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Chapter 1

Random experiments and probability

The goal of this first chapter is to provide an introduction to the language of probability
theory, which, in the context of this course, is the field within mathematics concerned
with randomness and uncertainty, providing a rigorous framework to study these phenom-
ena.

Let us highlight the ubiquity of probability theory that goes beyond its interaction
with other fields in mathematics and its applications: it has proven to be a key tool in
many different domains, such as physics, statistics, computer science, economics, sociology,
biology, engineering, operations research, finance, marketing, business, etc. More gener-
ally, probability can be a powerful tool whenever we deal with uncertainty, randomness,
and data.

In this first chapter, we will introduce the fundamental concepts of random experi-
ments and probability. To do so, we first start by defining what a random experiment
is in Section 1.1. Then, as a recap, in Section 1.2, we recall the language of sets and their
basic operations. In Section 1.3, we define a probability. In Section 1.4, we will review
counting methods that will be helpful to compute basic probabilities. Finally, in Sections
1.5, 1.6, 1.7, and 1.8, we introduce the notions of conditional probability, independence,
the law of total probability, and the Bayes theorem, respectively.

1.1 Random experiments

Our first goal in this course will be to describe in mathematical terms what a random
experiment is.

Definition 1.1 (Deterministic and random experiments). An experiment is a procedure
that has an observable outcome. We say that it is deterministic if its outcome can be
predicted; that is, it has only one possible outcome. On the other hand, we say that it is
random if it has more than one possible outcome that we cannot predict in advance.
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6 CHAPTER 1. RANDOM EXPERIMENTS AND PROBABILITY

Let us observe that when we perform a random experiment, in contrast with a deter-
ministic experiment, we do not know beforehand its outcome. However, it is reasonable to
assume that we know at least all the possible outcomes, which motivates the following
definition.

Definition 1.2 (Outcome space and events). Given a random experiment, we define its
outcome space as the collection of all its possible outcomes, and we denote it by Ω. A
subset of outcomes A ⊂ Ω is said to be an event associated with the random experiment.

Before continuing, let us provide examples of random experiments, their outcome
spaces, and possible events.

Example 1.3 (Tossing a coin). Suppose that our experiment consists of tossing a coin. If
we assume it cannot land vertically, we only have two possible outcomes: heads and tails,
denoted by H and T , respectively. Then its outcome space is given by

Ω = {H,T}.

Some events we can consider are “obtaining heads” and “obtaining tails”, which are repre-
sented by the sets A = {H} and B = {T}, respectively.

Example 1.4 (Tossing two coins). Suppose now that we are tossing two coins in order
(that is, obtaining heads then tails (HT ) is not the same as tails and then heads (TH).
Then our new outcome space is given by

Ω = {HH,HT, TT, TH}.

Some events could be “obtaining at least once tails”, which is represented by the set
A = {HT, TT, TH}; or “obtaining only heads”, which is represented by B = {HH}; or
“obtaining tails in the first coin flipping”, which can be represented by C = {TT, TH}.

Example 1.5 (Instagram posts). Now our random experiment is the following: suppose
that you post a nice picture on Instagram and you wonder how many likes it will get.
Note that

Ω = N = {0, 1, 2, . . . }
since a priori, one could have as many likes as people have an account on the social
network if your account is public (assuming that there are infinite people on Instagram).
Then you may be interested in studying the following events: “it got more than 100 likes”,
represented by A = {101, 102, . . . } (i.e., the photo was a complete success); or “it got no
likes at all”, represented by B = {0} (i.e., the picture was awful). In contrast, if your
account is private, and you have N ∈ N followers, then note that

Ω = {0, . . . , N}.

Example 1.6 (Darts). Suppose you are playing darts and are a good player, so you always
hit your darts inside the dartboard. Then we may represent the outcome space by a circle:

Ω = {(x, y) ∈ R2 : x2 + y2 ⩽ 1}.
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A possible event is “hitting the first quadrant”, represented by the set

A = {(x, y) ∈ R2 : x2 + y2 ⩽ 1, x ⩾ 0, y ⩾ 0}.

Exercise 1.1. In Example 1.6, how would you represent using a set the event “hitting the
inner bullseye” (the red one in the middle)?

1.2 Sets and their operations
In the last section, we saw that we are modeling our theory in events, i.e., sets. Before
continuing, we provide a recap on the basic set operations that will be pertinent to this
course. Firstly, recall that if Ω is a set and x is an element of Ω, we say that x belongs to
Ω and we denote it by x ∈ Ω. Now we recall the notion of power set.

Definition 1.7 (Power set). Let Ω be a set. We define the power set associated with Ω,
which we denote by P(Ω), as the set that contains all the subsets of Ω. That is,

P(Ω) := {A : A ⊂ Ω}.

Remark 1.8.

(i) Note that the power set is a set that has sets as its elements.

(ii) If Ω is a set, always ∅ ∈ P(Ω) and Ω ∈ P(Ω).

Let us provide an example before introducing other set operations.

Example 1.9. If Ω = {0, 1, 2}, then

P(Ω) = {∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2},Ω}.

We recall the definition of the complement, union, intersection, and difference of
sets.

Definition 1.10 (Complement, union, intersection, and difference). Let Ω be a set and
let A,B ⊂ Ω.

(i) We define the complement of A (with respect to Ω), which we denote by A′, as the
set that contains all the elements that do not belong to A (see Figure 1.1):

A′ := {x ∈ Ω : x /∈ A}.

(ii) We define the union between A and B, denoted by A ∪ B, as the set that contains
all the elements that belong to A or belong to B (see Figure 1.2):

A ∪B := {x ∈ Ω : x ∈ A or x ∈ B}.
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(iii) We define the intersection between A and B, denoted by A ∩ B, as the set that
contains all the elements that belong to A and belong to B (see Figure 1.3):

A ∩B := {x ∈ Ω : x ∈ A and x ∈ B}.

(iv) We define the set difference of A and B, which we denote by A \B, as the set that
contains all the elements that belong to A but not to B (see Figure 1.4):

A \B := {x ∈ Ω : x ∈ A and x /∈ B}.

Remark 1.11. In general, A \B ̸= B \A (compare Figures 1.4 and 1.5 and see Exercise
1.2 below).

A

A′

Ω

Figure 1.1: Complement
of A in Ω (grey area).

A B

A ∪B
Ω

Figure 1.2: Union of A
and B (grey area).

A B

A ∩B
Ω

Figure 1.3: Intersection of
A and B (grey area).

A B

A \B
Ω

Figure 1.4: Difference of A
and B (grey area).

A B

B \ A
Ω

Figure 1.5: Difference of
B and A (grey area).

Exercise 1.2. Let Ω = {0, 1, 2, 3, 4}, and let A = {0, 2} and B = {1, 2, 3}. Compute A′,
B′, A ∪B, A ∩B, A \B, and B \ A.

These operations verify the following algebraic properties.

Proposition 1.12 (Algebra of sets). Let Ω be a set and let A,B,C ⊂ Ω.

(i) Union and intersection are commutative:

A ∪B = B ∪ A and A ∩B = B ∩ A.

(ii) The empty set is the neutral element for the union: A ∪∅ = A.
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(iii) The set Ω is the neutral element for the intersection: A ∩ Ω = A.

(iv) Union and intersection are associative:

(A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C).

(v) Intersection distributes over union:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(vi) Union distributes over intersection:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

(vii) Union and intersection verify De Morgan’s laws:

(A ∪B)′ = A′ ∩B′ and (A ∩B)′ = A′ ∪B′.

(viii) The complement satisfies

Ω = A ∪ A′, ∅ = A ∩ A′, and (A′)′ = A.

(ix) The set difference can be written as

A \B = A ∩B′.

(x) One has A ∩ (B \ A) = ∅, and

A ∪B = A ∪ (B \ A).

Exercise 1.3. Prove Proposition 1.12.

To end this section, we finish with some notions that will be useful later.

Definition 1.13 (Mutually exclusive sets). Let Ω be a set, and let (Ai)
n
i=1 = (A1, . . . , An)

be a collection of sets (that is, for each i ⩾ 1, Ai ⊂ Ω). We say that (Ai)
n
i=1 is mutually

exclusive if for every i ̸= j, Ai and Aj are disjoint :

Ai ∩ Aj = ∅.

Definition 1.14 (Exhaustive sets). Let Ω be a set, and let (Ai)
n
i=1 = (A1, . . . , An) be a

collection of sets.We say that (Ai)
n
i=1 is exhaustive if

n⋃
i=1

Ai = A1 ∪ · · · ∪ An = Ω.

Remark 1.15. If A ⊂ Ω, then A induces a natural collection of sets that is mutually
exclusive and exhaustive, which is given by {A,A′} since Ω = A ∪ A′ and A ∩ A′ = ∅.

Remark 1.16. Both Definitions 1.13 and 1.14 can be extended mutatis mutandis for
infinite collections of subsets.
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1.3 Measuring events
Once we have written in the language of sets the possible outcomes of a random experi-
ment, we arrive at the essential point of probability theory: we want to measure events
in terms of how they are likely to happen.

Definition 1.17 (Probability). Given a random experiment with outcome space Ω, a
probability is a function P : P(Ω) → R (that is, it takes subsets of Ω and returns a real
number) that satisfies the following three properties:

(i) It is a nonnegative function: for every A ⊂ Ω, P(A) ⩾ 0.

(ii) The full outcome space has probability one: P(Ω) = 1.

(iii) It is countably additive: for any countable collection of events (Ai)
+∞
i=1 that is mutually

exclusive, then

P

(
+∞⋃
i=1

Ai

)
=

+∞∑
i=1

P(Ai).

Remark 1.18 (Probabilities are finitely additive). Item (iii) implies, in particular, that
P is finitely additive: for any finite collection of events (Ai)

n
i=1 that is mutually exclusive,

then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai).

For example, when n = 2 this means that if A1, A2 ⊂ Ω with A1 ∩ A2 = ∅,

P(A1 ∪ A2) = P(A1) + P(A2).

Before introducing concrete examples of probabilities, let us state their most important
properties.

Theorem 1.19. Consider an experiment with outcome space Ω and let P : P(Ω) → R be
a probability. Then P satisfies the following properties:

(i) For any A ⊂ Ω, P(A′) = 1− P(A).

(ii) P(∅) = 0.

(iii) It is monotone: for A,B ⊂ Ω with A ⊂ B, then P(A) ⩽ P(B).

(iv) For any A ⊂ Ω, P(A) ⩽ 1.

(v) The inclusion-exclusion principle: for any A,B ⊂ Ω,

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Proof.
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(i) Let A ⊂ Ω. In the light of Remark 1.15, the collection {A,A′} is mutually exclusive,
so item (iii) in Definition 1.17 (recall Remark 1.18) yields

P(Ω) = P(A) + P(A′).

By item (ii) in Definition 1.17, we have that P(Ω) = 1. Hence, 1 = P(A) + P(A′),
which yields P(A′) = 1− P(A).

(ii) Direct from item (i) in Theorem 1.19 by applying A = ∅.

(iii) Let A,B ⊂ Ω with A ⊂ B. Then we can see that B = A ∪ (B \ A). Since
A ∩ (B \ A) = ∅, then by item (iii) in Definition 1.17,

P(B) = P(A) + P(B ∩ A′)
(*)
⩾ P(A) + 0 = P(A),

where the inequality (*) is justified since P(B ∩A′) ⩾ 0 (item (i) in Definition 1.17).

(iv) Let A ⊂ Ω. Then by (iii) in Theorem 1.19, we have that P(A) ⩽ P(Ω), but P(Ω) = 1
(item (ii) in Definition 1.17).

(v) Let A,B ⊂ Ω. Recall item (x) in Proposition 1.12. Then

A ∪B = A ∪ (B \ A).

Since A and B \ A are disjoint,

P(A ∪B) = P(A) + P(B \ A). (1.3.1)

On the other hand, by items (iii), (viii), (v), and (ix) in Proposition 1.12, we have
that

B = B ∩ Ω = B ∩ (A ∪ A′) = (B ∩ A) ∪ (B ∩ A′) = (B ∩ A) ∪ (B \ A)

Since (B ∩ A) ∩ (B \ A) = ∅, then

P(B) = P(B ∩ A) + P(B \ A). (1.3.2)

The conclusion follows from mixing both equations (1.3.1) and (1.3.2).

Exercise 1.4. For A,B,C ⊂ Ω, compute P(A ∪ B ∪ C) in the fashion of item (v) in
Theorem 1.19. Can you generalize the statement if we have a collection of n subsets?

Now we are ready to provide a first example of a probability associated with a ran-
dom experiment having a finite number of possible outcomes, which is quite natural: the
equally likely probability, which consists of assigning the same probability to each possible
outcome.
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Definition 1.20 (Equally-likely). Consider a random experiment with a finite outcome
space Ω with m ∈ N∗ elements. The equally-likely or uniform probability is defined as the
probability P such that

∀ω ∈ Ω, P({ω}) = 1

m
.

Remark 1.21 (Laplace’s rule). Consider a finite outcome space Ω having m elements,
equipped with the uniform probability P. Consider an event A ⊂ Ω having k elements.
Then

P(A) =
k

m
,

which is no more than Laplace’s rule: under the uniform probability, the probability of
any event can be computed by dividing the number of results that form the event by the
number of possible outcomes. In other words, that is no more than the ratio between
favorable and total cases.

Remark 1.22 (Law of large numbers: take 1). Another interpretation of Laplace’s rule is
the following: imagine that you observe a random experiment with outcome space Ω and
suppose it has a probability P that is unknown. Given an event A ⊂ Ω, you may want
to estimate how likely it is to happen, that is, you want to approximate P(A). If you can
repeat many times the experiments (and if you assume that P is always the probability,
for each repetition), then you can estimate P(A) in the following way: if you perform the
experiment n times, let m(A) be the number of times you observed the event A amongst
the n repetitions. Then, if n is large enough,

P(A) ≈ m(A)

n
.

This is no more than the law of large numbers, which we will see later in this course.

Example 1.23 (Rolling a dice). Rolling a dice with six faces has six possible outcomes:

Ω = {1, 2, 3, 4, 5, 6}.

Saying that the dice is fair is equivalent to saying that each number has the same proba-
bility, equal to 1

6
. The probability of getting an odd number is 3

6
= 1

2
.

Example 1.24 (Drawing cards from a deck). If you draw a card from a standard 52-card
deck, the probability of drawing an ace of spades is equal to 1

52
. The probability of getting

an ace is 4
52

= 1
13

. On the other hand, the probability of drawing a spade is 13
52

= 1
4
.

1.4 Counting principles

As we have seen at the end of the last section, a prominent example of probability is the
uniform one, in the context of experiments with a finite outcome space. Recall that, in
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the light of Laplace’s rule (Remark 1.21), if we want to compute P(A), where P is the
uniform distribution, then

P(A) =
size(A)

size(Ω)
.

Hence, we are done if we can determine how many elements are in both A and Ω. Having
said that, the goal of this section is to introduce some counting principles that will allow
us to count elements from sets.

1.4.1 Rule of sum

The rule of sum states that if one can choose between two actions A1 and A2 that cannot
be done at the same time, and there are n1 ways to do A1, and distinct from them, n2

ways to do A2, then the number of ways to do A1 or A2 is n1 + n2.

Remark 1.25. The rule of sum can be extended to the case when one has A1, . . . , Am

different actions that cannot be done at the same time, and there are n1, . . . , nm different
ways to do each one, respectively: the number of ways to do A1, A2, . . . , or Am is
n1 + · · ·+ nm.

Example 1.26 (Choosing a course). Suppose that for this semester, you have to choose
between MATH 131A Analysis or MATH 131AH Analysis (Honors), and that four in-
structors are teaching MATH 131A and two are teaching MATH 131AH. Then you have
4 + 2 = 6 different classes to choose from.

1.4.2 Rule of product

The rule of product states that if an action A is divided into two actions A1 and A2 that
are independent and such that there are n1 ways to do A1 and n2 ways to do A2, then
there are n1 × n2 ways to do A.

Remark 1.27. The rule of product can be extended to the case when one has an action
A that is divided into A1, . . . , Am different actions that are perfomed independently, and
there are n1, . . . , nm different ways to do each one, respectively: the number of ways to do
A is n1 × · · · × nm.

Example 1.28 (Menu of the day). Suppose you go to a restaurant and choose the “menu
of the day” that allows you to choose a starter amongst three options, a main dish amongst
two options, and a dessert amongst five options. Then you have 3 × 2× 5 = 30 different
choices.

1.4.3 Permutations of n objects

A direct consequence of the multiplication principle is the following: suppose that you
have n different objects to be placed into n different sites. Then there are n! different
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ways to do that action, where n! is n factorial : if n = 0, we define 0! := 1, and

∀n ⩾ 1, n! := n× (n− 1)× (n− 2)× · · · × 2× 1.

Example 1.29 (PhD advisor). Suppose you are a Professor at UCLA and you have five
PhD students. You must meet them each week, but on different days (excluding Saturdays
and Sundays). Then you have 5! = 5 × 4 × 3 × 2 × 1 = 120 different ways to schedule
weekly meetings with them.

1.4.4 Permutations of n objects taken k

Suppose you have n different objects and you have to choose k between those n in order.
Then you have P n

k different ways to choose them, where

∀n, k ⩾ 0, P n
k :=

n!

(n− k)!
.

Example 1.30 (Holidays). Suppose that you want to travel to Europe on your holidays
(3 weeks) and that you want to visit different countries, spending exactly 1 week in each
country. On the other hand, since it will be your first time in Europe, you want to visit the
most touristic countries: France, Spain, Italy, England, Portugal, and Germany. Then, if
you consider the order in which you visit the countries, you have

P 6
3 =

6!

(6− 3)!
=

6!

3!
=

6× 5× 4×(((((3× 2× 1

(((((3× 2× 1
= 6× 5× 4 = 120

different possible itineraries.

1.4.5 Combinations of n objects taken k

Suppose you have n different objects and you have to choose k between those n, but you
do not care about the ordering in which those were drawn. Then you have Cn

k

different ways to choose them, where

∀n, k ⩾ 0, Cn
k :=

n!

k!(n− k)!
.

We also write
(
n
k

)
for Cn

k .

Example 1.31 (Coachella). Suppose you are the producer of Coachella, so you have the
hard but amusing task of choosing three headliners (you do not have to decide the day
they will play, just the artists). You have to choose between eight artists: Bad Bunny,
Tame Impala, Dua Lipa, The Strokes, Daft Punk (let us assume that they have reunited),
The Rolling Stones, Drake, or Oasis. Then you have

C8
4 =

8!

3!(8− 3)!
=

8!

3!5!
=

8× 7× 6×((((((((((
5× 4× 3× 2× 1

(3× 2× 1)× (((((((((((
5× 4× 3× 2× 1)

=
8× 7× 6

3× 2× 1
= 56

possible choices of headliners.
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1.5 Conditional probability

The object we define in this section is motivated by the following situation: suppose you
observe a random experiment with outcome space Ω and probability P. Let B ⊂ Ω be an
event you know has already happened. If A ⊂ Ω is another event, you may wonder what
is the probability of A, given that B has occurred.

Definition 1.32 (Conditional probability). Consider an experiment with outcome space
Ω and let P be a probability defined on P(Ω). Fix B ⊂ Ω with P(B) > 0. We define the
conditional probability given B as the function P(·|B) : P(Ω) → R defined by

∀A ⊂ Ω, P(A|B) :=
P(A ∩B)

P(B)
.

Note that the philosophy behind Definition 1.32 is the following: given that the event
B has happened, it is natural to compute, for A ⊂ Ω, P(A∩B), which is the probability
that both A and B have happened. The sole problem of the function A 7→ P(A ∩B)
is that it is not a probability in the sense of Definition 1.17 when P(B) < 1 because
P(Ω ∩ B) < 1. However, when we divide P(A ∩ B) by P(B), we are “renormalizing”, so
that P(Ω|B) adds up to 1, so it is indeed a probability.

Proposition 1.33. Consider an experiment with outcome space Ω and let P be a proba-
bility defined on P(Ω). Fix B ⊂ Ω with P(B) > 0. Then the function P(·|B) : P(Ω) → R
is a probability.

Exercise 1.5. Prove Proposition 1.33.

Remark 1.34. In general, P(A|B) ̸= P(B|A).

Let us provide a concrete example of conditional probability.

Example 1.35 (Rolling a die). Suppose you roll a fair six-sided (i.e., a standard) die. Let
B be the event “you obtain a number strictly greater than 3” and A “obtaining an even
number”. If you want to compute P(A|B), note that, on the one hand, B = {4, 5, 6}, so
P(B) = 3

6
= 1

2
. On the other hand, remark that A ∩ B = {4, 6}, so P(A ∩ B) = 2

6
= 1

3
.

Then

P(A|B) =
P(A ∩B)

P(B)
=

1
3
1
2

=
2

3
.

Conditional probability satisfies the following properties.

Proposition 1.36. Consider an experiment with outcome space Ω and let P be a proba-
bility defined on P(Ω).

(i) Let A,B ⊂ Ω with P(B) > 0. Then

P(A′|B) = 1− P(A|B).



16 CHAPTER 1. RANDOM EXPERIMENTS AND PROBABILITY

(ii) Let B ⊂ Ω with P(B) > 0. Then P(·|B) is countably additive: for any countable
collection of events (Ai)

+∞
i=1 that is mutually exclusive, then

P

(
+∞⋃
i=1

Ai

∣∣∣∣∣B
)

=
+∞∑
i=1

P(Ai|B).

(iii) Let B ⊂ Ω with P(B) > 0. Then P(·|B) is finitely additive: for any finite collection
of events (Ai)

n
i=1 that is mutually exclusive, then

P

(
n⋃

i=1

Ai

∣∣∣∣∣B
)

=
n∑

i=1

P(Ai|B).

(iv) Let A,B ⊂ Ω with P(A) > 0. Then

P(A ∩B) = P(A)P(B|A).

(v) Let A,B ⊂ Ω with P(B) > 0. Then

P(A ∩B) = P(B)P(A|B).

(vi) Let A,B,C ⊂ Ω with P(A) > 0 and P(A ∩B). Then

P(A ∩B ∩ C) = P(A)P(B|A)P(C|A ∩B).

Proof.

(i) It is a direct consequence of Proposition 1.33 and item (i) in Theorem 1.19.

(ii) Similar to (i): consequence of Proposition 1.33.

(iii) By definition, P(B|A) = P(B∩A)
P(A)

= P(A∩B)
P(A)

. The conclusion follows if we multiply the
equation by P(A).

(iv) Similar to (iii).

(v) Let us compute the right-hand side:

P(A)P(B|A)P(C|A ∩B) =���P(A)������P(B ∩ A)

���P(A)
P(C ∩ (A ∩B))

������P(A ∩B)
= P(A ∩B ∩ C).

Let us provide another example where these properties can be applied.
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Example 1.37 (Insurance). An insurance company sells several types of insurance poli-
cies, including auto and homeowner policies. Let A1 be those people with an auto policy
only, A2 those people with a homeowner policy only, A3 those people with both an auto
and homeowner policy, and A4 those with only types of policies other than auto and
homeowner policies. For a person randomly selected from the company’s policy-holders,
suppose that

P(A1) = 0.3, P(A2) = 0.2, P(A3) = 0.2, and P(A4) = 0.3.

Let B be the event that an auto or homeowner policy holder will renew at least one of
those policies. Say from past experience that we assign the conditional probabilities

P(B|A1) = 0.6, P(B|A2) = 0.7, and P(B|A3) = 0.8.

Given that the person selected at random has an auto or homeowner policy, what is the
conditional probability that the person will renew at least one of those policies? Note that
we want to compute P(B|A1 ∪ A2 ∪ A3). Note that

P(B|A1 ∪ A2 ∪ A3) =
P(B ∩ (A1 ∪ A2 ∪ A3))

P(A1 ∪ A2 ∪ A3)
=

P((B ∩ A1) ∪ (B ∩ A2) ∪ (B ∩ A3))

P(A1 ∪ A2 ∪ A3)

=
P(B ∩ A1) + P(B ∩ A2) + P(B ∩ A1)

P(A1) + P(A2) + P(A3)

=
P(A1)P(B|A1) + P(A2)P(B|A2) + P(A3)P(B|A3)

P(A1) + P(A2) + P(A3)

=
0.3× 0.6 + 0.2× 0.7 + 0.2× 0.8

0.3 + 0.2 + 0.2
≈ 0.6857.

1.6 Independence
Many random experiments have the following property: their repetitions are independent;
that is, they do not depend on previous realizations nor do they affect future ones.

Example 1.38 (Tossing coins and independence). To give an example, let us go back to
Example 1.4, so that

Ω = {HH,HT, TT, TH},
and let us endow Ω with the uniform probability Ω. Let A be the event “obtaining heads
in the first tossing” and B be the event “obtaining heads in the second tossing”. At least
intuitively, these two events should be independent, but how? Then let us study the
dependence between A and B via the conditional probability:

P(A|B) =
P(A ∩B)

P(B)
=

P({HH})
P({HH,TH})

=
1
4
1
2

=
2

4
=

1

2
.

But
P(A) = P({HH,HT}) = 2

4
=

1

2
,
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so
P(A|B) = P(A).

In the light of item (v) in Proposition 1.36, this can be rewritten as

P(A ∩B) = P(A)P(B).

What we have seen in Example 1.38 motivates the probabilistic definition of indepen-
dence.

Definition 1.39 (Independence). Consider an experiment with outcome space Ω and let
P be a probability defined on P(Ω). Let A,B ⊂ Ω. We say that A and B are independent
if

P(A ∩B) = P(A)P(B).

Now, let us observe some of the immediate consequences of the previous defini-
tion.

Proposition 1.40. Consider an experiment with outcome space Ω and let P be a proba-
bility defined on P(Ω).

(i) Let A,B ⊂ Ω be independent events. Then the pairs A and B′; A′ and B; and A′

and B′ are independent as well.

(ii) Let A,B ⊂ Ω be independent events with P(A) > 0. Then A and B are independent
if and only if

P(B|A) = P(B).

(iii) Let A,B ⊂ Ω be independent events with P(B) > 0. Then A and B are independent
if and only if

P(A|B) = P(A).

(iv) Let A ⊂ Ω with P(A) = 0. Then, for any B ⊂ Ω, A and B are independent.

Now we want to generalize Definition 1.39 for more than two events. However, the
following exercise shows that we should do it carefully.

Exercise 1.6. Consider the following experiment: you roll a fair six-sided die two times,
and consider the following events: A representing “obtaining an odd number on the first
roll”; B representing “obtaining an odd number on the second roll”; and C representing
“the sum of the two rolls is odd”.

(i) Write the outcome space Ω.

(ii) Why should we consider here the uniform probability P on P(Ω)?

(iii) Write explicitely the events A,B and C.
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(iv) Show that the the collection {A,B,C} is pairwise independent : that is, the pairs A
and B, B and C, and A and C are independent.

(v) Show that P(A ∩B ∩ C) = 0.

(vi) Compute P(A)P(B)P(C).

The last exercise shows that even if we assume that a trio of events {A,B,C} is
pairwise independent, it is not necessarily true that P(A∩B ∩C) = P(A)P(B)P(C). Now
we provide the proper definition.

Definition 1.41 (Mutual independence). Consider an experiment with outcome space Ω
and let P be a probability defined on P(Ω). Let A,B,C ⊂ Ω. We say that the events
A,B, and C are mutually independent if

(i) A,B, and C are pairwise independent:

P(A ∩B) = P(A)P(B), P(B ∩ C) = P(B)P(C), and P(A ∩ C) = P(A)P(C).

(ii) P(A ∩B ∩ C) = P(A)P(B)P(C).

We can even extend the definition for more than three events.

Definition 1.42 (Mutual independence, general case). Consider an experiment with out-
come space Ω and let P be a probability defined on P(Ω). Let (Ai)

n
i=1 be collection of

events. We say that the events (Ai)
n
i=1 are mutually independent if for every k ∈ N∗, and

every 1 ⩽ i1 < · · · < ik ⩽ n,

P

(
k⋂

j=1

Aij

)
=

k∏
j=1

P(Aij). (1.6.1)

Remark 1.43. In simple words, the events of a collection (Ai)
n
i=1 are mutually indepen-

dent if all the pairs, triples, quartets, etc. made of events of the collection satisfy (1.6.1).

1.7 Law of total probability
In this section, we provide a powerful principle, the law of total probability, which is
helpful when the outcome space can be divided into smaller pieces.

Theorem 1.44 (Law of total probability). Consider an experiment with outcome space
Ω and let P be a probability defined on P(Ω). Let (Bi)

n
i=1 be a collection of events that is

mutually exclusive and exhaustive (cf. Definitions 1.13 and 1.14). Let A ⊂ Ω. Then

P(A) =
k∑

i=1

P(A ∩Bi).
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Before proceeding with the proof, note that Theorem 1.44 says that if Ω can be
partitioned into smaller pieces (Bi)

n
i=1 and we can compute the probability of the events

A ∩Bi for all 1 ⩽ i ⩽ n, then we can calculate P(A).

Proof of Theorem 1.44. Since (Bi)
n
i=1 is exhaustive, then Ω =

⋃n
i=1Bi, so

A = A ∩ Ω = A ∩

(
n⋃

i=1

Bi

)
=

n⋃
i=1

(A ∩Bi).

The events (Bi)
n
i=1 are mutually exclusive, and thus so are (A ∩Bi)

n
i=1. Then

P

(
n⋃

i=1

(A ∩Bi)

)
=

n∑
i=1

P(A ∩Bi),

and the conclusion follows.

It is also possible to rewrite the law of total probability in the language of conditional
probability.

Corollary 1.45 (Law of total probability, conditional version). Consider an experiment
with outcome space Ω and let P be a probability defined on P(Ω). Let (Bi)

n
i=1 be a collection

of events that is mutually exclusive and exhaustive. Furthermore, assume that for each
1 ⩽ i ⩽ n, P(Bi) > 0. Let A ⊂ Ω. Then

P(A) =
k∑

i=1

P(Bi)P(A|Bi).

Proof. From the law of total probability, we know that

P(A) =
k∑

i=1

P(A ∩Bi).

But note that for each 1 ⩽ i ⩽ n,

P(A ∩Bi) =
P(Bi)

P(Bi)
P(A ∩Bi) = P(Bi)

P(A ∩Bi)

P(Bi)
= P(Bi)P(A|Bi).

We finish this section with an example.

Example 1.46 (Aces). The experiment here is drawing two cards from a standard deck
in order and without replacing. We want to compute the probability of the event A given
by “the second card drawn is an ace”. We will partition Ω into two disjoint pieces: let B1
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be the event “the first card drawn is an ace” and let B2 represent “the first card drawn is
not an ace”, so that Ω = B1 ∪B2 and B1 ∩B2 = ∅. Then, by Corollary 1.45,

P(A) = P(B1)P(A|B1) + P(B2)P(A|B2). (1.7.1)

Note that
P(B1) =

4

52
=

1

13
and P(B2) = 1− P(B1) =

12

13
.

For the conditional probabilities, we can directly compute, using Laplace’s rule,

P(A|B1) =
3

51
and P(A|B1) =

4

51
.

If we put all these probabilities into (1.7.1), we obtain

P(A) =
1

13
× 3

51
+

12

13
× 4

51
=

1

13
.

1.8 Bayes’ theorem
To end this first chapter, we introduce one of the most useful properties of probabilities:
Bayes’ theorem.

Theorem 1.47 (Bayes). Consider an experiment with outcome space Ω and let P be a
probability defined on P(Ω). Let A,B ⊂ Ω with P(A) > 0 and P(B) > 0. Then

P(A|B) =
P(B|A)P(A)

P(B)
. (1.8.1)

Proof. If we start from the right-hand side,

P(B|A)P(A)
P(B)

=

P(B∩A)

��P(A) ���P(A)
P(B)

=
P(A ∩B)

P(B)
= P(A|B).

We end with an example to prove its power.

Example 1.48 (COVID-19: the bad old days). Suppose a screening test for COVID-19
has the following parameters: the probability that the test is positive given that you are
sick (i.e., the probability of being a true positive) is

P(positive|sick) = 0.95.

On the other hand, the probability that the test is positive given that you are not sick
(i.e., the probability of being a false positive) is

P(positive|not sick) = 0.01.
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If we want to compute the probability of being sick given that you test positive, we may
use Bayes’ theorem:

P(sick|positive) =
P(positive|sick)P(sick)

P(positive)
. (1.8.2)

It is known that the probability you have the disease is 0.01, as 10 in every 1000 people who
have tested have the disease, so P(sick) = 0.01. Hence, the only missing quantity in the
right-hand side of (1.8.2) is P(positive test). However, using the law of total probability
(Corollary 1.45), we have

P(positive) = P(sick)P(positive|sick) + P(not sick)P(positive|not sick)
= P(sick)P(positive|sick) + (1− P(sick))P(positive|not sick).

That is, we can rewrite (1.8.2) as

P(sick|positive) =
P(positive|sick)P(sick)

P(sick)P(positive|sick) + (1− P(sick))P(positive|not sick)

=
0.95× 0.01

0.01× 0.95 + (1− 0.01)× 0.01

≈ 0.49.

That is, given that you tested positive, with probability 0.49 you are sick.



Chapter 2

Discrete probability distributions

In this chapter, we will study discrete random variables; that is, functions or observables
that are defined on finite or at most countably infinite outcome spaces. First, we will
introduce the concept of (discrete) random variables in Section 2.1. Then, in Sections
2.2 and 2.3, we will define the expectation of a random variable and see some remarkable
expectations that one may compute. Finally, in Section 2.4, we provide examples of
discrete random variables beyond the uniform case.

2.1 Discrete random variables
In the setting of Chapter 1, we worked with random experiments. In reality, most of the
time we will only have access to some observables of the whole experiment. In the context
of probability theory, the objects that play the role of those are random variables, which
we proceed to define in the context of discrete outcome spaces (that is, the ones that are
finite or at most countably infinite1).

Definition 2.1 (Random variable). Consider a random experiment with a finite or count-
ably infinite outcome space Ω. A function X : Ω → R is said to be a random variable.
We define the support of X, denoted by supp(X), as the set of all values that the random
variable X takes:

supp(X) := {X(ω) : ω ∈ Ω};

that is, supp(X) is the image of the set Ω via the map X:

supp(X) = X(Ω).

Essentially, random variables are observables of our outcome space in the following
sense: if X : Ω → R is a random variable, then for each possible state ω ∈ Ω, we get a real
number X(ω) ∈ R. Let us provide some examples of random variables.

1That is, sets having the same cardinality as N, the set of natural numbers.

23
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Example 2.2 (Tossing a coin). Suppose we are tossing a coin. Then our outcome space
is

Ω = {H,T}.
We can encode the outcome of the experiment using numbers in the following way: let
X : Ω → R be the random variable defined by

∀ω ∈ Ω, X(ω) =

{
0, if ω = H

1, if ω = T.

Note that supp(X) = {0, 1}.

Example 2.3 (Tossing coins). Suppose we are tossing two coins, so our outcome space is

Ω = {HH,HT, TT, TH}.

We define X : Ω → R by

∀ω ∈ Ω, X(ω) := number of heads obtained in ω.

That is,

X(ω) =


0, if ω = TT

1, if ω = HT or ω = TH

2, if ω = HH.

In this case, supp(X) = {0, 1, 2}.

Example 2.4 (Rolling dice). Suppose you roll two fair standard dice. Hence, the sample
space can be written as

Ω = {(n1, n2) : n1, n2 ∈ {1, 2, 3, 4, 5, 6}}.

Then we can define X1 : Ω → R as the sum of both numbers appearing in the two rolls:

∀(n1, n2) ∈ Ω, X1(n1, n2) := n1 + n2.

Another example X2 : Ω → R is the mean between both numbers:

∀(n1, n2) ∈ Ω, X2(n1, n2) :=
n1 + n2

2
.

A final example can be just giving the number of the first die: we define X3 : Ω → R by

∀(n1, n2) ∈ Ω, X3(n1, n2) := n1.

Note that the supports are different:

supp(X1) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

supp(X2) = {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6},
supp(X3) = {1, 2, 3, 4, 5, 6}.
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Remark 2.5. The support of a discrete random variable is always a discrete set: that is,
it is finite or countably infinite.

Naturally, given a random variable X : Ω → R, we are interested in determining, for
x ∈ supp(X), the quantity P(X = x), which we define as the probability of the event

{ω ∈ Ω : X(ω) = x} ⊂ Ω.

An object that encodes those probabilities is the probability mass function associated with
X.

Definition 2.6 (Probability mass function). Consider a random experiment with a finite
or countably infinite outcome space Ω and let P be a probability defined on P(Ω). For a
random variable X : Ω → R with support supp(X), we define the probability mass function
or PMF associated with X as the function fX : supp(X) → R given by

∀x ∈ supp(X), fX(x) = P(X = x).

When x /∈ supp(X), we define fX(x) := 0.

We note some immediate properties associated with a PMF.

Proposition 2.7. Consider a random experiment with a finite or countably infinite out-
come space Ω and let P be a probability defined on P(Ω). Let X : Ω → R be a random
variable with support supp(X) and PMF fX . Then:

(i) For every x ∈ supp(X), fX(x) ∈ [0, 1].

(ii) For every A ⊂ supp(X), P(X ∈ A) =
∑

x∈A fX(x).

(iii)
∑

x∈supp(X) fX(x) = 1.

Proof.

(i) Direct from the fact that P takes values in [0, 1].

(ii) Note that for x ̸= y, we have {X = x} ∩ {X = y} = ∅. Therefore the collection
({X = x})x∈A is exhaustive. On the other hand, note that

{X ∈ A} =
⋃
x∈A

{X = x}.

Hence

P(X ∈ A) = P

(⋃
x∈A

{X = x}

)
=
∑
x∈A

P(X = x) =
∑
x∈A

fX(x).

(iii) It is a direct consequence of (iv) by taking A = supp(X) and the fact that P(X ∈
supp(X)) = 1.
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In the previous paragraph, we started from a discrete random variable X : Ω → R
with support supp(X) and constructed its PMF as a function fX : supp(X) → R. We
can proceed reversely, starting from a discrete set A ⊂ R and a function f : A → R. The
question is, under what conditions can such a function be the PMF of a random variable?
This discussion motivates the following definition.

Definition 2.8 (Probability density function). Let A ⊂ R be a discrete set and let
f : A → R be a function. We say that f is a probability density function if:

(i) For every x ∈ A, f(x) ∈ [0, 1].

(ii)
∑

x∈A f(x) = 1.

Remark 2.9. For every discrete random variable X : Ω → R, its PMF fX : supp(X) → R
is a probability density function in the sense of Definition 2.8.

Another important object is the cumulative distribution function.

Definition 2.10 (Cumulative distribution function). Consider a random experiment with
a finite or countably infinite outcome space Ω, and let P be a probability defined on P(Ω).
Let X : Ω → R be a random variable. We define the cumulative distribution function or
CDF as the function FX : R → [0, 1] defined by

∀x ∈ R, FX(x) := P(X ⩽ x).

The CDF of a random variable satisfies the following properties.

Proposition 2.11. Consider a random experiment with a finite or countably infinite out-
come space Ω and let P be a probability defined on P(Ω). Let X : Ω → R be a random
variable with support supp(X), PMF fX , and CDF FX . Then:

(i) For every x ∈ R,
FX(x) =

∑
y∈supp(X)

y⩽x

fX(y).

(ii) FX is a non-decreasing function.

(iii) limx→−∞ FX(x) = 0.

(iv) limx→+∞ FX(x) = 1.

Our first example of a distribution, which we have already previously encountered, is
the uniform one.

Definition 2.12 (Uniform distribution). Consider a random experiment with a finite or
countably infinite outcome space Ω and let P be a probability defined on P(Ω). Let
X : Ω → R be a random variable with PMF fX . We say that X is uniformly distributed
if fX is a constant function.
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Remark 2.13. If X is uniformly distributed, and if supp(X) = {1, 2, . . . ,m} for some
m ∈ N∗, then

∀x ∈ supp(X), fX(x) =
1

m
.

In this case,

FX(x) =


0, if x < 1
k
m
, if k ⩽ x < k + 1 for k ∈ {1, . . . ,m− 1}

1, if x ⩾ m;

that is, FX is a step function.

Example 2.14. Let X be a random variable uniformly distributed on {1, 2, 3, 4, 5, 6} (it
could represent the number obtained when tossing a fair die, for example). Then

∀x ∈ {1, 2, 3, 4, 5, 6}, fX(x) =
1

6

and

FX(x) =


0, if x < 1
k
6
, if k ⩽ x < k + 1 for k ∈ {1, 2, 3, 4, 5}

1, if x ⩾ 6.

x

fX(x)

1 2 3 4 5 6

1
6

Figure 2.1: PMF of X.

x

FX(x)

1 2 3 4 5 6

1
6

2
6

3
6

4
6

5
6

1

Figure 2.2: CDF of X.

2.2 Expectation of a discrete random variable
Given a random experiment (Ω,P) and a random variable X : Ω → R, one may wonder
about the “most probable value” taken by X according to the probability measure P,
which should be a deterministic quantity; i.e., not depending on ω ∈ Ω. This motivates
the definition of mathematical expectation.
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Definition 2.15 (Expectation). Consider a random experiment with a finite or countably
infinite outcome space Ω and let P be a probability defined on P(Ω). Let X : Ω → R be a
random variable with PMF fX . We define the expectation or expected value of X, which
we denote by E[X], as

E[X] :=
∑

x∈supp(X)

xP(X = x) =
∑

x∈supp(X)

x fX(x).

That is, the expected value of a random value is no more than the weighted
mean of all the values that X takes according to their probability.

Example 2.16. Recall Example 2.3. If we suppose that both coins are fair, then the
expectation of X can be computed as

E[X] =
∑

x∈supp(X)

xP(X = x) =
2∑

x=0

xP(X = x)

= 0× P(X = 0) + 1× P(X = 1) + 2× P(X = 2)

= 0× 1

4
+ 1× 2

4
+ 2× 1

4
= 1.

Remark 2.17. If X : Ω → R is a discrete random variable with support supp(X) and
PMF fX , and u : R → R is a function, then their composition u(X) is a random variable
u(X) : Ω → R. We can compute its expectation as

E[u(X)] =
∑

x∈supp(X)

u(x)P(X = x) =
∑

x supp(X)

u(x) fX(x).

Remark 2.18. Note that when supp(X) is finite, E[u(X)] is just a sum, so it is always
well-defined and finite. However, when supp(X) is countably infinite, we have to require
that ∑

x∈supp(X)

|u(x)| fX(x) < +∞

for E[u(X)] to be finite.

Example 2.19. Let X : Ω → R be a uniform random variable with supp(X) = {1, 2, 3}
and let u : R → R be the function u(x) = x2. Then

E[u(X)] =
∑

x∈supp(X)

u(x)P(X = x) =
3∑

x=1

x2 P(X = x) = 12 × 1

3
+ 22 × 1

3
+ 32 × 1

3
=

14

3
.

We state some useful properties of expectation.
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Proposition 2.20. Consider a random experiment with a finite or countably infinite out-
come space Ω and let P be a probability defined on P(Ω). Then:

(i) The expectation of a constant is the constant itself: if c ∈ R is a deterministic value,
then

E[c] = c.

(ii) The expectation is a linear operator:

(a) If X : Ω → R is a random variable and c ∈ R a deterministic constant, then

E[cX] = cE[X].

(b) If X,Y : Ω → R are random variables, then

E[X + Y ] = E[X] + E[Y ].

Equivalently, we have that for any random variables X, Y : Ω → R and any deter-
ministic constants c1, c2 ∈ R,

E[c1X + c2Y ] = c1 E[X] + c2 E[Y ].

(iii) Let X : Ω → R be a random variable, let u1, u2 : R → R, and let c1, c2 ∈ R. Then

E[c1u1(X) + c2u2(X)] = c1 E[u1(X)] + c2 E[u2(X)].

Exercise 2.1. Let X be a random variable having support supp(X) = {1, 2, 3, 4} and
PMF given by fX(x) =

x
10

for x ∈ supp(X).

(i) Prove that fX is well defined, that is, show that∑
x∈supp(X)

fX(x) = 1.

(ii) Determine its CDF FX .

(iii) Compute E[X].

(iv) Compute E[X2].

(v) Compute E[X(5−X)].

2.3 Remarkable expectations
In the last section, in Remark 2.17, we defined the expectation of a function u : R → R
of a discrete random variable X : Ω → R. In this section, we emphasize some particular
choices of u that will yield relevant parameters of the random variable X.
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2.3.1 Mean

When u(x) = x, it corresponds to µX , the mean of X:

µX := E[u(X)] = E[X] =
∑

x∈supp(X)

x fX(x).

2.3.2 Variance

When u(x) = (x− µX)
2, it corresponds to σ2

X , the variance of X:

σ2
X := E[u(X)] = E[(X − µX)

2] =
∑

x∈supp(X)

(x− µX)
2fX(x).

We remark that also,
σ2
X = E[X2]− (E[X])2. (2.3.1)

We define the standard deviation of X as σX :=
√

σ2
X .

2.3.3 Moments

When u(x) = xr for r ∈ N∗, it corresponds to the r-th moment of X:

E[u(X)] = E[Xr] =
∑

x∈supp(X)

xrfX(x).

2.3.4 Moment-generating function

Now we consider a family of such functions: for t ∈ R, define the function ut(x) = etx and
let

MX(t) := E[ut(X)] = E[etX ] =
∑

x∈supp(X)

etxfX(x).

We say that the function MX : R → R given by t 7→ MX(t) is the moment-generating
function or the Laplace transform of X. Its importance resides in the following fact,
which is a corollary of the theory of Laplace’s transform: the moment-generating function
characterizes the distribution of a random variable.

Theorem 2.21. Consider a random experiment with a finite or countably infinite outcome
space Ω and let P be a probability defined on P(Ω). Let X, Y : Ω → R with supp(X) =
supp(Y ). Then fX = fY if and only if MX = MY .

That is, two random variables with the same support and moment-generating
function have the same distribution.

Another remarkable property of the moment-generating function is that it helps com-
pute the moments.
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Proposition 2.22. Consider a random experiment with a finite or countably infinite out-
come space Ω and let P be a probability defined on P(Ω). Let X : Ω → R be a random
variable with moment-generating function MX . Then

E[Xr] = M
(r)
X (0),

where M
(r)
X denotes the r-th derivative of the function MX . In particular,

µX = M ′
X(0) and σ2

X = M ′′
X(0)− (M ′

X(0))
2.

2.4 More examples of discrete distributions
The purpose of this section is twofold: first, we will introduce many discrete distribu-
tions, beyond the uniform one. They appear naturally when we model some random
experiments. Our second goal will be to apply the concepts defined in the last sections.
Hence, we will compute those distributions’ expectation, variance, and moment-generating
function.

Along this section, we consider a discrete outcome space Ω endowed with a probability
P.

2.4.1 Uniform distribution

We defined the uniform distribution previously in Definition 2.12. However, for the sake
of completeness, we recall its definition here.

Definition 2.23 (Uniform distribution). Let m ∈ N∗. A random variable X : Ω → R is
said to be uniform with support {1, . . . ,m}, which we denote by X ∼ U({1, . . . ,m}), if its
support is

supp(X) = {1, . . . ,m}
and its PMF is given by

∀k ∈ {1, . . . ,m}, fX(k) =
1

m
.

Proposition 2.24. Let m ∈ N∗ and let X : Ω → R be a random variable with X ∼
U({1, . . . ,m}). Then:

(i) Its expectation and variance are given by

µX =
m+ 1

2
and σ2

X =
m2 − 1

12
.

(ii) Its moment-generating function is given by

∀t ∈ R, MX(t) =

{
et(1−emt)
m(1−et)

, if t ̸= 0

1, if t = 0.
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Exercise 2.2. One may also consider uniform random variables on more general intervals
as {a, a+ 1, . . . , b− 1, b} for some a, b ∈ Z with b ⩾ a.

(i) Determine the associated PMF.

(ii) Compute their mean and variance.

(iii) Determine their moment-generating function.

2.4.2 Bernoulli distribution

The Bernoulli distribution is one of the simplest we will encounter. Suppose we observe a
random experiment with only two possible outcomes: success or failure. Moreover, let us
suppose that there exists p ∈ (0, 1) such that

P(success) = p and P(failure) = 1− p.

We may encode the outcome of the experiment via the following random variable:

X :=

{
0, if failure
1, if success.

Then we say that X has the Bernoulli distribution with parameter p.

Definition 2.25 (Bernoulli distribution). Let p ∈ (0, 1). A random variable X : Ω → R is
said to have the Bernoulli distribution with parameter p, which we denote by X ∼ Ber(p),
if its support is

supp(X) = {0, 1}

and its PMF is given by

fX(0) = 1− p and fX(1) = p.

Proposition 2.26. Let p ∈ (0, 1) and let X : Ω → R be a random variable with X ∼
Ber(p). Then:

(i) Its expectation and variance are given by

µX = p and σ2
X = p(1− p).

(ii) Its moment-generating function is given by

∀t ∈ R, MX(t) = 1− p+ pet.
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2.4.3 Binomial distribution

Recall the setting of Section 2.4.2: we have an experiment such that there exists p ∈ (0, 1)
such that

P(success) = p and P(failure) = 1− p.

Now, suppose that we can independently repeat it n times. Define X as the random
variable that counts the total number of successes among the n repetitions, which will be
an integer between 0 and n. For each 1 ⩽ i ⩽ n, let Xi be the random variable defined
as

Xi :=

{
0, if the i-th repetition is a failure
1, if the i-th repetition is a success.

Then

X =
n∑

i=1

Xi,

so we know that X is characterized as the sum of n independent Bernoulli random variables
with parameter p.

Now, for k ∈ {0, . . . , n}, let us compute P(X = k), which is the probability of obtain-
ing exactly k successes. We have

(
n
k

)
different ways to choose the k individual successes

amongst the n trials. Additionally, note that the probability of obtaining exactly k suc-
cesses amongst n trials is

pk(1− p)n−k

since we have to succeed k times and fail (n− k) times. Then

P(X = k) =

(
n

k

)
pk(1− p)n−k.

Definition 2.27 (Binomial distribution). Let p ∈ (0, 1) and n ∈ N∗. A random variable
X : Ω → R is said to have the Binomial distribution with parameters n and p, which we
denote by X ∼ Bin(n, p), if its support is

supp(X) = {0, . . . , n}

and its PMF is given by

∀k ∈ {0, . . . , n}, fX(k) =

(
n

k

)
pk(1− p)n−k.

Remark 2.28. Note that fX is well-defined since∑
k∈supp(X)

fX(k) =
n∑

k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1n = 1

thanks to Newton’s binomial theorem.
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Theorem 2.29 (Newton’s binomial theorem). Let a, b ∈ R and n ∈ N. Then

(a+ b)n =
n∑

k=0

(
n

k

)
ak bn−k.

Remark 2.30. We have Bin(1, p) = Ber(p).

Proposition 2.31. Let p ∈ (0, 1) and n ∈ N∗. Let X : Ω → R be a random variable with
X ∼ Bin(n, p). Then:

(i) Its expectation and variance are given by

µX = np and σ2
X = np(1− p).

(ii) Its moment-generating function is given by

∀t ∈ R, MX(t) = (1− p+ pet)n.

2.4.4 Geometric distribution

As before, suppose we observe an experiment such that there exists p ∈ (0, 1) such
that

P(success) = p and P(failure) = 1− p.

We repeat the experiment independently until we get a success, and let X be the random
variable counting the number of repetitions needed, considering the final success. Note
that X takes values in N∗ and that for any k ∈ N∗,

P(X = k) = (1− p)k−1p

since we have to get exactly k − 1 failures (each having probability 1 − p) before the
succesful repetition that has probability p.

Definition 2.32 (Geometric distribution). Let p ∈ (0, 1). A random variable X : Ω → R
is said to have the Geometric distribution with parameter p, which we denote by X ∼
Geom(p), if its support is

supp(X) = N∗

and its PMF is given by

∀k ∈ N∗, fX(k) = (1− p)k−1p.

Remark 2.33. Note that fX is well-defined since

∑
k∈supp(X)

fX(k) =
+∞∑
k=1

(1−p)k−1p = p

+∞∑
k=1

(1−p)k−1 = p

+∞∑
k=0

(1−p)k = p

(
1

1− (1− p)

)
= 1.
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Proposition 2.34. Let p ∈ (0, 1) and let X : Ω → R be a random variable with X ∼
Geom(p). Then:

(i) Its expectation and variance are given by

µX =
1

p
and σ2

X =
1− p

p2
.

(ii) Its moment-generating function is given by

∀t < − log(1− p), MX(t) =
pet

1− (1− p)et
.

2.4.5 Poisson distribution

A typical phenomenon we would like to model is the number of arrivals or occurrences of
an event at a given interval of time, such as the number of customers arriving at a store
during a day or the number of texts we receive each day. Our goal will be to define a
probability density that fits those models under the following assumptions:

(i) The numbers of occurrences in two nonoverlapping time intervals are independent.

(ii) There exists λ > 0 such that if the time interval has length t > 0, then

P(observe exactly one occurrence of the event) ≈ λt

for small values of t.

(iii) If t > 0 is sufficiently small, then the probability of observing two or more occurrences
in an interval of length t is zero.

Let X be the random variable that counts the number of occurrences in the interval
[0, 1], say. Let k ∈ N and let us approximate P(X = k). We can divide the interval [0, 1]
into n nonoverlapping intervals of length 1/n:

I1 = [0, 1/n), I2 = [1/n, 2/n), . . . , In = [1− 1/n, 1],

and denote by Xi the number of occurrences of the event in the interval Ii. If n is
sufficiently big, then, in light of assumption (iii), we can think of Xi as a Bernoulli random
variable, which, due to assumption (ii), should have parameter λ

n
. According to assumption

(i), the random variables (Xi)
n
i=1 are independent. Since

X =
n∑

i=1

Xi,

we can think of X as a Binomial random variable of parameters n and λ
n
. That is,

P(X = k) ≈
(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

.
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When n → +∞, we obtain(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

−−−−→
n→+∞

e−λλ
k

k!
.

Definition 2.35 (Poisson distribution). Let λ > 0. A random variable X : Ω → R is said
to have the Poisson distribution with parameter λ, which we denote by X ∼ Poi(λ), if its
support is

supp(X) = N

and its PMF is given by

∀k ∈ N, fX(k) = e−λλ
k

k!
.

Remark 2.36. Note that fX is well-defined since

∑
k∈supp(X)

fX(k) =
+∞∑
k=0

e−λλ
k

k!
= e−λ

+∞∑
k=0

λk

k!
= e−λeλ = 1.

Proposition 2.37. Let λ > 0 and let X : Ω → R be a random variable with X ∼ Poi(λ).
Then:

(i) Its expectation and variance are given by

µX = λ and σ2
X = λ.

(ii) Its moment-generating function is given by

∀t ∈ R, MX(t) = exp(λ(et − 1)).



Chapter 3

Continuous probability distributions

In this chapter, we will extend some of the notions we have introduced in Chapter 2
towards the continuous case. That is, we will consider random variables that have a
continuum of possible outcomes. We begin in Sections 3.1 and 3.2 by extending the
notions of random variable, probability density function, CDF, expectation, variance, etc.,
towards the continuous case. In Section 3.3 we provide further examples of continuous
distributions. Finally, in Section 3.4, we discuss the distribution of a function of a random
variable.

3.1 Continuous random variables

We start by defining random variables, objects that (again) capture the idea of the observ-
ables associated with a random experiment. Note that we do not impose any restriction
on the cardinality of the outcome space here.

Definition 3.1 (Random variable). Consider a random experiment with outcome space
Ω. A function X : Ω → R is said to be a random variable. We define the support of X,
denoted by supp(X), as the set of all values that the random variable X takes:

supp(X) := {X(ω) : ω ∈ Ω};

that is, supp(X) is the image of the set Ω via the map X:

supp(X) = X(Ω).

Let us illustrate the previous definition with a simple example in the continuous set-
ting.

Example 3.2 (Sampling from an interval). Suppose we are sampling a single point from
the interval [a, b] with a < b, so Ω = [a, b]. We can define the random variable X : Ω → R

37
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that returns the sampled point:

∀ω ∈ Ω, X(ω) = ω.

Its support is supp(X) = [a, b].

Given a random variable X : Ω → R, suppose we endow the outcome space with a
probability P. As we did in the previous chapter, we would be interested in computing
the probability of X belonging to a determined event. However, in the continuous setting,
for a random variable X : Ω → R, for any point x ∈ supp(X), we have that

P(X = x) = 0.

Thus, we must follow a different approach to extend Definition 2.8 towards the continuous
setting.

Definition 3.3 (Probability density function). Consider a random experiment with out-
come space Ω, and let P be a probability defined on P(Ω). Let X : Ω → R be a random
variable with support supp(X). We say that a function fX : supp(X) → R is the proba-
bility density function or just the density associated with X if:

(i) For every x ∈ supp(X), fX(x) ⩾ 0.

(ii) For every x /∈ supp(X), fX(x) = 0

(iii)
∫ +∞
−∞ fX(x) dx = 1.

(iv) For every A ⊂ supp(X),

P(X ∈ A) =

∫
A

fX(x) dx.

Equivalently, for every a < b such that (a, b) ⊂ supp(X),

P(X ∈ (a, b)) =

∫ b

a

fX(x) dx.

We also define the cumulative distribution function associated with a random variable.
Note that the following definition does not differ from Definition 2.10.

Definition 3.4 (Cumulative distribution function). Consider a random experiment with
outcome space Ω, and let P be a probability defined on P(Ω). Let X : Ω → R be a
random variable. We define the cumulative distribution function or CDF as the function
FX : R → [0, 1] defined by

∀x ∈ R, FX(x) := P(X ⩽ x).

The CDF of a random variable satisfies the following properties.
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Proposition 3.5. Consider a random experiment with outcome space Ω and let P be a
probability defined on P(Ω). Let X : Ω → R be a random variable with support supp(X),
PMF fX , and CDF FX . Then:

(i) For every x ∈ R,

FX(x) =

∫ x

−∞
fX(y) dy.

(ii) For every x ∈ R,
F ′
X(x) = fX(x).

(iii) FX is a non-decreasing function.

(iv) limx→−∞ FX(x) = 0.

(v) limx→+∞ FX(x) = 1.

Example 3.6 (Uniform random variable). Recall Example 3.2. If we sample the point
uniformly (i.e., for every two intervals A1, A2 ⊂ [a, b] of length r > 0, we have that
P(X ∈ A1) = P(X ∈ A2)), then a probability density function for X is the uniform one:

∀x ∈ [a, b], fX(x) =
1

b− a
,

and we note this by X ∼ U([a, b]). Then its CDF is given by

∀x ∈ R, FX(x) =

∫ x

−∞
fX(y) dy =


0, if x < a
x−a
b−a

, if a ⩽ x < b

1, if x ⩾ b.

We define the percentile values associated with a random variable.

Definition 3.7 (Percentile values). Consider a random experiment with outcome space
Ω and let P be a probability defined on P(Ω). Let X : Ω → R be a random variable with
density fX and CDF FX : R → [0, 1]. For p ∈ (0, 1), we define the p-th percentile as a
number xp ∈ R such that

p = FX(xp) =

∫ xp

−∞
fX(y) dy.

When p = 0.5, we call it a median. When p = 0.25, p = 0.5, and p = 0.75, we call them
the first, second, and third quartiles, respectively.

3.2 Expectation of a continuous random variable
Similarly to what we did in Chapter 2, we define a continuous random variable’s ex-
pectation, variance, and moment-generating function by just replacing summation with
integration.



40 CHAPTER 3. CONTINUOUS PROBABILITY DISTRIBUTIONS

Definition 3.8 (Expectation, variance, standard deviation, moments, and moment-gen-
erating function). Consider a random experiment with outcome space Ω and let P be a
probability defined on P(Ω). Let X : Ω → R be a random variable with density fX .

(i) We define the expectation, expected value, or mean of X, which we denote by E[X]
or µX , as

E[X] :=

∫ +∞

−∞
x fX(x) dx.

(ii) We define the variance of X, which we denote by σ2
X , as

σ2
X :=

∫ +∞

−∞
(x− µX)

2fX(x) dx.

Note that, as in the discrete case,

σ2
X =

∫ +∞

−∞
x2fX(x) dx−

(∫ +∞

−∞
x fX(x) dx

)2

.

(iii) We define the standard deviation of X as

σX :=
√

σ2
X .

(iv) For r ∈ N∗, we define the r-th moment of X as

E[Xr] :=

∫ +∞

−∞
xr fX(x) dx.

(v) We define the moment-generating function of X as the function MX(t) : R → R
given by

∀t ∈ R, MX(t) :=

∫ +∞

−∞
etxfX(x) dx.

Remark 3.9. More generally, if u : R → R is a function, we may compute the expectation
of the composition u(X) : Ω → R similarly to the discrete case (cf. Remark 2.17). That
is,

E[u(X)] =

∫ +∞

−∞
u(x)fX(x) dx.

Remark 3.10. The properties related to the objects we have just defined that were valid
in the discrete case are still valid mutatis mutandis in the continuous setting. Namely,
Proposition 2.20, equation (2.3.1), Theorem 2.21, and Proposition 2.22 are still true with
the obvious modifications.

Exercise 3.1. Compute the mean, median, quartiles, variance, and moment-generating
function of a uniform random variable X on the interval [a, b] for a < b (recall Example
3.6).



3.3. EXAMPLES OF CONTINUOUS DISTRIBUTIONS 41

3.3 Examples of continuous distributions

Here we exhibit some of the most important examples of continuous distributions beyond
the uniform one (cf. Example 3.6 and Exercise 3.1).

3.3.1 Exponential distribution

An important example is the exponential distribution.

Definition 3.11 (Exponential distribution). Let λ > 0. A random variable X : Ω → R
is said to have the Exponential distribution with parameter λ, which we denote by X ∼
Exp(λ), if its support is

supp(X) = R+

and its density is given by
∀x ∈ R+, fX(x) = λe−λx.

Remark 3.12. Note that fX is well-defined since∫ +∞

0

fX(x) dx = λ

∫ +∞

0

e−λx dx = λ

[
−e−λx

λ

]+∞

0

dx = λ

[
1

λ
− 0

]
= 1.

Proposition 3.13. Let λ > 0 and let X : Ω → R be a random variable with X ∼ Exp(λ).
Then:

(i) Its CDF is given by

FX(x) =

{
1− e−λx, if x ⩾ 0

0, if x < 0.

(ii) Its expectation and variance are given by

µX =
1

λ
and σ2

X =
1

λ2
.

(iii) Its moment-generating function is given by

∀t < λ, MX(t) =
λ

λ− t
.

(iv) It has the memoryless property:

∀t, s ⩾ 0, P(X > t+ s|X > t) = P(X > s).
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3.3.2 Gamma distribution

We continue with the Gamma distribution. First of all, we recall the definition of the
Gamma funtion:

∀α > 0, Γ(α) :=

∫ +∞

0

yα−1e−y dy.

Definition 3.14 (Gamma distribution). Let α, θ > 0. A random variable X : Ω → R
is said to have the Gamma distribution with parameters α and θ, which we denote by
X ∼ Γ(α, θ), if its support is

supp(X) = R+

and its density is given by

∀x ∈ R+, fX(x) =
1

Γ(α)θα
xα−1e−x/θ.

Exercise 3.2. Prove that the Gamma distribution is well-defined.

Remark 3.15. Note that the exponential is a particular case of the Gamma distribution:
for all λ > 0,

Exp(λ) = Γ(1, 1/λ).

Proposition 3.16. Let α, θ > 0 and let X : Ω → R be a random variable with X ∼ Γ(α, θ).
Then:

(i) Its expectation and variance are given by

µX = αθ and σ2
X = αθ2.

(ii) Its moment-generating function is given by

∀t < 1

θ
, MX(t) = (1− θt)−α.

A particular case of the Gamma distribution that plays an important role in statistics
is the chi-squared distribution.

Definition 3.17 (Chi-squared distribution). Let r ∈ N∗. A random variable X : Ω → R is
said to have the chi-squared distribution with parameter r, which we denote by X ∼ χ2(r),
if it has the Gamma distribution with parameters 2 and r

2
:

χ2(r) = Γ(2, r/2).

Exercise 3.3. Let r ∈ N∗ and let X ∼ χ2(r). Determine the density, mean, variance, and
moment-generating function of X.
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3.3.3 Normal distribution

We arrive to one of the most important and ubiquitous1 distributions in probability theory:
the Normal distribution.

Definition 3.18 (Normal distribution). Let µ, σ > 0. A random variable X : Ω → R
is said to have the Normal or Gaussian distribution with parameters µ and σ, which we
denote by X ∼ N (µ, σ2), if its support is

supp(X) = R

and its density is given by

∀x ∈ R, fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

If µ = 0 and σ = 1, we say that it has a Normal standard distribution.

Remark 3.19. The Gaussian distribution is well-defined. Let

I :=

∫ +∞

−∞
fX(x) dx =

1√
2πσ2

∫ +∞

−∞
e−

(x−µ)2

2σ2 dx.

If we use the change of variables
z =

x− µ

σ
,

we obtain

I =
1√
2π

∫ +∞

−∞
e−

z2

2 dz.

On the other hand, note that

I2 =
1

2π

(∫ +∞

−∞
e−

z2

2 dz

)2

=
1

2π

(∫ +∞

−∞
e−

x2

2 dx

)(∫ +∞

−∞
e−

y2

2 dy

)
=

1

2π

∫ +∞

−∞

∫ +∞

−∞
e−

x2+y2

2 dx dy.

If we put the change of variables x = r cos(θ) and y = r sin(θ), we get

I2 =
1

2π

∫ 2π

0

∫ +∞

0

e−
r2

2 r dr dθ =

∫ +∞

0

e−
r2

2 r dr =

∫ +∞

0

e−s ds = [−e−s]+∞
0 = 1,

where we used the change of variable s = r2

2
. That is, I2 = 1 hence I = 1.

Proposition 3.20. Let µ, σ > 0 and let X : Ω → R be a random variable with X ∼
N (µ, σ2). Then:

1For reasons that will become clear in Chapter 5.
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(i) Its expectation and variance are given by

µX = µ and σ2
X = σ2.

(ii) Its moment-generating function is given by

∀t ∈ R, MX(t) = eµt+
σ2t2

2 .

3.4 Functions of a continuous random variable

Recall Remark 3.9: given a random variable X : Ω → R and a function u : R → R, we can
define their composition u(X) : Ω → R and easily compute its mean via the formula

E[u(X)] =

∫ +∞

−∞
u(x)fX(x) dx.

Let us go a step further. What is the distribution of the random variable Y ?

3.4.1 The change of variables theorem

Now we will determine the distribution of the random variable Y := u(X) under some
assumptions on the function u. More precisely, let A,B ⊂ R and let u : A → B be a
bijective function2, so its inverse u−1 : B → A exists. Moreover, let us assume that u is
differentiable and increasing, that is

x < y =⇒ u(x) < u(y),

or equivalently,
∀x ∈ A, u′(x) > 0.

In light of Proposition 3.5, if we want to know fY , it just suffices to compute FY

because fY = F ′
Y . Let y ∈ B:

FY (y) = P(Y ⩽ y) = P(u(X) ⩽ y) = P(X ⩽ u−1(y)) = FX(u
−1(y)).

Then, for y ∈ A,

fY (y) = F ′
Y (y) = (FX(u

−1(y)))′ = F ′
X(u

−1(y)) · (u−1)′(y) = fX(u
−1(y)) · (u−1)′(y),

where we used the chain rule and the fact that F ′
X = fX . That is,

∀y ∈ B, fY (y) = fX(u
−1(y)) · (u−1)′(y).

2That is, injective (one-to-one) and surjective (onto).
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Exercise 3.4. Now assume that u is decreasing:

x < y =⇒ u(x) > u(y),

or equivalently,
∀x ∈ A, u′(x) < 0.

Prove that in this case,

∀y ∈ A, fY (y) = −fX(u
−1(y)) · (u−1)′(y).

Joining both the previous conclusion and Exercise 3.4, we have proven the following
theorem.

Theorem 3.21 (Change of variables). Consider a random experiment with outcome space
Ω and let P be a probability defined on P(Ω). Let X : Ω → R be a random variable with
density fX . Let A,B ⊂ R and let u : A → B be a bijective and differentiable function with
inverse u−1 : B → A. Define Y := u(X). Then the density of Y is given by

∀y ∈ A, fY (y) = fX(u
−1(y)) ·

∣∣(u−1)′(y)
∣∣.

Example 3.22. Let X ∼ N (0, 1) and let u : R → (0,+∞) be the exponential func-
tion. The function u is bijective (with inverse u−1 = log, the natural logarithm) and
differentiable. Then, if Y = u(X), we have that, by applying Theorem 3.21, for every
y ∈ (0,+∞),

fY (y) = fX(u
−1(y)) ·

∣∣(u−1)′(y)
∣∣ = 1√

2π
e−

1
2
log(y)2 1

y
.

We say that Y has a log-normal distribution.

3.4.2 Sampling from uniform random variables

In applications, we would like to simulate a specific random variable X with a known
CDF FX . It is known that uniform random variables are quite easy to simulate. the
following theorem provides a procedure to simulate a random variable Y having the same
distribution as X, that is, having the same CDF (and thus the same density): simulate
U ∼ U([0, 1]) and define Y := F−1

X (U).

Theorem 3.23. Consider a random experiment with outcome space Ω and let P be a
probability defined on P(Ω). Let X : Ω → R be a random variable with an invertible CDF
FX . Let U : Ω → R be a random variable with U ∼ U([0, 1]). Then the random variable
Y = F−1

X (U) has CDF FY = FX .

Exercise 3.5. Prove Theorem 3.23.



46 CHAPTER 3. CONTINUOUS PROBABILITY DISTRIBUTIONS



Chapter 4

Bivariate random variables

47



48 CHAPTER 4. BIVARIATE RANDOM VARIABLES



Chapter 5

Concentration and limit theorems

49


	Random experiments and probability
	Random experiments
	Sets and their operations
	Measuring events
	Counting principles
	Rule of sum
	Rule of product
	Permutations of n objects
	Permutations of n objects taken k
	Combinations of n objects taken k

	Conditional probability
	Independence
	Law of total probability
	Bayes' theorem

	Discrete probability distributions
	Discrete random variables
	Expectation of a discrete random variable
	Remarkable expectations
	Mean
	Variance
	Moments
	Moment-generating function

	More examples of discrete distributions
	Uniform distribution
	Bernoulli distribution
	Binomial distribution
	Geometric distribution
	Poisson distribution


	Continuous probability distributions
	Continuous random variables
	Expectation of a continuous random variable
	Examples of continuous distributions
	Exponential distribution
	Gamma distribution
	Normal distribution

	Functions of a continuous random variable
	The change of variables theorem
	Sampling from uniform random variables


	Bivariate random variables
	Concentration and limit theorems

