
(fs)(x) = f(xs). We set m(f) = mr(F ). Then m is easily seen to be a
non-trivial inner invariant mean.

The free groups Fn with n ≥ 2 generators are not inner amenable. In-
deed, let a1, . . . , ak, . . . be the generators of Fn. Let S be the subset of Fn
consisting of the elements which, in reduced form, end by a non-zero power
of a1. We make the following easy observation:

(i) S ∪ a1Sa
−1
1 = Fn \ {e},

(ii) S, a2Sa
−1
2 , a−1

2 Sa2 are pairwise disjoint.

This immediately implies the non-inner amenability of Fn.
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Proposition 15.4.2. Let G be a countable group and (L(G), τ) the cor-
responding tracial von Neumann algebra. Assume that (L(G), τ) has Pro-
perty Gamma. Then the group G is inner amenable.

Proof. Let (vn) be a sequence of unitary operators in L(G) with τ(vn) =
0 for every n and such that limn ‖xvn − vnx‖2 = 0 for every x ∈ L(G). In
particular, for every s ∈ G we have

lim
n
‖vn − usvnu∗s‖2 = 0,

where the us are the canonical unitaries in L(G). We view vn as an element
of `2(G). Note that v̂n(e) = τ(vn) = 0, where e is the identity of G. We set

ξn = |v̂n|2. Then (ξn) is a sequence of elements in `1(G)+ with ξn(e) = 0,
‖ξn‖1 = 1. Since, by the Powers-Størmer inequality and Lemma 7.4.10, we
have

‖ξn − ads(ξn)‖1 ≤
∥∥∥ξ1/2
n − ads(ξ

1/2
n )

∥∥∥
2

∥∥∥ξ1/2
n + ads(ξ

1/2
n )

∥∥∥
2

≤ 2
∥∥∥ξ1/2
n − ads(ξ

1/2
n )

∥∥∥
2
≤ 2
√

2‖vn − usvnu∗s‖
1/2
2 ,

we see that limn ‖ξn − adsξn‖1 = 0. It follows immediately that any weak*
cluster point in `∞(G)∗ of the sequence (ξn) is a non-trivial inner invariant
mean. �

Examples 15.4.3. (a) The hyperfinite factor R is amenable and has
Property Gamma.

Indeed, let us write R = ∪nQn
w.o

where Qn = M2n(C). Given ε > 0
and x1, . . . , xm in M , there exists an integer n and y1, . . . , ym in Qn such
that ‖xi − yi‖2 ≤ ε/2 for i = 1, . . . ,m. Since Qn+1 = Qn ⊗M2(C), setting
U = 1⊗ u where u is a unitary in M2(C) with trace equal to zero, we get a
unitary U ∈ M with τ(U) = 0 and which commutes with the yi. It follows
immediately that ‖Uxi − xiU‖2 ≤ ε for all i.

(b) The factor L(Fn), n ≥ 2, does not have Property Gamma.
This follows from Proposition 15.4.2 since Fn is not inner amenable.

(c) R⊗L(Fn) has Property Gamma and is not amenable.
Indeed is easily checked that every II1 factor of the form M ⊗N where

M has Property Gamma retains this property. Therefore the II1 factor
R⊗L(Fn), n ≥ 2, has Property Gamma. It is not amenable. Otherwise,
because of the existence of a conditional expectation from R⊗L(Fn) onto
L(Fn) (the trace preserving one for instance), L(Fn) would be amenable,
which is not the case since the group Fn is not amenable.

(d) Every II1 factor that has Property (T) is full.
This follows from the fact that Inn (M) is an open subgroup of Aut (M)

(see Proposition 14.3.4).

As a consequence, the factors R, L(Fn), R⊗L(Fn) are not isomorphic.
A factor with Property (T) is isomorphic neither to R nor to R⊗L(Fn). We
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will see in the next chapter that it is not isomorphic to any factor with the
Haagerup property like L(Fn).

Exercises

Exercise 15.1. Let G y Z be an action of a countable group G on
a set Z. We assume that G is non-amenable, that the stabilizers of this
action are amenable and that the G-orbits are infinite. Let (Y, ν) be a
standard probability measure space. Show that the generalized Bernoulli
action Gy (Y Z , ν⊗Z) has spectral gap.

Exercise 15.2. Show that the stabilizers of the natural action of SL(2,Z)
on Z2 \{0, 0} are amenable and conclude that the action SL(2,Z) y (T2, λ)
has spectral gap.

Exercise 15.3. Let Gy (M, τ) be a trace preserving action.

(i) Show that the algebra MG of G-invariant elements in M is dense
in the Hilbert space L2(M)G of G-invariant vectors in L2(M).

(ii) Conclude that Gy (M, τ) is ergodic if and only if L2(M)G = C1̂.

Exercise 15.4. Let (ϕn) be a sequence of states on a tracial von Neu-
mann algebra (M, τ). We assume the existence of a sequence (en) of projec-
tions in M and of c > 0 such that limn τ(en) = 0 and ϕn(en) ≥ c for every
n. Show that (ϕn) has a weak* cluster point in M∗ which is a non-normal
state.

Exercise 15.5. Let G y (M, τ) be a trace preserving action. We as-
sume the existence of a sequence (pn) of non-zero projections in M such that
limn ‖pn‖1 = 0 and limn ‖σg(pn)− pn‖1/‖pn‖1 = 0 for every g ∈ G. Show
that M has a non-normal G-invariant state.

Exercise 15.6. Let σ : Gy (M, τ) be a trace preserving action and let
ω be a free ultrafilter on N such that (Mω)G is diffuse (or more generally
contains non-zero projections of trace as small as we wish).

(i) Show that for every δ > 0, every ε > 0 and every finite subset F
of G, there exists a non-zero projection p ∈ M such that τ(p) < δ
and maxg∈F ‖σg(p)− p‖1 ≤ ετ(p) = ε‖p‖1.

(ii) If in addition the group G is countable, show that there is a non-
normal G-invariant state on M .

(iii) Show that (ii) does not necessarily hold when G is not countable.

Exercise 15.7. Let σ : G y (M, τ) be an ergodic action of a non
necessarily countable group. Show that if the action has spectral gap, there
exists a countable subgroup G0 of G for which τ is the only G0-invariant
state (Hint: take F as in Definition 15.1.1 (i) and let G0 be the subgroup
generated by F . Consider a G0-invariant state ψ on M and use a Day’s
convexity argument to fing a net (φi) of normal states on M that converges
to ψ in the weak* topology and is such that limi ‖φi ◦ σt − φi‖ = 0 for t ∈ F .
Use the Powers-Størmer inequality to show that limi φi = τ).
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Exercise 15.8. Let M be a separable II1 factor. Show that M has
Property Gamma if and only if for every countable subgroup G0 of U(M)
there exists a non-normal G0-invariant state on M under the Ad -action
(equivalently, if and only if for every unital separable (with respect to the
norm ‖·‖∞) C∗-subalgebra B0 of M there is a non-normal state ϕ on M
such that ϕ(xy) = ϕ(yx) for every x ∈M and every y ∈ B0).

Exercise 15.9. Let G be an ICC group with the property (T) and
let G y (X,µ) be a p.m.p. ergodic action. Let M = L∞(X) o G be the
corresponding crossed product.

(i) We denote by E the trace preserving conditional expectation from
M onto L∞(X) and by us, s ∈ G, the canonical unitaries. Let (xn)
be a ‖·‖2-bounded sequence in M such that limn ‖[xn, us]‖2 = 0 for
every s ∈ G. Show that limn ‖xn − E(xn)‖2 = 0.

(ii) Show that the crossed product M = L∞(X)oG does not have the
property Gamma

Exercise 15.10. Let R be the hyperfinite II1 factor and (Nn) be an
increasing sequence of subfactors of type I2n such that (∪Nn)′′ = R. Let
α ∈ Aut (R) and for each n chose a unitary element un ∈ R such that
α(x) = unxu

∗
n for every x ∈ Nn (see Exercice 2.7). Show that for every

x ∈ R, we have limn ‖α(x)− unxu∗n‖2 = 0 and conclude that Inn (R) is
dense in Aut (R).4

Exercise 15.11. Let M and N be two II1 factors.

(i) We assume that M is full. Show that there exist a finite subset
F1 ∈ U(M) and c1 > 0 such that for every z ∈M �N we have∑

u∈F1

‖[u⊗ 1, z]‖22 ≥ c1‖z − EN (z)‖22.

(Hint: write z as z =
∑n

i=1 xi⊗ yi ∈M⊗N where (yi) is orthonor-
mal in (N, ‖·‖2)).

(ii) Assume that N is full. Show that there exist a finite subset F2 ∈
U(N) and c2 > 0 such that for every z ∈M �N we have∑

u∈F2

‖[u,EN (z)]‖22 ≥ c2‖EN (z)− τ(z)‖22.

(iii) Conclude that M⊗N is full whenever M and N are full.

Notes
The idea of studying the dynamics of a group action by spectral tools

dates back to Koopman’s paper [Koo31] for Z-actions. Since then, it proved
to be a very fruitful technique in ergodic theory.

4The group Out (M) is very big: it contains a copy of every separable locally compact
group [Bla58].
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The notion of spectral gap is seen as a rigidity property. Recall that
every ergodic p.m.p. action of a group satisfying property (T) has spectral
gap. However, there exist very interesting examples of spectral gap property
under actions of groups which do not have property (T) as pointed out in
[Sch80, Sch81, Jon83a, Pop06b] (see Proposition 15.1.8, Exercises 15.1,
15.2). Thanks to this notion of spectral gap, surprisingly general rigidity
results can be obtained for group actions and their crossed products (see
[Pop08]).

Ultrapowers and central sequences are very useful tools to investigate
the structure of II1 factors. They have led to the discovery of new II1 fac-
tors in the sixties [Sak69, Chi69, DL69, ZM69], culminating in the final
remarkable proof around 1969 of the existence of uncountably many non
isomorphic separable such factors [McD69a, McD69b, Sak70]. The im-
portance of central sequences was also revealed in another paper of McDuff
[McD70]. For a II1 factor M , she proved that M ′ ∩Mω is either abelian or
a II1 factor and that the latter case occurs if and only if M and M⊗R are
isomorphic. In this case, M is now called a McDuff factor.

Later, Connes made further very deep uses of these notions and most of
the main ideas of this chapter are due to him. Theorem 15.2.3 essentially
comes from [Con74], as well as Theorem 15.3.2 (see also [Sak74] for the
latter). Theorem 15.2.4 is borrowed from [Con76]. We have chosen to
express these results in terms of the more recent terminology of spectral gap
(see [Pop08, Pop12]).

Property Gamma is one of the invariants for II1 factors introduced by
Murray and von Neumann in [MvN43]. They showed there that R has
property Gamma while L(Fn), n ≥ 2, has not. The proof we give in Section
15.4 uses the more recent notion of inner amenability due to Effros [Eff75].
Proposition 15.4.2 is taken from Effros’ paper. The question of whether the
inner amenability of the group G implies that L(G) has property Gamma
remained open since then and has been solved only recently in the negative
by Vaes [Vae12].

The fact that R⊗L(Fn) is not isomorphic to R was proved to J.T.
Schwartz [Sch63], by using his so-called property (P) instead of Connes’
notion of injectivity.

The notion of strong ergodicity for a probability measure preserving ac-
tion of a countable group was coined in [Sch81]. Connes and Weiss [CW80]
proved that a countable group G has property (T) if and only if every er-
godic p.m.p. action of G on a probability measure space is strongly ergodic,
and Schmidt has shown that this is also equivalent to the fact that every
ergodic p.m.p. action of G has spectral gap. On the other hand, a countable
group G is amenable if and only if no ergodic p.m.p. action of G is strongly
ergodic, and also if and only if no ergodic p.m.p. action of G has spectral
gap [CFW81, Sch81]. This is to be compared with the fact that the group
F3 has an action which is strongly ergodic but without spectral gap ([Sch81,
Example 2.7]).
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CHAPTER 16

Haagerup property (H)

We extend to tracial von Neumann algebras the Haagerup property
which, in the setting of groups, was first detected for free groups. Here,
we make use of the similarities between positive definite functions on groups
and completely positive maps on von Neumann algebras. For further ap-
plications to the study of II1 factors, we also discuss the notion of relative
Haagerup property.

16.1. Haagerup property for groups

Definition 16.1.1. A group G is said to have the Haagerup property (or
property (H)) if there exists a net (sequence if G is countable) (ϕi) of positive
definite functions on G such that limi ϕi = 1 pointwise and ϕi ∈ c0(G) for
every i.1

Examples 16.1.2. Obviously, amenable groups have property (H).
Free groups Fk with k ≥ 2 generators are the most basic examples of

non amenable groups with Property (H). This follows from the fact, that
the word length function g 7→ |g| is conditionally negative definite on Fk.
Recall that ψ : G→ R is conditionally negative definite if

(a) ψ(e) = 0, ψ(g) = ψ(g−1) for every g ∈ G,
(b) for any integer n, any g1, . . . , gn ∈ G and any real numbers c1, . . . , cn

with
∑n

i=1 ci = 0, we have
∑n

i,j=1 cicjψ(g−1
i gj) = 0.

By Schoenberg’s theorem, this property holds if and only if for every t > 0,
the function exp(−tψ) is positive definite2. Since the length function on
Fk is proper, we see that ϕn : g 7→ exp(−|g|/n) vanishes to infinity. Thus
(ϕn) so defined is a sequence of positive definite functions on Fk such that
limn ϕn = 1 pointwise and ϕn ∈ c0(Fk) for every n.

Note that Fk acts properly on its Cayley graph, which is a tree. More
generally, every group that acts properly on a tree has the property (H).
Moreover, Property (H) is stable under taking subgroups, direct or free pro-
ducts. A group that contains a subgroup of finite index with the property
(H) has this property. Therefore, SL(2,Z) has this property since it contains
F2 as a subgroup of index 12.3

1c0(G) denotes the algebra of complex-valued functions onG, vanishing to 0 at infinity.
2See [BdlHV08, Corollary C.4.19] for instance.
3For a comprehensive treatment of these questions, we refer to the book [CCJ+01].
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Remark 16.1.3. Let G be a group with Property (H). Then it is clear
from the definition and Proposition 14.1.2 (d) that G cannot contain any
infinite relatively rigid subgroup. However, this fact does not characterize
Property (H) as shown in [dC06].

16.2. Haagerup property for von Neumann algebras

We saw that amenability and Property (T) for groups have their ana-
logues for finite von Neumann algebras. Similarly, Property (H) can be
translated in terms of operator algebras.

Let (M, τ) be a tracial von Neumann algebra. Let φ : M → M be a
subtracial completely positive map. For x ∈ M , using Schwarz inequality,

we get ‖φ(x)‖2 ≤ ‖φ‖
1/2‖x‖2. It follows that there is a bounded operator

Tφ on L2(M) such that Tφ(x) = φ(x) for x ∈M . We observe that ‖Tφ‖ ≤ 1
when φ is moreover subunital.

Definition 16.2.1. We say that (M, τ) has the Haagerup property or
property (H) if there exists a net (φi) of subtracial and subunital completely
positive maps φi : M →M such that

(a) limi ‖Tφi(x)− x‖2 = 0 for every x ∈M ;

(b) Tφi is a compact operator on L2(M) for every i.

Of course, when M is separable, one may replace nets by sequences in
this definition.

By Theorem 13.4.2, we see that every amenable tracial von Neumann
algebra has Property (H). Group von Neumann algebras provide examples
of von Neumann algebras with Property (H) as shown by the following
proposition.

Proposition 16.2.2. A group G has the Haagerup property if and only
if L(G) has the Haagerup property.

Proof. Assume first that G has the Haagerup property. Let (ϕi) be a
sequence of positive definite functions as in Definition 16.1.1.We may assume
that ϕi(e) = 1 for every i. Let φi : L(G)→ L(G) be the completely positive
map such that φi(ug) = ϕi(g)ug for g ∈ G (see Proposition 13.1.12). It
is straightforward to check that φi is tracial and unital. Moreover, since
limg→∞ ϕi(g) = 0, the diagonal operator Tφi is compact. That condition (a)
of the previous definition is satisfied is immediate too.

Conversely, let (φi) be as in the previous definition. For each i we
introduce ϕi : g 7→ τ(φi(ug)u

∗
g). We get a net (ϕi) of positive definite

functions which converges to 1 pointwise. Moreover, for every i, since
ϕi(g) = 〈ug, Tφi(ug)〉, where Tφi is a compact operator and (ug)g∈G is an
orthonormal basis of L2(L(G)) = `2(G), we see that limg→∞ ϕi(g) = 0. �

Proposition 16.2.3. Let M be a II1 factor with the property (H). Then
M contains no diffuse relatively rigid subalgebra B.
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Proof. Let (φi) be a net of completely positive maps as in Definition
16.2.1. Assume the existence of a diffuse relatively rigid von Neumann sub-
algebra B. Then there exists i such that ‖φi(u)− u‖2 ≤ 1/2 for every
u ∈ U(B). Since B is diffuse, any maximal von Neumann subalgebra A of
B is diffuse. In particular, there exists a unitary operator v ∈ A such that
τ(vn) = 0 for n 6= 0. The family (vn)n≥0 is orthonormal in L2(M), and
therefore limn→∞ v

n = 0 in the weak topology of L2(M). Using the fact
that Tφi is compact, we get limn ‖φi(vn)‖2 = limn ‖Tφi(vn)‖2 = 0. Hence,
we have

1/2 ≥ lim
n
‖φi(vn)− vn‖2 = lim

n
‖vn‖2 = 1,

a contradiction. �

16.3. Relative property (H)

Let (M, τ) be a tracial von Neumann algebra and B a von Neumann
subalgebra of M . We have defined the notions of amenability of M relative
to B and of property (T) relative to B (see Definition 13.4.5 and Remark
14.2.10). Similarly, we introduce in this section the notion of property (H)
relative to B so that property (H) for M is retrieved when B = C1. To that
purpose, we need some preliminaries.

When we replace the algebra of scalar operators by a von Neumann
subalgebra B of M and consider the right B-module L2(M)B, we have to
replace the semi-finite factor B(L2(M)) by the commutant of JBJ , (i.e., the
commutant of the right B-action4), which is the semi-finite von Neumann
algebra 〈M, eB〉, endowed with its canonical normal faithful semi-finite trace
τ̂ . There are several natural notions of compact operator in 〈M, eB〉, which
differ slightly and coincide with the usual notion of compact operator in the
case B = C1 (see Exercise 9.9). Here, we favor the two following ones.

The first one is defined for any semi-finite von Neumann algebra N .
It is the norm-closed two-sided ideal I(N) of N generated by the finite
projections of N (which play the role of the finite rank projections in the
usual case). We have T ∈ I(N) if and only if the spectral projections
et(|T |) of |T | relative to every interval [t,+∞[, t > 0, are finite (see Exercise
9.8). The second one is the norm-closed two-sided ideal I0(〈M, eB〉) of
〈M, eB〉 generated by eB (see Proposition 9.4.3). Note that since τ̂(eB) = 1,
the projection eB is finite and so I0(〈M, eB〉) ⊂ I(〈M, eB〉). The slight
difference between these two ideals is made precise in the next proposition.

Proposition 16.3.1. Let T ∈ I(〈M, eB〉). For every ε > 0, there exists
a projection z ∈ Z(B) such that τ(1− z) ≤ ε and TJzJ ∈ I0(〈M, eB〉).

Note that 〈M, eB〉 = JB′J and therefore JZ(B)J is the center of
〈M, eB〉. For the proof of the proposition, we use the following lemma.

4Recall that J is the canonical conjugation operator on L2(M).
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Lemma 16.3.2. Let N be a semi-finite von Neumann algebra. Let f ∈ N
be a finite projection and let e ∈ N be a projection whose central support is 1.
Then, for any non-zero projection z ∈ Z(N), there is a non-zero projection
z′ ∈ Z(N) and finitely many mutually orthogonal projections e1, . . . , en in
N such that z′ ≤ z, fz′ = ⊕ni=1eiz

′ and eiz
′ � ez′ for every i.

Proof. Note that ez 6= 0 whenever z 6= 0. Without loss of generality, we
may take z = 1. By Theorem 2.4.8, there exists z1 ∈ Z(N) with fz1 � ez1

and e(1−z1) � f(1−z1). If z1 6= 0 the proof is finished. Assume that z1 = 0,
so that e � f . Let {ei : i ∈ I} be a maximal family of mutually orthogonal
projections, equivalent to e, such that

∑
i∈I ei ≤ f and set e0 = f −

∑
i∈I ei.

We take a projection z2 ∈ Z(N) such that e0z2 � ez2 and e(1 − z2) �
e0(1 − z2). We claim that ez2 6= 0 and therefore z2 6= 0. Otherwise, we
would have e � e0 contradicting the maximality of {ei : i ∈ I}. We obtain
fz2 =

∑
i∈I eiz2⊕ e0z2. Moreover, since fz2 is a finite projection, and since

the projections eiz2, i ∈ I, are equivalent, we see that the set I is finite. �

Proof of proposition 16.3.1. We use the previous lemma with N =
〈M, eB〉 and e = eB. Given any finite projection f in 〈M, eB〉, we deduce
immediately that there exists a increasing net (zi) of projections in the center
JZ(B)J of 〈M, eB〉 with supi zi = 1 and fJziJ ∈ I0〈M, eB〉 for every n. In
other terms, for every δ > 0 there exists a projection z ∈ Z(B) such that
τ(1− z) ≤ δ and fJzJ ∈ I0〈M, eB〉.

Let T ∈ I〈M, eB〉. For every integer n ≥ 1 there is a linear combination
Tn of finite projections in 〈M, eB〉 such that ‖T − Tn‖ ≤ 2−n. By the claim
of the first paragraph, there is a projection zn ∈ Z(B) such that τ(1 −
zn) ≤ 2−nε and TnJznJ ∈ I0〈M, eB〉. We set z = ∧zn. Then we have
τ(1 − z) ≤

∑
n 2−nε ≤ ε and TnJzJ ∈ I0〈M, eB〉. Since ‖(T − Tn)JzJ‖ ≤

‖T − Tn‖ ≤ 2−n for every n, we get TJzJ ∈ I0〈M, eB〉. �

We say that a completely positive map φ : M → M is B-bimodular
if φ(bxb′) = bφ(x)b′ for every b, b′ ∈ B and x ∈ M . If φ is subtracial in
addition, then it is clear that Tφ commutes with the right and left B-actions
on L2(M), and so Tφ ∈ 〈M, eB〉 ∩B′.

Definition 16.3.3. We say that M has the property (H) relative to B
if there exists a net of subtracial and subunital B-bimodular completely
positive maps φi : M →M such that

(i) Tφi ∈ I(〈M, eB〉) for every i;
(ii) limi ‖φi(x)− x‖2 = 0 for every x ∈M .

Remark 16.3.4. In this definition, we may assume as well that Tφi ∈
I0(〈M, eB〉). Indeed, given a subtracial, B-bimodular completely positive
map φ : M → M , by Proposition 16.3.1, there is an increasing sequence
(zn) of projections in Z(B) such that limn zn = 1 in the w.o. topology and
TφJznJ ∈ I0(〈M, eB〉) for every n. If we set ψn = φ(zn · zn) = znφzn, we
get Tψn = znTφJznJ ∈ I0(〈M, eB〉). So it suffices to approximate φ by the
sequence (ψn).
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Proposition 16.3.5. Let σ : Gy (B, τ) be a trace preserving action of
a group G on a tracial von Neumann algebra (B, τ). Then M = B oG has
the property (H) relative to B if and only if G has the property (H).

Proof. Assume first that G has the Haagerup property. Let (ϕi) be a
net of positive definite functions in c0(G) such that ϕi(e) = 1 for every i and
limi ϕi = 1 pointwise. We denote by φi the completely positive map from M
to M such that φi(bug) = ϕi(g)bug for every b ∈ B and g ∈ G (see Propo-
sition 13.1.12). Obviously, φi is a trace-preserving and unital B-bimodular
completely positive map. We recall that (ug)g∈G is an orthornormal basis
of the right B-module L2(M) and we write L2(M) = ⊕g∈GugL2(B) (see
Example 9.4.3). Moreover, ugeBu

∗
g is the orthogonal projection from L2(M)

onto ugL
2(B). For b ∈ B and g ∈ G, we have

Tφi(ug b̂) = Tφi(σ̂g(b)ug) = ϕi(g)σ̂g(b)ug = ϕi(g)ug b̂.

It follows that Tφi is the diagonal operator
∑

g∈G ϕi(g)ugeBu
∗
g. It be-

longs to I0(〈M, eB〉) since limg→∞ ϕi(g) = 0. Finally, we observe that
‖φi(ug)− ug‖2 = |1− ϕi(g)| and thus limi ‖φi(x)− x‖2 = 0 when x is a
finite linear combination of elements of the form bug, b ∈ B, g ∈ G. This
still holds for every x ∈ M , thanks to the Kaplansky density theorem and
the fact that on the unit ball of M the s.o. topology is induced by the
‖·‖2-norm.

Conversely, assume that M has the property (H) relative to B an let
(φi) be a net of subtracial and subunital B-bimodular completely positive
maps satisfying condition (ii) of Definition 16.3.3 and Tφi ∈ I0(〈M, eB〉)
for every i. We set ϕi(g) = τ(φi(ug)u

∗
g) for g ∈ G. Since |ϕi(g)− 1| =∣∣τ((φi(ug)− ug)u∗g)

∣∣, by using the Cauchy-Schwarz inequality we see that the
net (ϕi) of positive definite functions converges to 1 pointwise. It remains
to check that each ϕi vanishes to infinity. We have

|ϕi(g)| = |〈ug, Tφi(ug)〉| ≤ ‖Tφi(ug)‖2.

The elements of the form LηL
∗
ξ , where ξ, η are left B-bounded in L2(M),

linearly generate a norm dense subspace of I0(〈M, eB〉) (see Proposition

9.4.3). Therefore it suffices to show that limg→∞

∥∥∥LηL∗ξ(ug)∥∥∥
2

= 0. An

easy exercise (Exercice 9.12) shows that ξ =
∑

g∈G ugbg where
∑

g∈G b
∗
gbg

converges in B for the s.o. topology. Moreover, we have bg = (Lug)
∗Lξ, and

so L∗ξug = (bg)
∗. It follows that∥∥LηL∗ξ(ug)∥∥2

≤ ‖Lη‖‖bg‖2,

and we conclude by observing that obviously limg∈G ‖bg‖2 = 0. �

Remark 16.3.6. Relative property (H) is not a weakening of relative
amenability: there exist pairs (M,B) such that M is amenable relative to
B whilst it does not have the relative property (H). For instance, consider
any non-trivial group Q. Set H = ⊕n≥0Q and let G be the wreath product
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(⊕n∈ZQ) o Z. Then L(G) is amenable relative to L(H) (see [MP03]), but
it does not have the relative property (H), since H is not almost normal in
G (see Exercise 16.1). A stronger notion of relative amenability, sometimes
called s-amenability relative to B has been considered in [Pop99], which is
indeed a strengthening of the relative property (H). For more comments in
this subject see [Pop06a, Remarks 3.5].

Exercise

Exercise 16.1. Let G be a countable group and H a subgroup. We
assume that M = L(G) has the property (H) relative to B = L(H). Let
(φi) be a net of subtracial and subunital B-bimodular completely positive
maps satisfying condition (ii) of Definition 16.3.3 and Tφi ∈ I0(〈M, eB〉) for
every i. We set ϕi(g) = τ(φi(ug)u

∗
g) for g ∈ G.

(i) Show that (ϕi) is a net of H-bi-invariant positive definite functions
which converges to 1 pointwise.

(ii) Show that, viewed as a function on H \ G, each ϕi belongs to
c0(H \G).

(iii) Conclude that H is almost normal in G, that is, for every g ∈ G,
HgH is a finite union of left, and also of right, H-cosets.

Notes
In order to prove that the reduced C∗-algebras of the free groups Fn,

n ≥ 2, have the Grothendieck metric approximation property, Haagerup
showed in [Haa79] that these groups satisfy the condition introduced in
Definition 16.1.1. The crucial step was to establish that the word length
function on these groups is conditionally negative definite.

In the context of II1 factors, the Haagerup property was defined by
Connes [Con80b] and Choda [Cho83] who proved that a group von Neu-
mann algebra L(G) has the Haagerup property if and only if the group G
has the Haagerup property. In [CJ85], Connes and Jones proved, among
other results, that a II1 factor with the Haagerup property cannot contain
any II1 factor having the property (T).

In [Jol02] Jolissaint studied in detail the Haagerup property for tra-
cial von Neumann algebras and established in particular that the definition
16.2.1 does not depend on the choice of the faithful normal tracial state.
A relative Haagerup property was introduced by Boca [Boc93] in order to
construct irreducible inclusions of II1 factors with the Haagerup property,
of any index s > 4. In [Pop06a], Popa has provided a detailed study of the
relative Haagerup property as defined in 16.3.3. Again, the definition does
not depend on the choice of the faithful normal tracial state. The results of
Section 16.3 are taken from this paper.

Since SL(2,Z) has the Haagerup property, L(Z2) ⊂ L(Z2 o SL(2,Z)) =
L(Z2) o SL(2,Z) has the relative Haagerup property. In addition it is a
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rigid inclusion. This also holds for any non amenable subgroup of SL(2,R)
instead of SL(2,Z), for instance F2. These two features are the main ingre-
dients in Popa’s proof that the fundamental group of L(Z2oF2) is the same
as the fundamental group of the orbit equivalence relation defined by the
corresponding action of F2 on the dual T2 of Z2 (see Section 18.3).
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CHAPTER 17

Intertwining-by-bimodules technique

In this chapter we introduce a new powerful tool, called the intertwining-
by-bimodules technique. This technique provides very tractable conditions
allowing to detect whether two subalgebras are intertwined via a partial
isometry. Under suitable conditions, for instance if the two subalgebras are
Cartan subalgebras, it happens even more: the two subalgebras are unitarily
conjugate, that is, conjugate by an inner automorphism.

This method has many applications. As a simple first illustration, in
Section 17.3 we present a family of examples of II1 factors with two Cartan
subalgebras for which the intertwining-by-bimodules technique provides a
quick proof of their non-conjugacy by an inner automorphism.

Next, at the end of this chapter, it will be applied to show that the
hyperfinite factor R has uncountably many non-unitarily conjugate Cartan
subalgebras (although they are conjugate by automorphisms as shown in
Theorem 12.5.2).

In the next chapter, we will exploit this method in the course of the
study of a II1 factor whose fundamental group is trivial. In Chapter 19 it
will be used to show that the factors associated with non-abelian free groups
are prime.

17.1. The intertwining theorem

Let (M, τ) be a tracial von Neumann algebra, and P,Q two von Neu-
mann subalgebras such that there exists u ∈ U(M) with u∗Pu ⊂ Q. Ob-
viously, H = uL2(Q) is a P -Q-subbimodule of PL

2(M)Q with dim(HQ) =
1 < +∞.

More generally, the existence of a P -Q-subbimodule of PL
2(M)Q with

dim(HQ) < +∞ is characterized as follows.

Theorem 17.1.1. Let (M, τ) be a tracial von Neumann algebra, f ∈M
a non-zero projection, and let P , Q be two von Neumann subalgebras of
fMf and M respectively. The following conditions are equivalent:

(i) there is no net1 (ui) of unitary elements in P such that, for every
x, y ∈M , limi ‖EQ(x∗uiy)‖2 = 0;

(ii) there exists a non-zero element h ∈ (f〈M, eQ〉f)+ ∩P ′ with τ̂(h) <
+∞;2

1If M is separable, it suffices to consider sequences.
2We recall that τ̂ denotes the canonical normal, faithful, semi-finite trace on 〈M, eQ〉.
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(iii) there exists a non-zero P -Q-subbimodule H of fL2(M) such that
dim(HQ) < +∞;

(iv) there exist an integer n ≥ 1, a projection q ∈Mn(C)⊗Q, a non-zero
partial isometry v ∈M1,n(C)⊗fM and a normal unital homomor-
phism θ : P → q(Mn(C) ⊗ Q)q such that v∗v ≤ q and xv = vθ(x)
for every x ∈ P .3

Proof. (i) ⇒ (ii). If (i) holds, there exist ε > 0 and a finite subset
F ⊂M such that

∀u ∈ U(P ), max
x,y∈F

‖EQ(x∗uy)‖2 ≥ ε.

We may assume that x = fx for every x ∈ F . We set c =
∑

x∈F xeQx
∗ and

we denote by C the w.o. closed convex hull of {ucu∗ : u ∈ U(P )} in 〈M, eQ〉.
Let h ∈ (f〈M, eQ〉f)+∩P ′ be its element of minimal ‖·‖2,τ̂ -norm (see Lemma

14.3.3). We have τ̂(h) ≤ τ̂(c) ==
∑

x∈F τ(xx∗) < +∞.
It remains to show that h 6= 0. For m ∈M , we have

τ̂(eQm
∗eQmeQ) = τ(EQ(m)∗EQ(m)) = ‖EQ(m)‖22,

and so, for u ∈ U(P ),∑
y∈F

τ̂(eQy
∗ucu∗yeQ) =

∑
x,y∈F

‖EQ(x∗u∗y)‖22 ≥ ε
2.

Since τ̂(eQ · eQ) is a normal state on 〈M, eQ〉, we get∑
y∈F

τ̂(eQy
∗hyeQ) ≥ ε2,

whence h 6= 0.
(ii) ⇒ (iii) is obvious: take a non-zero spectral projection q of h such

that τ̂(q) < +∞ and consider the bimodule qL2(M).
(iii)⇒ (iv). Cutting down the bimodule H ⊂ fL2(M) by an appropriate

central projection of Q, we may assume that H is finitely generated as a
right Q-module (see Corollary 9.3.3). By Proposition 8.5.3, there is an
integer n ≥ 1 and a Q-linear isometry W : H → L2(Q)⊕n. We set q =
WW ∗ ∈Mn(Q) = Mn(C)⊗Q. Since H is a left P -module, we get a unital
homomorphism θ : P → q(Mn(Q))q defined by θ(x)W = Wx for x ∈ P . We

define εk ∈ L2(Q)⊕n as εk = (0, . . . , 1̂Q, . . . , 0) (1̂Q in the k-th coordinate)
and set ξk = W ∗εk, for k = 1, . . . , n. Let ξ ∈ H⊕n ⊂ (fL2(M))⊕n be the
row vector (ξ1, . . . , ξn). For x ∈ P , we write θ(x) as the matrix [θi,j(x)]i,j ∈
q(Mn(Q))q. We have

xξj = xW ∗εj = W ∗θ(x)εj =
∑
i

W ∗θi,j(x)εi

=
∑
i

W ∗(εiθi,j(x)) =
∑
i

(W ∗εi)θi,j(x) =
∑
i

ξiθi,j(x),

3M1,n(C) denotes the space of 1× n matrices with complex entries.
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since W ∗ is Q-linear. Hence, we get xξ = ξθ(x) ∈ L2(M)⊕n.
The Hilbert space L2(Mn(M)) is canonically isomorphic to the Hilbert

space Mn(L2(M)) with scalar product〈
[ηi,j ], [η

′
i,j ]
〉

= n−2
∑
i,j

〈
ηi,j , η

′
i,j

〉
L2(M)

and its obvious structure of Mn(M)-Mn(M)-bimodule. For x ∈ P we denote
by x̃ the element of Mn(M) whose entries are equal to zero, except the first

diagonal one which is x. Define ξ̃ ∈ L2(Mn(M)) as

ξ̃ =

[
ξ

0n−1,n

]
,

where 0n−1,n is the 0 matrix with n − 1 rows and n columns. We have

x̃ξ̃ = ξ̃θ(x) for every x ∈ P . We view ξ̃ as a closed operator affiliated with

Mn(M). Let ξ̃ = V
∣∣ξ̃∣∣ be its polar decomposition. It is straightforward

to check that
∣∣ξ̃∣∣ commutes with θ(x) and that V =

[
v

0n−1,n

]
with v =

(v1, . . . , vn) ∈ (M1,n(C)⊗ fM)q. Moreover, we have

x̃V = V θ(x),

and therefore xv = vθ(x) for every x ∈ P .
(iv) ⇒ (i). Assume that (iv) holds and let (ui) be a net in U(P ). We

have

(Idn ⊗ EQ)(v∗uiv) = (Idn ⊗ EQ)
(
v∗v)θ(ui)

)
=
(
(Idn ⊗ EQ)(v∗v)

)
θ(ui),

and so

‖(Idn ⊗ EQ)(v∗uiv)‖2 = ‖(Idn ⊗ EQ)(v∗v)‖2 6= 0.

This shows (i). �

With additional technical tools, we may assume that n = 1 in the state-
ment (iv), provided P is replaced by one of its corners.

Theorem 17.1.2. The four conditions of Theorem 17.1.1 are equivalent
to

(v) there exist non-zero projections p ∈ P and q ∈ Q, a unital normal
homomorphism θ : pPp → qQq and a non-zero partial isometry
v ∈ pMq such that xv = vθ(x) for every x ∈ pPp. Moreover we
have vv∗ ∈ (pPp)′ ∩ pMp and v∗v ∈ θ(pPp)′ ∩ qMq.

For the proof of (iii) in Theorem 17.1.1 implies (v), we will need the
following lemma.

Lemma 17.1.3. Let P , Q be two tracial von Neumann algebras and H a
P -Q-bimodule such that dim(HQ) < +∞. There exist a non-zero projection
p ∈ P , a non-zero pPp-Q-subbimodule K of H and a projection q0 ∈ Q such
that K is isomorphic to q0L

2(Q) as a right Q-module.
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Proof. As seen in the proof of (iii) ⇒ (iv) in Theorem 17.1.1 we may
assume that H is isomorphic, as a right Q-module, to some e

(
L2(Q)⊕n

)
with

e ∈Mn(Q). Moreover, by Proposition 8.5.3 we may even assume that e is a
diagonal projection, say e = Diag(e1, . . . , en) with ei ∈ P(Q), i = 1, . . . , n.
We write e as

∑n
i=1 ei, where ei is the diagonal projection in Mn(Q) whose

only non-zero entry is ei at the i-th row and column. Let θ : P → eMn(Q)e
be the unital homomorphism deduced from the left P -module structure of
H.

First case: P has no abelian projection. We choose an integer k such
that 2k ≥ n. By Proposition 5.5.8, there exist 2k equivalent orthogonal

projections p1, . . . , p2k in P such that
∑2k

i=1 pi = 1P . Let EZ : Q⊗Mn(C)→
Z(Q)⊗ 1 be the normal faithful center-valued trace. Then we have

2kEZ(θ(p1)) ≤
n∑
j=1

EZ(1Q ⊗ ej,j) = nEZ(1Q ⊗ e1,1),

where (ei,j) is the canonical matrix units of Mn(C). It follows from Propo-
sition 9.1.8 that θ(p1) - 1Q ⊗ e1,1 in Mn(Q). Therefore, θ(p1)(L2(Q)⊕n) is
a p1Pp1-Q-subbimodule of H which is isomorphic, as a right Q-module, to
some submodule of L2(Q).

Second case: P has an abelian projection p, that is, p 6= 0 and pPp is
abelian. We choose i such that θ(p)ei 6= 0. Let l be the left support of
θ(p) ei. We have l ≤ θ(p) and l - ei in eMn(Q)e. Let A be any maximal
abelian von Neumann subalgebra of θ(p)Mn(Q)θ(p) which contains θ(pPp).
By Lemma 17.2.1 below, we see that l is equivalent to a projection l′ ∈ A.
Obviously, we have l′ ∈ θ(pPp)′∩eMn(Q)e. Observe that l′ - ei in eMn(Q)e
and so the pPp-Q-bimodule l′(L2(Q)⊕n) is isomorphic, as a right Q-module,
to q0L

2(Q) where ei ≥ q0 ∈ P(Q). �

Proof of Theorem 17.1.2. We show that (iii) in Theorem 17.1.1 im-
plies (v). We consider projections p ∈ P , q0 ∈ Q and K as in Lemma 17.1.3
and we introduce the unital homomorphism θ : pPp → q0Qq0 induced by
the structure of pPp-module of K.

Then, to conclude, it suffices to follow the proof of (iii)⇒ (iv) in Theorem
17.1.1, with n = 1 and pPp instead of P . The last statement of (v) is obvious.

Let us show now that (v) implies the condition (ii) of Theorem 17.1.1.
Let v and θ be as in (v). Then pPp commutes with veQv

∗. Let (fi) be a
maximal family of mutually orthogonal projections in P such that fi - p in
P for every i. Then

∑
i fi is the central support of p in P (see Exercise 2.5).

For each i, let vi be a partial isometry in P such that v∗i vi ≤ p and
viv
∗
i = fi. We set h =

∑
i vi(veQv

∗)v∗i . Then h ∈ 〈M, eQ〉 commutes with
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P . Indeed, let y ∈ P . We have(∑
i

vi(veQv
∗)v∗i

)
y =

(∑
i

vi(veQv
∗)v∗i

)
y(
∑
j

vjv
∗
j )

=
∑
i,j

vi(veQv
∗)(v∗i yvj)v

∗
j

=
∑
i,j

vi(v
∗
i yvj)(veQv

∗)v∗j =
∑
j

yvj(veQv
∗)v∗j .

Moreover, we have

τ̂(h) =
∑
i

τ̂(vi(veQv
∗)v∗i ) =

∑
i

τ(vivv
∗v∗i ) ≤ τ(z(p)) < +∞.

�

Definition 17.1.4. When one of the equivalent conditions of Theorem
17.1.1 is satisfied, we say that a corner of P can be intertwined into Q inside
M , or simply that P embeds into Q inside M , and we write P ≺M Q.

17.2. Unitary conjugacy of Cartan subalgebras

We will see now that for Cartan subalgebras, the above embedding pro-
perty is equivalent to unitary conjugacy. We need the two following lemmas.

Lemma 17.2.1. Let A be a maximal abelian von Neumann subalgebra of
a tracial von Neumann algebra (M, τ). Every projection in M is equivalent
to a projection in A.

Proof. The key point is to show that for any non-zero projection p ∈M
there is a non-zero projection q ∈ A with q - p. Once this is established,
let us show how to conclude. Let e a projection in M be given. We take a
maximal projection f ∈ A such that f - e (see Exercise 9.4). Let u ∈ U(M)
such that ufu∗ ≤ e. If p = e − ufu∗ 6= 0, we apply the key point to
u∗pu ∈ (1 − f)M(1 − f): there exists a non-zero projection q ∈ A(1 − f)
such that q - u∗pu. Then we have f + q - f + u∗pu = u∗eu ∼ e, in
contradiction with the maximality of f . Therefore f and e are equivalent.

Let us sketch the proof of the key point. Recall that EZ denotes the
center-valued trace on M . We choose c > 0 such the spectral projection z
of EZ(p) relative to the interval [c, 1] is non-zero. Truncating everything by
z we may assume that EZ(p) ≥ c1M . In particular, the central support z(p)
is equal to 1M .

Suppose first that A contains a non-zero projection q which is abelian
in M . Then, we immediately get q - p (see Proposition 5.5.2).

Whenever A does not contain any non-zero abelian projection, we use
several times the Exercise 17.1 to construct non-zero projections 1 = q0 ≥
q1 ≥ · · · ≥ qn in A such that EZ(qn) ≤ 2−n1M ≤ c1M . Then, by Proposition
9.1.8 we get qn - p. �
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Lemma 17.2.2. Let A be a Cartan subalgebra of a II1 factor M and let
p, q be two non-zero projections of A such that τ(p) = τ(q). There exists
u ∈ NM (A) such that upu∗ = q.

Proof. We first show that there exist a non-zero projection e ∈ A
and u ∈ NM (A) such that e ≤ p and ueu∗ ≤ q. Indeed, the projection∨
u∈NM (A) upu

∗ commutes with NM (A) and therefore with M , and so is the

unit of M . In particular, there exists u ∈ NM (A) such that upu∗q 6= 0. We
set e = pu∗qu.

Now, we consider a maximal family {(ei, ui)} of pairs (ei, ui) ∈ P(A)×
NM (A) such that each of the two families of projections (ei) and (uieiu

∗
i ) is

made of mutually orthogonal projections, with
∑
ei ≤ p and

∑
uieiu

∗
i ≤ q.

Then we have
∑
ei = p. Otherwise, we consider the projections p′ = p−

∑
ei

and q′ = q −
∑
uieiu

∗
i . They have the same trace, and applying the first

part of the proof to them, we contradict the maximality of the family.
Next, we set v =

∑
uiei. This partial isometry satisfies v∗v = p, vv∗ = q

and vAv∗ = Aq. The same argument applied to 1−p and 1−q gives a partial
isometry w such that w∗w = 1−p, ww∗ = 1− q and wAw∗ = A(1− q). The
operator u = v + w is in NM (A) and we have upu∗ = q. �

Theorem 17.2.3. Let A and B be two Cartan subalgebras of a II1 factor
M such that A ≺M B. Then there exists a unitary element u ∈M such that
u∗Au = B.

Proof. By Theorem 17.1.2, there exist non-zero projections p ∈ A, q ∈
B, a non-zero partial isometry v ∈ pMq and a normal unital homomorphism
θ : Ap→ Bq such that av = vθ(a) for every a ∈ Ap. Moreover we have

vv∗ ∈ (Ap)′ ∩ pMp = Ap and v∗v ∈ θ(Ap)′ ∩ qMq.

The crucial step is to construct a partial isometry w ∈ pMq such that

∀a ∈ Ap, aw = wθ(a), ww∗ ∈ Ap, w∗w ∈ Bq. (17.1)

Indeed, assume for the moment that such a w exists. By cutting down w to
the left by an appropriate projection of A we may assume that τ(ww∗) = 1/n
for some integer n. We set e1 = ww∗ and f1 = w∗w. We take projections
e2, . . . , en in A and f2, . . . , fn in B, all having the same trace 1/n and such
that

∑n
i=1 ei = 1 =

∑n
i=1 fi. By Lemma 17.2.2, for i ∈ {1, . . . , n}, there

exist ui ∈ NM (A) with uie1u
∗
i = ei and vi ∈ NM (B) with vif1v

∗
i = fi.

We set u =
∑n

i=1 uiwv
∗
i . Then u is a unitary element of M . Moreover,

we have, for a ∈ A,

u∗au =
∑
i,j

viw
∗u∗i aujwv

∗
j =

∑
i

viw
∗(u∗i auip)wv

∗
i

=
∑
i

viw
∗wθ(u∗i auip)v

∗
i ∈ B,

whence u∗Au ⊂ B, and so u∗Au = B since u∗Au is maximal abelian.
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Let us show how to construct w satisfying (17.1). We set N = θ(Ap)′ ∩
qMq and f = v∗v. By Lemma 17.2.1, f is equivalent in N to a projection
in Bq. So, let v′ ∈ N be a partial isometry such that v′(v′)∗ = v∗v = f and
(v′)∗v′ ∈ Bq. We set w = vv′. A straightforward computation shows that
the conditions in (17.1) are fulfilled. �

17.3. II1 factors with two non-conjugate Cartan subalgebras

A Cartan subalgebra A of a II1 factor M is called a group measure space
Cartan subalgebra if there exists a free ergodic p.m.p. action Gy (X,µ) such
that A ⊂M is isomorphic to L∞(X) ⊂ L∞(X)oG, that is, there exists an
isomorphism α from M onto L∞(X)oG such that α(A) = L∞(X). In this
section, we provide a family of examples of II1 factors with at least two non
unitarily conjugate group measure space Cartan subalgebras.

Let H be a countable abelian group and H ↪→ K a dense and injective
homomorphism from H into a compact abelian group K. We are given an
action α : G y H of a countable group G by automorphisms and a free
ergodic p.m.p. action G y (X,µ). We assume that α extends to an action
by homeomorphisms on K that we still denote by α. Then the semi-direct
product H oG acts on K ×X by

h.(k, x) = (h+ k, x), g.(k, x) = (αg(k), g.x),

for all h ∈ H, g ∈ G, k ∈ K,x ∈ X. This action is free, ergodic and p.m.p.

Dualizing the embedding H ↪→ K, we get the embedding K̂ ↪→ Ĥ of the

dual groups and an action of G by automorphisms of K̂ and Ĥ. Then the

semi-direct product K̂ oG acts freely and ergodically on Ĥ ×X by

κ.(χ, x) = (κ+ χ, x), g.(χ, x) = (χ ◦ αg−1 , g.x),

for all κ ∈ K̂, g ∈ G,χ ∈ Ĥ, x ∈ X.
The Fourier transforms on the first and third component of

L2(K)⊗ L2(X)⊗ `2(H)⊗ `2(G)

induce (after permutation between `2(K̂) and L2(Ĥ)) a unitary operator

from this Hilbert space onto L2(Ĥ)⊗ L2(X)⊗ `2(K̂)⊗ `2(G) which imple-
ments a canonical isomorphism

M = L∞(K ×X) o (H oG) ' L∞(Ĥ ×X) o (K̂ oG).

The Cartan subalgebras L∞(K × X) and L∞(Ĥ × X) are not unita-
rily conjugate. Indeed, let (hn) be a sequence of elements in H going
to infinity. Denote, as usual, by uh and u(h,g) the canonical unitaries in
L(H) and L∞(K × X) o (H o G). We have uhnu(h,g) = uhn+h,g and so
EL∞(K×X)(uhnu(h,g)) = 0 whenever n is sufficiently large. It follows that

L∞(Ĥ) = L(H) 6≺M L∞(K ×X)

(see Exercise 17.3).

A fortiori, L∞(Ĥ ×X) cannot be unitarily conjugate to L∞(K ×X).
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Example 17.3.1. As an example of this situation, we can take G =
SL(n,Z), n ≥ 2, acting on H = Zn and embed Zn into K = Znp , where Zp
is the ring of p-adic integers for some prime number p. In this example, one

can show that the two Cartan subalgebras L∞(K×X) and L∞(Ĥ ×X) are
not even conjugate by an automorphism of the ambient crossed product,
and therefore the corresponding equivalence relations are not isomorphic.

Indeed, we first observe that K̂ o SL(n,Z) = lim−→
(
Ẑ/pkZ

)n o SL(n,Z).
Then

• for n = 2, K̂ o SL(2,Z) has the Haagerup property since it is the
direct limit of groups with the Haagerup property (see [CCJ+01,
Proposition 6.1.1]), whereas Z2oSL(2,Z) does not have the Haagerup
property, because Z2 is an infinite subgroup rigidly embedded into
Z2 o SL(2,Z);

• for n > 3, Zn o SL(n,Z) has Property (T), whereas K̂ o SL(2,Z)
does not have this property, as the direct limit of a strictly increa-
sing sequence of groups (see [dlHV89, page 10]).

But, if two groups have free ergodic p.m.p. orbit equivalent actions and if
one of them has the property (T), the second one also has the property (T)
([Pop86a], [AD87], [Fur99a], independently). Similarly, the Haagerup
property is stable under such orbit equivalence [Pop06a, Remark 3.5.6o]. It

follows that the group actions (HoG) y (K×X) and (K̂oG) y (Ĥ×X)
are not orbit equivalent and therefore, by Corollary 12.2.7, the corresponding
Cartan algebras are not conjugate by an automorphism.

Remark 17.3.2. In some other examples, the two Cartan subalgebras

L∞(K ×X) and L∞(Ĥ ×X) may be conjugate by an automorphism. This
happens, for instance, when the action Gy H is trivial. Then L∞(K×X)o
(H oG) is isomorphic to the tensor product of L∞(X) oG and L∞(K) o
H ' L∞(Ĥ) o K̂. This latter algebra is the hyperfinite II1 factor since
the abelian group H acts freely and ergodically on K. It follows that the

Cartan subalgebras L∞(K) and L∞(Ĥ) are conjugate by an automorphism

(see Theorem 12.5.2) and therefore L∞(K × X) and L∞(Ĥ × X) are also
conjugate by an automorphism.

17.4. Cartan subalgebras of the hyperfinite factor R

Proposition 17.4.1. The hyperfinite factor R has uncountably many
Cartan subalgebras that are not unitarily conjugate.

Proof. We write R as the infinite tensor product M2(C)⊗∞ of 2 × 2-
matrix algebras. We denote by D the diagonal subalgebra of M2(C). Let
u(θ) ∈ M2(C) be the rotation of angle θ and set Dθ = u(θ)Du(θ)∗. Then

D = D⊗∞ and Dθ = D⊗∞θ are Cartan subalgebras of R (see Exercise 12.1)
and we claim that they are not unitarily conjugate whenever θ /∈ Z(π/2).
To this end, we will construct a sequence (vn) of unitaries in Dθ such that
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for every x, y ∈ R, limn ‖ED(xvny)‖2 = 0 and then use Theorem 17.1.1.
Since NM (D) generates R it suffices to show that limn ‖ED(xvn)‖2 = 0 for
every x ∈ M and even, by approximation it is enough to take x = xk⊗1 ∈
M2(C)⊗k⊗1.

We consider the unitary v = u(θ)Diag(1, i)u(θ)∗ ∈ Dθ where Diag(1, i)
is the diagonal 2× 2 matrix with entries 1 and i. A straightforward compu-
tation shows that

ED(v) = Diag
(

cos2(θ) + i sin2(θ), sin2(θ) + i cos2(θ)
)

and so ‖ED(v)‖22 = cos4(θ) + sin4(θ).

We set vn = v⊗n⊗1 ∈ Dθ and Rk = M2(C)⊗k. For n > k we have

ED(xvn) = ERk(xkv
⊗k)

n−k︷ ︸︸ ︷
ED(v)⊗ · · · ⊗ ED(v)⊗1

and therefore

‖ED(xvn)‖2 =
∥∥∥ERk(xkv

⊗k)
∥∥∥

2

(
cos4(θ) + sin4(θ)

)(n−k)/2
.

It follows that limn ‖ED(xvn)‖2 = 0 whenever θ /∈ Z(π/2). �

Exercises

Exercise 17.1. Let (M, τ) be a tracial von Neumann algebra with center
Z 6= M .

(i) Let p be a projection in M and let z be the spectral projection of
EZ(p) corresponding to the interval ]0, 1/2]. Observe that EZ(pz) ≤
1/2.

(ii) Let A be a von Neumann subalgebra of M with contains strictly
its center Z. Show that there exists a non-zero projection q ∈ A
such that EZ(q) ≤ 1/2 (use Exercise 9.3).

(iii) Let A be a von Neumann subalgebra of M and let q0 ∈ A be a
projection with q0Z $ q0Aq0. Show that there exists a non-zero
projection q ∈ A such that q ≤ q0 and EZ(q) ≤ EZ(q0)/2.

Exercise 17.2. Let (M, τ) be a tracial von Neumann algebra and P a
von Neumann subalgebra. Show that P ≺M C1M if and only if P contains
a minimal projection.

Exercise 17.3. Let Gy (Q, τ) be a trace preserving action of a coun-
table group G. We set M = Q o G. Let P be a von Neumann subalgebra
of M . Show that P 6≺M Q if and only if there exists a net (vi) of unitary
elements in P such that limi

∥∥EQ(viu
∗
g)
∥∥

2
= 0 for every g ∈ G, where the

ug’s are the canonical unitaries in M (that is, for every g ∈ G, the net
(
(vi)g

)
of Fourier coefficients of index g of the vi’s goes to 0 in ‖·‖2-norm).
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Notes
The intertwining-by-bimodules technique is a major innovation intro-

duced in [Pop06a, Pop06d] in the early 2000’s. This new technology,
combined with rigidity results, provides an exceptionally powerful tool al-
lowing to solve a wealth of longstanding problems. The results of Section
17.1 come from [Pop06a, Pop06d]. For our presentation, we have also
benefited from Vaes’ survey [Vae07].

The first example of II1 factor with two Cartan subalgebras which are not
conjugate by an automorphism was given by Connes and Jones [CJ82]. In
[Pop86a, Corollary 4.7.2], [Pop90], one finds an example of McDuff factor
with uncountably many non conjugate Cartan subalgebras. More recently,
many new classes of examples of II1 factors with more than one Cartan
subalgebra were found [Pop08, OP10b, PV10b, KS13, KV17]. There
even exist II1 factors with unclassifiably many Cartan subalgebras in the
sense that the equivalence relation of being conjugate by an automorphism
is not Borel [SV12]. In Section 17.3, we have followed the paper [PV10b]
of Popa and Vaes.

As for Cartan subalgebras of the hyperfinite factor R, Proposition 17.4.1
had been proved by another method in [Pac85].

Some examples of II1 factors without Cartan subalgebra are briefly pre-
sented in the comments at the end of Chapter 19. The hard problem con-
cerning the uniqueness of Cartan subalgebras is also out of the scope of
this monograph. It has been solved positively in an amazing variety of
situations. Let us only mention the following striking result of Popa and
Vaes [PV14a, PV14b], after a previous breakthrough of Ozawa and Popa
[OP10a, OP10b]: any free ergodic p.m.p. action of a non-elementary hy-
perbolic group (e.g. a non-abelian free group) or of a lattice in a rank
one simple Lie group, gives rise to a crossed product having a unique Car-
tan subalgebra, up to unitary conjugacy, thus extending Example 18.1.5.
The countable groups with this uniqueness property for any free ergodic
p.m.p. action are called Cartan-rigid. This class also contains all arbitrary
(non trivial) free products [Ioa15, Vae14] and central quotients of braid
groups [CIK15].

The class of Cartan-rigid groups has very powerful properties. For any
free ergodic p.m.p. action of a Cartan-rigid group G on (X,µ) and any
other free ergodic p.m.p. action H y (Y, ν) of any other group, whenever
L∞(X) oG and L∞(Y ) oH are isomorphic it follows that the actions are
orbit equivalent. In fact, this property already holds if G is group mea-
sure space Cartan-rigid in the sense that for every free ergodic p.m.p. action
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G y (X,µ), the crossed product L∞(X) o G has a unique group mea-
sure space Cartan subalgebra, up to unitary conjugacy4. This class in-
cludes, in addition to Cartan-rigid groups, certain amalgamated free pro-
ducts [PV10b, HPV13], certain HNN-extensions [FV12] and many other
groups [Ioa12b, Ioa12a], [CP13], [Vae13].

A notion stronger than orbit equivalence is conjugacy. Two p.m.p. ac-
tions G y (X,µ) and H y (Y, ν) are said to be conjugate if there exist
an isomorphism θ : (X,µ) → (Y, ν) and a group isomorphism δ : G → H
such that θ(gx) = δ(g)θ(x) for all g ∈ G and almost every x ∈ X. In some
case, it is possible to retrieve the conjugacy of the actions from their orbit
equivalence. A free ergodic p.m.p. action G y (X,µ) is said to be orbit
equivalence superrigid if it is conjugate to any other free ergodic p.m.p. ac-
tion H y (Y, ν) as soon as the two actions are orbit equivalent. It is said
to be W ∗-superrigid if L∞(X)oG remembers the group action in the sense
that for any isomorphism L∞(X) o G ' L∞(Y ) o H, the corresponding
actions are conjugate. An action is W ∗-superrigid if and only if it is orbit
equivalence superrigid and L∞(X) is the unique group measure space Car-
tan subalgebra up to conjugacy. Many examples of orbit equivalence super-
rigidity have been found:[Fur99b], [MS06], [Pop06e, Pop07a, Pop08],
[Kid06, Kid10, Kid11, Kid13], [PV11], [Ioa11a], [PS12]. Various re-
markable W ∗-superrigidity theorems have been proved in [Ioa11b], [Pet10],
[PV10b], [HPV13], [CIK15], [CK15], where the uniqueness of group mea-
sure space Cartan subalgebras could be combined with orbit equivalence
superrigidity. More information on these developments, up to 2012, will be
found in the surveys [Pop07b], [Fur11], [Vae10], [Ioa13].

4Indeed, conjugacy would already be enough to get the orbit equivalence.
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CHAPTER 18

A II1 factor with trivial fundamental group

In this chapter, we will show that factors of the form L∞(T2)oFn, n ≥ 2,
where Fn appears as a finite index subgroup of SL(2,Z) with its obvious ac-
tion on T2, have a fundamental group reduced to {1}. To that purpose, we
develop in Section 18.1 a deformation/rigidity argument which implies that
L∞(T2) is the only rigidly embedded Cartan subalgebra of L∞(T2) o Fn
up to unitary conjugacy. The deformation comes from the fact that Fn
has the Haagerup property. From the uniqueness of this type of Cartan
subalgebra we deduce that the fundamental group of the crossed product
coincides with the fundamental group of the corresponding equivalence re-
lation RFnyT2 . This latter notion of fundamental group is introduced in
Section 18.2 together with the notion of cost. We show in Section 18.3 that
the equivalence relation RFnyT2 has a trivial fundamental group, thanks to
the computation of its cost in Theorem 18.3.3.

18.1. A deformation/rigidity result

The following theorem is one of the many examples where a fight between
a deformation property and rigidity concludes in an embedding.

Theorem 18.1.1. Let (M, τ) be a tracial von Neumann algebra and P ,
Q two von Neumann subalgebras. We assume that P is relatively rigid in
M and that M has the property (H) relative to Q. Then P ≺M Q.

Proof. We will establish that condition (i) of Theorem 17.1.1 holds.
Since P ⊂ M is rigid, given ε = 1/4, there exist a finite subset F of
M and δ > 0 such that whenever φ is a subtracial and subunital com-
pletely positive map from M to M satisfying maxx∈F ‖φ(x)− x‖2 ≤ δ,
then ‖φ(y)− y‖2 ≤ 1/4 for every y in the unit ball of P . On the other
hand, since M has Property (H) relative to Q, there exists a net (φi) of
Q-bimodular, subtracial and subunital completely positive maps such that
Tφi ∈ I0(〈M, eQ〉) and limi ‖φi(x)− x‖2 = 0 for every x ∈ M .1 So, there
exists a Q-bimodular, subtracial and subunital completely positive map φ
such that Tφ ∈ I0(〈M, eQ〉) and, for y in the unit ball of P ,

‖φ(y)− y‖2 ≤ 1/4.

1Recall that I0(〈M, eQ〉) is the norm closure of the two-sided ideal of 〈M, eQ〉
generated by eQ and also of the linear span of the elements of the form LξL

∗
η with

ξ, η ∈
(
L2(M)Q

)0
(Proposition 9.4.3).

293
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Then for every u ∈ U(P ) we have

‖φ(u)‖2 ≥ 3/4.

The conclusion follows from the next lemma. �

Lemma 18.1.2. Let (ui) be a net of unitary elements in M such that
limi ‖EQ(x∗uiy)‖2 = 0 for every x, y ∈ M . Let φ : M → M be a subtracial
and subunital completely positive map such that Tφ ∈ I0(〈M, eQ〉). Then,
limi ‖φ(ui)‖2 = 0.

Proof. It suffices to show that we have limi

∥∥LξL∗ηui∥∥2
= 0 for eve-

ry ξ, η ∈
(
L2(M)Q

)0
, and indeed, that limi

∥∥L∗ηui∥∥2
= 0 for every η ∈(

L2(M)Q
)0

. Recall that L∗ηui = EQ(η∗ui) (see (9.5) in Section 9.4.1).
Given ε > 0, take x ∈M with ‖η − x‖2 ≤ ε/2. Then we have

‖EQ(η∗ui)‖2 ≤ ‖EQ((η∗ − x∗)ui)‖2 + ‖EQ(x∗ui)‖2
≤ ‖η − x‖2 + ‖EQ(x∗ui)‖2
≤ ε/2 + ‖EQ(x∗ui)‖2.

So, we conclude that
∥∥L∗ηui∥∥2

≤ ε for i large enough. �

Theorem 18.1.3. Let M be a II1 factor, A, B two Cartan subalgebras of
M . We assume that B is relatively rigid in M and that M has the property
(H) relative to A. Then there exists u ∈ U(M) such that uBu∗ = A. So
A is also relatively rigid in M and there is only one relatively rigid Cartan
subalgebra of M , up to unitary conjugacy.

Proof. Immediate consequence of Theorems 18.1.1 and 17.2.3. �

Corollary 18.1.4. Let Gi y (Xi, µi), i = 1, 2, be two free ergodic
p.m.p. actions of countable groups. We assume that L∞(X1) is relatively
rigid in L∞(X1)oG1 and that G2 has the Haagerup property. Then the von
Neumann algebras L∞(X1) o G1 and L∞(X2) o G2 are isomorphic if and
only if the equivalence relations RG1yX1 and RG2yX2 are isomorphic.

Proof. Use the previous theorem together with Proposition 16.3.5 and
Corollary 12.2.7. �

Example 18.1.5. Let G be any finite index subgroup of SL(2,Z) and
consider its natural action on Z2. The dual action of G on T2 is free and
ergodic. We identify L(Z2 o G) to the group measure space von Neumann
algebra M = L∞(T2) o G, through the usual identification of L(Z2) with
A = L∞(T2) by Fourier transform (see Example 14.2.8). Then, A is rela-
tively rigid in M since Z2 is relatively rigid in Z2 oG (see Section 14.1 and
Proposition 14.2.7) and M has the relative property (H) relative to A by
Proposition 16.3.5, since G has the Haagerup property. So, by the previous
theorem, A is the unique rigidly embedded Cartan subalgebra of L∞(T2)oG
up to unitary conjugacy. For instance we may take G to be any non-abelian
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free subgroup of finite index in SL(2,Z) (e.g. consider the subgroup gene-

rated by the matrices

(
1 2
0 1

)
and

(
1 0
2 1

)
, which is free of index 12 in

SL(2,Z) and which contains every free group Fn, n ≥ 2, as a subgroup of
finite index).

Let Fn be embedded as a finite index subgroup of SL(2,Z). Our goal is to
show that the fundamental group of L∞(T2)oFn is reduced to {1}. To that
purpose, we will compare it with the fundamental group of the equivalence
relation RFnyT2 . We need first to introduce two important invariants for
equivalence relations.

18.2. Fundamental group and cost of an equivalence relation

18.2.1. Fundamental group of an ergodic equivalence relation.
It is defined in analogy with that of a II1 factor. Let R be an ergodic
countable p.m.p. equivalence relation on the Lebesgue probability measure
space (X,µ). We set In = {1, 2, . . . , n} and we define an equivalence relation
Rn on Xn = X × In by saying that two elements (x, i) and (y, j) of Xn are
equivalent if and only if x ∼R y. We equip Xn with the measure µ × λn,
where λn is the counting measure on In. Then Rn is an ergodic measure
preserving equivalence relation on Xn with µn(Xn) = n. We note that
L(Rn) = Mn(L(R)).

Let t be a positive real number and choose an integer n with t ≤ n.
Let Y ⊂ Xn with µn(Y ) = t. The induced p.m.p. equivalence relation
RY = Rn∩(Y ×Y ) on Y equipped with the normalized measure µn|Y /µn(Y )

only depends on t, up to isomorphism (see Exercise 18.1). It is therefore
denoted without ambiguity by Rt. We say that Rt is an amplification of R.

Observe that Y = ∪i=1Yi×{i}, where Y1, . . . , Yn are Borel subsets of X
with

∑n
i=1 µ(Yi) = t. SoRt may be realized on the disjoint union Y1t· · ·tYn,

where two elements x ∈ Yi and y ∈ Yj are Rt-equivalent if and only if
x ∼R y.

As in the case of factors (Lemma 4.2.3), one shows that the equivalence
relations (Rs)t and Rst are isomorphic.

Definition 18.2.1. Let R be an ergodic countable p.m.p. equivalence
relation. We denote by F(R) the subgroup of R∗+ formed of the positive real
numbers t such that Rt is isomorphic to R. It is called the fundamental
group of R.

For instance, since there is only one II1 hyperfinite countable p.m.p.
equivalence relation, up to isomorphism, we see that its fundamental group
is the whole R∗+.

Let R be an ergodic countable p.m.p. equivalence relation on (X,µ).
For every t > 0, the factors L(Rt) and L(R)t are isomorphic, and so we see
that F(R) ⊂ F(L(R)). However, an isomorphism between L(R) and L(Rt)



D
ra
ft

296 18. A II1 FACTOR WITH TRIVIAL FUNDAMENTAL GROUP

is not always induced by an isomorphism between R and Rt, and we have
to take Cartan subalgebras into account.

Recall that two Cartan subalgebra inclusions Ai ⊂ Mi, i = 1, 2, where
M1, M2 are II1 factors, are said to be isomorphic if there exists an isomor-
phism α : M1 'M2 such that α(A1) = A2.

Let A be a Cartan subalgebra of a II1 factor M . Let 0 < t ≤ 1 be
given and choose a non-zero projection p in A with τ(p) = t. It follows from
Lemma 17.2.2 that the isomorphism class of the inclusion (Ap ⊂ pMp) only
depends on t. We denote it by (A ⊂ M)t = At ⊂ M t. Whenever t > 1,
one proceeds in the same way, starting with the Cartan subalgebra inclusion
A⊗Dn ⊂M ⊗Mn(C), where Dn is the diagonal subalgebra of Mn(C).

Whenever M = L(R) and A = L∞(X), the Cartan subalgebra inclusion
defined by Rt is (A ⊂M)t. Obviously if t1, t2 are such that Rt1 and Rt2 are
isomorphic, then (A ⊂ M)t1 and (A ⊂ M)t2 are isomorphic. The converse
follows from Corollary 12.2.4. If it happens that every t ∈ F(L(R)) is such
that there exists an isomorphism from L(R) onto L(Rt) sending A onto
At then F(L(R)) = F(R) and in this case the computation of F(L(R)) is
reduced to the computation of F(R).

We will apply this strategy toRFnyT2 and therefore will have to compute
the fundamental group of an equivalence relation induced by a free ergodic
p.m.p. action of a free group. For this, we will use the notion of cost of an
equivalence relation.

18.2.2. Cost of an equivalence relation. Let R be a countable
p.m.p. equivalence relation on (X,µ). A graphing of R is a sequence (ϕn)
in the pseudo group [[R]], which generates R in the sense that R is the
smallest equivalence relation such that x ∈ D(ϕn) implies x ∼ ϕn(x).

Definition 18.2.2. The cost C((ϕn)) of the graphing (ϕn) is defined as∑
n

µ(D(ϕn)).

The cost C(R) of the equivalence relation is defined as the infimum of the
cost of all graphings of R.

Note that C(R), as well as F(R), are invariants of the isomorphism class
of R.

Recall that the rank of a countable group G if the minimal number
rank(G) of elements that are needed to generate G. Assume that G acts on
(X,µ) in a p.m.p. way. The equivalence relation RGyX is generated by any
family ϕi : x ∈ X 7→ gix, where the gi’s range over a set of generators of G.
Thus we have

C(RGyX) ≤ rank(G).

Theorem 18.2.3. Let R be countable p.m.p. equivalence relation on
(X,µ). For t > 0 we have

C(Rt)− 1 =
(
C(R)− 1

)
/t.
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In particular, if in addition R is ergodic and 1 < C(R) < +∞, then F(R) =
{1}.

Proof. For simplicity, we will only prove the inequality C(Rt) − 1 ≤(
C(R) − 1

)
/t for t > 1. This is all that will be needed in the sequel. Let

Y1, . . . , Yn be Borel subsets of X such that
∑n

i=1 µ(Yi) = t − 1. We realize
Rt on the disjoint union Y = X t Y1 t · · · t Yn as explained above. Let η
be the normalized probability measure on Y . We denote by σi ∈ [[Rt]] the
transformation that identifies Yi viewed as a subset of X to Yi in the disjoint
union. Whenever (ϕk) is a graphing of R, then together with (σi)1≤i≤n it
gives a graphing of Rt. It follows that∑

k

η(D(ϕk)) +

n∑
i=1

η(D(σi)) =
C((ϕk))

t
+
t− 1

t
.

Since this holds for every choice of graphing of R, the inequality C(Rt)−1 ≤(
C(R)− 1

)
/t follows. �

18.3. A II1 factor with trivial fundamental group

Theorem 18.3.1. Let R be an ergodic countable p.m.p. equivalence rela-
tion on (X,µ). We assume that A = L∞(X) is the unique rigidly embedded
Cartan subalgebra of M = L(R), up to isomorphism. Let 0 < t ≤ 1 be such
that M 'M t. Then R and Rt are isomorphic. Therefore, we have

F(L(R)) = F(R).

Proof. Let p ∈ M be a projection such that τ(p) = t. By Lemma
17.2.1 we may take p ∈ A. The inclusion At ⊂ M t is rigid (see Proposition
14.2.11). Our uniqueness assumption implies that it is isomorphic to A ⊂M
and therefore the equivalence relations R and Rt are isomorphic. �

Theorem 18.3.2. Let Fn, 2 ≤ n < ∞, be embedded as a finite index
subgroup of SL(2,Z). The fundamental group of L(Z2 oFn) ' L∞(T2)oFn
is equal to {1}.

Proof. We apply the previous theorem to the equivalence relation R
on T2 which is induced by the natural action of Fn. Indeed, L∞(T2) is
the unique rigidly embedded Cartan subalgebra of L∞(T2)oFn, up to uni-
tary conjugacy (see Example 18.1.5). Then we conclude thanks to the next
theorem. �

Theorem 18.3.3. Let Fn y (X,µ), 2 ≤ n <∞, be a free p.m.p. action.
Then the cost of RFnyX is n. Therefore, if moreover the action is ergodic,
the fundamental group of this equivalence relation is {1}.

Proof. We only give the proof for n = 2, to keep the notations simpler.
We write G = F2, R = RF2yX and M = L∞(X) o G. Recall that for
ϕ ∈ [[R]], there exists a partition E = ∪g∈GEg of the domain E of ϕ into
Borel subsets such that ϕ(x) = gx if x ∈ Eg (see Exercise 1.17). Therefore,
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to compute the cost of R, it suffices to consider graphings consisting of maps
of the form x ∈ E 7→ gx form some Borel subset E of X and some g ∈ G.

Let G = {g0, g1, . . .} be an enumeration of the elements of G. Let
(Ek)k≥0 be a sequence of Borel subsets of X and for k, consider ϕk : x ∈
Ek 7→ gkx. Whenever (ϕk) is a graphing of R, we only need to prove that∑

k≥0

µ(Ek) ≥ 2.

We denote by Z1(G,M) the set of maps c : G 7→M such that

∀g, h ∈ G, cgh = cg + ugch, (18.1)

where the ug’s are the canonical unitaries in M . These maps c are called
1-cocycles and are of course determined by the values that they take on the
generators a, b. We note that Z1(G,M) is a right M -module and, since a, b
are free inG, we have a bijective rightM -linear map Ψ : M⊕M → Z1(G,M)
defined by

Ψ(m⊕ n) = c with ca = m and cb = n.

Let pk be the projection in L∞(X) with support gkEk. Then we consider
the M -linear map Θ : Z1(G,M)→

∏∞
k=0 pkM defined by

Θ(c)k = pkcgk for all k ≥ 0.

We claim that Θ is injective. Indeed, let c ∈ Z1(G,M) such that Θ(c) =
0, that is, pkcgk = 0 for all k ≥ 0. Recall from Section 1.4.2 that M is
canonically embedded into L2(X)⊗`2(G) by m 7→ m(1⊗δe). Therefore, via
the identification of L2(X) ⊗ `2(G) with L2(X, `2(G)), we may view every
element m =

∑
g∈G agug of M as the measurable function x 7→ m(x) ∈ `2(G)

where the component m(x)g of index g ∈ G is m(x)g = ag(x). Then the
cocycle equation (18.1) becomes

cgh(x) = cg(x) + λ(g)ch(g−1x) a.e., (18.2)

where λ is the left regular representation of G.
Now, since the action G y (X,µ) is free, the map (x, g) 7→ (x, g−1x)

allows to identify without ambiguity (g, x) 7→ cg(x) ∈ `2(G) with

(x, y) = (x, g−1x) ∈ R 7→ ω(x, y) = cg(x) ∈ `2(G).

Then, (18.2) becomes

ω(x, z) = ω(x, y) + λ(x, y)ω(y, z) for a.e. (x, y, z) ∈ R(2), (18.3)

where we set λ(x, g−1x) = λ(g).
The fact that pkcgk = 0 becomes ω(gky, y) = 0 for a.e. y ∈ Ek. By

(18.3), the set of (x, y) ∈ R such that ω(x, y) = 0 is a subequivalence
relation of R. Since (ϕk) is a graphing, we see that ω(x, y) = 0 for a.e.
(x, y) ∈ R. This means that cg = 0 for all g ∈ G. So c = 0 and Θ is
injective.
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For every n ≥ 0, we consider the right M -linear map

θn : M ⊕M →
n⊕
k=0

pkM

defined by

θn(m1 ⊕m2) =
n⊕
k=0

Θ(Ψ(m1 ⊕m2))k.

Since θn is right M -linear, there exists a unique element Vn ∈Mn+1,2(C)⊗M
such that(

θn(m1 ⊕m2)
)
k

= (Vn)k,1m1 + (Vn)k,2m2 for all m1,m2 ∈M.

We denote by Qn ∈M2(M) the right support of Vn and by Pn ∈Mn+1(M)
its left support. Note that by construction, we have Pn ≤ diag(p0, . . . , pn),
where diag(p0, . . . , pn) is the diagonal matrix with entries p0, . . . , pn on the
diagonal. It follows that2

n∑
k=0

µ(Ek) =
n∑
k=0

τ(pk) ≥ (Trn ⊗ τ)(Pn) = (Tr2 ⊗ τ)(Qn).

We claim that the sequence of projection Qn increases to 1. Once we have
proven this claim the theorem will follow since the above inequality yields

∞∑
k=0

µ(Ek) ≥ 2.

The sequence of projections Qn is increasing since the kernels of the
maps θn are decreasing. So (Qn) converges strongly to some projection
Q ∈ M2(M). Assume that Q < 1. Then either the first column or the
second column of 1−Q is non-zero and defines a non-zero element m1⊕m2

of M⊕M with the property that θn(m1⊕m2) = 0 for all n. This means that
Θ(Ψ(m1⊕m2)) = 0 and contradicts the fact that Ψ and Θ are injective. �

Remark 18.3.4. The equivalence relations RFnyT2 are mutually non-
isomorphic since their costs are distinct. It follows from Corollary 18.1.4
that the II1 factors L∞(T2) o Fn are mutually non-isomorphic.

Exercise

Exercise 18.1. Let R be an ergodic countable p.m.p. equivalence rela-
tion on (X,µ).

(i) Let Y1, Y2 be two Borel subsets of X. Show that µ(Y1) = µ(Y2) if
and only if there exists ϕ ∈ [R] such that ϕ(Y1) = ϕ(Y2).

(ii) Show that the fundamental group F(R) of R may be defined as{
t1t
−1
2 : t1, t2 ∈]0, 1],Rt1 ' Rt2

}
.

2below Trk is the usual trace in Mk(C)
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(iii) Show that F(R) ⊂ F(L(R)).

Notes
The deformation/rigidity technique was discovered by Popa [Pop06a,

Pop06c, Pop06d, Pop06e] between 2001-2004. Since then, more and more
deformations were found [Ioa07], [IPP08], [Pet09], [Sin11], as well as
more and more rigidity behaviours, not necessarily associated with property
(T) but also with spectral gap properties [Pop08], [Pop07d], [OP10a],
[OP10b], [CS13], [CSU13], these lists of references being not exhaustive.
This is now an essential tool to detect the position of a somewhat rigid
subalgebra in presence of an appropriate deformation property.

Due to the results of Section 18.1 obtained in [Pop06a], the com-
putation of the fundamental group of L∞(T2) o Fn was reduced to that
of the corresponding equivalence relation, in principle easier to achieve.
Fundamental groups of countable p.m.p. equivalence relations were intro-
duced by Gefter and Golodets [GG88]. They proved in particular that
F(RGyX) = {1} whenever G y (X,µ) is a free p.m.p. action of a lattice
G in a connected simple Lie group with finite center and real rank ≥ 2.
A major breakthrough is due to Gaboriau who could exhibit many actions
G y (X,µ) whose equivalence relations have a trivial fundamental group,
as a consequence of his remarkable study of the notions of cost and `2-Betti
numbers for equivalence relations (see [Gab00, Gab02] and [Gab10] for a
survey). Theorems 18.2.3 and 18.3.3 come from [Gab02]. In fact, as soon
as G has at least one non-zero `2-Betti number, we have F(RGyX) = {1}
[Gab02]. The proof of Theorem 18.3.3 given in this chapter was communi-
cated to us by Vaes. It is a version in the spirit of operator algebras of a
previous proof by Gaboriau, expressed in a more geometric style. We thank
them for allowing us to present it here.

The example of L∞(T2) o Fn described in this chapter was the first
example of a II1 factor with an explicitely computed fundamental group
distinct of R∗+. More generally, if a group G having the Haagerup property
and at least one non-zero Betti number (like SL(2,Z) or Fn, n ≥ 2) acts on
(X,µ) in a free ergodic p.m.p. way and if L∞(X) is rigidly embedded into
L∞(X)oG, then the fundamental group of this factor is trivial. We remind
the reader that Connes had established that the fundamental group of every
L(G), where G is an ICC group with Property (T), is countable but without
an explicit description [Con80a]. The above example L∞(T2)oFn answers
positively a longstanding question of Kadison [Kad67], asking whether there
exist II1 factors M such that, for some n ≥ 1, Mn(C)⊗M is not isomorphic
to M .

Since then, impressive advances have been achieved during the last
decade. Thus, let F be a subgroup of R∗+ : if F is countable, or uncountable
of any Hausdorff dimension in (0, 1), there exists a group measure space
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factor having F as fundamental group (see [PV10a, PV10c], and [Vae10]
for a survey). Other kinds of examples are given in [IPP08], [Hou09].

The example found by Connes and Jones [CJ82] of a free ergodic p.m.p.
action Gy (X,µ) such that L∞(X)oG contains two non-conjugate group
measure space Cartan subalgebras (see also Section 17.3) shows that the
fundamental group of RGyX can be strictly smaller than the fundamental
group of L∞(X) o G. Other examples were given in [Pop86a, Pop90].
There even exist examples where F(L∞(X)oG) = R∗+ and F(RGyX) = {1}
(see [Pop08]). A wealth of results about fundamental groups is contained
in the paper [PV10c].

Let us recall also that it is now known that L∞(X) o Fn has a unique
Cartan subalgebra, up to unitary conjugacy, for any free ergodic p.m.p. ac-
tion of Fn [PV14a]. In particular, the crossed products

(
L∞([0, 1]Fn

)
o Fn

and
(
L∞([0, 1]Fm

)
o Fm arising from Bernoulli actions are isomorphic if

and only if these actions are orbit equivalent and so, using the cost in-
variant, if and only if n = m. It follows that the factors L(Z o Fn) and
L(Z o Fm) of the wreath products are isomorphic if and only if n = m, since
L(Z oFk) '

(
L∞([0, 1]Fk

)
oFk for every k. However, this is still far from gi-

ving an answer to the major open problem asking whether L(Fn) ' L(Fm),
n,m ≥ 2, implies n = m.

In [IPV13, BV14, Ber15, CI17], the reader will find examples of gen-
eralized wreath products G for which the group factor L(G) remembers the
group G in the sense that any isomorphism between L(G) and an arbitrary
group factor L(H) is implemented by an isomorphism of the groups. An
ICC group G with this property is called a W ∗-superrigid group. Other
examples of W ∗-superrigid groups are given in [CdSS16, CI17].
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CHAPTER 19

Free group factors are prime

In this chapter, we illustrate by another example the deformation/rigidity
technique. The deformation is constructed in Lemma 19.1.1. It is a one pa-
rameter group (αt)t∈R of automorphisms of the free product M = N ∗N of
two copies of the free group factor N = L(Fn). It moves N ∗ C inside M
in such a way that M = N ∗ α1(N ∗ C). The rigidity comes from a spec-
tral gap property of embeddings of non-amenable von Neumann algebras
in N ∗ C ⊂ M (see Lemma 19.1.3). Using intertwining techniques and the
crucial fact that the deformation α carries a symmetry given by a period 2
automorphism of N ∗N (one says that the deformation is s-malleable), we
will prove the following result.

Theorem. Let Fn be the free group on n generators, 2 ≤ n ≤ ∞, and
let P ⊂ L(Fn) be a von Neumann subalgebra such that P ′∩L(Fn) is diffuse.
Then P is amenable.

A II1 factor satisfying the property of this theorem is called solid (see
Exercice 19.2 for an equivalent formulation). One says that a II1 factor
M is prime if, whenever M is isomorphic to a tensor product M1⊗M2,
then either M1 or M2 is finite dimensional. The previous theorem has the
following consequence, since L(Fn) cannot be written as a tensor product of
the form R⊗N where R is the hyperfinite II1 factor.

Corollary. The free group factors L(Fn), n ≥ 2, are prime.

19.1. Preliminaries

In this section we gather the lemmas that we will use in our proof of the
above theorem.

19.1.1. Construction of the malleable deformation.

Lemma 19.1.1. Let N = (L(Fn), τ) be the factor of the free group on n
generators, 2 ≤ n ≤ ∞. There exist a continuous homomorphism α : R →
Aut (N ∗N) and a period two automorphism β ∈ Aut (N ∗N) such that

(a) N0 = N ∗ C and N1 = α1(N ∗ C) are free with respect to τ and
M = N0 ∗N1;

(b) βαtβ = α−t for all t ∈ R;
(c) β(x) = x for all x ∈ N ∗ C.

303
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Proof. Let a1, a2, · · · be the generators of Fn, viewed as unitary ele-
ments in N ∗ C, and let b1, b2, · · · be the same generators but viewed as
unitary elements in C ∗N .

Fix k and let hk be the self-adjoint operator with spectrum in [−π, π], ob-
tained from bk by the Borel functional calculus, such that bk = exp(ihk). For
t ∈ R, we put αt(ak) = exp(ithk)ak and αt(bk) = bk. Obviously, exp(ithk)ak
and bk generate the same von Neumann algebra as ak, bk. Moreover, since
τ(ank) = 0 = τ(bnk) for n 6= 0, we see that

τ(αt(ak)
i1αt(bk)

j1 · · ·αt(ak)ilαt(bk)jl) = 0 = τ(ai1k b
j1
k · · · a

il
k b
jl
k )

for any sequence i1, . . . , il, j1, . . . , jl of elements in Z which are non-zero,
except may be i1 and jl. It follows that αt extends to an automorphim of
the von Neumann algebra generated by ak, bk. Doing like this for every
k and every t ∈ R we get a continuous one-parameter group t 7→ αt of
automorphisms of the whole M = N ∗N .

Note that α1(ak) = bkak and ak are free with respect to τ and that
ak, α1(ak) generate the same von Neumann algebra as ak, bk. It follows that
if we set N0 = N ∗C and N1 = α1(N ∗C), then N0, N1 are free with respect
to τ and generate M

Next, we define β by β(ak) = ak and β(bk) = b∗k. Clearly, β is a period
2 automorphism of M which satisfies Condition (c). Moreover, we have

β ◦ αt ◦ β(ak) = β(exp(ithk)ak) = exp(−ithk)ak = α−t(ak),

and similarly

β ◦ αt ◦ β(bk) = bk = α−t(bk).

Therefore, Condition (b) is also satisfied. �

The pair (α, β) is a s-malleable deformation of N is the following sense:

there exists an embedding of N in a larger II1 factor Ñ , together with

a continuous path t ∈ R 7→ αt of automorphisms of Ñ and a period 2

automorphism β of Ñ such that

(a) τ(xα1(y)) = 0 for all x, y ∈ N with τ(x) = 0 = τ(y);
(b) βαtβ = α−t for all t ∈ R;
(c) β(x) = x for all x ∈ N .

19.1.2. A spectral gap property. We first give some clarification on
the structure of L2(M1 ∗M2) as a M1-M1-bimodule.

Lemma 19.1.2. Let (M, τ) = (M1, τ1) ∗ (M2, τ2) be a free product of two
tracial von Neumann algebras. Then, as a M1-M1-bimodule, the orthogonal
L2(M)	L2(M1) of L2(M1) in L2(M) is isomorphic to an orthogonal direct
sum of copies of the coarse M1-M1-bimodule.

Proof. We keep the notation of Section 5.3.2. In particular, Hi =
L2(Mi). We have observed that L2(M) is isomorphic to L2(M1) ⊗ Hl(1),
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where

Hl(1) = Cξ ⊕
⊕
n≥1

( ⊕
i1 6=i2 6=···6=in

i1 6=1

o
Hi1 ⊗ · · ·⊗

o
Hin

)
.

We identifyH1 withH1⊗ξ, (H1⊗
o
H2)⊕(H1⊗

o
H2 ⊗

o
H1) withH1⊗

o
H2 ⊗H1,

and so on.
Let us set

Kn = H1 ⊗

2n−1︷ ︸︸ ︷
o
H2 ⊗

o
H1 · · · ⊗

o
H1 ⊗

o
H2⊗H1.

Then, we have L2(M) = L2(M1) ⊕
⊕

n≥1Kn. A straightforward verifica-
tion shows that the direct summands of this decomposition are M1-M1-
subbimodules of M1L

2(M)M1 . All of them are direct sums of the coarse M1-
M1-bimodule, except for the first one which is the trivial M1-M1-bimodule.

�

Lemma 19.1.3. Let (M1, τ1), (M2, τ2) be two tracial von Neumann alge-
bras and set (M, τ) = (M1, τ1)∗(M2, τ2). Let P be a separable von Neumann
subalgebra of M1 which has no amenable direct summand. We identify P
with P ∗ C and M1 with M1 ∗ C. Then, for any free ultrafilter ω, we have
P ′ ∩Mω ⊂ Mω

1 . In other terms, for every ε > 0, there exist a finite sub-
set F of U(P ) and δ > 0 such that if x in the unit ball (M)1 satisfies
maxu∈F ‖ux− xu‖2 ≤ δ, then ‖x− EM1(x)‖2 ≤ ε.

Proof. We assume that P does not have any amenable direct summand
but that P ′ ∩Mω *Mω

1 . Take an element1 x = (xn) ∈ P ′ ∩Mω which does

not belong to Mω
1 . Observe that EM

ω

Mω
1

(x) = (EMM1
(xn)) commutes with P .

By substracting EM
ω

Mω
1

(x) to x we may assume that EMM1
(xn) = 0, so that

xn ∈ L2(M)	L2(M1) for every n, with x still non-zero. Moreover, since P is
separable, we may replace (xn) by a subsequence satisfying limn ‖[xn, y]‖2 =
0 for every y ∈ P . Of course, we may assume that supn ‖xn‖∞ ≤ 1.

We will apply Lemma 13.4.8 withQ = C, M1 instead ofM , CL
2(M1)M1 =

K and
H = L2(M)	 L2(M1) =

(
L2(M1)⊗ L2(M1)

)
⊗ `2(I),

a direct sum of copies of the coarse M1-M1-bimodule. Let us check that the
sequence (xn) of the elements xn ∈ H satisfies the conditions (a), (b) and
(c) of this lemma (the net (ξi) of this lemma being replaced by (xn)). It
is immediate for (b) and (c) and Condition (a) holds since, for x ∈ M1 we
have

‖xxn‖22 = τ(x∗nx
∗xxn) = τ(xxnx

∗
nx
∗) ≤ ‖xn‖2∞‖x‖

2
2 ≤ ‖x‖

2
2.

It follows that there exists a non-zero projection p′ ∈ Z(P ′ ∩M1) such that
Pp′ is amenable relative to C inside M and so Pp′ is amenable (see Exercise

1For simplicity, we denote in the same way a bounded sequence and its class in Mω.
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13.16). The greatest projection z in P such that zp′ = 0 belongs to Z(P )
and P (1− z) is amenable since it is isomorphic to Pp′. This contradicts our
assumption and therefore we have P ′ ∩Mω ⊂Mω

1 .
Let us show the last assertion of the lemma. If it does not hold, since

P is separable, there exist ε > 0 and a sequence x = (xn) in the unit
ball (M)1 of M such that limn ‖yxn − xny‖2 = 0 for every y ∈ P and
‖xn − EM1(xn)‖2 ≥ ε for every n. Then x ∈ P ′ ∩Mω but x /∈ Mω

1 . The
converse is also immediate. �

19.1.3. Two more lemmas.

Lemma 19.1.4. Let (M, τ) = (M1, τ1) ∗ (M2, τ2) be the free product of
two tracial von Neumann algebras. Let P be a separable, diffuse, w.o. closed
self-adjoint subalgebra of M1 and let v ∈ M be a partial isometry such that
vPv∗ ⊂M2 and v∗v = 1P . Then v = 0.

Proof. The proof is similar to that of Lemma 5.3.6. Since P is diffuse, it
contains a sequence (un) of unitary operators such that τ1(un) = 0 for every
n and limn un = 0 in the w.o. topology. We claim that for every x, y ∈M we
have limn ‖EM2(xuny)‖2 = 0. Using approximations by elements of the free
algebraic productM of M1 and M2 defined in Remark 5.3.5, we may assume
that x and y belong toM. By linearity, it suffices to consider the case where
xuny = ax1uny1b with x1, y1 ∈M1, and a (resp. b) is an alternated product

ending (resp. beginning) by some element in
o
M2 or is the identity. Then,

we have

xuny = a
(
(x1uny1)− τ1(x1uny1)1

)
b+ τ1(x1uny1)ab.

Since a
(
(x1uny1) − τ1(x1uny1)1

)
b is an alternated product not in M2, its

projection under EM2 is 0 and so

EM2(xuny) = τ1(x1uny1)EM2(ab).

But we have limn τ1(x1uny1) = 0 and therefore limn ‖EM2(xuny)‖2 = 0.
In particular, we see that limn ‖EM2(vunv

∗)‖2 = 0. On the other hand,

EM2(vunv
∗) = vunv

∗ and so ‖EM2(vunv
∗)‖2 = τ(1P )1/2. It follows that

1P = 0 = v. �

Lemma 19.1.5. Let (M, τ) be a tracial von Neumann algebra, P and Q

two von Neumann subalgebras. Let 0 < ε < 2−1/2 be such that

‖x− EQ(x)‖2 ≤ ε

for x in the unit ball (P )1 of P . Then a corner of P embeds into Q inside
M .

Proof. A straightforward modification of the proof of Lemma 14.3.2
shows the existence of a non-zero element h in P ′∩〈M, eQ〉 such that τ̂(h) ≤
τ̂(eQ) = 1. It follows from Theorem 17.1.1 that P ≺M Q. �
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19.2. Proof of the solidity of Fn
We set M = L(Fn) ∗ L(Fn), M1 = L(Fn) ∗ C and M2 = C ∗ L(Fn).

Assumet that there exists a non-amenable von Neumann subalgebra P of
L(Fn) (identified withM1) such that P ′∩L(Fn) is diffuse. There is a non-zero
projection e ∈ P such that ePe has no amenable corner (see Exercise 10.8).
In particular, ePe is diffuse and so, replacing if necessary e by a smaller
projection, we may assume that τ(e) = 1/k for some integer k > 0. Then,
by Proposition 4.2.5 we have M1 = Mk(C) ⊗ (eM1e). The von Neumann

subalgebra P̃ = Mk(C)⊗(ePe) has no amenable direct summand and P̃ ′∩M1

is still diffuse. It follows that, replacing P by P̃ , we may assume that P has
no amenable direct summand.

By Lemma 19.1.3, for ε > 0, there exist a finite subset F of U(P ) and
δ > 0 such that if x in the unit ball (M)1 satisfies maxu∈F ‖ux− xu‖2 ≤ δ,
then ‖x− EM1(x)‖2 ≤ ε.

We set P 0 = P ′ ∩M1. Let (α, β) be as in Lemma 19.1.1. Since t 7→ αt
is continuous, there exists t = 2−n such that

∀u ∈ F, ‖u− α−t(u)‖2 ≤ δ/2

and therefore

∀u ∈ F,∀x ∈ (P 0)1, ‖[α−t(x), u]‖2 ≤ 2‖u− α−t(u)‖2 ≤ δ.

It follows that ‖α−t(x)− EM1(α−t(x))‖2 ≤ ε for all x ∈ (P 0)1 or equiva-
lently ∥∥x− Eαt(M1)(x)

∥∥
2
≤ ε

for all x ∈ (P 0)1.
So, having chosen ε small enough, we have P 0 ≺M αt(M1), by Lemma

19.1.5. Now, thanks to Theorem 17.1.2 we get non-zero projections p ∈ P 0,
q ∈ αt(M1), a unital normal homomorphism θ : pP 0p → qαt(M1)q and a
non-zero partial isometry v ∈ M such that vv∗ = p′ ≤ p, v∗v = q′ ≤ q, and
xv = vθ(x) for all x ∈ pP 0p. Moreover, we have p′ ∈ (pP 0p)′ ∩ pMp and
q′ ∈ θ(pP 0p)′ ∩ qMq.

Since pP 0p is diffuse, the remark 5.3.7 implies that (pP 0p)′∩pMp ⊂M1

and so p′ ∈M1. Similarly, since θ(pP 0p) is diffuse and since M = αt(M1) ∗
αt(M2), we get q′ ∈ αt(M1). So, P0 = pP 0pp′ lies in M1 and v is a partial
isometry such that vv∗ = 1P0 , v∗P0v ⊂ αt(M1).

With n fixed as above, we now construct by induction over k ≥ 0, partial
isometries vk ∈ M and diffuse weakly closed self-adjoint subalgebras Pk of
M1 such that

τ(v∗kvk) = τ(v∗v), vkv
∗
k = 1Pk , v∗kPkvk ⊂ α1/2n−k(M1). (19.1)

For k = 0, the above P0 and v0 = v satisfy the required conditions. Assume
that we have constructed vj , Pj for j = 0, 1, · · · , k. We have

β(v∗k)Pkβ(vk) = β(v∗kPkvk) ⊂ α−1/2n−k(M1).
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So Pk+1, defined as α1/2n−k
(
β(v∗k)Pkβ(vk)

)
, lies in M1. Note that

α1/2n−k(β(vk))Pk+1α1/2n−k(β(v∗k)) = α1/2n−k(Pk). (19.2)

On the other hand, by applying α1/2n−k in (19.1) we also have

α1/2n−k(v∗k)α1/2n−k(Pk)α1/2n−k(vk) ⊂ α1/2n−k−1(M1). (19.3)

Therefore, if we set vk+1 = α1/2n−k(β(v∗k))α1/2n−k(vk), we deduce from (19.2)

and (19.3) that

v∗k+1Pk+1vk+1 ⊂ α1/2n−k−1(M1).

Moreover, since β(vkv
∗
k) = vkv

∗
k we have v∗k+1vk+1 = α1/2n−k(v∗kvk), so that

τ(v∗k+1vk+1) = τ(v∗kvk). This ends the induction argument.
Taking k = n, we see that

v∗nPnvn ⊂ α1(M1) = M2.

Then, by Lemma 19.1.4, we get vn = 0 and also v = 0 since τ(v∗v) =
τ(v∗nvn), a contradiction. �

Remark 19.2.1. Roughly speaking, the rigidity provided by the fact that
P has no amenable direct summand is used to build intertwiners between
subalgebras of αt(M1) and αt′(M1) for sufficiently small t′ − t. The main
difficulty is to glue together these intertwiners, which are partial isometries,
in order to get a non-zero intertwiner from a subalgebra of M1 into α1(M1).
The role of β is to overcome this problem.

Exercises

Exercise 19.1. Let M be a tracial von Neumann algebra such that
there exists an abelian diffuse von Neumann subalgebra in its center. Show
that M is diffuse.

Exercise 19.2. Show that a II1 factor M is solid if and only if it satisfies
the following condition: for every diffuse von Neumann subalgebra Q of M
the commutant Q′ ∩M is amenable.

Exercise 19.3. Let (Mi, τi), i = 1, 2, be two tracial von Neumann
algebras. We assume that M1 is a full II1 factor. Show that the free product
(M1, τ1) ∗ (M2, τ2) is a full II1 factor.

Notes
The solidity of L(Fn), and more generally of any II1 subfactor of L(G),

where G is a non-elementary ICC word-hyperbolic group G, was established
by Ozawa in [Oza04a]. His approach uses sophisticated C∗-algebraic tools.
With the purpose of giving a more elementary and self-contained proof, the
Popa’s s-malleable deformation/rigidity method of this chapter has been
published in [Pop07d]. Note that a non-amenable II1 factor having Pro-
perty Gamma cannot be solid [Oza04a]. In [Oza06], Ozawa has produced
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examples of prime II1 factors that are not solid (see also [Fim11] for other
examples).

The first example of a II1 factor that is not prime was given in [Pop83],
namely the von Neumann algebra of the free group with uncountably many
generators. Later, the primeness of L(Fn) was proved by Ge [Ge98], us-
ing Voiculescu’s free entropy techniques. A new approach, based on the
notion of L2-rigidity for von Neumann algebras, was proposed by Peter-
son [Pet09]. He obtained in this way another proof of the primeness of
every non-amenable II1 subfactor of L(Fn), and more generally of any free
products of diffuse finite von Neumann algebras. His examples have neither
Property Gamma nor Property (T).

Malleability properties were discovered in [Pop06c], [Pop06d]. Since
then, malleable deformations have been constructed in various contexts and
are essential tools in studying group actions and II1 factors (see the surveys
[Pop07b] and [Ioa13] for informations and references).

In [OP10a], Ozawa and Popa found that the free group von Neu-
mann algebras L(Fn) have an even more remarkable property than solidity,
they named strong solidity. This means that the normalizer of any diffuse
amenable von Neumann subalgebra of L(Fn) generates an amenable von
Neumann algebra. This is stronger than solidity and implies that L(Fn)
has no Cartan subalgebra, a fact initially proved by Voiculescu [Voi96] by
free probability techniques. Recently, Chifan and Sinclair [CS13] have esta-
blished the strong solidity of the von Neumann algebras of non-elementary
ICC word-hyperbolic groups. For related results see also [CH10], [Hou10],
[HS11], [Sin11], [CSU13]. All these results are obtained by using power-
ful deformation/rigidity strategies with various sources of deformations and
rigidity.
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APPENDIX

A. C∗-algebras

We collect below the results on C∗-algebras that we need in this mono-
graph. For a concise reference we recommend [Tak02, Chapter I] and
[Mur90] for an additional first course.

A.1. Definition an examples. A (concrete) C∗-algebra on a Hilbert
space H is a ∗-subalgebra of B(H) which is closed with respect to the norm
topology. For every operator x ∈ B(H), one has the crucial identity ‖xx∗‖ =

‖x‖2.
An abstract C∗-algebra A is a Banach ∗-algebra where this identity holds

for every x ∈ A. An important consequence is that the spectral radius of
every self-adjoint element is equal to its norm [Tak02, Proposition I.4.2],
from which it follows that on any ∗-algebra there is at most one norm mak-
ing it a C∗-algebra [Mur90, Corollary 2.1.2]. It also follows that every
homomorphism1 φ from a C∗-algebra into another one is norm decreasing
[Tak02, Proposition I.5.2].

Apart from B(H), the most basic example of C∗-algebra is C0(X), the
abelian ∗-algebra (endowed with the uniform norm) of complex-valued con-
tinuous functions that vanish at infinity on a locally compact (Hausdorff)2

space X. Conversely, let A be an abelian C∗-algebra and Â its spectrum,
that is, the space of non-zero homomorphisms χ from A to C. We view
x ∈ A as the map x̂ : χ 7→ χ(x). Equipped with the topology of point-

wise convergence, Â is locally compact and the invaluable Gelfand theorem
states that the Gelfand map x 7→ x̂ is an isometric isomorphism from the

C∗-algebra A onto the C∗-algebra C0(Â) [Tak02, Theorem I.4.4].
As a first consequence of this theorem, one gets the following result. Let

A be a unital C∗-algebra, that is, having a unit element 1, and let x ∈ A be
normal, that is, x∗x = xx∗. Denote by Sp(x) its spectrum. Then there is a
unique isomorphism φ from C(Sp(x)) onto the C∗-subalgebra of A generated
by x and 1 such that φ(1) = 1 and φ(z) = x, where z : C(Sp(x) → C is
the identity function. If f ∈ C(Sp(x)), then φ(f) is denoted f(x). One says

1For us, a homomorphism from a C∗-algebra A into an other one B preserves the
algebraic operations and the involution.

2If X is compact, we write C(X) instead of C0(X). All topological spaces will be
Hausdorff.
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that f(x) is obtained from x by continuous functional calculus. When A
is not unital, there is an adapted version [Tak02, page 19] which allows to
define similarly f(x) ∈ A for every continuous complex-valued function f
on R such that f(0) = 0.

From the Gelfand theorem, one deduces that every injective homomor-
phism φ : A → B between two C∗-algebras is isometric [Tak02, Corollary
I.5.4].

Every closed ideal of A is self-adjoint and the quotient is in a natural way
a C∗-algebra [Tak02, Theorem I.8.1]. It follows that the range φ(A) of every
homomorphism φ : A → B is a C∗-subalgebra of B, i.e., is automatically
closed.

Particularly important is the study of the representations of A, that is,
of the homomorphisms π from A into some B(H). In particular, π(A) is a
C∗-algebra on H. The Gelfand-Naimark theorem states that every abstract
C∗-algebra has an injective representation as a concrete C∗-subalgebra of
some B(H) [Tak02, Theorem I.9.8]

The finite-dimensional C∗-algebras are well-understood. Indeed they
are all isomorphic to some direct sum ⊕mk=1Mnk(C) where Mn(C) is the C∗-
algebra of n× n matrices with complex entries (see Exercise 2.2 or [Tak02,
Section I.11]).

A.2. Positivity. Let A be a C∗-algebra and As.a its subspace of self-
adjoint elements. An essential feature of A is that As.a carries a natural
partial order. A self-adjoint element x is said to be positive, and one writes
x ≥ 0, if it is of the form x = y∗y for some y ∈ A, or equivalently of the
form h2 with h ∈ As.a. For A ⊂ B(H), this means that x is a positive
operator in the usual sense, that is, self-adjoint with it spectrum contained
in R+ (or equivalently such that 〈ξ, xξ〉 ≥ 0 for every ξ ∈ H). We denote
by A+ the set of positive elements in A. It is a closed convex cone with
A+ ∩ (−A+) = {0} [Tak02, Theorem I.6.1]. The partial order relation on
As.a is defined by y ≤ x if x − y ∈ A+. This implies that aya∗ ≤ axa∗ for
every a ∈ A. When A is unital, let us also observe that x ≤ ‖x‖1 for every
x ∈ As.a. If y ≤ x, but y 6= x, we write y < x.

We define the absolute value of x ∈ A by |x| = (x∗x)1/2. If x ∈ As.a, we
set

x+ =
1

2
(|x|+ x), x− =

1

2
(|x| − x).

These elements x+ and x− are respectively the positive and negative part of
x. Hence, x is the difference of two positive elements x+ and x− in A such
that x+x− = 0.

It follows that A+ generates linearly A. Indeed, let x ∈ A. Then first

x =
1

2
(x+ x∗) + i

1

2i
(x− x∗),

where the self-adjoint operators <(x) = (1/2)(x+x∗) and =(x) = (1/2i)(x−
x∗) are respectively called the real and imaginary part of x. Next we write
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these self-adjoint elements as the difference of their positive and negative
part. In conclusion, x = x1−x2 +ix3−ix4, with xi positive and ‖xi‖ ≤ ‖x‖,
1 ≤ i ≤ 4.

A linear functional ϕ on a C∗-algebra A is said to be positive if ϕ(x) ≥ 0

for every x ∈ A+. It is automatically continuous and satisfies ϕ(x∗) = ϕ(x)
for every x ∈ A. Moreover, if A is unital, then ‖ϕ‖ = ϕ(1) [Tak02, Section
I.9]. Conversely, every bounded linear functional ψ on A such that ‖ψ‖ =
ψ(1) is positive [Dix77, Proposition 2.1.9].

A linear map φ : A → B between C∗-algebra is said to be positive if
φ(A+) ⊂ B+. It is bounded, preserves the passage to the adjoint, i.e.,
φ(x∗) = φ(x)∗ for x ∈ A, and moreover we have ‖φ‖ ≤ 2‖φ(1)‖ whenever
A is unital [Pau02, Proposition 2.1]. Homomorphisms are basic examples
of positive maps. A linear positive map φ : A → B is said to be faithful
if whenever x ∈ A+ is such that φ(x) = 0, then x = 0. Note that a
homomorphism is faithful if and only if it is injective.

For every integer n ≥ 1, and every C∗-algebra C, we denote by Mn(C)
the set of n × n matrices with entries in C. There is a natural way to
turn it in a C∗-algebra (see [Tak02, Section IV.3]). Given a linear map
φ : A → B between C∗-algebra, we define a map φn : Mn(A) → Mn(B)
by φn([ai,j ]) = [φ(ai,j)]. When φ is positive, we could expect that φn is
still positive but this is not the case in general (see [Pau02, page 5]). Note
however that φn is a homomorphism whenever φ is a homomorphism, and
so positivity is preserved in this case.

A.3. Completely positive maps. They form a very important class
of morphisms, intermediate between positive linear maps and homomor-
phisms. For a comprehensive study of these morphisms see [Pau02]

Definition A.1. A linear map φ : A → B between C∗-algebras is said
to be completely positive if φn is positive for every integer n ≥ 1.

The following result provides an easy way to check that a linear map is
completely positive [Tak02, Corollary IV.3.4].

Proposition A.2. A linear map φ : A → B is completely positive if
and only if

∑n
i,j=1 y

∗
i φ(x∗ixj)yj ≥ 0 for every n ≥ 1, x1, . . . , xn ∈ A and

y1, . . . , yn ∈ B.

In particular, given a ∈ A, the map x 7→ a∗xa from A to A is completely
positive. Every positive linear map from a C∗-algebra into an abelian C∗-
algebra is completely positive [Tak02, Corollary IV.3.5]. The general com-
pletely positive maps from A into B(H) are described by the dilation theorem
of Stinespring. We recall below its version in case A is unital (see [BO08,
Theorem 1.5.3] for instance), which is the only case we need.

Theorem A.3. Let A be a unital C∗-algebra and φ : A → B(H) be a
completely positive map. There exist a Hilbert space K, a unital represen-
tation π : A → B(K), i.e., π(1) = 1, and an operator V : H → K such



D
ra
ft

314

that

φ(x) = V ∗π(x)V

for every x ∈ A. In particular, we have ‖φ‖ = ‖V ∗V ‖ = ‖φ(1)‖.

The Schwarz inequality

∀x ∈ A, φ(x)∗φ(x) ≤ ‖φ‖φ(x∗x)

follows immediately.

A.4. Norm-one projections and conditional expectations. Let
A be a unital C∗-algebra and B a C∗-subalgebra with the same unit. The
notion of conditional expectation from A onto B is defined in Section 9.1: it
is a linear positive projection E which is B-bimodular, that is, E(b1xb2) =
b1E(x)b2 for b1, b2 ∈ B and x ∈ A. For x, y ∈ A, we have the generalized
Cauchy-Schwarz inequality

E(y∗x)E(y∗x)∗ ≤ ‖x‖2E(y∗y).

Assuming that ‖x‖ = 1, this is proved by developing E((xb−y)∗(xb−y)) ≥ 0
with b = E(x∗y).

Taking y = 1 in the Cauchy-Schwarz inequality, we see that ‖(E(x)‖ ≤
‖x‖. Conversely, Tomyiama proved that every norm-one projection is a
conditional expectation [Tom57]. More precisely we have the following
result.

Theorem A.4. Let A be a unital C∗-algebra, B ⊂ A a C∗-subalgebra
with the same unit and E : A → B a linear map. The following conditions
are equivalent:

(i) E is a conditional expectation;
(ii) E is a completely positive projection;
(iii) E is a norm-one projection.

For a short proof, we refer to [BO08, Theorem 1.5.10].

A.5. Arveson’s extension theorem. Let A be a unital C∗-algebra
and B a C∗-subalgebra with the same unit. By the Hahn-Banach theorem,
every positive linear functional ϕ on B extends to a bounded linear func-
tional ϕ̃ on A with the same norm. Thus we have ‖ϕ̃‖ = ϕ̃(1) and therefore
ϕ̃ is positive. It is a remarkable result of Arveson [Arv69] that the same
result still holds when C is replaced by any B(H), under an assumption of
complete positivity (see [BO08, Theorem 1.6.1] for a concise proof).

Theorem A.5. Let A be a unital C∗-algebra and B a C∗-subalgebra
with the same unit. Then, every completely positive map φ from B to B(H)

extends to a completely positive map φ̃ : A→ B(H)
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B. Standard Borel and measure spaces

In this monograph we will only deal with these spaces. We gather now
the few properties that we will use. For more information, we refer to
[Kec95].

B.1. Standard Borel spaces.

Definition B.1. A Polish space is a separable topological space admit-
ting a compatible complete metric.

Definition B.2. A standard Borel space is a Borel space isomorphic
to some Borel space (X,B), where B is the collection of Borel subsets of a
Polish space X.

These Borel spaces satisfy the following important property (see [Kec95,
Corollary 15.2]).

Proposition B.3. Let f : X → Y be a Borel map between two standard
Borel spaces. Let A ⊂ X be a Borel subspace such that f|A is injective. Then
f(A) is a Borel subset of Y . In particular, if f is a Borel bijection, then it
is a Borel isomorphism.

Standard Borel spaces have a simple classification: they are either finite,
or isomorphic to Z, or to [0, 1] (see for instance [Kec95, Chapter II, Theorem
15.6] or [Tak02, Corollary A.11]).

A Polish group is a topological group whose topology is Polish. A useful
result is the automatic continuity property stated below [Kec95, Theorem
9.10].

Proposition B.4. Let f : G → H be a continuous bijective homomor-
phism between Polish groups. Then f is a homeomorphism.

For the next theorem, see [Kec95, Theorem 18.10].

Theorem B.5 (Lusin-Novikov). Let X,Y be two standard Borel spaces
and E ⊂ X × Y a Borel subset. We assume that for every x ∈ X, the fiber
π−1(x) ∩ E is countable, where π : X × Y → X is the projection onto X.
Then there is a countable partition E = ∪nEn of X × Y into Borel subsets
such that the restriction of π to each En is injective.

B.2. Standard probability measure spaces. They have a nice be-
haviour and are sufficiently general for all our practical purposes. Their
theory was started by von Neumann [vN32a, vN32b] and further studied
in particular by Halmos and von Neumann [HvN42].

Let µ be a probability measure on a Borel space X. We say that µ
is continuous (or without atom) if µ({t}) = 0 for all t ∈ X. We say that
µ is discrete if µ =

∑
t∈T µ({t})δt, where T is a subset of X, which is

necessarily countable. Every probability measure µ can be uniquely written
as µ = µc + µd where µc is continuous and µd is discrete.
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Definition B.6. A probability measure space (X,µ) is said to be stan-
dard if there exists a standard conull Borel subspace in X. If in addition µ
is continuous, we say that (X,µ) is a Lebesgue probability measure space.

One of the most important facts about standard probability measure
spaces is the Halmos-von Neumann theorem stating that they are isomorphic
to [0, 1] equipped with its natural Borel structure together with a convex
combination of the Lebesgue probability measure on [0, 1] and a discrete
probability measure. For details, see [Kec95, Chapter II, §17] or [Ram71].

So there is only one Lebesgue probability measure space, up to iso-
morphism of probability measure spaces, and we speak of the Lebesgue
probability measure space. For the reader’s convenience, we give a proof
the uniqueness of this space, based on the classification of standard Borel
spaces.

Theorem B.7. Let (X,µ) be a standard probability measure space, where
µ is continuous. There is a Borel isomorphism θ : X → [0, 1] such that
θ∗µ = λ where where θ∗µ is the pushforward of µ under θ and where λ is
the Lebesgue probability measure on [0, 1].

Proof. We follow [Kec95, Theorem 17.41]. Using the classification
theorem of standard Borel spaces, we may assume that X = [0, 1]. Let g be
the continuous function t 7→ µ([0, t]) defined on [0, 1]. It is non-decreasing,
with g(0) = 0 and g(1) = 1. Furthermore, we have g∗µ = λ since for any
t ∈ [0, 1], if we choose s with g(s) = t, we get

µ(g−1([0, t]) = µ([0, s]) = g(s) = t = λ([0, t]).

This function g is not necessarily injective, but for every t ∈ [0, 1] we
have µ(g−1({t})) = 0. The subset T of [0, 1] such that the interval g−1(t) is
not reduced to a point is countable, and therefore N = g−1(T ) is such that
µ(N) = 0. Note that g is a homeomorphism from [0, 1] \N onto [0, 1] \ T .
Let Q ⊂ [0, 1] \ T be an uncountable Borel set of Lebesgue measure 0 and
set P = g−1(Q). Then P ∪ N and Q ∪ T are two uncountable standard
Borel spaces, and therefore there is a Borel isomorphism h from P ∪ N
onto Q ∪ T . Now we define θ to be equal to h on P ∪ N and to g on the
complement. Obviously, θ is a Borel isomorphism from [0, 1] onto itself such
that θ∗µ = λ. �
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237–294, Séminaire Bourbaki. Vol. 2005/2006.

[Vae08] , Explicit computations of all finite index bimodules for a family of II1
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[Yos95] Kōsaku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag,
Berlin, 1995, Reprint of the sixth (1980) edition.

[Zim77a] Robert J. Zimmer, Hyperfinite factors and amenable ergodic actions, Invent.
Math. 41 (1977), no. 1, 23–31.

[Zim77b] , On the von Neumann algebra of an ergodic group action, Proc. Amer.
Math. Soc. 66 (1977), no. 2, 289–293.

[Zim78] , Amenable ergodic group actions and an application to Poisson bound-
aries of random walks, J. Functional Analysis 27 (1978), no. 3, 350–372.

[ZM69] G. Zeller-Meier, Deux nouveaux facteurs de type II1, Invent. Math. 7 (1969),
235–242.



D
ra
ft



D
ra
ft

Index

(M)1: unit ball of M , 34
(M,H): von Neumann algebra on a

Hilbert space H, 4
(πϕ,Hϕ, ξϕ): GNS representation

associated with ϕ, 46
1M : unit of M , 4
AoG: crossed product, 14, 68
Bb(X): bounded Borel functions on X,

19, 31
C(X): continuous functions, X

compact, 311
Cx, Cx, 19
C0(X): continuous functions vanishing

at infinity, 311
D(ϕ): domain of the partial

isomorphism ϕ, 18
E(Ω): spectral projection relative to Ω,

32, 102
EB , EMB : conditional expectations, 140
Et = E(]−∞, t]), 32, 102
Ect (x) = E(]t,+∞[), 166
J , JM : canonical conjugation operator,

98
L(G): left group von Neumann algebra

of G, 6
L(M): standard left image of M , 98
L(R): left von Neumann algebra of the

equivalence relation R, 20
L2(M): standard Hilbert M -module,

117
L2(M,Tr), 136
L2(M, τ)+, 108
L2(M,ϕ) = Hϕ: GNS Hilbert space

when ϕ faithful, 46
L2

0(M): orthogonal of C in L2(M), 259
LF , F ∈Mb(R): left convolution

operator, 20
Lξ, ξ left bounded: left multiplication

by ξ, 129
Lξ, ξ ∈ L2(M): closure of L0

ξ, 98

L0
ξ, ξ ∈ L2(M), 98

Lf , f ∈ `2(G): left convolution product,
6

M,N,P,Q: von Neumann algebras, 4

Mω: ultrapower of M , 75

M t: t > 0, 62

Mop: opposite algebra, 49

M∗: predual of M , 115

M+: positive elements of M , 32

M1 �M2: algebraic tensor product, 65

M1⊗M2: tensor products of von
Neumann algebras, 65, 66

M1 'M2: isomorphic von Neumann
algebras, 11

Mf : multiplication operator by f , 5

Mn(A): n× n matrices with coefficients
in A, 4, 35, 313

Ms.a: self-adjoint elements of M , 32

P ≺M Q: embedding of P into Q inside
M , 285

R(G): right group von Neumann
algebra of G, 6

R(M): standard right image of M , 98

R(R): right von Neumann algebra of
the equivalence relation R, 20

R(ϕ): range of the partial isomorphism
ϕ, 18

RF , F ∈Mb(R): right convolution
operator, 20

Rη: right multiplication by η, 130

Rξ, ξ ∈ L2(M): closure of R0
ξ , 98

R0
ξ , ξ ∈ L2(M), 98

Rf , f ∈ `2(G): right convolution
product, 8

S′: commutant of S, 4

S′′: bicommutant of S, 4

Sϕ: characteristic function of the graph
of ϕ, 20

[M : N ]: index of a sub factor, 150
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[Mξ]: projection on the norm closure of
Mξ, 31

[[R]]: full pseudo-group of the
equivalence relation R, 18

[R]: full group of the equivalence
relation R, 201

Ad (u): inner automorphism group
defined by the unitary u, 11

Aut (M): automorphism group of M , 11

Aut (M,A): automorphisms of M
preserving A, 201

Aut (M, τ): trace preserving
automorphism group of M , 68

Aut (X,µ): p.m.p. automorphisms, 13

Aut (R): automorphism group of the
equivalence relation R, 201

Bimod (M,N), 224

dim(HM ) : M -module dimension, 133

IdH: identity map on H, 3

=(x): imaginary part of x, 312

Inn (M): inner automorphism group of
M , 11

mod(θ): module of the automorphism
θ, 127

N: non-negative integers, 10

N∗: positive integers, 10

Out (M): outer automorphism group of
M , 11

<(x): real part of x, 312

Sp (x): spectrum of x, 31, 311

span(MK), 37

supixi, 36

T: unit circle, 9

Tr: trace (possibly unbounded), 12, 124

TrZ : center-valued tracial weight, 143

|A|: cardinal of the set A, 19

|x|, x+, x−, 312

α1 ⊗ α2: tensor product of
isomorphisms, 120∨

i pi, 35∧
i pi, 36

B(H): bounded operators on the
Hilbert space H, 3

B(HM ) = B(HM ,HM ), 128

B(HM ,KM ): M -linear bounded maps,
128

F(HM ): “finite rank” M -linear
operators, 128

GNM (A): normalizing pseudo-group,
192

H(α): M -N bimodule relative to the
homomorphism α, 215

H(φ): M -N bimodule relative to the
completely positive map φ, 216

H,K,L: Hilbert spaces, 4
H⊗M K: interior tensor product of

Hilbert modules, 222
0K: right bounded vectors, 130
H0: left bounded vectors, 129
H⊕k, H⊕∞: Hilbert direct sums of H,

25
H1 ⊗H2: tensor product of Hilbert

spaces, 65
I(〈M, eB〉): ideal of 〈M, eB〉 generated

by its finite projections, 275
I0(〈M, eB〉): ideal of 〈M, eB〉 generated

by eB , 148, 275
K(H): compact operators on H, 4
Mb(R), 19
NM (A): normalizer of A in M , 192
P(M) : projections in M , 32
R1 ' R2: isomorphic equivalence

relations, 22
RGyX : orbit equivalence relation, 18
Rep(G): unitary representations of G,

224
S1(H): trace class operators on H, 116
S2(H): Hilbert-Schmidt operators on

H, 136
U(M) : unitaries of M , 32
Z(M) : center of M , 37
δx: Dirac measure at x, 5
`2i , i ∈ N∗ ∪ {∞}: canonical Hilbert

space of dimension i, 80
ιG: trivial representation of G, 219
λ, λG : left regular representation of G,

5
λG/H : quasi-regular representation, 233
F(M): fundamental group of M , 63
F(R): fundamental group of R, 295
I(M): subfactors indices, 151
µξ = µξ,ξ, 31
µξ,η: spectral measure defined by ξ, η,

31
‖x‖, ‖x‖∞: norm of x, 3
‖x‖2, ‖x̂‖2, ‖x̂‖τ , ‖x̂‖2,τ , 97
ωξ,η: vector linear form, 3, 30
ωξ = ωξ,ξ, 30
ωlξ, ω

r
ξ , 230

H: contragredient bimodule, 221
⊗i∈NMi: infinite tensor product, 67
π ≺ ρ: weak containment of

representations, 224∏
iMi: product (or direct sum) of von

Neumann algebras, 25
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ρ, ρG : right regular representation of
G, 5

〈M, eB〉: basic construction, 147∑⊕
i Mi: direct sum (or product) of von

Neumann algebras, 25
τ , τM : normal tracial states, 6
τ1 ⊗ τ2: tensor product of traces, 66
τµ: integral on L∞(X,µ), 13
θ∗µ: pushforward of µ under θ, 316
1Ω: characteristic function of Ω, 32

ÊZ , 145
τ̂ : trace on B(HM ), 128
x̂: image of x in L2(M), 46, 97

M̃ : operators affiliated with M , 103

MH, HN , (MHN ): Hilbert modules
(bimodules), 100

MHN ≺M KN : weak containment of
bimodules, 229

eB : projection L2(M)→ L2(B), 140
p - q, 36
p ≺ q, 37
p ∼ q, 36
s(x): support of a self-adjoint x, 34
sl(x) : left support of x, 34, 103
sr(x) : right support of x, 34, 103
uϕ = LSϕ , 20
ug: canonical unitary, 8, 15, 69
xε̃M : x affiliated with M , 103
y ≤ x, y < x, 312
z(p): central support of p, 37
m, 135
n, 135

absolute value in a C∗-algebra, 33, 312
AFD (approximately finite

dimensional), 173
affiliated operator, 103
almost having invariant vectors, 225
alternated product, 74
amenability relative to a von Neumann

subalgebra, 235
amenable

Cartan inclusion, 206
countable p.m.p. equivalence

relation, 206
group, 159
von Neumann algebra, 161

amplification of a factor, 62
approximately finite dimensional

finite von Neumann algebra, 173
tracial von Neumann algebra, 173
von Neumann algebra, 188

asymptotically G-invariant net, 259

asymptotically trivial, 259

basic construction, 147
Bernoulli

actions, 13, 69
generalized actions, 18

bicommutant theorem, 30
bimodule, 100, 213

bifinite, 215
of finite (Jones’) index, 215
pointed cyclic, 217

C*-algebra, 4, 311
canonical conjugation operator, 98
canonical unitaries, 8, 15, 69
Cartan inclusion, 196
Cartan inclusions

conjugate, 200
unitarily conjugate, 200

Cartan subalgebra, 196
Cartan-rigid group, 290
center-valued

trace, 142
tracial weight, 143

central net in a II1 factor, 261
central support of a projection, 37
coarse M -N -bimodule, 214
coefficient

of a bimodule, 217
of a representation, 220

completely additive linear functional, 40
completely positive map, 313
composition, or (Connes) tensor

product of bimodules, 223
conditional expectation, 139
conjugate p.m.p. actions, 291
contragredient bimodule, 221
convolver, 7, 98
corner of a von Neumann algebra, 39
cost of an equivalence relation, 296
countable group, countable set, 17
countable p.m.p. equivalence relation,

19
countably decomposable, 47
coupling constant, 135
crossed product, 14, 68
cyclic vector, 6

of a M -N -bimodule, 217

Day’s convexity argument, 164
deformation of the identity, 254
dimension function, 87
dimension of a module, 133
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direct sum (or product) of von
Neumann algebras, 25

direct summand of a von Neumann
algebra, 39

ergodic action, 15, 69
ergodic countable p.m.p. equivalence

relation, 21

factor, 9
of type I, 12
of type I∞, 12
of type In, 12
of type II1, 12
of type II∞, 125
of type III, 127

faithful
homomorphism, 313
positive linear functional, 6
positive linear map, 313

Fell topology, 226, 227
Fourier coefficients, 8, 15, 69
free action, 15, 69
free product of von Neumann algebras,

72
free ultrafilter, 75
free von Neumann subalgebras, 70
full II1 factor, 249, 266
full group

of a p.m.p. equivalence relation, 201
of p.m.p. automorphisms, 201

full pseudogroup of a countable p.m.p.
equivalence relation, 18

functional calculus
Borel, 32, 102
continuous, 312

fundamental group
of a II1 factor, 63
of a p.m.p. equivalence relation, 295

Gelfand map, 311
Gelfand-Naimark-Segal construction

(GNS), 46
group

algebra, 9
von Neumann algebra, 6

group measure space
Cartan subalgebra, 197, 287
Cartan-rigid group, 290
von Neumann algebra, 14

Haagerup property
for groups, 273
for von Neumann algebras, 274

Hilbert-Schmidt operator, 135
homogeneous von Neumann algebra, 78
homomorphism between C∗-algebras, 4,

311
hyperfinite

II1 factor, 23
countable p.m.p. equivalence

relation, 209
finite von Neumann algebra, 173

hypertrace, 162

ICC group, 9
ideal of definition of a trace, 135
index (Jones’ index)

of a bimodule, 237
of a subfactor, 150

induced von Neumann algebra, 61
infinite tensor product, 67
inner amenable group, 267
inner automorphism, 11
integrable operator, 111
isomorphism

of equivalence relations, 22, 198
of probability measure spaces, 12
of von Neumann algebras, 11

isomorphism (or equivalence) of
M -modules, 121

Koopman representation, 118, 259

Lebesgue probability measure space,
316

left M -module, 100, 121
left bounded vector, 98, 129
left support of an operator, 34, 103
local approximation property, 174
locally finite group, 159

matrix units, 39
McDuff factor, 82
measure

continuous, 315
discrete, 315

mixing property, 18
module

faithful, 121
finite, 134
finitely generated, 133

module of an automorphism, 127
multiplicity function, 122

normal
positive linear functional, 40
positive linear map, 43
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normalizer, 192
normalizing pseudo-group, 192

opposite algebra, 49
orbit equivalence relation, 18
orbit equivalence superrigidity, 291
orbit equivalent actions, 22, 198
orthonormal basis of a M -module, 130
outer automorphism group, 11

p.m.p. (probability measure
preserving), 12

p.m.p. action, 13
partial isomorphism, 18
Pimsner-Popa basis, 130, 150
polar decomposition

of a bounded operator, 34
of a bounded vector, 131
of an unbounded operator, 102

Polish group, 119, 315
positive

linear functional, 6, 313
linear map, 43, 313

positive definite function, 220
Powers-Størmer inequality, 109, 164
predual of a von Neumann algebra, 116
prime II1 factor, 303
product (or direct sum) of von

Neumann algebras, 25
projections, 32

abelian, 77
equivalence of, 36
finite, 83
infinite, 83
minimal, 39

properly outer
action, 69
automorphism, 69

property
(H) for groups, 273
(H) for von Neumann algebras, 274
(P) of Schwartz, 170
(T) for von Neumann algebras, 242
(T) for groups, 241
Gamma, 261

property (H) relative to a von Neumann
subalgebra, 276

property (T) relative to a von Neumann
subalgebra, 246

Radon-Nikodým
derivative, 109, 116
theorem, 109, 116

reduced von Neumann algebra, 39

relative
property (T) for pairs of groups, 241
property (T) for pairs of von

Neumann algebras, 242
relatively rigid von Neumann

subalgebra, 242
representation of a C∗-algebra, 312
right N -module, 100
right bounded vector, 130
right support of an operator, 34, 103
rigid embedding, 241, 242

s-malleable deformation, 304
Schwarz inequality, 314
semi-finite

trace, 124
von Neumann algebra, 125

separating vector, 6
solid II1 factor, 303
spatial isomorphism, 11
spectral gap

for a factor, 261
for a representation, 257
for an action, 259

spectral measure, 32, 102
square integrable operator, 106
standard

Borel space, 315
probability measure space, 316

standard M -M -bimodule, 100, 214
standard form, 97
standard representation, 47, 97
state, 6
strong ergodicity, 266
strong operator (s.o.) topology, 3
subtracial

completely positive map, 217
vector, 217

subunital completely positive map, 217

tensor product
of isomorphisms, 120
of von Neumann algebras, 65

trace-class operator, 116, 135
tracial

completely positive map, 217
state, 6
vector, 217
weight, 124

trivial M -M -bimodule, 100, 214

ultrapower of a tracial von Neumann
algebra, 75

unital C∗-algebra, 311
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unitary implementation of Aut (M), 118

von Neumann algebra, 4
diffuse, 39
finite, 83, 95
infinite, 83
injective, 161
of type I, 78
of type II1, 78
separable, 48, 119
tracial, 6

W*-superrigid
action, 291
group, 301

weak containment
for bimodules, 229
for group representations, 224

weak operator (w.o.) topology, 3
weakly equivalent representations, 224
wreath product, 10

generalized, 10


