(a) Find all eigenvectors of \(\frac{d^3}{dx^3} - 9 \frac{d^2}{dx^2} + 27 \frac{d}{dx} \) with eigenvalue 27. [Hint: the polynomial \(t^3 - 9t^2 + 27t - 27 \) can be factored as \((t - 3)^3 \).]

\[f(x) \text{ is an eigenvector of } \frac{d^3}{dx^3} - 9 \frac{d^2}{dx^2} + 27 \frac{d}{dx} \text{ with eigenvalue 27 if and only if } \]

\[\frac{d^3 f(x)}{dx^3} - 9 \frac{d^2 f(x)}{dx^2} + 27 \frac{d f(x)}{dx} = 27 f(x). \]

In other words, if and only if \(f(x) \) is a solution to the ODE:

\[y''' - 9y'' + 27y' - 27y = 0 \]

Auxiliary equation: \(r^3 - 9r^2 + 27r - 27 = 0 \)

\((r - 3)^3 = 0 \) (by the hint)

Solutions: \(c_1 e^{3x} + c_2 x e^{3x} + c_3 x^2 e^{3x} \)

where \(c_1, c_2, c_3 \) are any scalars, not all 0 (since eigenvectors are supposed to be nonzero).

(b) Use your answer to part (a) to find a nontrivial solution to the following PDE.

\[\frac{\partial f}{\partial t} = \frac{\partial^3 f}{\partial x^3} - 9 \frac{\partial^2 f}{\partial x^2} + 27 \frac{\partial f}{\partial x} \]

Let \(T \) be the linear transformation \(\frac{\partial^3}{\partial x^3} - 9 \frac{\partial^2}{\partial x^2} + 27 \frac{\partial}{\partial x} \).

So the PDE is

\[\frac{\partial f}{\partial t} = T(f). \]

We saw in class that if \(y(x) \) is an eigenvector of \(T \) with eigenvalue \(\lambda \) then \(e^{\lambda t} y(x) \) is a solution to the above PDE.

So by part (a), \(e^{3t} (c_1 e^{3x} + c_2 x e^{3x} + c_3 x^2 e^{3x}) \)

is a solution for any \(c_1, c_2, c_3 \in \mathbb{R} \) (and it is a nontrivial solution when \(c_1, c_2, c_3 \) are not all 0).