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Chapter 1

Random experiments and probability

The goal of this first chapter is to provide an introduction to the language of probability
theory, which, in the context of this course, is the field within mathematics concerned
with randomness and uncertainty, providing a rigorous framework to study these phenom-
ena.

Let us highlight the ubiquity of probability theory that goes beyond its interaction
with other fields in mathematics and its applications: it has proven to be a key tool in
many different domains, such as physics, statistics, computer science, economics, sociology,
biology, engineering, operations research, finance, marketing, business, etc. More gener-
ally, probability can be a powerful tool whenever we deal with uncertainty, randomness,
and data.

In this first chapter, we will introduce the fundamental concepts of random experi-
ments and probability. To do so, we first start by defining what a random experiment
is in Section 1.1. Then, as a recap, in Section 1.2, we recall the language of sets and their
basic operations. In Section 1.3, we define a probability. In Section 1.4, we will review
counting methods that will be helpful to compute basic probabilities. Finally, in Sections
1.5, 1.6, 1.7, and 1.8, we introduce the notions of conditional probability, independence,
the law of total probability, and the Bayes theorem, respectively.

1.1 Random experiments

Our first goal in this course will be to describe in mathematical terms what a random
experiment is.

Definition 1.1 (Deterministic and random experiments). An experiment is a procedure
that has an observable outcome. We say that it is deterministic if its outcome can be
predicted; that is, it has only one possible outcome. On the other hand, we say that it is
random if it has more than one possible outcome that we cannot predict in advance.
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6 CHAPTER 1. RANDOM EXPERIMENTS AND PROBABILITY

Let us observe that when we perform a random experiment, in contrast with a deter-
ministic experiment, we do not know beforehand its outcome. However, it is reasonable to
assume that we know at least all the possible outcomes, which motivates the following
definition.

Definition 1.2 (Outcome space and events). Given a random experiment, we define its
outcome space as the collection of all its possible outcomes, and we denote it by Ω. A
subset of outcomes A ⊂ Ω is said to be an event associated with the random experiment.

Before continuing, let us provide examples of random experiments, their outcome
spaces, and possible events.

Example 1.3 (Tossing a coin). Suppose that our experiment consists of tossing a coin. If
we assume it cannot land vertically, we only have two possible outcomes: heads and tails,
denoted by H and T , respectively. Then its outcome space is given by

Ω = {H,T}.

Some events we can consider are “obtaining heads” and “obtaining tails”, which are repre-
sented by the sets A = {H} and B = {T}, respectively.

Example 1.4 (Tossing two coins). Suppose now that we are tossing two coins in order
(that is, obtaining heads then tails (HT ) is not the same as tails and then heads (TH).
Then our new outcome space is given by

Ω = {HH,HT, TT, TH}.

Some events could be “obtaining at least once tails”, which is represented by the set
A = {HT, TT, TH}; or “obtaining only heads”, which is represented by B = {HH}; or
“obtaining tails in the first coin flipping”, which can be represented by C = {TT, TH}.

Example 1.5 (Instagram posts). Now our random experiment is the following: suppose
that you post a nice picture on Instagram and you wonder how many likes it will get.
Note that

Ω = N = {0, 1, 2, . . . }
since a priori, one could have as many likes as people have an account on the social
network if your account is public (assuming that there are infinite people on Instagram).
Then you may be interested in studying the following events: “it got more than 100 likes”,
represented by A = {101, 102, . . . } (i.e., the photo was a complete success); or “it got no
likes at all”, represented by B = {0} (i.e., the picture was awful). In contrast, if your
account is private, and you have N ∈ N followers, then note that

Ω = {0, . . . , N}.

Example 1.6 (Darts). Suppose you are playing darts and are a good player, so you always
hit your darts inside the dartboard. Then we may represent the outcome space by a circle:

Ω = {(x, y) ∈ R2 : x2 + y2 ⩽ 1}.
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A possible event is “hitting the first quadrant”, represented by the set

A = {(x, y) ∈ R2 : x2 + y2 ⩽ 1, x ⩾ 0, y ⩾ 0}.

Exercise 1.1. In Example 1.6, how would you represent using a set the event “hitting the
inner bullseye” (the red one in the middle)?

1.2 Sets and their operations
In the last section, we saw that we are modeling our theory in events, i.e., sets. Before
continuing, we provide a recap on the basic set operations that will be pertinent to this
course. Firstly, recall that if Ω is a set and x is an element of Ω, we say that x belongs to
Ω and we denote it by x ∈ Ω. Now we recall the notion of power set.

Definition 1.7 (Power set). Let Ω be a set. We define the power set associated with Ω,
which we denote by P(Ω), as the set that contains all the subsets of Ω. That is,

P(Ω) := {A : A ⊂ Ω}.

Remark 1.8.

(i) Note that the power set is a set that has sets as its elements.

(ii) If Ω is a set, always ∅ ∈ P(Ω) and Ω ∈ P(Ω).

Let us provide an example before introducing other set operations.

Example 1.9. If Ω = {0, 1, 2}, then

P(Ω) = {∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2},Ω}.

We recall the definition of the complement, union, intersection, and difference of
sets.

Definition 1.10 (Complement, union, intersection, and difference). Let Ω be a set and
let A,B ⊂ Ω.

(i) We define the complement of A (with respect to Ω), which we denote by A′, as the
set that contains all the elements that do not belong to A (see Figure 1.1):

A′ := {x ∈ Ω : x /∈ A}.

(ii) We define the union between A and B, denoted by A ∪ B, as the set that contains
all the elements that belong to A or belong to B (see Figure 1.2):

A ∪B := {x ∈ Ω : x ∈ A or x ∈ B}.
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(iii) We define the intersection between A and B, denoted by A ∩ B, as the set that
contains all the elements that belong to A and belong to B (see Figure 1.3):

A ∩B := {x ∈ Ω : x ∈ A and x ∈ B}.

(iv) We define the set difference of A and B, which we denote by A \B, as the set that
contains all the elements that belong to A but not to B (see Figure 1.4):

A \B := {x ∈ Ω : x ∈ A and x /∈ B}.

Remark 1.11. In general, A \B ̸= B \A (compare Figures 1.4 and 1.5 and see Exercise
1.2 below).

A

A′

Ω

Figure 1.1: Complement
of A in Ω (grey area).

A B

A ∪B
Ω

Figure 1.2: Union of A
and B (grey area).

A B

A ∩B
Ω

Figure 1.3: Intersection of
A and B (grey area).

A B

A \B
Ω

Figure 1.4: Difference of A
and B (grey area).

A B

B \ A
Ω

Figure 1.5: Difference of
B and A (grey area).

Exercise 1.2. Let Ω = {0, 1, 2, 3, 4}, and let A = {0, 2} and B = {1, 2, 3}. Compute A′,
B′, A ∪B, A ∩B, A \B, and B \ A.

These operations verify the following algebraic properties.

Proposition 1.12 (Algebra of sets). Let Ω be a set and let A,B,C ⊂ Ω.

(i) Union and intersection are commutative:

A ∪B = B ∪ A and A ∩B = B ∩ A.

(ii) The empty set is the neutral element for the union: A ∪∅ = A.
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(iii) The set Ω is the neutral element for the intersection: A ∩ Ω = A.

(iv) Union and intersection are associative:

(A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C).

(v) Intersection distributes over union:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(vi) Union distributes over intersection:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

(vii) Union and intersection verify De Morgan’s laws:

(A ∪B)′ = A′ ∩B′ and (A ∩B)′ = A′ ∪B′.

(viii) The complement satisfies

Ω = A ∪ A′, ∅ = A ∩ A′, and (A′)′ = A.

(ix) The set difference can be written as

A \B = A ∩B′.

(x) One has A ∩ (B \ A) = ∅, and

A ∪B = A ∪ (B \ A).

Exercise 1.3. Prove Proposition 1.12.

To end this section, we finish with some notions that will be useful later.

Definition 1.13 (Mutually exclusive sets). Let Ω be a set, and let (Ai)
n
i=1 = (A1, . . . , An)

be a collection of sets (that is, for each i ⩾ 1, Ai ⊂ Ω). We say that (Ai)
n
i=1 is mutually

exclusive if for every i ̸= j, Ai and Aj are disjoint :

Ai ∩ Aj = ∅.

Definition 1.14 (Exhaustive sets). Let Ω be a set, and let (Ai)
n
i=1 = (A1, . . . , An) be a

collection of sets.We say that (Ai)
n
i=1 is exhaustive if

n⋃
i=1

Ai = A1 ∪ · · · ∪ An = Ω.

Remark 1.15. If A ⊂ Ω, then A induces a natural collection of sets that is mutually
exclusive and exhaustive, which is given by {A,A′} since Ω = A ∪ A′ and A ∩ A′ = ∅.

Remark 1.16. Both Definitions 1.13 and 1.14 can be extended mutatis mutandis for
infinite collections of subsets.
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1.3 Measuring events
Once we have written in the language of sets the possible outcomes of a random experi-
ment, we arrive at the essential point of probability theory: we want to measure events
in terms of how they are likely to happen.

Definition 1.17 (Probability). Given a random experiment with outcome space Ω, a
probability is a function P : P(Ω) → R (that is, it takes subsets of Ω and returns a real
number) that satisfies the following three properties:

(i) It is a nonnegative function: for every A ⊂ Ω, P(A) ⩾ 0.

(ii) The full outcome space has probability one: P(Ω) = 1.

(iii) It is countably additive: for any countable collection of events (Ai)
+∞
i=1 that is mutually

exclusive, then

P

(
+∞⋃
i=1

Ai

)
=

+∞∑
i=1

P(Ai).

Remark 1.18 (Probabilities are finitely additive). Item (iii) implies, in particular, that
P is finitely additive: for any finite collection of events (Ai)

n
i=1 that is mutually exclusive,

then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai).

For example, when n = 2 this means that if A1, A2 ⊂ Ω with A1 ∩ A2 = ∅,

P(A1 ∪ A2) = P(A1) + P(A2).

Before introducing concrete examples of probabilities, let us state their most important
properties.

Theorem 1.19. Consider an experiment with outcome space Ω and let P : P(Ω) → R be
a probability. Then P satisfies the following properties:

(i) For any A ⊂ Ω, P(A′) = 1− P(A).

(ii) P(∅) = 0.

(iii) It is monotone: for A,B ⊂ Ω with A ⊂ B, then P(A) ⩽ P(B).

(iv) For any A ⊂ Ω, P(A) ⩽ 1.

(v) The inclusion-exclusion principle: for any A,B ⊂ Ω,

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Proof.
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(i) Let A ⊂ Ω. In the light of Remark 1.15, the collection {A,A′} is mutually exclusive,
so item (iii) in Definition 1.17 (recall Remark 1.18) yields

P(Ω) = P(A) + P(A′).

By item (ii) in Definition 1.17, we have that P(Ω) = 1. Hence, 1 = P(A) + P(A′),
which yields P(A′) = 1− P(A).

(ii) Direct from item (i) in Theorem 1.19 by applying A = ∅.

(iii) Let A,B ⊂ Ω with A ⊂ B. Then we can see that B = A ∪ (B \ A). Since
A ∩ (B \ A) = ∅, then by item (iii) in Definition 1.17,

P(B) = P(A) + P(B ∩ A′)
(*)
⩾ P(A) + 0 = P(A),

where the inequality (*) is justified since P(B ∩A′) ⩾ 0 (item (i) in Definition 1.17).

(iv) Let A ⊂ Ω. Then by (iii) in Theorem 1.19, we have that P(A) ⩽ P(Ω), but P(Ω) = 1
(item (ii) in Definition 1.17).

(v) Let A,B ⊂ Ω. Recall item (x) in Proposition 1.12. Then

A ∪B = A ∪ (B \ A).

Since A and B \ A are disjoint,

P(A ∪B) = P(A) + P(B \ A). (1.3.1)

On the other hand, by items (iii), (viii), (v), and (ix) in Proposition 1.12, we have
that

B = B ∩ Ω = B ∩ (A ∪ A′) = (B ∩ A) ∪ (B ∩ A′) = (B ∩ A) ∪ (B \ A)

Since (B ∩ A) ∩ (B \ A) = ∅, then

P(B) = P(B ∩ A) + P(B \ A). (1.3.2)

The conclusion follows from mixing both equations (1.3.1) and (1.3.2).

Exercise 1.4. For A,B,C ⊂ Ω, compute P(A ∪ B ∪ C) in the fashion of item (v) in
Theorem 1.19. Can you generalize the statement if we have a collection of n subsets?

Now we are ready to provide a first example of a probability associated with a ran-
dom experiment having a finite number of possible outcomes, which is quite natural: the
equally likely probability, which consists of assigning the same probability to each possible
outcome.
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Definition 1.20 (Equally-likely). Consider a random experiment with a finite outcome
space Ω with m ∈ N∗ elements. The equally-likely or uniform probability is defined as the
probability P such that

∀ω ∈ Ω, P({ω}) = 1

m
.

Remark 1.21 (Laplace’s rule). Consider a finite outcome space Ω having m elements,
equipped with the uniform probability P. Consider an event A ⊂ Ω having k elements.
Then

P(A) =
k

m
,

which is no more than Laplace’s rule: under the uniform probability, the probability of
any event can be computed by dividing the number of results that form the event by the
number of possible outcomes. In other words, that is no more than the ratio between
favorable and total cases.

Remark 1.22 (Law of large numbers: take 1). Another interpretation of Laplace’s rule is
the following: imagine that you observe a random experiment with outcome space Ω and
suppose it has a probability P that is unknown. Given an event A ⊂ Ω, you may want
to estimate how likely it is to happen, that is, you want to approximate P(A). If you can
repeat many times the experiments (and if you assume that P is always the probability,
for each repetition), then you can estimate P(A) in the following way: if you perform the
experiment n times, let m(A) be the number of times you observed the event A amongst
the n repetitions. Then, if n is large enough,

P(A) ≈ m(A)

n
.

This is no more than the law of large numbers, which we will see later in this course.

Example 1.23 (Rolling a dice). Rolling a dice with six faces has six possible outcomes:

Ω = {1, 2, 3, 4, 5, 6}.

Saying that the dice is fair is equivalent to saying that each number has the same proba-
bility, equal to 1

6
. The probability of getting an odd number is 3

6
= 1

2
.

Example 1.24 (Drawing cards from a deck). If you draw a card from a standard 52-card
deck, the probability of drawing an ace of spades is equal to 1

52
. The probability of getting

an ace is 4
52

= 1
13

. On the other hand, the probability of drawing a spade is 13
52

= 1
4
.

1.4 Counting principles

As we have seen at the end of the last section, a prominent example of probability is the
uniform one, in the context of experiments with a finite outcome space. Recall that, in
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the light of Laplace’s rule (Remark 1.21), if we want to compute P(A), where P is the
uniform distribution, then

P(A) =
size(A)

size(Ω)
.

Hence, we are done if we can determine how many elements are in both A and Ω. Having
said that, the goal of this section is to introduce some counting principles that will allow
us to count elements from sets.

1.4.1 Rule of sum

The rule of sum states that if one can choose between two actions A1 and A2 that cannot
be done at the same time, and there are n1 ways to do A1, and distinct from them, n2

ways to do A2, then the number of ways to do A1 or A2 is n1 + n2.

Remark 1.25. The rule of sum can be extended to the case when one has A1, . . . , Am

different actions that cannot be done at the same time, and there are n1, . . . , nm different
ways to do each one, respectively: the number of ways to do A1, A2, . . . , or Am is
n1 + · · ·+ nm.

Example 1.26 (Choosing a course). Suppose that for this semester, you have to choose
between MATH 131A Analysis or MATH 131AH Analysis (Honors), and that four in-
structors are teaching MATH 131A and two are teaching MATH 131AH. Then you have
4 + 2 = 6 different classes to choose from.

1.4.2 Rule of product

The rule of product states that if an action A is divided into two actions A1 and A2 that
are independent and such that there are n1 ways to do A1 and n2 ways to do A2, then
there are n1 × n2 ways to do A.

Remark 1.27. The rule of product can be extended to the case when one has an action
A that is divided into A1, . . . , Am different actions that are perfomed independently, and
there are n1, . . . , nm different ways to do each one, respectively: the number of ways to do
A is n1 × · · · × nm.

Example 1.28 (Menu of the day). Suppose you go to a restaurant and choose the “menu
of the day” that allows you to choose a starter amongst three options, a main dish amongst
two options, and a dessert amongst five options. Then you have 3 × 2× 5 = 30 different
choices.

1.4.3 Permutations of n objects

A direct consequence of the multiplication principle is the following: suppose that you
have n different objects to be placed into n different sites. Then there are n! different
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ways to do that action, where n! is n factorial : if n = 0, we define 0! := 1, and

∀n ⩾ 1, n! := n× (n− 1)× (n− 2)× · · · × 2× 1.

Example 1.29 (PhD advisor). Suppose you are a Professor at UCLA and you have five
PhD students. You must meet them each week, but on different days (excluding Saturdays
and Sundays). Then you have 5! = 5 × 4 × 3 × 2 × 1 = 120 different ways to schedule
weekly meetings with them.

1.4.4 Permutations of n objects taken k

Suppose you have n different objects and you have to choose k between those n in order.
Then you have P n

k different ways to choose them, where

∀n, k ⩾ 0, P n
k :=

n!

(n− k)!
.

Example 1.30 (Holidays). Suppose that you want to travel to Europe on your holidays
(3 weeks) and that you want to visit different countries, spending exactly 1 week in each
country. On the other hand, since it will be your first time in Europe, you want to visit the
most touristic countries: France, Spain, Italy, England, Portugal, and Germany. Then, if
you consider the order in which you visit the countries, you have

P 6
3 =

6!

(6− 3)!
=

6!

3!
=

6× 5× 4×(((((3× 2× 1

(((((3× 2× 1
= 6× 5× 4 = 120

different possible itineraries.

1.4.5 Combinations of n objects taken k

Suppose you have n different objects and you have to choose k between those n, but you
do not care about the ordering in which those were drawn. Then you have Cn

k

different ways to choose them, where

∀n, k ⩾ 0, Cn
k :=

n!

k!(n− k)!
.

We also write
(
n
k

)
for Cn

k .

Example 1.31 (Coachella). Suppose you are the producer of Coachella, so you have the
hard but amusing task of choosing three headliners (you do not have to decide the day
they will play, just the artists). You have to choose between eight artists: Bad Bunny,
Tame Impala, Dua Lipa, The Strokes, Daft Punk (let us assume that they have reunited),
The Rolling Stones, Drake, or Oasis. Then you have

C8
4 =

8!

3!(8− 3)!
=

8!

3!5!
=

8× 7× 6×((((((((((
5× 4× 3× 2× 1

(3× 2× 1)× (((((((((((
5× 4× 3× 2× 1)

=
8× 7× 6

3× 2× 1
= 56

possible choices of headliners.
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1.5 Conditional probability

The object we define in this section is motivated by the following situation: suppose you
observe a random experiment with outcome space Ω and probability P. Let B ⊂ Ω be an
event you know has already happened. If A ⊂ Ω is another event, you may wonder what
is the probability of A, given that B has occurred.

Definition 1.32 (Conditional probability). Consider an experiment with outcome space
Ω and let P be a probability defined on P(Ω). Fix B ⊂ Ω with P(B) > 0. We define the
conditional probability given B as the function P(·|B) : P(Ω) → R defined by

∀A ⊂ Ω, P(A|B) :=
P(A ∩B)

P(B)
.

Note that the philosophy behind Definition 1.32 is the following: given that the event
B has happened, it is natural to compute, for A ⊂ Ω, P(A∩B), which is the probability
that both A and B have happened. The sole problem of the function A 7→ P(A ∩B)
is that it is not a probability in the sense of Definition 1.17 when P(B) < 1 because
P(Ω ∩ B) < 1. However, when we divide P(A ∩ B) by P(B), we are “renormalizing”, so
that P(Ω|B) adds up to 1, so it is indeed a probability.

Proposition 1.33. Consider an experiment with outcome space Ω and let P be a proba-
bility defined on P(Ω). Fix B ⊂ Ω with P(B) > 0. Then the function P(·|B) : P(Ω) → R
is a probability.

Exercise 1.5. Prove Proposition 1.33.

Remark 1.34. In general, P(A|B) ̸= P(B|A).

Let us provide a concrete example of conditional probability.

Example 1.35 (Rolling a die). Suppose you roll a fair six-sided (i.e., a standard) die. Let
B be the event “you obtain a number strictly greater than 3” and A “obtaining an even
number”. If you want to compute P(A|B), note that, on the one hand, B = {4, 5, 6}, so
P(B) = 3

6
= 1

2
. On the other hand, remark that A ∩ B = {4, 6}, so P(A ∩ B) = 2

6
= 1

3
.

Then

P(A|B) =
P(A ∩B)

P(B)
=

1
3
1
2

=
2

3
.

Conditional probability satisfies the following properties.

Proposition 1.36. Consider an experiment with outcome space Ω and let P be a proba-
bility defined on P(Ω).

(i) Let A,B ⊂ Ω with P(B) > 0. Then

P(A′|B) = 1− P(A|B).
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(ii) Let B ⊂ Ω with P(B) > 0. Then P(·|B) is countably additive: for any countable
collection of events (Ai)

+∞
i=1 that is mutually exclusive, then

P

(
+∞⋃
i=1

Ai

∣∣∣∣∣B
)

=
+∞∑
i=1

P(Ai|B).

(iii) Let B ⊂ Ω with P(B) > 0. Then P(·|B) is finitely additive: for any finite collection
of events (Ai)

n
i=1 that is mutually exclusive, then

P

(
n⋃

i=1

Ai

∣∣∣∣∣B
)

=
n∑

i=1

P(Ai|B).

(iv) Let A,B ⊂ Ω with P(A) > 0. Then

P(A ∩B) = P(A)P(B|A).

(v) Let A,B ⊂ Ω with P(B) > 0. Then

P(A ∩B) = P(B)P(A|B).

(vi) Let A,B,C ⊂ Ω with P(A) > 0 and P(A ∩B). Then

P(A ∩B ∩ C) = P(A)P(B|A)P(C|A ∩B).

Proof.

(i) It is a direct consequence of Proposition 1.33 and item (i) in Theorem 1.19.

(ii) Similar to (i): consequence of Proposition 1.33.

(iii) By definition, P(B|A) = P(B∩A)
P(A)

= P(A∩B)
P(A)

. The conclusion follows if we multiply the
equation by P(A).

(iv) Similar to (iii).

(v) Let us compute the right-hand side:

P(A)P(B|A)P(C|A ∩B) =���P(A)������P(B ∩ A)

���P(A)
P(C ∩ (A ∩B))

������P(A ∩B)
= P(A ∩B ∩ C).

Let us provide another example where these properties can be applied.
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Example 1.37 (Insurance). An insurance company sells several types of insurance poli-
cies, including auto and homeowner policies. Let A1 be those people with an auto policy
only, A2 those people with a homeowner policy only, A3 those people with both an auto
and homeowner policy, and A4 those with only types of policies other than auto and
homeowner policies. For a person randomly selected from the company’s policy-holders,
suppose that

P(A1) = 0.3, P(A2) = 0.2, P(A3) = 0.2, and P(A4) = 0.3.

Let B be the event that an auto or homeowner policy holder will renew at least one of
those policies. Say from past experience that we assign the conditional probabilities

P(B|A1) = 0.6, P(B|A2) = 0.7, and P(B|A3) = 0.8.

Given that the person selected at random has an auto or homeowner policy, what is the
conditional probability that the person will renew at least one of those policies? Note that
we want to compute P(B|A1 ∪ A2 ∪ A3). Note that

P(B|A1 ∪ A2 ∪ A3) =
P(B ∩ (A1 ∪ A2 ∪ A3))

P(A1 ∪ A2 ∪ A3)
=

P((B ∩ A1) ∪ (B ∩ A2) ∪ (B ∩ A3))

P(A1 ∪ A2 ∪ A3)

=
P(B ∩ A1) + P(B ∩ A2) + P(B ∩ A1)

P(A1) + P(A2) + P(A3)

=
P(A1)P(B|A1) + P(A2)P(B|A2) + P(A3)P(B|A3)

P(A1) + P(A2) + P(A3)

=
0.3× 0.6 + 0.2× 0.7 + 0.2× 0.8

0.3 + 0.2 + 0.2
≈ 0.6857.

1.6 Independence
Many random experiments have the following property: their repetitions are independent;
that is, they do not depend on previous realizations nor do they affect future ones.

Example 1.38 (Tossing coins and independence). To give an example, let us go back to
Example 1.4, so that

Ω = {HH,HT, TT, TH},
and let us endow Ω with the uniform probability Ω. Let A be the event “obtaining heads
in the first tossing” and B be the event “obtaining heads in the second tossing”. At least
intuitively, these two events should be independent, but how? Then let us study the
dependence between A and B via the conditional probability:

P(A|B) =
P(A ∩B)

P(B)
=

P({HH})
P({HH,TH})

=
1
4
1
2

=
2

4
=

1

2
.

But
P(A) = P({HH,HT}) = 2

4
=

1

2
,
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so
P(A|B) = P(A).

In the light of item (v) in Proposition 1.36, this can be rewritten as

P(A ∩B) = P(A)P(B).

What we have seen in Example 1.38 motivates the probabilistic definition of indepen-
dence.

Definition 1.39 (Independence). Consider an experiment with outcome space Ω and let
P be a probability defined on P(Ω). Let A,B ⊂ Ω. We say that A and B are independent
if

P(A ∩B) = P(A)P(B).

Now, let us observe some of the immediate consequences of the previous defini-
tion.

Proposition 1.40. Consider an experiment with outcome space Ω and let P be a proba-
bility defined on P(Ω).

(i) Let A,B ⊂ Ω be independent events. Then the pairs A and B′; A′ and B; and A′

and B′ are independent as well.

(ii) Let A,B ⊂ Ω be independent events with P(A) > 0. Then A and B are independent
if and only if

P(B|A) = P(B).

(iii) Let A,B ⊂ Ω be independent events with P(B) > 0. Then A and B are independent
if and only if

P(A|B) = P(A).

(iv) Let A ⊂ Ω with P(A) = 0. Then, for any B ⊂ Ω, A and B are independent.

Now we want to generalize Definition 1.39 for more than two events. However, the
following exercise shows that we should do it carefully.

Exercise 1.6. Consider the following experiment: you roll a fair six-sided die two times,
and consider the following events: A representing “obtaining an odd number on the first
roll”; B representing “obtaining an odd number on the second roll”; and C representing
“the sum of the two rolls is odd”.

(i) Write the outcome space Ω.

(ii) Why should we consider here the uniform probability P on P(Ω)?

(iii) Write explicitely the events A,B and C.
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(iv) Show that the the collection {A,B,C} is pairwise independent : that is, the pairs A
and B, B and C, and A and C are independent.

(v) Show that P(A ∩B ∩ C) = 0.

(vi) Compute P(A)P(B)P(C).

The last exercise shows that even if we assume that a trio of events {A,B,C} is
pairwise independent, it is not necessarily true that P(A∩B ∩C) = P(A)P(B)P(C). Now
we provide the proper definition.

Definition 1.41 (Mutual independence). Consider an experiment with outcome space Ω
and let P be a probability defined on P(Ω). Let A,B,C ⊂ Ω. We say that the events
A,B, and C are mutually independent if

(i) A,B, and C are pairwise independent:

P(A ∩B) = P(A)P(B), P(B ∩ C) = P(B)P(C), and P(A ∩ C) = P(A)P(C).

(ii) P(A ∩B ∩ C) = P(A)P(B)P(C).

We can even extend the definition for more than three events.

Definition 1.42 (Mutual independence, general case). Consider an experiment with out-
come space Ω and let P be a probability defined on P(Ω). Let (Ai)

n
i=1 be collection of

events. We say that the events (Ai)
n
i=1 are mutually independent if for every k ∈ N∗, and

every 1 ⩽ i1 < · · · < ik ⩽ n,

P

(
k⋂

j=1

Aij

)
=

k∏
j=1

P(Aij). (1.6.1)

Remark 1.43. In simple words, the events of a collection (Ai)
n
i=1 are mutually indepen-

dent if all the pairs, triples, quartets, etc. made of events of the collection satisfy (1.6.1).

1.7 Law of total probability
In this section, we provide a powerful principle, the law of total probability, which is
helpful when the outcome space can be divided into smaller pieces.

Theorem 1.44 (Law of total probability). Consider an experiment with outcome space
Ω and let P be a probability defined on P(Ω). Let (Bi)

n
i=1 be a collection of events that is

mutually exclusive and exhaustive (cf. Definitions 1.13 and 1.14). Let A ⊂ Ω. Then

P(A) =
k∑

i=1

P(A ∩Bi).
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Before proceeding with the proof, note that Theorem 1.44 says that if Ω can be
partitioned into smaller pieces (Bi)

n
i=1 and we can compute the probability of the events

A ∩Bi for all 1 ⩽ i ⩽ n, then we can calculate P(A).

Proof of Theorem 1.44. Since (Bi)
n
i=1 is exhaustive, then Ω =

⋃n
i=1Bi, so

A = A ∩ Ω = A ∩

(
n⋃

i=1

Bi

)
=

n⋃
i=1

(A ∩Bi).

The events (Bi)
n
i=1 are mutually exclusive, and thus so are (A ∩Bi)

n
i=1. Then

P

(
n⋃

i=1

(A ∩Bi)

)
=

n∑
i=1

P(A ∩Bi),

and the conclusion follows.

It is also possible to rewrite the law of total probability in the language of conditional
probability.

Corollary 1.45 (Law of total probability, conditional version). Consider an experiment
with outcome space Ω and let P be a probability defined on P(Ω). Let (Bi)

n
i=1 be a collection

of events that is mutually exclusive and exhaustive. Furthermore, assume that for each
1 ⩽ i ⩽ n, P(Bi) > 0. Let A ⊂ Ω. Then

P(A) =
k∑

i=1

P(Bi)P(A|Bi).

Proof. From the law of total probability, we know that

P(A) =
k∑

i=1

P(A ∩Bi).

But note that for each 1 ⩽ i ⩽ n,

P(A ∩Bi) =
P(Bi)

P(Bi)
P(A ∩Bi) = P(Bi)

P(A ∩Bi)

P(Bi)
= P(Bi)P(A|Bi).

We finish this section with an example.

Example 1.46 (Aces). The experiment here is drawing two cards from a standard deck
in order and without replacing. We want to compute the probability of the event A given
by “the second card drawn is an ace”. We will partition Ω into two disjoint pieces: let B1
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be the event “the first card drawn is an ace” and let B2 represent “the first card drawn is
not an ace”, so that Ω = B1 ∪B2 and B1 ∩B2 = ∅. Then, by Corollary 1.45,

P(A) = P(B1)P(A|B1) + P(B2)P(A|B2). (1.7.1)

Note that
P(B1) =

4

52
=

1

13
and P(B2) = 1− P(B1) =

12

13
.

For the conditional probabilities, we can directly compute, using Laplace’s rule,

P(A|B1) =
3

51
and P(A|B1) =

4

51
.

If we put all these probabilities into (1.7.1), we obtain

P(A) =
1

13
× 3

51
+

12

13
× 4

51
=

1

13
.

1.8 Bayes’ theorem
To end this first chapter, we introduce one of the most useful properties of probabilities:
Bayes’ theorem.

Theorem 1.47 (Bayes). Consider an experiment with outcome space Ω and let P be a
probability defined on P(Ω). Let A,B ⊂ Ω with P(A) > 0 and P(B) > 0. Then

P(A|B) =
P(B|A)P(A)

P(B)
. (1.8.1)

Proof. If we start from the right-hand side,

P(B|A)P(A)
P(B)

=

P(B∩A)

��P(A) ���P(A)
P(B)

=
P(A ∩B)

P(B)
= P(A|B).

We end with an example to prove its power.

Example 1.48 (COVID-19: the bad old days). Suppose a screening test for COVID-19
has the following parameters: the probability that the test is positive given that you are
sick (i.e., the probability of being a true positive) is

P(positive|sick) = 0.95.

On the other hand, the probability that the test is positive given that you are not sick
(i.e., the probability of being a false positive) is

P(positive|not sick) = 0.01.
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If we want to compute the probability of being sick given that you test positive, we may
use Bayes’ theorem:

P(sick|positive) =
P(positive|sick)P(sick)

P(positive)
. (1.8.2)

It is known that the probability you have the disease is 0.01, as 10 in every 1000 people who
have tested have the disease, so P(sick) = 0.01. Hence, the only missing quantity in the
right-hand side of (1.8.2) is P(positive test). However, using the law of total probability
(Corollary 1.45), we have

P(positive) = P(sick)P(positive|sick) + P(not sick)P(positive|not sick)
= P(sick)P(positive|sick) + (1− P(sick))P(positive|not sick).

That is, we can rewrite (1.8.2) as

P(sick|positive) =
P(positive|sick)P(sick)

P(sick)P(positive|sick) + (1− P(sick))P(positive|not sick)

=
0.95× 0.01

0.01× 0.95 + (1− 0.01)× 0.01

≈ 0.49.

That is, given that you tested positive, with probability 0.49 you are sick.
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