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Titre : Processus stochastiques, transport de mesures et inégalités fonctionnelles.

Mots clefs : inégalités fonctionnelles ; transport de mesures ; processus stochastiques ;
application de transport ; inégalités de Sobolev logarithmiques ; inégalités de Sobolev
logarithmiques modifiées ; transport optimal entropique.

Résumé : Dans cette thèse, nous nous
intéressons aux interactions de trois su-
jets : les processus stochastiques, le trans-
port optimal et les inégalités fonctionnelles.
Le manuscrit comporte deux parties : la
première est consacrée aux notions préli-
minaires concernant les contributions ori-
ginales de la thèse et la deuxième présente
ces contributions.

La première partie est divisée en deux
chapitres. Dans le premier chapitre, nous
commençons par une introduction aux fon-
damentaux de la théorie du transport opti-
mal, en mettant l’accent sur le cas quadra-
tique euclidien, la structure de ses solutions
et leur régularité. Dans le deuxième cha-
pitre, nous offrons un panorama de la théo-
rie des inégalités fonctionnelles en commen-
çant par les inégalités géométriques et leurs
versions fonctionnelles. Nous nous intéres-
sons notamment aux inégalités isopérimé-
triques et au phénomène de concentration
de la mesure qui occupent une place cen-
trale dans la théorie. Finalement, nous étu-
dions différentes familles d’inégalités fonc-
tionnelles qui entraînent la concentration de
la mesure : les inégalités de Poincaré, de So-
bolev logarithmiques, de Sobolev logarith-
miques modifiées et de transport-entropie.

La deuxième partie, constituée des
quatre derniers chapitres du manuscrit,
présente les contributions originales de la
thèse. Dans le troisième chapitre, nous
montrons que pour toute variété rieman-
nienne à poids et à courbure contrôlée
aux premier et deuxième ordres dans le
sens de Bakry-Émery, l’application de Kim-
Milman, issue du processus de Langevin as-
sociée à la variété, envoyant la mesure de

poids sur toute perturbation log-Lipschitz
est alors lipschtizienne ; ce résultat permet
le transfert d’inégalités fonctionnelles.

Dans le quatrième chapitre, nous
construisons une application de transport
entre le processus de Poisson ponctuel et
des mesures ultra-log-concaves sur les en-
tiers naturels et nous montrons qu’elle est
contractante. Cette approche permet de
surmonter les difficultés qui entravent le
transfert d’inégalités fonctionnelles dans le
cadre discret en utilisant des applications
de transport. En conséquence, nous obte-
nons de nouvelles inégalités fonctionnelles
pour des mesures ultra-log-concaves. En
particulier, notre approche permet d’amé-
liorer la constante connue pour l’inégalité
de Sobolev logarithmique modifiée pour les
mesures ultra-log-concaves.

Dans le cinquième chapitre, nous exhi-
bons une preuve alternative de l’inégalité
de Sobolev logarithmique modifiée de Wu
pour la mesure de Poisson via une formula-
tion stochastique variationnelle de l’entro-
pie. Cette technique nous permet de carac-
tériser les cas d’égalité et de montrer un
résultat de stabilité quantitative pour l’in-
égalité sous des hypothèses de convexité.

Dans le sixième et dernier chapitre,
dans le contexte de la régularisation entro-
pique du transport optimal, nous exhibons
une borne pour le taux de la convergence
uniforme sur des ensembles compacts pour
les potentiels entropiques et leurs gradients
vers le potentiel de Brenier et son gradient,
respectivement. Ces résultats sont valides
dans le cadre quadratique euclidien, pour
des mesures absolument continues sous des
hypothèses de convexité.
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Title: Stochastic processes, mass transportation, and functional inequalities.

Keywords: functional inequalities; mass transportation; stochastic processes; trans-
port maps; logarithmic Sobolev inequalities; modified logarithmic Sobolev inequalities;
entropic optimal transport.

Abstract: In this thesis, we are inter-
ested in the interaction between stochas-
tic processes, optimal transport, and func-
tional inequalities. The manuscript is di-
vided into two parts: the first is devoted to
the preliminary notions necessary for the
understanding of the original contributions
of this thesis, and the second presents orig-
inal contributions to these fields.

In the first part, which is divided into
two chapters, we start by providing an in-
troduction to the basic theory of optimal
transport in the first chapter, with an ac-
cent on the quadratic Euclidean problem,
the structure of its solutions, and their reg-
ularity. In the second chapter, we survey
the theory of functional inequalities, start-
ing from geometric inequalities and their
functional counterparts, where isoperimet-
ric inequalities and the concentration of
measure phenomenon constitute a central
part of the theory, to then review differ-
ent families of functional inequalities that
yield concentration of measure: Poincaré,
logarithmic Sobolev, modified logarithmic
Sobolev, and transport-entropy inequali-
ties.

The second part, which comprises the
last four chapters of the manuscript, con-
cerns the original contributions of the the-
sis. In the third chapter, our main re-
sult states that for any weighted Rieman-
nian manifold that has bounded curvature
at first and second order in the sense of
Bakry-Émery, then the Kim-Milman trans-
port map, which arises from the Langevin
diffusion associated with the manifold, be-
tween the weighted measure and any log-

Lipschitz perturbation of it is Lipschitz.
This result allows the transfer of a number
of functional inequalities.

In the fourth chapter, which is based
on joint work with Yair Shenfeld, we con-
struct a transport map from Poisson point
processes onto ultra-log-concave measures
over the natural numbers, and show that
it is a contraction. This approach over-
comes the known obstacles to transfer-
ring functional inequalities using transport
maps in discrete settings, thus yielding new
functional inequalities for ultra-log-concave
measures. In particular, we provide the cur-
rently best known constant in modified log-
arithmic Sobolev inequalities for ultra-log-
concave measures.

In the fifth chapter, which is based
on joint work with Shrey Aryan and Yair
Shenfeld, we provide an alternative proof to
Wu’s modified logarithmic Sobolev inequal-
ity for the Poisson measure using a stochas-
tic variational formula for the entropy. We
show that this approach leads to the identi-
fication of the extremizers of the inequality,
as well as a quantitative stability result un-
der convexity assumptions.

In the sixth and final chapter, in the
context of the entropic regularization of the
optimal transport problem, we exhibit a
bound on the rate of uniform convergence
in compact sets for both entropic potentials
and their gradients towards the Brenier po-
tential and its gradient. Both results hold
in the quadratic Euclidean setting for abso-
lutely continuous measures satisfying some
convexity assumptions.
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matiques, mention apprentissage et algorithmes, car après avoir terminé mes études en
mathématiques au Chili, j’avais envie de m’orienter thématiquement vers un domaine
un peu différent : celui du machine learning. Je remercie Maxime Sangnier, qui dans
son rôle de co-directeur du master et tuteur FSMP, m’a toujours aidé, encouragé et
orienté. J’en profite également pour remercier les professeurs Eddie Aamari, Anna
Ben-Hamou et Gérard Biau pour leurs cours qui m’ont beaucoup inspiré et pour
leur bienveillance envers moi. Je remercie aussi mes collègues du master, qui dès le
début ont été très accueillants et patients avec moi et mon français débutant. Merci
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pour les sorties au bar et pour le soutien collectif dans les différents cours. Plus particu-
lièrement, je remercie Paul Liautaud et Patrick Lutz pour leur amitié qui perdure
jusqu’à aujourd’hui (soit que j’aille à Jussieu, soit que j’aille à Boston).

Malheureusement, dès la première semaine des cours, je me suis rendu compte que
je n’aimais pas le sujet du machine learning et que je voulais retourner aux mathéma-
tiques pures, et plus précisément, aux probabilités. Je ne savais pas quoi faire, mais au
moment, je savais qu’il y avait une personne qui pouvait m’aider : Joaquín Fontbona.
Joaquín, aprovecho este espacio para agradecerte: en el curso de probabilidades me en-
señaste qué es una medida de probabilidad y en cálculo estocástico me enseñaste qué
es el movimiento browniano; fue gracias a esto que me enamoré de las probabilidades y
decidí dedicarme a ellas como matemático. Más allá de eso, siempre has estado atento
a mis pasos desde que terminé mis estudios en Chile y siempre me has aconsejado y
motivado. Para mí es un gran honor que hoy en día incluso estemos colaborando en un
proyecto. Gracias por tu humanidad, simpatía y excelente gusto musical (¡repitamos
pronto el karaoke!).

Quiero también agradecer a todos los profesores que tuve en Chile. Sin lugar a
dudas, es también gracias a la excelente formación que recibí en la Universidad de
Chile que pude proseguir con mis estudios en París. En particular, quiero agrade-
cer a los profesores Hugo F. Arellano, Roberto Cortez, Aris Daniilidis, Raúl
Gormaz, Alejandro Maass, Martín Matamala, Gonzalo A. Palma, Daniel
Remenik, Jaime San Martín, Jorge San Martín y Raimundo Undurraga por
sus inspiradores cursos. Nunca fue mi profesora, mas agradezco también a Natacha
Astromujoff por su simpatía, preocupación y por todos los cigarros que hemos fu-
mado, incluso cada vez que he vuelto a mi querido Beauchef en estos últimos años. Me
gustaría también agradecer a todos los miembros de la comunidad de probabilidades
en Chile, a la que he tenido la suerte de irme integrando más durante la preparación
de esta tesis, sobre todo en las escuelas de verano en Chile. En particular, y aparte
de quienes ya he mencionado arriba, gracias, Mauricio Duarte, Héctor Olivero,
Santiago Saglietti y Avelio Sepúlveda.

Après avoir discuté avec Joaquín des possibilités qui s’offraient à moi après ne pas
vouloir continuer cette brève excursion dans le monde des applications, une option
a retenu mon attention : le transport optimal. Cette idée semblait intéressante, car
la théorie du transport optimal était belle et permettait d’établir de jolis liens entre
différents domaines. Je commençais alors à chercher des professeurs pour encadrer mon
mémoire de M2 et peut-être une thèse. C’est ainsi que je suis tombé sur le nom de Max
Fathi à qui j’ai demandé si je pouvais assister à son cours sur le transport optimal et
s’il serait disponible pour encadrer mon mémoire de M2 et une éventuelle thèse. La
page de garde de cette thèse fait le spoiler : il a dit oui, et c’est comme ça que c’est
parti.

Max, je tiens à vous remercier de m’avoir encadré ces années ; très concrètement,
sans votre soutien et votre direction, cette thèse ne se serait pas achevée. D’abord,
vous avez toujours su répondre à mes (très floues) questions, en donnant toujours de
bonnes pistes et des références très précises. C’est grâce à vous que j’ai pu approfondir
ma culture mathématique ces années, et je vous remercie d’avoir toujours poussé en
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avant ma curiosité mathématique ; je mesure la chance que j’ai eue de travailler sous
votre supervision. Au-delà des mathématiques, merci d’avoir toujours été très soucieux
de ma formation et de mon avenir, merci pour toutes les précieuses opportunités que
vous m’avez données tout au long de ma thèse. Merci d’avoir été très patient, gentil,
généreux et sympathique avec moi. Merci de m’avoir appris des détails de la langue
française comme la différence entre « courbure » et « courbature » ou le fait que l’on
dit plutôt « un Coca-Cola » et non « une Coca-Cola ». Merci pour la recette de kimchi,
je vous dirai comment c’était quand j’aurai essayé.

Au deuxième semestre, quand l’hiver et les mesures anti-Covid s’assouplissaient, j’ai
fait de manière progressive la rencontre d’un groupe d’hispanophones à Jussieu avec
lesquels j’allais passer le crépuscule de ma jeunesse, los templarios: Martín Azón,
Bruno Gálvez, Rodrigo «Rodri» Íñigo, Pau Maestre y Carlos «Charly» Ro-
dríguez. Gracias por la bella amistad que me han regalado y que perdura hasta hoy
en día (no saben la tremenda alegría que me da que vengan a mi defensa), por todos los
momentos vividos en aquel mítico semestre, y en particular, por ese verano de 2022,
mi último verano de juventud, que tuvo como soundtrack el disco Un verano sin ti
de Bad Bunny. Yo pensaba que la pandemia me había arrebatado definitivamente la
juventud, mas no: ustedes le dieron un último suspiro. Nuestro hábitat natural era
Jussieu: cómo olvidar esas sesiones de estudio en la MIR y sus respectivas pausas para
ir a comprar el segundo almuerzo de Martín y echarnos un poco de nicotina encima,
o esos almuerzos con larga sobremesa en el Crous. Dicho esto, otro lugar natural era
el mítico Salsero, al cual siempre nos costaba entrar, pero si no lo lográbamos, éramos
felices yendo afuera del mítico templo3 para hacer homenaje a la Santísima Trinidad:
Guillermo, Pepe y Ricardo. De manera más personal, gracias, Martín, por todas esas
buenas videollamadas y conversaciones sobre la vida y el futuro. Gracias por siem-
pre considerarnos e invitarnos a cada plan que organizabas, por presentarnos a tus
amigos, por presentarnos a don Guillermo y por tu extenso prontuario, que siempre
nutrió nuestros chistes e historia colectiva templaria. Gracias, Bruno, por ser ese tipo
de amigo con el que comparto infinitas cosas: valores, gustos, odios, música, basadería,
etc. (aunque discrepemos cuando se trata del uso de cartas locales en una variedad).
Gracias por siempre haberme bancado, por el tiempo en que fuimos vecinos y por los
tópicos recurrentes que nutren nuestras conversaciones. Gracias, Rodri, por estar siem-
pre presente y haber continuado la amistad, aunque hayas partido de Francia. Gracias
por ser (a veces) la voz de la razón entre todos nosotros, por tu amor al transporte
óptimo, por el épico viaje a Napoli y por los Uber (mas no te pienso agradecer jamás
por la ida a Vin et Whisky). Gracias, Pau, por presentarnos a don Pepe, por los puri-
tos, por tu motivación y por el concepto de chavalería. Gracias, Charly, por tu eterna
alegría, motivación e inagotable energía durante el M2 que siempre nos condujeron al
Salsero. Gracias por tu devoción por el reggaeton, por presentarme a don Ricardo y
por ser el único no chileno que no me da cringe que use nuestras expresiones. Tam-
bién quiero agradecer a varias personas que nos rodearon en esos tiempos y después;
gracias, Yvon Bossut, Rania Bouhaouita Haddad, Mar Derqui, Luis Ivorra,
Paul Martin, Francesca Pratali e Irlanda Rodríguez. No fuiste parte de la época
dorada del M2, mas fue gracias a este grupo que te conocí: gracias, Mercè «Merche»

3C’est l’église Saint-Julien-le-Pauvre, qui se trouve au 5e arrondissement.



xvi REMERCIEMENTS

Sellarès, por tu eterna disposición a escucharme y aconsejarme, por entender también
lo que es tener piedras en los riñones, por esas idas espontáneas al Nouvel, por hacerme
sentir joven y por haberme llevado a comer las mejores bravas de Barcelona.

Après le M2, j’ai commencé ma thèse à l’université Paris Cité, dans le 13e arron-
dissement. Dans le roman Extension du domaine de la lutte, on trouve une description
très précise du quartier :

« Nous travaillons dans un quartier complètement dévasté, évoquant vague-
ment la surface lunaire. C’est quelque part dans le treizième arrondissement.
Quand on arrive en bus, on se croirait vraiment au sortir d’une troisième
guerre mondiale. Pas du tout, c’est juste un plan d’urbanisme.

Nos fenêtres donnent sur un terrain vague, pratiquement à perte de vue,
boueux, hérissé de palissades. Quelques carcasses d’immeubles. Des grues
immobiles. L’ambiance est calme et froide. »

Oui, le quartier est moche, mais les gens que j’y ai rencontrés sont formidables. Je
tiens tout d’abord à remercier les permanents du 5e étage pour leur bienveillance lors
de parler de mathématiques ou de la vie, leurs conseils, leur sympathie et leur encou-
ragement. Plus particulièrement, merci, Yves Achdou, Yves Capdeboscq, Sylvain
Delattre, Romain Ducasse, Bastien Fernandez, Michael Goldman, Raphaël
Lefevere (c’était un vrai plaisir assurer les travaux dirigés de tes cours et je te remercie
pour la lettre de recommandation que tu as écrite !), Céline Lévy-Leduc, Mathieu
Merle et Éric Vernier. Dans toute l’hostile bureaucratie administrative, j’ai toujours
eu l’efficace et patiente aide de Nathalie Bergame et Amina Hariti, à qui j’en re-
mercie beaucoup. Je tiens à remercier mes collègues stagiaires, doctorants, ATERs et
postdocs, avec lesquels j’ai eu le plaisir de partager beaucoup de moments lors de la
préparation de ma thèse. Ces presque quatre années, je me suis toujours rendu avec
grand plaisir au 5e étage du bâtiment Sophie Germain ; merci pour les longues pauses
déjeuner, pour les parties de Pédantix et Cémantix et pour les discussions animées
sur de nombreux sujets (l’origine des sauces dans la gastronomie, les conséquences de
manger le dessert avant les fruits, etc.). Merci, Aziz Ben Nejma, Nathan De Car-
valho, Orphée Collin, Ali Ellouze, Dounia Essaket, Pierre Faugère, Eleanor
Gemida, Marina Gomtsyan, Alexis Houssard, Lucas Ketels, Lamia Lamrani,
Łukasz Mądry, Hoang-Dung Nguyen, Yihao Pang, Justin Ruelland et Ar-
thur Stéphanovitch. Mais, de manière spéciale, je voudrais remercier mes amis les
plus intimes dans le 5e étage, mes chers « bâtards ». À chaque fois que je n’allais pas
bien et que je ne voulais pas continuer, ou quand il y avait une petite chose à fêter,
vous étiez toujours là pour moi. Merci, Archit Chaturvedi, d’avoir été mon confident
au labo, d’avoir écouté mes (toujours infructueuses) histoires et de m’avoir toujours
donné ton précieux avis ; merci pour ton sens de l’humour et pour ton exceptionnel goût
littéraire. Merci, Alessandro « Ale » Cosenza, pour tous les moments où tu m’as
fait beaucoup rire (« aïe, Alessandro ! »), d’avoir été le meilleur collègue de bureau,
d’avoir toujours bien toléré toutes mes blagues, de m’avoir rappelé le rasoir d’Ockham
au moment précis et merci pour toutes les fois où tu m’as sauvé d’ouvrir une boîte
de sauce pesto en m’invitant manger chez toi. Merci, Anna De Crescenzo, d’être
l’une des personnes qui m’ont le plus encouragé le plus dès le début de la thèse (en
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croyant en mes capacités plus que moi-même), surtout dans les moments où j’avais
perdu l’espoir. Merci d’avoir toujours ri de mes blagues et bêtises (et même de les avoir
amplifiées), pour les apéros sur la Seine et pour la jolie tasse que tu m’as offerte. Merci,
Léo Daures, d’avoir été mon premier ami français intime, de t’être donné le temps et
la patience de nous expliquer les références et mèmes français, pour ton humanité, de
m’avoir présenté la chartreuse, d’avoir été le greffier officiel lors du Pédantix et pour
toutes les fois où l’on a dit qu’il aurait été magnifique d’être à Bercy pour Alive 2007.
Merci, Maxime Guellil, d’être mon meilleur « collègue de pot », d’avoir toujours
montré de l’intérêt pour mes mathématiques (alors qu’elles ne servent à rien) et de
m’avoir fait confiance pour me demander mon avis lorsque tu en avais besoin. Merci,
Ons Rameh, d’avoir été une magnifique sœur de thèse, pour nos discussions sur la vie
(surtout à Rennes) et de m’avoir toujours encouragé lorsque je me sentais nul. Tu ne
fais pas partie du 5e étage, mais c’est grâce à Ale et Anna que je t’ai rencontré, Florin
Suciu : merci de m’avoir toujours accompagné fumer dehors, pour les épiques soirées
que l’on a passées ensemble et d’avoir toléré mes cris quand je supportais Nicolás Jarry
quand on l’a vu jouer contre Carlos Alcaraz au tournoi de Bercy.

Je n’oublie pas mes collègues doctorants de Jussieu ; merci, Zhe Chen, Nicolaï
Gouraud, Ruikang Liang, Cristóbal Loyola, Robin Roussel et Fabrice Serret.
Je remercie particulièrement aux « coolest of LJLL », Federica Padovano, Lucia
Tessarolo et Aleksandra Tomaszek, pour tous les dîners et sorties où l’on a toujours
beaucoup ri (malgré le fait que vous n’aimiez pas la langue de Molière).

Vers la fin de ma première année de thèse, Max m’a invité à une école d’été au
SLMath Institute de Berkeley, en Californie, où il allait être l’un des enseignants.
Elle portait sur la concentration de la mesure, les inégalités fonctionnelles et les tech-
niques de localisation ; c’est-à-dire, une très bonne opportunité pour consolider mes
connaissances dans ces domaines, mais pas seulement, car j’y ai aussi pu rencontrer
des personnes formidables. I would like to thank Dan Mikulincer for being a great
teacher at the summer school and for all our subsequent discussions. Thank you for
your insightful questions, your kind words, and for paying such close attention to my
work. I also thank Arianna Piana and Shay Sadovsky for being excellent teaching
assistants and for all the discussions we had. Finally, I thank all the other PhD students
I met in those two amazing weeks, where we could discuss mathematics, hang out, and
visit the Bay Area. Thank you, Michael Albert, Shrey Aryan (special thanks to
you for our collaboration with Yair, reflected in Chapter 5, that I very much enjoyed!),
Sabyasachi Basu, Ratul Biswas, Shabarish Chenakkod, Lorenz Frühwirth,
Aldo García Guinto, Marcel Hudiani, Zhen-Chuan Liu, Uriel Martínez León,
Jacob McErlean, and Pegah Mohammadipour (thank you for staying in touch
after the summer school; next time, I will not miss the opportunity to go to the sake
place!).

Un autre événement marquant dans ma thèse a été ma visite de deux mois à
l’université de Brown aux États-Unis pour travailler avec Yair Shenfeld vers la fin
de la deuxième année. Yair, without a doubt, my visit to Brown was fundamental to
completing my PhD. Beyond the fact that Chapters 4 and 5 are based on our collab-
orations, those two months gave me fresh air at a time when I was questioning myself
whether if it was worthwhile continuing with my PhD. We did beautiful mathematics
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together, and it was a real pleasure working and hanging out with you. I will never
forget all the help you gave me when I was applying for postdoc positions, helping me
polishing my application and writing a recommendation letter for me. Thank you for
the times you invited me to dinner; I really appreciated your knowledge of the best
Asian restaurants in Providence! I would also like to thank Ramon van Handel,
Kevin Hu, Oanh Nguyen, and Kavita Ramanan, all of whom I had the pleasure
of meeting. Gracias, Molly Wagschal, por todo: en particular, por hacer que el
tiempo que pasé en Providence fuese muy ameno, por presentarme a tus amigos y por
tus mac and cheese.

Au long de ces années, j’ai eu la chance de rencontrer des chercheurs dans le cadre
de différentes opportunités, qui ont été très bienveillants, patients et sympathiques avec
moi lors de nos échanges. De manière particulière, merci, Aymeric Baradat (merci
beaucoup de m’avoir invité à Lyon !), Alessandra Bianchi, Léonard Cadilhac,
Giovanni Conforti (merci beaucoup de m’avoir invité à Padoue !), Thomas Cour-
tade Alexandros Eskenazis, Matthieu Fradelizi, Ivan Gentil (je te remercie de
m’avoir fait réfléchir pour la première fois au cours de ma thèse sur les aspects éthiques
de la recherche en mathématiques), Ronan Herry (merci beaucoup de m’avoir invité
à Rennes !), Flavien Léger, Joseph Lehec, Pierre Monmarché, Loucas Pillaud-
Vivien, Cyril Roberto, Paul-Marie Samson et Nikita Simonov (¡muchas gracias
por la invitación a Granada!).

Ces années m’ont aussi permis de rencontrer de nombreux collègues doctorants et
jeunes chercheurs lors de plusieurs conférences et rencontres, et d’échanger avec eux
autour des mathématiques (ou pas nécessairement). Merci, Nicolás Agote, Pablo
Araya, Esther Bou-Dagher, Katharina Eichinger, Felipe Espinosa, Marta
Gentiloni Silveri, David Heredia, Dylan Langharst, Hugo Malamut, Fran-
cisco Marín Sola, Richard Medina, Saliou Ndiaye, Giacomo Passuello, Jor-
dan Serres et Maxime Sylvestre.

Quiero agradecer a mis amigos compatriotas que me han acompañado en esta
aventura acá en París, que sin lugar a dudas han hecho muy amena esta travesía,
gracias, Andrés Contreras, Felipe Gambardella, Felipe Garrido, Moira Mac
Auliffe, Martín Rapaport, Pablo Uribe y Nicolás Zalduendo. De manera más
particular, quiero agradecer a dos chilenos con los que he tenido el placer de compartir
bastante en la última parte de mi doctorado. Gracias, Arie Wortsman, por haber
sido una suerte de psicólogo para mí, escuchando mis problemas, siempre llamando
a la calma y a la cordura cuando las cosas no andaban bien y quería tirar todo (y
a todos) por la borda. Gracias por llevarle a Alejandra mis libros y por haberme
mostrado a Roberto Bolaño, la babka y Culture Rapide. Gracias, Pablo Zúñiga,
por ser apañador, por tu ecléctico sentido del humor, por el viaje a Normandía y
Bretaña (donde conocimos a Ricardo Félix, a quien agradezco por su amistad), por
tu excelente gusto musical del cual compartimos bastante y por recordarme la existencia
de La Brígida Orquesta.

Je suis honoré que Martin Huesmann et Christian Léonard aient accepté
de rapporter ma thèse ; je voudrais les remercier pour l’attentive lecture qu’ils ont
fait de mon manuscrit et pour leurs rapports très détaillés. De manière particulière,
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merci, Christian, pour tout : j’ai vraiment beaucoup apprécié nos discussions. Notre
rencontre a marqué un moment important : tu m’as encouragé quand je n’avais pas
trop d’espoir pour l’avenir et je sentais que ma thèse ne servait à rien. Je te remercie
aussi pour la jolie lettre de recommandation que tu as écrite. Je tiens également à
remercier aussi Nathaël Gozlan, Hélène Halconruy et Maxime Laborde d’avoir
accepté de faire partie de mon jury, ce qui me fait très plaisir. En particulier, merci,
Maxime, d’avoir été présent tout au long de la préparation de cette thèse. Ton aide, ta
sympathie, tes encouragements et les nombreuses discussions que nous avons eues ont
été fondamentales durant toutes ces années.

Cette histoire aura une belle continuation : je partirai à Los Angeles, en Californie,
pour faire mon postdoc avec Georg Menz à l’UCLA. Thank you, Georg, for your
kindness from the very beginning, for believing in me, and for supporting my appli-
cation. I am quite sure that I will enjoy working with you over the next three years.
I look forward to learning many things from you and applying what I have already
learned.

Enfin, je crois que c’est tout ce que je voulais dire. Désolé si c’était trop long,
mais c’est quelque chose que je voulais faire, car ces presque quatre années en France
m’ont appris l’importance des autres personnes dans ma vie ; sans toutes celles qui sont
mentionnées dans ce texte, cela n’aurait pas été possible. ¡Gracias totales!
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Notations and conventions

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles ;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Charles Baudelaire
Correspondances

Sets

If X is a set, we denote the identity function on X by idX : X → X . The cardinal of X
is written as card(X ). For any subset A ⊂ X , the function 1A : X → {0, 1} represents
the indicator function of A; that is, for every x ∈ X , 1A(x) = 1 if and only if x ∈ A.
In particular, we define 1 := 1X , meaning that 1 is the constant function equal to 1
on the set X .

We denote the natural numbers by N := {0, 1, 2, . . . }, the positive natural numbers
by N∗ := N \ {0}, the integers by Z, and the real numbers by R. We use R+ or R⩾0 to
denote the nonnegative real numbers, and R>0 for the positive real numbers.

Given two sets X and Y , we denote their Cartesian product by X ×Y ; projX : X ×
Y → X and projY : X × Y → Y are the associated canonical projections. For real-
valued functions f : X → R and g : Y → R, we define their sum f ⊕ g : X ×Y → R as
follows:

∀(x, y) ∈ X × Y , (f ⊕ g)(x, y) := f(x) + g(y).

xxi
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Euclidean structure and matrices

For any d ∈ N∗, and any x ∈ Rd, we write x = (x1, . . . , xd). For x, y ∈ Rd, we denote
the Euclidean inner product between x and y by x · y :=

∑d
i=1 xiyi, and the Euclidean

norm of x by |x| :=
√
x · x. When we refer to Rd, it is immediately assumed that

d ∈ N∗ unless otherwise specified.

For any d ∈ N∗, we denote the set of square matrices with real entries of dimension
d × d by Md(R). Id is the identity matrix of dimension d × d. For M ∈ Md(R),
we define its Hilbert-Schmidt as |M |HS :=

(∑d
i,j=1|Mij|2

)1/2, and its operator norm
as |M |op := sup|x|=1|Mx|. We denote the trace of M by tr(M) and its determinant
by det(M). We write the transpose of M as M⊺, and we say that M is symmetric if
M =M⊺.

Let d ∈ N∗, and let M ∈ Md(R) be a symmetric matrix. If for every x ∈ Rd,
x⊺Mx ⩾ 0, we say that M is positive semidefinite, and write M ≽ 0; if for every
x ∈ Rd \ {0}, x⊺Mx > 0, we say that M is positive definite, and write M ≻ 0. For
two symmetric matrices M,N ∈ Md(R), we say that M ≽ N if (M − N) ≽ 0. If M
is positive semidefinite, we denote its square root by M

1
2 , which is the only symmetric

matrix such that M
1
2M

1
2 =M .

Metric spaces

Let (X , d) be a metric space, and let A ⊂ X . We denote the interior, the closure, and
the boundary of A by int(A), Ā, and ∂A, respectively. For any x ∈ X and r > 0, we
write the closed ball with center x and radius r as BX (x, r) or just B(x, r) if the base
space is clear from the context. Similarly, we denote the open ball with center x and
radius r by BX (x, r) or B(x, r).

If both (X , dX ) and (Y , dY) are metric spaces, we say that a map T : X → Y is
Lipschitz if there exists a constant L > 0 such that

∀x1, x2 ∈ X , dY(T (x1), T (x2)) ⩽ LdX (x1, x2).

In the special case when L ⩽ 1, we say that T is a contraction.

Convexity, continuity, and differentiability

Let X be a topological vector space, denote its topological dual by X ∗, and the duality
pairing between X ∗ and X by ⟨·,·⟩. A subset A ⊂ X is said to be convex if

∀t ∈ [0, 1],∀x, y ∈ A, (tx+ (1− t)y) ∈ A.

For a function f : X → R ∪ {+∞}, we define its domain as the set

Dom(f) := {x ∈ X : f(x) < +∞},
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and we say that f is proper if Dom(f) ̸= ∅. A function f : X → R ∪ {+∞} is convex
if Dom(f) is a convex set and

∀t ∈ [0, 1],∀x, y ∈ Dom(f), f(tx+ (1− t)y) ⩽ tf(x) + (1− t)f(y).

For any A ⊂ X , we define its characteristic function χA : X → R ∪ {+∞} as

∀x ∈ X , χA(x) :=

{
0, if x ∈ A

+∞, otherwise.

For f : X → R ∪ {+∞} proper, its convex conjugate or Legendre transform is the
function f ∗ : X ∗ → R ∪ {+∞} defined by

∀x∗ ∈ X ∗ f ∗(x∗) := sup
x∈X

{⟨x∗, x⟩ − f(x)} .

If A ⊂ X and f : A → R ∪ {+∞} is a function, we define its extension f̃ : X →
R ∪ {+∞} as

∀x ∈ X , f̃(x) :=

{
f(x), if x ∈ A

+∞, otherwise;

we say that f is convex if f̃ is convex, and doing an abuse of notation, we define f ∗ as
the function (f̃)∗ restricted to the set A.

Let X and Y be topological spaces. We denote the set of continuous functions
between X and Y by C(X ,Y). If Y = R, we simply write C(X ). We write Cb(X ) for the
set of continuous and bounded real-valued functions defined on X , which is a Banach
space if we equip it with the uniform norm ∥·∥∞, and we denote the set of continuous
and compactly supported real-valued functions by Cc(X ). If we have a sequence (fn)n∈N
of continuous functions fn : X → R, we say that it converges uniformly on compact sets
to a continuous function f : X → R if for each compact set K ⊂ X , ∥fn − f∥K,∞ :=

supx∈K |fn(x)− f(x)| → 0 as n→ ∞. If f : X → Rd or f : X → Md(R), we can extend
the definition of ∥·∥K,∞ by doing the following abuse of notation: ∥f∥K,∞ := ∥|f |∥K,∞,
where |·| denotes the Euclidean or Hilbert-Schmidt norm, depending on the codomain
of f .

If f : Rd → R is differentiable, we denote its gradient at x ∈ Rd by ∇f(x) =
(∂if(x))

d
i=1 ∈ Rd, where for 1 ⩽ i ⩽ d, ∂i is the i-th partial derivative; if d = 1,

we denote its derivative by f ′(x). If f : Rd1 → Rd2 is differentiable, we also denote
its Jacobian or differential matrix at x ∈ Rd1 by ∇f(x). If f : Rd → R is twice
differentiable, we denote its Hessian matrix at x ∈ Rd by ∇2f(x). If F : Rd → Rd is a
differentiable vector field with F = (F1, . . . , Fd), we define its divergence at x ∈ Rd by
∇ · F (x) :=

∑d
i=1

∂Fi

∂xi
(x). If f : Rd → R is twice differentiable, we define its Laplacian

at x ∈ Rd by ∆f(x) := ∇ · (∇f)(x) = tr(∇2f(x)).

Measure theory on topological spaces
Let X be a topological space, and let B(X ) be its Borel σ-algebra. A measure defined
on (X ,B(X )) is said to be a Borel measure, and we say that a real-valued function
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defined on X is Borel if it is B(X )-measurable. For any nonnegative Borel measure µ
defined on X , we define its support as the set

supp(µ) := {x ∈ X : every open neighborhood of x has positive measure}.

For any nonnegative Borel measure µ on X and a suitable Borel function f : X → R,
we denote the integral of f with respect to µ by

∫
X f dµ,

∫
X f(x) dµ(x), or ⟨µ, f⟩.

Let X be a metrizable topological space. We denote by M(X ) the set of finite
signed Borel measures on X , and we equip it with the weak topology, i.e., the one
induced by the duality with Cb(X ): a sequence (µn)n∈N ⊂ M(X ) converges weakly to
µ ∈ M(X ) if

∀f ∈ Cb(X ), ⟨µn, f⟩ −−−→
n→∞

⟨µ, f⟩.

We denote by P(X ) the set of Borel probability measures on X . We define B(X ) as
the class of bounded and measurable real-valued functions, which is a Banach space if
we equip it with the uniform norm ∥·∥∞. If x ∈ X , δx denotes the Dirac measure on x.
If X = Rd, we denote the d-dimensional Lebesgue measure by Leb, dx, or Vold.

Given two Borel probability measures µ and ν on a nonempty topological space X ,
we define the total variation distance between them by

∥µ− ν∥TV := 2 sup{|µ(A)− ν(A)| : A ∈ B(X )}.

For any nonnegative Borel measure µ on a topological space X , and any p ∈
[1,+∞], we will write Lp(X , µ) or Lp(µ) for the classical p-Lebesgue space, which is a
Banach space if we equip it with the p norm, ∥·∥Lp(µ). If X = Rd and µ = Leb, we write
the associated p-norm as ∥·∥p. For f : X → Rd or f : X → Md(R) Borel measurable,
we can extend the definition of ∥·∥p by doing the following abuse of notation: ∥f∥p :=
∥|f |∥p, where |·| denotes the Euclidean or Hilbert-Schmidt norm, depending on the
codomain of f .

We say that the triple (X , d, µ) is a metric measure space if (X , d) is a metric space
and µ is a nonnegative Borel measure on X . In the particular case when µ ∈ P(X ),
we say that (X , d, µ) is a metric probability space. Let (X , d, µ) be a metric measure
space, and let p ⩾ 1. If there exists x0 ∈ X such that the function x 7→ d(x0, x) belongs
to Lp(X , µ), we say that µ has a finite moment of order p. We denote by Pp(X ) the
set of probability measures on X with a finite moment of order p.

For two Polish spaces X and Y (i.e., separable and completely metrizable topo-
logical spaces), let µ and ν be two nonnegative Borel measures defined on X and Y ,
respectively. We write µ⊗ν for their product, which is defined on (X×Y ,B(X )⊗B(Y)).
Note that since both X and Y are separable, then B(X × Y) = B(X )⊗ B(Y).

Given two nonempty topological spaces X and Y , a Borel probability measure µ
on X , and a Borel map T : X → Y , we define the pushforward measure on Y , denoted
by T#µ, T∗µ, or µ ◦ T−1, as

∀B ∈ B(Y), T#µ(B) := µ(T−1(B)).



NOTATIONS AND CONVENTIONS xxv

Equivalently, it is characterized by

∀f ∈ B(Y),

∫
Y
f(y) d(T#µ)(y) =

∫
X
(f ◦ T )(x) dµ(x).

Riemannian manifolds

Let (M, g) be a smooth Riemannian manifold of dimension dim(M) ∈ N. We denote
its tangent bundle by TM . Usually, the action of the metric g on two vector fields
X, Y : M → TM is succinctly written as X · Y := g(X, Y ), omitting the dependence
on x ∈ M unless necessary. The metric g induces the geodesic distance dg on M ,
which is compatible with the topology on M and generates the Riemannian volume
measure dVol on M , that is, the dim(M)-dimensional Hausdorff measure associated
to the metric space (M,dg)). We denote by C∞(M) the set of smooth functions on M
and by C∞

c (M) the set of compactly supported smooth functions. We denote the Ricci
curvature tensor by Ric.

Let (M, g) be a smooth Riemannian manifold, and let ∇ be the Riemannian gra-
dient, which acts on smooth functions f : M → R as a vector field by ∇f = (∇if)di=1,
where ∇if = gij∂jf , where we are using Einstein’s summation convention to handle
operations on tensors. We denote by ∇2 the Hessian operator acting on smooth func-
tions f : M → R via ∇2f = (∇i∇jf)di,j=1. The symbol ∇· denotes the divergence
operator on (M, g); its action on a vector field Z : M → TM is characterized by

∀φ ∈ C∞
c (M),

∫
M

φ∇ · Z dVol = −
∫
M

∇φ · Z dVol.

The Laplace-Beltrami operator, denoted by ∆, acts on smooth functions f : M → R,
and this action can be characterized by

∀g ∈ C∞
c (M),

∫
M

g∆f dVol = −
∫
M

∇f · ∇g dVol.

Let (M, g) be a smooth Riemannian manifold, and let dVol be the associated
volume measure. Let W ∈ C∞(M), and define dµ = exp(−W ) dVol. Then we say that
the triple (M, g, µ) is a weighted Riemannian manifold with weight measure µ.

Probability theory

Let (Ω,F ,P) be a probability space, and let X be a Polish space. We say that a
function X : Ω → X is a random variable if it is B(X )-F -measurable, and we define
the law or distribution of X by Law(X) := X#P; we write X ∼ µ if X has law µ. Let
X : Ω → X be a random variable with µ := Law(X), and let f : X → R be a Borel
function. We set E[f(X)] :=

∫
Ω
f ◦ X dP, or alternatively we can write EX∼µ[f(X)],

which of course is equivalent to ⟨µ, f⟩. We define the variance of any f ∈ L2(µ) as
Varµ(f) := EX∼µ[f(X)2]− EX∼µ[f(X)]2 = ⟨µ, f 2⟩ − ⟨µ, f⟩2.
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If µ is a Borel probability measure on R, we define its distribution function Fµ : R →
R by

∀x ∈ R, Fµ(x) := µ((−∞, x]).

For d ∈ N∗, a ∈ Rd and A ∈ Md(R) symmetric and positive semidefinite, we denote
by N (a,A) the Gaussian distribution of mean a and covariance matrix A. If a = 0
and A = Id, we say it is the standard d-dimensional Gaussian measure and denote it
by γd.

For T > 0, we denote by πT the Poisson distribution of parameter T on N.

Let X be a Polish space, and let µ be a nonnegative Borel measure on X . For any
f : X → R+, we define the relative entropy of f with respect to µ as

Entµ(f) :=

∫
X
f log f dµ−

(∫
X
f dµ

)
log

(∫
X
f dµ

)
,

where we use the convention 0 log 0 := 0. Let ν ∈ P(X ). We define the relative entropy
of ν with respect to µ by

H(ν|µ) :=

{
Entµ

(
dν
dµ

)
, if ν ≪ µ

+∞, otherwise,

where dν
dµ

is the Radon-Nikodým derivative of ν with respect to µ. If X = Rd and
µ = Leb, we write H(ν) := H(ν|µ) and call it the differential entropy of ν.



Introduction (français)

Attention, mesdames et messieurs, dans un instant, ça
va commencer
Nous vous demandons évidemment d’être indulgents
Le spectacle n’est pas bien rôdé, laissez-nous encore
quelques années
Il ne pourrait que s’améliorer au fil du temps.

Michel Fugain et Le Big Bazar
Attention, Mesdames et Messieurs

Dès le début de ma thèse, en octobre 2022, ma recherche a porté sur la théorie des pro-
babilités et ses liens avec l’analyse et la géométrie. Plus précisément, j’ai cherché à com-
prendre comment ces trois sujets dialoguaient par le biais des processus stochastiques,
du transport optimal, des inégalités fonctionnelles et de leurs interactions. Les résultats
originaux présentés dans ce manuscrit de thèse s’inscrivent dans ce cadre.

Évidemment, ce manuscrit de thèse a pour finalité de condenser et de présenter mes
contributions originales dès le début de ma thèse ; cependant, j’ai quand même décidé
de les placer dans un contexte plus large, en présentant des préliminaires essentiels à
leur compréhension. Cette décision a été motivée par deux raisons. D’abord, je voulais
rédiger un manuscrit autosuffisant qui ne présupposait que les fondamentaux de la
théorie des probabilités, de l’analyse et de la géométrie. Deuxièmement, une raison
plus personnelle a motivé cette décision : j’ai la ferme conviction que la rédaction, qui
est l’une des plus précieuses capacités humaines, est une grande alliée pour comprendre,
synthétiser et permettre une vision globale d’un sujet.

Dans cette introduction, je vais résumer de manière succinte la structure de ce
manuscrit, en soulignant les éléments de chaque chapitre qui révèlent la trame de cette
thèse. Le manuscrit est divisé en deux parties : la première contient les résultats préli-
minaires sur lesquels la deuxième partie est basée, et où je présente mes contributions

1
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originales depuis le début de ma thèse.

Préliminaires (Preliminaries)
La première partie de ce manuscrit vise à réviser les résultats fondamentaux des théo-
ries du transport optimal et des inégalités fonctionnelles qui concernent les résultats
originaux de cette thèse dans deux chapitres différents.

Transport optimal (Optimal transport)

Dans le chapitre 1 nous allons réviser les principes fondamentaux de la théorie du
transport optimal en commençant par ses racines historiques et la théorie générale, où
nous allons définir les formulations de Monge et Kantorovich du problème de trans-
port optimal de mesures. Enfin, nous allons nous concentrer sur le cadre quadratique
euclidien, où le problème, écrit sous sa formulation de Kantorovich, pour µ et ν, deux
mesures de probabilité boréliennes définies sur Rd, vise à calculer

inf
π∈Π(µ,ν)

∫
Rd×Rd

1

2
|x− y|2 dπ(x, y), (0.0.1)

où Π(µ, ν) désigne l’ensemble des plans de transport entre µ et ν.

Dans le cadre quadratique euclidien le théorème de Brenier-McCann révèle la riche
structure des solutions au problème (0.0.1) qui, à son tour, coïncident avec les solutions
du problème de Monge associé.

Théorème 0.1 (Brenier-McCann). Soient µ et ν deux mesures de probabilité boré-
liennes sur Rd et supposons que µ est absolument continue par rapport à la mesure de
Lebesgue sur Rd. Alors il existe une fonction φ0 : Rd → R∪{+∞} propre semi-continue
convexe telle que ν soit la mesure image de µ par l’application T0 := ∇φ0. De plus, T0
est la seule application étant le gradient d’une fonction convexe envoyant µ sur ν.

Supposons que µ et ν admettent des moments d’ordre 2. Alors C0(µ, ν) < +∞ et il
existe un unique plan de transport π0 ∈ Π(µ, ν) optimal pour le problème (0.0.1) donné
le plan de transport induit par T0 : π0 = (idRd , T0)#µ.

De plus, si ψ0 := φ∗
0 désigne la conjuguée de Legendre de φ0, le couple (f0, g0) :=(

1
2
|·|2 − φ0,

1
2
|·|2 − ψ0

)
est une solution du problème dual à (0.0.1), qui est donné par

sup
(f,g)∈Φ2

∫
Rd

f dµ+

∫
Rd

g dν, (0.0.2)

où Φ2 désigne l’ensemble

Φ2 :=

{
(f, g) ∈ L1(µ)× L1(ν) : f ⊕ g ⩽

1

2
|· − ·|2

}
.

Nous allons ensuite nous concentrer sur la théorie autour de la régularité de l’ap-
plication de Brenier, car elle joue un rôle très important dans la théorie des inégali-
tés fonctionnelles, et surtout dans cette thèse. Plus concrètement, pour illustrer cette
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situation, soit µ une mesure de probabilité satisfaisant une inégalité de Sobolev loga-
rithmique. Alors, pour chaque application lipschitzienne T , la mesure image associée
T#µ vérifie aussi une inégalité de Sobolev logarithmique. À cet égard, le théorème de
contraction de Caffarelli garantit la régularité lipschitzienne de l’application de Brenier
envoyant la mesure gaussienne sur une perturbation log-concave quelconque.

Théorème 0.2 (Caffarelli). Soit γd la mesure gaussienne sur Rd, soit ν ∈ P(Rd)
absolument continue par rapport à γd et supposons que ν a la forme dν = e−V dγd,
avec V : Rd → R. Si V est convexe alors l’application de Brenier envoyant γd sur ν est
1-lipschitzienne.

Inégalités fonctionnelles (Functional inequalities)

Dans le chapitre 2, nous ferons un panorama de la théorie des inégalités fonctionnelles.
Le point de départ sera les inégalités géométriques et leurs versions fonctionnelles, où
l’un des exemples les plus significatifs de cette dualité est constitué par les inégalités de
Brunn-Minkowski et de Prékopa-Leindler, la dernière étant une version fonctionnelle
de la première, qui est une inégalité géométrique.

Théorème 0.3 (Brunn-Minkowski). Soient A,B ⊂ Rd deux corps convexes. Alors

Vold(A+B)1/d ⩾ Vold(A)
1/d +Vold(B)1/d. (0.0.3)

Théorème 0.4 (Prékopa-Leindler). Soient f, g, h : Rd → R+ trois fonctions boré-
liennes positives telles que f et g soient Lebesgue-intégrables et soit λ ∈ (0, 1). Suppo-
sons

∀x, y ∈ Rd, h(λx+ (1− λ)y) ⩾ f(x)λg(y)1−λ. (0.0.4)

Alors ∫
Rd

h dx ⩾

(∫
Rd

f dx

)λ(∫
Rd

g dx

)1−λ

. (0.0.5)

Un corollaire remarquable du théorème de Brunn-Minkowski est l’inégalité isopé-
rimétrique euclidienne : les boules sont, à volume fixé, les corps convexes ayant le plus
petit périmètre.

Théorème 0.5 (Inégalité isopérimétrique euclidienne). Pour tout corps convexe K ⊂
Rd,

Vold−1(∂K) ⩾ dVold(K)(d−1)/dVold(B)1/d, (0.0.6)

où B := B(0, 1).

Le théorème 0.5 nous mène à chercher d’autres phénomènes isopérimétriques dans
des contextes plus généraux. À un niveau plus abstrait, dans un espace métrique mesuré
(X , dX , µ) le problème isopérimétrique consiste, étant donné une valeur positive fixe
α > 0, à identifier les parties boréliennes B avec µ(B) = α ayant un périmètre µ+(B)
minimal. De manière équivalente, on cherche à identifier le profil isopérimétrique Iµ
associé à µ.

L’espace gaussien (Rd, |·|, γd) est un exemple fondamental, car les solutions au pro-
blème isopérimetrique correspondant sont totalement caractérisées.
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Théorème 0.6 (Inégalité isopérimétrique gaussienne). Soient α ∈ (0, 1) et (θ0, t0) ∈
Rd × R tel que le demi-espace H = {x ∈ Rd : θ0 · x ⩽ t0} ait pour mesure γd(H) = α.
Alors, pour chaque partie borélienne A ⊂ Rd avec γd(A) = α et tout r > 0,

γd(Ar) ⩾ γd(Hr), (0.0.7)

où Hr désigne le r-voisinage de H. En particulier,

γ+d (A) ⩾ γ+d (H). (0.0.8)

De plus, le profil isopérimétrique de (Rd, |·|, γd) est donné par la fonction

I γd = I γ := Φ′ ◦ Φ−1, (0.0.9)

où Φ: R → R+ désigne la fonction définie par

∀r ∈ R, Φ(r) = γ1((−∞, r)) =
1√
2π

∫ r

−∞
e−x

2/2 dx.

L’une des conséquences les plus remarquables du théorème 0.6 est le phénomène
de concentration de la mesure dans l’espace gaussien.

Corollaire 0.7. Soit A ⊂ Rd une partie borélienne avec γd(A) = 1/2. Alors

∀r > 0, γd(Ar) ⩾ 1− 1

2
exp

(
−r2/2

)
,

où Ar désigne le r-voisinage de l’ensemble A.

L’inégalité isopérimétrique gaussienne a également une version fonctionnelle.

Théorème 0.8 (Inégalité isopérimétrique gaussienne fonctionnelle). La mesure gaus-
sienne sur Rd satisfait

∀f ∈ C∞
c (Rd, [0, 1]), I γ

(∫
Rd

f dγd

)
⩽
∫
Rd

√
( I γ ◦ f)2 + |∇f |2 dγd.

L’inégalité isopérimétrique gaussienne fonctionnelle est préservée par des images
lipschitziennes. En particulier, d’après le théorème 0.2, on en déduit que toute per-
turbation log-concave de la mesure gaussienne satisfait une inégalité isopérimétrique
comme celle du théorème 0.8 en remplaçant la mesure gaussienne γd par la perturba-
tion. Comme corollaire, on obtient pour la perturbation une inégalité de concentration
similaire à celle du corollaire 0.7.

La motivation principale de notre étude des inégalités isopérimétriques est son lien
avec le phénomène de concentration de la mesure, comme nous l’avons vu dans le
corollaire 0.7 dans le cas gaussien. Par conséquent, nous allons nous intéresser dans
la suite aux propriétés de concentration des espaces métriques mesurés (X , dX , µ) qui
peuvent être étudiées grâce à leur fonction de concentration αµ : R>0 → [0, 1] :

∀r > 0, αµ(r) := sup{1− µ(Ar) : µ(A) ⩾ 1/2}.
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Par exemple, le corollaire 0.7 donne une borne supérieure de la fonction de concen-
tration de l’espace gaussien :

αγd(r) ⩽
1

2
exp

(
−r2/2

)
. (0.0.10)

Nous pouvons utiliser la borne de concentration (0.0.10) comme référence pour
étudier la concentration dans des espaces plus généraux. Plus précisément, nous dirons
qu’une mesure arbitraire possède la concentration sous-gaussienne si sa fonction de
concentration est bornée supérieurement par un terme du même ordre que (0.0.10).
De même, nous pouvons également utiliser les lois exponentielle et de Poisson pour
modéliser de différents types de concentration ce qui donnera lieu aux concentrations
sous-exponentielle et sous-poissonienne, respectivement.

D’autre part, nous souhaiterions disposer de bornes de concentration indépendantes
de la dimension comme dans (0.0.10) : notons que la borne supérieure ne dépend pas de
la dimension intrinsèque d. En particulier, cette propriété du phénomène de concentra-
tion gaussien est très utile pour des applications dans lesquelles nous voudrions étudier
la concentration d’un grand nombre de variables aléatoires indépendantes et identi-
quement distribuées, en souhaitant obtenir une borne indépendante de la quantité de
variables aléatoires. Malheureusement, en général, les inégalités de concentration ne se
tensorisent pas d’une manière indépendante de la dimension ce qui entrave l’obtention
d’une telle borne.

Afin de remédier au problème signalé ci-dessous, la suite du chapitre 2 sera consa-
crée à l’étude de trois familles importantes d’inégalités fonctionnelles qui entraînent
des bornes de concentration indépendantes de la dimension et qui peuvent être établies
grâce à des critères directs basés sur des propriétés de convexité, donc plus faciles à
obtenir que les inégalités isopérimétriques. Il s’agit des inégalités de Poincaré, des in-
égalités de Sobolev logarithmiques et des inégalités de transport-entropie. Nous allons
réviser leurs propriétés concernant leur tensorisation, leur concentration, leur stabilité
par image, etc. ; la hiérarchie entre elles ; et leurs exemples les plus importants. Par
exemple, la mesure gaussienne satisfait une inégalité de Sobolev logarithmique.

Théorème 0.9 (Inégalité de Sobolev logarithmique gaussienne). La mesure gaussienne
sur Rd satisfait une inégalité de Sobolev logarithmique :

∀f ∈ C∞
c (Rd), Entγd(f

2) ⩽ 2

∫
Rd

|∇f |2 dγd. (0.0.11)

Nous allons finir le chapitre 2 en révisant la célèbre condition de courbure-dimension
de Bakry-Émery dans le cadre riemannien qui entraîne la validité des inégalités fonc-
tionnelles précitées. Il s’agit d’une condition géométrique simple qui peut être expri-
mée en termes algébriques en utilisant les opérateurs Γ et Γ2. Les conséquences de la
condition de Bakry-Émery vont au-delà de la théorie des inégalités fonctionnelles ; par
exemple, elle fournit des bornes des noyaux de la chaleur qui vont jouer un rôle capital
dans le chapitre 3.

Dans le chapitre 2, nous allons également étudier des inégalités fonctionnelles dans
le cadre discret. Plus précisément, on sait que pour chaque T > 0 la loi de Poisson πT ne
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satisfait pas une inégalité de Sobolev logarithmique dans la forme (0.0.11). Cependant,
elle vérifie des inégalités plus faibles, à savoir les inégalités de Sobolev logarithmiques
modifiées. Elles jouent un rôle important dans la théorie, car elles permettent de re-
trouver la concentration poissonienne indépendante de la dimension. L’inégalité la plus
forte dans cette classe est l’inégalité de Wu, qui sera très importante dans les chapitres
4 et 5.

Théorème 0.10 (Inégalité de Sobolev logarithmique modifiée de Wu). Soit T > 0 et
soit πT la loi de Poisson de paramètre T sur N. Alors πT satisfait l’inégalité de Sobolev
logarithmique modifiée suivante :

∀f : N → R>0, EntπT (f) ⩽ T EπT [Ψ(f,Df)], (0.0.12)

où

∀u > 0, ∀u+ v > 0, Ψ(u, v) := (u+ v) log(u+ v)− u log u− (1 + log u)v,

et Df désigne la dérivée discrète :

∀k ∈ N, Df(k) := f(k + 1)− f(k).

Contributions originales (Original contributions)
La deuxième partie de ce manuscrit de thèse présentera les contributions originales que
j’ai réalisées seul ou en collaboration, et qui correspondent aux quatre articles suivants,
présentés ci-dessous par ordre d’apparition :

• Pablo López-Rivera. A Bakry-Émery Approach to Lipschitz Transportation
on Manifolds. Potential Anal., 62(2):331–353, 2025

• Pablo López-Rivera and Yair Shenfeld. The Poisson transport map. J.
Funct. Anal., 288(10):Paper No. 110864, 2025

• Shrey Aryan, Pablo López-Rivera, and Yair Shenfeld. The stability
of Wu’s logarithmic Sobolev inequality via the Poisson-Föllmer process. arXiv
preprint arXiv:2410.06117, 2024

• Pablo López-Rivera. A uniform rate of convergence for the entropic potentials
in the quadratic Euclidean setting. arXiv preprint arXiv:2502.00084, 2025

En particulier, chaque chapitre de cette partie correspond à une adaptation de
chacun des articles mentionnés ci-dessus, en suivant l’ordre chronologique.

L’application de transport de diffusion (The diffusion transport
map)

La première contribution de cette thèse s’inscrit dans l’esprit du théorème 0.2, le théo-
rème de contraction de Caffarelli. Dans le cadre riemannien, il existe des obstacles qui
empêchent d’en obtenir des généralisations, c’est-à-dire, de trouver des applications
lipschitziennes entre une mesure source et des perturbations log-concaves, voir par



INTRODUCTION (FRANÇAIS) 7

exemple [FFGZ24]. Néanmoins, Fathi, Mikulincer et Shenfeld [FMS24] ont pu montrer
un tel résultat pour des perturbations log-lipschitziennes d’une mesure définie sur une
variété lisse riemannienne en utilisant l’application de transport Kim-Milman [KM12],
issue du processus de Langevin associé à la variété, sous une majoration du tenseur de
courbure de Riemann de la variété.

Dans ce contexte, dans le résultat principal du chapitre 3 nous montrons que pour
toute variété à poids et à courbure contrôlée aux premier et deuxième ordres dans le
sens de Bakry-Émery, l’application de Kim-Milman poussant en avant la mesure de
poids et toute perturbation log-lipschitzienne est alors lipschitzienne, voir le théorème
3.21.

Théorème 0.11. Soit (M, g, µ) une variété riemannienne complète connexe à poids
avec dµ = exp(−W ) dVol pour W ∈ C∞(M) et µ ∈ P(M). Soit L = ∆ −∇W · ∇, et
soient Γ, Γ2 et Γ3 son carré du champ et ses deux premières itérations dans le sens de
Bakry-Émery. Supposons qu’il existe des constantes réelles ρ1, ρ2 > 0 tels que

(i) ∀f ∈ C∞
c (M),Γ2(f) ⩾ ρ1 Γ(f) ; et

(ii) ∀f ∈ C∞
c (M),Γ3(f) ⩾ ρ2 Γ2(f).

Soit V ∈ C∞(M) et supposons qu’il est K-lipschitzienne pour K > 0. Définissons dν =

e−V dµ et supposons que ν ∈ P(M). Alors il existe une application exp

(√
2π
ρ2
Ke

K2

2ρ1

)
-

lipschitzienne T : M →M qui envoie la mesure µ sur ν.

Ce résultat permet le transfert d’inégalités fonctionnelles ; voir le corollaire 3.24
pour le cas particulier des inégalités de Sobolev logarithmiques.

Corollaire 0.12. Dans le contexte du théorème 0.11, soit ν ∈ P(M) une perturbation
K-log-lipschitzienne de la mesure µ. Alors ν satisfait une inégalité de Sobolev logarith-
mique avec

CLS(ν) ⩽
2 exp

(
2
√

2π
ρ2
Ke

K2

2ρ1

)
ρ

.

La sphère Sd et le générateur de Laguerre sur R>0 sont des exemples où l’on peut
appliquer les résultats précédents. Dans le dernier cas, nous exhibons une estimation
pour la croissance de l’application de Brenier en dimension dans le cas gamma ; voir la
proposition 3.28.

Proposition 0.13. Soient µp la loi gamma sur R>0 et V : R>0 → R un potentiel
lipschitzien pour la métrique x 7→ 1

x
. Considérons T : R>0 → R>0 l’application de

Brenier envoyant µp sur e−V µp. Alors il existe une constante C > 0 telle que pour tout
x > 0,

0 < T (x) ⩽ Cx. (0.0.13)

De plus, T est lipschitzienne pour la métrique euclidienne sur R>0 ; c’est-à-dire, il existe
une constante C ′ > 0 telle que pour tout x > 0,

0 ⩽ T ′(x) ⩽ C ′. (0.0.14)
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L’application de transport de Poisson (The Poisson transport
map)

Dans le cadre discret nous pouvons considérer la loi de Poisson πT , pour chaque para-
mètre T > 0, comme un analogue de la mesure gaussienne. Dans ce sens, nous nous
posons la question suivante : est-il possible d’obtenir un résultat similaire au théorème
0.2 en remplaçant la mesure gaussienne par πT , le gradient d’une fonction par sa version
discrète D et la log-concavité par une version adaptée au cadre discret ? En revanche,
la classe des mesures obtenues comme image de πT par une application est très limitée,
contrairement au cas continu, où le théorème 0.1 garantit l’existence des applications
de transport sous de faibles hypothèses. D’autre part, l’une des applications les plus
importantes du théorème de contraction de Caffarelli est le transfert d’inégalités fonc-
tionnelles. Pour accomplir cette tâche, la règle de la chaîne satisfaite par l’opérateur ∇
joue un rôle fondamental, mais l’opérateur discret D ne la satisfait pas.

Dans le chapitre 4, qui est basé sur l’article [LRS25], écrit en collaboration avec
Yair Shenfeld, nous allons construire une application qui envoie des processus de Pois-
son ponctuels sur des mesures ultra-log-concaves sur les entiers naturels, que nous
appellerons l’application de transport de Poisson. Nour remarquons que les mesures
ultra-log-concaves sont les mesures plus log-concaves que la loi de Poisson dans le
cadre discret. De plus, nous allons montrer que cette application est une contraction.
Sa construction est basée sur un processus qui minimise l’entropie que nous appelons le
processus de Poisson-Föllmer, qui a été introduit précédemment par Klartag et Lehec
[KL19]. Le résultat suivant énonce la propriété contractive de l’application de transport
de Poisson, voir le corollaire 4.18.

Théorème 0.14. Soient T > 0 et µ = fπT une mesure de probabilité ultra-log-concave
sur N, notons M := f(1)/f(0). Soit XT l’application de transport de Poisson envoyant
P sur µ. Alors, P-presque sûrement,

∀(t, z) ∈ [0, T ]× [0,M ], D(t,z)XT ∈ {0, 1},

où D(t,z) désigne la dérivée de Malliavin au point (t, z) ∈ [0, T ]× [0,M ].

Cette approche nous permet de surmonter les difficultés qui entravent le trans-
fert d’inégalités fonctionnelles dans le cadre discret en utilisant des applications de
transport. Nous obtiendrons ainsi de nouvelles inégalités fonctionnelles pour les me-
sures ultra-log-concaves. En particulier, notre approche permet d’améliorer la constante
connue pour l’inégalité de Sobolev logarithmique modifiée pour les mesures ultra-log-
concaves.

Théorème 0.15. Soit µ une mesure de probabilité ultra-log-concave sur N. Alors, pour
tout g ∈ L2(N, µ) strictement positive,

Entµ(g) ⩽ | log µ(0)|Eµ[Ψ(g,Dg)], (0.0.15)

où Ψ(u, v) := (u+ v) log(u+ v)− u log u− (log u+ 1)v.

Le théorème 0.15 n’est qu’une conséquence d’un résultat plus général : notre ap-
proche nous permet de transporter les inégalités de Φ-Sobolev de Chafaï pour des
mesures ultra-log-concaves, voir le théorème 4.24.
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Théorème 0.16. Soit µ une mesure de probabilité ultra-log-concave sur N. Soient
I ⊂ R un intervalle fermé et Φ: I → R une fonction lisse convexe. Supposons que la
fonction

{(u, v) ∈ R2 : (u, u+ v) ∈ I × I} ∋ (u, v) 7→ Ψ(u, v) := Φ(u+ v)− Φ(u)− Φ′(u)v

est positive et convexe. Alors, pour chaque g ∈ L2(N, µ) tel que µ-p.s. g, g +Dg ∈ I,

EntΦµ (g) ⩽ | log µ(0)|Eµ[Ψ(g,Dg)]. (0.0.16)

Enfin, nous obtenons aussi une inégalité de transport-entropie α-T1 pour les me-
sures ultra-log-concaves, voir le théorème 4.27.

Théorème 0.17. Soit µ = fπT une mesure de probabilité ultra-log-concave sur N et
M := f(1)

f(0)
. Alors, pour chaque mesure de probabilité ν sur N absolument continue par

rapport à µ admettant un moment d’ordre 1,

αTM
(
W1,|·|(ν, µ)

)
⩽ H(ν|µ), (0.0.17)

où
αc(r) := c

[(
1 +

r

c

)
log
(
1 +

r

c

)
− r

c

]
.

Stabilité de l’inégalité de Wu (Stability of Wu’s inequality)

Le chapitre 5 est basé sur l’article [ALRS24], qui a été écrit en collaboration avec
Shrey Aryan et Yair Shenfeld. D’abord, nous exhibons une nouvelle preuve stochas-
tique de l’inégalité de Wu (théorème 0.10) en utlisant une formulation variationnelle
stochastique pour l’entropie qui généralise la propriété d’entropie minimale du proces-
sus de Poisson-Föllmer, qui était utilisé dans le chapitre 4. De plus, cette approche
nous permet d’identifier les cas d’égalité, voir la proposition 5.12.

Proposition 0.18. Rappelons l’inégalité de Wu :

∀f : N → R>0, EntπT (f) ⩽ T EπT [Ψ(f,Df)]. (0.0.18)

Soit f : N → R>0 avec EπT [Ψ(f,Df)] < ∞. Alors f atteint l’égalité en (0.0.18) si et
seulement s’il existe a, b ∈ R tels que f(k) = eak+b pour tout k ∈ N.

Notre approche stochastique nous permet également d’obtenir un résultat de sta-
bilité quantitative pour l’inégalité de Wu. Plus précisément, nous minorons le déficit
de l’inégalité sous des hypothèses de convexité, voir le théorème 5.17. Pour T > 0 et
f : N → R>0 in L1(πT ) nous définissons son déficit (par rapport à l’inégalité de Wu)
par

δ(f) := T EπT [Ψ(f,Df)]− EntπT (f).

Théorème 0.19. Soit T > 0. Soient f : N → R>0 ultra-log-concave dans L1(πT ) et
µ := fπT∫

f dπT
. Alors

δ(f) ⩾
T 2

2
Θ f(0)

f(1)

(
E[µ]
T

)
,

où, pour c > 0,

Θc(z) :=
z2

1 + cz
log

(
1

1 + cz

)
− z2

1 + cz
+ z2, z ⩾ 0.



10 INTRODUCTION (FRANÇAIS)

Sur la convergence des potentiels entropiques (Convergence of
the entropic potentials)

Les dernières contributions de cette thèse s’écartent des sujets traités dans les trois
chapitres précédents et concernent le problème de transport optimal et sa régularisation
entropique. Pour chaque ε > 0, il est possible de régulariser le problème (0.0.1) en
ajoutant une entropie :

inf
π∈Π(µ,ν)

∫
Rd×Rd

1

2
|x− y|2 dπ(x, y) + εH(π|µ⊗ ν), (0.0.19)

où H(·|µ⊗ ν) désigne la fonctionnelle d’entropie relative par rapport à la mesure µ⊗
ν. Lorsque ε → 0, le problème (0.0.19) converge vers le problème (0.0.1) au sens
large : par exemple, les solutions au problème dual à (0.0.19), c’est-à-dire, les potentiels
entropiques (φε, ψε), convergent vers les potentiels de Brenier (φ0, ψ0) [GT21, NW22,
CCGT23].

Dans le chapitre 6, qui est basé sur l’article [LR25b], nous obtenons une borne
supérieure pour le taux de convergence uniforme sur des ensembles compacts pour les
potentiels entropiques et leurs gradients vers le potentiel de Brenier et son gradient,
respectivement. Ces résultats sont valides dans le cadre quadratique euclidien, pour
des mesures absolument continues satisfaisant les suivantes hypothèses :

(A1) Les mesures µ, ν ∈ P(Rd) ont la forme dµ(x) = e−V (x) dx et dν(y) = e−W (y) dy,
avec V,W : Rd → R lisses et telles qu’il existe α, β > 0 tels que

∀x ∈ Rd, ∇2V (x) ≼ αId (0.0.20)

et
∀y ∈ Rd, ∇2W (y) ≽ βId, (0.0.21)

où Id désigne la matrice identité de dimension d et ≼ l’ordre de Löwner dans
l’ensemble des matrices semi-définies positives.

(A2) La mesure µ satisfait une inégalité de Poincaré : il existe CP(µ) > 0 tel que pour
chaque h : Rd → R lisse avec

∫
Rd h dµ = 0,

∥h∥2L2(µ) ⩽ CP(µ)∥∇h∥2L2(µ).

(A3) La mesure µ a une entropie finie :

−∞ < H(µ) := −
∫
Rd

V (x)e−V (x) dx < +∞.

Les théorèmes suivants sont les résultats principaux du chapitre 6, voir les théo-
rèmes 6.2 et 6.3, respectivement.

Théorème 0.20. Soient µ et ν deux mesures de probabilité sur Rd absolument conti-
nues par rapport à la mesure de Lebesgue qui satisfont les hypothèses (A1), (A2) et
(A3). Alors, pour chaque compact K ⊂ Rd, il existe une constante calculable Cgrad =
Cgrad(K,µ, ν, d) > 0 telle que pour tout ε > 0,

∥∇φε −∇φ0∥K,∞ ⩽ Cgrad ε
1

d+4 .
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Théorème 0.21. Soient µ et ν deux mesures de probabilité sur Rd absolument conti-
nues par rapport à la mesure de Lebesgue qui satisfont les hypothèses (A1), (A2) et
(A3). Supposons que les potentiels satisfont la normalisation suivante : pour tout ε > 0,∫

Rd

φε dµ =

∫
Rd

φ0 dµ = 0. (0.0.22)

Alors, pour chaque compact connexe K ⊂ Rd, il existe une constante calculable Cpot =
Cpot(K,µ, ν, d) > 0 telle que pour tout ε > 0,

∥φε − φ0∥K,∞ ⩽ Cpot

(
ε

1
d+4 + ε

)
.
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Introduction (English)

Attention, mesdames et messieurs, dans un instant, ça
va commencer
Nous vous demandons évidemment d’être indulgents
Le spectacle n’est pas bien rôdé, laissez-nous encore
quelques années
Il ne pourrait que s’améliorer au fil du temps.

Michel Fugain et Le Big Bazar
Attention, Mesdames et Messieurs

Since the beginning of my doctoral studies in October 2022, I have focused my research
on probability theory and its connections with analysis and geometry. More specifically,
I have sought to understand how these fields interact through the lens of the theories
of stochastic processes, optimal transport, functional inequalities, and their interplay.
The results exhibited in this thesis belong to that framework.

Of course, the main objective of this thesis manuscript is to present my original
mathematical contributions since I started my PhD. Nevertheless, to do so, I have
also decided to put those results in a bigger context, thus reviewing and surveying the
essential preliminaries for their understanding. I decided to do so for two main reasons:
the first and most evident one concerns the readability of this manuscript; I wanted
to produce a self-contained text just assuming a basic knowledge of probability theory,
analysis, and geometry. The second reason is part of a more “personal” exercise: I
firmly believe that writing, one of the most precious capacities we human beings have,
constitutes a powerful ally for understanding, synthesizing, and getting the global
picture of a subject.

In this introduction, I summarize the structure of this manuscript, highlighting the
elements of each chapter that reveal the fundamental storyline of this thesis. I divided
the manuscript into two parts: the first contains the preliminaries and basic results

13
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that provide context for the second part, where I present the original contributions I
have made from the beginning of my PhD.

Preliminaries
The first part of the manuscript aims to review the essential results of the theories of
optimal transport and functional inequalities pertinent to this thesis in two dedicated
chapters.

Optimal transport

We will commence in Chapter 1 by reviewing the essential elements concerning the
theory of optimal transport, starting with its historical roots and then delving into
the general theory, where we will define the Monge and Kantorovich formulations for
the optimal transport problem. After that, we will focus on the quadratic Euclidean
setting, where the optimal transport problem in its Kantorovich formulation reads as
follows: given two Borel probability measures µ and ν defined on Rd, it corresponds to
the variational problem

inf
π∈Π(µ,ν)

∫
Rd×Rd

1

2
|x− y|2 dπ(x, y), (0.0.23)

where Π(µ, ν) denotes the set of transport plans between the measures µ and ν.

In the quadratic Euclidean setting, the Brenier-McCann theorem reveals the rich
structure of the solutions of (0.0.23), which in turn coincide with the solutions to the
associated Monge problem.

Theorem 0.1 (Brenier-McCann). Let µ and ν be two Borel probability measures on Rd,
and assume that µ is absolutely continuous with respect to the d-dimensional Lebesgue
measure. Then there exists a lower semicontinuous proper convex function φ0 : Rd →
R∪{+∞} such that the map T0 := ∇φ0 pushes forward µ towards ν. Furthermore, T0
is the unique gradient of a convex function sending µ to ν.

Additionally, assume now that µ and ν have finite moments of order 2. Then
C0(µ, ν) < +∞, and there exists a unique optimal plan π0 ∈ Π(µ, ν) for (0.0.23), given
by the transport plan induced by T0: π0 = (idRd , T0)#µ.

Moreover, if we define ψ0 := φ∗
0 as the convex conjugate of φ0, then (f0, g0) :=(

1
2
|·|2 − φ0,

1
2
|·|2 − ψ0

)
is a pair of Kantorovich potentials, that is, it solves the dual

problem of (0.0.23), which is given by

sup
(f,g)∈Φ2

∫
Rd

f dµ+

∫
Rd

g dν, (0.0.24)

where Φ2 is the set

Φ2 :=

{
(f, g) ∈ L1(µ)× L1(ν) : f ⊕ g ⩽

1

2
|· − ·|2

}
.
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Then we will focus on the regularity theory for the Brenier map since it plays
a vital role in the theory of functional inequalities, particularly in this thesis. More
precisely, if we have a measure µ that satisfies certain functional inequalities, then
for any Lipschitz map T , the associated pushforward measure T#µ verifies the same
inequalities as µ. In this regard, Caffarelli’s contraction theorem provides this desired
regularity for the Brenier map pushing forward the Gaussian measure towards any
log-concave perturbation of it.

Theorem 0.2 (Caffarelli’s contraction theorem). Let γd be the d-dimensional Gaussian
measure on Rd. Let ν ∈ P(Rd) with ν ≪ γd, and suppose that it has the form dν =
e−V dγd, where V : Rd → R. If V is convex, the Brenier map pushing forward γd
towards ν is 1-Lipschitz.

Functional inequalities

In Chapter 2, we will focus on the theory of functional inequalities. More precisely, we
will start by introducing some geometric inequalities and their functional counterparts.
The main example corresponds to the Brunn-Minkowski and Prékopa-Leindler inequal-
ities, the latter being a functional version of the former, which is a purely geometric
inequality.

Theorem 0.3 (Brunn-Minkowski). Let A,B ⊂ Rd be two convex bodies. Then

Vold(A+B)1/d ⩾ Vold(A)
1/d +Vold(B)1/d. (0.0.25)

Theorem 0.4 (Prékopa-Leindler). Let f, g, h : Rd → R+ be nonnegative Borel func-
tions with f and g Lebesgue-integrable, and let λ ∈ (0, 1). Assume that

∀x, y ∈ Rd, h(λx+ (1− λ)y) ⩾ f(x)λg(y)1−λ. (0.0.26)

Then ∫
Rd

h dx ⩾

(∫
Rd

f dx

)λ(∫
Rd

g dx

)1−λ

. (0.0.27)

Then we will see that a remarkable corollary of the Brunn-Minkowski theorem is
the Euclidean isoperimetric inequality, which states that for a prescripted volume, the
sets with minimal perimeter are balls.

Theorem 0.5 (Euclidean isoperimetric inequality). For any convex body K ⊂ Rd,

Vold−1(∂K) ⩾ dVold(K)(d−1)/dVold(B)1/d, (0.0.28)

where B := B(0, 1).

The validity of Theorem 0.5 motivates the study of isoperimetric phenomena on
more general spaces, which will be the next step in our journey through geometric
inequalities. At an abstract level, in the context of a metric measure space (X , dX , µ),
the isoperimetric problem consists of, given a fixed positive value α > 0, identifying
the Borel sets B with µ(B) = α having minimal perimeter µ+(B). Equivalently, one
aims to identify the isoperimetric profile Iµ associated with µ.
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The Gaussian space (Rd, |·|, γd) is a key example since the solution to the associated
isoperimetric problem is completely determined.

Theorem 0.6 (Gaussian isoperimetric inequality). Let α ∈ (0, 1), and let (θ0, t0) ∈
Rd × R be such that the halfspace H = {x ∈ Rd : θ0 · x ⩽ t0} has mass α: γd(H) = α.
Then for every A ⊂ Rd Borel with γd(A) = α, and every r > 0, we have

γd(Ar) ⩾ γd(Hr), (0.0.29)

where Hr is the r-enlargement of the set H. In particular,

γ+d (A) ⩾ γ+d (H). (0.0.30)

Moreover, the isoperimetric profile of (Rd, |·|, γd) is given by the function

I γd = I γ := Φ′ ◦ Φ−1, (0.0.31)

where Φ: R → R+ is the function defined by

∀r ∈ R, Φ(r) = γ1((−∞, r)) =
1√
2π

∫ r

−∞
e−x

2/2 dx.

In particular, Theorem 0.6 has a remarkable consequence, namely the phenomenon
of concentration of measure for the Gaussian space.

Corollary 0.7. Let A ⊂ Rd Borel with γd(A) = 1/2. Then

∀r > 0, γd(Ar) ⩾ 1− 1

2
exp

(
−r2/2

)
,

where Ar is the r-enlargement of the set A.

Another notable feature of the Gaussian isoperimetric phenomenon is that it admits
a (equivalent) functional version.

Theorem 0.8 (Functional Gaussian isoperimetric inequality). The d-dimensional Gaus-
sian measure satisfies

∀f ∈ C∞
c (Rd, [0, 1]), I γ

(∫
Rd

f dγd

)
⩽
∫
Rd

√
( I γ ◦ f)2 + |∇f |2 dγd.

The functional Gaussian isoperimetric inequality is preserved by Lipschitz push-
forwards. In particular, by applying Theorem 0.2, we deduce that any log-concave
perturbation of the Gaussian measure satisfies an isoperimetric inequality in the fash-
ion of Theorem 0.8 just replacing the Gaussian measure γd by the perturbation, which
in turn yields a concentration bound similar to the one provided by Corollary 0.7 for
the perturbation.

For us, the main motivation behind isoperimetric inequalities is the fact that they
imply concentration of measure, as Corollary 0.7 reveals in the Gaussian case. Hence,
the next topic reviewed in Chapter 2 will be the concentration properties of an abstract



INTRODUCTION (ENGLISH) 17

metric probability space (X , dX , µ), which can be studied by its associated concentra-
tion function αµ : R>0 → [0, 1]:

∀r > 0, αµ(r) := sup{1− µ(Ar) : µ(A) ⩾ 1/2}.

For example, for the Gaussian space, Corollary 0.7 says that

αγd(r) ⩽
1

2
exp

(
−r2/2

)
, (0.0.32)

so we can model concentration on more general spaces based on this bound. More
precisely, we say that a measure has the subgaussian concentration property if its
concentration function is upper bounded by a term of the same order of (0.0.32).
Similarly, we can also take the exponential and Poisson distributions as models to
define the subexponential and subpoissonian concentration types, respectively.

A desirable property for a concentration bound is to be dimension-free as in (0.0.32):
note that the right-hand side of the inequality does not depend on the intrinsic dimen-
sion of the space d. This feature of the Gaussian concentration phenomenon is helpful
for many applications where one wants to analyze the concentration of a large num-
ber of independent and identically distributed random variables, aiming to obtain a
bound that does not depend on the number of random variables. However, the big
problem is that, by themselves, concentration inequalities do not generally tensorize in
a dimension-free way, which hinders getting such a nice bound.

To address the issue pointed out above, we will continue the exposition in Chap-
ter 2 by reviewing three prominent families of functional inequalities that will yield
dimension-free concentration bounds and for which we have straightforward criteria
that ensure their validity, mainly relying on convexity properties, thus easier to obtain
than an isoperimetric inequality. These correspond to Poincaré, logarithmic Sobolev,
and transport-entropy inequalities. We will review their basic properties concerning
tensorization, concentration, stability by pushforwards, etc.; the hierarchy between
them; and their most representative examples. For example, concerning the logarith-
mic Sobolev family, we have that the Gaussian measure satisfies it.

Theorem 0.9 (Gaussian logarithmic Sobolev inequality). The d-dimensional standard
Gaussian measure satisfies a logarithmic Sobolev inequality:

∀f ∈ C∞
c (Rd), Entγd(f

2) ⩽ 2

∫
Rd

|∇f |2 dγd. (0.0.33)

We finish Chapter 2 by reviewing the well-known Bakry-Émery curvature-dimension
condition in the smooth setting, which ensures the validity of the aforementioned func-
tional inequalities. It corresponds to a simple geometrical condition that can be equiv-
alently expressed in algebraic terms using the Γ and Γ2 operators. The consequences
of the validity of the Bakry-Émery condition go beyond functional inequalities since
it also provides useful heat kernel bounds, which, for example, will play a key role in
Chapter 3.
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Along Chapter 2, we will also focus on the functional inequalities panorama in the
discrete setting. More precisely, it is known that for any T > 0, the Poisson measure
πT does not satisfy a full logarithmic Sobolev inequality in the fashion of (0.0.33).
However, weaker types of inequalities do hold for πT , namely modified logarithmic
Sobolev inequalities. They are relevant since they allow the retrieval of the dimension-
free Poissonian concentration. The strongest inequality in this class is Wu’s inequality,
which will be of key importance in Chapters 4 and 5.

Theorem 0.10 (Wu’s modified logarithmic Sobolev inequality). Let T > 0, and let
πT be the Poisson distribution of parameter T on N. Then πT satisfies the following
modified logarithmic Sobolev inequality:

∀f : N → R>0, EntπT (f) ⩽ T EπT [Ψ(f,Df)], (0.0.34)

where

∀u > 0, ∀u+ v > 0, Ψ(u, v) := (u+ v) log(u+ v)− u log u− (1 + log u)v,

and Df is the discrete derivative:

∀k ∈ N, Df(k) := f(k + 1)− f(k).

Original contributions
The second part of the thesis devotes its attention to the original contributions made
by myself and in collaboration, based on the following four articles, which are listed in
chronological order of appearance:

• Pablo López-Rivera. A Bakry-Émery Approach to Lipschitz Transportation
on Manifolds. Potential Anal., 62(2):331–353, 2025

• Pablo López-Rivera and Yair Shenfeld. The Poisson transport map. J.
Funct. Anal., 288(10):Paper No. 110864, 2025

• Shrey Aryan, Pablo López-Rivera, and Yair Shenfeld. The stability
of Wu’s logarithmic Sobolev inequality via the Poisson-Föllmer process. arXiv
preprint arXiv:2410.06117, 2024

• Pablo López-Rivera. A uniform rate of convergence for the entropic potentials
in the quadratic Euclidean setting. arXiv preprint arXiv:2502.00084, 2025

In particular, each chapter in this part corresponds to an adapted version of one
of the articles mentioned above, following the same chronological order.

The diffusion transport map

The first contribution of this thesis goes in the spirit of Theorem 0.2, the Caffarelli
contraction theorem. In the smooth setting, there are obstructions to obtaining an
exact generalization of Theorem 0.2, i.e., finding Lipschitz maps between a source
measure and log-concave perturbations; see [FFGZ24]. Nevertheless, Fathi, Mikulin-
cer, and Shenfeld [FMS24] were able to obtain such a result in the smooth setting for



INTRODUCTION (ENGLISH) 19

log-Lipschitz perturbations of a sufficiently well-behaved source measure on a smooth
Riemannian manifold using the diffusion transport map, construction based on Kim-
Milman’s reverse heat-flow map [KM12], under boundedness assumptions on the Rie-
mann curvature tensor of the manifold.

In the above context, in the main result of Chapter 3, we show that if we have a
weighted Riemannian manifold that has bounded curvature at first and second order in
the sense of Bakry-Émery, then the Kim-Milman transport map between the weighted
measure and any log-Lipschitz perturbation of it is Lipschitz; see Theorem 3.21.

Theorem 0.11. Let (M, g, µ) be a complete and connected weighted Riemannian man-
ifold with dµ = exp(−W ) dVol for some W ∈ C∞(M), and assume that µ ∈ P(M).
Consider the diffusion operator L = ∆−∇W ·∇, let Γ be its associated carré du champ,
and let Γ2 and Γ3 be its respective iterations in the Bakry-Émery sense. Assume that
there exist constants ρ1, ρ2 > 0 such that

(i) ∀f ∈ C∞
c (M),Γ2(f) ⩾ ρ1 Γ(f); and

(ii) ∀f ∈ C∞
c (M),Γ3(f) ⩾ ρ2 Γ2(f).

Let V ∈ C∞(M), and assume that it is K-Lipschitz for some K > 0. Define dν =
e−V dµ and assume that ν ∈ P(M). Then there exists a Lipschitz map T : M → M

pushing forward µ towards ν which is exp

(√
2π
ρ2
Ke

K2

2ρ1

)
-Lipschitz.

The main application of this result is the transfer of functional inequalities; see
Corollary 3.24 for the particular case of logarithmic Sobolev inequalities.

Corollary 0.12. In the context of Theorem 0.11, for K > 0, let ν ∈ P(M) be a
K-log-Lipschitz perturbation of the measure µ. Then ν satisfies a logarithmic Sobolev
inequality with constant

CLS(ν) ⩽
2 exp

(
2
√

2π
ρ2
Ke

K2

2ρ1

)
ρ

.

The sphere Sd and the Laguerre generator on R>0 are examples of the applicability
of these results. In the last case, as another application, we provide an estimate for
the growth of the Brenier map in dimension one in the gamma case; see Proposition
3.28.

Proposition 0.13. Let µp be the gamma distribution on R>0, let V : R>0 → R be a
Lipschitz potential (for the metric x 7→ 1

x
), and let T : R>0 → R>0 be the Monge map

pushing forward µp towards e−V µp. Then there exists a constant C > 0 such that for
any x > 0,

0 < T (x) ⩽ Cx. (0.0.35)

Moreover, T is Lipschitz for the Euclidean metric on R>0, that is, there exists C ′ > 0
such that for any x > 0,

0 ⩽ T ′(x) ⩽ C ′. (0.0.36)
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The Poisson transport map

In the discrete setting, one can say that the Poisson measure πT , for any parameter
T > 0, is an analog of the Gaussian measure. In that sense, one may wonder if it is
possible to obtain a result similar to Theorem 0.2 if one replaces the Gaussian measure
by πT , the standard gradient ∇ by its discrete version D, and log-concavity by an
appropriate discrete version. However, it is known that the class of measures that
arise as a pushforward of πT is very limited, in contrast with the Euclidean setting
where Theorem 0.1 provides the existence of transport maps under mild assumptions.
On the other hand, one of the main applications of Caffarelli’s contraction theorem is
getting new functional inequalities, but in order to do so, the standard chain rule for
the operator ∇ is fundamental, and does not hold for the discrete operator D.

In Chapter 4, which is based on the article [LRS25], done in collaboration with
Yair Shenfeld, we will construct a transport map from Poisson point processes onto
ultra-log-concave measures over the natural numbers, which are the measures that are
“discretely” more log-concave than the Poisson distribution, and show that this map
is a contraction. We call this construction the Poisson transport map and it is based
on an entropy-minimizing stochastic process that we call the Poisson-Föllmer process,
introduced previously by Klartag and Lehec [KL19]. The following is the contraction
result for the Poisson transport map; see Corollary 4.18.

Theorem 0.14. Fix a real number T > 0, let µ = fπT be an ultra-log-concave proba-
bility measure over N, and let M := f(1)/f(0). Let XT be the Poisson transport map
from P to µ. Then, P-almost-surely,

∀(t, z) ∈ [0, T ]× [0,M ], D(t,z)XT ∈ {0, 1},

where D(t,z) denotes the Malliavin derivative operator at the point (t, z) ∈ [0, T ]×[0,M ].

This approach overcomes the aforementioned obstacles to transferring functional
inequalities using transport maps in discrete settings and will allow us to deduce a
number of functional inequalities for ultra-log-concave measures. In particular, we
provide the currently best known constant in modified logarithmic Sobolev inequalities
for ultra-log-concave measures.

Theorem 0.15. Let µ be an ultra-log-concave probability measure over N. Then, for
any positive g ∈ L2(N, µ),

Entµ(g) ⩽ | log µ(0)|Eµ[Ψ(g,Dg)], (0.0.37)

where Ψ(u, v) := (u+ v) log(u+ v)− u log u− (log u+ 1)v.

Theorem 0.15 is actually a consequence of a more general result, namely the trans-
fer of Chafaï’s Φ-Sobolev inequalities for ultra-log-concave measures; see Theorem
4.24.

Theorem 0.16. Let µ be an ultra-log-concave probability measure over N. Let I ⊂ R
be a closed interval, not necessarily bounded, and let Φ: I → R be a smooth convex
function. Suppose that the function

{(u, v) ∈ R2 : (u, u+ v) ∈ I × I} ∋ (u, v) 7→ Ψ(u, v) := Φ(u+ v)− Φ(u)− Φ′(u)v
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is nonnegative and convex. Then, for any g ∈ L2(N, µ), such that µ-a.s. g, g+Dg ∈ I,

EntΦµ (g) ⩽ | log µ(0)|Eµ[Ψ(g,Dg)]. (0.0.38)

We show as well the following α-T1 transport-entropy inequality for ultra-log-
concave measures; see Theorem 4.27.

Theorem 0.17. Let µ = fπT be an ultra-log-concave probability measure on N, and
let M := f(1)

f(0)
. Then, for any probability measure ν on N which is absolutely continuous

with respect to µ, and has a finite first moment, we have

αTM
(
W1,|·|(ν, µ)

)
⩽ H(ν|µ), (0.0.39)

where
αc(r) := c

[(
1 +

r

c

)
log
(
1 +

r

c

)
− r

c

]
.

Stability of Wu’s inequality

Chapter 5 is based on the article [ALRS24], written in collaboration with Shrey Aryan
and Yair Shenfeld. A stochastic proof of Wu’s inequality, Theorem 0.10, is given,
using a stochastic variational formula for the entropy that generalizes the entropy-
minimizing property of the aforementioned Poisson-Föllmer process. Moreover, this
new proof leads to the identification of the extremizers of the inequality; see Proposition
5.12.

Proposition 0.18. Recall Wu’s inequality:

∀f : N → R>0, EntπT (f) ⩽ T EπT [Ψ(f,Df)]. (0.0.40)

If EπT [Ψ(f,Df)] < ∞, then equality in (0.0.40) is attained if and only if there exist
a, b ∈ R such that f(k) = eak+b for all k ∈ N.

The proof also leads to a quantitative stability result of the inequality that provides
a lower bound for the deficit of Wu’s inequality under convexity assumptions; see
Theorem 5.17. For T > 0 and f : N → R>0 in L1(πT ), we define its deficit (with
respect to Wu’s inequality) as

δ(f) := T EπT [Ψ(f,Df)]− EntπT (f).

Theorem 0.19. Fix T > 0. Let f : N → R>0 be L1(πT ) integrable and ultra-log-
concave, and let µ := fπT∫

f dπT
. Then,

δ(f) ⩾
T 2

2
Θ f(0)

f(1)

(
E[µ]
T

)
,

where, for c > 0,

Θc(z) :=
z2

1 + cz
log

(
1

1 + cz

)
− z2

1 + cz
+ z2, z ⩾ 0.
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Convergence of the entropic potentials

The final contributions in this thesis digress from the previous three chapters and
concern the optimal transport problem and its entropic regularization: for any ε > 0,
it is possible to regularize problem (0.0.23) and add an entropy:

inf
π∈Π(µ,ν)

∫
Rd×Rd

1

2
|x− y|2 dπ(x, y) + εH(π|µ⊗ ν), (0.0.41)

where H(·|µ⊗ν) denotes the relative entropy functional with respect to the measure µ⊗
ν. Problem (0.0.41) converges towards problem (0.0.23) as ε→ 0 in many senses. For
example, the dual optimizers of (0.0.41), namely the pair of entropic potentials (φε, ψε),
converges towards the Brenier potentials (φ0, ψ0) [GT21, NW22, CCGT23].

In Chapter 6, which is based on the article [LR25b], we will provide a bound on
the rate of uniform convergence in compact sets for both entropic potentials and their
gradients towards the Brenier potential and its gradient. Both results hold in the
quadratic Euclidean setting for absolutely continuous measures satisfying the following
set of assumptions:

(A1) The measures µ, ν ∈ P(Rd) have the form dµ(x) = e−V (x) dx and dν(y) =
e−W (y) dy, where V,W : Rd → R are smooth functions and there exist α, β > 0
such that

∀x ∈ Rd, ∇2V (x) ≼ αId (0.0.42)

and
∀y ∈ Rd, ∇2W (y) ≽ βId, (0.0.43)

where Id is the identity matrix of dimension d and ≼ denotes the Löwner order
on the set of positive semidefinite matrices.

(A2) The measure µ satisfies a Poincaré inequality: there exists CP(µ) > 0 such that
for any h : Rd → R smooth with

∫
Rd h dµ = 0,

∥h∥2L2(µ) ⩽ CP(µ)∥∇h∥2L2(µ).

(A3) The measure µ has finite differential entropy:

−∞ < H(µ) := −
∫
Rd

V (x)e−V (x) dx < +∞.

The following statements correspond to the main results of Chapter 6; see Theorems
6.2 and 6.3, respectively.

Theorem 0.20. Let µ and ν be two probability measures on Rd that are absolutely
continuous with respect to the d-dimensional Lebesgue measure and satisfy the assump-
tions (A1), (A2), and (A3). Then, for any K ⊂ Rd compact, there exists a computable
constant Cgrad = Cgrad(K,µ, ν, d) > 0 such that for any ε > 0,

∥∇φε −∇φ0∥K,∞ ⩽ Cgrad ε
1

d+4 .
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Theorem 0.21. Let µ and ν be two probability measures on Rd that are absolutely con-
tinuous with respect to the d-dimensional Lebesgue measure and satisfy the assumptions
(A1), (A2), and (A3). In addition, suppose that the following normalization holds: for
every ε > 0, ∫

Rd

φε dµ =

∫
Rd

φ0 dµ = 0. (0.0.44)

Then, for any K ⊂ Rd compact and connected, there exists a computable constant
Cpot = Cpot(K,µ, ν, d) > 0 such that for any ε > 0,

∥φε − φ0∥K,∞ ⩽ Cpot

(
ε

1
d+4 + ε

)
.
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Part I

Preliminaries
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Chapter 1

Optimal transport

No era un problema de gente ni muchísimo menos, señor
Bermúdez, sino de transporte, como ya le había expli-
cado al Pulga Heredia, risas y él automáticamente abrió
la boca y arrugó la cara.

Mario Vargas Llosa
Conversación en La Catedral

In this first chapter, we will introduce the fundamentals of the theory of optimal trans-
port, which will be of crucial importance in this thesis, especially in Chapter 6, since
it contains new contributions to the field. Besides, some elements of the theory will
appear in Chapters 2, 3, and 5, more precisely, in their interplay with the theory of
functional inequalities.

After an introductory informal discussion about the optimal transport problem
and its roots, we formulate it as a variational problem for a general cost function
and state the main results concerning the existence of solutions. We then focus on
the quadratic Euclidean setting, the rich structure of its solutions, and their regularity
theory. Finally, we will review the method of characteristics for the continuity equation
to end with the dynamic formulation of optimal transport. From this point onward, the
exposition is mainly based on the well-known references [Vil03, Vil09, San15], where
the reader can find complete proofs of the results mentioned in this chapter and further
insights.

27
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1.1 The origins of optimal transport

In 1781, Gaspard Monge gave birth to the theory of optimal transport, unaware of
the impact it would have in our time. This theory, which lies at the intersection
of analysis, probability theory, and geometry, has proven to be a dynamic field with
many applications in both pure and applied mathematics. For example, it plays a
key role in the synthetic characterization of bounded Ricci curvature for metric spaces
[Stu06a, Stu06b, LV09]. It allows the study of some partial differential equations as
natural gradient flows in the space of probability measures via the Otto calculus formal-
ism [Ott01], which has many further applications and is a valuable source of intuition
[OV00, GLR20]. Wasserstein distances, which are defined through the optimal trans-
port problem, provide a robust way to compare two probability measures and are,
therefore, a valuable tool in statistics and related fields [PC19].

Beyond the examples mentioned in the above paragraph, we highlight the in-
terplay of this field with the theory of geometric and functional inequalities since
this interaction is the topic of some contributions of this thesis. The optimal trans-
port theory helps to get new inequalities [CEMS01, FMS24], new proofs of already
known inequalities [CE02, CENV04], and reinforced versions or stability-type results
[FMP09, FMP10, FIL16]. We will deeply elaborate on this point later on.

In his seminal paper [Mon81], Monge formulated the optimal transport problem
as follows: Suppose we have a deposit of material that, after being mined, must be
transported to another destination. Suppose further that the cost of transporting
the material is equal to the product of its mass times the distance between its origin
and its destination. How must we transport all the resources to minimize the total
transportation cost?

We can model Monge’s problem in the following way: Let µ and ν be two probabil-
ity distributions representing the problem’s source and target in the problem, respec-
tively. We want to find a map T that pushes forward µ towards ν, which informally
means that T is an assignment rule that tells us that the mass lying at the position
x ∈ supp(µ) must be transported to a single point y = T (x) ∈ supp(ν) without split-
ting it to other positions, see Figure 1.1. In addition, we want this map T to minimize
the aggregated transport cost, considering that the cost of transporting one unit of
mass from the position x to y is given by the usual Euclidean distance, (x, y) 7→ |x− y|.
Mathematically, we can model this situation by the following variational problem:

inf
T#µ=ν

∫
|x− T (x)| dµ(x), (1.1.1)

where the infimum is taken among all maps T that push forward µ towards ν. Un-
fortunately, this is a hard problem to solve because of the rigidity of the constraint
T#µ = ν, an issue that raises the following questions: is it possible to relax the push-
forward constraint in a meaningful sense to ensure the existence of a solution? Does
the situation improve if we change the L1-type cost function in (1.1.1), that is, are
there any situations where we can ensure the existence of a solution T? If there is a
solution, does it have any particular structure?
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x T (x)

T

µ

ν

Figure 1.1: Monge’s problem between µ and ν.1

After this informal discussion, in the next section, we will start reviewing the basic
theory of optimal transport, which provides a rich and sufficiently general framework
that satisfactorily addresses the previously mentioned questions.

1.2 General theory
Our first step is to generalize the formulation of Monge’s problem given in (1.1.1) for
an arbitrary cost function defined on the product of two Polish spaces. We chose this
level of generality because these spaces provide a convenient setting for doing measure
theory.

Definition 1.1 (Optimal transport, Monge’s formulation). Let X and Y be two
nonempty Polish spaces, and let µ ∈ P(X ) and ν ∈ P(Y). Let c : X × Y → R+

be a nonnegative Borel function. The Monge formulation of the optimal transport
problem associated with the measures µ and ν, and the cost function c is the following
minimization problem:

inf
T : X→Y;
T#µ=ν

∫
X
c(x, T (x)) dµ(x), (OT Monge)

where the infimum is taken among all Borel maps T : X → Y pushing forward µ
towards ν. A minimizer is called a Monge map or an optimal transport map, and we
will generally denote it as TMon or T0, depending on the context.

In dimension one, Monge’s problem is fully understood for strictly convex cost
functions. A unique solution exists under mild conditions, and we have access to a
very simple closed-form expression for the optimal map depending only on the original
data µ and ν.

Proposition 1.2 (One-dimensional Monge’s problem). Let X = Y = R, and let
µ ∈ P(R) and ν ∈ P(R) be two absolutely continuous probability measures on R with
full supports and finite second moments. If the cost function is of the form c(x, y) =
h(x−y), where h : R → R+ is strictly convex, then the associated problem (OT Monge)
has a unique solution given by the map TMon : R → R defined by

∀x ∈ R, TMon(x) = F−1
ν (Fµ(x)).

1Ce ne sont pas des serpents boas qui digèrent des éléphants.
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Monge’s problem is also well understood in the Gaussian case under quadratic cost;
see, for example, [Gel90].

Proposition 1.3 (Monge’s problem for Gaussian measures). Suppose that X = Y =
Rd, and let µ = N (0, A) and ν = N (0, B) be two non-degenerate Gaussian mea-
sures with A,B ≻ 0. If the cost function is given by the quadratic cost c(x, y) =
1
2
|x− y|2, then the problem (OT Monge) has a unique solution given by the linear map
TMon : Rd → Rd defined by

∀x ∈ Rd, TMon(x) = A− 1
2 (A

1
2BA

1
2 )

1
2A− 1

2x.

Unfortunately, the two situations described in Propositions 1.2 and 1.3 are quite
exceptional: these are essentially the only cases where we know closed-form expressions
for the optimal transport map.2 Now, if we are merely inquiring about the existence
of a solution, we can say that Monge’s problem is challenging to solve, even in very
uncomplicated situations. The following examples will illustrate this fact.

Example 1.4 (Transporting a Dirac Mass). For X and Y Polish and nonempty, let
x ∈ X , and take µ = δx. For any Borel map T : X → Y , we have that T#µ = δT (x), so
Monge’s problem has no solution unless ν is a Dirac mass.

Example 1.5 (Transport in the two-point space). Let X = Y = {0, 1}, and take
µ = 1

2
δ0 +

1
2
δ1 and ν = 1

4
δ0 +

3
4
δ1. We claim that there are no maps T : X → Y

such that T#µ = ν. Indeed, if we had a map T : X → Y pushing forward µ towards
ν, we would have ν({i}) = µ({S−1({i})) for i ∈ {0, 1}, which is impossible by the
construction of both measures.

Both examples 1.4 and 1.5 show that the condition T#µ = ν is very restrictive.
We can relax Monge’s problem by minimizing over a larger set of constraints that are
not as rigid as the pushforward condition, namely the set of transport plans between
µ and ν.

Definition 1.6 (Transport plan). Let X and Y be two nonempty Polish spaces. If we
fix two Borel probability measures µ ∈ P(X ) and ν ∈ P(Y), we define Π(µ, ν), the
associated set of transport plans between µ and ν, by

Π(µ, ν) := {π ∈ P(X × Y) : (projX )#π = µ and (projY)#π = ν} ,

where projX : X × Y → X and projY : X × Y → Y denote the canonical projections.

Remark 1.7.

(i) If π ∈ P(X × Y), note that π ∈ Π(µ, ν) if and only if

∀f ∈ B(X ),∀g ∈ B(Y),

∫
X×Y

(f⊕g)(x, y) dπ(x, y)=
∫
X
f(x) dµ(x)+

∫
Y
g(y) dν(y).

(ii) We observe that µ⊗ ν is a transport plan between µ and ν, so Π(µ, ν) is always
nonempty.

2Another example where a closed-form expression is available for the solution of the optimal trans-
port problem, yet in its Kantorovich formulation, which will be introduced later in Definition 1.8, is
when X = Y = T , where T = (V,E,w) is a (possibly countable infinite) metric tree [MPV23].
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We are ready to state the Kantorovich formulation of the optimal transport prob-
lem, a relaxation of problem (OT Monge), which minimizes the transport cost among
the set of transport plans.

Definition 1.8 (Optimal transport, Kantorovich’s formulation). Let X and Y be two
nonempty Polish spaces, and let µ ∈ P(X ) and ν ∈ P(Y). Let c : X × Y → R+ be
a nonnegative Borel function. The Kantorovich formulation of the optimal transport
problem associated with the measures µ and ν, and the cost function c is the following
minimization problem:

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y). (OT)

Remark 1.9. We can observe that the problem (OT) is a relaxation of (OT Monge):
Indeed, if T : X → Y is a Borel map and if we consider the identity map in X ,
idX : X → X , we can define the measure πT := (idX , T )#µ on X × Y , and we say
that πT is the transport plan induced by the map T . If T#µ = ν, then πT ∈ Π(µ, ν).
On the other hand, we have that∫

X
c(x, T (x)) dµ(x) =

∫
X×Y

c(x, y) dπT (x, y),

so the value of (OT) will always be less than or equal to the value of the problem
(OT Monge).

Remark 1.10 (Couplings and the probabilistic formulation). In probabilistic language,
if we have two Borel distributions µ ∈ P(X ) and ν ∈ P(Y) on some nonempty Polish
spaces X and Y , we say that a coupling between µ and ν is a probability space (Ω,F ,P)
equipped with two random variables X : Ω → X and Y : Ω → Y such that they have
laws µ and ν, respectively. Then we have that the problem (OT) is equivalent to the
following one, called the probabilistic formulation of the optimal transport problem:

inf
(X,Y ) coupling
X∼µ,Y∼ν

E[c(X, Y )],

where the infimum is taken among all the possible couplings (Ω,F ,P, X, Y ) between
µ and ν, and E is the expectation operator associated to the measure P. Indeed, if
(Ω,F ,P, X, Y ) is a coupling, we can define the measurable map S : Ω → X × Y given
by ω 7→ (X(ω), Y (ω)). Then, if we take π = S#P, it is easy to check that it belongs to
Π(µ, ν). In other words, couplings always factor through the product space X ×Y , so
the following diagram commutes:

(Ω,F ,P)

(X ,B(X ), µ) (X × Y ,B(X )⊗ B(Y), π) (Y ,B(Y), ν).

X
S

Y

projX projY

On the other hand,

E[c(X, Y )] =

∫
X×Y

c(x, y) dπ(x, y);
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that is, the formulation (OT) coincides with the probabilistic one. In the particular
case that there exists a map T : X → Y such that T#µ = ν, we say that the coupling
induced by T is deterministic: for any random variable X ∼ µ, then T (X) ∼ ν.

The set Π(µ, ν) has remarkable topological properties. First, we observe that it is
a closed set within M(X ×Y) for the weak topology. Furthermore, it is a tight family
of measures, which, thanks to Prokhorov’s theorem, implies that it is sequentially com-
pact. We recall the definition of tightness and Prokhorov’s theorem; see, for example,
[Bil99, Chapter 1, Section 5] for an extensive reference on the topic.

Definition 1.11 (Tightness). Let X be a nonempty Polish space, and let M ⊂ P(X )
be a collection of Borel probability measures. We say that M is tight if for every ε > 0,
there exists a compact set Kε ⊂ X such that

∀µ ∈M, µ(Kε) ⩾ 1− ε.

Theorem 1.12 (Prokhorov). Let X be a nonempty Polish space, and let M ⊂ P(X )
be a collection of Borel probability measures. Then M is compact in the weak topology
of M(X ) if and only if it is closed and tight.

Proposition 1.13. Let X and Y be two nonempty Polish spaces, and fix two Borel
probability measures µ ∈ P(X ) and ν ∈ P(Y). Then the set of transport plans Π(µ, ν)
is tight and thus compact.

Recalling the classical Weirstraß criterion, we know that if we minimize a lower
semicontinuous function on a compact set, then we have the existence of at least one
minimizer. On the other hand, we can show that if we assume that the cost function
c is lower semicontinuous, then the map π 7→

∫
X×Y c dπ will be lower semicontinuous.

Summing up all the above facts, we conclude that the problem (OT) admits a solution
under very reasonable conditions.

Theorem 1.14. Let X and Y be two nonempty Polish spaces, and let µ ∈ P(X ) and
ν ∈ P(Y). Let c : X ×Y → R+ be a nonnegative lower semicontinuous function. Then
there exists π0 ∈ Π(µ, ν) solving (OT). Furthermore, if we assume that c ∈ L1(µ⊗ ν),
then the value of (OT) is also finite.

Now, we exhibit some concrete choices of c that will be useful in the sequel.

Example 1.15 (Total variation distance). Let X be a nonempty Polish space, and
define its diagonal ∆ ⊂ X × X by ∆ := {(x, x) : x ∈ X}. Let c : X × X → {0, 1} be
the Hamming cost, which is given by

∀(x, y) ∈ X × X , c(x, y) := 1X×X\∆(x, y).

For any fixed marginals µ, ν ∈ P(X ), in the light of Remark 1.10, we can write their
associated optimal transport problem with cost function c as

inf
(X,Y ) coupling
X∼µ,Y∼ν

E[c(X, Y )] = inf
(X,Y ) coupling
X∼µ,Y∼ν

P(X ̸= Y ) =
1

2
∥µ− ν∥TV,

where ∥µ− ν∥TV denotes the total variation distance between µ and ν. That is, we
can formulate this distance in the language of optimal transport.



1.2. GENERAL THEORY 33

Example 1.16 (p-distances). Let (X , d) be a nonempty complete and separable metric
space. For p ⩾ 1, we can take the cost function given by the p-distance associated to
d:

∀(x, y) ∈ X × X , c(x, y) := d(x, y)p.

If µ and ν are Borel probability measures on X with finite moments of order p, then
c ∈ L1(µ⊗ ν). Furthermore, every transport plan has finite cost: let π ∈ Π(µ, ν), and
let z0 ∈ X :∫

X×X
d(x, y)p dπ(x, y) ⩽ 2p−1

∫
X×X

(d(x, z0)
p + d(y, z0)

p) dπ(x, y)

= 2p−1

∫
X
d(x, z0)

p dµ(x) + 2p−1

∫
X
d(y, z0)

p dν(y) < +∞,

so Theorem 1.14 grants a finite value for the Kantorovich problem associated to µ and
ν under the cost c.

Example 1.16 motivates the definition of the p-Wasserstein distances on Pp(X ),
the set of Borel probability measures on X with finite moments of order p.

Definition 1.17 (p-Wasserstein distances). Let (X , d) be a nonempty complete and
separable metric space, and let p ⩾ 1. For any µ, ν ∈ Pp(X ), we define the p-
Wasserstein distance between µ and ν by

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)p dπ(x, y)

) 1
p

.

Remark 1.18.

(i) Wp is a metric on Pp(X ). Furthermore, (Pp(X ),Wp) is a Polish space.

(ii) For any p ⩾ 1, the topology induced by the metric Wp is finer than the weak one.
More precisely, convergence in the p-Wasserstein distance can be characterized
as follows: let (µn)n∈N ⊂ Pp(X ) and µ ∈ Pp(X ). Then

Wp(µn, µ) → 0 ⇐⇒


µn → µ weakly, and

∀x0 ∈ X ,
∫
X
d(x, x0)

p dµn(x) →
∫
X
d(x, x0)

p dµ(x).

(iii) As a consequence of the previous item, if X is compact, then for any p ⩾ 1, the
convergence in p-Wasserstein distance characterizes the weak convergence, since
for any x0 ∈ X , the function x 7→ d(x, x0)

p is bounded and continuous.

Given an optimization problem, we are almost always interested in its dual for-
mulation, hoping to recover the same amount of information contained in the original
problem; in other words, we aim to obtain strong duality results. For problem (OT),
such a result holds under mild hypotheses, and the following theorem due to Kan-
torovich [Kan42] accounts for this fact.
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Theorem 1.19 (Kantorovich duality). Let X and Y be two nonempty Polish spaces,
and let µ ∈ P(X ) and ν ∈ P(Y). Let c : X × Y → R+ be a nonnegative lower
semicontinuous function and assume that c ∈ L1(µ⊗ ν). Define

Φc :=
{
(f, g) ∈ L1(µ)× L1(ν) : f ⊕ g ⩽ c

}
. (1.2.1)

Then
inf

π∈Π(µ,ν)

∫
X×Y

c dπ = sup
(f,g)∈Φc

(∫
X
f dµ+

∫
Y
g dν

)
, (1.2.2)

and both values are finite. If there exists a pair (f0, g0) ∈ Φc attaining the supremum
on the right-hand side of (1.2.2), we call it a pair of Kantorovich potentials.

Remark 1.20. For any pair of Kantorovich potentials (f0, g0), and any a ∈ R, we
observe that (f0 + a, g0 − a) is also a pair of Kantorovich potentials. However, under
some technical assumptions and if they exist, the potentials are unique if we impose
a normalization criterion; see [BGN22, Appendix B]. In practice, two widely used
normalization rules are

∫
X f0 dµ =

∫
Y g0 dν or

∫
X
f0 dµ = 0.

1.3 The quadratic Euclidean case
From this point onward, we will focus our attention on the quadratic Euclidean case;
that is, unless we state otherwise, we will assume that X = Y = Rd and c(x, y) =
1
2
|x− y|2.

Definition 1.21 (Quadratic Euclidean optimal transport). Given two Borel probabil-
ity measures µ and ν on Rd, we define their associated quadratic Euclidean optimal
transport problem, in its Kantorovich formulation, as

inf
π∈Π(µ,ν)

∫
Rd×Rd

1

2
|x− y|2 dπ(x, y), (1.3.1)

and we denote the value of (1.3.1) by C0(µ, ν).

1.3.1 Structure of the solution: the Brenier map

The quadratic Euclidean setting represents a very convenient framework for the optimal
transport problem since under mild assumptions on the first marginal, the Kantorovich
problem (1.3.1) has a unique solution π0 with a specific structure, where convexity plays
a key role: the transport plan π0 is induced by a pushforward map T0 that solves the
associated Monge problem. In addition, T0 is the gradient of a convex function φ0 that
plays an essential role in the dual problem to (1.3.1). These assertions are the content
of the Brenier-McCann theorem [Bre91, McC95].

Theorem 1.22 (Brenier-McCann). Let µ and ν be two Borel probability measures
on Rd, and assume that µ is absolutely continuous with respect to the d-dimensional
Lebesgue measure. Then there exists a lower semicontinuous proper convex function
φ0 : Rd → R ∪ {+∞} such that the map T0 := ∇φ0 pushes forward µ towards ν.
Furthermore, T0 is the unique gradient of a convex function sending µ to ν.
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Additionally, assume now that µ and ν have finite moments of order 2. Then
C0(µ, ν) < +∞, and there exists a unique optimal plan π0 ∈ Π(µ, ν) for (1.3.1), given
by the transport plan induced by T0: π0 = (idRd , T0)#µ.

Moreover, if we define ψ0 := φ∗
0 as the convex conjugate of φ0, then (f0, g0) :=(

1
2
|·|2 − φ0,

1
2
|·|2 − ψ0

)
is a pair of Kantorovich potentials, that is, it solves the dual

problem of (1.3.1), which is given by

C0(µ, ν) = sup
(f,g)∈Φ2

∫
Rd

f dµ+

∫
Rd

g dν, (1.3.2)

where Φ2 is the set

Φ2 :=

{
(f, g) ∈ L1(µ)× L1(ν) : f ⊕ g ⩽

1

2
|· − ·|2

}
.

We give some remarks on Theorem 1.22.

Remark 1.23.

(i) The map T0 is also the unique solution to the associated Monge problem. In the
following, we will call it the Brenier, Monge, or optimal transport map, depending
on the context.

(ii) The second-moment assumption on µ and ν ensures that C0(µ, ν) < +∞, it is
not necessary for the existence of the map T0, as we see in the first part of the
theorem.

(iii) If we additionally assume that ν is absolutely continuous with respect to Leb,
then the map T0 has an inverse that pushes ν towards µ and solves the inverse
Monge problem, i.e., from ν towards µ. Moreover, T−1

0 = ∇ψ0.

(iv) We can relax the absolute continuity of µ: it just suffices to assume that µ
vanishes on all Borel sets of Hausdorff dimension d−1 [McC95]. The result holds
even under a weaker condition [GM96], which was shown to be sharp in [Gig11b].

(v) Theorem 1.22 can be generalized to the Riemannian setting; see [McC01].

1.3.2 Regularity of the Brenier map

Theorem 1.22 is a strong result since it ensures the existence of an optimal transport
map under mild assumptions on the first marginal, which is very practical for some
applications. Nevertheless, in some cases, the sole existence of the Brenier map is not
enough; some additional regularity properties may be required.

For example, in Chapter 2, we will see that given two measures µ, ν ∈ P(Rd), if µ
satisfies certain types of functional inequalities (e.g., concentration bounds, Poincaré,
logarithmic Sobolev, etc.), and if there exists a Lipschitz regular map pushing forward
µ towards ν, then the same inequalities are inherited by ν. Hence, it is natural to
inquire about the regularity of the Brenier map in terms of the inputs µ and ν.



36 CHAPTER 1. OPTIMAL TRANSPORT

One of the main tools to address the regularity of the optimal transport map
is the analysis of its associated Monge-Ampère equation, using techniques from the
theory of partial differential equations, which we will introduce. Let µ and ν be two
absolutely continuous measures on Rd with full support, and let T0 : Rd → Rd be
the associated Brenier map. Since (T0)#µ = ν, we have that for any bounded Borel
function ψ : Rd → R, ∫

Rd

ψ(T0(x)) dµ(x) =

∫
Rd

ψ(y) dν(y).

Both µ and ν are absolutely continuous and have full support; denote their positive
densities by f and g, respectively, and rewrite the last equation as∫

Rd

ψ(T0(x))f(x) dx =

∫
Rd

ψ(y)g(y) dy.

Let us assume that the map T0 is nice enough: suppose it is a smooth diffeomorphism.
By the classical change of variables theorem, we can rewrite the integral on the right-
hand side in terms of T0 so that we get∫

Rd

ψ(T0(x))f(x) dx =

∫
Rd

ψ(T0(x))g(T0(x))|det(∇T0(x))| dx.

If we assume that f and g are smooth, since ψ was arbitrary, we deduce that

∀x ∈ Rd, |det(∇T0(x))| =
f(x)

g(T0(x))
,

which is a first-order PDE. So far, we have not used the fact that T0 is the Brenier
map. By Theorem 1.22, there exists a convex function φ0 such that T0 = ∇φ0, so we
get the following equation:

∀x ∈ Rd, det(∇2φ0(x)) =
f(x)

g(∇φ0(x))
. (1.3.3)

Equation (1.3.3) is the Monge-Ampère equation, which is a second-order nonlinear
partial differential equation.

In an ex-post analysis, let us note that to derive the Monge-Ampère equation, we
assumed that the Brenier map was a diffeomorphism. Fortunately, this is not an issue
since McCann [McC97] proved that (1.3.3) holds Lebesgue-almost everywhere under
mild assumptions on the marginals.

Regularity theory for (1.3.3) is a very active subject; the reader may consult [Fig19]
for a more detailed exposition of the subject. On the qualitative side, Caffarelli’s con-
tributions [Caf92b, Caf92a, Caf96] provide a positive answer concerning the regularity
of the Brenier map. The following result condensates his results. Before stating the
theorem, recall that if Ω ⊂ Rd, we say that f : Ω → R belongs to Ck,α(Ω) if there exist
k ∈ N∗ and α ∈ (0, 1] such that f is k times differentiable and its kth derivative is
α-Hölder.
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Theorem 1.24 (Caffarelli’s qualitative regularity theorem). Let Ω1,Ω2 ⊂ Rd be two
connected and bounded open sets, let µ, ν ∈ P(Rd) be absolutely continuous with respect
to Leb with dµ(x) = f(x) dx and dν(y) = g(y) dy, and suppose that both f and g are
bounded away from zero and infinity and zero outside of Ω1 and Ω2, respectively. Let
T0 = ∇φ0 : Ω1 → Ω2 be the Brenier map pushing forward µ towards ν and assume
that Ω2 is convex. If there exist k ∈ N∗ and α ∈ (0, 1] such that f ∈ Ck,α(Ω1) and
g ∈ Ck,α(Ω2), then φ0 ∈ Ck+2,α(Ω1).

Remark 1.25. In Theorem 1.24, the convexity assumption on Ω2 is necessary [Vil09,
Theorem 12.3]. Moreover, the assumption needed on the domain Ω2 is of a geometric
nature, but not of a topological or regularity nature [Caf92b, p. 100].

On the quantitative side of the theory, one searches for explicit estimates for the
derivatives of the Brenier map. A very remarkable result, again by Caffarelli [Caf00],
provides 1-Lipschitz regularity for the Brenier map pushing forward the d-dimensional
Gaussian measure towards any log-concave perturbation of it.

Theorem 1.26 (Caffarelli’s contraction theorem). Let γd be the d-dimensional Gaus-
sian measure on Rd. Let ν ∈ P(Rd) with ν ≪ γd, and suppose that it has the form
dν = e−V dγd, where V : Rd → R. If V is convex, the Brenier map pushing forward γd
towards ν is 1-Lipschitz.

Theorem 1.26 can be refined and generalized; see Theorem 6.5 in Chapter 6. Origi-
nally, Theorem 1.26 was proved by Caffarelli using a maximum principle-like argument
for (1.3.3). Nevertheless, we can find simpler proofs based on the entropic regulariza-
tion of optimal transport in [FGP20, CP23].

Caffarelli’s contraction theorem is of vital importance in the theory of functional
inequalities, as it allows the transport of the many functional inequalities satisfied by
the Gaussian measure towards log-concave perturbations of it. This consequence is the
starting point and inspiration for some results and directions developed in this thesis.
We will elaborate on this point later in Chapter 2.

1.3.3 About the continuity equation

In this subsection, we will make a slight detour in the exposition to review the method
of characteristics for the continuity equation, which will be crucial for the following
subsection and Chapter 3.

Let (M, g) be a smooth Riemannian manifold that we assume to be complete and
connected. In particular, the following results are valid for the (flat) Euclidean space
Rd. Let A• : [0,+∞) ×M → TM be a time-dependent vector field on M . Given a
fixed probability measure ν on M , we are interested in solving the continuity equation
on M with velocity A• and initial condition ν:{

∂tρt +∇ · (ρtAt) = 0

ρ0 = ν,
(1.3.4)

where ∇· denotes the divergence operator on (M, g), which acts on a vector field
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Z : M → TM by

∀φ ∈ C∞
c (M),

∫
M

φ∇ · Z dVol = −
∫
M

∇φ · Z dVol.

We will be interested in measure-valued solutions to (1.3.4). More precisely, we
say that (ρt)t⩾0, a sequence of probability measures on M with ρ0 = ν, satisfies the
continuity equation (1.3.4) in the distributional sense if

∀φ ∈ C∞
c (M),

d

dt

∫
M

φ dρt =

∫
M

∇φ · At dρt.

Now we introduce the flow of diffeomorphisms (St)t⩾0 induced by the vector field
A•, which is given by 

d

dt
St(x) = At(St(x))

S0(x) = x.
(1.3.5)

It is well defined if A• is at least locally Lipschitz.

The following classical result summarizes the method of characteristics for the
continuity equation, characterizing the weak solutions of the system (1.3.4) in terms of
its associated flow (St)t⩾0 defined by (1.3.5).

Theorem 1.27. Let (M, g) be a complete and connected Riemannian manifold, and
let A• : [0,+∞) ×M → TM be a locally Lipschitz time-dependent vector field on M .
Let ν be a Borel probability measure on M , and let (ρt)t⩾0 be a flow of Borel probability
measures on M continuous on [0,+∞), with ρ0 = ν, and such that∫ +∞

0

∫
M

|At(x)| dρt dt < +∞. (1.3.6)

Then (ρt)t⩾0 is a distributional solution of the continuity equation{
∂tρt +∇ · (ρtAt) = 0

ρ0 = ν

if and only if ρt = St#ν, where (St)t⩾0 is the flow of diffeomorphisms associated to A•,
which is defined by (1.3.5).

1.3.4 Lagrangian and Eulerian formulations of optimal trans-
port

We will keep the following discussion at an informal level, as it is not essential for the
rest of the thesis. Let µ and ν be two absolutely continuous measures on Rd with finite
second moments. By Theorem 1.22, we can express the squared 2-Wasserstein distance
between µ and ν as

W2
2(µ, ν) = inf

{∫
Rd

|x− S(x)|2 dµ(x) : S#µ = ν

}
, (1.3.7)
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where the infimum is attained for the Monge map TMon = ∇φ0. Now let us look at the
following problem, which is called the Lagrangian time-dependent formulation of the
Monge problem:

inf

{∫ 1

0

∫
Rd

|St(x)|2 dµ(x) dt : S0 = idRd , (S1)#µ = ν

}
, (1.3.8)

where the infimum is taken among flows (St)t∈[0,1] of maps St : Rd → Rd. One can
show that (1.3.8) is compatible with the static formulation (1.3.7), in the sense that
if (St)t∈[0,1] is optimal for (1.3.8), then the map S1 is optimal for (1.3.7), which is
equivalent to saying that S1 = TMon. One may wonder about the converse: does the
map TMon induce a flow of maps (Tt)t∈[0,1] optimal for (1.3.8)? Indeed, if we define

∀t ∈ [0, 1], Tt := (1− t) idRd +t TMon, (1.3.9)

then (Tt)t∈[0,1] solves (1.3.8). We call the flow (Tt)t∈[0,1] the displacement interpolation
between µ and ν.

Now consider the flow of measures (ρt)t∈[0,1] defined by

∀t ∈ [0, 1], ρt := (Tt)#µ. (1.3.10)

Note that ρ0 = µ and ρ1 = ν, that is, (ρt)t∈[0,1] interpolates between µ and ν. Observe
also that Tt = ∇

[
(1− t)1

2
|·|2 + t φ0

]
; i.e., it is the gradient of a convex function, so it

must be the optimal transport map that pushes µ toward ρt. In particular,

W2
2(µ, ρt) =

∫
Rd

|x− Tt(x)|2 dµ(x) =
∫
Rd

|x− [(1− t)x− t∇φ0(x)]|2 dµ(x)

= t2
∫
Rd

|x−∇φ0(x)|2 dµ(x) = t2W2
2(µ, ν).

Furthermore, one can show that

∀s, t ∈ [0, 1], W2(ρs, ρt) = |s− t|W2(µ, ν),

that is, W2 is a geodesic distance.

By Theorem 1.27, we can transform the Lagrangian time-dependent formulation
(1.3.8) into its equivalent Eulerian formulation. More precisely, we have that (1.3.10) is
equivalent to the validity of the following continuity equation for the flow (ρt)t∈[0,1]:{

∂tρt +∇ · (vtρt) = 0,∀t ∈ (0, 1),

ρ0 = µ,

where (vt)t∈[0,1] is the velocity field given by vt : Rd → Rd, vt := (TMon − idRd) ◦ T−1
t .

If we combine this with the Lagrangian formulation (1.3.8), we get the Benamou-
Brenier formula [BB00], which is the time-dependent Eulerian formulation of optimal
transport:

W2
2(µ, ν) = inf

{∫ 1

0

∫
Rd

|vt(x)|2 dρt(x) dt : ∂tρt +∇ · (vtρt) = 0, ρ0 = µ, ρ1 = ν

}
,

(1.3.11)
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where the infimum is taken among all pairs (ρ, v), where ρ = (ρt)t∈[0,1] and v = (vt)t∈[0,1]
together satisfy the continuity equation.

Given ρ = (ρt)t∈[0,1], we write ρ̇t := ∂tρt and define

|ρ̇t|2ρt := inf

{∫
Rd

|v|2 dρt : v = (vt)t∈[0,1], ∂tρt +∇ · (vtρt) = 0

}
.

Then the Benamou-Brenier formula (1.3.11) can be recast as

W2
2(µ, ν) = inf

{∫ 1

0

|ρ̇t|2ρt dt : ρ = (ρt)t∈[0,1], ρ0 = µ, ρ1 = ν

}
,

an expression that has a strong Riemannian flavor. It allows us to formally view P2(Rd)
as an infinite dimensional manifold equipped with a geodesic distance induced by a
“Riemannian” structure: by polarization, we can define an inner product compatible
with |·|ρt on “the tangent space at ρt”, TρtP2(Rd), which we represent by all the velocities
vt tangent to ρt.

The so-called Otto calculus is the formalism that exploits this “Riemannian struc-
ture” on the Wasserstein space, allowing formal computations that provide deep in-
sights and intuition on the structure of the Wasserstein space. Otto introduced it in
[Ott01], although it traces its roots back to the seminal contribution [JKO98], where
these ideas were used to consider some partial differential equations as gradient flows
of some functional defined on Wasserstein space. A good reference on this formalism is
[Vil09, Chapter 15]. We provide one of the most important examples: the heat equation
corresponds to the gradient flow of the entropy functional in the Otto sense.

Example 1.28 (Gradient flow of the entropy). Consider the functional F : P2(Rd) →
R ∪ {−∞,+∞} given by ρ 7→ F(ρ) := H(ρ), where H(ρ) represents the differential
entropy of ρ. Then

∇ρF = −∆ρ,

where ∇ρF is the “Riemannian gradient” of the functional F in the Otto sense. Thus,
the gradient flow associated with the functional F is exactly the heat equation:

∂tρ = ∆ρ.

A similar interpretation connects the Fokker-Planck equation and the relative en-
tropy functional.

Example 1.29 (Gradient flow of the relative entropy). Now fix µ ∈ P(Rd) of the form
dµ = exp(−W ) dx for some W : Rd → R, and consider the functional G : P2(Rd) →
R+∪{+∞} given by ρ 7→ G(ρ) := H(ρ|µ), where H(ρ|µ) represents the relative entropy
of ρ with respect to µ. Then

∇ρG = −(∆f −∇W · ∇f)ν,

where f is the density of ρ with respect to µ. Thus, the gradient flow associated with
the functional G is exactly the Fokker-Planck equation:

∂tρ = ∆ρ+∇ · (ρ∇W ).



Chapter 2

Functional inequalities

With a little bit of concentration
And a little bit of helping hands, yeah
And a little bit of raving madness, hey
You know it makes me feel, baby
Both my feet are back on the ground.

Led Zeppelin
South Bound Saurez

Functional inequalities have proven to be a powerful tool with applications in many
areas of mathematics. For example, the concentration properties of a random variable,
which play a ubiquitous role in many subfields within probability and statistics, are
intimately connected with this theory; even beyond that, concentration phenomena
constitute one of the central objects and motivations in the subject, as we will see
in this chapter. In the theory of stochastic processes, they represent one of the main
tools for studying the long-time behavior of a Markov process and getting quantitative
estimates; we will comment briefly on this in the following sections. Their applications
go beyond probability theory: the Gaussian logarithmic Sobolev inequality was crucial
in Perelman’s resolution of the Poincaré conjecture via the Ricci flow [Per02]. A final
example, which we previously mentioned in Chapter 1, is the synthetic characterization
of Ricci curvature bounds for metric spaces [Stu06a, Stu06b, LV09]; here, the interplay
between both theories was a key piece in the puzzle.

The original contributions contained in Chapters 3, 4, and 5 belong to the theory
of functional inequalities. Hence, this chapter aims to briefly motivate, introduce, and

41



42 CHAPTER 2. FUNCTIONAL INEQUALITIES

survey the aspects of the theory of functional inequalities pertinent to this thesis, thus
putting the aforementioned new results in a larger context and, at the same time,
providing the essential preliminaries for their basic understanding.

We will devote the first three sections of this chapter to studying geometric in-
equalities, isoperimetric inequalities, and the phenomenon of concentration of measure.
After that, we will focus our attention on different families of functional inequalities in-
timately connected with concentration phenomena: Poincaré, logarithmic Sobolev, and
transport-entropy. In these sections, apart from those inequalities mentioned above,
there will be other related topics that we will take the opportunity to delve a little
deeper into, such as the theory of Markov semigroups, log-concave measures, func-
tional inequalities in the discrete setting, and the Bakry-Émery theory.

2.1 Geometric inequalities

A geometric inequality compares quantities intrinsic to purely geometric objects. For
example, for any convex body in an Euclidean space, we can compute its volume,
the measure of its boundary, the volume of its polar set, etc. On the other hand, a
functional inequality is a relation verified by a large family of functions that compares
some observables associated with them, such as the variance, the entropy, and the
integrated squared norm of their gradient, all computed with respect to a given measure
on the space.

One of the motivations of the theory of functional inequalities is to get functional
versions of geometric inequalities that contain the original geometric inequality. As we
will see later, the Brunn-Minkowski and Prékopa-Leindler inequalities provide a good
example: the latter is a functional version of the former, which is purely geometric. In
this case, the embedding A 7→ 1A from B(Rd) to B(Rd) allows recovering the geometric
inequality.

Isoperimetric inequalities constitute an important family of geometric inequalities.
They characterize, among a large class of sets with equal volume, the ones having
minimal perimeter. A first example is the Euclidean isoperimetric inequality, which
states that among convex sets with equal volume, the ones with minimal perimeter
are balls. Besides, this particular inequality is a direct consequence of the Brunn-
Minkowski inequality. Isoperimetric inequalities, which we will review in more detail in
Section 2.2, are key in the theory since they are intimately linked with the phenomenon
of concentration of measure, one of the main concepts that motivate the study of
functional inequalities, as we will see in Section 2.3.

This section is organized as follows: We introduce both the Brunn-Minkowski and
the Prékopa-Leindler inequalities to highlight the interplay between geometric inequal-
ities and their functional counterparts. Then, in order to provide a first example of an
isoperimetric phenomenon, we state the Euclidean isoperimetric inequality, which is a
direct consequence of the Brunn-Minkowski theorem. We used as main references both
[Gar02, AAGM15], where the reader can find complete proofs and further development
of the results presented here.
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2.1.1 Brunn-Minkowski and Prékopa-Leindler

Our starting point is the Brunn-Minkowski theorem [Bru87, Bru89, Min10], which pro-
vides an inequality that compares the sum of the volumes of two convex bodies and
the volume of their sum. We chose this inequality as a commencement for many rea-
sons beyond its intrinsic importance. First, it admits a functional version, namely the
Prékopa-Leindler theorem, which will be our first example of a functional inequality.
Second, it admits a proof based on a transportation argument, so from the very be-
ginning we can illustrate the interplay between the theories of optimal transport and
functional inequalities. Finally, one of its direct corollaries is the Euclidean isoperimet-
ric inequality, which will be our first example of isoperimetric phenomena, which will
be discussed in detail in the next section.

We start by defining what are convex bodies, the essential geometric objects that
appear in the Brunn-Minkowski inequality. We say that K ⊂ Rd is a convex body
if it is a convex and compact set that has nonempty interior. Now, in order to state
the inequality, we need to define some basic operations on sets, namely additions and
dilations.

Definition 2.1. For any A,B ⊂ Rd, and any λ, µ ∈ R, we define the set

λA+ µB := {λx+ µy : x ∈ A, y ∈ B}.

In particular, we define the Minkowski addition between A and B as A+B := 1A+1B.

Remark 2.2.

(i) We note that if λ, µ ⩾ 0 and A,B ⊂ Rd are convex sets, then λA + µB is also
convex.

(ii) In terms of measurability, we have that for any λ, µ ∈ R, and any A,B ⊂ Rd

Borel, the set λA+ µB is Borel.

We are ready to state the Brunn-Minkowski inequality.

Theorem 2.3 (Brunn-Minkowski). Let A,B ⊂ Rd be two convex bodies. Then

Vold(A+B)1/d ⩾ Vold(A)
1/d +Vold(B)1/d. (2.1.1)

Remark 2.4.

(i) Theorem 2.3 admits some generalizations: inequality (2.1.1) holds for any nonvoid
Borel sets A and B. Furthermore, (2.1.1) is also valid if A and B are Lebesgue-
measurable and nonempty, but in that case, we have to additionally assume that
A+B is Lebesgue-measurable as well.

(ii) Theorem 2.3 is equivalent to the following statement: for any Borel sets A,B ⊂
Rd, and any λ ∈ (0, 1),

Vold(λA+ (1− λ)B) ⩾ Vold(A)
λVold(B)1−λ. (2.1.2)

(iii) An arbitrary Borel probability measure on Rd that satisfies inequality (2.1.2) is
said to be log-concave. These measures play an important role in the theory of
functional inequalities; we will elaborate on this in Section 2.4.4.
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Now, as an appetizer, we will exhibit a proof of Theorem 2.3 that relies entirely
on optimal transport theory, using the nice properties of the Brenier map between the
normalized uniform measures on the sets A and B. The argument we present here is
due to Figalli, Maggi, and Pratelli [FMP09]. However, the first who gave a transport
proof of the inequality was Knothe [Kno57].

Proof of Theorem 2.3. Define dµ := 1
Vold(A)

1A dx and dν := 1
Vold(B)

1B dx, that is, µ
and ν are the normalized uniform measures on A and B, respectively. Note that both
are absolutely continuous probability measures supported A and B, respectively, so
Theorem 1.22 in Chapter 1 ensures the existence of T0 : A → B, the Brenier map
pushing forward µ towards ν, which is of the form T0 = ∇φ0, for some convex function
φ0 : A→ R ∪ {+∞}. Note that (idA+T0)(A) ⊂ A+B, so

Vold(A+B) =

∫
Rd

1A+B(x) dx ⩾
∫
Rd

1(idA +T0)(A)(x) dx =

∫
A

|det(∇(idA+T0)(x))| dx,

where we used the classical change of variables theorem. Its usage is justified by the
fact that T0 is indeed a diffeomorphism thanks to Caffarelli’s qualitative regularity
theory; see Theorem 1.24 in Chapter 1.

Let x ∈ A, and let (λi(x))ni=1 be the eigenvalues of ∇2φ0(x), which are all nonneg-
ative. Then note that

|det(∇(idA+T0)(x))| =
∣∣det (Id +∇2φ0(x)

)∣∣ = d∏
i=1

(1 + λi(x))

⩾

1 +

(
d∏
i=1

λi(x)

)1/d
1/d

,

where we used the arithmetic-geometric means inequality.

Finally, we have that the associated Monge-Ampère equation, see equation (1.3.3)
in Chapter 1, holds everywhere since T0 is regular enough, so for any x ∈ A,

d∏
i=1

λi(x) = det(∇2φ0(x)) =
Vold(B)

Vold(A)
.

After blending up all the above arguments we obtain

Vold(A+B) ⩾ Vold(A)

(
1 +

Vold(B)1/d

Vold(A)1/d

)d
= (Vold(A)

1/d +Vold(B)1/d)d,

which yields the desired inequality (2.1.1).

Now we introduce the Prékopa-Leindler inequality [Pré71, Pré73, Lei72], which is
a functional version of Theorem 2.3.
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Theorem 2.5 (Prékopa-Leindler). Let f, g, h : Rd → R+ be nonnegative Borel func-
tions with f and g Lebesgue-integrable, and let λ ∈ (0, 1). Assume that

∀x, y ∈ Rd, h(λx+ (1− λ)y) ⩾ f(x)λg(y)1−λ. (2.1.3)

Then ∫
Rd

h dx ⩾

(∫
Rd

f dx

)λ(∫
Rd

g dx

)1−λ

. (2.1.4)

We see that Theorem 2.5 is indeed a functional version of the Brunn-Minkowski
inequality, in the sense that it allows its retrieval: indeed, for A,B ⊂ Rd Borel, it
suffices to take, for a fixed λ ∈ (0, 1), f := 1A, g := 1B and h := 1λA+(1−λ)B. This trio
of functions verifies (2.1.3), so (2.1.4) yields directly the geometric inequality (2.1.2).
The converse is also true: we can deduce the Prékopa-Leindler theorem from the Brunn-
Minkowski inequality; see, for example, [DG80].

It is valuable to mention that optimal transport leads as well to a proof of Theorem
2.5, as it was proved by McCann [McC97]: if we identify an absolutely continuous
measure ρ on Rd with its density, we may define the functional ρ 7→ −

∫
Rd ρ

(d−1)/d dx.
McCann proved its convexity along the displacement interpolations (1.3.10) defined in
Chapter 1, a fact that allows to recover the Prékopa-Leindler inequality.

2.1.2 Euclidean isoperimetry

One of the most remarkable consequences of the Brunn-Minkowski theorem is the
Euclidean isoperimetric inequality, which says that among convex bodies, those with
minimal perimeter are balls.

To state the result, we need a notion of perimeter. If K ⊂ Rd is a convex body, let
∂K be its boundary. We define the perimeter of K as the (d− 1)-dimensional volume
of ∂K. It is well known that

Vold−1(∂K) = lim
r→0+

Vold(K + rB(0, 1))− Vold(K)

r
. (2.1.5)

Theorem 2.6 (Euclidean isoperimetric inequality). For any convex body K ⊂ Rd,

Vold−1(∂K) ⩾ dVold(K)(d−1)/dVold(B)1/d, (2.1.6)

where B := B(0, 1).

Remark 2.7. We note that dVold(K)(d−1)/dVold(B)1/d is no more than the perimeter
of a d-dimensional ball with volume Vold(K).

We exhibit a direct proof of the isoperimetric inequality based on the Brunn-
Mikowski theorem.

Proof of Theorem 2.6. Fix a convex body K ⊂ Rd and let r > 0. In the light of (2.1.5),
we have that

Vold(K + rB) = Vold(K + rB(0, 1)) = Vold(K) + rVold−1(∂K) + o(r). (2.1.7)



46 CHAPTER 2. FUNCTIONAL INEQUALITIES

On the other hand, by Brunn-Minkowski’s inequality, we get

Vold(K + rB) ⩾
(
Vold(K)1/d +Vold(rB)1/d

)d
=
(
Vold(K)1/d + rVold(B)1/d

)d
= Vold(K) + drVold(B)1/dVold(K)(d−1)/d + o(r).

If we combine this inequality with (2.1.7), and then let r → 0, we get (2.1.6).

We comment on the fact that Theorem 2.6 admits a transport proof. This idea
traces back to Gromov [MS86, Appendix I], who used Knothe’s transport map in the
spirit of the proof of the Brunn-Minkowski theorem given by Knothe [Kno57]. Figalli,
Maggi, and Pratelli [FMP10] provided a similar argument that employs the Brenier
map, which is the starting point of their striking stability theorem for the Euclidean
isoperimetric inequality.

2.2 Isoperimetric inequalities
In the last section, we introduced the Euclidean isoperimetric inequality as a corollary
of the Brunn-Minkowski inequality in the context of geometric inequalities. Despite
the lack of a rigorous proof until the XIXth century, humankind has known (or at
least intuited) the solution to the isoperimetric problem since the times of the ancient
Greeks. The symmetries of the problem are a helpful factor.

Therefore, we may wonder if there are other “symmetric” situations where an
isoperimetric principle may hold, guided by our intuition. Some examples could be
the sphere Sd, the hyperbolic space Hd, a Riemannian manifold with some control on
its curvature, the discrete hypercube {0, 1}d, etc. But beyond these highly symmetric
situations, we may still wonder whether obtaining similar versions of Theorem 2.6 for
more abstract spaces is possible; a priori, isoperimetry is only a metric notion. Which
could be a good notion of an isoperimetric problem on a general metric measure space?
In an abstract setting, what is the proper generalization of the concept of the perimeter
of a set? Does it make sense to say to solve only partially an isoperimetric problem? Is
that helpful in applications? Is it possible to get a functional version of an isoperimetric
inequality?

Besides answering these questions just because they are beautiful, one of the main
reasons to study isoperimetric phenomena is that they are an essential part of the
theory of functional inequalities. More precisely, they are the starting point of the
study of the concentration of measure phenomenon. One may say that the theory as
we know it today began in the 70s from Milman’s observation of the concentration
phenomenon on the sphere Sd, which stems directly from the spherical isoperimetric
inequality. Generally speaking, we can translate good isoperimetric properties into
good concentration properties.

After the previous introductory discussion, we organize the exposition of this
section as follows: we provide the proper elements that generalize the isoperimet-
ric question for abstract metric measure spaces. Then, based on these preliminar-
ies, we review some classic examples focusing on two: the spherical and Gaussian



2.2. ISOPERIMETRIC INEQUALITIES 47

cases. Good references in the subject that inspired the exposition of the topic are
[LT91, Gro99, AAGM15, AAGM21].

2.2.1 Abstract isoperimetric principles

If we want to inquire about isoperimetric phenomena in an abstract setting, say, in a
metric space, we need to generalize the Euclidean notion of the perimeter of a set. Let
us look closer at the Euclidean case, more precisely at equation (2.1.5). One of the main
ingredients in the formula is the notion of enlargement of a set, which approximates the
measure of the original set in order to study its infinitesimal variation and hence recover
the associated perimeter. In the Euclidean case, for any r > 0, the r-enlargement of a
set A is given by the set A + rB, which coincides with the set of points that are at a
distance less than or equal to r from the original set A. The latter characterization will
be our proxy to define the r-enlargement of a set, modulo the strict inequality.

Definition 2.8 (r-enlargement). Let (X , d) be a metric space. For A ⊂ X Borel and
r > 0, we define the r-enlargement of A as the set

Ar := {x ∈ X : dist(x,A) < r},

where dist(x,A) := infy∈X d(x, y) is the distance between x ∈ X and the set A.

We are ready to define the perimeter of a set that lies in a metric space.

Definition 2.9 (Perimeter of a set). Let (X , d, µ) be a metric measure space, and let
A ∈ B(X ) with µ(A) < +∞. We define the perimeter of A as

µ+(A) := lim inf
r→0+

µ(Ar)− µ(A)

r
.

Now, we have the necessary ingredients to set up the isoperimetric question on any
abstract metric measure space of interest.

Definition 2.10 (Isoperimetric problem). Let (X , d, µ) be a metric measure space.
The isoperimetric problem for (X , d, µ) is the following: given a fixed α > 0, determine

inf{µ+(A) : A ∈ B(X ), µ(A) = α}

and identify its extremizers if they exist.

Remark 2.11. The isoperimetric problem on a metric measure space (X , d, µ) is equiv-
alent to the following formulation: we define the isoperimetric profile of the metric
measure space (X , d, µ) as the largest function Iµ : [0, µ(X )] → R+ such that

∀A ∈ B(X ) with µ(A) < +∞, µ+(A) ⩾ Iµ(µ(A)).

Solving the isoperimetric problem is equivalent to identifying the associated isoperi-
metric profile and the sets B ∈ B(X ) with µ(B) < +∞ satisfying

µ+(B) = Iµ(µ(B)),

namely the optimal sets. Note that we can interpret a lower bound on Iµ as a partial
solution to the isoperimetric problem.
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Example 2.12. Recalling Theorem 2.6, note that for (Rd, |·|,Vold), we can explicitly
identify its isoperimetric profile: let v : R+ → R+ be the function defined by

∀r ⩾ 0, v(r) := Vold(B(0, r)) = rdVold(B(0, 1)),

which is smooth and bijective. Then

∀r ⩾ 0, IVold(r) = (v′ ◦ v−1)(r) = dVold(B(0, 1))
1/dr(d−1)/d.

Given these previous definitions, we are ready to review some key examples of
isoperimetric phenomena.

2.2.2 Isoperimetry on the sphere

We start with the isoperimetric inequality on the sphere, proven independently by Lévy
[Lév51] and Schmidt [Sch48]. For d ⩾ 2 integer, we consider the d-dimensional sphere
as the set

Sd := {x = (x1, . . . , xd+1) ∈ Rd+1 : |x| = 1} ⊂ Rd+1,

endowed with the geodesic distance ρ. Let σ be the normalized surface measure on Sd,
i.e., the only probability measure on B(Sd) invariant by rotations. That is, the metric
measure space of interest here is (Sd, ρ, σ).

Let N ∈ Sd be the north pole, N = (0, . . . , 0, 1), which will act as a reference
point without loss of generality. We note that balls for the geodesic distance ρ are just
spherical caps: for r > 0, the ball with center N and radius r can be written as

BSd(N, r) = {x ∈ Sd : xd+1 > cos(r)},

see Figure 2.1. Balls are remarkable subsets because they solve the isoperimetric prob-
lem in Sd, as in the Euclidean case.

Theorem 2.13 (Spherical isoperimetric inequality). For d ⩾ 2, let (Sd, ρ, σ) be the
sphere endowed with the geodesic distance and the unique rotationally invariant Borel
probability measure. Let N ∈ Sd be the north pole. Fix α ∈ (0, 1), and let t0 > 0 be
such that σ(BSd(N, t0)) = α. Then for every A ⊂ Sd Borel with σ(A) = α,

∀r > 0, σ(Ar) ⩾ σ(BSd(N, t0)r) = σ(BSd(N, t0 + r)), (2.2.1)

so in particular,
σ+(A) ⩾ σ+(BSd(N, t0)). (2.2.2)

That is, the isoperimetric profile of (Sd, ρ, σ) is given by the function

Iσ = v′ ◦ v−1,

where v : [0, π] → [0, 1] is the function defined by

∀r ∈ [0, π], v(r) = σ(BSd(N, r)). (2.2.3)
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N

Figure 2.1: S2 and a spherical cap BS2(N, r) (in blue).

Theorem 2.13 says that the isoperimetric problem on the sphere has a full solution,
in the sense of Definition 2.10. The fact that spherical caps are the solution to it could
not be very surprising, given the symmetries of the problem, at least from an intuitive
point of view.

Considering the case α = 1/2, we see that minimal-perimeter sets are precisely
half-spheres as BSd(N, π/2). Then, for any A ⊂ Sd with σ(A) = 1/2, and for any
r > 0, we can estimate the right-hand side term in (2.2.1), thus getting the following
result, which provides a lower bound for Ar.

Corollary 2.14. For d ⩾ 2, let A ⊂ Sd be a Borel set with σ(A) = 1/2. Then

∀r > 0, σ(Ar) ⩾ 1−
√
π

8
exp

(
−(d− 1)r2/2

)
.

The bound provided in Corollary 2.14 is the exact expression of what we have been
calling the concentration of measure phenomenon on the sphere. It is a remarkable
result in many ways. First, the obvious interpretation is that at fixed dimension d ⩾ 2,
the area of Ar increases very fast as we let r grow. Now fix r > 0 and vary the
dimension d: if we let d→ +∞, the area of Ar also goes to 1 exponentially fast. If we
apply this to the particular case when A is a half-sphere, we deduce that most of the
area of a high-dimensional sphere concentrates around equatorial regions.

The spherical concentration of measure phenomenon traces back its roots to Mil-
man [Mil71] as a key piece in his simplified proof of Dvoretzky’s theorem [Dvo61], which
in turn was the answer to a question of Grothendieck [Gro53] in the context of the lo-
cal theory of Banach spaces, where one studies the structure of Banach spaces by the
properties of their finite-dimensional spaces. That is how the theory of concentration
of measure was born.

2.2.3 Isoperimetry in the Gaussian space

Now we consider the Gaussian space, that is, the metric probability space (Rd, |·|, γd),
where γd denotes the d-dimensional standard Gaussian measure. The solution to the
isoperimetric problem is also known for this space, i.e., the function I γd is explicit,
and we can characterize the extremizers for the problem.
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First, let us remark that the Gaussian can be approximated by the surface measure
on a high-dimensional sphere. More precisely, fix d ∈ N∗, and for N ⩾ d integer, let√
N SN−1 be the (N − 1)-dimensional sphere dilated by a factor of

√
N , endowed

with σN , the normalized uniform measure on
√
N SN−1. Let πN,d :

√
N SN−1 → Rd

be the projection of the first d coordinates of
√
N SN−1 onto Rd. Then the sequence

of measures (πN,d)#σN ∈ P(Rd) converges weakly to γd as N → +∞. This result
makes part of mathematical folklore and is commonly known as the “Poincaré-Maxwell
lemma”; see, for example, [Gro99, Chapter 31

2
.22].

With the help of the Poincaré-Maxwell lemma, Borell [Bor75a], and Sudakov and
Tsirel’son [ST74] proved independently the Gaussian isoperimetric inequality as a con-
sequence of Theorem 2.13. In this case, the optimizers for the isoperimetric problem
are halfspaces, i.e., sets of the form

{x ∈ Rd : θ0 · x ⩽ t0},

for some (θ0, t0) ∈ Rd × R.

Theorem 2.15 (Gaussian isoperimetric inequality). Let α ∈ (0, 1), and let (θ0, t0) ∈
Rd × R be such that the halfspace H = {x ∈ Rd : θ0 · x ⩽ t0} has mass α: γd(H) = α.
Then for every A ⊂ Rd Borel with γd(A) = α, and every r > 0, we have

γd(Ar) ⩾ γd(Hr). (2.2.4)

In particular,
γ+d (A) ⩾ γ+d (H). (2.2.5)

Moreover, the isoperimetric profile of (Rd, |·|, γd) is given by the function

I γd = I γ := Φ′ ◦ Φ−1, (2.2.6)

where Φ: R → R+ is the function defined by

∀r ∈ R, Φ(r) = γ1((−∞, r)) =
1√
2π

∫ r

−∞
e−x

2/2 dx.

Remark 2.16. We note that the Gaussian isoperimetric inequality is dimension-free:
its isoperimetric profile I γd , given by (2.2.6), does not depend on the parameter d;
that is why we denote it by I γ.

Similarly to Corollary 2.14, we can get an analog concentration result for the Gaus-
sian space.

Corollary 2.17. Let A ⊂ Rd Borel with γd(A) = 1/2. Then

∀r > 0, γd(Ar) ⩾ 1− 1

2
exp

(
−r2/2

)
.

The Gaussian concentration exhibited in Corollary 2.17 resembles Corollary 2.14,
but there is an important difference: the right-hand side term in the inequality does
not depend on the dimension d; i.e., the rate at which halfspaces concentrate is the
same for every dimension, which is consistent with Remark 2.16.

Theorem 2.15 admits a functional version, proven by Bobkov [Bob96, Bob97].
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Theorem 2.18 (Functional Gaussian isoperimetric inequality). The d-dimensional
Gaussian measure satisfies

∀f ∈ C∞
c (Rd, [0, 1]), I γ

(∫
Rd

f dγd

)
⩽
∫
Rd

√
( I γ ◦ f)2 + |∇f |2 dγd.

Remark 2.19. We can show that Theorem 2.18 recovers the geometric isoperimetric
inequality, Theorem 2.15: for any A ⊂ Rd Borel, let r > 0 and define the function
fr : Rd → [0, 1] by

∀x ∈ Rd, fr(x) = max {1− dist(x,Ar)/r, 0} ,

where dist(x,Ar) is the Euclidean distance from the point x ∈ Rd to the set Ar. If we
apply Theorem 2.18 to fr and let r → 0, we recover the inequality γ+d (A) ⩾ I γ(γd(A)).

Another remarkable property of the functional Gaussian isoperimetric inequality
is that it is preserved by Lipschitz pushforwards, modulo a constant. This fact was
mentioned by Caffarelli [Caf00] as an application of his contraction result, Theorem 1.26
in Chapter 1; for a direct proof, see [CE02, Section 3]. Historically, we can trace back
the usage of these stability properties to getting new functional inequalities to Pisier
[Pis86, p. 181]. Many functional inequalities are stable by Lipschitz pushforwards, as
we will see in the following sections. Concerning this thesis, this kind of property will
be of crucial importance later in Chapters 3 and 4.

Proposition 2.20. Let T : Rd → Rd be a differentiable map, and assume that there
exists K > 0 such that T is K-Lipschitz. Let µ be the pushforward of γd by the map
T , i.e., µ = T#γd. Then

∀f ∈ C∞
c (Rd, [0, 1]), I γ

(∫
Rd

f dµ

)
⩽
∫
Rd

√
( I γ ◦ f)2 +K2|∇f |2 dµ. (2.2.7)

The previous result motivates the following definition.

Definition 2.21 (Functional Gaussian-type isoperimetric inequality). Let µ ∈ P(Rd)
be a Borel probability measure on Rd. We say that µ satisfies a functional Gaussian-
type isoperimetric inequality if there exists a constant Cisop(µ) > 0 such that

∀f ∈ C∞
c (Rd, [0, 1]), I γ

(∫
Rd

f dµ

)
⩽
∫
Rd

√
( I γ ◦ f)2 + Cisop(µ)2|∇f |2 dµ. (2.2.8)

Remark 2.22. A functional Gaussian-type isoperimetric inequality is a powerful de-
vice, as it implies many other functional inequalities and is one of the strongest in
the large hierarchy of functional inequalities; we will elaborate on that point later in
Section 2.5.2. As an appetizer, let us remark the following: let µ ∈ P(Rd) be a Borel
probability measure satisfying inequality (2.2.8) for some Cisop(µ) > 0. By an argu-
ment similar to the one sketched in Remark 2.19, one can prove the following geometric
isoperimetric-type inequality:

∀A ∈ B(Rd), µ+(A) ⩾ Cisop(µ) I γ(µ(A)). (2.2.9)
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In other words, we have deduced that if an inequality of the type (2.2.8) holds for µ,
then we can lower bound its isoperimetric profile Iµ by Cisop(µ) I γ. In turn, note that
inequality (2.2.9) yields concentration bounds similar to the one exhibited in Corollary
2.17.

2.2.4 Other isoperimetric-type inequalities

For the sake of completeness, we mention that the examples reviewed here do not
constitute an exhaustive list of isoperimetric phenomena. For instance, in the discrete
setting, there is an isoperimetric inequality on the hypercube {0, 1}d endowed with its
normalized uniform measure, which was proven by Harper [Har66]. It is a striking
result because of the discrete nature of {0, 1}d; see, for example, [AAGM15, Section
3.1.5].

In the smooth setting, we have the Lévy-Gromov inequality, which was conjectured
by Lévy [Lév51] and proved by Gromov [Gro80]; see for further reference [GHL04, Sec-
tion 4.H] or [Gro99, Appendix C]. More precisely, let (M, g) be a Riemannian manifold
of dimension d ⩾ 2 and Ricci curvature bounded from below by K > 0, i.e., Ric ⩾ Kg.
Then, as a consequence of the Bonnet-Myers theorem, M is compact; thus, we can con-
sider the normalized volume measure Vol on M . The Lévy-Gromov inequality says that
the isoperimetric profile associated with the rescaled sphere K

d−1
Sd (i.e., a rescaled ver-

sion of (2.2.3)) is a lower bound for the isoperimetric profile of the manifold (M, g,Vol).
In other words, the model space K

d−1
Sd, which has dimension d and Ricci curvature

bounded from below by K (in fact, equal to K), provides as well a “model” bound on
the isoperimetric profile of all such manifolds.

In the context of the synthetic characterization of bounded Ricci curvature for met-
ric spaces, Cavelletti and Mondino [CM17] accomplished a generalization of the Lévy-
Gromov inequality by adapting Klartag’s Riemannian needle decomposition [Kla17],
which is in turn based on the geometry of the optimal transport for the L1 cost. See
[Vil19] for a comprehensive exposition of the result.

We mention that in the Euclidean setting, log-concave measures have nice isoperi-
metric properties; we will elaborate on this point in Section 2.4.4. This is a highly
active research topic nowadays [AAGM21].

Finally, we mention that the isoperimetric problem remains open in a number
of situations [Ros05]. For example, it is conjectured that the extremal sets for the
problem on the flat torus Td = Rd/Zd endowed with the uniform measure are of the
form B × Td−k, where 1 ⩽ k ⩽ d and B ⊂ Tk is a ball for the geodesic distance on
Tk.

2.3 Concentration of measure
In the last section, we had our first encounter with the phenomenon of concentration
of measure in Corollaries 2.14 and 2.17, which state that the volume of an r-enlarged
set tends very fast to 1 as r grows; both are a direct consequence of their respective
isoperimetric inequalities. In turn, a consequence of these results is that almost all the
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mass is condensed in a specific region of the space. This observation is what we call
concentration of measure. But, what is this, more precisely?

This section aims to introduce in a general framework the phenomenon of concen-
tration of measure, in the same way as we did for abstract isoperimetric inequalities
in Section 2.2.1. We start by defining the concentration function associated with a
metric measure space, which is the device that allows us to quantify precisely the rate
of concentration for a measure. After that, we provide a functional characterization of
concentration written in terms of the deviation of Lipschitz functions. Then we define
the most essential types of concentration pertinent to this thesis: subgaussian, subex-
ponential, and subpoissonian. Finally, we end with a discussion about dimension-free
concentration. This section’s exposition was mainly based on the well-known references
[LT91, Led01, BLM13].

2.3.1 Abstract concentration

We start by defining the concentration function of a metric measure space, which
quantifies how fast a measure concentrates. We will suppose in this section that every
metric measure space is a probability space unless otherwise stated.

Definition 2.23 (Concentration function). Let (X , d, µ) be a metric probability space.
We define the associated concentration function, αµ : R>0 → [0, 1], by

∀r > 0, αµ(r) := sup{1− µ(Ar) : µ(A) ⩾ 1/2}.

We note that without any further assumption, limr→+∞ αµ(r) = 0, since µ is a
probability measure. Then, a natural question is whether it is possible to quantify its
decay, which is the focus of concentration theory. The theory found its origins after the
seminal contribution of Milman [Mil71], namely Corollary 2.14 in the previous section.
After that, the theory started to build up in a systematic framework, notably after
contributions by Amir and Milman [AM80], Gromov and Milman [GM83], Milman
and Schechtman [MS86] and Gromov [Gro99].

A first property of concentration functions is that Lipschitz pushforwards preserve
them in the following sense.

Proposition 2.24. Let (X , dX , µ) be metric probability space and let (Y , dY) be a
metric space. Let T : X → Y be a K-Lipschitz map for some K > 0, and let ν ∈ P(Y)
be the pushforward of µ by T , i.e., ν = T#µ. Let αµ and αν be the concentration
functions associated to (X , dX , µ) and (Y , dY , ν), respectively. Then

∀r > 0, αν(r) ⩽ αµ(r/K).

Concentration phenomena admit a functional version in the following sense. Let
(X , d, µ) be a metric probability space. One can study how observables f : X → R
belonging to a large class deviate from their median. In this case, the suitable class
of observables to obtain such a statement is the one of Lipschitz functions. Morally,
if a function f : X → R is Lipschitz, that means that the oscillation of f between two
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points x and y, i.e., |f(x)− f(y)|, is proportional to the distance d(x, y) of the points in
the base space. Hence, it is reasonable to expect that if a measure µ on X concentrates
at rate αµ, then the mass of the set of points where a Lipschitz observable is far from its
median with respect to µ should decay at a rate similar to αµ; the following proposition
makes this intuition precise. Recall that if (X , d, µ) is a metric probability space, we
say that a value m ∈ R is a median for f : X → R with respect to µ if

1/2 = µ ({x ∈ X : f(x) ⩽ m}) = µ ({x ∈ X : f(x) ⩾ m}) .

We denote a median for f by mµ(f) ∈ R.

Proposition 2.25. Let (X , d, µ) be a metric probability space, and let αµ be its con-
centration function. Then αµ is the smallest function such that:

(i) For every 1-Lipschitz function f : X → R, and any median mµ(f),

∀r > 0, µ({x ∈ X : f −mµ(f) > r}) ⩽ αµ(r).

(ii) For every L-Lipschitz function f : X → R, and any median mµ(f),

∀r > 0, µ({x ∈ X : f −mµ(f) > r}) ⩽ αµ(r/L).

In particular, it holds the following concentration bound: for every L-Lipschitz function
f : X → R, and for any median mµ(f),

µ({x ∈ X : |f −mµ(f)| > r}) ⩽ 2αµ(r/L).

2.3.2 Subgaussian and subexponential concentration

Concentration of measure can occur at different rates. In particular, we are interested
in concentration functions that decay exponentially fast in the following sense.

Definition 2.26. Let (X , d, µ) be a metric probability space, let αµ be its concentration
function, and let p ⩾ 1. We say that the measure µ has p-exponential concentration of
measure if there exist constants C1, C2 > 0 such that

∀r > 0, αµ(r) ⩽ C1 exp (−C2r
p) .

In particular, if p = 1, we say that µ has subexponential concentration; if p = 2, we
say that µ has subgaussian concentration.

Remark 2.27. We immediately note that subgaussian concentration is stronger than
subexponential.

Example 2.28. From Corollaries 2.14 and 2.17 we know that both (Sd, ρ, σ) and
(Rd, |·|, γd) have subgaussian concentration. More generally, Remark 2.22 shows that
every measure satisfying a Gaussian-type isoperimetric inequality concentrates at a
subgaussian rate.

Example 2.29. Let µ be the exponential measure on R>0, that is, dµ(x) := exp(−x) dx.
Then the µ concentrates at a subexponential rate but not at a subgaussian rate.
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When a measure is concentrated in the sense of Definition 2.26, we can replace in
Proposition 2.25 the median of the observable by its mean.

Proposition 2.30. Let (X , d, µ) be a metric probability space, let αµ be its concentra-
tion function, and let p ⩾ 1. Then the following statements are equivalent:

(i) There exist constants C1, C2 > 0 such that

∀r > 0, αµ(r) ⩽ C1 exp (−C2r
p) .

(ii) There exist constants C3, C4 > 0 such that for any 1-Lipschitz function f : X →
R, and any median mµ(f) of f ,

∀r > 0, µ ({x ∈ X : |f(x)−mµ(f)| > r}) ⩽ C3 exp (−C4r
p) .

(iii) There exist constants C5, C6 > 0 such that for any 1-Lipschitz function f : X →
R,

∀r > 0, µ ({x ∈ X : |f(x)− EX∼µ[f(X)]| > r}) ⩽ C5 exp (−C6r
p) .

2.3.3 Poissonian concentration

If we now work on X = N endowed with the graph distance, a particular type of
concentration arises naturally, the subpoissonian phenomenon, which is modeled after
the folkloric concentration bound satisfied by the Poisson distribution on N, a conse-
quence of Bennett’s inequality. First, we define Bennett’s function h : R+ → R+ as the
function

∀r > 0, h(r) := (1 + r) log(1 + r)− r,

which appears naturally in the Poissonian case.

Example 2.31 (Poisson distribution). For T > 0, let πT be the Poisson distribution
of parameter T on N, and let απT be its concentration function. Then

∀r > 0, απT (r) ⩽ exp (−Th(r/T )) ,

and the bound is asymptotically sharp when r → +∞; in particular, πT is not sub-
gaussian.

We model abstract subpoissonian concentration on Example 2.31.

Definition 2.32. Let µ ∈ P(N), and let αµ be its concentration function. We say that
µ has subpoissonian concentration if there exist constants C1, C2 > 0 such that

∀r > 0, αµ(r) ⩽ C1 exp (−C2h(r/C2)) ,

where h is the Bennett function.

Remark 2.33. Based on the analytical properties of h, we see that a subpoissonian
measure µ concentrates at a slightly better rate than a subexponential measure. More
precisely, since h(r) ⩾ r2

2(1+r/3)
for all r > 0, then

∀r > 0, αµ(r) ⩽ C1 exp

(
− r2

2 (C2 + r/3)

)
,

where C1, C2 > 0.
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As in the former examples seen in Section 2.3.2, subpoissonian concentration also
controls the deviation of Lipschitz observables. For f : N → R, note that f is 1-
Lipschitz if and only if supk∈N|Df(k)| ⩽ 1, where Df is the discrete gradient on N,
which we define by

∀k ∈ N, Df(k) := f(k + 1)− f(k).

Proposition 2.34. Let µ ∈ P(N) be subpoissonian with constants C1 and C2. Then
for any 1-Lipschitz function f : X → R,

∀r > 0, µ ({k ∈ N : f(k)− EX∼µ[f(X)] > r}) ⩽ C1 exp (−C2h(r/C2)) ,

where h is the Bennett function.

2.3.4 Dimension-free concentration

Let us recall the Gaussian concentration bound given by Corollary 2.17. It is a re-
markable result because it is a dimension-free bound; see Remark 2.16. This property
is very useful in practice: for example, suppose that we have a collection of n inde-
pendent real-valued standard Gaussian random variables (Xi)

n
i=1, so their joint law

is γn. Proposition 2.30 implies that there exist two universal constants C1, C2 > 0,
independent of d, such that for any 1-Lipschitz observable f : Rn → R,

∀r > 0, P (|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| > r) ⩽ C1 exp
(
−C2r

2
)
;

i.e., we obtain a bound for the deviation of f(X1, . . . , Xn) from its mean that is inde-
pendent of the size of the sample (Xi)

n
i=1.

Concerning the last point, there is a big issue: concentration inequalities generally
do not tensorize in a dimension-free way. More precisely, suppose that (X , d, µ) is a
metric probability space with the subgaussian concentration property. For n ∈ N∗, we
can equip the product space X n with the metric dn :=

⊕n
i=1 d and the product measure

µn :=
⊗n

i=1 µ. It is not generally true that (X n, dn, µn) is subgaussian with constants
that do not depend on n.

In the last section, we saw that isoperimetric inequalities are an ally if we want
to obtain a good concentration rate. However, such an inequality is a very strong
property that is generally difficult to prove. In the sequel, we will study other func-
tional inequalities that are easier to establish and entail dimension-free concentration
bounds.

2.4 Poincaré inequalities and Markov semigroups
In this section, we will introduce Poincaré inequalities, the first example of a functional
inequality that yields concentration bounds, more precisely, of subexponential type.
One of its main features is the fact that Poincaré inequalities tensorize in a dimension-
free fashion, which addresses the issue raised at the end of the previous section. As a
warm-up, let us give the first example of a Poincaré inequality, the Gaussian one, which
traces its origins back to Nash [Nas58], Chernoff [Che81], and Chen [Che82].
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Theorem 2.35 (Gaussian Poincaré inequality). The d-dimensional standard Gaussian
measure satisfies a Poincaré inequality:

∀f ∈ C∞
c (Rd), Varγd(f) ⩽

∫
Rd

|∇f |2 dγd. (2.4.1)

Remark 2.36.

(i) The bound is valid for every dimension d ∈ N∗; i.e., it is a dimension-free bound.

(ii) The class of functions for which (2.4.1) is verified actually is bigger: it holds for
any locally Lipschitz function.

Let us take an arbitrary Borel probability measure µ ∈ P(Rd). It makes sense to
inquire if an inequality of the form (2.4.1) holds for µ: it just suffices to replace γd
by µ at both sides of the inequality and maybe admit a constant premultiplying the
integrated squared norm of the gradient different than one; this would be a Poincaré-
type inequality for µ. But, what happens in other structures? For example, if (M, g)
is a Riemannian manifold endowed with a measure µ ∈ P(M), does the validity of
a Poincaré inequality in the form (2.4.1) still have meaning if we replace ∇ by the
Riemannian gradient? What happens if we now work on a discrete space, e.g., the
natural numbers, the two-point space, or, more generally, a graph? In those situations,
the concept of what is a Poincaré inequality is less straightforward.

The following subsection addresses this issue via the theory of Markov semigroups.
This framework provides a general structure where we can recognize the essential ob-
jects playing a role in a Poincaré inequality, thus opening the path towards a more
general definition of the inequality for other settings.

We continue this section by reviewing the basic objects and elements of the Markov
semigroup theory. After that, we will define in more generality Poincaré inequalities
and study their essential properties and most remarkable examples. One of the best
references on the interplay between Markov semigroups and functional inequalities is
the book [BGL14], which inspired the exposition of those topics here. Finally, in
order to provide a sufficient condition ensuring a Poincaré inequality on the Euclidean
case, we introduce the class of log-concave measures and review their isoperimetric
properties. Excellent references on the topic are [AAGM21, KL24b].

2.4.1 Markov semigroups

Here, we will review the basic theory of Markov semigroups, a more general setting to
study (2.4.1). We start by defining Markov semigroups on Polish spaces.

Definition 2.37 (Markov semigroup). Let X be a Polish space, and let µ be a nonneg-
ative σ-finite Borel measure on X . Let (Pt)t⩾0 be a family of bounded linear operators
on B(X ). We say that (Pt)t⩾0 is a Markov semigroup if it satisfies the following prop-
erties:

(i) P0 = idL2(µ).

(ii) For every t ⩾ 0, Pt1 = 1.
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(iii) For every t ⩾ 0, the operator Pt is positive: if f ∈ B(X ) is such that f ⩾ 0, then
Ptf ⩾ 0.

(iv) For every t, s ⩾ 0, Pt+s = Pt ◦ Ps.

(v) For every p ⩾ 1 and every t ⩾ 0, Pt can be extended to a bounded operator
Pt : L

p(µ) → Lp(µ) which is a contraction; that is, for every f ∈ Lp(µ), ∥Ptf∥p ⩽
∥f∥p.

(vi) For every f ∈ L2(µ), it holds that Ptf → f in L2(µ), as t→ 0+.

Additionally, we say that µ is an invariant measure for (Pt)t⩾0 if

∀t ⩾ 0,∀f ∈ B(E),
∫
X
Ptf dµ =

∫
X
f dµ. (2.4.2)

Remark 2.38 (Markov processes). One of the greatest motivations for defining Markov
semigroups is Markov processes. Given a filtered probability space (Ω,F , (Ft)t⩾0,P)
and a Polish space X , we say that an adapted process (Xt)t⩾0 with values in X is a
time-homogeneous Markov process if

∀t > s ⩾ 0,∀f ∈ Cb(X ), E[f(Xt)|Fs] = E[f(Xt)|Xs] = EXs [f(Xt−s)],

where for x ∈ X , we denote by (Xx
t )t⩾0 the process conditioned to X0 = x, so Px is

the probability measure on Ω induced by (Xx
t )t⩾0. Assume that there exists a measure

µ such that X0 ∼ µ implies Xt ∼ µ for every t ⩾ 0; i.e., µ is a stationary law for
the process (Xt)t⩾0. Then, under mild regularity assumptions,1 there exists a Markov
semigroup (Pt)t⩾0 on X with invariant measure µ that characterizes the law of (Xt)t⩾0,
that is,

∀t ⩾ 0,∀f ∈ Cb(X ),∀x ∈ X , Ex[f(Xt)] = Ptf(x).

Now, returning to the general framework, under the assumptions given at Definition
2.37, Hille-Yosida theory [Yos80] guarantees the existence of D ⊂ L2(µ), a dense linear
subspace where (Pt)t⩾0 is differentiable at t = 0 with derivative in L2(µ):

∀f ∈ D, lim
t→0+

1

t
(Ptf − f) ∈ L2(µ). (2.4.3)

Therefore, the existence of this limit for functions in D induces a linear operator
L: D ⊂ L2(µ) → L2(µ) with domain Dom(L) := D, via (2.4.3). We say that L
is the infinitesimal generator, or just the generator, associated with the semigroup
(Pt)t⩾0.

Observe that by the semigroup property, the operator L satisfies the following
equation on D:

∀t ⩾ 0, ∂tPt = PtL = LPt. (2.4.4)

This is the heat equation associated with (Pt)t⩾0.
1Namely, assume that there exists a dense subset of L2(µ) of bounded functions A such that for

each f ∈ A, the real-valued process t 7→ f(Xx
t ) is càdlàg for any initial value x ∈ X , and for any

t0 > 0, the function x 7→ supt∈[0,t0]|Ex[f(Xt)]| belongs to L2(µ) [BGL14, p. 11].
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Working with the domain D can be difficult since it will often not be explicit.
However, in almost every situation, there is an explicit class of well-behaved functions
belonging to D that allow for explicit computations with L. Moreover, this class satisfies
an appropriate density property that permits working with those functions instead of
the functions in D without any loss of generality. This motivates the definition of core
algebra.

Definition 2.39 (Core algebra). Let X be a Polish space, and let µ be a nonnegative
σ-finite Borel measure on X . Let L: Dom(L) ⊂ L2(µ) → L2(µ) be a linear operator
with dense domain Dom(L). Let A0 be a linear subspace of Dom(L) that is an algebra,
i.e., it is stable by the pointwise product operation between real-valued functions. We
say that A0 is a core algebra for L if for any f ∈ Dom(L), there exists a sequence
(fn)n∈N ⊂ A0 such that fn → f and Lfn → Lf , where both convergences hold in the
L2(µ) sense.

In all the examples we will treat here, the semigroup (Pt)t⩾0 will satisfy the following
self-adjointness property named symmetry.

Definition 2.40 (Symmetry). Let X be a Polish space, and let µ be a nonnegative
σ-finite Borel measure on X . We say that a Markov semigroup (Pt)t⩾0 defined on X
with invariant measure µ is symmetric with respect to µ, or µ is reversible for (Pt)t⩾0,
if

∀t ⩾ 0,∀f, g ∈ L2(µ),

∫
X
g Ptf dµ =

∫
X
f Ptg dµ. (2.4.5)

Remark 2.41 (Integration by parts). Note that the symmetry property is equivalent
to the following integration by parts formula:

∀f, g ∈ Dom(L),

∫
X
g Lf dµ =

∫
X
f Lg dµ. (2.4.6)

Remark 2.42. We highlight the fact that the infinitesimal generator L of a symmetric
Markov semigroup is a self-adjoint operator on L2(µ), i.e., L = L∗ and Dom(L) =
Dom(L∗).

We state all the basic regularity conditions for a Markov semigroup that will allow
us to work in the sequel under the name of the usual conditions.

Definition 2.43 (Usual conditions). Let X be a Polish space, let µ be a nonnegative
σ-finite Borel measure on X , and let (Pt)t⩾0 be a Markov semigroup defined on X with
invariant measure µ. We say that (Pt)t⩾0 satisfies the usual conditions if it is symmetric
with respect to µ and its infinitesimal generator admits a core algebra.

We proceed with the definition of the carré du champ operator, which comes orig-
inally from potential theory. It plays a fundamental role in the interplay between the
theory of Markov semigroups and functional inequalities.

Definition 2.44 (Carré du champ operator). Let X be a Polish space, let µ be a
nonnegative σ-finite Borel measure on X , and let (Pt)t⩾0 be a Markov semigroup defined
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on X with generator L satisfying the usual conditions. Let A0 be the core algebra
associated to L. We define the carré du champ operator Γ: A0 ×A0 → A0 by

∀f, g ∈ A0, Γ(f, g) :=
1

2
(L(fg)− g Lf − f Lg).

By abuse of notation, for f ∈ A0, we write Γ(f) := Γ(f, f).

Remark 2.45.

(i) One can show that the carré du champ is a symmetric and bilinear operator.
Moreover, it is nonnegative: for any f ∈ A0, Γ(f) ⩾ 0.

(ii) Observe that Γ reflects how L is far from being a derivation: for example, in
dimension one, if Lf = f ′, then Γ(f) = 0.

(iii) Note that

∀f, g ∈ A0,

∫
X
Γ(f, g) dµ = −

∫
X
g Lf dµ = −

∫
X
f Lg dµ

because of the integration by parts formula (2.4.6).

Finally, Markov triples will be the main setting for functional inequalities.

Definition 2.46 (Markov triple). We say that (X ,L, µ) is a Markov triple if X is a
Polish space, µ is a nonnegative σ-finite Borel measure on X and L is the infinitesimal
generator associated to a Markov semigroup satisfying the usual conditions.

We give some examples of Markov triples, all induced by Markov processes; recall
Remark 2.38. For some of them, the semigroup does not have an explicit expression.
Nevertheless, in Section 3.2 of Chapter 3, we will see that this is not an obstacle, since
we can translate all the desired properties in terms of the generator L, which we will
always know explicitly.

Example 2.47 (Brownian motion). Let X = Rd, and let (Bt)t⩾0 be the standard d-
dimensional Brownian motion. Define for each t ⩾ 0, Xt :=

√
2Bt, where the rescaling

factor of
√
2 is only cosmetic and has the purpose of avoiding a 1/2 factor in the

infinitesimal generator. Its only invariant and reversible measure is Leb. The semigroup
(Pt)t⩾0 associated to (Xt)t⩾0 is the heat semigroup:

∀t > 0,∀f ∈ C∞
c (Rd), ∀x ∈ Rd, Ptf(x) =

1

(4πt)d/2

∫
Rd

f(y)e−
|x−y|2

4t dy.

Its infinitesimal generator is the standard Laplacian operator on Rd, Lf = ∆f , acting
on functions f ∈ C2(Rd). It admits C∞

c (Rd) as a core algebra. Its carré du champ is
given by

∀f, g ∈ C∞
c (Rd), Γ(f, g) = ∇f · ∇g.

Example 2.48 (Reflected Brownian motion in a domain). Let X = Ω ⊂ Rd be a
nonempty open bounded and convex domain, and let (Xt)t⩾0 be the reflected Brown-
ian motion in the domain Ω rescaled by a factor of

√
2. Its only invariant and reversible
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measure is the normalized uniform measure on Ω, µ = Leb(·∩Ω)/Leb(Ω). Its infinites-
imal generator is the Laplacian operator on Ω, Lf = ∆f , acting on functions f ∈ C2(Ω)
satsfying Neumann boundary conditions on ∂Ω. We remark that it admits C∞

c (Ω) as
a core algebra. Its carré du champ is given by

∀f, g ∈ C∞
c (Ω), Γ(f, g) = ∇f · ∇g.

Example 2.49 (Reflected Brownian motion with negative drift). Let X = R>0, and
let (Bt)t⩾0 be the standard Brownian motion on R. For t ⩾ 0, define Yt := Bt − t, and
let (Xt)t⩾0 be the reflection at 0 of the process (Yt)t⩾0. Its only invariant and reversible
measure is the exponential measure on R>0, dµ(x) = exp(−x) dx. Its infinitesimal
generator is the operator Lf = f ′′−f ′ acting on functions f ∈ C2(R>0) with f ′(0) = 0.
We remark that it admits C∞

c (R>0) as a core algebra. Its carré du champ is given by

∀f, g ∈ C∞
c (R>0), Γ(f, g) = f ′g′.

Example 2.50 (Ornstein-Uhlenbeck process). Let X = Rd, and let (Bt)t⩾0 be the
standard d-dimensional Brownian motion. The Ornstein-Uhlenbeck process (Xt)t⩾0 is
the solution to the following stochastic differential equation:

dXt =
√
2 dBt −Xt dt, X0 = x.

Its only invariant and reversible measure is the standard Gaussian γd. Its semigroup
(Pt)t⩾0 admits the following explicit representation for t > 0, known as the Mehler
formula:

∀f ∈ C∞
c (Rd),∀x ∈ Rd, Ptf(x) =

∫
Rd

f
(
e−tx+

√
1− e−2ty

)
dγd(y). (2.4.7)

Its infinitesimal generator is given by the elliptic operator Lf = ∆f − x · ∇f , acting
on functions f ∈ C2(Rd). It admits C∞

c (Rd) as a core algebra, and its carré du champ
is given by

∀f, g ∈ C∞
c (Rd), Γ(f, g) = ∇f · ∇g.

Examples 2.47 and 2.50 are particular cases of the following more general exam-
ple.

Example 2.51 (Langevin diffusion on a manifold). Let (M, g, µ) be a connected and
complete weighted Riemannian manifold with dµ = exp(−W ) dVol for some W ∈
C∞(M), and let (Bt)t⩾0 be a standard Brownian motion on M . We have that µ is
the invariant and reversible measure of the Langevin diffusion (Xt)t⩾0, which is the
solution to the following stochastic differential equation:

dXt =
√
2 dBt −∇W (Xt) dt.

In general, its semigroup does not admit a closed-form expression, but that is not
a limitation to compute its generator Lf = ∆f − ∇W · ∇f , where ∆ and ∇ are
the Laplace-Beltrami operator and the Riemannian gradient, respectively, acting on
functions f ∈ C∞(M). It admits C∞

c (M) as a core algebra. Its carré du champ is given
by

∀f, g ∈ C∞
c (M), Γ(f, g) = ∇f · ∇g.
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Example 2.52 (Markov chains). Let X be a countable set endowed with the dis-
crete topology. Let L = (Lij)i,j∈X be a Q-matrix, i.e., for each i, j ∈ X with i ̸= j,
Lij ⩾ 0, and for every i ∈ X , Lii = −

∑
j ̸=i Lij. The matrix L is the generator of a

continuous-time Markov chain (Xt)t⩾0 on the space X , with semigroup given by the
matrix exponential of L: for every t ⩾ 0, Pt = etL. An invariant measure µ for L, which
can be identified with an array (µi)i∈X of nonnegative numbers, is such that for any
j ∈ X , µj =

∑
i∈X µi Lij, and it is unique if the associated Markov chain is irreducible

and recurrent. The measure µ is reversible if for every i, j ∈ X , µi Lij = µj Lij. We
can take as a core algebra the set of finitely-supported sequences:

A0 =
{
(fi)i∈X ∈ RX : card({i ∈ X : fi ̸= 0}) < +∞

}
.

The carré du champ is given by

∀f, g ∈ A0,∀i ∈ X , Γ(f, g)(i) =
∑
j∈X

Lij(fi − fj)(gi − gj).

Example 2.53 (M/M/∞ queue). This is a particular case of the previous example.
Let X = N and fix a parameter T > 0. For f : N → R, we adopt the convention
f(−1) = 0. We define the operators D and D∗ by

∀k ∈ N, Df(k) := f(k + 1)− f(k),

and
∀k ∈ N, D∗f(k) := f(k − 1)− f(k).

The M/M/∞ queue is the Markov chain given by the generator

∀f : N → R,∀k ∈ N, Lf(k) := Df(k) +
k

T
D∗f(k).

Then πT , the Poisson distribution with parameter T , is the invariant and reversible
measure. The carré du champ operator is given by

∀f, g : N → R, Γ(f, g) =
1

2
Df ·Dg + k

2T
D∗f ·D∗g. (2.4.8)

Now we define the diffusion property for a Markov triple.

Definition 2.54 (Diffusive Markov triple). Let (X ,L, µ) be a Markov triple with core
algebra A0 and carré du champ operator Γ. We say that it is a diffusive Markov triple
if for every k ∈ N∗, and every smooth function Ψ: Rk → R with Ψ(0) = 0,

∀f1, . . . , fk, g ∈ A0, Γ(Ψ(f1, . . . , fk), g) =
k∑
i=1

∂iΨ(f1, . . . , fk)Γ(fi, g).

In particular,
∀f, g, h ∈ A0, Γ(fg, h) = fΓ(g, h) + gΓ(f, h). (2.4.9)

Remark 2.55.

(i) The Markov triples appearing in Examples 2.47, 2.48, 2.49, 2.50, and 2.51 satisfy
the diffusion property.

(ii) Since the chain rule (2.4.9) is verified, we observe that the Markov triples intro-
duced in Examples 2.52 and 2.53 do not satisfy the diffusive property in general.
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2.4.2 Poincaré inequalities and notable examples

Now that we have reviewed all the theory of Markov semigroups, we can adequately
define in the context of Markov triples what a Poincaré inequality is.

Definition 2.56 (Poincaré inequality). Let (X ,L, µ) be a Markov triple such that µ
is a probability measure. Let A0 be the core algebra associated with L, and let Γ be
its carré du champ operator. We say that the measure µ satisfies a Poincaré inequality
if there exists a constant CP(µ) > 0 such that

∀f ∈ A0, Varµ(f) ⩽ CP(µ)

∫
X
Γ(f) dµ.

Now we will prove Theorem 2.35, the Gaussian Poincaré inequality, using a semi-
group argument. Recall from example 2.50 that γd is the invariant and symmetric
measure associated with the Ornstein-Uhlenbeck semigroup.

Proof of Theorem 2.35. Let (Pt)t⩾0 be the Ornstein-Uhlenbeck semigroup in d dimen-
sions, and let f ∈ C∞

c (Rd). Define α : R+ → R by

∀t ⩾ 0, α(t) := Varγd(Ptf).

If we differentiate α, we obtain

α′(t) = −2

∫
Rd

Γ(∇Ptf) dγd = −2

∫
Rd

|∇Ptf |2 dγd.

From Mehler’s formula (2.4.7), we see that for all x ∈ Rd, limt→+∞ Ptf(x) =
∫
Rd f dγd.

Then, if we integrate in t ⩾ 0 the expression for α′, we get

Varγd(f) = 2

∫ +∞

0

∫
Rd

|∇Ptf |2 dγd.

On the other hand, again from (2.4.7), it can be shown that for 1 ⩽ i ⩽ d,

∂iPtf(x) = e−t Pt(∂if)(x).

Hence,
|∇Ptf(x)|2 ⩽ e−2t Pt(|∇f |2). (2.4.10)

Thus,

Varγd(f) ⩽ 2

∫ +∞

0

∫
Rd

e−2t Pt(|∇f |2) dγd = 2

∫ +∞

0

∫
Rd

e−2t|∇f |2 dγd =
∫
Rd

|∇f |2 dγd,

where we used the fact that µ is invariant for the semigroup.

Remark 2.57. Let (M, g, µ) be a connected and complete weighted Riemannian man-
ifold with dµ = exp(−W ) dVol for some W ∈ C∞(M). From Example 2.51, we know
that the Langevin generator L = ∆−∇W · ∇ admits µ as its reversible and invariant
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measure. The carré du champ is given by Γ(f) = |∇f |2 for f ∈ C∞
c (M). Therefore, a

Poincaré inequality for (M,L, µ) reads as

∀f ∈ C∞
c (M), Varµ(f) ⩽ CP(µ)

∫
M

|∇f |2 dµ (2.4.11)

for some CP(µ) > 0. In simple words, for a given probability measure absolutely
continuous with respect to the volume measure on a Riemannian manifold and with
positive smooth density, there always exists a Markov generator L that allows us to
match the functional inequality (2.4.11) with the Definition 2.56.

We provide some classical examples apart from Theorem 2.35. We start with the
original type of inequality proven by Poincaré [Poi87, Poi90], which names this class of
inequalities. The following sharp version was proven by Payne and Weinberger [PW60].
In this case, the associated Markov triple corresponds to the one associated with the
reflected Brownian motion on a domain, recall Example 2.48.

Theorem 2.58 (Poincaré inequality on a convex domain). Let Ω ⊂ Rd be a nonempty
open bounded and convex domain, and denote by µ the normalized uniform measure
on Ω. Define the diameter of Ω by diam(Ω) := supx,y∈Ω|x− y|. Then the measure µ
satisfies a Poincaré inequality:

∀f ∈ C∞
c (Ω), Varµ(f) ⩽

diam(Ω)2

π2

∫
Ω

|∇f |2 dµ.

Talagrand [Tal91] proved that the one-dimensional exponential distribution satisfies
a Poincaré inequality. The respective Markov triple is the one introduced in Example
2.49.

Theorem 2.59 (Exponential Poincaré inequality). Let dµ(x) = exp(−x) dx be the
exponential measure on R>0. Then µ satisfies a Poincaré inequality:

∀f ∈ C∞
c (R>0), Varµ(f) ⩽ 4

∫
R>0

|f ′|2 dµ.

The following Poissonian Poincaré inequality is due to Klaassen [Kla85], where
the associated Markov triple is the one induced by the M/M/∞ queue, see Example
2.53.

Theorem 2.60 (Poissonian Poincaré inequality). Fix T > 0, and let πT be the Poisson
measure of parameter T and consider the carré du champ given by (2.4.8). Then πT
satisfies a Poincaré inequality with respect to Γ:

∀f ∈ L2(πT ), VarπT (f) ⩽ T
+∞∑
k=0

Γ(f)(k) πT (k).

Remark 2.61. Sometimes, in the Poissonian setting, it is more natural to consider
the bilinear form given by

∀f, g : N → R, Γ̃(f, g) = Df ·Dg (2.4.12)
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as an alternative to Γ. Note that

∀f, g : N → R, EπT [Γ(f, g)] = EπT [Γ̃(f, g)],

so the Poincaré inequality of Theorem 2.60 is actually equivalent to

∀f ∈ L2(πT ), VarπT (f) ⩽ T

+∞∑
k=0

|Df(k)|2 πT (k).

2.4.3 Poincaré inequalities and their properties

We promised from the very beginning of this section that tensorization was one of the
main features of Poincaré inequalities.

Proposition 2.62 (Tensorization). Let n ∈ N∗. For 1 ⩽ i ⩽ n, let (Xi,Li, µi) be a
Markov triple, assume that µi is a probability measure, and denote by Ai

0 and Γi the
core algebra and the carré du champ operator, respectively. Define the Markov triple
(X ,L, µ) by X :=

∏n
i=1Xi, µ :=

⊗n
i=1 µi, and L :=

⊕n
i=1 Li, which has a carré du

champ operator given by Γ :=
⊕n

i=1 Γi. If each µi satisfies a Poincaré inequality with
constant CP(µi) > 0, then (X ,L, µ) satisfies a Poincaré inequality with constant

CP(µ) ⩽ max
1⩽i⩽n

CP(µi).

We now arrive at another promised result, namely that a Poincaré inequality yields
subexponential concentration. This result is due to Gromov and Milman [GM83].

Theorem 2.63 (Gromov-Milman). Let (X ,L, µ) be a Markov triple. Assume that µ is
a probability measure satisfying a Poincaré inequality with constant CP(µ) > 0. Then
the measure µ has subexponential concentration.

Remark 2.64. If we blend together Proposition 2.62 and Theorem 2.63, we obtain the
following result: if µ is a measure satisfying a Poincaré inequality, then for any n ∈ N∗,
the measure µn :=

⊗n
i=1 µ is subexponential with a constant that does not depend on

n. This is the dimension-free concentration property granted by a Poincaré inequality.

Suppose that the base space X is a metric space, so we may consider Lipschitz
maps T : X → X with respect to the given metric. In the diffusive case, Lipschitz
pushforwards preserve poincaré inequalities. Unfortunately, the diffusion property is
crucial for the validity of the result. For simplicity, we state the following result in the
smooth context.

Proposition 2.65. Let (M, g, µ) be a connected and complete weighted Riemannian
manifold with dµ = exp(−W ) dVol for some W ∈ C∞(M), and assume that µ ∈ P(M).
Let T : M → M be a K-Lipschitz map for some K > 0, and let ν ∈ P(X ) be the
pushforward of µ by T , i.e., ν = T#µ. Let Γ(f) = |∇f |2 be the usual carré du champ.
If µ satisfies a Poincaré inequality with constant CP(µ), then ν satisfies a Poincaré
inequality with constant CP(ν) ⩽ K2CP(µ).

Poincaré inequalities contain spectral information of the associated infinitesimal
generator L. Namely, the validity of such an inequality means that the operator L
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has a spectral gap, so the related semigroup is ergodic, and we may quantify this
property.

Theorem 2.66. Let (X ,L, µ) be a Markov triple, assume that µ is a probability mea-
sure and let (Pt)t⩾0 be the associated semigroup. Moreover, suppose that µ satisfies a
Poincaré inequality with constant CP(µ) > 0. Then (Pt)t⩾0 is ergodic:

∀f ∈ L2(µ), lim
t→+∞

Ptf =

∫
X
f dµ in L2(µ).

Furthermore,

∀f ∈ L2(µ),∀t ⩾ 0, Varµ(Ptf) ⩽ e−2t/CP(µ)Varµ(f). (2.4.13)

A significant consequence of Theorem 2.66 is the following: suppose that we have a
Markov process (Xt)t⩾0 with invariant and reversible measure µ, in the sense of Remark
2.38. If the measure µ satisfies a Poincaré inequality, then the process (Xt)t⩾0 will be
ergodic, which in simple terms means that for any initial law X0 ∼ ν, then the law
of the random variable Xt will converge towards the invariant measure µ as t goes
to infinity. Furthermore, (2.4.13) quantifies this convergence to the equilibrium as an
exponentially fast one.

2.4.4 Log-concave measures

Up to this point, we have only given particular examples of measures satisfying a
Poincaré inequality. In the Euclidean setting, there is a sufficient condition ensuring
a Poincaré inequality based on a convexity criterion, namely log-concavity. In both
sections 2.1.1 and 2.2.4 of this chapter, we have referred to log-concave measures,
particularly in terms of their good isoperimetric properties; the fact that log-concavity
implies a Poincaré inequality reflects this. As promises are made to keep, this is the
moment to introduce this class of measures.

Definition 2.67 (Log-concave measures). Let µ ∈ P(Rd) be a Borel probability mea-
sure. We say that µ is log-concave if

∀A,B ∈ B(Rd),∀λ ∈ (0, 1), µ(λA+ (1− λ)B) ⩾ µ(A)λµ(B)1−λ. (2.4.14)

The Brunn-Minkowski inequality, i.e., Theorem 2.3, in its equivalent form (2.1.2)
provides the first examples of log-concave measures.

Example 2.68 (Uniform measure on a convex body). If K ⊂ Rd is a convex body, let
µK ∈ P(Rd) be the normalized uniform measure on K:

∀A ∈ B(Rd), µK(A) := Vold(A ∩K)/Vold(K).

Then µK is log-concave.

We also define the class of log-concave functions.
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Definition 2.69 (Log-concave functions). Let f : Rd → R+ be a nonnegative function.
We say that f is log-concave if there exists V : Rd → R ∪ {+∞} convex such that
f = e−V , under the convention e−∞ = 0.

Indeed, both definitions 2.67 and 2.69 are intimately connected. The following
theorem accounts for this fact.

Theorem 2.70. Let µ ∈ P(Rd). If µ ≪ Leb and its density f : Rd → R+ is a log-
concave function, then µ is a log-concave measure. Conversely, if µ is a log-concave
measure and µ≪ Leb, then its density f : Rd → R+ is a log-concave function.

The first assertion follows from the Prékopa-Leindler inequality (Theorem 2.5),
while the second was proved by Borell [Bor75b].

From this moment, we will delve into the isoperimetric properties of log-concave
measures. As we saw in Section 2.2, we can interpret a lower bound on the isoperimet-
ric profile of a measure as a partial solution to the isoperimetric problem in the sense
of Definition 2.10 and Remark 2.11. One of the simplest bounds for the isoperimetric
profile one can imagine is a linear one. Cheeger [Che70] introduced this type of isoperi-
metric bound in the study of the spectral properties of the Laplace-Beltrami operator
associated with a Riemannian manifold.

Definition 2.71 (Cheeger inequality). Let µ ∈ P(Rd), and let Iµ be its isoperimetric
profile. We say that µ satisfies a Cheeger inequality if there exists a constant χ(µ) > 0
such that

∀r ∈ [0, 1], Iµ(r) ⩾ χ(µ)min{r, 1− r}. (2.4.15)

Beyond the intuition of a simple linear bound for the isoperimetric profile of a
measure, the exponential measure on the real line is shown to be a natural example of
a measure having exactly an isoperimetric profile of the form (2.4.15), as we see in the
following example. For further details, we refer to [Fou05, p. 114].

Example 2.72 (Exponential measure isoperimetry). Let µ be the double-sided expo-
nential measure on R, that is, dµ(x) = 1

2
exp(−|x|) dx, and let Iµ be its isoperimetric

profile. It can be shown that half lines solve the isoperimetric problem associated with
µ, that is, sets of the form (−∞, x] or [x,+∞) for x ∈ R. On the other hand,

Iµ = F ′
µ ◦ F−1

µ ,

where Fµ is the distribution function of µ. In this case, Fµ is explicit, so we get

∀r ∈ [0, 1], Iµ(r) = min{r, 1− r}.

Then Example 2.72 shows that we may consider Definition 2.71 as a model isoperi-
metric inequality based on the exponential case. In Section 2.2, we obtained the con-
centration inequalities in Corollaries 2.14 and 2.17 from the spherical and Gaussian
isoperimetric inequalities, respectively, so we may wonder if it is possible to do the
same but from Cheeger’s inequality. Indeed, Cheeger [Che70] proved that the validity
of inequality (2.4.15) entails the validity of a Poincaré inequality, which by Gromov-
Milman’s theorem implies subexponential concentration.
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Theorem 2.73. Let µ ∈ P(Rd), suppose that µ satisfies Cheeger’s inequality with
constant χ(µ) > 0, and define Cheeger’s reciprocal constant as ψ(µ) := 1/χ(µ). Then
µ satisfies a Poincaré inequality with constant CP(µ) ⩽ 4ψ(µ)2.

The good isoperimetric properties of log-concave measures stem from the fact that
they satisfy Cheeger’s inequality. This fact was proven by Kannan, Lovász, and Si-
monovits [KLS95], and Bobkov [Bob99].

Theorem 2.74. Let µ be a Borel log-concave probability measure. Then µ satisfies a
Cheeger inequality. In particular, µ satisfies a Poincaré inequality.

In the log-concave case, Milman [Mil09] proved that the converse of Theorem 2.73
holds on the class of log-concave measures. That is, the log-concave Poincaré inequality
is an isoperimetric property as strong as the log-concave Cheeger inequality.

Theorem 2.75 (Milman). There exists a universal constant c > 0 such that for any
Borel log-concave probability measure µ, c ψ(µ)2 ⩽ CP(µ).

Let us remark that Theorem 2.75 provides a universal constant, which does not
depend on the dimension, to compare both constants. That is, studying the isoperi-
metric properties of log-concave measures is equivalent to studying the behavior of
their Poincaré constants.

One may wonder what is the influence of the dimension of the ambient space on
the isoperimetric properties of a log-concave measure. More precisely, the question is
if it is possible to study the order of magnitude of the Poincaré constant with respect
to the dimension of the ambient space. To do so, we need to normalize our log-
concave measures in order to compare them: for example, for α > 0 and d ∈ N∗, let
γd,α := N (0, αId), which is log-concave. By a rescaling argument, it is possible to show
that γd,α satisfies a sharp Poincaré inequality with constant CP(γd,α) = 1/α, which
explodes as α goes to 0. To avoid this issue, we will normalize measures with respect
to their covariance matrix.

Definition 2.76 (Isotropic measure). We say that a Borel probability measure µ ∈
P(Rd) is isotropic if

∫
Rd x dµ(x) = 0 and for every θ ∈ Rd with |θ| = 1,

∫
Rd|θ · x|2 dµ(x) =

1.

If µ ∈ P(Rd) is isotropic and log-concave, then we have the following direct lower
bound on its Poincaré constant that follows from the Poincaré inequality applied to
the linear forms x 7→ θ · x:

1 ⩽ CP(µ). (2.4.16)

One of the biggest open questions in the field is the KLS conjecture, which roughly
states that there is also an adimensional matching upper bound in (2.4.16).

Conjecture 2.77 (KLS conjecture). There exists a universal constant c > 0 such that
for any isotropic Borel log-concave probability measure, its Poincaré constant is upper
bounded by c.

The currently best bound is of order O(log d), and it was found by Klartag [Kla23].
The KLS conjecture is a stronger statement than Bourgain’s slicing problem [Bou86,
Bou87], which was solved recently by Klartag and Lehec [KL24a].
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2.5 Logarithmic Sobolev inequalities
Poincaré inequalities were the functional inequalities we used as a proxy to obtain
dimension-free subexponential concentration. Logarithmic Sobolev inequalities play
the same role for the subgaussian phenomenon. In this section, we define them and
study their most essential properties and some examples. Finally, we introduce modi-
fied logarithmic Sobolev inequalities, a weaker kind of functional inequality that plays
a central role in the discrete setting due to the lack of a full logarithmic Sobolev
inequality in this context. The content of this section is based on the references
[ABC+00, BGL14, CL23].

2.5.1 Basic properties

As we have already introduced the language of Markov triples, we define logarithmic
Sobolev inequalities in those terms.

Definition 2.78 (Logarithmic Sobolev inequality). Let (X ,L, µ) be a Markov triple
such that µ is a probability measure. Let A0 be the core algebra associated with L, and
let Γ be the carré du champ operator. We say that the measure µ satisfies a logarithmic
Sobolev inequality if there exists a constant CLS(µ) > 0 such that

∀f ∈ A0, Entµ(f
2) ⩽ CLS(µ)

∫
X
Γ(f) dµ.

As a first property, we have that logarithmic Sobolev inequalities are stronger than
Poincaré inequalities, as proved by Rothaus [Rot81].

Proposition 2.79. Let (X ,L, µ) be a Markov triple such that µ is a probability mea-
sure. If µ satisfies a logarithmic Sobolev inequality with constant CLS(µ) > 0, then µ
satisfies a Poincaré inequality with constant CP(µ) ⩽ CLS(µ).

These inequalities tensorize in the same fashion as Poincaré inequalities.

Proposition 2.80 (Tensorization). Let n ∈ N∗. For 1 ⩽ i ⩽ n, let (Xi,Li, µi) be
a Markov triple, assume that µi is a probability measure, and denote by Ai

0 and Γi
the core algebra and the carré du champ operator, respectively. Define the Markov
triple (X ,L, µ) by X :=

∏n
i=1Xi, µ :=

⊗n
i=1 µi, and Γ :=

⊕n
i=1 Γi. If each µi satisfies

a logarithmic Sobolev inequality with constant CLS(µi) > 0, then (X ,L, µ) satisfies a
logarithmic Sobolev inequality with constant

CLS(µ) ⩽ max
1⩽i⩽n

CLS(µi).

We arrive at one of the quintessential properties of these inequalities, namely the
Herbst argument, which yields subgaussian concentration whenever a measure satisfies
a logarithmic Sobolev inequality. Ira Herbst communicated this unpublished result in
a letter addressed to Leonard Gross.

Theorem 2.81 (Herbst’s argument). Let (X ,L, µ) be a Markov triple. Assume that
µ is a probability measure satisfying a logarithmic Sobolev inequality with constant
CLS(µ) > 0. Then µ has subgaussian concentration.
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Remark 2.82. We can state an analog conclusion to the one commented in Remark
2.64 when a logarithmic Sobolev inequality holds for a measure µ: for any n ∈ N∗, the
product measure µn =

⊗n
i=1 µ is subgaussian with a dimension-free constant.

Similarly to Proposition 2.65, logarithmic Sobolev inequalities are stable by Lips-
chitz pushforwards in the smooth case.

Proposition 2.83. Let (M, g, µ) be a connected and complete weighted Riemannian
manifold with dµ = exp(−W ) dVol for some W ∈ C∞(M), and assume that µ ∈ P(M).
Let T : M → M be a K-Lipschitz map for some K > 0 and let ν ∈ P(X ) be the
pushforward of µ by T , i.e., ν = T#µ. Let Γ(f) = |∇f |2 be the usual carré du champ.
If µ satisfies a logarithmic Sobolev inequality with constant CLS(µ), then ν satisfies a
logarithmic Sobolev inequality with constant CLS(ν) ⩽ K2CLS(µ).

In the fashion of Theorem 2.66, logarithmic Sobolev inequalities yield the decay of
the entropy along the semigroup exponentially fast in time.

Theorem 2.84. Let (X ,L, µ) be a Markov triple, assume that µ is a probability mea-
sure and let (Pt)t⩾0 be the associated semigroup. Moreover, suppose that µ satisfies a
logarithmic Sobolev inequality with constant CLS(µ) > 0. Then (Pt)t⩾0 is ergodic:

∀f ∈ L2(µ), lim
t→+∞

Ptf =

∫
X
f dµ in L2(µ).

Furthermore,

∀f ∈ L2(µ),∀t ⩾ 0, Entµ(Ptf) ⩽ e−2t/CLS(µ) Entµ(f). (2.5.1)

Recall that any Markov semigroup (Pt)t⩾0 with invariant measure µ, by defini-
tion, is a contraction in Lp(µ), i.e., for all p ⩾ 1 real, and every f ∈ Lp(µ), then
∥Ptf∥p ⩽ ∥f∥p. In the case when µ satisfies a logarithmic Sobolev inequality, the
semigroup satisfies a stronger regularizing property denominated hypercontractivity:
for every f ∈ Lp(µ), we have ∥Ptf∥q ⩽ ∥f∥p for some q > p, thus going beyond plain
contractivity. Nelson [Nel66] realized that the Ornstein-Uhlenbeck semigroup satisfies
the property, and then Gross [Gro75] proved the equivalence between a logarithmic
Sobolev inequality and the hypercontractivity of the associated semigroup.

Theorem 2.85 (Gross). Let (X ,L, µ) be a Markov triple, assume that µ is a probability
measure, and let (Pt)t⩾0 be the associated semigroup. Then µ satisfies a logarithmic
Sobolev inequality with constant CLS(µ) > 0 if and only if (Pt)t⩾0 is hypercontractive:

∀p > 1,∀t ⩾ 0, ∀f ∈ Lp(µ), ∥Ptf∥q(t) ⩽ ∥f∥p,

where q(t) = 1 + (p− 1)e4t/CLS(µ).

2.5.2 Examples

We provide some examples of logarithmic Sobolev inequalities, starting with the Gaus-
sian case, proven independently by Stam [Sta59] and Gross [Gro75].
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Theorem 2.86 (Gaussian logarithmic Sobolev inequality). The d-dimensional stan-
dard Gaussian measure satisfies a logarithmic Sobolev inequality:

∀f ∈ C∞
c (Rd), Entγd(f

2) ⩽ 2

∫
Rd

|∇f |2 dγd. (2.5.2)

There are many known proofs of this inequality; we will do a semigroup argument
similar to how we proved the Gaussian Poincaré inequality of Theorem 2.35.

Proof of Theorem 2.86. First, note that by the chain rule and an approximation argu-
ment, the Gaussian logarithmic Sobolev inequality (2.5.2) is equivalent to

∀f ∈ C∞
>0(Rd), Entγd(f) ⩽

1

2

∫
Rd

|∇f |2

f
dγd, (2.5.3)

where C∞
>0(Rd) is the set of positive smooth functions. We will establish (2.5.3).

Let (Pt)t⩾0 be the Ornstein-Uhlenbeck semigroup on Rd, and let f ∈ C∞
>0(Rd). If

we differentiate t 7→ Entγd(Ptf), we obtain the so-called entropy production formula,
or de Bruijn’s identity:

d

dt
Entγd(Ptf) = −

∫
Rd

Γ(Ptf)

Ptf
dγd = −

∫
Rd

|∇Ptf |2

Ptf
dγd,

which integrated in t ⩾ 0 yields

Entγd(f) =

∫ +∞

0

∫
Rd

|∇Ptf |2

Ptf
dγd.

Note that the Mehler formula (2.4.7) yields

|∇Ptf |2

Ptf
⩽ e−2t Pt

(
|∇f |2

f

)
, (2.5.4)

so inequality (2.5.3) follows by the same argument we used at the end of the proof of
the Gaussian Poincaré inequality.

Remark 2.87. Alternatively, a very short proof of Theorem 2.86 can be given from
the functional Gaussian isoperimetric inequality, Theorem 2.18, thanks to an argument
due to Beckner [Led00] based on a Taylor expansion. More generally, if a Borel measure
µ ∈ P(Rd) satisfies a functional Gaussian-type isoperimetric inequality with constant
Cisop(µ) > 0, then it satisfies a logarithmic Sobolev inequality with constant CLS(µ) ⩽
2Cisop(µ). Thus, we confirm what we stated in Remark 2.22: isoperimetric inequalities
are one of the strongest in the hierarchy of functional inequalities.

In the discrete setting, one of the most important examples is the two-point space
X = {0, 1} endowed with the Bernoulli uniform measure µ({0}) = µ({1}) = 1/2. In
this case, let us consider the following Q-matrix:

L :=

(
−1 1
1 −1

)
,
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which is the generator of the symmetric continuous-time random walk on X , a partic-
ular case of Example 2.52. For every function, the carré du champ is constant:

∀f : X → R,∀i ∈ X , Γ(f)(i) = (f(0)− f(1))2,

so the energy term reads

∀f : X → R,
∫
X
Γ(f) dµ = (f(0)− f(1))2.

We have the following logarithmic Sobolev inequality on X .

Theorem 2.88 (Logarithmic Sobolev inequality on {0, 1}). Let µ be the uniform mea-
sure on X = {0, 1}. Then µ satisfies a logarithmic Sobolev inequality:

∀f : X → R, Entµ(f
2) ⩽

1

2

∫
X
Γ(f) dµ.

The logarithmic Sobolev inequality on the two-point space was proven originally by
Gross [Gro75], who combined it with Proposition 2.80 to extend the inequality to the
hypercube {0, 1}n and then obtain Theorem 2.86 using the central limit theorem.

Unfortunately, the validity of a logarithmic Sobolev inequality is not trivial and is
not always the case. For example, it is not satisfied by the exponential measure.

Example 2.89. Recall the exponential measure on R>0. It does not concentrate at
a subgaussian level, so a logarithmic Sobolev inequality is impossible, as it would
contradict Theorem 2.81.

2.5.3 Modified logarithmic Sobolev inequalities

We recall from Section 2.3.3 that in the discrete setting, a remarkable concentration
model was the Poissonian one. One of the main reasons why we have studied Poincaré
and logarithmic Sobolev inequalities in this chapter is to obtain functional inequalities
that have, at the same time, good tensorization properties and entail the phenomenon
of concentration of measure so that we can obtain dimension-free bounds for tensorized
measures. Then we wonder, is there any such model inequality regarding the Poissonian
case?

We first recall from Remark 2.33 that the Poissonian concentration is slightly
stronger than the subexponential one, so if we want to recover the sharp bound via
a functional inequality, a Poincaré inequality is useless (recall Gromov-Milman’s the-
orem). On the other hand, from Example 2.31, we see that the Poisson distribution
does not satisfy a subgaussian concentration bound, so a logarithmic Sobolev inequal-
ity is impossible in the light of Herbst’s argument. Despite these limitations, Bobkov
and Ledoux [BL98] found an appropriate inequality between Poincaré and logarithmic
Sobolev.

Theorem 2.90 (Bobkov and Ledoux’s modified logarithmic Sobolev inequality). Let
T > 0, and let πT be the Poisson distribution of parameter T on N. Then πT satisfies
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the following modified logarithmic Sobolev inequality:

∀f : N → R>0, EntπT (f) ⩽ T EπT

[
|Df |2

f

]
. (2.5.5)

Remark 2.91. Note that in the smooth setting, a full logarithmic Sobolev inequality
in the sense of Definition 2.78 is equivalent to an inequality of the form (2.5.5) thanks
to the chain rule, which is not satisfied by the discrete derivative D. For example, in
the Gaussian case, (2.5.5) holds with a constant of 1/2 for every positive and smooth
function, see equation (2.5.3).

The inequality by Bobkov and Ledoux tensorizes properly and yields the sharp
concentration for the Poisson distribution. However, Wu [Wu00] improved on Theorem
2.90, getting a stronger modified inequality that has the same desirable properties as
the one by Bobkov and Ledoux.

Theorem 2.92 (Wu’s modified logarithmic Sobolev inequality). Let T > 0, and let
πT be the Poisson distribution of parameter T on N. Then πT satisfies the following
modified logarithmic Sobolev inequality:

∀f : N → R>0, EntπT (f) ⩽ T EπT [Ψ(f,Df)], (2.5.6)

where

∀u > 0,∀u+ v > 0, Ψ(u, v) := (u+ v) log(u+ v)− u log u− (1 + log u)v.

Remark 2.93. Note that Wu’s inequality is stronger than the one by Bobkov and
Ledoux since

∀u > 0,∀u+ v > 0, Ψ(u, v) ⩽
|v|2

u
.

There is a large family of modified logarithmic Sobolev inequalities; see [BT06] for
more information on the subject. However, for the Poisson distribution, Wu’s inequality
is the strongest; therefore, it will be our model inequality in the discrete setting.

Definition 2.94. Let µ ∈ P(N). We say that µ satisfies Wu’s modified logarithmic
Sobolev inequality if there exists a constant CMLS(µ) > 0 such that

∀f : N → R>0, Entµ(f) ⩽ CMLS(µ)Eµ[Ψ(f,Df)],

where

∀u > 0,∀u+ v > 0, Ψ(u, v) := (u+ v) log(u+ v)− u log u− (1 + log u)v.

Now, we review the essential properties associated with Wu’s inequality. First of
all, it implies a Poincaré inequality.

Proposition 2.95. Let µ ∈ P(N) and suppose that it satisfies Wu’s modified loga-
rithmic Sobolev inequality with constant CMLS(µ) > 0. Then it satisfies a Poincaré
inequality with constant CP(µ) ⩽ CMLS(µ) with respect to the carré du champ given by
Γ(f) = |Df |2.
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Wu’s inequality tensorizes in the same way as full logarithmic Sobolev inequalities
do.

Proposition 2.96 (Tensorization). Let n ∈ N∗. For 1 ⩽ i ⩽ n, let µi ∈ P(N). Define
the probability measure µ :=

⊗n
i=1 µi on Nn and Γ :=

⊕n
i=1 Γi, where Γi(f) = |Df |2,

for f : N → R. If each µi satisfies Wu’s modified logarithmic Sobolev inequality with
constant CMLS(µi) > 0, then the measure µ satisfies Wu’s modified logarithmic Sobolev
inequality with constant

CMLS(µ) ⩽ max
1⩽i⩽n

CMLS(µi).

Herbst’s argument can be adapted for this inequality in order to obtain concentra-
tion inequalities, which will be of subpoissonian type.

Theorem 2.97 (Discrete Herbst’s argument). Let µ ∈ P(N) and suppose that it sat-
isfies Wu’s modified logarithmic Sobolev inequality with constant CMLS(µ) > 0. Then µ
has subpoissonian concentration.

Finally, it yields spectral properties for a semigroup having an invariant measure
satisfying Wu’s inequality, in the same spirit as Theorem 2.84.

Theorem 2.98. Let µ ∈ P(N), and let (Pt)t⩾0 be a Markov semigroup defined on N
with invariant measure µ and that satisfies the usual conditions. Suppose that µ satisfies
Wu’s modified logarithmic Sobolev inequality with constant CMLS(µ) > 0. Then (Pt)t⩾0

is ergodic:
∀f ∈ L2(µ), lim

t→+∞
Ptf = Eµ[f ] in L2(µ).

Furthermore, for every f ∈ L2(µ),

∀t ⩾ 0, Entµ(Ptf) ⩽ e−2t/CMLS(µ) Entµ(f). (2.5.7)

Remark 2.99. Unfortunately, Wu’s inequality is not preserved by Lipschitz pushfor-
wards since the discrete derivative D does not satisfy the chain rule. We will elaborate
on this issue and address it in Chapter 4.

2.6 Transport-entropy inequalities

Another class of functional inequalities related to the concentration phenomenon is
constituted by transport-entropy inequalities. It is a diverse family of inequalities, but
all its members satisfy an archetypal structure: given a fixed measure µ, they bound,
for any measure ν, a function of a transport-based cost between µ and ν by the relative
entropy of ν with respect to µ. Their power resides in the fact that they characterize
certain concentration bounds for the measure µ, and sometimes, even dimension-free
concentration. Good references in the subject are [Vil09, Chapter 22] and [GL10].

We start by defining the general structure of a transport-entropy inequality.

Definition 2.100 (Transport-entropy inequalities). Let X be a nonempty Polish space,
let c : X × X → R+ be a Borel function, let µ ∈ P(X ), and let α : R+ → R+ be a
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convex function. We say that µ satisfies an α-Tc transport-entropy inequality if

∀ν ≪ µ, α(Tc(ν, µ)) ⩽ H(ν|µ),

where Tc(ν, µ) is the value of the optimal transport problem in its Kantorovich formu-
lation associated with µ, ν, and c, in the sense of Definition 1.8, and H(·|µ) denotes
the relative entropy with respect to µ.

In the particular case when (X , d) is a nonempty complete and separable metric
space, we say that µ satisfies an α-T1 transport-entropy inequality if c is the 1-distance
cost, introduced in Example 1.16:

∀ν ≪ µ, α(W1(ν, µ)) ⩽ H(ν|µ);

and if, specifically, α = 1
C
(·)2 for some C > 0, we just denote it by T1(C):

∀ν ≪ µ, W2
1(ν, µ) ⩽ C H(ν|µ).

Now, if if c is the 2-distance cost, and α = 1
C
(·) for some C > 0, we just denote it by

T2(C):
∀ν ≪ µ, W2

2(ν, µ) ⩽ C H(ν|µ).

The first example of a transport-entropy inequality we provide is the Csiszár-
Kullback-Pinsker inequality [Csi67, Kul67, Pin64].

Theorem 2.101 (Csiszár-Kullback-Pinsker). Let X be a nonempty Polish space. Then

∀µ, ν ∈ P(X ), ∥µ− ν∥2TV ⩽
1

2
H(ν|µ). (2.6.1)

Inequality (2.6.1) corresponds to an α-Tc transport-entropy inequality for α(r) :=
8r2 and c being the Hamming cost, see Example 1.15 in Chapter 1.

Concerning T1(C) inequalities, Bobkov and Götze [BG99] proved that they char-
acterize the subgaussian concentration phenomenon.

Theorem 2.102 (Bobkov-Götze). Let (X , d) be a nonempty complete and separable
metric space, fix µ ∈ P1(X ), and let C > 0. Then the following are equivalent:

(i) The measure µ satisfies a T1(C) inequality.

(ii) The measure µ is subgaussian.

About the family of α-T1 inequalities. Gozlan and Léonard [GL07] proved that
they can be characterized as a bound of the log-Laplace transform of any Lipschitz ob-
servable. We remark that this kind of bound helps get concentration inequalities.

Theorem 2.103 (Gozlan-Léonard). Let (X , d) be a nonempty complete and separable
metric space, fix µ ∈ P1(X ), and let α : R+ → R+ be a convex function. Then the
following are equivalent:

(i) The measure µ satisfies an α-T1 transport-entropy inequality.
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(ii) For every 1-Lipschitz function f : X → R,

∀r > 0, log

(∫
X
exp (r(f − ⟨µ, f⟩)) dµ

)
⩽ α∗(r),

where α∗ is the Legendre transform of α.

An example of a measure satisfying an α-T1 inequality is the Poisson distribution
on N, as it was shown by Liu [Liu11].

Theorem 2.104. Fix T > 0 and let α : R+ → R+ be the function defined as α(r) :=
(r + T ) log((r + T )/T ) − r for r ⩾ 0. Then the Poisson distribution πT of parameter
T > 0 on N satisfies an α-T1 inequality.

Remark 2.105. If we combine Theorems 2.103 and 2.104, we recover the sharp Pois-
sonian concentration seen in Example 2.31.

Now, note that as a consequence of Hölder’s inequality, a T2(C) inequality is
stronger than T1(C), so we may wonder if under T2(C) it is possible to obtain an
improvement on Theorem 2.102. Indeed, Gozlan [Goz09] proved that these inequali-
ties characterize dimension-free concentration. Recall the notation µn :=

⊗n
i=1 µ.

Theorem 2.106 (Gozlan). Let (X , d) be a nonempty complete and separable metric
space, fix µ ∈ P2(X ), and let C > 0. Then the following are equivalent:

(i) The measure µ satisfies a T2(C) inequality.

(ii) For every n ∈ N∗, the measure µn satisfies T1(C).

(iii) For every n ∈ N∗, the measure µn is subgaussian with constants that do not
depend on n.

An example of a measure satisfying a T2(C) inequality is the Gaussian measure,
as shown by Talagrand [Tal96].

Theorem 2.107 (Talagrand). The d-dimensional Gaussian measure satisfies a T2(2)
inequality.

We remark that T1 does not imply T2.

Example 2.108. Let X = {0, 1} endowed with the trivial distance and the Bernoulli
uniform measure µ. Then µ satisfies T1(1/2). However, µ does not satisfy a T2

inequality [Gen01].

Recall from Theorem 2.81 that a logarithmic Sobolev inequality yields subgaussian
tails, so in the light of Theorem 2.106, it will imply, in turn, a T2 inequality. On
the other hand, T2 inequalities yield Poincaré inequalities. These two statements were
proved by Otto and Villani [OV00], so we call them the Otto-Villani theorem. We state
them in the smooth setting for simplicity, although more general versions and different
proofs are available [BGL01, GL13, GRS14, FGJ17].

Theorem 2.109 (Otto-Villani). Let (M, g, µ) be a connected and complete weighted
Riemannian manifold, and assume that µ ∈ P(M).
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(i) If µ satisfies a logarithmic Sobolev inequality with constant CLS(µ), then it satis-
fies a T2(C) inequality with constant C ⩽ CLS(µ).

(ii) If µ satisfies a T2(C) inequality, then it satisfies a Poincaré inequality with con-
stant CP(µ) ⩽ C/2.

Example 2.110. An example of a measure satisfying T2(C) for some C > 0 that does
not satisfy a logarithmic Sobolev inequality is given by the measure µβ ∈ P(R) defined
as dµβ(x) = exp(−Vβ(x)) dx, where

Vβ(x) = x3 + 3x2 sin2(x) + xβ

for β ∈ (2, 5/2), see [CG06].

Similarly to the previously introduced families of functional inequalities, Tp in-
equalities are stable by Lipschitz pushforwards [DGW04].

Proposition 2.111. Let (X , dX ) and (Y , dY) be two nonempty complete and separable
metric spaces. Let µ ∈ P(M). Let T : X → Y be a K-Lipschitz map for some K > 0
and let ν ∈ P(X ) be the pushforward of µ by T , i.e., ν = T#µ. If µ satisfies Tp(C) for
some p ∈ {1, 2} and C > 0, then ν satisfies Tp(K

2C).

2.7 The Bakry-Émery criterion

In the last three sections of this chapter, we have reviewed three prominent families of
functional inequalities that are deeply connected to the phenomenon of concentration
of measure. In particular, Section 2.4 was devoted to Poincaré inequalities, where
log-concavity was a straightforward sufficient condition to ensure their validity in the
Euclidean setting. However, in the case of logarithmic Sobolev and transport-entropy
inequalities, we have not presented any similar result yet. In this section, we will
review the Bakry-Émery criterion, which provides sufficient conditions in the smooth
setting for the validity of those functional inequalities. Besides that, the Bakry-Émery
criterion will play a fundamental role in Chapter 3. Concerning this topic, the primary
reference we used is [BGL14].

For simplicity, we will discuss the smooth setting. Still, obtaining the same results
in more general structures is possible; see [BGL14, Chapter 3]. The main object
appearing in the seminal contribution [BE85] by Bakry and Émery is the iterated carré
du champ operator.

Definition 2.112 (Iterated carré du champ). Let (M, g, µ) be a connected and com-
plete weighted Riemannian manifold with dµ = exp(−W ) dVol for some W ∈ C∞(M).
Let L be its associated Langevin diffusion operator, and Γ be the associated carré du
champ. We define Γ2, the iterated carré du champ operator, as

∀f, h ∈ C∞
c (M), Γ2(f, h) :=

1

2
(LΓ(f, h)− Γ(h,Lf)− Γ(f,Lh)) . (2.7.1)

By abuse of notation, similarly to Γ, we define Γ2(f) := Γ2(f, f) for any f ∈ C∞
c (M).
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Recall that if dµ = exp(−W ) dVol, then the Langevin diffusion operator takes the
form L = ∆ − ∇W · ∇. Since we are in the Riemannian setting, Bochner’s formula
allows for an explicit computation of Γ2 in terms of differential operators on (M, g)
and the potential W . For further reference on Bochner’s formula, we refer to [GHL04,
Section 4.B].

Theorem 2.113 (Bochner’s formula). Let (M, g) be a Riemannian manifold. Then

∀f ∈ C∞(M),
1

2
∆(|∇f |2) = |∇2f |2HS +∇f · ∇(∆f) + Ric(∇f,∇f).

Corollary 2.114. Let (M, g, µ) be a connected and complete weighted Riemannian
manifold with dµ = exp(−W ) dVol for some W ∈ C∞(M). Let Γ2 be its associated
iterated carré du champ. Then

∀f ∈ C∞
c (M), Γ2(f) = |∇2f |2HS +∇2W (∇f,∇f) + Ric(∇f,∇f).

Now we introduce the key idea appearing in Bakry and Émery’s work: the curvature-
dimension condition, which is a minoration of the operator Γ2 by Γ.

Definition 2.115 (Curvature-dimension condition). Let (M, g, µ) be a connected and
complete weighted Riemannian manifold with dµ = exp(−W ) dVol for some W ∈
C∞(M). Let L be its associated Langevin diffusion operator, and let Γ and Γ2 be its
associated carré du champ and iterated carré du champ. Let ρ ∈ R. We say that
(M, g, µ) satisfies the curvature-dimension condition CD(ρ,∞) if

∀f ∈ C∞
c (M), Γ2(f) ⩾ ρΓ(f). (2.7.2)

Remark 2.116. For the weighted manifold (M, g, exp(−W ) dVol), we define the Bakry-
Émery-Ricci tensor RicW := Ric+∇2W . Then, via Corollary 2.114, we see that
CD(ρ,∞) holds if and only if RicW ⪰ ρg. More generally, the Bakry-Émery-Ricci
tensor is an object of interest in itself in the context of weighted manifolds as it en-
codes the structure of the weight measure e−W dVol into a tensor. Assuming bounds
on RicW also implies topological and geometrical properties; see, for example, [Lot03].

The curvature-dimension condition is actually equivalent to some heat kernel es-
timates and commutations for the associated semigroup. That is, a bound on the
curvature of a weighted Riemannian manifold entails analytical properties for the heat
kernel.

Theorem 2.117. Let (M, g, µ) be a connected and complete weighted Riemannian
manifold, and let (Pt)t⩾0 be its associated Markov semigroup. Let ρ ∈ R. Then the
following assertions are equivalent:

(i) CD(ρ,∞) holds.

(ii) The following commutation holds:

∀t ⩾ 0,∀f ∈ C∞
c (M), Γ(Ptf) ⩽ e−2ρt Pt(Γ(f)).
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(iii) The following strong commutation holds:

∀t ⩾ 0,∀f ∈ C∞
c (M),

√
Γ(Ptf) ⩽ e−ρt Pt(

√
Γ(f)).

(iv) The local Poincaré inequality holds: if ρ ̸= 0,

∀t ⩾ 0, ∀f ∈ C∞
c (M), Pt(f

2)− (Ptf)
2 ⩽

1− e−2ρt

ρ
Pt(Γ(f));

if ρ = 0,
∀t ⩾ 0,∀f ∈ C∞

c (M), Pt(f
2)− (Ptf)

2 ⩽ 2tPt(Γ(f)).

(v) The local logarithmic Sobolev inequality holds: if ρ ̸= 0,

∀t ⩾ 0,∀f ∈ C∞
c (M), Pt(f

2 log f 2)− Pt(f
2) log Pt(f

2) ⩽ 2
1− e−2ρt

ρ
Pt (Γ(f)) ;

if ρ = 0,

∀t ⩾ 0,∀f ∈ C∞
c (M), Pt(f

2 log f 2)− Pt(f
2) log Pt(f

2) ⩽ 4tPt (Γ(f)) .

Recall the proofs of Theorems 2.35 and 2.86: both used a semigroup argument
based on the properties of the Ornstein-Uhlenbeck semigroup. We can easily note
that in both proofs the specific structure of the semigroup, namely Mehler’s formula
(2.4.7), was used only to get inequalities (2.4.10) and (2.5.4), respectively; the rest of
both proofs is valid for any Markov semigroup. Now note that those specific bounds
actually correspond to the commutations (ii) and (iii) in Theorem 2.117. That is,
the Bakry-Émery criterion implies both Poincaré and logarithmic Sobolev inequalities.
Note that the theorem holds under the CD(ρ,∞) condition for some ρ > 0.

Theorem 2.118 (Bakry-Émery). Let (M, g, µ) be a connected and complete weighted
Riemannian manifold with dµ = exp(−W ) dVol for some W ∈ C∞(M), and suppose
additionally that µ ∈ P(M). If there exists ρ > 0 such that the curvature-dimension
condition CD(ρ,∞) holds, then:

(i) µ satisfies a Poincaré inequality with constant CP(µ) ⩽ 1/ρ.

(ii) µ satisfies a logarithmic Sobolev inequality with constant CLS(µ) ⩽ 2/ρ.

Actually, there is a more general inequality in the context of a weighted Rieman-
nian manifold, the HWI inequality, proven originally by Otto and Villani [OV00]. It
interpolates between the entropy H, the Fisher information I, and the Wasserstein dis-
tance W; that is the reason why for its name. If µ ∈ P(M) and ν ≪ µ with a positive
density f : M → R>0, we define the relative Fisher information of ν with respect to µ
as

I(ν|µ) :=
∫
M

|∇f |2

f
dµ. (2.7.3)
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Theorem 2.119 (HWI inequality). Let (M, g, µ) be a connected and complete weighted
Riemannian manifold with dµ = exp(−W ) dVol for some W ∈ C∞(M), and suppose
additionally that µ ∈ P(M). If there exists ρ ∈ R such that the curvature-dimension
condition CD(ρ,∞) holds, then

∀ν ≪ µ, H(ν|µ) ⩽ W2(ν, µ)
√

I(ν|µ)− ρ

2
W2

2(ν, µ).

Remark 2.120. Note that if ρ > 0 and the CD(ρ,∞) condition holds, then if we apply
Young’s inequality together with Theorem 2.119, we recover Theorem 2.118.

In the context of Otto calculus, see Section 1.3.4 in Chapter 1, the HWI inequality
can be considered as an expression of the strong convexity of the relative entropy
functional G appearing in Example 1.29 under the curvature-dimension condition, along
the geodesics of the formal Riemannian structure given to P2(M). This unrigorous
argument was given by Otto and Villani in [OV00] on top of the true proof to justify
the heuristics of the proof of both the HWI inequality and the Otto-Villani theorem.
We remark that these ideas were implemented rigorously by Gigli and Ledoux [GL13]
in the nonsmooth setting. On the other hand, for the same reason, the HWI inequality
plays a key role in the synthetic characterization of bounded Ricci curvature for metric
spaces.
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Chapter 3

The diffusion transport map

Los niños habían de recordar el resto de su vida la au-
gusta solemnidad con que su padre se sentó a la cabecera
de la mesa, temblando de fiebre, devastado por la pro-
longada vigilia y por el encono de su imaginación, y les
reveló su descubrimiento:
—La tierra es redonda como una naranja.

Gabriel García Márquez
Cien años de soledad

The first original contribution of this thesis belongs to the theory of functional in-
equalities, and is an adaptation of the article [LR25a]. More precisely, the main result
of this chapter is that if we have a weighted Riemannian manifold that has bounded
curvature at first and second order in the sense of Bakry-Émery, then the Kim-Milman
transport map between the weighted measure and any log-Lipschitz perturbation of
it is Lipschitz, result which in turn allows the transfer of many families of functional
inequalities, as we saw in Chapter 2. The interplay between the theories of functional
inequalities and optimal transport plays a crucial role here.

After the motivation we will provide in Section 3.1, we introduce all the necessary
preliminary notions in Section 3.2, mainly concerning diffusion operators on Rieman-
nian manifolds. After that, in Section 3.3, we study the consequences of a second-order
version of Bakry and Émery’s curvature-dimension condition, namely Γ3 ⩾ ρΓ2. In
Section 3.4, we detail the construction of the diffusion transport map and prove that it
is Lipschitz under our assumptions, which is the main result of this chapter, Theorem

83
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3.21. Finally, we provide some applications of the main result in Section 3.5.

3.1 Introduction
We saw in the previous chapter that the d-dimensional Gaussian space (Rd, |·|, γd) is of
central importance in the theory of functional inequalities since it satisfies fundamen-
tal model inequalities. For example, recall Theorem 2.86, the Gaussian logarithmic
Sobolev inequality:

∀f ∈ C∞
c (Rd), Entγd(f

2) ⩽ 2

∫
Rd

|∇f |2 dγd.

Given a probability measure ν on Rd and a C-Lipschitz map T : Rd → Rd with T#γd =
ν, Proposition 2.83 says that also ν satisfies a logarithmic Sobolev inequality. We did
not exhibit a proof, but we can demonstrate the result in a few lines: let g ∈ C∞

c (Rd)
be a test function, and apply the Gaussian inequality to f := g ◦ T :

Entν(g) = Entγd(g ◦ T ) ⩽ 2

∫
Rd

|∇(g ◦ T )|2 dµ ⩽ 2C2

∫
Rd

|∇g|2 dν, (3.1.1)

where in the last inequality we used the chain rule, the Cauchy-Schwarz inequality, and
the fact that T is a C-Lipschitz map. Note that the constant does not depend on the
dimension d, so the adimensional nature of the Gaussian logarithmic Sobolev inequality
is also preserved for the new inequality. We remark that the same argument applies
to isoperimetric, concentration, and Poincaré inequalities; see Propositions 2.20, 2.24,
and 2.65, respectively.

Recall Theorem 1.26, the Caffarelli contraction theorem, in the context of the quan-
titative regularity theory of optimal transport: it states that the Brenier map pushing
forward the Gaussian towards any log-concave perturbation of it is 1-Lipschitz. Thus,
Caffarelli’s theorem is helpful if we want to obtain novel functional inequalities; see
[CE02, Har04] for some examples beyond the classical families of functional inequali-
ties mentioned before. There are some extensions to Caffarelli’s theorem. For example,
in [CFJ17], it was proven that the Brenier map between a uniformly log-concave mea-
sure and a compactly supported perturbation of it is Lipschitz, again with a constant
that does not depend on the dimension. Unfortunately, we point out that in the Rie-
mannian setting, there are obstructions to getting a similar result [FFGZ24].

As it was seen in the transport of the logarithmic Sobolev inequality (3.1.1), the
optimal character of the transport map in the sense of Monge’s problem (OT Monge)
does not play any role in the proof. In particular, in this note, we prove the exis-
tence of a Lipschitz transport map, not necessarily optimal [Tan21, LS22], between
a measure on a manifold and a log-Lipschitz perturbation of it, using a construction
originally developed in [KM12] in the Euclidean setting, which traces its origins back
to [OV00], adapted to the smooth setting in [FMS24], that we call the Kim-Milman
or the diffusion transport map since its definition relies on the interpolation between
two measures induced by an ad hoc diffusion process. This transport map was also
revisited recently in [KP23, Nee22, MS23, CE25]. Similar schemes that use Polchinski’s
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flow and multiscale Bakry-Émery criteria have been recently explored in [Ser24] and
[She24].

Let us explain briefly the construction of the diffusion transport map: consider a
weighted Riemannian manifold (M, g, µ) with dµ = exp(−W ) dVol for some W : M →
R, and assume that µ ∈ P(M). Let V : M → R be a K-Lipschitz potential, so we
define the log-perturbation of µ by V as the measure dν = e−V dµ, and suppose that
ν ∈ P(M). Recall Example 2.51 in Chapter 2: we may define the Langevin diffusion
(Xt)t⩾0, which is the solution of the following stochastic differential equation

dXt =
√
2 dBt −∇W (Xt) dt, X0 ∼ ν, (3.1.2)

where (Bt)t⩾0 is the Brownian motion on the manifold (M, g). The method of charac-
teristics applied to the Fokker-Planck equation associated with the law of the process
(Xt)t⩾0 permits the construction of a flow of diffeomorphisms that in turn provides a
map T : M → M such that T#µ = ν, so T is the desired diffusion transport map.
Moreover, if one is able to provide appropriate second-order bounds on the heat kernel
associated with (3.1.2), then the map T is C-Lipschitz, for some explicit C > 0; see
Lemma 3.20 for the precise statement. That is, the regularity of the diffusion trans-
port map can be studied via the analysis of the associated heat kernel, which offers a
straightforward alternative to the Brenier map and its regularity theory, recall Section
1.3.2 of Chapter 1.

In order to provide systematic criteria ensuring the Lipschitz regularity of the
diffusion transport map, we exploit the classical Bakry-Émery criterion and a further
iteration that we will define precisely in Section 3.3. These ingredients will provide
the second-order heat kernel bounds mentioned above that grant the desired Lipschitz
regularity. More precisely, let L be the infinitesimal generator associated with (3.1.2).
Invoking Section 2.4.1 of Chapter 2, we recall the respective carré du champ operator Γ
and its iteration Γ2, see Section 2.7 of the same chapter. We may reiterate this scheme
and define Γ3 inductively. Our main result states that if there exist positive constants
ρ1, ρ2 > 0 such that Γ2 ⩾ ρ1 Γ and Γ3 ⩾ ρ2 Γ2, then the diffusion transport map is
C-Lipschitz, where C = C(ρ1, ρ2, K). Note that the constant does not depend on the
dimension of the manifold M . The following theorem is the precise statement of these
ideas, corresponding to Theorem 3.21 in this note.

Theorem. Let (M, g, µ) be a complete and connected weighted Riemannian manifold
with dµ = exp(−W ) dVol for some W ∈ C∞(M), and assume that µ ∈ P(M). Con-
sider the diffusion operator L = ∆ −∇W · ∇, let Γ be its associated carré du champ,
and let Γ2 and Γ3 be its respective iterations in the Bakry-Émery sense. Assume that
there exist constants ρ1, ρ2 > 0 such that

(i) ∀f ∈ C∞
c (M),Γ2(f) ⩾ ρ1 Γ(f); and

(ii) ∀f ∈ C∞
c (M),Γ3(f) ⩾ ρ2 Γ2(f).

Let V ∈ C∞(M), and assume that it is K-Lipschitz for some K > 0. Define dν =
e−V dµ and assume that ν ∈ P(M). Then there exists a Lipschitz map T : M → M

pushing forward µ towards ν which is exp

(√
2π
ρ2
Ke

K2

2ρ1

)
-Lipschitz.
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The presence of Γ3 is not new in the literature: it has been explored previously
in [Led93, Led95, Bak94, LNP15]. In particular, in [LNP15], the condition Γ3(f) ⩾
ρ2 Γ2(f) was employed to obtain quantitative regularity second order estimates for the
solutions of the partial differential equation

∆f −∇W · ∇f = V −
∫
M

V dµ (3.1.3)

for Lipschitz data V . Note that (3.1.3) corresponds to the linearization of the Monge-
Ampère equation associated with the quadratic optimal transport problem between
µ and ν. On the other hand, we also remark that (3.1.3) is the linearization of the
diffusion transport map [FMS24].

3.2 Preliminaries and notations

In this section, we introduce all the main objects on which this note is based and their
preliminary properties. We first review the basics of diffusion operators on weighted
manifolds and then recall their probabilistic interpretation.

3.2.1 Markov diffusion generators on a manifold

Let (M, g) be a d-dimensional smooth Riemannian manifold that we assume to be
complete and connected unless otherwise stated, and let us denote its tangent bundle
by TM . Let dg be the geodesic distance, let Vol be the volume measure, and let Ric
be the Ricci curvature tensor. We denote by ∇, ∇2, and ∆ the Riemannian gradient,
the Hessian, and the Laplace-Beltrami operator, respectively.

We equip (M, g) with a probability measure µ ∈ P(M) of the form

dµ = exp(−W ) dVol

for some W ∈ C∞(M) so we get a weighted Riemannian manifold (M, g, µ), and we
define the associated Langevin elliptic diffusion operator L by

∀f ∈ C∞(M), Lf := ∆f −∇W · ∇f. (3.2.1)

In Section 2.4.1 of Chapter 2, we introduced the language of Markov semigroups and
their main properties. We started with a semigroup and built the theory on top of it; in
particular, given a semigroup, we could construct its infinitesimal generator. In what
follows, we will proceed inversely: our starting point will be the operator L defined by
(3.2.1), and we will see how we can express the same properties that we had in the
former case, now in terms of L. This is practical since, in general, we will not have
access to a concrete expression for the semigroup associated with L.

First, we note that the measure µ is invariant for L:

∀f ∈ C∞
c (M),

∫
M

Lf dµ = 0. (3.2.2)
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Moreover, we can see that the following integration by parts formula holds: for all
f, h ∈ C∞

c (M),

∀f, h ∈ C∞
c (M),

∫
M

f Lh dµ = −
∫
M

∇f · ∇h dµ, (3.2.3)

which in turn implies that L is symmetric or reversible with respect to the measure
µ:

∀f, h ∈ C∞
c (M),

∫
M

f Lh dµ =

∫
M

hLf dµ. (3.2.4)

From the perspective of operator theory, L can be regarded as an unbounded linear
operator with domain D(L). Note that C∞

c (M) ⊂ D(L) ⊂ L2(µ). Moreover, our
assumptions entail its essential self-adjointness on the algebra C∞

c (M), see [BGL14,
Proposition 3.2.1]; in particular, C∞

c (M) is a core algebra for the operator L in the
sense of Definition 2.39 in Chapter 2.

Remark 3.1. Regarding the discussion about the essential self-adjointness of L, we
point out two possible issues that could happen in practice:

(i) Sometimes the manifold M will not be complete, which is the case if, for example,
M is diffeomorphic to an open and connected domain O ≠ Rd. Fortunately,
essential self-adjointness is not an exclusive property of diffusion operators on
complete manifolds.

(ii) The operator L might be essentially self-adjoint with respect to a different class
of functions, not C∞

c (M), but, again, this makes no essential difference for its
treatment.

Following Hille-Yosida theory [Yos80], since L is essentially self-adjoint with re-
spect to C∞

c (M), then there exists a unique semigroup (Pt)t⩾0 on M with invariant
measure µ such that L is its infinitesimal generator, and the respective heat equa-
tion is verified, see equations (2.4.3) and (2.4.4) in Chapter 2, respectively. Note that
the invariance and symmetry properties that were stated in terms of L in equations
(3.2.2) and (3.2.3) are equivalent to their semigroup counterparts (2.4.2) and (2.4.5) in
Chapter 2, respectively.

With respect to the definition we gave in Chapter 2, the only property that could fail
for (Pt)t⩾0 is the conservation of mass or Markovianity, that is, point (ii) in Definition
2.37. However, the assumptions we will make later will ensure that the semigroup is
indeed Markovian, see Remark 3.5 below, so unless stated otherwise, we assume that
(Pt)t⩾0 is Markovian.

Finally, we see that L is ergodic; i.e., if f ∈ C∞
c (M) and Lf = 0, then f has to be

identically constant. Indeed, if Lf = 0, then by (3.2.3) we have that |∇f |2 = 0 on M ,
which in turn yields that f is constant since M was assumed to be connected. The
following proposition translates ergodicity into a property for the semigroup (Pt)t⩾0;
see, for example, [BGL14, Proposition 3.1.13].

Proposition 3.2. Let (M, g, µ) be a connected and complete weighted Riemannian
manifold with dµ = exp(−W ) dVol for some W ∈ C∞(M), assume that µ ∈ P(M),
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and let L be its associated Langevin diffusion operator. Suppose that the associated
semigroup (Pt)t⩾0 is Markovian. If L is ergodic, then

∀f ∈ L2(µ), lim
t→+∞

Ptf =

∫
M

f dµ in L2(µ).

To end this part, we justify that the choice of L given by (3.2.5) does not entail
any loss of generality with respect to a general elliptic diffusion operator.

Remark 3.3. Let L̃ be a given diffusion operator on M defined in local coordinates
by

∀f ∈ C∞(M), L̃f := aij∂2ijf + bi∂if, (3.2.5)

where its coefficients x 7→ a(x) := (aij(x))di,j=1 and x 7→ b(x) := (bi(x))di=1 are smooth,
and assume that L̃ is elliptic: that is, for each x ∈ M , the matrix a(x) is symmetric
and positive definite. Then the matrix a−1 = (aij(x))

d
i,j=1 induces a Riemannian metric

on M that we denote by g̃. If we define Z := bi∂i : M → TM , then we can write L̃ as

∀f ∈ C∞(M), L̃f = ∆g̃f + Zf,

where ∆g̃ denotes the Laplace-Beltrami operator with respect to the new metric g̃.
Moreover, let us suppose that L̃ is invariant with respect to a measure µ of the form
dµ = e−W dVolg̃, where Volg̃ denotes the Riemannian volume measure on (M, g̃) and
W : M → R is a smooth function. Then Zf = −∇g̃W · ∇g̃f , so we get

∀f ∈ C∞(M), L̃f = ∆g̃f −∇g̃W · ∇g̃f. (3.2.6)

That is, if we start with a linear diffusion operator in the form (3.2.5), we can always
express it in the Langevin form (3.2.6) for a Riemannian structure that is natural for
the operator L̃.

3.2.2 The probabilistic counterpart of the generator

The semigroup (Pt)t⩾0 allows the study of the Langevin operator L using probabilistic
techniques. Let (P∗

t )t⩾0 be the dual semigroup: for each t ⩾ 0, P∗
t acts on every

nonnegative Borel measure ν on M by

∀f ∈ Cb(M),

∫
M

f d(P∗
tν) =

∫
M

Ptf dν.

Reciprocally to what we did in Remark 2.38 in Chapter 2, for the semigroup (Pt)t⩾0

and a given an initial law ν ∈ P(M), one can construct a filtered probability space
(Ω,F , (Ft)t⩾0,P) such that there is an adapted Markov process (Xt)t⩾0 defined on
Ω with values on M such that X0 ∼ ν and whose law is characterized by the dual
semigroup:

∀t ⩾ 0,∀f ∈ Cb(M), E[f(Xt)] =

∫
M

f d(P∗
tν). (3.2.7)

In particular, if ν = δx for x ∈M , then

∀t ⩾ 0,∀f ∈ Cb(M), Ex[f(Xt)] = Ptf(x).
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The Markov process (Xt)t⩾0 constructed above is a diffusion process on M with
random initial condition ν ∈ P(M) satisfying the following stochastic differential equa-
tion:

dXt =
√
2 dBt −∇W (Xt) dt, X0 ∼ ν, (3.2.8)

where (Bt)t⩾0 is the Brownian motion on (M, g); see, for example, [Éme89] for a succinct
introduction to stochastic calculus on manifolds.

For each t ⩾ 0, define ρt := Law(Xt). Then the flow of measures (ρt)t⩾0 satisfies
the Fokker-Planck equation, which is adjoint of the heat equation with respect to the
volume measure on M :

∂tρ = ∆ρ+∇ · (ρ∇W ) (3.2.9)

in the distributional sense, which is equivalent to

∀t ⩾ 0,∀φ ∈ C∞
c (M),

d

dt

∫
M

φ dρt =

∫
M

Lφ dρt =

∫
M

(∆φ−∇W · ∇φ) dρt.

3.3 Revisiting the Bakry-Émery condition
In this section, we revisit the classic Bakry-Émery Γ-calculus, first recalling the basic
definitions of Γ, its iteration Γ2, and the curvature-dimension condition CD(ρ,∞),
which we have already introduced in Section 2.7 of Chapter 2. Then, we study further
iterations of the carré du champ operator that give birth to the operators Γn for n ∈
N. In particular, we will be interested in higher analogs of the curvature-dimension
condition and their consequences. We will see that they yield some estimates involving
the associated semigroup that will be useful in the next section to prove this chapter’s
main theorem.

We continue working under the same context as the last section, that is, (M, g) is a
complete and connected Riemannian manifold with weight dµ = e−W dVol ∈ P(M) for
some W ∈ C∞(M), with its associated Langevin diffusion operator L = ∆ −∇W · ∇
and semigroup (Pt)t⩾0.

3.3.1 The first-order curvature-dimension condition

Recall the carré du champ operator Γ associated with the Langevin generator L. From
Example 2.51 in Chapter 2, we know that

∀f ∈ C∞
c (M), Γ(f) = |∇f |2. (3.3.1)

A direct consequence of (3.3.1) is that the Riemannian distance dg can be written in
terms of the operator Γ [BGL14, Appendix C]. More precisely,

∀x, y ∈M, dg(x, y) = sup
f∈C∞

c (M),
Γ(f)⩽1

(f(x)− f(y)) .

This leads to the following characterization of Lipschitz functions, which will play an
essential role in this note.
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Proposition 3.4. In the above context, let f : M → R be a smooth function. Then f
is K-Lipschitz for the distance dg if and only if

√
Γ(f) ⩽ K uniformly on M .

Now recall the iterated carré du champ Γ2. From Corollary 2.114 in Chapter 2, we
know that

∀f ∈ C∞
c (M), Γ2(f) = |∇2f |2HS +∇2W (∇f,∇f) + Ric(∇f,∇f). (3.3.2)

We recall Definition 2.115 in Chapter 2, the Bakry-Émery curvature-dimension condi-
tion. Let ρ ∈ R. We say that the diffusion operator L satisfies CD(ρ,∞) if

∀f ∈ C∞
c (M), Γ2(f) ⩾ ρΓ(f),

which holds if and only if the Bakry-Émery-Ricci tensor RicW is lower bounded by ρ:
RicW := Ric+∇2W ⪰ ρg; see Remark 2.116 in Chapter 2.

Remark 3.5. The curvature-dimension condition CD(ρ,∞) grants lots of properties
for L and its associated semigroup (Pt)t⩾0, even in the qualitative side. For example,
in the above context, if there exists ρ > 0 such that CD(ρ,∞) holds, then (Pt)t⩾0 is
Markovian [BGL14, Theorem 3.2.6]. Equivalently, if ζ denotes the explosion time of
the process (Xt)t⩾0 generated by (Pt)t⩾0, solution to the stochastic differential equation
(3.2.8), then P(ζ = +∞) = 1.

We discussed in Section 2.7 of Chapter 2 some of the consequences of the Bakry-
Émery condition. The most notable are the commutations and local inequalities pro-
vided by Theorem 2.117, and the validity of both Poincaré and logarithmic Sobolev
inequalities if the Bakry-Émery-Ricci tensor is lower bounded by a positive constant,
namely Theorem 2.118. We recall the statement of both results for the sake of com-
pleteness.

Theorem 3.6. Let (M, g, µ) be a connected and complete weighted Riemannian mani-
fold, and let (Pt)t⩾0 be its associated Markov semigroup. Let ρ ∈ R. Then the following
assertions are equivalent:

(i) CD(ρ,∞) holds.

(ii) The following commutation holds:

∀t ⩾ 0,∀f ∈ C∞
c (M), Γ(Ptf) ⩽ e−2ρt Pt(Γ(f)).

(iii) The following strong commutation holds:

∀t ⩾ 0,∀f ∈ C∞
c (M),

√
Γ(Ptf) ⩽ e−ρt Pt(

√
Γ(f)).

(iv) The local Poincaré inequality holds: if ρ ̸= 0,

∀t ⩾ 0,∀f ∈ C∞
c (M), Pt(f

2)− (Ptf)
2 ⩽

1− e−2ρt

ρ
Pt(Γ(f));

if ρ = 0,
∀t ⩾ 0, ∀f ∈ C∞

c (M), Pt(f
2)− (Ptf)

2 ⩽ 2tPt(Γ(f)).
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(v) The local logarithmic Sobolev inequality holds: ρ ̸= 0,

∀t ⩾ 0,∀f ∈ C∞
c (M), Pt(f

2 log f 2)− Pt(f
2) log Pt(f

2) ⩽ 2
1− e−2ρt

ρ
Pt (Γ(f)) ;

if ρ = 0,

∀t ⩾ 0,∀f ∈ C∞
c (M), Pt(f

2 log f 2)− Pt(f
2) log Pt(f

2) ⩽ 4tPt (Γ(f)) .

Theorem 3.7 (Bakry-Émery). Let (M, g, µ) be a connected and complete weighted
Riemannian manifold with dµ = exp(−W ) dVol for some W ∈ C∞(M), and suppose
additionally that µ ∈ P(M). If there exists ρ > 0 such that the curvature-dimension
condition CD(ρ,∞) holds, then:

(i) µ satisfies a Poincaré inequality with constant CP(µ) ⩽ 1/ρ.

(ii) µ satisfies a logarithmic Sobolev inequality with constant CLS(µ) ⩽ 2/ρ.

3.3.2 Higher order iterations

The operator Γ2 was constructed by iterating Γ. Following the same idea, we construct
Γn inductively for n ⩾ 3 integer [Led93, Led95, Bak94]. If we set Γ0(f, h) := fh for
f, h ∈ C∞

c (M), then we define, for n ∈ N,

∀f, h ∈ C∞
c (M), Γn+1(f, h) :=

1

2
(LΓn(f, h)− Γn(f,Lh)− Γn(h,Lf)) , (3.3.3)

and as usual, we set Γn(f) := Γn(f, f).

Remark 3.8. The higher iterations given by (3.3.3) are consistent with the classical Γ-
calculus since Γ1 = Γ. In what follows, we will always assume that the iterations start
from Γ0: that is, Γ1 is the first iteration, Γ2 the second, and so on. For the purposes
of this note, we are concerned only up to the third iteration, that is, Γ3. However, the
results in this section will be stated and proved in more generality.

The goal of this section is to obtain analytical bounds for the semigroup (Pt)t⩾0

assuming that Γn+1(f) ⩾ ρn Γn(f), in the spirit of Theorem 3.6. We start with a
technical lemma that will be at the heart of our computations. It corresponds to
a classical result when n = 1 that is used to prove Theorem 3.6 (see, for example,
[BGL14]). For the sake of completeness, we provide a full proof.

Lemma 3.9. In the above context, let n ∈ N, f ∈ C∞
c (M), t ⩾ 0, and x ∈ M . We

define Λn : R+ → R+ by
Λn(s) := Ps(Γn(Pt−sf))(x).

Then
∀t ⩾ s,

d

ds
Λn(s) = 2Ps(Γn+1(Pt−sf)) = 2Λn+1(s).

Proof. Let us define the auxiliary functions

φ1 : [0, t] → C∞(M) ∩ L∞(µ), s 7→ φ1(s) := Pt−sf ;

φ2 : C∞(M) ∩ L∞(µ) → C∞(M) ∩ L∞(µ), u 7→ φ2(u) := Γn(u);

φ3 : R+ × C∞(M) ∩ L∞(µ) → C∞(M) ∩ L∞(µ), (s, u) 7→ φ3(s, u) := Psu.
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We can note that Λn(s) = φ3(s, φ2(φ1(s))). Using the chain rule, we obtain

d

ds
Λn(s) = ∂sφ3(s,Γn(Pt−sf)) +∇uφ3(s,Γn(Pt−sf))∇φ2(Pt−sf)(φ

′
1(s)), (3.3.4)

On the other hand, we observe that

∂sφ3(s, u) = lim
ε→0

φ3(s+ ε, u)− φ3(s, u)

ε
= lim

ε→0

Ps+εu− Psu

ε
= lim

ε→0
Ps

(
Pεu− P0u

ε

)
= Ps

(
lim
ε→0

Pεu− P0u

ε

)
= PsLu.

For the second variable, we observe that φ3 is linear in its second variable, so

∇uφ3(s, u)(h) = φ3(s, h).

We know that Γn(f) = Γn(f, f) with Γn(·, ·) being a symmetric bilinear form, so

∇φ2(u)(h) = 2Γn(u, h).

For d
ds
φ1, we note that

d

ds
φ1(s) =

d

ds
(φ3(t− s, f)) = −∂sφ3(t− s, f) = −Pt−sLf.

Finally, if we put everything into (3.3.4), we get

d

ds
Λn(s) = Ps(L(Γn(Pt−sf)))− 2Ps(Γn(Pt−sf,Pt−s Lf)) = Ps(Γn+1(Pt−sf)).

The following proposition goes in the spirit of the commutation granted by the
curvature-dimension condition, namely point (ii) in Theorem 3.6.

Proposition 3.10. Let n ∈ N, and suppose that there exists a constant ρn ∈ R such
that for all f ∈ C∞

c (M), Γn+1(f) ⩾ ρn Γn(f). Then

∀t ⩾ 0,∀f ∈ C∞
c (M), Γn(Ptf) ⩽ e−2ρnt Pt(Γn(f)).

Proof. If we apply Lemma 3.9 and use Γn+1 ⩾ ρn Γn, we get

d

ds
Λn(s) = 2Ps(Γn+1(Pt−sf)) ⩾ 2ρn Ps(Γn(Pt−sf)) = Λn(s).

Then by Grönwall’s inequality, we obtain

Λn(0) ⩽ e−2ρntΛn(t),

so
Γn(Ptf) ⩽ e−2ρnt Pt(Γn(f)).
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We present another useful bound.

Proposition 3.11. Let n ∈ N∗, and assume that for any h ∈ C∞
c (M), both Γn−1(h)

and Γn+1(h) are non-negative. Then

∀t > 0, ∀f ∈ C∞
c (M), Γn(Ptf) ⩽

1

2t
Pt(Γn−1(f)).

Proof. Using Lemma 3.9, we get
d

ds
Λn(s) = 2Ps(Γn+1(Pt+sf)) ⩾ 0,

so Λn is non-decreasing. Then, for t ⩾ s ⩾ 0,

Γn(Ptf) = P0(Γn(Ptf)) = Λn(0) ⩽ Λn(s) = Ps(Γn(Pt−sf)).

Thus integrating and applying again Lemma 3.9, we see that

tΓn(Ptf) =

∫ t

0

Γn(Ptf) ds ⩽
∫ t

0

Ps(Γn(Pt−s)f) ds =
1

2

∫ t

0

d

ds
Λn−1(s) ds

=
1

2
(Λn−1(t)− Λn−1(0))

=
1

2
(Pt(Γn−1(f))− Γn−1(Ptf)) ,

from where we get

Γn(Ptf) ⩽
1

2t
(Pt(Γn−1(f))− Γn−1(Ptf)) ⩽

1

2t
Pt(Γn−1(f)).

By mixing the two previous propositions, we deduce the following inequality.

Proposition 3.12. Let n ∈ N∗, and suppose that for any h ∈ C∞
c (M), both Γn−1(h)

and Γn+1(h) are non-negative. Additionally, let us assume that there exists a constant
ρn ∈ R such that for each f ∈ C∞

c (M), Γn+1(f) ⩾ ρn Γn(f). Then

∀t > 0,∀f ∈ C∞
c (M), Γn(Ptf) ⩽

1

t
e−ρnt Pt(Γn−1f).

Proof. Let t > 0. By Proposition 3.10:

Γn(Ptf) = Γn(Pt/2(Pt/2f)) ⩽ e−ρnt Pt/2(Γn(Pt/2f)). (3.3.5)

Then, by applying Proposition 3.11, we know that

Γn(Pt/2f) ⩽
1

t
Pt/2(Γn−1(f)). (3.3.6)

Therefore, if we mix up inequalities (3.3.5) and (3.3.6), we finally obtain

Γn(Ptf) ⩽
1

t
e−ρnt Pt(Γn−1f).

Remark 3.13. Let us note that if n = 1 and if there exist some constants ρ1, ρ2 > 0
such that for all f ∈ C∞

c (M), Γ3(f) ⩾ ρ2Γ2(f) and Γ2(f) ⩾ ρ1Γ1(f), then the non-
negativeness hypotheses in Proposition 3.12 are satisfied.
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3.3.3 Examples

Before the end of the section, we provide some illustrative examples of diffusion opera-
tors satisfying the higher-order Bakry-Émery criterion Γ3 ⩾ ρΓ2 for some ρ ∈ R.

Example 3.14 (Laplace-Beltrami operator on Sd). For any d ⩾ 2, consider the d-
dimensional sphere Sd, which was previously introduced in Section 2.2.2 of Chapter 2.
The canonical Riemannian metric g on Sd is such that the Ricci tensor is constant:
Ric = (d − 1)g. We equip Sd with the unique normalized measure invariant by trans-
lations µ = Vol (in Section 2.2.2 we denoted this measure by σ, but to be consistent
with the notation of this chapter, we prefer to rename it). Let L = ∆Sd be the Laplace-
Beltrami operator on Sd, which is essentially self-adjoint on C∞

c (Sd) = C∞(Sd), and has
µ as invariant and reversible measure. Since the Ricci tensor is constant, we have that

∀f ∈ C∞(Sd), Γ2(f) = |∇2f |2HS + (d− 1)|∇f |2,

so the operator L satisfies the curvature-dimension condition CD(d − 1,∞). Now let
us compute Γ3. Let f ∈ C∞(Sd).

Γ3(f) =
1

2
∆Γ2(f)− Γ2(f,∆f)

=

(
1

2
∆
∣∣∇2f

∣∣2
HS

+
1

2
(d− 1)∆|∇f |2

)
−
(
⟨∇2f,∇2(∆f)⟩HS + (d− 1)∇f · ∇(∆f)

)
.

Using Bochner’s formula (Theorem 2.113 in Chapter 2) and again the constant Ricci
curvature, we obtain

1

2
(d− 1)∆|∇f |2 = (d− 1)

∣∣∇2f
∣∣2
HS

+ (d− 1)∇f · ∇(∆f) + (d− 1)2|∇f |2,

so

Γ3(f) =
1

2
∆
∣∣∇2f

∣∣2
HS

− ⟨∇2f,∇2(∆f)⟩HS + (d− 1)
∣∣∇2f

∣∣2
HS

+ (d− 1)2|∇f |2

=
1

2
∆
∣∣∇2f

∣∣2
HS

− ⟨∇2f,∇2(∆f)⟩HS + (d− 1)Γ2(f),

so if we use again Bochner’s formula and the constant Ricci curvature for the first term,
we get the bound

Γ3(f) ⩾ (d− 1)Γ2(f).

Example 3.15 (Laguerre generator on Rd
>0). Fix p ∈ Rd

>0, and define on Rd
>0 the

Laguerre operator by

∀f ∈ C∞(Rd
>0), Lpf :=

d∑
i=1

xi
∂2f

∂x2i
+

d∑
i=1

(pi − xi)
∂f

∂xi
,

and let µp be the multivariate gamma law of parameter p on Rd
>0:

dµp =
d⊗
i=1

1

γ(pi)
xpi−1
i e−xi dxi,
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where γ denotes the usual gamma function. Note that Lp has µp as invariant and
reversible measure. Following Remark 3.3, note that the function x 7→ ( 1

xi
δij) defines a

Riemannian metric g on Rd
>0. The associated diffusion process (Xt)t⩾0 is non-explosive

as soon as pi ⩾ 1 for 1 ⩽ i ⩽ d [GJY03]. On the other hand, it is known [Kra82] that if
pi ⩾ 3

2
for 1 ⩽ i ⩽ d, then Lp is essentially self-adjoint on C∞

c (Rd
>0), so we will restrict

our attention towards this case. The Γn operators have an explicit representation in
terms of the derivatives of f [LNP15]:

Γ(f) =
d∑
i=1

xi

(
∂f

∂xi

)2

Γ2(f) =
d∑

i,j=1

xixj

(
∂2f

∂xi∂xj

)2

+
d∑
i=1

xi
∂f

∂xi

∂2f

∂x2i
+

1

2

d∑
i=1

(pi + xi)

(
∂f

∂xi

)2

Γ3(f) =
d∑

i,j,k=1

xixjxk

(
∂3f

∂xi∂xj∂xk

)2

+ 3
d∑

i,j=1

xixj
∂2f

∂xi∂xj

∂3f

∂x2i∂xj

+
3

2

d∑
i,j=1

(pi + xi)xj

(
∂2f

∂xi∂xj

)2

+
3

2

d∑
i=1

xi

(
∂2f

∂x2i

)2

+
3

2

d∑
i=1

xi
∂f

∂xi

∂2f

∂x2i
+

1

4

d∑
i=1

(3pi + xi)

(
∂f

∂xi

)2

.

As pi ⩾ 3
2
, we can easily observe that Γ2(f) ⩾ 1

2
Γ(f) and that Γ3(f) ⩾ 1

2
Γ2(f).

Remark 3.16. In the special case when d = 1 and p = 1, then µ1 corresponds to the
exponential measure on R>0. L1 is not essentially self-adjoint on C∞

c (R>0), however, it
has this property with respect to the algebra of functions C∞

c,Neu(R>0) defined by

C∞
c,Neu(R>0) :=

{
f ∈ C∞

c (R>0) : lim
x→0

xe−xf ′(x) = 0
}
⊂ C∞

c (R>0),

which we can interpret as imposing a Neumann boundary condition at 0 for the operator
Lp. On the other hand, it can be easily seen that in this case, both Γ2(f) ⩾ 1

2
Γ(f) and

Γ3(f) ⩾ 1
2
Γ2(f) are verified for every f ∈ C∞

c,Neu(R>0).

3.4 The diffusion transport map on smooth mani-
folds

In this section, we prove the main result of this note, Theorem 3.21, which employs the
Kim-Milman heat flow transport map [KM12] on a weighted manifold setting to obtain
a Lipschitz transport map between the prescripted weight measure and a log-Lipschitz
perturbation of it.

The construction will be detailed, taking care of the details that appear when
passing from the Euclidean setting towards the manifold one. After that, using the Γ-
calculus machinery exhibited in Section 3.3, we will prove that the heat flow transport
map is Lipschitz, giving an explicit bound on its Lipschitz constant.
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Here the context will always be given by a complete and connected smooth Rie-
mannian manifold (M, g) with weight dµ = e−W dVol ∈ P(M) for some W ∈ C∞

c (M).
Recall the the natural Langevin diffusion operator L given by L = ∆ − ∇W · ∇
and its associated semigroup (Pt)t⩾0. On the other hand, we assume that there ex-
ist positive constants ρ1, ρ2 > 0 such that for any f ∈ C∞

c (M), Γ2(f) ⩾ ρ1 Γ(f) and
Γ3(f) ⩾ ρ2 Γ2(f). We emphasize that under these assumptions, L is essentially self-
adjoint on the core algebra C∞

c (M) and (Pt)t⩾0 is Markovian.

3.4.1 Construction of the transport map

Let V : M → R be a smooth function which is K-Lipschitz for the metric dg, so in the
light of Proposition 3.4, V is such that

√
Γ1(V ) ⩽ K uniformly on M . Let us define

f := e−V . The following result justifies the integrability of f with respect to µ under
CD(ρ,∞) for ρ > 0, and is related to the Herbst argument Theorem 2.81 in Chapter
2; see [BGL14, Proposition 5.4.1]

Lemma 3.17. In the above context, let V : M → R be a smooth function such that√
Γ1(V ) ⩽ K. If there exists ρ > 0 such that CD(ρ,∞) holds, then both V and esV

are µ-integrable for any s ∈ R. In particular, e−V ∈ Lp(µ) for each p ⩾ 1.

Without loss of generality, we will assume
∫
M
f dµ =

∫
M
e−V dµ = 1 so we can

define the probability measure dν := f dµ. For each t ⩾ 0, set dρt = Ptf dµ, which is
a probability measure since µ is invariant for (Pt)t⩾0. In particular, we have that the
flow (ρt)t⩾0 is such that ρ0 = ν and ρ∞ := limt→+∞ ρt = µ in distribution since L is
ergodic and (Pt)t⩾0 is Markovian; thus, (ρt)t⩾0 interpolates between ν and µ.

Now let us define, for each t ⩾ 0 and x ∈ M , Vt(x) := − log Ptf(x), so that ∇Vt
is a vector field for each t ⩾ 0. The following proposition shows that actually that
∇V• and (ρt)t⩾0 verify together the continuity equation, recall Section 1.3.3 of Chapter
1.

Proposition 3.18. The flow (ρt)t⩾0 satisfies the continuity equation with velocity field
∇V• and initial condition ν: {

∂tρt +∇ · (ρt∇Vt) = 0

ρ0 = ν

in the distributional sense.

Proof. Let t > 0 and φ ∈ C∞
c (M). We shall prove that

d

dt

∫
M

φ dρt =

∫
M

∇φ · ∇Vt dρt.

Indeed, as (ρt)t⩾0 is solution of the SDE (3.2.8), then it satisfies the Fokker-Planck
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equation (3.2.9) in the distributional sense. Thus, we can write

d

dt

∫
M

φ dρt =

∫
M

(∆φ−∇W · ∇φ) dρt =
∫
M

∆φe−W Ptf dVol−
∫
M

∇W · ∇φ dρt

= −
∫
M

∇φ · ∇(e−W Ptf) dVol−
∫
M

∇W · ∇φ dρt

= −
∫
M

∇φ · ∇Ptf dµ = −
∫
M

∇φ · ∇Ptf

Ptf
dρt =

∫
M

∇φ · ∇Vt dρt.

Let us consider the flow of diffeomorphisms (St)t⩾0 induced by the vector field
∇Vt: 

d

dt
St(x) = ∇Vt(St(x)), t > 0

S0(x) = x.
(3.4.1)

Our goal will be to characterize the flow (ρt)t⩾0 in terms of (St)t⩾0 using Theo-
rem 1.27 in Chapter 1. First of all, note that ∇V• is smooth since the semigroup
(Pt)t⩾0 preserves smoothness because L is an elliptic diffusion operator. It is also clear
that t 7→ ρt is continuous for the weak topology. Finally, we have to justify the in-
tegrability condition (1.3.6), which will hold under the curvature-dimension condition
CD(ρ1,∞).

Lemma 3.19. Let V• be defined as above. If there exists ρ1 > 0 such that CD(ρ1,∞)
holds, then ∫ +∞

0

∫
M

|∇Vt(x)| dρt dt < +∞.

Proof. Under CD(ρ1,∞) for ρ1 > 0, we may use the strong commutation between Γ
and Pt, item (iii) in Theorem 3.6, so we have that for each t ⩾ 0,√

Γ(Ptf) ⩽ e−ρ1t Pt(
√

Γ(f)).

Note that
Pt(
√

Γ(f)) = Pt(|∇f |) = Pt(|∇V |f).

V is a K-Lipschitz potential, so |∇V | ⩽ K. Then

|∇Ptf | =
√

Γ(Ptf) ⩽ e−ρ1tK Ptf.

It follows that |∇Vt(x)| ⩽ Ke−ρ1t; hence,∫ +∞

0

∫
M

|∇Vt(x)| dρt dt ⩽ K

∫ +∞

0

e−ρ1t dt < +∞.
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As we have verified the hypotheses of Theorem 1.27 in Chapter 1, then for each
t ⩾ 0, St#ν = ρt. Now, for each t ⩾ 0, define Tt := S−1

t , so that Tt#ρt = ν.

If we suppose that for each t ⩾ 0 there exists a constant Kt > 0 such that Tt
is Kt-Lipschitz, and that K := lim supt→+∞Kt < +∞, then Lemma 1 in [MS23]
states that, modulo subsequence, for each x ∈ M , the limit limt→+∞ Tt(x) exists and,
moreover, it defines a K-Lipschitz mapping T : M → M such that T#µ = ν, as a
consequence of Arzelà-Ascoli’s theorem. The following lemma exhibits a condition on
Vt to ensure that the mapping T is Lipschitz, with a quantitative estimate on the
Lipschitz constant.

Lemma 3.20. In the above context, suppose that there exists λ : R+ → R+ integrable
such that

∀t ⩾ 0,∀x ∈M, −∇2Vt(x) ⪯ λ(t)gx.

Then T is exp
(∫ +∞

0
λ(t) dt

)
-Lipschitz.

We give just a formal proof (see, for example, [FMS24, Proposition 1] or [Nee22,
Lemma 2.1] for a complete argument): if we look at the flow (3.4.1), then for any
x, y ∈ M , we may define α(t) := d2g(St(x), St(y)). If we differentiate α with respect
to t and recall that d

dt
St(x) = ∇Vt(St(x)) and d

dt
St(y) = ∇Vt(St(y)), then the uniform

bound −∇2Vt(x) ⪯ λ(t)gx yields the following estimate:

d

dt
α(t) ⩾ −2λ(t)α(t).

Therefore, Grönwall’s inequality implies that

dg(St(x), St(y)) ⩾ dg(x, y) exp

(
−
∫ t

0

λ(s) ds

)
.

As Tt = S−1
t , the last inequality yields

dg(x, y) exp

(∫ t

0

λ(s) ds

)
⩾ dg(Tt(x), Tt(y));

thus, Tt is exp
(∫ t

0
λ(s) ds

)
-Lipschitz, so the limiting map T is exp

(∫ +∞
0

λ(s) ds
)
-

Lipschitz.

We are ready to state the main result of this chapter.

Theorem 3.21. Let (M, g, µ) be a complete and connected weighted Riemannian man-
ifold with dµ = exp(−W ) dVol for some W ∈ C∞(M), and assume that µ ∈ P(M).
Consider the diffusion operator L = ∆−∇W ·∇, let Γ be its associated carré du champ,
and let Γ2 and Γ3 be its respective iterations in the Bakry-Émery sense. Assume that
there exist constants ρ1, ρ2 > 0 such that

(i) ∀f ∈ C∞
c (M),Γ2(f) ⩾ ρ1 Γ(f); and

(ii) ∀f ∈ C∞
c (M),Γ3(f) ⩾ ρ2 Γ2(f).
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Let V ∈ C∞(M), and assume that it is K-Lipschitz for some K > 0. Define dν =
e−V dµ and assume that ν ∈ P(M). Then there exists a Lipschitz map T : M → M

pushing forward µ towards ν which is exp

(√
2π
ρ2
Ke

K2

2ρ1

)
-Lipschitz.

Before proceeding with the proof of the theorem, we will make a few remarks.

Remark 3.22.

(i) First of all, we observe that the estimate for the Lipschitz constant given by
Theorem 3.21 is intrinsically independent of the dimension dim(M) of the man-
ifold (M, g). This is relevant for applications: in the next section, we will see
how Theorem 3.21 can be applied to transport functional inequalities from the
measure µ towards log-Lipschitz perturbations of it, so if we have a dimension-
free inequality for µ, then the transported inequality for ν is dimension-free as
well; recall the initial motivation given in Section 3.1, and more precisely, the
argument given in (3.1.1).

(ii) Theorem 5 in [FMS24] provides another estimate for the Lipschitz constant of
T in the smooth setting as well. The assumptions in their result are similar to
those of Theorem 3.21, but instead of supposing that Γ3 ⩾ ρ2 Γ2, they assume
a uniform bound on R, the Riemann tensor of curvature associated with (M, g).
The estimates are of the same type, in the sense that both are of the form
O (exp(exp(K2))), with K the Lipschitz constant of the potential V .

Before starting with the proof of Theorem 3.21, we recall the following lemma,
which again is a consequence of Herbst’s argument; see [Mil23, p. 298].

Lemma 3.23. Let (E, δ,m) be a metric probability measure space. If m satisfies a
logarithmic Sobolev inequality with constant CLS(m) > 0, then for −∞ < q < p < +∞,
and for any g : E → R K-Lipschitz,

∥eg∥Lp(m) ⩽ exp

(
K2 (p− q)

2CLS(m)

)
∥eg∥Lq(m).

Proof of Theorem 3.21. Given what we have discussed in this section, and more pre-
cisely, thanks to Lemma 3.20, we only have to prove that we can find an integrable
upper bound λ for ∇2 log Ptf . We note that for any t > 0, x ∈M , and Y ∈ TxM with
|Y | = 1,

∇2 log Ptf(x)(Y, Y ) =
∇2 Ptf(x)(Y, Y )

Ptf(x)
− |∇ log Ptf(x) · Y |2

⩽
∇2 Ptf(x)(Y, Y )

Ptf(x)

⩽
|∇2 Ptf(x)|
Ptf(x)

;

that is,

∇2 log Ptf(x)(Y, Y ) ⩽
|∇2 Ptf(x)|
Ptf(x)

. (3.4.2)
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On the one hand, thanks to equation (3.3.2), we note that |∇2 Ptf | ⩽
√

Γ2(Ptf).
On the other hand, as both ρ2 and ρ1 are positive, and in the light of Remark 3.13, we
may use Proposition 3.12; thus, we have that

Γ2(Ptf) ⩽
1

t
e−ρ2t Pt(Γ1(f));

thus
|∇2 Ptf |2 ⩽

1

t
e−ρ2t Pt(Γ1(f)). (3.4.3)

Now, let us note that

Pt(Γ1(f)) = Pt(|∇f |2) = Pt(|f∇V |2) ⩽ K2 Pt(f
2) ⩽ K2 exp

(
K21− e−2ρ1t

ρ1

)
(Ptf)

2

⩽ K2 exp
(
K2/ρ1

)
(Ptf)

2

where we employed Lemma 3.23 for p = 2, q = 1, and the measure m = P∗
t δx since it

satisfies a logarithmic Sobolev inequality with constant CLS(P
∗
t δx) ⩽

1−e−2ρ1t

ρ1
, see item

(iv) in Theorem 3.6. If we blend up this with both (3.4.2) and (3.4.3), we finally get

∇2 log Ptf(x)(Y, Y ) ⩽ Ke
K2

2ρ1
1√
t
e−

1
2
ρ2t,

so the Lipschitz estimate follows from the fact that∫ +∞

0

1√
t
e−

1
2
ρ2t dt =

√
2

ρ2

∫ +∞

0

1√
s
e−s ds =

√
2π

ρ2
.

3.5 Applications
In this section we provide different applications of Theorem 3.21.

3.5.1 Transfer of functional inequalities

As it was commented in Section 2, in the smooth setting, the existence of Lipschitz
maps between measures allows the transfer of functional inequalities from the source
measure towards the target, recall (3.1.1) and, more generally, Proposition 2.83 in
Chapter 2 for the logarithmic Sobolev inequality.

Let us recall Theorem 3.7, which says that under CD(ρ,∞) for ρ > 0, the measure
µ verifies a logarithmic Sobolev inequality with constant CLS(µ) ⩽ 2/ρ. If we combine
this result with Proposition 2.83 in Chapter 2, then we obtain the following corollary
to Theorem 3.21.

Corollary 3.24. In the context of Theorem 3.21, for K > 0, let ν ∈ P(M) be a
K-log-Lipschitz perturbation of the measure µ. Then ν satisfies a logarithmic Sobolev
inequality with constant

CLS(ν) ⩽
2 exp

(
2
√

2π
ρ2
Ke

K2

2ρ1

)
ρ

.
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Remark 3.25. Transfer of functional inequalities for perturbations is a kind of result
that has existed in the literature for a long time; see, for example, [AS94]. Never-
theless, our method allows us to transfer not just logarithmic Sobolev inequalities but
isoperimetric, concentration, and Poincaré inequalities; recall Propositions 2.20, 2.24,
and 2.65, respectively. To complement what we just said, we point out that under the
Bakry-Émery condition, a functional Gaussian-type isoperimetric inequality holds, in
the sense of Definition 2.21 in Chapter 2; see [BGL14, Corollary 8.5.4]

3.5.2 The sphere

Recall Example 3.14. We saw that the spherical Laplacian is such that Γ2 ⩾ (d− 1) Γ
and Γ3 ⩾ (d − 1) Γ2, so we can apply Theorem 3.21. If we do so, we obtain that for
each V : Sd → R 1-Lipschitz, then there exists a Lipschitz mapping T pushing forward
Vol towards e−V Vol with Lipschitz constant exp

(√
2π
d−1

e
1

2(d−1)

)
.

Now let
√
dSd be the sphere rescaled by a factor of

√
d, and let µd be the uniform

measure on it. Then its Ricci tensor is given by RicSd(
√
d) =

d−1
d
gSd(

√
d), so it will satisfy

Γ2 ⩾ d−1
d

Γ and Γ3 ⩾ d−1
d

Γ2; thus we can apply Theorem 3.21 to get a transport map

with Lipschitz constant exp

(√
2π d−1

d
e

1

2 d−1
d

)
for 1-Lipschitz log-perturbations of µd;

note that this quantity converges to exp
(√

2πe
1
2

)
as d→ +∞.

Remark 3.26. The Lipschitz constant obtained for Sd is worse than the one provided
in [FMS24, Theorem 2], where the authors stress the constant curvature of Sd to obtain
an ad hoc bound. Despite this, the spherical example illustrates the applicability of
Theorem 3.21.

3.5.3 Laguerre generator

We saw in Example 3.15 that for any p ∈ Rd
>0 with pi ⩾ 3

2
for 1 ⩽ i ⩽ d, the Laguerre

operator Lp is essentially self-adjoint, and its associated semigroup conservative, so we
may still apply Theorem 3.21 to its invariant measure µp. Thus, we have a Lipschitz
map pushing forward the multivariate gamma distribution towards its log-Lipschitz
perturbations.

In the particular case when d = 1 and p = 1, where the invariant measure µ1

corresponds to the exponential distribution on R>0, from Remark 3.16 we know that
L1 is essentially self-adjoint with respect to the class of functions C∞

c,Neu(R>0). This
makes no difference in the arguments, so we may also apply Theorem 3.21.

In the latter case, the operator −L1 has a discrete spectrum equal to N; thus, it
satisfies Poincaré’s inequality with a better constant than the one given by CD(1/2,∞):
for each f : R>0 → R smooth,

Varµ1(f) ⩽
∫
R+

x(f ′(x))2 dµ1(x).
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In particular, in the light of Corollary 3.24, it is possible to transfer this inequality
for any log-Lipschitz perturbation of the exponential measure, where Lipschitzianity
has to be regarded with respect to the metric generated by the Laguerre generator L1.
That is, if ν is a log-Lipschitz perturbation, then there exists CP(ν) > 0 such that

∀f ∈ C∞
c (R>0), Varν(f) ⩽ CP(ν)

∫
R+

y(f ′(y))2 dν(y).

Remark 3.27. The exponential measure is a rich object for the theory of functional
inequalities; see, for example, [BL97, BK08]. In particular, recall Theorem 2.59 in
Chapter 2: the exponential measure verifies Poincaré’s inequality with respect to the
usual carré du champ operator f 7→ |f ′|2:

∀f ∈ C∞
c (R>0), Varµ1(f) ⩽ 4

∫
R>0

|f ′|2 dµ1. (3.5.1)

At first glance, we cannot use Corollary 3.24 to extend inequality (3.5.1) towards log-
Lipschitz perturbations (for the metric generated by the Laguerre generator L1, namely
x 7→ 1

x
) of µ1 since the Poincaré inequality (3.5.1) is stated in terms of the carré du

champ operator f 7→ |f ′|2, which is not compatible with the metric x 7→ 1
x
. However,

we observe that the second conclusion in Proposition 3.28 below allows us to extend
the same kind of functional inequality for its log-Lipschitz (with respect to the metric
x 7→ 1

x
) perturbations. That is, if ν is such a perturbation, then there exists CP(ν) > 0

such that
∀f ∈ C∞

c (R>0), Varν(f) ⩽ C

∫
R+

(f ′)2 dν. (3.5.2)

It is known that in dimension one, the diffusion transport map T coincides with
the Monge map; see Proposition 1.2 in Chapter 1 for the structure of Monge’s map in
dimension one. The following result provides a new estimate of the growth of Monge’s
map for d = 1 and p ⩾ 3

2
or p = 1, pushing forward the measure µp towards a log-

Lipschtitz perturbation of it. Let us recall that T is non-decreasing and positive.

Proposition 3.28. Let µp be the gamma distribution on R>0, let V : R>0 → R be a
Lipschitz potential (for the metric x 7→ 1

x
), and let T : R>0 → R>0 be the Monge map

pushing forward µp towards e−V µp. Then there exists a constant C > 0 such that for
any x > 0,

0 < T (x) ⩽ Cx. (3.5.3)
Moreover, T is Lipschitz for the Euclidean metric on R>0, that is, there exists C ′ > 0
such that for any x > 0,

0 ⩽ T ′(x) ⩽ C ′. (3.5.4)

Proof. Let us denote by g the metric x 7→ 1
x
. Using Theorem 3.21, we obtain a constant

M > 0 such that supx>0 |T ′(x)|op ⩽M . Therefore, for each x > 0,

M ⩾ |T ′(x)|op = sup
|v|gx=1

|T ′(x) · v|gT (x)
= sup

|v|gx=1

√
1

T (x)
(T ′(x)v)2

= sup
|v|gx=1

√
x

T (x)
(T ′(x))2 |v|2gx =

√
x

T (x)
T ′(x),
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which yields
d

dx

(√
T (x)

)
⩽M

1

2
√
x
.

Then, if we integrate the last inequality and use the fact that limy→0 T (y) = 0, we
obtain that for each x > 0,

√
T (x) ⩽M

√
x, which yields (3.5.3) for C =M2

Now, to bound T ′, we just use the bound on T and the first inequality, namely

M ⩾
√

x

T (x)
T ′(x),

thus getting the desired conclusion (3.5.4).

Remark 3.29. In [CF21, Theorem 1.3] provides a growth estimate for the derivative of
the Monge map pushing forward the Gaussian measure γd onto a log-concave measure
on Rd which moreover is log-Lipschitz, under certain technical bounds for the Hessian
of its log-density: more precisely, |∇T (x)|op = O(1 + |x|2) as |x| → ∞. Proposition
3.28 states that for the family of gamma distributions, the growth for the derivative of
Monge’s map pushing forward the measure towards a log-Lipschitz perturbation of it is
O(1) as x→ ∞ for the Euclidean metric. Similar bounds under different assumptions
have been found in [CFS24, Fat24].
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Chapter 4

The Poisson transport map

I keep pushin’ forwards, but he keeps pullin’ me back-
wards
(Nowhere to turn, no way, nowhere to turn, no)
Now I’m standin’ back from it, I finally see the pattern
(I never learn, I never learn).

Dua Lipa
New Rules

This chapter is based on the article [LRS25], written in collaboration with Yair Shen-
feld. The contributions appearing in this chapter belong to the theory of functional
inequalities in the discrete setting. More concretely, we construct a transport map from
Poisson point processes onto ultra-log-concave measures over the natural numbers, and
show that this map is a contraction. Our approach overcomes the known obstacles to
transferring functional inequalities using transport maps in discrete settings, and al-
lows us to deduce a number of functional inequalities for ultra-log-concave measures.
In particular, we provide the currently best known constant in modified logarithmic
Sobolev inequalities for ultra-log-concave measures.

In Section 4.1, we motivate and introduce the context for our main results. In
Section 4.2, we review some of the basics of ultra-log-concave measures, as well as the
basics of the Poisson semigroup. Section 4.3 provides the construction of the Poisson
transport map, as well as some of its properties. In Section 4.4 we prove our contraction
theorem (Theorem 4.2). In addition, in Section 4.4.1, we compare and contrast the
Brownian transport map and the Poisson transport map. Finally, in Section 4.5 we
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prove our functional inequalities (Theorem 4.5, Theorem 4.7, and Theorem 4.8).

4.1 Introduction
A classical way to establish functional inequalities for a given probability measure is
to find a Lipschitz transport map from a source measure, for which the inequality is
known, onto the target measure of interest as we saw in Chapter 3. If we wish to apply
this method for discrete measures then we face a number of obstacles. Consider for
instance the problem of constructing a Lipschitz transport map X : N → N between
the Poisson measure (with intensity 1) π1 on N, and another probability measure µ on
N. The fact that the map X cannot split the mass of π1 at any position in N severely
restricts the type of measures µ that can arise as the pushforward of π1 under X. This
is not a particular problem of the natural numbers; it also emerges in other discrete
structures: Example 1.5 in Chapter 1 shows that the existence of transport maps in
the two-point space is limited as well. In addition, even if we can construct a Lipschitz
transport map X between π1 and µ, the lack of chain rule in the discrete setting hinders
the argument.

4.1.1 The Poisson transport map

In this work we show that these obstacles can be overcome by transporting the Poisson
point processes P onto probability measures µ on N. In the notation above, d = 1 and
n = ∞. In addition, we will show that in the setting considered in this work, the chain
rule issue can be avoided. Let us describe informally our transport map. Fix a time
T > 0 and M > 0, and consider a Poisson point process over [0, T ]× [0,M ]:

• The numbers of points that fall in disjoint regions of [0, T ]× [0,M ] are indepen-
dent.

• Given B ⊂ [0, T ] × [0,M ], the number of points that fall into B is distributed
like a Poisson measure on N with intensity Leb(B).

Now let λ : [0, T ] → [0,M ] be a regular curve, and define the counting process (Xλ
t )t∈[0,T ]

by letting

Xλ
t := number of points in [0, t]× [0,M ] that fall below the curve λ, (Figure 4.1).

(4.1.1)
Given a measure µ on N, we can choose λ in a stochastic way so that Xλ

T ∼ µ. We
call Xλ

T the Poisson transport map as it transports the Poisson point process P onto
µ.

The Poisson transport map can be viewed as the discrete analog of the Brown-
ian transport map of Mikulincer and Shenfeld [MS24], which transports the Wiener
measure on path space onto probability measures over Rd. The Brownian trans-
port map is based on the Föllmer process [Föl85, Föl86, Leh13], and, analogously,
the Poisson transport map is based on the process (Xλ

t )t∈[0,T ], which is the discrete
analogue of the Föllmer process. The process (Xλ

t )t∈[0,T ] was constructed by Klartag
and Lehec [KL19] (specializing and elaborating on earlier work of Budhiraja, Dupuis,
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M

T2

(λt)t∈[0,T ]

Figure 4.1: The points in [0, T ]× [0,M ] are generated according to a standard Poisson
process (7 points in this case). At time t ∈ [0, T ] the value of the process Xλ

t is equal
to the number of points under the curve (filled circles). In the figure, Xλ

2 = 1 and
Xλ
T = 4.

and Maroulas [BDM11]), who used it to prove functional inequalities. In Section 4.4.1,
we discuss the similarities and differences between the Brownian transport map and
the Poisson transport map.

4.1.2 Ultra-log-concave measures

Just as in the continuous case, we cannot expect to have a Lipschitz transport map
(with good constants) from P onto any probability measure µ on N since the existence of
such map will imply functional inequalities for µ. The classical result on the existence of
Lipschitz transport maps in the continuous setting is Caffarelli’s contraction theorem,
see Theorem 1.26 in Chapter 1, who showed that if n = d, and µ = fγd with f : Rd →
R⩾0 log-concave, then there exists a 1-Lipschitz transport map between γd and µ. Closer
to our setting, it was shown in [MS24] that the Brownian transport map is 1-Lipschitz
when the target measure over Rd is of the form µ = fγd, with f log-concave.

In the discrete setting, the analogue of a measure µ being “more log-concave than
the Gaussian” is that the measure is ultra-log-concave. To define this notion we recall
that a positive function f : N → R>0 is log-concave if

∀k ∈ N∗, f 2(k) ⩾ f(k − 1)f(k + 1). (4.1.2)

Definition 4.1. A probability measure µ on N is ultra-log-concave if µ = fπλ, where
πλ is the Poisson measure with intensity λ, and f : N → R>0 is a positive log-concave
function1.

Ultra-log-concave measures form an important class of discrete probability mea-
sures as it possesses desirable properties such as closure under convolution [SW14,
Theorem 4.1(b)]. They are also ubiquitous and show up in fields outside of probability

1In Section 4.2 we recall equivalent definitions of ultra-log-concave measures.
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such as combinatorics and convex geometry. We refer to the introduction of [AMM22]
for more information.

Our first main result is that the Poisson transport map from the Poisson point
process P onto ultra-log-concave measures µ is 1-Lipschitz. We will formulate this
condition in terms of the Malliavin derivative D(t,z) of XT , which captures the effect of
adding a point at (t, z) to the point process on the value of XT (see Section 4.3.1).

Theorem 4.2. Fix a real number T > 0, let µ = fπT be an ultra-log-concave probability
measure over N, and let M := f(1)/f(0). Let XT be the Poisson transport map from
P to µ. Then, P-almost-surely,

∀(t, z) ∈ [0, T ]× [0,M ], D(t,z)XT ∈ {0, 1}.

The fact that D(t,z)XT is integer-valued follows from the definition of the Malliavin
derivative D(t,z), and since XT is integer-valued. However, a priori, saying that XT is 1-
Lipschitz could have implied D(t,z)XT ∈ {−1, 0, 1}. Theorem 4.2 shows that D(t,z)XT ⩾
0, which will be important to tackle the chain rule issue when transporting functional
inequalities from P to µ.

4.1.3 Functional inequalities for ultra-log-concave measures

The absence of the chain rule in the discrete setting complicates the study of functional
inequalities for measures on N. For example, Poisson measures πλ over N, the discrete
analogues of Gaussians, do not satisfy logarithmic Sobolev inequalities. Rather, they
satisfy modified logarithmic Sobolev inequalities as was first developed by Bobkov and
Ledoux [BL98]. In the discrete setting there are various choices for modified logarithmic
Sobolev inequalities, and in the context of the Poisson measure Wu’s inequality is the
strongest; see Section 2.5.3 of Chapter 2 for a more extensive discussion. For example,
to recover the Gaussian logarithmic Sobolev inequality via the combination of the
Poisson modified logarithmic Sobolev inequality and the central limit theorem one
needs Wu’s inequality [CL23, Remark on page 75]. To introduce Wu’s inequality let D
be the discrete derivative of a function g : N → R:

∀k ∈ N, Dg(k) := g(k + 1)− g(k).

Theorem 4.3. [Wu00, Theorem 1.1]. Let πT be the Poisson measure over N with
intensity T . Then, for any positive g ∈ L2(N, πT ),

EntπT (g) ⩽ T EπT [Ψ(g,Dg)], (4.1.3)

where Ψ(u, v) := (u+ v) log(u+ v)− u log u− (log u+ 1)v.

In the continuous setting, as a consequence of the existence of 1-Lipschitz transport
maps, measures which are more log-concave than Gaussians satisfy logarithmic Sobolev
inequalities. Thus, in the discrete setting we can expect ultra-log-concave measures to
satisfy modified logarithmic Sobolev inequalities. Indeed, such inequalities for ultra-
log-concave measures were obtained by Caputo, Dai Pra, and Posta [CDPP09, Theorem
3.1], but the stronger Wu-type modified logarithmic Sobolev inequality for ultra-log-
concave measures was only obtained later by Johnson in [Joh17].
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Theorem 4.4. [Joh17, Theorem 1.3 and Lemma 5.1]. Let µ be an ultra-log-concave
probability measure over N. Then, for any positive g ∈ L2(N, µ),

Entµ(g) ⩽
µ(1)

µ(0)
Eµ[Ψ(g,Dg)], (4.1.4)

where Ψ(u, v) := (u+ v) log(u+ v)− u log u− (log u+ 1)v.

Note that µ(1)
µ(0)

= T when µ = πT , so (4.1.3) and (4.1.4) agree in this case. Our
second main result shows that we can in fact improve the constant in the strongest
modified logarithmic Sobolev inequalities for ultra-log-concave measures.

Theorem 4.5. Let µ be an ultra-log-concave probability measure over N. Then, for
any positive g ∈ L2(N, µ),

Entµ(g) ⩽ | log µ(0)|Eµ[Ψ(g,Dg)], (4.1.5)

where Ψ(u, v) := (u+ v) log(u+ v)− u log u− (log u+ 1)v.

It will follow from our work (Corollary 4.16) that | log µ(0)| ⩽ µ(1)
µ(0)

, so that (4.1.5)
improves on (4.1.4). (Note however that (4.1.4) holds, with constant 1/c, for the larger
class of c-log-concave measures [Joh17].) Again, when µ = πT , we have | log µ(0)| =
T .

Remark 4.6 (The optimal constant). Theorem 4.5 raises the question of what is
the optimal constant in modified logarithmic Sobolev inequalities for ultra-log-concave
measures. Daly and Johnson [DJ13, Corollary 2.4] showed that the Poincaré in-
equality for ultra-log-concave measures holds with a constant at least as good as
E[µ] := EZ∼µ[Z]. On the other hand, it will follow from our work (Corollary 4.16)
that

E[µ] ⩽ | log µ(0)| ⩽ µ(1)

µ(0)
,

which begs the question of whether (4.1.5) holds with constant E[µ]. As evidence for an
affirmative answer, it was shown by Aravinda, Marsiglietti, and Melbourne [AMM22,
Theorem 1.1] that ultra-log-concave measures satisfy concentration inequalities with
Poisson tail bounds. On the other hand, if the modified logarithmic Sobolev inequalities
were to hold for ultra-log-concave measures with constant E[µ], the result [AMM22,
Theorem 1.1] could be deduced from the usual Herbst argument.

Theorem 4.5 is in fact a corollary of the following more general result, namely, the
validity of Chafaï’s Φ-Sobolev inequalities for ultra-log-concave measures; see Section
4.5.1 for the precise definitions.

Theorem 4.7. Let µ be an ultra-log-concave probability measure over N. Let I ⊂ R
be a closed interval, not necessarily bounded, and let Φ: I → R be a smooth convex
function. Suppose that the function

{(u, v) ∈ R2 : (u, u+ v) ∈ I × I} ∋ (u, v) 7→ Ψ(u, v) := Φ(u+ v)− Φ(u)− Φ′(u)v

is nonnegative and convex. Then, for any g ∈ L2(N, µ), such that µ-a.s. g, g+Dg ∈ I,

EntΦµ (g) ⩽ | log µ(0)|Eµ[Ψ(g,Dg)]. (4.1.6)
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We conclude with the following α-T1 transport-entropy inequality for ultra-log-
concave measures; see Section 4.5.2 for the precise definitions and recall Definition
2.100 from Chapter 2.

Theorem 4.8. Let µ = fπT be an ultra-log-concave probability measure on N, and let
M := f(1)

f(0)
. Then, for any probability measure ν on N which is absolutely continuous

with respect to µ, and has a finite first moment, we have

αTM
(
W1,|·|(ν, µ)

)
⩽ H(ν|µ), (4.1.7)

where
αc(r) := c

[(
1 +

r

c

)
log
(
1 +

r

c

)
− r

c

]
.

The constant TM in (4.1.7) can in fact be improved; cf. Remark 4.28.

4.2 Ultra-log-concave measures
In this section we establish some of the properties of ultra-log-concave measures that
will be used throughout the paper. We say that a positive function f : N → R>0 is
log-concave if

∀k ∈ N∗, f 2(k) ⩾ f(k − 1)f(k + 1). (4.2.1)

Equivalently, f : N → R>0 is log-concave if the function

N∗ ∋ k 7→ f(k)

f(k − 1)
is non-increasing. (4.2.2)

The following definition captures the intuition of a probability measure being more
log-concave than a Poisson measure.

Definition 4.9. A probability µ on N is ultra-log-concave if there exists λ > 0, and a
positive log-concave function f , such that µ(k) = f(k)πλ(k) for all k ∈ N.

The intensity λ in Definition 4.9 does not in fact play any role. It is readily verified
from the definition that µ is ultra-log-concave, with respect to any intensity λ > 0, if
and only if

∀k ∈ N∗, µ2(k) ⩾
k + 1

k
µ(k + 1)µ(k − 1). (4.2.3)

In other words, once µ is more log-concave than πλ for some λ, it is in fact more
log-concave than πλ for all λ.

The Poisson semigroup (Pt)t⩾0 will play an important role in our work. Given a
function g : N → R we define, for t ⩾ 0,

P0g := g, and ∀k ∈ N,∀t > 0, Ptg(k) :=
∞∑
n=0

g(k + n)πt(n).

The Poisson semigroup satisfies the identity

∀k ∈ N, ∂t(Ptg)(k) = D(Ptg)(k), (4.2.4)
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where
Dh(k) := h(k + 1)− h(k),

for any h : N → R. Fix a time T > 0. For future reference, given nonnegative f : N →
R, we set

F (t, k) := log PT−tf(k), which satisfies ∀t ∈ [0, T ],∀k ∈ N, ∂tF (t, k) = −eDF (t,k) +1.
(4.2.5)

Our next result shows that the Poisson semigroup preserves log-concavity. While a
number of proofs are available, our proof will mimic the proof of the fact that the heat
semigroup preserves log-concavity. The latter is a consequence of the Prékopa-Leindler
inequality, so we will use a discrete analogue of the Prékopa-Leindler inequality proven
by Klartag and Lehec.

Proposition 4.10. f : N → R>0 be a log-concave function. Then, for any t ⩾ 0, Ptf
is a log-concave function.

Proof. Let V := log f . Our goal is to show that

∀k ∈ N∗, (Pte
V (k))2 ⩾ Pte

V (k + 1)Pte
V (k − 1),

which, by definition, is equivalent to(
∞∑
n=0

eV (k+n)πt(n)

)2

⩾

(
∞∑
n=0

eV (k+1+n)πt(n)

)(
∞∑
n=0

eV (k−1+n)πt(n)

)
. (4.2.6)

The discrete Prékopa-Leindler inequality [KL19, Proposition 5.1] implies that for all
functions W,Y, Z : N → R,

∀ℓ,m ∈ N, W (ℓ) + Y (m) ⩽ Z

(⌊
ℓ+m

2

⌋)
+ Z

(⌈
ℓ+m

2

⌉)
=⇒(

∞∑
n=0

eZ(n)πt(n)

)2

⩾

(
∞∑
n=0

eW (n)πt(n)

)(
∞∑
n=0

eY (n)πt(n)

)
.

(4.2.7)

To apply (4.2.7) we fix k ∈ N and define Z(n) := V (k + n), W (n) := V (k + 1 + n),
and Y (n) := V (k − 1 + n), so that to establish (4.2.6) it suffices to show

∀ℓ,m ∈ N, V (k+ 1+ ℓ) + V (k− 1 +m) ⩽ V

(
k +

⌊
ℓ+m

2

⌋)
+ V

(
k +

⌈
ℓ+m

2

⌉)
.

(4.2.8)
To verify (4.2.8) we note that the log-concavity of f implies that

∀m ∈ N∗, 2V (m) ⩾ V (m+ 1) + V (m− 1), (4.2.9)

which is in fact equivalent to

∀p, q ∈ N, V (p) + V (q) ⩽ V

(⌊
p+ q

2

⌋)
+ V

(⌈
p+ q

2

⌉)
. (4.2.10)
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Taking p = k + 1 + ℓ and q = k − 1 +m in (4.2.10) yields

V (k + 1 + ℓ) + V (k − 1 +m) ⩽ V

(⌊
2k + ℓ+m

2

⌋)
+ V

(⌈
2k + ℓ+m

2

⌉)
= V

(
k +

⌊
ℓ+m

2

⌋)
+ V

(
k +

⌈
ℓ+m

2

⌉)
,

thus deducing (4.2.8).

As a consequence of the preservation of log-concavity let us deduce a number of
corollaries which will be helpful later on.

Corollary 4.11. Let f : N → R>0 be a log-concave function. Fix T > 0 and k ∈ N.
The map

[0, T ] ∋ t 7→ PT−tf(k + 1)

PT−tf(k)

is non-decreasing.

Proof. Define θ : [0, T ] → R by θ(t) := PT−tf(k+1)

PT−tf(k)
, so we need to show that θ′(t) ⩾ 0.

Indeed, by (4.2.4),

θ′(t) =
−∂t(PT−tf)(k + 1)

PT−tf(k)
− PT−tf(k + 1)(−∂t(PT−tf)(k))

(PT−tf(k))2

=
PT−tf(k + 1)(D(PT−tf)(k))

(PT−tf(k))2
− D(PT−tf)(k + 1)

PT−tf(k)

=
1

(PT−tf(k))2
{PT−tf(k + 1)[PT−tf(k + 1)− PT−tf(k)]

− PT−tf(k)[PT−tf(k + 2)− PT−tf(k + 1)]}

=
1

(PT−tf(k))2
{
(PT−tf)

2(k + 1)− PT−tf(k)PT−tf(k + 2)
}
⩾ 0,

where the last inequality holds by Proposition 4.10.

Corollary 4.12. Let f : N → R>0 be a log-concave function. Fix T > 0. Then, for
any t ∈ [0, T ] and k ∈ N,

PT−tf(k + 1)

PT−tf(k)
⩽
f(1)

f(0)
. (4.2.11)

Proof. Fix k ∈ N. By Corollary 4.11 the function [0, T ] ∋ t 7→ PT−tf(k+1)

PT−tf(k)
is non-

decreasing, so

∀ t ∈ [0, T ],
PT−tf(k + 1)

PT−tf(k)
⩽
f(k + 1)

f(k)
.

On the other hand, by (4.2.2), the function N ∋ k 7→ f(k+1)
f(k)

is non-increasing, so

∀ t ∈ [0, T ],
PT−tf(k + 1)

PT−tf(k)
⩽
f(k + 1)

f(k)
⩽
f(1)

f(0)
.
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4.3 The Poisson transport map
In this section we construct the Poisson transport map. In Section 4.3.1 we recall
the construction of the canonical space for the Poisson point process, as well as the
basics of the Malliavin calculus on this space. We will use [Las16, BP16] as our refer-
ences. In Section 4.3.2 we describe the process (Xλ

t )t∈[0,T ] constructed by Klartag and
Lehec [KL19], which we interpret as a transport map from the Poisson measure on the
canonical space onto probability measures over N.

4.3.1 The Poisson space

Fix a real number T > 0. Let µ = fπT be an ultra-log-concave probability measure
on N, where f : N → R>0 is a positive log-concave function. Set M := f(1)

f(0)
, and let

X := [0, T ] × [0,M ]. We let X be the σ-algebra generated by the Borel sets of X
endowed with the product topology, and we let Leb be the Lebesgue measure on X .
We define the Poisson space (Ω,F ,P) over (X,X ,Leb) by letting the probability space
be

Ω :=

{
ω : ω =

∑
i

δ(ti,zi), (ti, zi) ∈ X (at most countable)

}
,

the σ-algebra be
F := σ (Ω ∋ ω 7→ ω(B) : B ∈ X ) ,

and defining the probability measure P by

∀B ∈ X , ∀k ∈ N, P({ω(B) = k}) = πLeb(B)(k),

∀n ∈ N∗, ω(B1), . . . , ω(Bn) are P-independent if B1, . . . , Bn ∈ X are disjoint.

Given a measurable function G : Ω → R, we define the Malliavin derivative D of G as
the function DG : Ω× X → R given by

∀(t, z) ∈ X,∀ω ∈ Ω, D(t,z)G(ω) := G(ω + δ(t,z))−G(ω). (4.3.1)

Of particular importance to us will be binary Malliavin derivatives, for which one has
the following chain rule.

Lemma 4.13. Let G : Ω → N be a measurable function such that D(t,z)G ∈ {0, 1} for
all (t, z) ∈ X. Then, for any g : N → R,

∀(t, z) ∈ X, D(t,z)(g ◦G) = Dg(G) ·D(t,z)G. (4.3.2)

Proof. Fix ω ∈ Ω and (t, z) ∈ X. If D(t,z)G(ω) = G(ω + δ(t,z))−G(ω) = 0, then

D(t,z)(g ◦G(ω)) = g(G(ω + δ(t,z)))− g(G(ω)) = 0,

since G(ω+δ(t,z)) = G(ω), which establishes (4.3.2). Suppose then that D(t,z)G(ω) = 1,
so that G(ω + δ(t,z)) = G(ω) + 1. Then,

D(t,z)(g ◦G(ω)) = g(G(ω + δ(t,z)))− g(G(ω)) = g(G(ω) + 1)− g(G(ω)) = Dg(G(ω))

= Dg(G(ω))D(t,z)G(ω),

where in the last equality we used D(t,z)G(ω) = 1.
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4.3.2 The Poisson transport map

Our construction of the Poisson transport map is based on the stochastic process used
by Klartag and Lehec in [KL19] (whose origin can be found in Budhiraja, Dupuis, and
Maroulas [BDM11]). Let the notation and assumptions of Section 4.3.1 hold. Given
t ∈ [0, T ] let Xt be the σ-algebra generated by the Borel sets of [0, t]× [0,M ] endowed
with the product topology, and define the σ-algebra Ft on Ω by

Ft := σ (Ω ∋ ω 7→ ω(B) : B ∈ Xt) .

We say that a stochastic process (λt)t∈[0,T ], where λt : Ω → R, is predictable if the func-
tion (t, ω) 7→ λt(ω) is measurable with respect to σ ({(s, t]×B : s ⩽ t ⩽ T, B ∈ Fs}).
Given a predictable nonnegative stochastic process λ := (λt)t∈[0,T ], such that λt ⩽ M
for all t ∈ [0, T ], we define the stochastic counting process (Xλ

t )t∈[0,T ] by

Xλ
t (ω) = ω ({(s, x) ∈ X : s < t, x ⩽ λs(ω)}) , (see Figure 4.1). (4.3.3)

Note that (Xλ
t )t∈[0,T ] is a non-decreasing integer-valued left-continuous process such

that Xλ
t is Ft-measurable for all t ∈ [0, T ], and hence (Xλ

t )t∈[0,T ] is predictable. In
addition, almost-surely, there are only finitely many jumps of (Xλ

t )t∈[0,T ], each of which
is of size 1. Thus, the process (Xλ

t )t∈[0,T ] is a Poisson process with stochastic intensity λ.
We will work with a specific stochastic intensity λ, namely, we will take the stochastic
intensity λ∗ defined by the equation

λ∗t (ω) =
PT−tf(X

λ∗(ω)
t (ω) + 1)

PT−tf(X
λ∗(ω)
t (ω))

= e
DF

(
t,X

λ∗(ω)
t (ω)

)
, (4.3.4)

where we recall (4.2.5). The existence of a solution to (4.3.4) was given in [KL19,
Lemma 4.3] via a fixed-point argument, which requires the function k 7→ PT−tf(k+1)

PT−tf(k)

to be bounded for each t ∈ [0, T ]. In [KL19], f itself is assumed to be bounded,
which gives the necessary condition, but in our case the log-concavity of f suffices by
Corollary 4.12. Note that P-a.s. t 7→ λ∗t is continuous except at finitely many points,
and in addition, by Corollary 4.12,

λ∗t ⩽
f(1)

f(0)
=M. (4.3.5)

To ease the notation, from here on, we will denote

X := (Xt)t∈[0,T ] := (Xλ∗

t )t∈[0,T ] and λ := (λt)t∈[0,T ] := (λ∗t )t∈[0,T ]. (4.3.6)

The next lemma provides the time marginals of X.

Lemma 4.14. Let X be the process defined by (4.3.6). For every t ∈ [0, T ], the law of
Xt is (PT−tf)πt.

Proof. Let h : N → R be any bounded function and fix ω ∈ Ω. By construction,
[0, T ] ∋ t 7→ h(Xt(ω)) is P-a.s. piecewise constant with jumps of size 1 at t1 < t2 < · · · ,
where ω =

∑
i δ(ti,zi). Hence, for each t ∈ [0, T ],

h(Xt(ω)) = h(0) +

∫ t

0

Dh(Xs(ω)) dXs := h(0) +
∑
ti⩽t

Dh(Xti(ω)). (4.3.7)
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Taking expectation in (4.3.7), and applying [KL19, Lemma 4.1], we get

E[h(Xt)] = h(0) + E
[∫ t

0

Dh(Xs)λs ds

]
. (4.3.8)

Let µt be the law of Xt. Differentiating (4.3.8) in t, and using (4.3.4), we can apply
summation by parts to get

∞∑
j=0

h(j)∂tµt(j) =
∞∑
j=0

Dh(j)eDF (t,j)µt(j) (4.3.9)

= −h(0)eDF (t,0)µt(0)−
∞∑
j=0

h(j + 1)D
[
eDF (t,j)µt(j)

]
. (4.3.10)

Equation (4.3.9) holds for all bounded h, so fix a non-zero k ∈ N and let h(j) = 1j=k
to get the discrete Fokker-Planck equation,

∀k ∈ N, ∂tµt(k) = −D
[
eDF (t,k−1)µt(k − 1)

]
. (4.3.11)

To get an equation at k = 0, take h(j) = 1j=0 and use (4.3.9) to deduce

∂tµt(0) = −eDF (t,0)µt(0). (4.3.12)

Using the convention eDF (t,−1) = µt(−1) = 0, we can combine (4.3.11) and (4.3.12) to
get

∀k ∈ N, ∂tµt(k) = −D
[
eDF (t,k−1)µt(k − 1)

]
. (4.3.13)

One can check that (4.3.13) is uniquely solved by

∀k ∈ N, µt(k) = PT−tf(k)πt(k). (4.3.14)

An immediate corollary of Lemma 4.14 is that XT is distributed as µ. We call the
map XT : Ω → N the Poisson transport map as it transports P to µ.

4.3.3 Properties of the Poisson transport map and ultra-log-
concave measures

Let us prove a number of properties of the processes X,λ, which we will use later.

Lemma 4.15. Let X be the process defined by (4.3.6). Then λ is a P-martingale, i.e.,
the process

[0, T ] ∋ t 7→ PT−tf(Xt + 1)

PT−tf(Xt)

is a P-martingale. Further, the common mean of λ is PTf(1).
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Proof. Let h : [0, T ]×N → R be such that the function [0, T ] ∋ t 7→ h(t, k) is continuous
for all k ∈ N. Then the function [0, T ] ∋ t 7→ h(t,Xt) is piecewise absolutely-continuous
function in t, so

h(t,Xt) = h(0, 0) +

∫ t

0

Dh(s,Xs) dXs +

∫ t

0

∂sh(s,Xs) ds. (4.3.15)

Take h(t, k) := PT−tf(k+1)

PT−tf(k)
, and note that it satisfies the continuity condition. Then,

using (4.2.5), we get

PT−tf(Xt + 1)

PT−tf(Xt)
− PTf(1)

PTf(0)
=

∫ t

0

D(eDF (s,Xs)) dXs +

∫ t

0

∂s(e
DF (s,Xs)) ds

=

∫ t

0

D(1− ∂sF (s,Xs)) dXs +

∫ t

0

∂s(e
DF (s,Xs)) ds

= −
∫ t

0

D(∂sF (s,Xs)) dXs +

∫ t

0

∂s(e
DF (s,Xs)) ds.

On the other hand, for every k ∈ N,

∂s(e
DF (s,k)) = eDF (s,k)∂sDF (s, k) = eDF (s,k) D∂sF (s, k),

so by (4.3.4),
∂s(e

DF (s,Xs)) = D(∂sF (s,Xs))λs.

We conclude that

PT−tf(Xt + 1)

PT−tf(Xt)
− PTf(1)

PTf(0)
= −

∫ t

0

D(∂sF (s,Xs))[dXs − λs ds].

The process
(
Xt −

∫ t
0
λs ds

)
t∈[0,T ]

is called the compensated process, and is a martin-

gale. Hence, the process PT−tf(Xt+1)

PT−tf(Xt)
is a stochastic integral with respect to a martingale,

and hence a martingale [KL19, §4].

To compute the common mean of λ note that since XT ∼ µ (cf. Lemma 4.14),

EP[λT ] = EP

[
f(XT + 1)

f(XT )

]
=

∞∑
j=0

f(j + 1)

f(j)
µ(j) =

∞∑
j=0

f(j + 1)πT (j) = PTf(1).

The fact that λ is a martingale allows us give a representation of the mean of µ in
terms of the Poisson semigroup, as well as an upper bound.

Corollary 4.16.

E[µ] (1)
= T PTf(1)

(2)

⩽
∫ T

0

PT−tf(1)

PT−tf(0)
dt

(3)
= T − log f(0)

(4)
= | log µ(0)|

(5)

⩽
µ(1)

µ(0)
.
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Proof. To prove identity (1), take h(j) = j and t = T in (4.3.8) to get

E[XT ] = E
[∫ T

0

λs ds

]
= TE[λT ] = T PTf(1),

where we used Lemma 4.15. For the inequality (2), note that PTf(0) = 1, since
µ = fπT is a probability measure, and use Corollary 4.11 to get PT f(1)

PT f(0)
⩽ PT−tf(1)

PT−tf(0)
for

all t ∈ [0, T ]. For the identity (3), use (4.2.5) to compute∫ T

0

PT−tf(1)

PT−tf(0)
dt =

∫ T

0

eDF (t,0) dt =

∫ T

0

[1− ∂tF (t, 0)] dt = T − [F (T, 0)− F (0, 0)].

The result follows since F (T, 0) = log f(0), and F (0, 0) = log PTf(0) = 0 (because
PTf(0) = 1 as µ = fπT is a probability measure). The identity (4) follows from
µ = fπT . Finally, the inequality (5) holds since, by Corollary 4.11, PT−tf(1)

PT−tf(0)
⩽ f(1)

f(0)
so,

by (3)-(4),

| log µ(0)| =
∫ T

0

PT−tf(1)

PT−tf(0)
dt ⩽ T

f(1)

f(0)
=
µ(1)

µ(0)
.

4.4 Contraction of the Poisson transport map
The main result of this section is that the Poisson transport map is a contraction
when the target measures are ultra-log-concave. This result will follow from the fol-
lowing more general theorem, showing that the Malliavin derivative of X is binary and
nonnegative.

Theorem 4.17. Fix a real number T > 0 and let µ = fπT be an ultra-log-concave
probability measure over N. Let X be the process defined by (4.3.6). Then, P-almost-
surely, for every s ∈ [0, T ],

∀(t, z) ∈ X, D(t,z)Xs ∈ {0, 1}. (4.4.1)

An immediate corollary of Theorem 4.17 is that the Poisson transport map is a
contraction, thus proving Theorem 4.2.

Corollary 4.18. Fix a real number T > 0 and let µ = fπT be an ultra-log-concave
probability measure over N. Let XT be the Poisson transport map from P to µ. Then,
P-almost-surely,

∀(t, z) ∈ X, D(t,z)XT ∈ {0, 1}. (4.4.2)

Let us turn to the proof of Theorem 4.17.

Proof of Theorem 4.17. Fix (t, z) ∈ X and ω ∈ Ω. Then P-a.s., there exists n ∈ N such
that ω =

∑n
i=1 δ(ti,zi) for (ti, zi) ∈ X, with i ∈ [n] := {1, . . . , n}, 0 < t1 < · · · < tn < T ,

and t ̸= ti for all i ∈ [n]. Fix s ∈ [0, T ]. We need to show that

D(t,z)Xs(ω) = Xs(ω + δ(t,z))−Xs(ω) ∈ {0, 1}. (4.4.3)
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Let us first explain the intuition why (4.4.3) holds, and then turn to its rigorous
verification. There are three cases to consider. The first two are easy, and the third
one is the interesting one.

• Case 1. s ⩽ t: Then the contribution of the atom (t, z) is not captured by
either Xs(ω + δ(t,z)) or Xs(ω), so both processes behave identically, and hence
D(t,z)Xs(ω) = 0.

• Case 2. t < s and z lies above the curve λ(ω + δ(t,z)): Then the atom (t, z) is
not counted by the process X(ω+ δ(t,z)), so the processes X(ω+ δ(t,z)) and X(ω)
are equal, and hence D(t,z)Xs(ω) = 0.

• Case 3. The interesting case is t < s and z lies below the curve λ(ω + δ(t,z)),
so the processes X(ω + δ(t,z)) and X(ω) can in fact differ. Our goal is show that
when the two processes differ, X(ω + δ(t,z)) is always greater than X(ω), but by
no more than 1. The key to prove this is to use the log-concavity of f . Using
the explicit expression of λ (4.3.4), we can reason about the relation between
λ(ω + δ(t,z)) and λ(ω), and hence about the relation between X(ω + δ(t,z)) and
X(ω).

Let us now turn to the actual proof of the theorem.

Case 1. s ⩽ t: We will show

D(t,z)Xs(ω) = Xs(ω + δ(t,z))−Xs(ω) = 0. (4.4.4)

From the definition of X(ω + δ(t,z)), we know that the atom (t, z) is not counted by
X(ω + δ(t,z)). So to verify (4.4.4) it suffices to show that each atom (ti, zi) is either
counted by both X(ω + δ(t,z)) and X(ω), or by neither. If ti ⩾ s for all i ∈ [n], then
(4.4.4) holds since both X(ω + δ(t,z)) and X(ω) start at 0, and neither adds any atom
by time s.

If there exists i ∈ [n] such that ti < s, let us denote imax := max{i ∈ [n] : ti < s}.
Since the processes are left-continuous, starting at 0, Xt1(ω + δ(t,z)) = Xt1(ω) = 0.
Hence, by (4.3.4),

λt1(ω) =
PT−t1f(Xt1(ω) + 1)

PT−t1f(Xt1(ω))
=

PT−t1f(Xt1(ω + δ(t,z)) + 1)

PT−t1f(Xt1(ω + δ(t,z)))
= λt1(ω + δ(t,z)).

It follows that
z1 ⩽ λt1(ω + δ(t,z)) ⇐⇒ z1 ⩽ λt1(ω). (4.4.5)

Hence, for each r ∈ (t1, t2∧s], (if n = 1 then for each r ∈ (t1, s]), Xr(ω+δ(t,z)) = Xr(ω).
If imax = 1, we are done. Otherwise, if imax ⩾ 2, we can repeat the above argument
inductively for i ∈ {2, . . . , imax} to conclude that (4.4.4) holds.

Case 2. t < s and z > λt(ω + δ(t,z)): We will show

D(t,z)Xs(ω) = Xs(ω + δ(t,z))−Xs(ω) = 0. (4.4.6)
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The argument of Case 1 shows that Xt(ω+ δ(t,z)) = Xt(ω). Since z > λt(ω+ δ(t,z)), the
atom (t, z) is not counted by X(ω + δ(t,z)). It remains to analyze the atoms (ti, zi) for
i ∈ [n]. If there exist no ti such that t < ti < s, then it is clear that Xs(ω + δ(t,z)) =
Xs(ω), so (4.4.6) holds. Suppose then that there exist ti such that t < ti < s, and
let imin := min{i ∈ [n] : t < ti < s}. Similar to Case 1, for r ∈ (t, timin

] we have
Xr(ω + δ(t,z)) = Xr(ω). In particular, Xtimin

(ω + δ(t,z)) = Xtimin
(ω) so, as in Case 1,

zimin
⩽ λtimin

(ω + δ(t,z)) ⇐⇒ zimin
⩽ λtimin

(ω). (4.4.7)

Hence, for each r ∈ (timin
, timin+1∧s], (if imin = n then for r ∈ (timin

, s]), Xr(ω+δ(t,z)) =
Xr(ω). We may repeat the argument above inductively for all i ∈ [n] satisfying
t < ti < s to conclude that Xs(ω + δ(t,z)) = Xs(ω), so (4.4.6) holds.

Case 3. t < s and z ⩽ λt(ω + δ(t,z)): In contrast to Cases 1 and 2 we will show that

D(t,z)Xs(ω) = Xs(ω + δ(t,z))−Xs(ω) ∈ {0, 1}. (4.4.8)

Again, the argument of Case 1 shows that Xt(ω + δ(t,z)) = Xt(ω). In contrast to Case
2, since z ⩽ λt(ω + δ(t,z)), the atom (t, z) is counted by X(ω + δ(t,z)). Let us analyze
the possible values of Xs(ω+ δ(t,z)) and Xs(ω). If there exist no ti such that t < ti < s,
then

Xs(ω + δ(t,z)) = Xt(ω + δ(t,z)) + 1 and Xs(ω) = Xt(ω),

so D(t,z)Xs(ω) = 1, and hence (4.4.8) holds.

Suppose then that there exists ti such that t < ti < s, and as in Case 2, let
imin := min{i ∈ [n] : t < ti < s}. For r ∈ (t, timin

], we have

Xr(ω + δ(t,z)) = Xt(ω) + 1 and Xr(ω) = Xt(ω).

In particular,
Xtimin

(ω + δ(t,z)) = Xtimin
(ω) + 1,

so by Proposition 4.10, and (4.2.1),

λtimin
(ω + δ(t,z)) =

PT−timin
f(Xtimin

(ω + δ(t,z)) + 1)

PT−timin
f(Xtimin

(ω + δ(t,z)))
=

PT−timin
f(Xtimin

(ω) + 2)

PT−timin
f(Xtimin

(ω) + 1)

⩽
PT−timin

f(Xtimin
(ω) + 1)

PT−timin
f(Xtimin

(ω))
= λtimin

(ω).

(4.4.9)

Let us record then the one-direction analogue of (4.4.7),

zimin
⩽ λtimin

(ω + δ(t,z)) =⇒ zimin
⩽ λtimin

(ω). (4.4.10)

We now have a three sub-cases to consider.

Case 3.1. zimin
⩽ λtimin

(ω + δ(t,z)): Applying (4.4.10) we can deduce that for each
r ∈ (timin

, timin+1 ∧ s], (if imin = n then for each r ∈ (timin
, s]), D(t,z)Xr(ω) = 1, since
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both X(ω) and X(ω + δ(t,z)) count (timin
, zimin

).

Case 3.2. zimin
> λtimin

(ω+ δ(t,z)) and zimin
> λtimin

(ω): For each r ∈ (timin
, timin+1 ∧ s],

(if imin = n then for each r ∈ (timin
, s]), we have D(t,z)Xr(ω) = 1, since both X(ω) and

X(ω + δ(t,z)) did not count (timin
, zimin

).

Case 3.3. zimin
> λtimin

(ω+ δ(t,z)) and zimin
⩽ λtimin

(ω): For each r ∈ (timin
, timin+1 ∧ s],

(if imin = n then for each r ∈ (timin
, s]), we have D(t,z)Xr(ω) = 0, since X(ω) counted

(timin
, zimin

), but X(ω + δ(t,z)) did not.

If there exists no ti, for i > imin, such that t < ti < s, then Cases 3.1-3.3 ver-
ify (4.4.8). Suppose then that there exist i > imin such that t < ti < s. We will
proceed inductively. From Cases 3.1-3.3 we have that D(t,z)Xtimin+1

(ω) ∈ {0, 1}. If
D(t,z)Xtimin+1

(ω) = 1, then arguing as in (4.4.9), we have

λtimin+1
(ω + δ(t,z)) ⩽ λtimin+1

(ω). (4.4.11)

We now repeat Cases 3.1-3.3, replacing imin by imin + 1. If D(t,z)Xtimin+1
(ω) = 0, then

λtimin+1
(ω + δ(t,z)) = λtimin+1

(ω), so (4.4.11) holds, and again we repeat Cases 3.1-3.3,
replacing imin by imin + 1. Continuing in this manner we deduce (4.4.8).

The proof of Theorem 4.17 yields the following necessary condition for the Malliavin
derivative being 1.

Corollary 4.19. Fix (t, z) ∈ X and ω ∈ Ω. Then P-a.s., given s ∈ [0, T ], if
D(t,z)Xs(ω) = 1, we must have t < s and z ⩽ λt(ω + δ(t,z)) = λt(ω).

Proof. The conditions t < s and z ⩽ λt(ω + δ(t,z)) hold because the proof of Theorem
4.17 showed that D(t,z)Xs(ω) = 0 in Cases 1-2. The condition λt(ω + δ(t,z)) = λt(ω)
holds since in Case 3 we have shown Xt(ω + δ(t,z)) = Xt(ω), so the result follows from
(4.3.4).

4.4.1 The Brownian transport map vs. the Poisson transport
map

Let us elaborate on the similarities and dissimilarities between the Brownian transport
map [MS24] and the Poisson transport map. For simplicity, let us take T = 1. We
begin with a sketch of the Brownian transport map. Let µ be a probability measure on
Rd of the form µ = fγd. Denote by (Qt)t∈[0,1] the heat semigroup on Rd, and consider
the stochastic differential equation,

dYt = ∇ log Q1−tf(Yt) dt+ dBt, Y0 = 0, (4.4.12)

where (Bt)t∈[0,1] is a standard Brownian motion in Rd. The process Y := (Yt)t∈[0,1]
is known as the Föllmer process [Föl85, Föl86, Leh13], and can be seen as Brownian
motion conditioned to be distributed like µ at time 1. Alternatively, the process Y is
a solution to an entropy minimization problem over the Wiener space. In [MS24], Y1
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is called the Brownian transport map, as it transports the Wiener measure (the law of
(Bt)t∈[0,1]) onto µ.

Now suppose that µ = fγd is such that f : Rd → R⩾0 is log-concave. It was shown
in [MS24, Theorem 1.1] that, in such setting, the Brownian transport map Y1 is 1-
Lipschitz, in the sense that the Malliavin derivative D of Y1 is bounded in absolute
value by 1. The proof of this result proceeds by differentiating (4.4.12) (with D) to get
[MS24, Proposition 3.10],

∂sDYs = ∇2 log Q1−sf(Ys)DYs. (4.4.13)

So, to show that Y1 is 1-Lipschitz, i.e., |DY1| ⩽ 1, it suffices to control ∇2 log Q1−sf(Ys),
and then use Grönwall’s inequality. In particular, when f is log-concave, Q1−sf is also
log-concave (consequence of the Prékopa-Leindler inequality), i.e.,

∇2 log Q1−sf(Ys) ⩽ 0, (4.4.14)

so (4.4.13) and Grönwall’s inequality yield |DY1| ⩽ 1.

The analogue in the discrete setting of the Föllmer process (4.4.12) is the process
X defined in (4.3.6). Indeed, it was shown in [KL19] that the process X is the solution
to the corresponding entropy minimization problem on the Poisson space. Unlike the
continuous setting, here we do not have an analogue of (4.4.13), but we do have an
analogue of (4.4.14). The process λs = P1−sf(Xs+1)

P1−sf(Xs)
plays the role of ∇ log Q1−sf(Ys),

and the next result is the analogue of (4.4.14).

Lemma 4.20. For every s ∈ [0, 1], P-almost-surely,

∀(t, z) ∈ X, D(t,z)λs ⩽ 0.

Proof. Fix ω ∈ Ω. By definition,

D(t,z)λs(ω) = λs(ω + δ(t,z))− λs(ω) =
P1−sf(Xs(ω + δ(t,z)) + 1)

P1−sf(Xs(ω + δ(t,z)))
− P1−sf(Xs(ω) + 1)

P1−sf(Xs(ω))
.

By Theorem 4.17, Xs(ω + δ(t,z)) ∈ {Xs(ω), Xs(ω) + 1}. If Xs(ω + δ(t,z)) = Xs(ω), then
D(t,z)λs(ω) = 0. If Xs(ω + δ(t,z)) = Xs(ω) + 1, then

D(t,z)λs(ω) =
P1−sf(Xs(ω) + 2)

P1−sf(Xs(ω) + 1)
− P1−sf(Xs(ω) + 1)

P1−sf(Xs(ω))
⩽ 0,

where the inequality holds by Proposition 4.10 and (4.2.1).

Let us conclude with a few remarks on some other differences between the Brownian
and Poisson transport maps.

Remark 4.21.

(i) In the Brownian transport map setting, the source measure is always the Wiener
measure on the Wiener space C([0, 1]) of continuous functions [0, 1] → R, inde-
pendent of the target measure µ. In contrast, the transported Poisson measure
P depends on µ, because the space X = [0, T ]× [0,M ] depends on µ via M . This
difference is not material since the functional inequalities satisfied by P do not
depend on M .
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(ii) The fact that the Brownian transport map is 1-Lipschitz, when µ is more log-
concave than the Gaussian, means that the functional inequalities which hold for
the Gaussian also hold for µ with the same constants. In contrast, the constants
in the functional inequalities for ultra-log-concave measures µ = fπT , obtained
from the Poisson transport map, are different from those satisfied by πT . This is
not a deficiency of the Poisson transport map, but rather a manifestation of the
discrete nature of the probability measures under consideration.

4.5 Functional inequalities
In this section we show how Corollary 4.18 can be used to deduce functional inequalities
for ultra-log-concave measures. In particular, the results of this section verify Theorem
4.5, Theorem 4.7, and Theorem 4.8. The proofs of all of the results below proceed by
using an appropriate functional inequality for P (cf. Section 4.3.1), and then, using
Corollary 4.18, transporting these inequalities to ultra-log-concave measures.

4.5.1 Φ-Sobolev inequalities

In this section we prove both Theorem 4.7 and Theorem 4.5.

Definition 4.22. Let I ⊂ R be a closed interval, not necessarily bounded, and let
Φ: I → R be a smooth convex function. Let (E, E , Q) be a probability Borel space. The
Φ-entropy functional EntΦQ is defined on the set of Q-integrable functions G : (E, E) →
(I,B(I)), where B(I) stands for the Borel σ-algebra of I, by

EntΦQ(G) :=

∫
E

Φ(G) dQ− Φ

(∫
E

G dQ

)
. (4.5.1)

As shown by Chafaï, the Poisson measure P satisfies Φ-Sobolev inequalities:

Theorem 4.23. [Cha04, Eq. (61)]. Let I ⊂ R be a closed interval, not necessarily
bounded, and let Φ: I → R be a smooth convex function. Suppose that the function

{(u, v) ∈ R2 : (u, u+ v) ∈ I × I} ∋ (u, v) 7→ Ψ(u, v) := Φ(u+ v)− Φ(u)− Φ′(u)v

is nonnegative and convex. Then, for any G ∈ L2(Ω,P), such that P-a.s. G,G+DG ∈
I,

EntΦP (G) ⩽ EP

[∫
X
Ψ(G,D(t,z)G) dt dz

]
. (4.5.2)

Let us now transport the inequality (4.5.2) to ultra-log-concave measures, using
the Poisson transport map, thus proving Theorem 4.7.

Theorem 4.24. Let µ be an ultra-log-concave probability measure over N. Let I ⊂ R
be a closed interval, not necessarily bounded, and let Φ: I → R be a smooth convex
function. Suppose that the function

{(u, v) ∈ R2 : (u, u+ v) ∈ I × I} ∋ (u, v) 7→ Ψ(u, v) := Φ(u+ v)− Φ(u)− Φ′(u)v
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is nonnegative and convex. Then, for any g ∈ L2(N, µ), such that µ-a.s. g, g+Dg ∈ I,

EntΦµ (g) ⩽ | log µ(0)|Eµ[Ψ(g,Dg)]. (4.5.3)

Proof. Define G ∈ L2(Ω,P) by G(ω) := g(XT (ω)), and apply (4.5.2) to get

EntΦµ (g) = EntΦP (G) ⩽ EP

[∫
X
Ψ(G,D(t,z)G) dt dz

]
= EP

[∫
X
Ψ(g ◦XT , (Dg ◦XT ) ·D(t,z)XT ) dt dz

]
,

(4.5.4)

where the last equality holds by Corollary 4.18 and Lemma 4.13. Since D(t,z)XT ∈ {0, 1}
by Corollary 4.18, we have that P-a.s.,

Ψ(g ◦XT , (Dg ◦XT ) ·D(t,z)XT ) = Ψ(g ◦XT , (Dg ◦XT ))1{D(t,z)XT=1}. (4.5.5)

On the other hand, by Corollary 4.19, we have, P-a.s., 1{D(t,z)XT=1} ⩽ 1{z⩽λt}. Since Ψ
is nonnegative, we conclude from (4.5.5) that

Ψ(g ◦XT , (Dg ◦XT ) ·D(t,z)XT ) ⩽ Ψ(g ◦XT , (Dg ◦XT ))1{z⩽λt}. (4.5.6)

It follows from (4.5.4) and (4.5.6) that

EntΦµ (g) ⩽ EP

[∫
X
Ψ(g ◦XT ,Dg ◦XT )1{z⩽λt} dt dz

]
= EP

[
Ψ(g ◦XT ,Dg ◦XT )

∫
X
1{z⩽λt} dt dz

]
= EP

[
Ψ(g ◦XT ,Dg ◦XT )

∫ T

0

λt dt

]
.

By (4.3.4),
∫ T
0
λt dt =

∫ T
0

PT−tf(Xt+1)

PT−tf(Xt)
dt. On the other hand, PT−tf(Xt+1)

PT−tf(Xt)
⩽ PT−tf(1)

PT−tf(0)
by

Proposition 4.10 and (4.2.2). The proof is complete by Corollary 4.16(3).

Taking Φ(r) = r log r we deduce a modified logarithmic Sobolev inequality, thus
proving Theorem 4.5.

Corollary 4.25. Let µ be an ultra-log-concave probability measure over N. Then, for
any positive g ∈ L2(N, µ),

Entµ(g) ⩽ | log µ(0)|Eµ[Ψ(g,Dg)],

where Ψ(u, v) := (u+ v) log(u+ v)− u log u− (log u+ 1)v.

4.5.2 Transport-entropy inequalities

In this section we prove Theorem 4.8. We fix an ultra-log-concave probability measure
µ = fπT on N, and recall the definition of the associated Poisson space from Section
4.3.1. The starting point is a transport-entropy inequality for the Poisson measure
P by Ma, Shen, Wang, and Wu (a special case of their more general result) that
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generalizes Theorem 2.104 in Chapter 2, the Poissonian α-T1 inequality. To state it,
we require the following definitions: Let d be the total variation distance on Ω given
by d(ω, ω′) := |ω − ω′|(X) [MSWW11, Remark 2.4]. Given two probability measures
Q,P on (Ω,F), with finite first moments, let the Wasserstein 1-distance between them
be given by

W1,d(Q,P ) := inf
Π

∫
Ω×Ω

d(ω, ω′) dΠ(ω, ω′),

where the infimum is taken over all couplings Π of (Q,P ). If Q is absolutely continuous
with respect to P , let the relative entropy between them be

H(Q|P ) :=
∫
Ω

log

(
dQ

dP

)
dQ.

Finally, given c > 0, let

αc(r) := c
[(

1 +
r

c

)
log
(
1 +

r

c

)
− r

c

]
.

Theorem 4.26. [MSWW11, Eq. (2.4)]. For any probability measure Q on (Ω,F)
which is absolutely continuous with respect to P, and has a finite first moment, we have

αTM (W1,d(Q,P)) ⩽ H(Q|P), (4.5.7)

where M = f(1)
f(0)

.

Let us now transport the inequality (4.5.7), thus proving Theorem 4.8. To do so,
we define the Wasserstein 1-distance between two probability measures ν, ρ on N, with
finite first moments, by

W1,|·|(ν, ρ) := inf
Π

∫
N×N

|x− y| dΠ(x, y),

where the infimum is taken over all couplings Π of (ν, ρ).

Theorem 4.27. Let µ = fπT be an ultra-log-concave probability measure on N with
M = f(1)

f(0)
. Then, for any probability measure ν on N which is absolutely continuous

with respect to µ, and has a finite first moment, we have

αTM
(
W1,|·|(ν, µ)

)
⩽ H(ν|µ). (4.5.8)

Proof. We follow the proof of [DGW04, Lemma 2.1]. Fix a probability measure ν on
N which is absolutely continuous with respect to µ, and has a finite first moment. By
[DGW04, Eq. (2.1)],

H(ν|µ) = inf
Q
{H(Q|P) : Q ◦X−1

T = ν}. (4.5.9)

Hence, by (4.5.7), it suffices to show that

αTM
(
W1,|·|(ν, µ)

)
⩽ inf

Q

{
αTM (W1,d(Q,P)) : Q ◦X−1

T = ν
}
. (4.5.10)
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Since αTM is monotonic, (4.5.10) is equivalent to

W1,|·|(ν, µ) ⩽ inf
Q

{
W1,d(Q,P) : Q ◦X−1

T = ν
}
. (4.5.11)

To establish (4.5.11), note that by Corollary 4.18, and [MSWW11, Lemma 2.3], we
have that XT : (Ω, d) → (N, | · |) is 1-Lipschitz. Fix Q such that Q ◦X−1

T = ν, and let
Π be the coupling attaining the minimum in the definition of W1,d(Q,P). Note that
Π ◦X−1

T is a coupling of (Q ◦X−1
T ,P ◦X−1

T ) = (ν, µ). Hence,

W1,|·|(ν, µ) ⩽
∫
Ω×Ω

|XT (ω)−XT (ω
′)| dΠ(ω, ω′)

⩽
∫
Ω×Ω

d(ω, ω′) dΠ(ω, ω′)

= W1,d(Q,P),

which establishes (4.5.11) by taking the infimum over Q.

Remark 4.28. It is possible in principle to improve the constant TM to | log µ(0)| as
follows. Instead of working with X = [0, T ]× [0,M ], we can work with

X̃ :=

{
(t, z) ∈ [0, T ]× R⩾0 : z ⩽

PT−tf(1)

PT−tf(0)

}
,

since λt ⩽
PT−tf(1)

PT−tf(0)
P-a.s. (cf. (4.3.5)). Then the volume of X̃ is

∫ T
0

PT−tf(1)

PT−tf(0)
= | log µ(0)|,

where the equality holds by Corollary 4.16(3). This approach, however, requires a
modification of the formulation we used in this paper, with minor benefits, so we do
not pursue this improvement.
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Chapter 5

Stability of Wu’s inequality

Alors, grand capitaine, tu verras venir le devin
qui te dira ta route et les mesures de ta route
et comment revenir par la mer poissonneuse.

Homère
L’Odyssée (traduction de Philippe Jaccottet)

This chapter is based on the article [ALRS24], written in collaboration with Shrey
Aryan and Yair Shenfeld. We provide an alternative proof to Wu’s logarithmic Sobolev
inequality for the Poisson measure on the nonnegative integers (see Theorem 2.92 in
Chapter 2) using a stochastic variational formula for relative entropy. In addition, we
characterize the extremizers of Wu’s inequality and show how the stochastic approach
leads to quantitative stability of the inequality under convexity assumptions.

We start by motivating the content of this chapter and providing the essential
notations in Section 5.1. In Section 5.2 we introduce the Poisson-Föllmer process. In
Section 5.3 we introduce the entropy representation formula, and derive from it Wu’s
inequality as well as a characterization of its equality cases. In Section 5.4 we prove
our stability result Theorem 5.2. In addition, we compare in Section 5.4.3 between
entropy stochastic representation formulas for the Gaussian and the Poisson measures,
as well as their implications for logarithmic Sobolev inequalities.

127
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5.1 Introduction
The classical logarithmic Sobolev inequality for the Gaussian measure, Theorem 2.86 in
Chapter 2, has numerous applications in probability, analysis, and geometry, as we have
seen in detail in Chapter 2. On the other hand, recall the discussion of Section 2.5.3 in
Chapter 2: a logarithmic Sobolev inequality cannot hold for the discrete analogue of the
Gaussian, namely the Poisson measure on the nonnegative integers. However, it was
shown by Bobkov and Ledoux that modified logarithmic Sobolev inequalities do hold
for the Poisson measure, which in turn imply concentration of measure properties for
the Poisson. The sharpest form of these inequalities is due to Wu [Wu00] (who in fact
proved them for more general Poisson point processes); see Section 2.5.3 of Chapter 2
for information on modified logarithmic Sobolev inequalities. We recall Theorem 2.92
in Chapter 2.

Theorem 5.1 (Wu). Fix T > 0, and let πT be the Poisson measure on N with intensity
T . Let f : N → R>0 be L1(πT )-integrable, and define

EntπT [f ] :=
∞∑
k=0

f(k) log f(k)πT (k)−

(
∞∑
k=0

f(k)πT (k)

)
log

(
∞∑
k=0

f(k)πT (k)

)
.

Then,

EntπT [f ] ⩽ T
∞∑
k=0

f(k + 1)

{
log

(
f(k + 1)

f(k)

)
− 1 +

f(k)

f(k + 1)

}
πT (k). (5.1.1)

In the Gaussian setting, there is a beautiful proof of the classical logarithmic
Sobolev inequality due to Lehec [Leh13], who showed how to deduce the inequality
from a stochastic representation formula for the relative entropy with respect to the
Gaussian. Our first result is to show that using a stochastic representation formula for
the relative entropy with respect to the Poisson measure, due to Klartag and Lehec
[KL19] who built on the earlier work of Budhiraja, Dupuis, and Maroulas [BDM11], we
can give a precise analogue of this proof in the discrete setting to prove Wu’s inequality
(5.1.1). Our main interest in this proof technique is to deduce stability results for Wu’s
inequality. Concretely, in Proposition 5.12 we show that equality is attained in (5.1.1),
if and only if there exist a, b ∈ R such that

f(k) = eak+b for all k ∈ N. (5.1.2)

Denoting by δ(f) the deficit in (5.1.1),

δ(f) := T

∞∑
k=0

f(k + 1)

{
log

(
f(k + 1)

f(k)

)
− 1 +

f(k)

f(k + 1)

}
πT (k)− EntπT [f ],

a stability result for Wu’s inequality should lower bound δ(f) by some notion of “dis-
tance" between f and the family of equality cases (5.1.2). In the continuous setting, the
study of the stability of functional inequalities is a highly active research area [Fig13].
In contrast, much fewer results seem to exist in the discrete setting. In this work, we
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show that, under convexity-type assumptions on f , we can use the entropy representa-
tion formula to obtain stability estimates. In the Gaussian setting, this program was
carried out by Eldan, Lehec, and Shenfeld [ELS20], but the discrete setting raises new
challenges which, as we show in this work, can nonetheless be (partially) overcome. We
refer the reader to Section 5.4.3 for a discussion comparing the Gaussian and Poisson
settings.

Our stability result will hold under the assumption that f is ultra-log-concave:

kf(k)2 ⩾ (k + 1)f(k + 1)f(k − 1) for all k ∈ N, with f(−1) := 0. (5.1.3)

The equality cases (5.1.2) of Wu’s inequality are not ultra-log-concave, so if f is ultra-
log-concave we should be able to lower bound δ(f). Our next result provides such lower
bound in terms of E[µ], the mean of µ := fπT , and the values of f(0), f(1). (These
parameters naturally appear in functional inequalities for ultra-log-concave measure;
cf. Remark 4.6 in Chapter 4.)

Theorem 5.2 (Stability under ultra-log-concavity). Fix T > 0. Let f : N → (0,∞) be
L1(πT )-integrable, ultra-log-concave, and satisfying

∫
f dπT = 1. Let µ := fπT . Then,

δ(f) ⩾
T 2

2
Θ f(0)

f(1)

(
E[µ]
T

)
, (5.1.4)

where, for c > 0,

Θc(z) :=
z2

1 + cz
log

(
1

1 + cz

)
− z2

1 + cz
+ z2, z ⩾ 0.

Note that the function Θc is nonnegative for z ⩾ 0, and in fact strictly positive for
z > 0, so the right-hand side of (5.1.4) is strictly positive.

Remark 5.3. We can relate Θc to the relative entropy between Poisson measures of
different intensities:

Θc(z) = z2H
(
π(1+cz)−1|π1

)
. (5.1.5)

On the other hand, as we show in Proposition 5.13, the deficit δ(f) is equal to a
(random) weighted sum of relative entropies between Poisson measures of different
intensities. Thus, expressing stability in the sense of relative entropy distance between
Poisson measures of different intensities is natural in this setting.

Remark 5.4. The function Θc has the correct scaling with respect to T . If we rewrite
µ = fπT as µ = gπt, with g = f πT

πt
, then (5.1.4) becomes

δ(g) ⩾
T 2

2
ΘT

t
g(0)
g(1)

(
t

T

E[µ]
t

)
=
t2

2
Θ g(0)

g(1)

(
E[µ]
t

)
,

where we used the identity Θrc

(
z
r

)
= 1

r2
Θc(z) for any r > 0. This scaling behavior is

consistent with the scaling behavior of Wu’s inequality.
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Remark 5.5. The question of stability under log-concavity is delicate. For example,
when f is ultra-log-concave, we have that µ = fπT is β-log-concave:

µ(k + 1)2 − µ(k + 2)µ(k)

µ(k + 1)µ(k + 2)
⩾ β for all k ∈ N,

with β = 1
T
f(0)
f(1)

[Joh17]. On the other hand, in this setting, E[µ] ⩽ 1
β

[Joh17, Lemma
5.3]. One might wonder whether we have the following stability estimate (which will
be stronger than (5.1.4) as z 7→ Θc(z) is increasing): For all β-log-concave measures,

δ(f)
?

⩾
T 2

2
ΘTβ

(
1

Tβ

)
=

1− log(2)

4

1

β2
. (5.1.6)

However, taking β ↓ 0 shows that (5.1.6) is not possible. Indeed, take µ = fπT with f
as in (5.1.2), so that µ is at best 0-log-concave. Then, as β ↓ 0, the left-hand side of
(5.1.6) vanishes (since f is an equality case of Wu’s inequality), while the right-hand
side diverges.

5.2 Proof of Wu’s inequality

5.2.1 Preliminaries

For t > 0, we say that a function f : N → R is L1(πt)-integrable if∫
|f | dπt :=

∑
n∈N

|f(n)|πt(n) <∞.

Fix t > 0 and a function f : N → R which is L1(πt)-integrable. We define

∀k ∈ N, Ptf(k) :=
∑
n∈N

f(k + n)πt(n). (5.2.1)

For t = 0 we set P0f = f . The Poisson semigroup is the collection of operators (Pt)t⩾0.
The Poisson semigroup satisfies a heat equation of the form

∀k ∈ N, ∂tPtf(k) = DPtf(k) = PtDf(k), (5.2.2)

where
∀k ∈ N, Df(k) := f(k + 1)− f(k). (5.2.3)

Fix T > 0. Given f : N → R+ which is L1(πt)-integrable we will denote

∀k ∈ N, F (t, k) := log PT−tf(k), (5.2.4)

and
∀k ∈ N, G(t, k) := eDF (t,k). (5.2.5)

Lemma 5.6. We have

∀k ∈ N, ∂tF (t, k) = −eDF (t,k) + 1, (5.2.6)

and
∀k ∈ N, ∂tG(t, k) = −G(t, k)DG(t, k). (5.2.7)
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Proof. Equation (5.2.6) follows from (5.2.2). For equation (5.2.7) we use (5.2.5) and
(5.2.6),

∂tG(t, k) = ∂te
DF (t,k) = eDF (t,k)∂t(DF (t, k)) = G(t, k)D(∂tF (t, k))

= G(t, k)D
(
−eDF (t,k) + 1

)
= −G(t, k)DG(t, k).

5.2.2 The Poisson-Föllmer process

Fix T > 0, and let µ := fπT be a positive probability measure on N with f bounded
or log-concave. Klartag and Lehec [KL19], building on and specializing the work of
Budhiraja, Dupuis, and Maroulas [BDM11], constructed a stochastic counting process
(Xt)t∈[0,T ] such that XT ∼ µ. We will describe the process briefly and refer to [KL19]
for a complete description1. We let (Ω,F ,P) be the underlying probability space on
which the following random variables are defined. We let N be a Poisson point process
on [0, T ] × R⩾0 with Lebesgue intensity measure. Then N(F ), for a Borel set F ⊂
[0, T ]×R⩾0, is a Poisson random variable with intensity equal to the Lebesgue measure
of F . For t ∈ [0, T ] we let Ft be the sigma-algebra generated by the following collection
of random variables,

Ft := σ ({N(F ) : F ⊂ [0, t]× R⩾0 is a Borel set}) .

The collection (Ft)t∈[0,T ] is a filtration, and we say that a stochastic process (λt)t∈[0,T ],
where λt : Ω → R, is predictable, if the function (t, ω) 7→ λt(ω) is measurable with
respect to the sigma-algebra σ({(s, t] × B : s ⩽ t ⩽ T,B ∈ Fs}). Let (λt)t∈[0,T ] be a
predictable, nonnegative, and bounded stochastic process. Define

Xλ
t (ω) := N ({(s, x) ∈ [0, T ]× R⩾0 : s < t, x ⩽ λs(ω)}) , (see Figure 5.1). (5.2.8)

Klartag and Lehec [KL19] showed that we can choose a particular density (λt)t∈[0,T ]
given by

λt :=
PT−tf(Xt + 1)

PT−tf(Xt)
, (5.2.9)

where (Pt) is the Poisson semigroup, and that the resulting process (Xt)t∈[0,T ] :=
(Xλ

t )t∈[0,T ] is well-defined. Moreover, XT ∼ µ. We call this process the Poisson-Föllmer
process, since it is the discrete analogue of the Föllmer process in continuous setting;
see Section 5.4.3. Let us establish some useful properties of (Xt)t∈[0,T ] and (λt)t∈[0,T ].
First, we recall Lemma 4.14 from Chapter 4.

Lemma 5.7. Let (Xt)t∈[0,T ] be the Poisson-Föllmer process. Then, Xt ∼ (PT−tf)πt.

Lemma 5.8.

(1) Denote the compensated process (X̃t)t∈[0,T ] as

X̃t := Xt −
∫ t

0

λs ds. (5.2.10)

Then, (X̃t)t∈[0,T ] is a martingale.
1Recall Chapter 4 for the justification of replacing the boundedness assumption by log-concavity.



132 CHAPTER 5. STABILITY OF WU’S INEQUALITY

T2

(λt)t∈[0,T ]

Figure 5.1: The points in [0, T ] × R⩾0 are generated according to a standard Poisson
process (7 points in this case). At time t ∈ [0, T ] the value of the process Xλ

t is equal to
the number of points under the curve (filled circles). In the figure Xλ

2 = 1 and Xλ
T = 4.

(2) The process (λt)t∈[0,T ] is a martingale.

(3) For every t ∈ [0, T ],

E[Xt] = tE[λt] =
t

T
E[µ]. (5.2.11)

Proof. Item (1) can be found in [KL19, p. 100], while item (2) can be found [LRS25,
Lemma 3.3] (see also Lemma 5.9 below). Taking expectation in (5.2.10), and using
item (2), we find that E[Xt] = tE[λt]. Using E[Xt] = tE[λt] with t = T gives, since
XT ∼ µ, E[µ] = E[XT ] = T E[λT ] = T E[λt], where the last equality holds by item (2).
It follows that E[λt] = E[µ]

T
, and hence tE[λt] = t

T
E[µ].

As we saw in Lemma 5.8, the process (λt)t∈[0,T ] is a martingale. The next result
gives an explicit expression for this martingale. To this end we recall (5.2.5) and note
that

λt = G(t,Xt). (5.2.12)

We recall that a stochastic integral of the form
∫
· dXt is simply the sum of the integrand

at the jump points of the process (Xt)t∈[0,T ]; cf. [KL19, LRS25]. The integral against
the compensated process (X̃t)t∈[0,T ] (Lemma 5.8) is defined as the sum of the integrals∫
· dXt and

∫
· dt.

Lemma 5.9. We have
dλt = DG(t,Xt) dX̃t. (5.2.13)

Proof.

λt = G(t,Xt) =

∫ t

0

∂sG(s,Xs) ds+

∫ t

0

DG(s,Xs) dXs

=

∫ t

0

[∂sG(s,Xs) + DG(s,Xs)G(s,Xs)] ds+

∫ t

0

DG(s,Xs) dX̃s,

and the first integrand vanishes by (5.2.7).
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5.3 The entropy representation formula and Wu’s in-
equality

5.3.1 The entropy representation formula

Given a positive measure µ on N we define its relative entropy with respect to πT
by

H(µ|πT ) :=
∞∑
k=0

log

(
µ(k)

πT (k)

)
µ(k), (5.3.1)

and note that if µ = fπT then

H(µ|πT ) = EntπT [f ]. (5.3.2)

Let
Φ(r) := r log r for r ⩾ 0, (5.3.3)

and define the function Ψ(u, v), for u > 0 and u+ v > 0, by

Ψ(u, v) := Φ(u+ v)− Φ(u)− Φ′(u)v

= (u+ v) log(u+ v)− u log u− (log u+ 1)v.
(5.3.4)

Note that Ψ is nonnegative and convex when u > 0 and u+ v > 0 [Wu00, §1.4]. With
the above notation, Wu’s inequality (5.1.1) can be written as,

H(µ|πT ) ⩽ T EπT [Ψ(f,Df)] for all probability measures µ = fπT on N. (5.3.5)

We now come to our main tool which is a representation formula for H(µ|πT ). This
representation formula, which already appears as a special case of [Wu00, Equation
(1.7)], and also follows from the variational formula in [KL19, Remark 3, p. 102], will be
used to give an elementary proof of Wu’s inequality, characterize its equality cases, and
also yield a stability-type result. In the above works the entropy representation formula
appears under stronger assumptions that are not sufficient for the characterization of
the equality cases of Wu’s inequality, so we will provide a more elementary proof
which is valid under weaker regularity assumptions. The following result does not use
the Poisson-Föllmer process, but we will show how it can be obtained (under further
regularity) using the stochastic approach.

Proposition 5.10 (Entropy representation formula). Let µ = fπT be a probability
measure on N such that H(µ|πT ) <∞ and EπT [Ψ(f,Df)] <∞. Then,

H(µ|πT ) =
∫ T

0

Eπt [Ψ(PT−tf,DPT−tf)] dt. (5.3.6)

Proof. First note that since Ψ is convex [Wu00, §1.4], Jensen’s inequality yields

Ψ(PT−tf,DPT−tf) ⩽ PT−tΨ(f,Df),

and hence the integrand on the right-hand side of (5.3.6) is always finite,

Eπt [Ψ(PT−tf,DPT−tf)] ⩽ Eπt [PT−tΨ(f,Df)] = EπT [Ψ(f,Df)] <∞. (5.3.7)
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Fix k ∈ N and define α : [0, T ] → R by

α(t) := Eπt [PT−tf log PT−tf ], (5.3.8)

and note that the convexity of r 7→ r log r and Jensen’s inequality yield

α(t) = Eπt [PT−tf log PT−tf ] ⩽ EπtPT−t[f log f ] = H(µ|πT ) <∞.

Since π0 = δ0 and PTf(0) = EπT [f ] = 1 we have

H(µ|πT ) =
∫ T

0

∂tα(t) dt. (5.3.9)

Using (5.2.2), (5.2.6), and ∂tπt(k) = πt(k − 1)− πt(k), with πt(−1) := 0, we get

∂tα(t) =
∞∑
k=0

[PT−tf(k)− PT−tf(k + 1)]πt(k)

+
∞∑
k=0

log PT−tf(k)[PT−tf(k)− PT−tf(k + 1)]πt(k)

+
∞∑
k=0

PT−tf(k) log PT−tf(k)[πt(k − 1)− πt(k)].

(5.3.10)

The second and third lines in (5.3.10) can be written as, using πt(−1) = 0,

∞∑
k=0

log PT−tf(k)[PT−tf(k)− PT−tf(k + 1)]πt(k)

+
∞∑
k=0

PT−tf(k) log PT−tf(k)[πt(k − 1)− πt(k)]

= −
∞∑
k=0

PT−tf(k + 1) log PT−tf(k)πt(k) +
∞∑
k=1

PT−tf(k) log PT−tf(k)πt(k − 1)

= −
∞∑
k=0

PT−tf(k + 1) log PT−tf(k)πt(k) +
∞∑
k=0

PT−tf(k + 1) log PT−tf(k + 1)πt(k),

so

∂tα(t) =
∞∑
k=0

{PT−tf(k + 1) log PT−tf(k + 1)− PT−tf(k + 1) log PT−tf(k)

− [PT−tf(k)− PT−tf(k + 1)]}πt(k)
= Eπt [Ψ(PT−tf,DPT−tf)].

(5.3.11)

When the Poisson-Föllmer process exist we can rewrite the entropy representation
formula as follows.
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Corollary 5.11 (Stochastic entropy representation formula). Let µ = fπT be a positive
probability measure for which the Poisson-Föllmer process (Xt)t∈[0,T ] associated to µ
exists. Let (λt)t∈[0,T ] be as in (5.2.9). Then,

H(µ|πT ) =
∫ T

0

E[λt log λt − λt + 1] dt. (5.3.12)

Proof. Equation (5.3.12) is a rewrite of Equation (5.3.6) where we used the definition
of λt and the fact that Xt ∼ (PT−tf)πt (Lemma 5.7).

5.3.2 Wu’s inequality and its equality cases

We can now prove Wu’s inequality (5.3.5) and also characterize its extremizers. For
the proof of the inequality we can in principle use either Proposition 5.10 or Corollary
5.11, but to get the characterization of the equality cases without imposing unnecessary
assumptions we will need to use Proposition 5.10.

For the sake of exposition, let us begin however by deriving Wu’s inequality (5.3.5)
from Corollary 5.11. It suffices to note that (λt)t∈[0,T ] is a martingale (Lemma 5.8(2)),
and that the function (0,∞) ∋ r 7→ r log r− r+1 is convex, to get from (5.3.12),

H(µ|πT ) =
∫ T

0

E[λt log λt − λt + 1] dt ⩽ T E[λT log λT − λT + 1] = T EπT [Ψ(f,Df)].

(5.3.13)
To get the inequality for all L1(πT )-integrable functions we can use approximation as
in [Wu00].

We now turn to the proof of Wu’s inequality and the characterization of its equality
cases under minimal assumptions.

Proposition 5.12 (Wu’s inequality and its equality cases). Fix T > 0, and let πT be
the Poisson measure on N with intensity T . Let f : N → R>0 be L1(πT )-integrable and
let µ := fπT . Then,

H(µ|πT ) ⩽ T EπT [Ψ(f,Df)]. (5.3.14)
Further, if EπT [Ψ(f,Df)] <∞ then equality holds if and only if f(k) = eak+b for some
a, b ∈ R.

Proof. We start with proof of (5.3.14). Without loss of generality we may assume
that EπT [Ψ(f,Df)] < ∞ or else (5.3.14) holds trivially. Further, we assume that
H(µ|πT ) <∞ since otherwise we can use approximation as in [Wu00]. By Proposition
5.10, and arguing as in (5.3.7), we get

H(µ|πT ) =
∫ T

0

Eπt [Ψ(PT−tf,DPT−tf)] dt ⩽ T EπT [Ψ(f,Df)], (5.3.15)

which establishes (5.3.14). To obtain the equality cases, first note that equality holds
if f(k) = eak+b for some a, b ∈ R. For the reverse direction, we note that equality in
(5.3.15) implies that t 7→ Eπt [Ψ(PT−tf,DPT−tf)] is a constant, and hence

EπT [Ψ(f,Df)] = Eπ0 [Ψ(PTf,DPTf)] = Ψ(PTf,DPTf)(0) = Ψ(EπT [(f,Df)]).
(5.3.16)
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Using the relation

Ψ(u, v) = uϕ

(
u+ v

u

)
for all u > 0 and u+ v > 0, (5.3.17)

with
ϕ(r) := r log r − r + 1,

we have

EπT [Ψ(f,Df)] = Eµ
[
ϕ

(
f +Df

f

)]
=

∞∑
k=0

ϕ

(
f(k + 1)

f(k)

)
µ(k),

and, as EπT [f ] = 1,

Ψ(EπT [(f,Df)]) = EπT [f ]ϕ
(
EπT [Df ] + EπT [f ]

EπT [f ]

)
= ϕ (EπT [f +Df ])

= ϕ

(
∞∑
k=0

f(k + 1)

f(k)
µ(k)

)
.

Since ϕ is strictly convex on (0,∞), we conclude by the equality cases of Jensen’s
inequality that there exists a constant c such that

∀k ∈ N, f(k + 1) = cf(k), (5.3.18)

which shows that f(k) = eak+b for some a, b ∈ R.

5.4 Stability of Wu’s inequality

5.4.1 An identity for the deficit in Wu’s inequality

Recall that our stability result (Theorem 5.2) is stated for ultra-log-concave functions
f , for which the entropy representation formula (5.3.12) holds. The proof of Theorem
5.2 will rely on an identity for the deficit in Wu’s inequality (5.1.1),

δ(f) := T
∞∑
k=0

f(k + 1)

{
log

(
f(k + 1)

f(k)

)
− 1 +

f(k)

f(k + 1)

}
πT (k)− EntπT [f ]. (5.4.1)

To state the deficit identity denote D2 := D ◦ D, and also recall the definition (5.2.4)
of F (t, k).

Proposition 5.13. Let f : N → R>0 be ultra-log-concave such that
∫
f dπT = 1, and

let µ := fπT . Let (Xt)t∈[0,T ] be the Poisson-Föllmer process associated with µ, with
(λt)t∈[0,T ] defined by (5.2.9). Then,

δ(f) =

∫ T

0

∫ T

t

E
[
λ2s H

(
πeD2F (s,Xs)

∣∣∣∣π1)] ds dt.
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The proof of Proposition 5.13 requires a number of preliminary results. Recall that
by Corollary 5.11,

H(µ|πT ) =
∫ T

0

E[ϕ(λt)] dt,

where ϕ : (0,∞) → [0,∞) is a convex function given by

ϕ(r) := r log r − r + 1. (5.4.2)

The next result uses Taylor expansion to re-express E[ϕ(λt)], and hence H(µ|πT ).

Lemma 5.14. Let G be as in (5.2.5). Then,

E[ϕ(λt)] =
∫ t

0

λs[ϕ(λs +DG(s,Xs))− ϕ(λs)− ϕ′(λs)DG(s,Xs)] ds.

Proof. Recall the martingale (X̃t)t∈[0,T ] from Lemma 5.8, and recall Equation (5.2.12).
We have

ϕ(λt) = ϕ(G(t,Xt)) =

∫ t

0

∂s(ϕ ◦G)(s,Xs) ds+

∫ t

0

D(ϕ ◦G)(s,Xs) dXs

=

∫ t

0

ϕ′(G(s,Xs))∂sG(s,Xs) ds+

∫ t

0

[ϕ(G(s,Xs + 1))− ϕ(G(s,Xs))] dXs

Lemma 5.6
=

∫ t

0

[−ϕ′(λs)λsDG(s,Xs)] ds

+

∫ t

0

[ϕ(G(s,Xs) + DG(s,Xs))− ϕ(G(s,Xs))] dXs

=

∫ t

0

λs[ϕ(G(s,Xs) + DG(s,Xs))− ϕ(G(s,Xs))− ϕ′(λs)DG(s,Xs)] ds

+

∫ t

0

[ϕ(G(s,Xs) + DG(s,Xs))− ϕ(G(s,Xs))] dX̃s

=

∫ t

0

λs[ϕ(λs +DG(s,Xs))− ϕ(λs)− ϕ′(λs)DG(s,Xs)] ds

+

∫ t

0

[ϕ(G(s,Xs) + DG(s,Xs))− ϕ(G(s,Xs))] dX̃s.

Since (X̃s) is a martingale, taking expectation completes the proof.

We need two more results. The first is an identity for the relative entropy between
Poisson measures with different intensities, whose proof is immediate.

Lemma 5.15.

∀α, β > 0, H(πα|πβ) = β H
(
πα

β
|π1
)
= α

(
β

α
− log

(
β

α

)
− 1

)
.

The second result shows that the integrand in Lemma 5.14 can be written as relative
entropy between Poisson measures. The proof is again immediate.
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Lemma 5.16. Let ϕ(r) = r log r − r + 1 for r ⩾ 0. Then, for any x, y > 0,

ϕ(y)− ϕ(x)− ϕ′(x)(y − x) = H(πy|πx).

Combining the above results we can now prove the deficit identity.

Proof of Proposition 5.13. By Lemma 5.14, Lemma 5.15, and Lemma 5.16 we have

∂sE[ϕ(λs)]
Lemma 5.14

= E [λs{ϕ(λs +DG(s,Xs))− ϕ(λs)− ϕ′(λs)DG(s,Xs)}]
Lemma 5.16

= E
[
λsH

(
πλs+DG(s,Xs)|πλs

)] Lemma 5.15
= E

[
λ2s H

(
πλs+DG(s,Xs)

λs

∣∣∣∣π1)]
= E

[
λ2s H

(
πeD2F (s,Xs)

∣∣∣∣π1)] ,
where the last equality used

DG(t, k) =
PT−tf(k + 2)

PT−tf(k + 1)
− PT−tf(k + 1)

PT−tf(k)
=

PT−tf(k + 2)

PT−tf(k + 1)
−G(t, k),

so

G(t, k) + DG(t, k)

G(t, k)
=

PT−tf(k + 2)PT−tf(k)

PT−tf(k + 1)2
= eD

2 log PT−tf(k).

Finally, the proof is complete since by Proposition 5.10 and the proof of Theorem 5.1,

δ(f) =

∫ T

0

E[ϕ(λT )− ϕ(λt)] dt =

∫ T

0

∫ T

t

∂sE[ϕ(λs)] ds dt. (5.4.3)

Proposition 5.13 is our main tool to obtain a deficit estimate by almost-surely
lower bounding H

(
πeD2F (s,Xs)|π1

)
. Specifically, Lemma 5.15 shows that the map α 7→

H(πα|π1) is decreasing on (0, 1], so to lower bound H
(
πeD2F (s,Xs)|π1

)
we can show that

eD
2F (s,Xs) ⩽ 1, and then upper bound eD2F (s,Xs). We will show this can indeed be done

when f is ultra-log-concave.

5.4.2 Stability of Wu’s inequality under ultra-log-concavity

In this section we prove Theorem 5.2:

Theorem 5.17. Fix T > 0. Let f : N → R>0 be L1(πT ) integrable and ultra-log-
concave, and let µ := fπT∫

f dπT
. Then,

δ(f) ⩾
T 2

2
Θ f(0)

f(1)

(
E[µ]
T

)
,

where, for c > 0,

Θc(z) :=
z2

1 + cz
log

(
1

1 + cz

)
− z2

1 + cz
+ z2, z ⩾ 0.
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Our first task is to show the preservation of ultra-log-concavity under the Poisson
flow.

Lemma 5.18. Let f : N → R+ be an ultra-log-concave function. Then, for every t ⩾ 0,
Ptf : N → R+ is also ultra-log-concave.

Proof. The lemma follows from the closability under convolutions of ultra-log-concave
functions [Wal76]: If {ak}k∈Z, {bk}k∈Z are ultra-log-concave then {(a ∗ b)k}k∈Z is ultra-
log-concave as well where

(a ∗ b)k :=
+∞∑

n=−∞

anbk−n =
+∞∑

n=−∞

ak−nbn. (5.4.4)

To apply (5.4.4) in our setting we extend f and πt to Z by setting them to zero on
{k ∈ Z : k < 0}, and note that f and πt remain ultra-log-concave as functions on Z.
Next we define π̃t : Z → R+ by π̃t(k) := πt(−k) for k ∈ Z, and note that π̃t is also
ultra-log-concave on Z. The lemma now follows since Ptf = (f ∗ π̃t).

The next result gives a useful bound for ultra-log-concave functions.

Lemma 5.19. Let f : N → R>0 be an ultra-log-concave function. Then, for every
k ∈ N,

f(k + 2)f(k)

f 2(k + 1)
⩽

1

1 + cf(k+1)
f(k)

< 1 with c :=
f(0)

f(1)
.

Proof. By [Joh17, Lemma 5.1] the fact that f is ultra-log-concave means that f is
c-log-concave with c := f(0)

f(1)
:

f(k + 1)2 − f(k + 2)f(k)

f(k + 1)f(k + 2)
⩾ c.

The result follows by rearrangement.

We are now ready for the proof of stability in Wu’s inequality under ultra-log-
concavity.

Proof of Theorem 5.17. By approximation we may assume that f is bounded. The
function PT−tf is ultra-log-concave by Lemma 5.18, so Lemma 5.19 can be applied to
give

eD
2F (s,Xs) =

PT−sf(Xs + 2)PT−sf(Xs)

(PT−sf)2(Xs + 1)
⩽

1

1 + cs
PT−sf(Xs+1)

PT−sf(Xs)

=
1

1 + csλs
, (5.4.5)

with cs :=
PT−sf(0)

PT−sf(1)
. Next we will lower bound cs. We claim that

cs =
PT−sf(0)

PT−sf(1)
⩾
f(0)

f(1)
. (5.4.6)
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Indeed, it suffices to show that the function [0, T ] ∋ s 7→ η(s) := PT−sf(0)

PT−sf(1)
is non-

increasing since the right-hand side above is equal to η(T ). The latter holds since,
using (5.2.2), we have

∂sη(s) = − 1

(Psf)2(1)

{
(Psf)

2(1)− Psf(2)Psf(0)
}
⩽ 0,

where the inequality holds as PT−sf is ultra-log-concave (Lemma 5.18). Combining
(5.4.5) and (5.4.6) we conclude that

eD
2F (s,Xs) ⩽

1

1 + f(0)
f(1)

λs
< 1. (5.4.7)

Since α 7→ H(πα|π1) is decreasing on (0, 1] we get from (5.4.5) that

H

(
πeD2F (s,Xs)

∣∣∣∣π1) ⩾ H

(
π
(1+

f(0)
f(1)

λs)−1

∣∣∣∣π1) .
Hence, it follows from Proposition 5.13 that

δ(f) ⩾
∫ T

0

∫ T

t

E
[
λ2s H

(
π
(1+

f(0)
f(1)

λs)−1

∣∣∣∣π1)] ds dt = ∫ T

0

∫ T

t

E
[
Θ f(0)

f(1)

(λs)

]
ds dt,

where the last equality follows from the definition of Θc and Lemma 5.15. The function
z 7→ Θc(z) can be verified to be convex, so by Jensen’s inequality,

δ(f) ⩾
∫ T

0

∫ T

t

Θ f(0)
f(1)

(E[λs]) ds dt
(5.2.11)
=

∫ T

0

∫ T

t

Θ f(0)
f(1)

(
E[µ]
T

)
ds dt =

T 2

2
Θ f(0)

f(1)

(
E[µ]
T

)
.

5.4.3 Comparison with the Gaussian setting

The analogue of Wu’s inequality in the Gaussian setting is the logarithmic Sobolev
inquality: Let γ be the standard Gaussian measure on Rn. Then, for any µ = fγ (for
which the quantities below are well-defined),

H(µ|γ) ⩽ 1

2

∫
Rn

|∇ log f |2 dµ. (5.4.8)

Let us now present Lehec’s proof [Leh13] of (5.4.8) using the Gaussian analogue
of the entropy representation formula (5.3.12). In the continuous setting (taking
T = 1 for simplicity), the Poisson-Föllmer process is replaced by the Föllmer pro-
cess [Föl85, Föl86, Leh13], which is the solution of the following stochastic differential
equation,

dYt = vt dt+ dBt, Y0 = 0, (5.4.9)

where (Bt)t⩾0 is a standard Brownian motion in Rn,

vt := ∇ log Q1−tf(Yt), (5.4.10)
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with (Qt) the heat semigroup,

Qtf(x) :=

∫
Rn

f(x+
√
tz) dγ(z). (5.4.11)

The process (Yt)t∈[0,1] satisfies Y1 ∼ µ = fπ, and we have the entropy representation
formula

H(µ|γ) = 1

2

∫ 1

0

E[φ(vt)] dt, (5.4.12)

where

φ(x) :=
x2

2
. (5.4.13)

The representation (5.4.12) is the analogue of (5.3.12). In Table 5.1 we summarize the
comparisons of the stochastic constructions in the Poisson and Gaussian settings.

Poisson Gaussian
Process Xt (5.2.8) Yt (5.4.9)
Control λt (5.2.9) vt (5.4.10)
Semigroup Pt (5.2.1) Qt (5.4.11)
Rate function ϕ (5.4.2) φ (5.4.13)
Entropy representation formula (5.3.12) (5.4.12)

Table 5.1: Comparison between Poisson and Gaussian

Let us now present Lehec’s proof of (5.4.8) using (5.4.12). It can be shown that
the process (vt) is a martingale, so since φ is convex, it follows from Jensen’s inequality
that

H(µ|γ) = 1

2

∫ 1

0

E[φ(vt)] dt ⩽
1

2
E[φ(v1)] =

1

2

∫
Rn

|∇ log f |2 dµ. (5.4.14)

Thus, we see that our proof of Wu’s inequality is the exact discrete analogue of Lehec’s
proof of the Gaussian logarithmic Sobolev inequality. Turning to the question of sta-
bility estimates, Eldan, Lehec, and Shenfeld [ELS20] used (5.4.12) to get stability
estimates for the Gaussian logarithmic Sobolev inequality. Denote the deficit in the
Gaussian logarithmic Sobolev inequality as

δ(f) :=
1

2

∫
Rn

|∇ log f |2 dµ− H(µ|γ).

Then, the analogue of (5.4.3) is the identity [ELS20, Proposition 10],

δ(f) :=
1

2

∫ 1

0

E[|v1 − vt|2] dt. (5.4.15)

However, from this point on the analogies begin to break. In [ELS20] it is shown
that

E[φ(vt)] ⩾
∫ t

0

E[φ(vs)]2 ds, (5.4.16)
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so differentiating (5.4.16) (more precisely a matrix version of this inequality) yields a
differential inequality for t 7→ E[φ(vt)], which is a key point in some of the stability
estimates of [ELS20]. On a high-level we can view (5.4.16) as the analogue of Lemma
5.14. However, while in (5.4.16) the expression E[φ(vt)] appears on both sides of
the inequality, in our setting we must deal with discrete derivatives which hinders such
differential inequalities. Instead, we make crucial use of the observation in Lemma 5.16
that we can express the right-hand side in Lemma 5.14 in terms of relative entropy,
which then leads to our stability result.



Chapter 6

Convergence of the entropic
potentials

So now I gotta add you to my list of people to try and
forget about
It could’ve been magic, nearly had ya, can you imagine?
Nearly had ya
’Til it becomes another one of the things that I just can’t
talk about
I’m gonna have to keep you on my list of people to try
and forget about.

Tame Impala
List of People (To Try and Forget About)

This chapter is based on the article [LR25b]. In the context of the entropic regular-
ization of the optimal transport problem, we provide a bound on the rate of uniform
convergence in compact sets for both entropic potentials and their gradients towards the
Brenier potential and its gradient. Both results hold in the quadratic Euclidean setting
for absolutely continuous measures satisfying some convexity assumptions.

We start by introducing the entropic regularization of optimal transport and its
connections with its unregularized counterpart in Section 6.1; we also motivate the
problem and introduce the main results of this chapter, Theorems 6.2 and 6.3. In
Section 6.2, we will present all the necessary preliminaries on optimal transport and
its entropic regularization and detail the assumptions for our main results. Then, in

143
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Section 6.3, we prove both results. Finally, in Section 6.4, we prove Proposition 6.1,
which corresponds to the Gaussian case.

6.1 Introduction

This section aims to motivate and introduce the main contributions of this chapter. In
particular, we introduce the entropic regularization of the optimal transport problem
and its convergence towards the unregularized problem in the small noise limit.

6.1.1 Optimal transport

This chapter concerns the quadratic Euclidean optimal transport problem between
absolutely continuous measures, which has already been introduced in Section 1.3 of
Chapter 1: given two Borel probability measures µ and ν on Rd that are absolutely
continuous with respect to the d-dimensional Lebesgue measure, we define the quadratic
optimal transport problem associated to them, in its Kantorovich formulation, as

C0(µ, ν) := inf
π∈Π(µ,ν)

∫
Rd×Rd

1

2
|x− y|2 dπ(x, y), (6.1.1)

where Π(µ, ν) denotes the set of transport plans between µ and ν. Theorem 1.22 in
Chapter 1, the Brenier-McCann theorem, states that there exists a convex function
φ0 : Rd → R such that the map T0 : Rd → Rd defined by T0 := ∇φ0 pushes forward
the measure µ towards ν and induces the unique optimal coupling π0 ∈ Π(µ, ν) for the
variational problem (6.1.1). We say that T0 is the Brenier or the optimal transport
map and φ0 is a Brenier potential. Moreover, if we define ψ0 := φ∗

0 as the convex
conjugate of φ0, the pair (f0, g0) :=

(
1
2
|·|2 − φ0,

1
2
|·|2 − ψ0

)
solves the dual problem to

(6.1.1):

C0(µ, ν) = sup
(f,g)∈L1(µ)×L1(ν),

f⊕g⩽ 1
2
|·−·|2

∫
Rd

f dµ+

∫
Rd

g dν. (6.1.2)

6.1.2 Entropic optimal transport

We can regularize Problem (6.1.1) by adding an entropy to the objective function:
for ε > 0, we define the entropic regularization of the optimal transport problem
(equivalent as well to the Schrödinger bridge [Léo14]) as

Cε(µ, ν) := inf
π∈Π(µ,ν)

∫
Rd×Rd

1

2
|x− y|2 dπ(x, y) + εH(π|µ⊗ ν), (6.1.3)

where H(·|µ ⊗ ν) denotes the relative entropy functional with respect to the measure
µ⊗ ν. An excellent introductory reference to the subject is [Nut21].

The problem (6.1.3) is strictly convex, so there automatically exists a unique πε ∈
Π(µ, ν) that solves (6.1.3). On the other hand, there exists a pair of functions (fε, gε) ∈
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L1(µ) × L1(ν), which is unique up to a constant, that solves the dual problem to
(6.1.3):

Cε(µ, ν) = sup
(f,g)∈L1(µ)×L1(ν)

∫
Rd

f dµ+

∫
Rd

g dν−ε
∫
Rd×Rd

e
f⊕g− 1

2 |·−·|2

ε d(µ⊗ν)+ε. (6.1.4)

We define for each ε > 0 the entropic potentials as (φε, ψε) :=
(
1
2
|·|2 − fε,

1
2
|·|2 − gε

)
,

in analogy to their unregularized counterpart (φ0, ψ0).

6.1.3 The connection between both problems

It is known that computing φ0 or T0 = ∇φ0 is difficult, as one would solve the associated
Monge-Ampère equation, which we introduced in Section 1.3.2 of Chapter 1. One of the
advantages of the entropic problem is that the potentials (φε, ψε) are very tractable,
numerically speaking, thanks to the Sinkhorn algorithm [Cut13, ANWR17, PC19].
On the other hand, as the regularization parameter ε vanishes, the problem (6.1.3)
converges in many senses to (6.1.1), a fact which allows us to approximate the optimal
transport through the entropic regularization for small values of the parameter ε >
0.

More precisely, as ε → 0, the entropic problem Γ-converges towards the unreg-
ularized one [Léo12, CDPS17], which yields the convergence of the value functions,
Cε(µ, ν) → C0(µ, ν), and the convergence of the optimal couplings in the weak topology,
πε → π0. Concerning the dual optimizers, it is known that φε → φ0 (modulo subse-
quence) both in L1(µ) and uniformly on compact sets [GT21, NW22] and ∇φε → ∇φ0

(modulo subsequence) in L2(µ) [CCGT23]. All of the above results use Γ-convergence
or compactness arguments, so a natural question is whether it is possible to quantify
the rate at which these convergences happen.

In the case of the convergence of the value functions, several contributions have
been made in the continuous setting: the first-order expansion

Cε(µ, ν) = C0(µ, ν)−
d

2
ε log ε+

ε

2
(H(µ) + H(ν)) + o(ε)

was proven to be true for the quadratic case and as a Γ-limit in dimension one in
[ADPZ11, DLR13] and in higher dimensions in [EMR15]. The same expansion was
established as a pointwise limit for strictly convex cost functions in [Pal24] (thus gen-
eralizing the quadratic case). The second-order expansion

Cε(µ, ν) = C0(µ, ν)−
d

2
ε log ε+

ε

2
(H(µ) + H(ν)) +

ε2

8
I(µ, ν) + o(ε2),

where I(µ, ν) denotes the integrated Fisher information on the Wasserstein geodesic
between µ and ν, was proven for the Euclidean setting in [CRL+20, CT21]. For more
general cost functions, the expansion

Cε(µ, ν) = C0(µ, ν)−
d

2
ε log ε+O(ε)
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was established in [CPT23, EN24]. In [MS23], the same formula was demonstrated.
Additionally, the authors were able to identify the separate asymptotic behavior of
H(πε|µ⊗ ν) and Cε(µ, ν)− H(πε|µ⊗ ν) as ε vanishes.

Concerning the convergence of the optimal plans πε, in [MS23] the authors were
able to quantify the 2-Wasserstein distance between πε and π0:

W2(πε, π0) = Θ(
√
ε).

Up to now, the convergence of potentials in the continuous setting was only quan-
tified in the L2(µ) norm in terms of the difference of their gradients: in [PNW21],
for the quadratic setting under compactness and convexity assumptions, it was proven
that

∥∇φε −∇φ0∥2L2(µ) = O(ε2).

The rate
∥∇φε −∇φ0∥2L2(µ) = O(−ε log ε)

was found in [CPT23] under slightly weaker assumptions. Finally, the rate

∥∇φε −∇φ0∥2L2(µ) = O(ε)

was established in [MS23] for non-necessarily compactly supported measures.

We aim to exhibit a bound for the rate of convergence of uniform convergence on
compact sets of the potentials φε and their gradients ∇φε as ε→ 0, when both measures
µ and ν are absolutely continuous with respect to the Lebesgue measure, under the
quadratic cost. The following observation is the starting point of our analysis: the
entropic potentials φε are convex functions; see Proposition 6.4 below in Section 6.2.
As mentioned above, they converge (up to a subsequence) uniformly on compact sets to
φ0. It is a classical fact that convexity yields the convergence of the gradients ∇φε to
∇φ0 uniformly on compact sets as well; see, for example, [Roc70, Theorem 25.7]. This
justifies to search, for a fixed compact set K ⊂ Rd, an asymptotic rate of convergence
as ε goes to 0 for ∥∇φε −∇φ0∥K,∞ := supx∈K |∇φε(x)−∇φ0(x)|.

If both µ and ν are Gaussian we can explicitly bound ∥∇φε −∇φ0∥K,∞. We present
the result of this computation as an appetizer and defer its proof to Section 6.4.

Proposition 6.1. Let µ = N (0, A) and ν = N (0, B) be two non-degenerate Gaussian
measures with A,B ≻ 0. For R > 0, let K := B(0, R) ⊂ Rd be the Euclidean closed
ball of radius R. Then

∥∇φε −∇φ0∥K,∞ ⩽ Rε
|A−1|op

2

ε
∣∣∣(A 1

2BA
1
2 )−1

∣∣∣ 12
op

4
+ ε3

∣∣∣(A 1
2BA

1
2 )−1

∣∣∣ 32
op

16
+ 1

 .

(6.1.5)

Proposition 6.1 reveals that we can quantify uniform convergence on compact sets
as O(ε) as ε → 0, with a dimension-free bound depending only on the size of the
compact set K and the operator norms of the matrices A and B.
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6.1.4 Main results

Our first result gives an estimate in the spirit of Proposition 6.1 for measures µ and
ν satisfying convexity assumptions; see the end of Section 6.2 for their precise state-
ment.

Theorem 6.2. Let µ and ν be two probability measures on Rd that are absolutely
continuous with respect to the d-dimensional Lebesgue measure and satisfy the assump-
tions (A1), (A2), and (A3). Then, for any K ⊂ Rd compact, there exists a computable
constant Cgrad = Cgrad(K,µ, ν, d) > 0 such that for any ε > 0,

∥∇φε −∇φ0∥K,∞ ⩽ Cgrad ε
1

d+4 .

We remark that Theorem 6.2 does not provide an optimal optimal bound; recall
Proposition 6.1.

Our next result is a corollary of the previous theorem: we can also quantify the
convergence in compact sets of the entropic potentials. For K ⊂ Rd compact we define,
doing an abuse of notation, ∥φε − φ0∥K,∞ := supx∈K |φε(x)− φ0(x)|.

Theorem 6.3. Let µ and ν be two probability measures on Rd that are absolutely con-
tinuous with respect to the d-dimensional Lebesgue measure and satisfy the assumptions
(A1), (A2), and (A3). In addition, suppose that the following normalization holds: for
every ε > 0, ∫

Rd

φε dµ =

∫
Rd

φ0 dµ = 0. (6.1.6)

Then, for any K ⊂ Rd compact and connected, there exists a computable constant
Cpot = Cpot(K,µ, ν, d) > 0 such that for any ε > 0,

∥φε − φ0∥K,∞ ⩽ Cpot

(
ε

1
d+4 + ε

)
.

To the best of our knowledge, this is the first work that addresses this problem for
the entropic regularization in the continuous setting. Previously in the literature, this
question has been answered both in the discrete [CSM94] and semi-discrete [Del22,
SGK24] settings for the entropic regularization. On the other hand, in [GSN24], a
rate was found for the quadratic-regularized optimal transport problem in dimension
one.

6.2 Preliminaries and assumptions

In this section, we review some properties of both the Brenier and entropic potentials
that complement the basic statements previously introduced. Finally, we state our
main assumptions and discuss their consequences and some sufficient conditions for
them to hold.
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6.2.1 Further properties of the potentials

We recall the Brenier potentials (φ0, ψ0) and their entropic counterparts (φε, ψε). Note
that they are not unique, since for any constant α ∈ R, then (φ0+α, ψ0−α) and (φε+
α, ψε−α) are two new pairs of Brenier and entropic potentials, respectively. Therefore,
if we need to enforce the uniqueness of the potentials, an additional normalization
condition has to be imposed, for example, (6.1.6). Nevertheless, we remark that their
gradients are uniquely determined.

Recall that for ε > 0 we have that (fε, gε) =
(
1
2
|·| − φε,

1
2
|·| − ψε

)
. The pair (fε, gε)

is intimately linked with πε, the optimal coupling for (6.1.3):

dπε
d(µ⊗ ν)

(x, y) = exp

(
fε(x) + gε(y)− 1

2
|x− y|2

ε

)
. (6.2.1)

A direct consequence of (6.2.1) is that the pair (fε, gε) satisfies the so-called Schrödinger
system: for any (x, y) ∈ Rd × Rd,

fε(x) = −ε log
(∫

Rd

e
1
ε [gε(y)−

1
2
|x−y|2] dν(y)

)
, (6.2.2)

gε(y) = −ε log
(∫

Rd

e
1
ε [fε(x)−

1
2
|y−x|2] dµ(x)

)
. (6.2.3)

In particular, the Schrödinger system allows us to prove fine properties of the pair
(φε, ψε) such as convexity.

Proposition 6.4. For any ε > 0 the potentials φε and ψε are convex functions.

Proof. Let λ ∈ (0, 1) and x1, x2 ∈ Rd. Then by (6.2.2) we get

λφε(x1) + (1− λ)φε(x2) = ε log

([∫
Rd

e
1
ε
[x1·y−ψε(y)] dν(y)

]λ [∫
Rd

e
1
ε
[x2·y−ψε(y)] dν(y)

]1−λ)

⩾ ε log

(∫
Rd

e
1
ε
[(λx1+(1−λ)x2)·y−ψε(y)] dν(y)

)
= φε(λx1 + (1− λ)x2),

where we used Hölder’s inequality for p = 1/λ and q = 1/(1− λ). The convexity of ψε
follows similarly from (6.2.3).

6.2.2 Assumptions

Our main results are stated in terms of two probability measures µ, ν ∈ P(Rd) that are
absolutely continuous with respect to the d-dimensional Lebesgue measure and satisfy
the following assumptions.

(A1) The measures µ, ν ∈ P(Rd) have the form dµ(x) = e−V (x) dx and dν(y) =
e−W (y) dy, where V,W : Rd → R are smooth functions and there exist α, β > 0
such that

∀x ∈ Rd, ∇2V (x) ≼ αId (6.2.4)
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and
∀y ∈ Rd, ∇2W (y) ≽ βId, (6.2.5)

where Id is the identity matrix of dimension d and ≼ denotes the Löwner order
on the set of positive semidefinite matrices.

(A2) The measure µ satisfies a Poincaré inequality: there exists CP(µ) > 0 such that
for any h : Rd → R smooth with

∫
Rd h dµ = 0,

∥h∥2L2(µ) ⩽ CP(µ)∥∇h∥2L2(µ).

(A3) The measure µ has finite differential entropy:

−∞ < H(µ) := −
∫
Rd

V (x)e−V (x) dx < +∞.

The main consequence of (A1) is that we obtain quantitative control on both ∇2φ0

and ∇2φε, for every ε > 0; that is, both ∇φ0 and ∇φε are Lipschitz and we have
explicit control on the value of their Lipschitz constants. Theorem 1.26, the Caffarelli
contraction theorem, provides global Lipschitz regularity for the Brenier map ∇φ0,
which pushes µ towards ν. The version below is a generalized version.

Theorem 6.5 (Caffarelli). Suppose that both µ, ν ∈ P(Rd) satisfy (A1). Then the
Brenier map ∇φ0 is globally Lipschitz. Moreover, the following estimate holds:

∀x ∈ Rd, 0 ≼ ∇2φ0(x) ≼
√
α

β
Id.

For the entropic counterpart of the Brenier map, namely ∇φε, we can also exhibit
bounds on its derivative. These bounds were used in [FGP20, CP23] to give alternative
proofs of Theorem 6.5 based on the entropic regularization. Here, we use the ones
proven in [CP23, Theorem 4].

Theorem 6.6. Suppose that both µ, ν ∈ P(Rd) satisfy (A1). Then the entropic Brenier
map ∇φε is globally Lipschitz. Moreover, the following estimate holds:

∀x ∈ Rd, 0 ≼ ∇2φε(x) ≼
1

2

(√
4α

β
+ ε2α2 − εα

)
Id.

As we will see in the following remark, the functional inequality provided by (A2)
also entails regularity properties for the measure µ itself.

Remark 6.7. A Poincaré inequality implies that the measure has finite moments of
all orders [BGL14, Proposition 4.4.2], so under (A2), the measure µ will have this
property.

Remark 6.8. Log-concavity is a sufficient condition that entails both (A2) and (A3).
Recall Definition 2.67 in Chapter 2: we say that an absolutely continuous probability
measure µ ∈ P(Rd) is log-concave if its density f : Rd → R+ is of the form f = e−V for
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some V : Rd → R∪{+∞} convex. Since we assumed V to be smooth, this is equivalent
to

∀x ∈ Rd, ∇2V (x) ≽ 0.

First, log-concavity yields the validity of a Poincaré inequality; recall Theorem 2.74 in
Chapter 2. Second, let us see that log-concavity implies (A3): indeed,

H(µ) = −
∫
Rd

V (x)e−V (x) dx = −
∫
Rd

V (x) dµ(x) ⩽ −V (0)−∇V (0) · EX∼µ[X] < +∞,

where we used the convexity of V . For the lower bound, we recall that µ has finite
moments of all orders (see Remark 6.7), so

−∞ < H(N ) ⩽ H(µ),

where N is the d-dimensional Gaussian measure with the same mean and covariance
as µ.

Remark 6.9. Note that under (A1), the measure ν is log-concave; see (6.2.5). In
particular, it has finite differential entropy and finite moments of all orders as well.

Under the assumption (A1), we saw that Theorem 6.5 ensures quantitatively the
Lipschitz regularity of the Brenier map. A direct consequence of this fact is the fol-
lowing: we can control the difference of the gradients of the potentials in the L2(µ)
norm by the difference between both costs (see, for example, [MS23, Lemma 3.8] or
[CPT23, Proposition 4.5], which are based on an unpublished result of Ambrosio which
was reported in [Gig11a]).

Proposition 6.10. Suppose that the Brenier map is L-Lipschitz. Then

∥∇φε −∇φ0∥2L2(µ) ⩽ 2L⟨πε − π0,
1

2
|· − ·|2⟩ = 2L (Cε(µ, ν)− εH(πε|µ⊗ ν)− C0(µ, ν)) .

That is, if we are able to control ⟨πε − π0,
1
2
|· − ·|2⟩, then we can control the L2

norm of the difference. In [MS23, Theorem 3.7], we can find this control, which can be
applied as a consequence of both (A2) and (A3), recall Remarks 6.7 and 6.9.

Theorem 6.11. ([MS23, Theorem 3.7]). Suppose that both µ and ν have finite mo-
ments of order 2 + δ, for some δ > 0, and that both have finite differential entropy.
Then

⟨πε − π0,
1

2
|· − ·|2⟩ ⩽ Cε.

That is, under our three assumptions, there exists a constant C1 > 0 depending on
d, µ and ν such that

∥∇φε −∇φ0∥2L2(µ) ⩽ C1ε. (6.2.6)

Now let us assume that the following normalization holds:

∀ε > 0,

∫
Rd

φε dµ =

∫
Rd

φ0 dµ = 0. (6.2.7)
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Note that if are working with the gradients of the potentials, they are uniquely deter-
mined, so we may assume without loss of generality that (6.2.7) holds. In particular,
under this normalization, we can use (A2) to control the L2 norm of the difference of
the potentials:

∥φε − φ0∥2L2(µ) ⩽ CP(µ)∥∇φε −∇φ0∥2L2(µ). (6.2.8)

That is, again under all our assumptions, we have that there exists a constant C2 > 0
depending on d, µ and ν such that

∥φε − φ0∥2L2(µ) ⩽ C2ε. (6.2.9)

6.3 Proof of the main results

This section aims to prove Theorem 6.2 and then to obtain as a corollary Theorem
6.3. The starting point of our proof will be the Gagliardo-Nirenberg inequality, which
allows us to control the p norm of the derivatives of order j of a function by the r norm
of its derivatives of order k and the q norm of the function itself, where the parameters
i, j, p, q, and r satisfy some relations. We state the inequality in the following version,
found in [SMR18, Theorem 3.1], since it allows the critical values p = +∞, r = +∞.
Here the ambient space is Rd and we recall the notation ∥·∥s = ∥·∥Ls(Leb).

Theorem 6.12 (Gagliardo-Nirenberg). Let j, k ∈ N such that 1 ⩽ j < k. Let θ ∈
[j/k, 1], q ∈ [1,+∞], p ∈ (1,+∞], r ∈ [1,+∞] such that

1

p
=
j

d
+ θ

(
1

r
− k

d

)
+

1− θ

q
(6.3.1)

and such that
∀0 ⩽ i ⩽ k − j − 1, r(i) ̸= d, (6.3.2)

where r(0) := r and r(i) := nr(i−1)

n−r(i−1) , for i ⩾ 1. Then there exists a constant CGN =

CGN(j, k, d, θ, p, q, r) > 0 such that for any u : Rd → R sufficiently smooth and integrable∥∥∇ju
∥∥
p
⩽ CGN

∥∥∇ku
∥∥θ
r
∥u∥1−θq . (6.3.3)

We are ready to start the proof of Theorem 6.2.

Proof (of Theorem 6.2): The proof is divided into three consecutive steps.

Step 1: The first step will be to choose appropriate parameters to apply the
Gagliardo-Nirenberg inequality (6.3.3). From Theorem 6.12 and choosing

j = 1, k = 2, p = +∞, q = 2, r = +∞,

the value of θ is be determined by (6.3.1), so we get

θ =
d+ 2

d+ 4
∈ [1/2, 1].
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On the other hand, we notice that the condition (6.3.2) is trivially verified since r(0) =
+∞. Hence the inequality (6.3.3) takes the following form:

∥∇u∥∞ ⩽ CGN

∥∥∇2u
∥∥ d+2

d+4

∞ ∥u∥
2

d+4

2 . (6.3.4)

Now let K ⊂ Rd be a compact set, take R > 0 such that K ⊂ B(0, R), where B(0, R)
denotes the open ball with center 0 and radius R, and such that µ(B(0, R)) > 4/5, and
let w : Rd → R+ be a compactly supported smooth function satisfying the following
properties:

• ∀x ∈ Rd, 0 ⩽ w(x) ⩽ 1;

• ∀x ∈ K, w(x) = 1; and

• supp(w) ⊂ B(0, R).

Let ε > 0. Then
∥∇φε −∇φ0∥K,∞ ⩽ ∥∇[(φε − φ0)w]∥∞.

If we apply (6.3.4) to u := (φε − φ0)w, then

∥∇[(φε − φ0)w]∥∞ ⩽ CGN

∥∥∇2[(φε − φ0)w]
∥∥ d+2

d+4

∞ ∥(φε − φ0)w∥
2

d+4

2 . (6.3.5)

Step 2: Now we will bound the first term on the right-hand side of (6.3.5):∥∥∇2[(φε − φ0)w]
∥∥ d+2

d+4

∞ . (6.3.6)

Note that∥∥∇2[(φε − φ0)w]
∥∥
∞ ⩽

∥∥w∇2(φε − φ0)
∥∥
∞ +

∥∥(φε − φ0)∇2w
∥∥
∞ + 2∥∇(φε − φ0)∇w⊺∥∞

⩽
∥∥∇2(φε − φ0)

∥∥
∞ + ∥φε − φ0∥B(0,R),∞ ×

∥∥∇2w
∥∥
∞

+ 2∥∇φε −∇φ0∥B(0,R),∞ × ∥∇w∥∞.

For the first term on the right-hand side, (A1) plays a key role: note that for every
ε > 0, the upper bound in Theorem 6.6 is such that

1

2

(√
4α

β
+ ε2α2 − εα

)
⩽
√
α

β
.

In particular, using also the estimate granted by Theorem 6.5, we get∥∥∇2φε −∇2φ0

∥∥
∞ ⩽

∥∥∇2φε
∥∥
∞ +

∥∥∇2φ0

∥∥
∞ ⩽ 2

√
α

β
.

In order to bound the two remaining terms on the right-hand side, let us state and
prove the following auxiliary lemma.

Lemma 6.13. In the above context, there exists M > 0 such that for any ε > 0, there
exists x∗ε ∈ B(0, R) satisfying both

|∇φε(x∗ε)−∇φ0(x
∗
ε)| < M (6.3.7)

and
|φε(x∗ε)− φ0(x

∗
ε)| < M. (6.3.8)
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Proof. To start, let us prove that

sup
ε>0

∫
Rd

|∇φε −∇φ0|2 dµ < +∞,

so let ε > 0. First, note that for any x ∈ Rd,

∇φε(x) =
∫
Rd

y dπxε (y),

where for x ∈ Rd, we define dπxε (y) := dπε
d(µ⊗ν)(x, y) dν(y). Therefore, by Jensen’s

inequality and the fact that πε ∈ Π(µ, ν), we have that∫
Rd

|∇φε(x)|2 dµ(x) ⩽
∫
Rd

∫
Rd

|y|2 dπxε (y) dµ(x) =
∫
Rd×Rd

|y|2 dπε(x, y) =
∫
Rd

|y|2 dν(y).

On the other hand, note that∫
Rd

|∇φ0(x)|2 dµ(x) =
∫
Rd

|y|2 dν(y)

since the Brenier map x 7→ ∇φ0(x) pushes forward µ towards ν. Then∫
Rd

|∇φε −∇φ0|2 dµ ⩽ 2

∫
Rd

|∇φε|2 dµ+ 2

∫
Rd

|∇φ0|2 dµ ⩽ 4

∫
Rd

|y|2 dν(y),

so supε>0

∫
Rd |∇φε −∇φ0|2 dµ < +∞ since ν has finite moments of all orders; recall

Remarks 6.7 and 6.9.

Let M1 > 0 to be fixed. By Chebyshev’s inequality, we have

µ({x ∈ Rd : |∇φε(x)−∇φ0(x)| ⩾M1}) ⩽
1

M2
1

∫
Rd

|∇φε −∇φ0|2 dµ

⩽
4

M2
1

∫
Rd

|y|2 dν(y),

so we may fix M1 big enough such that 4
M2

1

∫
Rd|y|2 dν(y) ⩽ 1

5
. Hence,

µ({x ∈ Rd : |∇φε(x)−∇φ0(x)| < M1}) >
4

5
, (6.3.9)

so
µ({x ∈ B(0, R) : |∇φε(x)−∇φ0(x)| < M1}) >

3

5
. (6.3.10)

Without loss of generality, we may assume that the normalization (6.2.7) holds so that
(6.2.8) is verified. Similarly to the previous argument, we deduce that there exists
M2 > 0 such that

µ({x ∈ B(0, R) : |φε(x)− φ0(x)| < M2}) >
3

5
. (6.3.11)

Let M := max{M1,M2}. If we put together (6.3.10) and (6.3.11), we deduce that

µ({x ∈ B(0, R) : |φε(x)− φ0(x)| < M, |∇φε(x)−∇φ0(x)| < M}) > 0,

which yields the existence of x∗ε ∈ B(0, R) such that both (6.3.7) and (6.3.8) hold.
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Recall that we wanted to bound

∥∇φε −∇φ0∥B(0,R),∞ (6.3.12)

and
∥φε − φ0∥B(0,R),∞. (6.3.13)

By Lemma 6.13, there exists M > 0 and x∗ε ∈ B(0, R) verifying both (6.3.7) and (6.3.8).
For (6.3.12), note that

sup
x∈B(0,R)

|∇φε(x)−∇φ0(x)| ⩽ sup
x∈B(0,R)

|∇φε(x)−∇φε(x∗ε)|+ sup
x∈B(0,R)

|∇φ0(x)−∇φ0(x
∗
ε)|

+ |∇φε(x∗ε)−∇φ0(x
∗
ε)|

⩽ 4

√
α

β
R +M,

where we used the second-order estimates holding under (A1) and (6.3.7). For the
remaining term (6.3.13), observe that a Taylor expansion combined with the aforemen-
tioned second-order estimates yields

sup
x∈B(0,R)

|φε(x)− φ0(x)| ⩽ |φε(x∗ε)− φ0(x
∗
ε)|+ 2R|∇φε(x∗ε)−∇φ0(x

∗
ε)|+R2

√
α

β

⩽M + 2RM +R2

√
α

β
.

In conclusion, if we combine the three bounds, we know that there exists a constant
C > 0 depending on K, µ, and ν such that for every ε > 0,∥∥∇2[(φε − φ0)w]

∥∥ d+2
d+4

∞ ⩽ C. (6.3.14)

Step 3: Now we aim to bound the remaining term in the right-hand side of (6.3.5)
in an asymptotic way in order to obtain a quantity that converges to 0 as ε vanishes;
that is, we want to bound

∥(φε − φ0)w∥
2

d+4

2 .

To control this term, the bound (6.2.9) will be crucial. Indeed,

∥(φε − φ0)w∥22 =
∫
Rd

|φε(x)− φ0(x)|2w(x) dx =

∫
Rd

|φε(x)− φ0(x)|2eV (x)w(x)e−V (x) dx

⩽
∫
Rd

|φε(x)− φ0(x)|2eV (x) dµ(x)

⩽
∥∥eV ∥∥∞∥φε − φ0∥2L2(µ),

so if we combine this with (6.2.9), we get

∥(φε − φ0)w∥
2

d+4

2 ⩽ C ′ε
1

d+4 , (6.3.15)

where C ′ > 0 is a constant depending on d,K, µ and ν. Finally, if we put together
(6.3.5), (6.3.14), and (6.3.15), we obtain the desired inequality.
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We end by proving Theorem 6.3.

Proof (of Theorem 6.3): Let K ⊂ Rd be a compact and connected set. Since we have
assumed that the potentials are normalized as

∫
Rd φε dµ =

∫
Rd φε dµ = 0, we can use

[Eva10, Theorem 1, p. 290] and the bound (6.3.15) to get

∥φε − φ0∥K,∞ ⩽ C ′′
(
∥∇φε −∇φ0∥K,∞ + ε

)
,

where C ′′ > 0 is a constant depending on d,K, µ and ν. The conclusion follows from
the estimate given by Theorem 6.2.

6.4 The Gaussian case

In this section, we provide the proof of Proposition 6.1.

Proof (of Proposition 6.1): From Proposition 1.3 in Chapter 1, we know that we can
compute explicitly ∇φ0:

∀x ∈ Rd, ∇φ0(x) = A− 1
2 (A

1
2BA

1
2 )

1
2A− 1

2x.

For ∇φε, we have a similar closed-form expression [Gel90, JMPC20, dBL20, MGM22]:

∀x ∈ Rd, ∇φε(x) =

(
A− 1

2

(
A

1
2BA

1
2 +

ε2

4
Id

) 1
2

A− 1
2 − ε

2
A−1

)
x.

Now fix R > 0 and let K = B(0, R) ⊂ Rd, so that

sup
x∈K

|∇φε(x)−∇φ0(x)|

= R

∣∣∣∣∣
(
A− 1

2

(
A

1
2BA

1
2 +

ε2

4
Id

) 1
2

A− 1
2 − ε

2
A−1

)
− A− 1

2 (A
1
2BA

1
2 )

1
2A− 1

2

∣∣∣∣∣
op

.

Let us note that we may expand the matrix
(
A

1
2BA

1
2 + ε2

4
Id

) 1
2 , using a Taylor

expansion of order one for the matrix square root function around the point A
1
2BA

1
2

(see [DMN18, Theorem 1.1]):(
A

1
2BA

1
2 +

ε2

4
Id

) 1
2

= (A
1
2BA

1
2 )

1
2 +

ε2

4

∫ +∞

0

e−2t(A
1
2BA

1
2 )

1
2 dt+R(A,B, ε),

where R(A,B, ε) is a matrix such that

|R(A,B, ε)|op ⩽
ε4

32
λmin(A

1
2BA

1
2 )−

3
2 =

ε4

32

∣∣∣(A 1
2BA

1
2 )−1

∣∣∣ 32
op
,
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where λmin(·) denotes the smallest eigenvalue of a positive-definite matrix. On the
other hand, note that∣∣∣∣∫ +∞

0

e−2t(A
1
2BA

1
2 )

1
2 dt

∣∣∣∣
op

⩽
∫ +∞

0

e−2tλmin(A
1
2BA

1
2 )

1
2 dt

=
1

2λmin(A
1
2BA

1
2 )

1
2

=
1

2

∣∣∣(A 1
2BA

1
2 )−1

∣∣∣ 12
op
.

In consequence, we have that

sup
x∈K

|∇φε(x)−∇φ0(x)|

= R

∣∣∣∣∣
(
A− 1

2

(
A

1
2BA

1
2 +

ε2

4
Id

) 1
2

A− 1
2 − ε

2
A−1

)
− A− 1

2 (A
1
2BA

1
2 )

1
2A− 1

2

∣∣∣∣∣
op

⩽ R

∣∣∣∣∣A− 1
2

(
A

1
2BA

1
2 +

ε2

4
Id

) 1
2

A− 1
2 − A− 1

2 (A
1
2BA

1
2 )

1
2A− 1

2

∣∣∣∣∣
op

+R
∣∣∣ε
2
A−1

∣∣∣
op

⩽ εR
|A−1|op

2

ε
∣∣∣(A 1

2BA
1
2 )−1

∣∣∣ 12
op

4
+ ε3

∣∣∣(A 1
2BA

1
2 )−1

∣∣∣ 32
op

16
+ 1

 ,

so supx∈K |∇φε(x)−∇φ0(x)| = O(ε) as ε→ 0, with a constant which depends only on
R and the matrices A and B.
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Al final del viaje está el horizonte
Al final del viaje partiremos de nuevo
Al final del viaje comienza un camino
Otro buen camino que seguir, descalzos, contando la
arena.

Silvio Rodríguez
Al final de este viaje en la vida
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